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Vorwort

Das Buch »Elektromagnetische Felder und Wellen« setzt die mit den Titeln »Physik
in Beispielen« von Hasko und »Statistische Physik in Beispielen« von ScHILLING be-
gonnene Reihe »Physik in Beispielen« mit der Behandlung elektrischer und magne-
tischer Vorgénge fort. Die Darstellung physikalischer Effekte an Hand technischer
Beispiele macht es besonders bei den elektrischen Erscheinungen erforderlich, Grund-
begriffe aus der Elektrotechnik einzufiihren. Neben den rein physikalischen Be-
trachtungen iiber Elektronen und Ionen und iiber elektrische und magnetische
Groflen in statischen, stationéren, nieder- und hochfrequenten Feldern werden daher
auch die Elemente der Vierpoltheorie, der Vorginge in Kabeln und Leitungen und
der Sende-, Empfangs- und Transistortechnik behandelt.

Wie in den vorangegangenen Bénden ist jeder Abschnitt in drei Teile untergliedert:
einen kurzgehaltenen Lehrtext iiber die theoretischen Grundlagen, die ausfiihrliche
Losung systematisch ausgewédhlter Probleme bis zum numerischen Ergebnis und
eine grofle Zahl von Aufgaben mit Angabe der Losungen am Schlufl des Buches.
Fiir ihren Rat bei der Gestaltung des Buches danke ich besonders Herrn Prof.
Dr. habil. Scuvrrz-PiszacuicH, Ingenieurhochschule Kothen, und Herrn Prof. Dr.
habil. GERDES, Universitdt Rostock. Herr Ing. RiNa, Zentralinstitut fiir Kybernetik
und Informationsprozesse der AdW, Berlin, Herr Dr. sc. PrinzLER und Herr Ing.
HorrmaNN, Zentralinstitut fiir Elektronenphysik der AW, Berlin, unterstiitzten
mich mit speziellen Hinweisen zur Empfangs- und zur Transistortechnik. Meine
Gattin, Frau Ing. R.ScHILLING, entwarf das Bildmaterial und die technischen
Zeichnungen. Dem Verlag danke ich fiir die vielfdltigen Beratungen und fiir die
Unterstiitzung in jeder Phase der Entstehung des vorliegenden Werkes.

Der Verfasser
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l. Grundgesetze des elektromagnetischen
Feldes

1.1. Elektrische und magnetische Grundgréfen

E Einfiihrung

Zur Beschreibung der elektrischen und magnetischen Erscheinungen unterscheidet
man zwischen den Grofien zur Darstellung des Feldes und den Griofien zur Kenn-
zeichnung des Mediums. Das elektromagnetische Feld wird durch die elektrische
Feldstirke € und die magnetische Feldstiirke $ charakterisiert. Dagegen werden die
elektrischen und magnetischen Eigenschaften des Mediums durch die elektrisehe Er-
regung oder Verschiebungsdichte ®, die magnetische Induktion oder FluBidichte B,
die elektrische Stromdichte § und die elektrische Ladung @ zum Ausdruck gebracht.
Quellen des elektrischen Feldes sind die elektrischen Ladungen @. Thre Messung er-
folgt in der Einheit Coulomb (C):

1 Coulomb (C) =1 Amperesekunde (As).

Zwischen der elektrischen Elementarladung e und der Ladungseinheit 1 As besteht
der Zusammenhang

e = 1,602 - 1019 As. (1)

Zur Definition der elektrischen Feldstdrke betrachtet man eine Probeladung Q. Sie
sei so klein, daB sie die vorhandene Ladungsverteilung nicht stort. Auf @, wirkt im
elektrischen Feld eine Kraft . Der Vektor & ist im allgemeinen in jedem Raum-
punkt nach GroBe und Richtung verschieden. Als elektrische Feldstirke definiert
man den Vektor
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Er hat nach (2) die Einheit

[6]] = Krafteinheit Newton =~ N kgms2
I= Ladungseinheit Coulomb ~ € =~ As

Ein Newton (N) gibt die Kraft an, die auf eine Masse 1 kg wirkt, wenn sie die Be-
schleunigung 1 m s~2 erhilt.

Die Arbeit bei der Bewegung ldngs einer vorgegebenen Kurve C ist nach (2) durch
das Linienintegral

W=/[F ds=@Qp[C-ds (3)
c c

bestimmt. Als Spannung U bezeichnet man die skalare Gréf3e
U=[G-ds. 4)
¢

Sie wird in Volt (V) gemessen und ist ebenfalls von der speziellen Form der Kurve C
abhéngig. Fur die MaBeinheit der elektrischen Feldstdrke erhélt man aus (4) den
in der Elektrik gebrduchlichen Ausdruck

[IGl] =V m, (5)

Die elektrische Verschiebungsdichte ® kennzeichnet die Elektrisierung des Mediums
infolge der vorhandenen Ladungen. Von diesen geht eine Fernwirkung oder Er-
regung des ladungsfreien Raumes aus. Ein Beispiel fiir diese Fernwirkung ist die
Kraftwirkung auf eine Probeladung. Zur Definition der elektrischen Erregung wird
festgelegt, dafi das Oberflichenintegral der elektrischen Erregung, erstreckt iiber
eine beliebige, eine vorgegebene Ladung @ einschlieBende Fliche 4, gleich der ein-
geschlossenen Ladung ist:

ffo-du=0. (6)

4
Die positiven elektrischen Ladungen kénnen hiernach als Ausgangspunkt elektrischer
Feldlinien angesehen werden. In den negativen Ladungen enden diese Feldlinien.
Zur expliziten Darstellung des Erregungsfeldes © betrachtet man die Wirkung einer
punktférmigen Ladung @. Sie befinde sich im Mittelpunkt einer Kugel K vom
Radius r. Jeder Punkt der Kugeloberfliche ist gleichberechtigt; die elektrische Er-
regung hat iiberall auf der Kugeloberfliche den gleichen Betrag. Daher kann man
schreiben

Q = ff Do AU =Dy - ff AA = D] 4rr2. (7)

Die Richtung des Verschiebungsvektors ®, wird im vorliegenden Falle durch den
Radiusvektor v bestimmt, gezogen vom Ort der Ladung @ zum Aufpunkt P (vgl.
Bild 1.1). Als Vektor der elektrischen Erregung im Falle einer punktférmigen La-
dung @ folgt nach (7)

9z ®)

4drr? ¥

Dq
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Bei mehreren im Raum verteilten Ladungen @; erhédlt man ®© nach dem Super-
positionsprinzip

Y a @ 1
D = ; Do = ; o st 9)
Als Einheit der elektrischen Erregung ist nach (6)
‘ As
(3= (10)

zu schreiben. Fiir die zeitliche Ableitung der elektrischen Verschiebungsdichte erhalt
man aus (10) die Einheit einer Stromdichte:

[1D]] = Am2. (10a)

Im Falle hochfrequenter Wechselfelder kann die Dichte ® des Verschiebungsstromes
mafgebliche Werte annehmen und die GréBenordnung der Dichte  des elektrischen
Leitungsstromes erreichen. Bei der Messung hochfrequenter Stréme ist daher ® stets
in Rechnung zu stellen.

Die Einheit (10) der elektrischen Verschiebungsdichte ® deutet auf ein Verfahren
zu ihrer experimentellen Messung, dessen exakte theoretische Grundlagen aus der
MaxwzerLschen Theorie (vgl. 1.4.) abgeleitet werden:

In einem idealen Leiter kann sich kein elektrisches Feld ausbilden, da sich Span-
nungsunterschiede hier sofort ausgleichen. Im idealen Leiter gilt also ® = 0. Bringt
man ein kleines, das vorhandene Feld nicht stérendes Metallpldttchen in das elek-

I}G
P

Bild 1.1. Zur Definition der elektrischen Erregung
bzw. Verschiebungsdichte ®

8

trische Feld, so mufl an seiner Oberfliche das elektrische Feld enden. Die Metall-
oberfliche wird zum Ausgangs- oder Endpunkt der elektrischen Feldlinien. Elek-
trische Feldlinien gehen von positiven Ladungen aus und enden in negativer Ladung.
Die auf der Oberfliche gemessene Ladungsdichte ¢ gibt daher die Gréfle der elek-
trischen Erregung ® an dieser Stelle des Feldes an:

GLeiter :A% =D. (11)

Zwischen der elektrischen Feldstidrke € und der Dichte § des elektrischen Leitungs-
stromes besteht eine lineare Beziehung, die aus dem Ohmsehen Gesetz

U = RI (12)
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abgeleifet werden kann. Es bedeutet

Al
-7 (13)

den ohmschen Widerstand, A7 die Lénge der Leitung, 44 die Querschnittfliche.
Der spezifische Widerstand ist mit 1/y bezeichnet. y definiert die Leitfdhigkeit des
Materials (siehe Tafel 2). Ist dieses homogen, so gilt nach (4) bei! einem konstanten
Feld € die Beziehung U = K Al. Ferner ist I = J AA4. Diese letzten beiden Be-
ziehungen zusammen mit (13) in (12) eingesetzt, ergibt fiir das OHMsche Gesetz die

Form
3 =7€ | (14)

Stromdichte und Feldstérke sind also iiber die Leitfahigkeit y des Materials linear
miteinander verkniipft.
Eine weitere Materialbeziehung besteht zwischen € und ®. Sie wird in der Form

D = 6 (15)

geschrieben. & bezeichnet die Dielektrizititskonstante. Thre Einheit ist nach (11)
und (5)
_ =21

[e] = (Gl =AsV-1m1, (16)

Im allgemeinen schreibt man
& = &€& (163)

und bezeichnet ¢, als Dielektrizitatszahl (relative Dielektrizitdtskonstante) des Me-
diums (vgl. Tafel 1). ¢, = 8,854 - 10-12 As V-1 m-1 gibt die elektrische Feldkonstante
(absolute Dielektrizitdtskonstante des Vakuums) an.

Die elektrische Polarisation 9B ist durch

D =€ =&+ P (17)
definiert, woraus

R =(c—e)C (17a)
folgt.

Bei den Eigenschaften des magnetischen Feldes hat man zu berticksichtigen, dafl die
Pole der Magneten, im Gegensatz zu elektrischen Ladungen, stets paarweise auf-
treten und nicht getrennt werden kénnen. Daher ist es unzweckméfig, die magne-
tischen Feldgrofen  und B durch Analogien zu den elektrischen FeldgréfBen ab-
zuleiten oder aus der Wirkung auf einen Magnetpol zu definieren.
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Die magnetische Feldstdrke § laf3t sich aus der Ablenkung einer Magnetnadel be-
stimmen. Diese eicht man als MeBinstrument, indem man sie in eine zylindrische
Spule bringt. Der Offnungsquerschnitt der Spule sei ein Kreis, dessen Radius klein
ist gegen die Spulenldnge /. Unter dieser Voraussetzung hidngt die magnetische Feld-
stdrke im Spuleninnern nur noch von der Stromstdrke I und von der spezifischen
Windungszahl »/l ab (vgl. 3.1.):

Magnetische Feldstirke H = Stromstéarke I - Windungszahl n/Lénge ! (18)

Die Magnetnadel zeigt daher iiberall in der Spule die gleiche Auslenkung. Das
Magnetfeld hat die Richtung der Spulenachse (vgl. Bild 1.2). Durch Anderung der

5,0://eﬂg1/ersf/m/n‘
A=nr

Bild 1.2. Die magnetischen Feldlinien einer kreiszylindrischen Spule

Stromstérke I wird der Magnet zum MefBinstrument geeicht. Mit diesem kann man
die Stérke vorgegebener Felder bestimmen.
Nach (18) hat $ die Einheit

[9]] =Am™. (19)

Die Messung und Definition der magnetischen FluBdichte oder Induktion % erfolgt
am einfachsten mit Hilfe des FaArapayschen Induktionsgesetzes.

Beim Aufbau des magnetischen Feldes 8 in einer Zylinderspule aus » Windungen
mit dem Querschnitt 44 wird ein Spannungsstof}

[Upadt = — [[nB-aA (20)
44

induziert. Diese Beziehung zwischen dem aufgebauten Magnetfeld und dem in-
duzierten Spannungsstol kann als Definitionsgleichung der magnetischen FluB-
dichte B aufgefalit werden. ‘

Setzt man den Querschnitt A4 als derart klein voraus, daf} die Fludichte in jedem
Punkt der Querschnittsfliche 44 den gleichen Wert hat, so folgt aus (20)

= [ U dt

= . 21
B ndA 1)

92 Schilling, Felder
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Die Einheit der magnetischen FluBdichte ist hiernach

[B] = Vsm=2 = Wbm2 =T (Tesla) (21a)
mit Vs = Wb (Weber).
Beispiel 1

In einer Spule aus 25000 Windungen mit der Querschnittsfliche 44 = 4 cm? wird wihrend eines

Einschaltvorganges von 10 s Dauer die konstante Spannung U;,q = 1,5 V gemessen. Hieraus
folgt als Betrag der magnetischen FluBdichte

1,5-10

—_———— Vsm2=1,5 Vsm™2.
0,0004 - 25000

1B =

Zwischen der magnetischen FluB3dichte und der magnetischen Feldstérke besteht der
lineare Zusammenhang

B = ud = wited |- (22)

to = 1,257 - 108 Vs A1 m~1 = 47 - 10-7 Vs A-1 m~! bedeutet die magnetische Feld-
konstante (absolute Permeabilitdt des Vakuums), u, die Permeabilitdtszahl (relative
Permeabilitdt) des Mediums (vgl. Tafel 3). Bei fehlender Magnetisierung, d. h., wenn
sich das betreffende Material wie das Vakuum verhalt, ist u = uo, 4, = 1

Die Magnetisierung 9t kennzeichnet die Bildung elementarer Magnete im Medium.
Sie ist auf Grund der Zerlegung der magnetischen Induktion in

B = pH = b + M (23)
definiert. Der Vergleich von (22) und (23) ergibt

M = polpr = 1) O = uoxH- (23a)
Die GroSle

%= — 1

wird als magnetische Suszeptibilitit des Mediums bezeichnet.
In Analogie zur elektrischen Spannung U definiert man als magnetische Spannung
die Grofie ’

Uy =[-ds. (24)
C

Sie hat die Einheit A. Ebenso wie die elektrische Spannung ist sie im allgemeinen
von der Wegkurve C abhéngig.

Die magnetische Umlaufspannung steht mit den flieBenden Stréomen durch das
AwmpirEsche Verkettungsgesetz im Zusammenhang: Umféhrt man eine Fldache 44
einmal auf der geschlossenen Kurve C, so ist die magnetische Spannung gleich dem
Strom 7, der die umfahrene Fliche senkrecht durchsetzt. Es gilt also

$o-ds=1. (25)
C



1.1. Elektrische und magnetische Grundgréfen 19

Der Strom 7 enthélt sowohl den Leitungsstrom

I=I,=[[3J au (252)
44

als auch den Verschiebungsstrom

Iy = H@ Ay, (25D)

d. h., man erhélt I geméaf
I=5L+1Iy=[[(§+D)-d (26)
44

Darin bedeutet 44 die von C eingeschlossene Flache. Bei rdumlich konstanter
Stromdichte ist

I=(F+D)-49. (26a)

Zwischen den vielfach noch verwendeten Einheiten des CGS-Systems und den in
«diesem Buch benutzten Einheiten des Internationalen Systems (SI) bestehen die
folgenden Umrechnungsformeln:

1 Gaull =1 G = 10-* Vsm-2,

1
1 Oersted = 1 Oe = —g(—) Am! =796 Am1,
TC

Die Dielektrizitatskonstante ¢ und die Permeabilitdt x sind mit der Lichtgeschwindig-
keit ¢ im Medium durch die Beziehung

verkniipft. Darin bedeutet » die Brechzahl des Mediums. Fiir das Vakuum erhélt
man

1 1
Veore /8,854 - 1022 - 1,257 - 10-5

Co = m st = 2,998 . 108 m s-1.

Bei physikalischen GréfBen
L = Lyeiet bzw. L = L, cos wt,

die sich harmonisch mit der Zeit verandern, ist der Effektivwert von Interesse.
Diesen definiert man

Ly = VIZ = Vi f L2 dt = Vg L. (28)
T
0

A
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In (28) bedeutet 7 = 2r/w die Dauer einer Periode.
Fiir Vektoren gilt genauso

Qi =& (29)

Dieser Effektivwert ist eine skalare Grofe.

P Probleme

1.1.1. Elektrische Feldstirke € und dielektrische Verschiebung ®

Ein Priffeld enthélt zwei Kugeln im Abstand 10 m. Ihre rdumliche Ausdehnung bleibe un-
beriicksichtigt. Die Koordinaten der Kugelmittelpunkte seien (—5, 0, 0) und (+5, 0, 0). Auf die
erste Kugel wird eine positive elektrische Ladung von 108 C gebracht, auf die zweite eine gleich
groBe negative Ladung. Berechnen Sie die elektrische Erregung ® (dielektrische Verschiebung)
im Punkt (0, 0, 0). Wie gro8 ist dort die elektrische Feldstiarke €? Welche Kraft wirkt auf eine
Probeladung Qp = 10~ C? Die Rechnung ist fiir Vakuum als Zwischenmedium und fir Wasser
& = 81,1 durchzufihren.

Losung

Das Erregungsfeld ® baut sich nach (1.1./9) aus den Ladungen gemaf

poy &

i 4:7'57'2'2 T
auf. Hieraus erhdlt man auf Grund der Beziehung

2

€€y

D = &€ = ¢gp5,E bzw. €= (2)

die elektrische Feldstirke €. Diese ist nach (1.1./2) als das Verhiltnis € = §5/Qp der Kraft §
zur Probeladung Qp definiert. Es folgt damit aus (1) und (2)

@t

¥ = Qp6 = Qp 11 ®)

4reLe,

Im vorliegenden Fall gilt fiir den Aufpunkt P(0, 0, 0)

Als elektrische Erregung des Punktes (0, 0, 0) ergibt sich damit

1 (10—3 ., 10°8

- — 1 i) Asm=2 = 6,37-10"11{ Asm2,
4 \ 25 25
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d. h. ein Vektor in Richtung i von der GréBe 6,37 - 10711, gemessen in Cm~2. Fiir die elektrische
Feldstarke erhidlt man aus (2), wenn das Zwischenmedium Vakuum ist,

6,37 - 1011 As m—2

€= i="7,201Vm1,
8,85 - 10-12 AsV—Im—1 | L
dagegen fiir Wasser
Cy = 7.20 iV = 8,88 . 10721 Vmt.
81,1

Die Kraft auf eine Probeladung von 10-2° C wird nach (3) gleich
F="720-10"0{N=1734-10"2ikp = 7,20 - 105 t dyn
bzw. mit Wasser als Zwischenmedium

Ty = 8,881- 10712 N,

1.1.2. Arbeit und Spannung im elektrischen Feld

Zur Messung der Geschwindigkeit von «-Teilchen 143t man diese in einem evakuierten Platten-
kondensator gegen ein konstantes elektrisches Feld anlaufen. Die Kondensatorspannung betragt
U = 10000 V, der Plattenabstand ! = 10 ecm. Als Reichweite der Strahlen wird ein mittlerer
Wert ry = 6,5 cm gemessen. Berechnen Sie daraus die Anfangsgeschwindigkeit der o-Teilchen
beim Eintritt in das elektrische Feld. o-Teilchen sind identisch mit Heliumkernen. Der Helium-
kern enthidlt zwei positive Elementarladungen. Die relative Atommasse des Heliums betragt
Age = 4,00.

Losung
Im Plattenkondensator ist mit Ausnahme der Randzonen die elektrische Feldstidrke konstant
(vgl. 2.1.1.). Als Beziehung zwischen Spannung U und Feldstirke € erhdlt man daher

U

!
U= [G-dv=|G1 baw. [6]=—=. (1)
1]

Mit den vorgegebenen Zahlen folgt

10000V

|G| = = 100000 Vm=!.
0,1 m

Die Arbeit im elektrischen Feld ist durch (1.1./3) bestimmt. Im vorliegenden Fall ergibt sich
. 7o
Wpot =Qp [€-dv=Qp [ € dr = Qp [C] 7. @)
c 0

@p bezeichnet die Ladung.
Beim Eintritt in das Feld haben die Teilchen die kinetische Energie

m M
Wyin = Y 0% = 2N: 5% (3)
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(m Masse, M, relative Molekiilmasse, v, Anfangsgeschwindigkeit, N, = 6,022 - 1026 kmol-!
Avocaprosche Konstante). Wir setzen (2) und (3) gleich und berticksichtigen (1). Das liefert

)2
QU = Uy bzw. /“Z\ a€p7oU . 4)
] 2N, M,

Mit den vorgegebenen Zahlen folgt

/2-6,02-10%.2.1,6-10"1°.0,065 - 10*

Vy =
0 4,00 - 0,1

ms1=79.10°ms™,

d. h. knapp 800 km s,

1.1.3. Flichenladungsdichte und elektrische Erregung an der Erdoberfliche
Die Erdoberfliche trégt eine negative elektrische Ladung, die durch positive Ladungen in der
Luft kompensiert wird. Zur Messung des elektrischen Feldes der Erdoberfliche wird ein um die

horizontale Achse drehbarer Plattenkondensator aufgestellt. Seine Platten haben die GroéSe
Ay = 2500 cm?. Sie werden abwechselnd vertikal und horizontal, d. h. parallel und orthogonal

¢
44

'}Y" =

Bild 1.3. Messung der elektrischen
Erregung mit einem drehbaren Plat-
! 7 tenkondensator

zu den Feldlinien gestellt (vgl. Bild 1.3). Die Platten sind mit einem Galvanometer verbunden.
Durch dieses flieBt bei jedem Wechsel im Mittel die Ladung I At = 2,95 - 107'° As. Die Messungen
werden in 100 m Hoéhe wiederholt, wobei sich nur noch ein mittlerer StromstoB von 2,81 - 10-1° As
ergibt. Berechnen Sie daraus die Ladung im Luftraum von 1 km? Grundfldche und 100 m Hohe.

Losung

Wir berechnen die elektrische Verschiebungsdichte oder Erregung aus der Beziehung nach (1.1./6)
J[o-an=g, (1)
4

wobei @ die eingeschlossene Ladung bezeichnet.

Auf der Kondensatorplatte in Bild 1.3 grenzen wir ein flaches Raumgebiet 4V ab. Es habe die
Grundfliche A4 und die Héhe Ah. Im metallischen Medium der Kondensatorplatten ist ® = 0.
Um die Raumladung im Luftraum auszuschlieBen, lassen wir 4% — 0 gehen und erfassen dem-
zufolge nur noch die Ladung AQ auf dem Oberflichenstiick 44 des Kondensators. Damit erhalten
wir aus (1)

D AU =D, 44 = 4Q. 2
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4¢ gibt die Ladung in AV an. Aus (2) ergibt sich fiir die Normalkomponente von ®

4Q 14t
= X bzw. — =
Dy o W n -

(3)
o wird als Oberflichenladungsdichte bezeichnet. Die Feldlinien stehen senkrecht zur Erdober-
fliche und sind in Richtung zur Erde orientiert. Aus der Messung von D folgt € gemiB

7 £=1At'
g &dx

(4)

Mit den vorgegebenen Zahlen erhalten wir
—2,95 . 1071
0,25

. —1,18.10-°
T 8,85.10°12

D= Asm—2 = —1,180 - 10-3 As m~2,

Vm! = —133 Vm~1.
Das Minuszeichen kennzeichnet den Richtungssinn des Feldes zur Erdoberfléache.
In 2 = 100 m Hohe folgt

D= —1,124 - 10~ As m~2, E = —127 Vm™t.

Zur Bestimmung der im Luftraum iiber der Erdoberfliche schwebenden Ladungen gehen wir
aus von (1). Eine Luftschicht der Dicke da hesitze oben die Verschiebungsdichte ® + d®,

44
F+d$ ﬁ
40 S Av=AAdx  Bild 1.4. Zur Berechnung der Ladungsdichte ¢ und der

e ——— Raumladung @ )
P

unten ® (vgl. Bild 1.4). Dann ergibt sich aus (1)
(D+dD)44 — DAA = 4Q. (5)
Hieraus folgt die Raumladungsdichte g

. A9 A4dD dD
o=Ilim —=——=—,
av—o AV A4 dx dz

Im vorliegenden Fall dndert sich ®, gemessen in vertikaler Richtung, um 0,056 - 10-% As m~2.
Daraus folgt
.10-°
o = 205610

sm™ = 0,56 - 10-12Cm3.
100

Im vorgegebenen Raum befindet sich somit die Ladung

@ = 108.10%.0,56 - 10712 As = 56 - 10-¢ C.
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1.1.4. Magnetische Feldstirke $

Eine Zylinderspule der Lénge ! = 20 cm enthalte » = 500 Windungen. Der Radius des kreis-
formigen Wicklungsquerschnitts sei # = 1 cm. Die Lénge kann daher als groBl gegen die Quer-
schnittsabmessungen angesehen werden.

Es soll die Horizontalkomponente des magnetischen Feldes der Erde bestimmt werden. Hierzu
wird eine kleine Magnetnadel in die Spule gebracht und ihre Ablenkung aus der Nord-Sad-
Richtung in Abhéngigkeit vom flieBenden Strom I festgestellt. Dabei ergeben sich die MeBwerte
nach Tabelle 1.

’i‘abelle 1. Ablenkung einer Magnetnadel

Strom I in mA 4 8 12

Ablenkwinkel ¢ in ° 5 10 15

Die hiernach geeichte Magnetnadel zeigt im magnetischen Feld der Erde eine Abweichung von
@ = 7,5°. Berechnen Sie daraus die Horizontalkomponente des Erdfeldes fiir den betreffenden
Ort.

Losung

Das Feld im Innern der Spule kann als rdumlich konstant angesehen werden. Es hingt nur vom
flieBenden Strom I und von der spezifischen Windungszahl n/l ab:

In
81 =3
Im vorliegenden Fall ergibt der Strom I = 0,004 A die magnetische Feldstirke

0,004 - 500
0,20

9] = Am! =10 Am.

Die Auslenkung pp = 7,5° bedeutet daher, da8 die Horizontalkomponente des Erdfeldes

[De| = @tp}a: 1—50-7,5Am—1:15Am—1

betragt.

1.1.5. Messung der magnetischen Flufdichte B

Im Innern einer Feldspule befindet sich eine Induktionsspule aus n; = 1000 Windungen mit der
Querschnittfliche 44 = 3 ¢cm?. Durch einen variablen Widerstand wird der Strom in der Feld-
spule im Verlauf der Zeit At = 8 s gleichméBig bis zu seinem Endwert gesteigert. Wahrend dieses
Prozesses wird in der Induktionsspule eine induzierte Spannung von Uj,q = 160 pV gemessen.
Berechnen Sie daraus die magnetische FluBdichte im Innern der Feldspule. Wie groB3 ist die
magnetische Feldstiarke $, wenn sich in der Spule Luft befindet?
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Losung

Nach dem Induktionsgesetz (1.1./20) erzeugt die Anderung des magnetischen Flusses [[%-dY
durch eine Fliche 4 in der Umrandung die Spannung

0
g = —— . . 1
Uing atff% dy 1)
4

Wir setzen eine so kleine Querschnittflache 44; voraus, da wir in jedem ihrer Punkte mit dem
gleichen Wert der magnetischen FluBdichte rechnen kénnen. Insgesamt hat die Induktionsspule
ny Windungen. In jeder Windung wird beim Aufbau des magnetischen Feldes die gleiche Span-
nung induziert. Diese Spannungen summieren sich. Man erhélt damit fiir den tber die Zeit At
erstreckten gleichmafigen Proze als induzierte Spannung

oB
Uing = —nyd4; i

bzw. far die FluBdichte

At
— [ Ujpg dt
ot __ Umadt @)
ny A4y ny A4y

Durch Einsetzen der Zahlenwerte ergibt sich

. 1056 -
B = 160-107-8 Vsm—2 = —4,3-10-3 Vsm~2.
10003 .10

Fir die magnetische Feldstarke folgt

mit speziellen Werten

p— . —3
H = __M._ Am—1= —3,4.103 Am1.
4r - 1077

Das entspricht dem Feld im Innern einer 10 em langen Spule aus 100 Windungen bei 3,4 A Strom-
stirke.

A Aufgaben

Al Berechnen Sie die elektrische Erregung ® und die elektrische Feldstirke ¢
im Abstand 7 = 10"m von einer Elementarladung e = 1,6-10"1° As (¢ = ¢,
= 8,85 - 10712 AsV-1 m™).

Ald.2. Wie groB ist die Kraft, mit der zwei entgegengesetzt geladene Elementarteil-
chen im Abstand » = 1071° m einander anziehen?
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A 113

Al.14.

A1.1.5.

A1.1.6.

A1.1.7.

A1.18.

A1.1.9.

A 1.1.10.

A1.1.11.

Al1.1.12.

A 1.1.13.

Im Mittelpunkt einer Kugel von einem Meter Durchmesser befindet sich eine
negative Ladung von 10-¢ C. Berechnen Sie die dielektrische Verschiebung und die
elektrische Feldstirke auf der Kugel. Die Kugel ist aus einem Material mit ¢, = 1,5.

Zwischen zwei Kondensatorplatten betrigt die Spannung 220 V. Wie gro8 ist im
Kondensator die elektrische Feldstidrke? Der Plattenabstand betrdgt 1 cm.

Welche Spannung ist erforderlich, um ein Elektron der Anfangsgeschwindigkeit
vo = 10"ms! auf die Geschwindigkeit Null abzubremsen? Elektronenmasse
m=9,1-10"kg.

Welche Kraft wirkt auf ein Schwebetrépfchen, das eine Elementarladung tragt,
im homogenen Feld eines Kondensators mit der Spannung U = 10*V und dem
Abstand I = 1 em der Kondensatorplatten?

Ein kugelférmiges Schwebeteilchen der Dichte ¢ = 1 g em~ mit dem Durchmesser
2r = 1,0 um befindet sich zwischen den Platten eines Kondensators. Die Spannung
betragt U = 220 V, der Plattenabstand I = 1 cm. Wie gro8 mufl die Ladung @
sein, wenn die elektrischen Krifte der Erdanziehung das Gleichgewicht halten
sollen?

Wie groB ist der effektive Verschiebungsstrom durch eine Fliche von 5 - 10° m?,
wenn in der Nihe eines UKW-Senders die Frequenz f = 100 MHz = 10® Hz und
die Feldstarke 0,5 Vm~— betragen?

Wie groB ist die magnetische Feldstirke $ im Innern einer 20 cm langen Zylinder-
spule aus 16000 Windungen bei einem Strom von 0,5 A? Der Querschnitt ist kreis-
formig.

Eine 10 em lange Spule enthilt 7000 Windungen. Der Radius des kreistsrmigen
Spulenquerschnittes betriigt 0,5 cm. Die Querschnittsfliche des Kupferdrahtes
(spezifischer Widerstand 1/y = 0,017Q mm?2 m?) sei gleich 0,25 mm?. Wie grofl
ist die magnetische Feldstérke im Innern der Spule, wenn eine Gleichspannung von
220 V anliegt?

Berechnen Sie zur vorangegangenen Aufgabe die induzierte Gegenspannung in der
Spule, wenn der Strom in einer Zeit von At = 0,001 s abgeschaltet wird.

Um eine Feldspule ist eine Induktionsspule aus 4000 Windungen gewickelt. Die
Induktionsspule sitzt unmittelbar auf der Feldspule, so daB die riicklaufigen Feld-
linien auBerhalb der Feldspule die Messung nicht stéren. Als Querschnittsflache ist
tiir beide Spulen 44 = 5 cm? zu setzen. Der in der Feldspule flieBende Strom wird
in der Zeit 4t = 0,1 s abgebaut. Dabei wird in der Induktionsspule eine mittlere
Spannung von 30 V gemessen. Wie grol war die magnetische FluBdichte?

Berechnen Sie die magnetische Spannung bei der Bewegung zwischen dem Anfang
und dem Ende im Innern einer Zylinderspule, bestehend aus 10000 Windungen,
wenn in der Spule der Strom I = 2 A flieBt. Stérungen des homogenen Feldes an
den Spulenridndern sind zu vernachlissigen. Wie groB ist die magnetische Spannung
zwischen dem Anfangs- und dem Endpunkt, wenn man sich im AuBenraum bewegt?
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1.2. Potential und Gradient — elektrisches und magnetisches Moment

E Einfiihrung

Ist eine skalare Grofle @ oder eine vektorielle Grofle € eine Funktion des Ortes, so
spricht man von einem skalaren oder vektoriellen Feld. Um die vorzeitige Festlegung
auf ein spezielles Koordinatensystem zu vermeiden, ist es zweckmifig, die Ab-
héngigkeit einer FeldgroBe von den Raumkoordinaten als Funktion des Orts-
vektors v darzustellen. Skalare und vektorielle Felder sind also allgemein in der Form

@ =d(r), € =C0C{) 1)

gegeben. In Cartesischen Koordinaten x, y,z sind der Ortsvektor und sein Diffe-
rential durch

v =i+ yj + 2f bzw. de =dei+dyj+ dzf (2)

bestimmt.
Fiir die Anderung einer skalaren Grofle @ beim Fortschreiten im Raum erhélt man
in Cartesischen Koordinaten nach dem Satz vom totalen Differential
od oD oD
dp = —da + —d —dz.
® Bmdr+3y v 0z ¢ ®)

Hierin 148t sich die rechtsstehende Summe als skalares Produkt zweier Vektoren

od . 0D, oD
d@—(-%lﬂ‘-a—ylﬁ- =

)-(dxi+dyj+dzf)

auffassen. Der erste Vektor rechts

o, o®, 0D,
grad@z——‘w—}——]-{—a—z

4
ox oy @

definiert in Cartesischen Koordinaten den Gradienten. Durch Anwendung des
Vektoroperators grad auf ein skalares Feld wird dieses in ein Vektorfeld umge-
wandelt.

Mittels (4) kann die riumliche Anderung der skalaren Grofe @ in der Form

d® = grad @ - dx (5)

dargestellt werden. Man schreibt den Gradienten (4) daher formal auch als Ableitung
der skalaren Ortsfunktion @(r) nach dem Ortsvektor v:

do , 0 . 0 0
grad@:a—:<ta+1@+fa)®. (5a)
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Um zu einer vom speziellen Koordinatensystem unabhiingigen Definition des Gra-
dienten zu gelangen und seine Eigenschaften zu erkennen, betrachtet man die
Niveau- oder Aquipotentialflichen der als differenzierbar vorausgesetzten skalaren
Ortsfunktion @(x). Bei der Bewegung auf einer Niveaufliche @ = @, gilt d® = 0.
Bezeichnet daher dr, das Differential eines der Tangentenvektoren im Punkt P auf
der Niveaufliche, so ergibt sich aus (5) als Beziehung zu dem im Punkt P errichteten
Gradienten

(dD)gr, = grad @ - dyy, = 0.

Da weder grad @ noch dr, gleich Null sind, mussen grad @ und dy, aufeinander
senkrecht stehen. Das bedeutet, daBl der Gradient auf der Niveaufliche senkrecht
steht (vgl. Bild 1.5).

Wie man aus der Beziehung (5) entnimmt, ist die Anderung der skalaren Orts-
funktion @ bei vorgegebenem dr dem Betrage nach am grofiten, wenn grad @ und dr

grad ¢

'b P
Bild 1.5. Gradient und Aquipotentialflichen
/ Aquipotentialfliche ®(, y, 2) = const, dr, Differential eines
/ Tangentenvektors an die Aquipotentialfliche im Punkte P

gleichgerichtet sind; der Gradient gibt somit die Richtung stirkster Anderung der
skalaren Ortsfunktion an. Sein Betrag ist gleich dem Differentialquotienten in Rich-
tung stirkster Anderung von @, also orthogonal zur Niveaufléche.

Fiir die Losung vieler Probleme ist es zweckméBig, Zylinder- oder Kugelkoordinaten
einzufiihren.

Der Zusammenhang zwischen Cartesischen und Zylinderkoordinaten ist durch

T =7 Ccos @, y =rsing, 2=z (6)
festgelegt.
Die VektorgroBe € wird in Zylinderkoordinaten mittels

€ =Ce, +Che, + Ce, (7

dargestellt. Hierbei stehen die drei Einheitsvektoren e,, e,, e, aufeinander senkrecht.
e, gibt die Richtung wachsender Werte » an, wenn die tibrigen beiden Koordinaten
@ und z festgehalten werden. Analog sind e, und e, definiert. e,, e,, e, bilden ein Rechts-
system.

Die Vektorkomponenten €,, €,, €, hdngen mit den Cartesischen Komponenten
gemdf

€, =€, cosp+ €, sin g,
C, =—C,singp 4 €, cos p, (8)
=G,

&S
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zusammen. Der Gradient schreibt sich in Zylinderkoordinaten

oD 1 0@ oD
d® = — —— e, —e, |
grad @ ar o + r op T & ®

Kugelkoordinaten sind mit Cartesischen Koordinaten durch
x = r8in ¢ cos @, y = rsin ¥ sin ¢, z =rcosd (10)

verkniipft. Die Vektorgrofie € wird in Kugelkoordinaten gemés

€= @,—67 -+ @4,% -+ @19619 (11)

dargestellt mit
€, =G, sin ¥ cos ¢ 4 €, sin 9 sin ¢ + €, cos ¢,
€y =€, cos & cos ¢ + €, cos ¥ sin ¢ — €, sin &, (12)
€, = —C,sin ¢ + €, cos ¢.

Fiir den Gradienten ergibt sich in Kugelkoordinaten

oD 1 oD 18P
grad@zﬁer+m%€¢+7_eg. (13)

Der Gradient ist fiir die Berechnung des Integrals tiber ein Vektorfeld bei vor-
gegebenem Weg € von Bedeutung. In Cartesischen Koordinaten kann man das
Kurvenintegral schreiben

fE-dr = [(C,dx+ 6, dy + €, dz). (14)
C c

Im allgemeinen ist (14) von der Wegkurve C abhéngig, d. h., die Integration iiber
eine geschlossene Kurve hat ein von Null verschiedenes Ergebnis:

PE-dr 0. (15)

LaBt sich dagegen das Vektorfeld €(r) als Gradient einer skalaren Ortsfunktion bzw.

eines Potentials —®(r) ausdriicken, gilt also
do
dr’

so folgt, (16) in (14) eingesetzt und (5) beriicksichtigt,

€(r) = —grad @(r) = (16)

Py
[@Z«dr:— %%-dr:—/d(b:@(ﬂ)—@(h). (17)
(:‘ c Py
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P, und P, geben dabei Anfangs- und Endpunkt der Integration an. In einem Vektor-
feld @(x), das sich als Gradient des Potentials —®(r) ausdriicken 148t, ist somit das
Linienintegral (14) nicht vom Weg C, sondern nur von Anfangs- und Endpunkt der
Integration abhéngig. Fiir das Integral iiber einen geschlossenen Weg C in einem
derartigen Vektorfeld (16) erhdlt man (wenn @(r) in dem von C eingeschlossenen
Gebiet iiberall stetig ist)

P E(x) - dr = —¢ grad d(x) - dr = B(P) — B(P) = 0. (15a)

Die nach (1.1./4) definierte Spannung
U=[G-dr
¢

in einem elektrischen Feld € ist im allgemeinen von der speziellen Form der Weg-
kurve C und nicht nur von den Endpunkten P; und P, abhéngig. Nur wenn sich das
elektrische Feld € als Gradient einer skalaren Ortsfunktion —®(r) ausdriicken 140t,
ist die Spannung vom Weg unabhéngig. In diesem Falle folgt analog (17)

P, p,
U= [G-dt = —[grad @ dv = ®(P,) — B(Py), (18)
P, P,

d. h., die Spannung ergibt sich als Differenz der Potentiale in den beiden Punkten P,
und P,.

Das Potential ist bis auf eine willkiirliche additive Konstante bestimmt, iiber die
man so verfiigen kann, dafl @(co) = 0ist. Identifiziert man daher in (18) den Punkt P,
mit einem vorgegebenen Punkt P, des Feldes und laft P, ins Unendliche riicken,
so folgt aus (18)

U= fm(s dr = ®(P,). (19)

Py

Das Potential @(P,) eines Punktes P, im elektrischen Feld € gibt also die Spannung U
zwischen diesem Punkt und dem Unendlichen an. Die Ladung @ hat im elektrischen
Feld € die potentielle Energie

Woor = QD(Py). (20)

Sie gibt die Arbeit an, die aufzuwenden ist, um die Ladung in das Unendliche zu
transportieren.

Ein elektrischer Dipol wird von zwei gleich grofen, entgegengesetzten elektrischen
Ladungen gebildet, die im allgemeinen nahe benachbart sind. Gibt @p die positive
elektrische Ladung des Dipols an und bezeichnet At den Vektor, gezogen von der
negativen zur positiven Ladung, so definiert man den Vektor

me=@Qodr|  [Imf]=Ams @1)
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als elektrisches Moment des Dipols. Die potentielle Energie eines Dipols mit dem
elektrischen Moment 11, in einem duBeren elektrischen Feld € errechnet man aus den
Potentialen der beiden entgegengesetzten Ladungen (vgl. 1.2.4.). Bezeichnet
@(r) = @ das Potential am Ort der negativen Ladung, @(r + 4r) = @ 4 AP das
am Ort der positiven Ladung, so folgt nach (20)

do
Wy = —@p® + o <¢+d—r-ﬁr) = —m, - C. (22)

Die potentielle Energie eines Dipols ist also von der Stellung des Dipols im elek-
trischen Feld abhéngig.

Fiir das Drehmoment 9t eines elektrischen Dipols m, im elektrischen Feld € erhilt
man das vektorielle Produkt

MW = m, x G. 23)

Sein Betrag ist am grofiten, wenn m und € zueinander senkrecht stehen. Die Gleich-
gewichtslage M = 0 ergibt sich somit, wenn m, und € parallel gerichtet sind.

Bei magnetischen Substanzen treten die entgegengesetzt wirkenden Pole stets paar-
weise auf und sind nicht voneinander zu trennen. Magnetische Korper sind also
stets Dipole. Thr.magnetisches Moment 1, ist durch das im homogenen Magnet-
feld  auf den Magneten wirksame Drehmoment

M =my X9 (24)
definiert. Das magnetische Moment hat die Einheit
[mal] = Vm's. (25)

Die Polstédrke P wird durch die zu (21) analoge Formel
my, = P A (26)

definiert. At ist vom magnetischen Stidpol zum Nordpol gerichtet. Als Einheit der
magnetischen Polstédrke folgt aus (26)
(11 |] ,
[P] = = Vs = Wh. 27)
] (
Fir einen Elektromagneten, der aus einer vom Strom I durchflossenen Windung
der Fldche 44 besteht, betrdgt das magnetische Moment

My = ul AU, (28)

Der Flachenvektor A9 steht auf der vom Strom / umfahrenen Fldche senkrecht.
Er ist so orientiert, daf} in seiner Blickrichtung die Fliche vom Strom I im mathe-
matisch positiven Drehsinn durchflossen wird. Bei einer Spule aus » Windungen
betridgt das magnetische Moment

| tim = unl A% |. (29)
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P Probleme

1.2.1. Arbeit im inhomogenen elektrischen Feld

Im Punkt P; mit den Koordinaten 2, = —5,y; = 0, z; = 0 befindet sich eine positive elektrische
Ladung @, = @ = 10-8 C. Eine gleich grofie negative Ladung @, = —@ ist im Punkt P, mit
den Koordinaten z, = +5, y, = 0, 2z, = 0 konzentriert. Vom Punkt 4 mit den Koordinaten
24 =0, yg =1, 24 = 0 wird eine Ladung Qp = —10~2° C auf der verbindenden Geraden zum
Punkt B mit den Koordinaten zg = 1, yg = 0, 2z = 0 gebracht. Berechnen Sie die hierfiir er-
forderliche Arbeit. Wie groB ist diese, wenn der Ladungstransport auf der y-Achse von 4 nach
dem Koordinatenanfangspunkt 0(0, 0, 0) und von dort nach B erfolgt? Wie groB ist die Spannung
zwischen den genannten Punkten iiber die vorgeschriebenen Wegstrecken?

Losung

Jede der beiden Ladungen erzeugt ein kugelsymmetrisches Feld. Das resultierende elektrische
Feld ergibt sich daraus durch Uberlagerung:

g en 1 ettt "

@ =
dre Tt Ame T Yo — a4 — 6l + -2

Das Linienelement des vorgegebenen Weges C schreiben wir als Vektor
dt = dwi+dyj+ dzf. (2)

Hieraus folgt fiir die Arbeit bei der Bewegung der Ladung Qp

WzQPf@.der_PfZQi(z—xi>dx+<y—yi>dy+<z~zi>dz_ @)
C

dme, Ve —a2 + (y —9)° + (e — 2)*

Den vorgegebenen Weg C stellen wir gemifl

2= a(t), y = y(t), z = z(t) (4)

dar. Der Parameter; ¢ lauft von ¢4 = 0 bis tg3 = 1. Im Fall der geraden Verbindung zwischen
den Punkten P, und P, ist

aty=t, yt)=—t-+1, 2t =0; t,=0, tz=1.

Durch Einsetzen von (4) in (3) erhalten wir

ts
da dy dz
(2(t) — 2) 4 (w®) — 9) L + (alt) — 2) —}
w— Lo [z@i[ d dt e )
iy J 3 Vi) — aiF + 0 — ui + 0 — P

Dieser Ausdruck ist nur von den Endpunkten und nicht mehr von der Wegkurve C' abhingig.
Unsere Losung ist daher fir beide vorgegebenen Wegkurven identisch. Die Integration ergibt,

wie man sich durch Differenzieren iiberzeugt, .

W_Q_P

- ZQZ{ — ]“’. (6)
dre T V) — miF F 0 — 0:F + 0 — P s
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Zahlen eingesetzt, folgt

L) s=75.1007.

w
155)

e Ve ks Ua iy SN S O
4w 8,85 - 1072 | )5 + 136 + 126

Die Spannung zwischen den beiden Punkten betrigt somit

. 10-10
U= ___7’5101?0 V=15V.

1.2.2. Potential des elektrischen Feldes

In den Punkten P; und P, befinden sich die Ladungen @, = 10-7C und @, = 2 .10-7C. Die
Ortsvektoren der Punkte P; und P, seien 1; = 2i — j + 4f und 1, = —2i 4 | — 4f. Bestimmen
Sie das Potential des elektrischen Feldes, und berechnen Sie die Potentialdifferenz zwischen
den Punkten 4(2, 1, 0) und B(—2, —1, 0). Welche Gleichung hat die durch den Koordinaten-
anfangspunkt hindurchgehende Potentialflédche?

Losung

Das elektrische Feld kénnen wir in der Form

1 Qilt — 1)

=~ vy T 1
e T Y — )
schreiben. Fir das Potential @ gilt die Beziehung (vgl. 1.2./13)
(‘f:—grad(b=~@. (2)
dr
Daraus folgt
D = — @-dt:—-ifZQi(r—_ri)sdr. 3)
mey J T Yl — )
Wir fithren die Integration aus und erhali:en
1 .
oLy % .o @

me0 T V(v —1)?

Die Konstante C legen wir so fest, dal @ die Arbeit angibt, um eine Ladung der Stirke @ = 1 As
aus dem Unendlichen zum Punkt mit dem Ortsvektor t zu bringen. Das bedeutet @(r) — 0,
wenn |t| unbeschrankt wéchst, also

lim® = 0. (5)

Jt]—>o00
Diese Bedingung ist nur erfillt, wenn C den Wert Null hat. Somit gibt

Q;
Vo — )2

1
= —
47560%1

3 Schilling, Felder
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bzw.
1 107 2.1077

= V
dr - 8,85 - 10712 [V(x — 22+ (y+ 12+ (z — 42 * Ve +22+ @y —12+ (e + 4)2}
)

das gesuchte Potential an.
Far die Aquipotentialflichen erhdlt man die Gleichung

—-Qi = const. (8)
i Y@ —r)?

Im vorliegenden Fall gilt, den Faktor 10-7 ausgeklammert,

1 2
+
Ve—2F ++ D2+ G427 Vet 2P+ (y— 17+ + 47

= const. 9)

Die durch den Koordinatenanfangspunkt gehende Flidche ergibt sich, indem man die Konstante
firz =0,y =0, z = 0 bestimmt:

! 2 = 1 Vﬁ:consb.

Ve+1+16  Vi+iiie 7

SchlieBlich folgt aus (7) als Potentialdifferenz zwischen den Punkten 4(2, 1, 0) und B(—2, —1,0)

U = o(4) — 0(B) 10-7 (1 2 1 2

_ d — =+ = — —= — —|V=—42V.
4m . 8,85 - 1012 120 V32 }/?E 1/%)

1.2.3. Potential des kugelsymmetrischen Feldes

Berechnen Sie das Potential des elektrischen Feldes

G .

dmeyr® r

(1)

mit @ = 10-8 C. Wie groB ist das Potential im Abstand » = 10 m von der Ladung @? Welche
potentielle Energie hat dort die Ladung Qp = 108 C?

Losung
Das elektrische Feld € ergibt sich aus dem Potential @ gemil
€= —grad ®. (2)

€ hat die Richtung des Radiusvektors r. Es besteht in (1) nur eine Abhéngigkeit von der Ko-
ordinate r. Wir verwenden daher Kugelkoordinaten. In diesen schreibt sich der Gradient nach
(1.2./13)

oD 1 o9 1 00

dd =— — — —ey. 3
sre or er+7“sin19 op ¢+ r 99 e ®)
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Die elektrische Feldstdrke besitzt nur eine Komponente in Richtung e, = L . Daher muB das
Potential sowohl von ¢ als auch von ¢ unabhéngig sein: r

oD oP
— =0, — =0. 4
op o @)

Fur die Abhéngigkeit von  ergibt sich aus (1), (2) und (3)

woraus durch Integration folgt

Q dr‘:i (5)

D= — .
dreyr? drveyr

Die Integrationskonstante ist gleich Null. Sie ist damit so festgelegt, daB3 das Potential fiir » — oo
verschwindet.
Auf einer Kugel im Abstand » = 1 m folgt als Potential

10-%
= —— V=899V,
4m - 8,85-10712. 10
Die potentielle Energie der Ladung Qp = 10~% C ist im Abstand » = 1 m somit gleich

Wpot = 1076 - 8,99 J = 8,99 uJ.

1.2.4. Elektrisches Moment eines Dipols

Im homogenen elektrischen Feld, dessen Potential in Abhdngigkeit von den Raumkoordinaten
durch

D =00, + D, Dy = 20000V, ®,” = 10000 V m—* (1)
gegeben ist, befindet sich ein elektrischer Dipol. Er trigt die Ladungen +@p = +10-3C, deren

Abstand voneinander 7 = |4r| = 1 cm betridgt. Berechnen Sie das auf diesen Dipol wirkende
Drehmoment 9t, wenn der Dipol quer zu den elektrischen Feldlinien gestellt ist (vgl. Bild 1.6).

S
£
7] N 7/
_aD > 3‘( 11*00

' . .

Bild 1.6. Das elektrische Moment n1, eines
Az s Dipols. Das Drehmoment It = m, x €

weist in die Zeichenebene, € kennzeichnet

- y ein homogenes Feld

‘g
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Wie stark ist die Auslenkung, wenn der Dipol sich an einer drehbaren Aufhédngung mit der Winkel-
richtgrofe D* = 10~* Nm rad~! befindet?
Losung

Die potentielle Energie der Ladung —@p an einem Punkt mit dem Potential @ betrdgt nach
(1.2./20)

Woot = —@p®. (2)

Wir berticksichtigen, daf sich das Potential bei Fortschreiten zum Ort der positiven Ladung @p
verdndert. Es hat dort den Wert

@ +dP = D + grad @ - 4x, (3)

wobei At die Anderung des Ortsvektors bezeichnet. Fiir die potentielle Energie des Dipols folgt
somit, € = —grad @ beachtet,

Wp = —Qp®P + Op(® + grad @ - Ar) = —Qp Ax - €. 4)
Den Ausdruck
Qp At = m, (5)

definieren wir als elektrisches Moment des Dipols. Es stellt einen Vektor dar, der von der nega-
tiven zur positiven Ladung gerichtet ist. Sein Betrag ist im vorliegenden Fall

|me] = 1078 - 1072 Asm = 1071 Asm.
Wir bezeichnen die auf die negative elektrische Ladung wirkende Kraft durch

F. = —QpG. (6)
Die auf die positive Ladung wirkende Kraft ist gleich

J+ = @pC. (7)

Beide Krifte sind nur im homogenen elektrischen Feld dem Betrage nach gleich. Sie bewirken
das Drehmoment

M=% 1 xF= — o e xFo+ %Arx&:QDmx@
bzw. nach Definition (5)
M=mxC | (8)

Das Drehmoment ist gleich dem Vektorprodukt aus elektrischem Moment und elektrischer
Feldstirke.
Im vorliegenden Fall ist nach (1)

€ = —grad® = —P,1.
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Das elektrische Feld hat also die Richtung der negativen z-Achse. Steht der elektrische Dipol
quer zu den Feldlinien, hat er also die Richtung der y-Achse, so folgt nach (8) als Drehmoment

i i £
M=m,xE=|0  Qpl 0 |=rtdQpl.
—0/0 0

Einsetzen der Zahlenwerte liefert fir das in Richtung der z-Achse orientierte Drehmoment
M, = 10000 - 108 .10-2J = 10-°J.

Die Auslenkung ¢ wird durch die Beziehung
M| = Dy

bestimmt. Hieraus folgt fur den ‘Auslenkwinkel

IS —6
p = B = &rad= 0,57°.
D 10—

Das relativ starke elektrische Feld bewirkt eine nur geringe Auslenkung des hochgeladenen
Dipols.

1.2.5. Potential und Feld des elektrischen Dipols

Ein elektrischer Dipol tragt die Ladungen --Qp = 4108 C. Der Abstand beider Ladungen ist
gleich [ = |Ar| = 1 cm. Bestimmen Sie das vom Dipol ausgehende elektrische Feld im Abstand
r=2m.

Losung
Nach (1.1./8) und (1.1./15) erzeugt die Ladung Qp, das kugelsymmetrische Feld

o 2 (1)

dregr?

@

Das Potential dieses Feldes ist gemd8 1.2.3. durch

Q_D 2)

dme,r

gegeben. Zwei entgegengesetzte Ladungen ergeben nach (1.1./9) und (1.1./15) das Feld

@+_=Q_D(1_?:__LE>‘ (3)

drey \r,2 7y r2 7

Es 148t sich aus dem Potential

D, = 9 (i _ i) (4)

drey \ 7y r_
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ableiten. In (3) und (4) bedeuten r, und r_ die von den Ladungen +@p und —Qp zum Aufpunkt P
gezogenen Vektoren.
Fir nahe benachbarte Ladungen schreiben wir
Ax At
to=1——, r_=r—|—?. (5)

&

Nach dem Cosinussatz gilt fiir [dr] << [x|

Ax? r-Ar
r+=Vr2+T—r~Ar=r— rwat (6)
2 .
7_:1/72+£+r~dr=r+tdr. (7)
/ 4 2r

Damit folgt aus (3) fiir das elektrische Feld des Dipols

w©

G @p (_At+3r-dr r) 1 (_me+ 3m;2~rr)

dreyrd 2 4reyr®

aus (4) fir das Potential

_ @Qp 1r-dr _ Mgt
dreg, 18 4megrd

Pp

Fir Aufpunkte P, und P, auf der verlingerten Dipolachse gilt

Mg+ T = FMer (10)
(oberes Vorzeichen fiir gleiche, unteres fﬁr entgegengesetzte Orientierung von m undz). Daraus
folgt A

Cpop, = ol — 9ol . \ (11)

27gyrt 2meyrt

Das Potential wird gleich
Mg 0 QDl
==

Pp, p,= + .
bR 4reyr? 4meyr?

(12)

Die Feldstirke ist im Punkt P, dem Radiusvektor gleich-, im Punkt P, entgegengerichtet. Fir
die GroBe der Feldstirke ergibt sich

—8 . 102
@pl _ _ 107%-10 Vet = 0,225 V-t
23 27 - 8,85 .10-12. 28

Das Potential erhidlt man aus (12):

10-% - 10-2
Gp po= LV — 10225V,
PrPe ™ =4 .8,85. 106-12. 22 -
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Fur Aufpunkte P; und P, oberhalb und unterhalb des Dipols folgt wegen m, -t =0 aus (8)
die Feldstirke

— —Me
= T
4rme,rd

d. h. ein Feld entgegen dem Richtungssinne des elektrischen Moments der GroBe

Qpl 10-% . 102
dregr®  4m - 8,85.10712. 23

Vm—1 = 0,112 Vm~1.

In den Punkten P; und P, wird das Potential gleich Null.

1.2.6. Magnetisches Moment eines permanenten Magneten

Ein permanenter Magnet befindet sich in einer Aufhdngung mit der WinkelrichtgroBe
D =5,5-10"2Nmrad—!. Es wird ein Magnetfeld der Stirke 2,5 - 10* A m~* eingeschaltet, das
senkrecht zur Ruhelage des aufgehdngten Magneten gerichtet ist (vgl. Bild 1.7). Dieses Magnet-
feld bewirkt eine Auslenkung aus der Ruhelage von ¢ = 8,5°. Berechnen Sie daraus das magne-

Wy=Pdx

Aw x| A4 .L»

1 ~ -
~ =

N

Bild 1.7. Permanenter Magnet SN im homogenen Magnetfeld $. A Aufhingepunkt
(Schwerpunkt des Magneten)

tische Moment des permanenten Magneten. Welche Windungszahl muB eine Spule mit dem
Offnungsquerschnitt 44 = 10 cm? haben, die vom Strom 1 A durchflossen wird, wenn sie das
gleiche magnetische Moment wie der permanente Magnet aufweisen soll?

Losung

In Analogie zum elektrischen Moment definiert man nach (1.2./26) als magnetisches Moment
den Ausdruck

my, = P4z, (1)

Dabei ist At im Magneten entgegen dem Feld B vom Siidpol zum Nordpol gerichtet. P bezeichnet
die Polstédrke eines Magneten. Das Drehmoment im Magnetfeld der Stérke § wird geméf (1.2./24)

gleich
M =11y, X 9. ‘ @)
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Die Auslenkung ¢ hdngt vom riicktreibenden Drehmoment ab, das durch die WinkelrichtgréBe D
bestimmt ist. Fir nicht zu groBe Auslenkungen gilt die Beziehung

M = D. (3)

@ hat die Richtung des Drehmomentes und den Betrag des Winkels . Wir setzen fur I den
Zusammenhang (2) zwischen dem magnetischen Moment und der magnetischen Feldstirke ein.
Daraus folgt als Auslenkwinkel

g= ﬁlpx—@. (4)

Steht  senkrecht zur Ruhelage des aufgehéingten Magneten, so ergibt sich

|
= %Y bzw. My = % , (5)

mit Zahlenwerten

_55-102.85-«

iy = e Vins = 3,26+ 107 Vins. (6)

Fiir einen Elektromagneten ist nach (1.2./28) sowie nach 3.2. das magnetische Moment durch

My = gnl AU (7)
bestimmt. Soll der Elektromagnet das magnetische Moment (6) besitzen, so muBl die Windungs-
zahl gleich

ne _m 3,26 - 107

= = = 259
ol A4 4w -1077.1.1073

sein. Wenn also die Spulenflidche 10 cm? betrigt, sind bei 1 A Stromstérke » = 259 Windungen
erforderlich, um elektromagnetisch die gleiche Wirkung wie mit dem permanenten Magneten zu
erzielen.

1.2.7. GauBsches Yerfahren zur Messung der magnetischen Feldstirke
und des magnetischen Moments

Es sollen die magnetische Feldstdrke §, eines duleren Feldes und das magnetische Moment m,,
eines vorgegebenen Magneten bestimmt werden. Hierzu laB8t man den Magneten my, im Feld 9,
um seine stabile Gleichgewichtslage kleine Schwingungen ausfithren und mift die Periodendauer z.
Danach wird der Magnet my, derart angeordnet, dafl seine Achse senkrecht zum Feld §, gerichtet
ist und genau auf den Schwerpunkt O’ eines Hilfsmagneten m’ weist. Infolge des von my, aus-
gehenden Feldes § erfahrt der Hilfsmagnet m’ eine Auslenkung aus der $,-Richtung um den
Winkel . Bestimmen Sie die Feldstérke $, und das magnetische Moment n,;,, wenn fir die Peri-
odendauer v = 1,25s und fiir den Auslenkwinke]l ¢ = 2,15° gemessen werden. Das Trigheits-
moment des Magneten m, betragt J = 2,4 - 10~ kg m2. Der Abstand zwischen den Schwer-
punkten beider Magneten bei der Messung der Auslenkung des Hilfsmagneten ist gleich r =1,60 m.
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Losung

Nach (1.2./24) wirkt im Magnetfeld $, auf einen Magneten mit dem magnetischen Moment m,
das Drehmoment

M = my XDo- (1)

Ein freischwingender Magnet stellt sich daher so ein, dal das Drehmoment verschwindet, daB also
my, und 9, gleichgerichtet sind. Dreht man den Magneten um den Winkel p << 7 aus der Gleich-
gewichtslage, so wirkt auf ihn ein ricktreibendes Richtmoment D, das durch

M = Dy @)

bestimmt ist. Fur kleine Auslenkungen aus der Gleichgewichtslage kann man den Betrag des
Drehmomentes in der Form

(M| = [y X Dol = 1 |Dol sin @] & mpy [Ho] ] ®3)

schreiben. Hieraus folgt
D = mpy [Dol - 4)

Die Periodendauer v einer Drehschwingung ist durch

= 2n V% _on meJJ — (5)

festgelegt, wobei J das Tragheitsmoment des Magneten bedeutet. Aus der Messung der GréBe ©
148t sich somit bei bekanntem J das Produkt aus der Feldstirke §, und dem magnetischen
Moment my, ermitteln.

Zur Bestimmung des vom Magneten my, ausgehenden Feldes § wenden wir die Formel (1.2.5./8)
an und fithren einen Analogieschluf3 von den in 1.2.5. betrachteten elektrischen auf magnetische

?) * %«7 ‘60

Bild 1.8. Auslenkung ¢ des Hilfsmagneten m’ im duBleren Feld
und im Feld $, des untersuchten Magneten 1y,

%

Felder. Anstelle der elektrischen Feldstérke € haben wir die magnetische Feldstérke , anstelle
der Dielektrizitdt ¢ die Permeabilitidt 4, anstelle des elektrischen Momentes m, das magnetische
Moment my, zu setzen. Damit folgt

1 3 T
$=W(—mm+ i;nz—— r) ‘ (6)
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Liegt der Aufpunkt im Abstand > |4t| auf der verldngerten Magnetachse, so ergibt sich (vgl.
1.2.5./11)
My

()

==

= r.
2 pgrt

Wir messen die vom Dipol erzeugte Feldstirke $ aus ihrer Wirkung auf den Hilfsmagneten m’.
Dieser stellt sich in Richtung des resultierenden Feldes § + , ein (vgl. Bild 1.8).
Der Auslenkwinkel aus der Richtung §, ist somit durch

[Do 2 | Dol

tang =

bestimmt. Mit den vorgegebenen Werten folgt aus (5)

2,4.10-3

J = 0,0606 J
1,25.

g |0l = 42 -g— —4n.

und aus (8)

'%il = 2mugrd tan g = 2w - 4w - 1077 1,6% - 0,0375 Vm3?s A-1 = 1,21 - 10-6 Vm?s A-1,
o

Daraus ergibt sich

My =2,71-104Vms, [ =224 Am-1.

A Aufgaben

A1.2.1. Wie lautet das Potential des elektrischen Feldes
E=(10Vm*+420Vm22)i- (20 Vm— — 10 Vm—2y){ — 15 Vm—* §?
Al.22. Bestimmen Sie das Potential des elektrischen Feldes (in Zylinderkoordinaten)
z 1
) (—0 e,———ez>.
2 r
A1.2.3. Berechnen Sie grad Ln , grad e”, grad (z ei?r).
7
Al.24. In den Punkten (1,0,0) und (—1, 0, 0) befinden sich elektrische Ladungen der
Stérke 10-% C. Wie grof8 ist die Spannung zwischen den Punkten (—0,9, 0, 0) und
(4+0,9,0,0)?
A1.25. Wie groB ist in der vorangegangenen Aufgabe die Spannung zwischen den Punkten
(—0.,9, 0, 0) und (0, 0, 0)?
A1.2.6. In einem Plattenkondensator mit dem Plattenabstand 20 cm wird die Feldstarke
€] = 1000 V m~! gemessen. Wie groB ist die Spannung?
A1.2.7. Ein Elektron lduft in einem Plattenkondensator gegen eine Spannung von 1000V

~an. Wie groB muf} die Anfangsenergie des Elektrons sein, wenn es den Kondensator
durchlaufen soll? Welcher Anfangsgeschwindigkeit entspricht das?
A1.28. Bestimmen Sie zu Aufgabe A 1.2.4. das Potential.
A1.209. Wie lautet zu Aufgabe A 1.2.4. die Gleichung der Potentialfliche durch den Punkt
(2,0,0)7
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A 1.2.10.

A1.2.11.

A1.2.12.

A1.2.13.

A1.2.14.

A1.2.15.

A1.2.16.

A1.2.17.

A1.2.18.

Bestimmen Sie das Potential eines Plattenkondensators, dessen Platten senkrecht
zur z-Achse stehen. Plattenabstand 10 cm, Spannung 220 V. Die positiv geladene
Platte enthalte den Koordinatenanfangspunkt.

Wie gro8 ist die potentielle Energie eines elektrischen Dipols der Ladung 4-10-8C
mit dem Abstand der Ladungen [ = 10 cm, wenn der Dipol quer zum Feld der
Stiirke |€] = 20 V m~! steht. Berechnen Sie das elektrische Moment 1, des Dipols
und das Drehmoment.

Wie groB ist das magnetische Moment einer Spule mit » = 5000 Windungen, die
von einem Strom der Stéirke 0,1 A durchflossen wird, wenn der Spulenquerschnitt
5 cm? betragt?

Berechnen Sie zur vorangegangenen Aufgabe das Drehmoment in einem Magnet-
feld der Stiarke 1000 A m~!, wenn die Spule quer zum Feld steht.

Wie groB ist das magnetische Moment eines Elektrons, das auf der innersten
Bonrschen Bahn mit dem Radius

dreyh?

o=
2

e¥m

den Wasserstoffkern mit der Kreisfrequenz

etm
W = =
1672¢,24%
umléuft? (b = 6,626 - 10~ J s, & = %/2n).
Im magnetischen Feld der Erde wird die Periodendauer einer horizontal auf-
gehdngten Magnetnadel gemessen. Hierfiir ergibt sich v = 1,45 s. Das Trigheits-
moment der Magnetnadel betrigt J = 4,8-105kgm?. Fur die Horizontal-
komponente des erdmagnetischen Feldes ist |D,| = 15 A m~! zu setzen. Berechnen
Sie daraus das magnetische Moment der Magnetnadel.

Ein Magnet bewirkt im Abstand r = 1,50 m von einer Magnetnadel die Auslenkung
@ = 6°. Die Magnetnadel befindet sich auf der verlingerten Achse des Magneten,
der in Richtung Ost—West weist. Berechnen Sie das magnetische Moment des
Magneten. Fir die Horizontalkomponente des erdmagnetischen Feldes ist
|9Del = 15 A m~! zu setzen. Die Milweisung sei gleich Null.

Eine Spule ans 15000 Windungen mit der Querschnittfliche 10 cm? wird vom
Strom I = 1 A durchflossen. Berechnen Sie das Magnetfeld im Abstand » = 2m
auf der verlingerten Spulenachse.

Wie groB ist in der vorangegangenen Aufgabe das Magnetfeld im Abstand » = 4 m
senkrecht zur Magnetachse?
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1.3. Rotation und Divergenz elektromagnetischer Felder.

E Einfiihrung

Das Umlaufintegral iiber ein Vektorfeld €(r) ist nach (1.2./15) im allgemeinen von
Null verschieden. Im folgenden wird vorausgesetzt, dafl die geschlossene Weg-
kurve C in einer Ebene liegt.

Die von € umfahrene Fliche wird durch den Flidchenvektor A9 dargestellt. Der
Betrag des Vektors 4 ist gleich dem Fldcheninhalt 44. Seine Richtung steht normal
zur umfahrenen Flédche. Den Vektor A9 orientiert man derart, dal in Richtung 49

3 A =4An

4A

blickend die Randkurve bei der Integration im mathematisch positiven Drehsinn
umfahren wird.
Der Einheitsvektor in Richtung 49 wird mit e bezeichnet. Es gilt also

AU = Ade. (1)
Das Umlaufintegral iiber die Vektorfunktion €(x) ist von der Randkurve C und der

GréBe der umfahrenen Fliche A4 abhingig. Um vergleichbare Verhéltnisse zu
schaffen, betrachtet man daher den Ausdruck

1
A—A¢(§'dl.
c

Zieht man die Umlaufkurve C' auf einen Punkt zusammen, so ist der Grenzwert

lim 1

2 cdr = —¢-T1Ob 2
AA—)OAA¢@ dr =rote€ = e -rot € (2)

nur noch eine Funktion der vorgegebenen Vektorfunktion € = €(r) und der Nor-
malenrichtung e des umfahrenen Flichenstiicks. Dagegen hat die spezielle Form der
Begrenzung (' im Falle 44 — 0 keinen EinfluB mehr auf den Ausdruck (2).

Durch (2) wird die Rotation des Vektorfeldes € in einem Punkt P fiir eine beliebig
vorgegebene Richtung e, d. h. in voller Allgemeingiiltigkeit definiert. Der Rotor ist
ein Vektor, die Vektoroperation rot wird auf ein Vektorfeld angewandst.
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LafBt sich das Vektorfeld € = €(r) als Gradient eines skalaren Feldes @ = ®@(x) dar-
stellen, so gilt nach 1.2. fiir saimtliche Umlaufkurven C (die keine Singularitéten ein-
schlieflen)

g{j C) dr = 0. (3)

Nach (2) folgt, daf} fiir ein Vektorfeld € = —grad @ die Rotation verschwindet.
Es gilt also

rot grad @ =0 |. (4)

Um festzustellen, ob ein Vektorfeld € ein Potential besitzt, d. h., ob € als Gradient
einer skalaren Ortsfunktion @ dargestellt werden kann, hat man lediglich den Rotor
dieses Feldes zu bestimmen. Nur wenn in allen Raumpunkten

rot € =0 (3)
gilt, ist eine Darstellung

C = —grad @ (6)
moglich.

In Cartesischen Koordinaten schreibt sich der Rotor, wie aus (2) nach lingerer Ab-
leitung folgt,

it
1% 0 0
c, G G,

Bei Verwendung Cartesischer Koordinaten miissen also die Beziehungen

X, K K& 8 &
ox ay’ oy o’ 6z ox

in jedem Punkt erfiillt sein, wenn € in der Form (6) darstellbar sein soll.
In Zylinderkoordinaten lautet die Darstellung des Rotors

10€, o€ ¢,  oC, 1 [o[r€,] 0G,

§ = (— - — 4o (el T
rov® (7" op oz ) e ( oz or ) A ( or or ) b (72)

in Kugelkoordinaten
_ 1 0 36,9 1 6(7'@19) 8(57
rot € = [rsinﬁ (829 (sin §€;) — agaﬂ T 7{ ar 9%
(7h)
1 6€, @
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Das Integral iiber eine geschlossene Kurve C, die nicht eben zu sein braucht, kann
nach Bild 1.9 in Umlaufintegrale tiber kleine Flachenstiicke 44; unterteilt werden.
Fiir jedes derartige Flichenstiick gilt nach (2) im Grenzfall 44; — d4;

rot € d; = ¢ - dr. (9)
Ct

C; bezeichnet die Begrenzung des Flichendifferentials d%{;. Addiert man samtliche
Gleichungen (9), so hebt sich nach Bild 1.9 der Beitrag der Kurvenintegrale im
Innern heraus, da iiber jede Strecke zweimal, jedoch in einander entgegengesetzten

c

— T

< ™~
A s 1

[ — dA;
XY

Bild 1.9. Zur Ableitung des StokESsschen Satzes

'

-

Richtungen integriert wird. Rechts verbleibt daher nur das Integral iiber die duflere
Umlaufkurve C. Man erhilt damit den Stokesschen Satz

[[rot@-dA =P E-dr |- (10)
44 C

Das Umlaufintegral des Vektorfeldes €, erstreckt iiber die Kurve C, ist gleich dem
Flachenintegral von rot €, erstreckt iiber eine beliebige, von C eingeschlossene
Flache A4.

Zur Definition der Divergenz cines Vektorfeldes betrachtet man den Strom durch
eine differentielle Flache d9l.

Es bezeichne

R (11)

den Vektor der Stromdichte. p gibt in (11) die Dichte der strémenden Substanz an,
p ihre Stromungsgeschwindigkeit. Fiir den Strom dI durch die Fldche d9 erhélt
man (vgl. Bild 1.10)

ar =g - dl. (12)

Der Strom d7 ist am groBiten, wenn § und d9 parallel zueinander stehen. Er ver-
schwindet bei orthogonaler Stellung von § und d3(. Fiir den Strom A7 durch die ge-
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schlossene Fliche 44 folgt durch Integration

Azzﬁs.dm. (13)
44

Orientiert man die Flichenvektoren d derart, daf diese aus dem von A4 ein-
geschlossenen Raumgebiet AV herausweisen, so ist AJ positiv, wenn aus dem Vo-
lumen AV insgesamt Strom ausflieBt. Die Grofe Al kennzeichnet die Ergiebigkeit

74a

Bild 1.10. Der Strom dI = & - d¥ durch ein
Flichenelement d¥ = e d4

des Volumens A V. Sie héngt bei vorgegebenem Feld J sowohl von der GroBe als auch
von der Begrenzung des Volumens AV ab. Schrumpft AV im Grenzfall auf einen
Punkt P zusammen, so wird die spezifische Ergiebigkeit

A1 1 )
Iim — = lim — K- dUA = div 14
=0 AV gy AV .g v v (14

von der speziellen Form der Begrenzung unabhbéngig. (14) definiert die Divergenz
des Vektorfeldes . Sie gibt, bezogen auf das Volumen AV = 1 m3, die Ergiebigkeit
des Vektorfeldes § im Punkte P an. Durch den Vektoroperator div wird ein Vektor-
feld in das Feld einer skalaren Ortsfunktion umgewandelt.

Die Ergiebigkeit eines Raumgebietes ¥ 148t sich einmal als Summe der Ergiebigkeiten
itber sémtliche Punkte des Raumes ¥ berechnen:
I=[[[divgdV. (15)
v

Andererseits muB die aus V in der Zeiteinheit austretende Substanz durch Integration
iiber die Oberfliche 4 dieses Raumes folgen:

I=¢g-au (16)

A

Es besteht daher fiir jedes Raumgebiet V die Beziehung

[[fdivgdV = ¢f §-dU (GauBscher Integralsatz) | (17)
v A

Der Gausssche Integralsatz wandelt ein dreidimensionales Volumenintegral in ein
zweidimensionales Oberfldchenintegral um.
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In Cartesischen Koordinaten ergibt sich die Divergenz eines Vektorfeldes ¥ nach der
Formel
. Wz, Wy, -
N — O 4 VY VR
div = p + 2y + o (18)

Bei Verwendung von Zylinderkoordinaten gilt

12 16y, o
X — (X e :.
divy = 5 0%) + T2+ (19)
In Kugelkoordinaten ist
1[a 1 &S 1 [e .
o |2 e e — So) |- 2
dvy =3 [ar - *5’)] Yo e T remd [819 (sin 19“51’)} (20)

Betrachtet man die drei Operatoren grad, div und rot in ihren Komponentendarstel-
lungen, so erkennt man, daB sie durch einen symbolischen Vektor, den Nabla-Operator

d
= 1)

zum Ausdruck gebracht werden kénnen. In Cartesischen Koordinaten ist fiir V zu
schreiben

0 0 0
V=1i—1+]—. —. 22
Iax+13y+f8z (22)
Damit erhilt man
oD oD 0D
Vp —i— + j— - —grad @ (2
D Iax‘18y+f3z gra R (23)
0Je | OFy | 03: .
V. &= i 4 2~ = div & 24
R} 8x+ 3y+ % 1V 1§ (24)
i i f
0 o 0
\y =| = — —|=rotC. 25
xX € 3 7 o rot € (25)
¢, ¢ G,

Das skalare Produkt des Nabla-Operators mit sich selbst ergibt den Laplace-Operator

02 32 82

=V2=V.V=——+4 —+—. 2
A=V ox? + oy> + 02> (26)
Der Larrace-Operator, auf ein skalares Feld @ angewandt, liefert
2 52 2
NG =V Vo = divgrad & — o0 4 2P L ZP 27)

a2 o e
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Auf ein Vektorfeld € angewandt, ergibt der Laprace-Operator /\ in Cartesischen
Koordinaten

&6, | &6, &6
S' — T z Zz :
Ae (axz o T o )‘

€, %6, a?@y). e, | 76 | 6,
Ga? | oy? a2 ]t "\ T a2 1 2]

(28)
In Zylinderkoordinaten ist
19 1 02 0P
A@=7a—( )+ﬁw+ﬁ (29)
in Kugelkoordinaten
2P 2 0@ 1 *?0 1 ¢ 1 oP
—_ == - = hliall — ________
AP = or? - roor ' rZsin? 9 o> TE 2 092 + 7 cot ¥ i 39)

Bei physikalischen Berechnungen tritt gelegentlich der Operator a - V auf. In Car-
tesischen Komponenten ist

C . 0 L0 L8 . .
a.V@:(ax1—,—cay1—}—aZf).(155—{—1@ : faz)(@z1+@y1T@zf)

J 14 7 . . :
= (azg‘; T(lygy— +a’z 5) (@zl +@yl+@zf) (31)
Es lautet also z. B. die i-Komponente dieses Vektors
o €,
(a-VQ)-t:ax + T +a, o — = (a- V@€),. (32)

ya

Als Spatprodukt der drei Vektoren 9, B, € bezeichnet man den Ausdruck

(AXB) C=EC@xAY-B=(BxE)-A=A-(BxEC). (33)
In Cartesischen Komponenten ist
A A, A
AxB).C=|B, B, 9|, (34)
¢ ¢ G

woraus die in (33) aufgefithrten Vertauschungsregeln folgen.

4 Schilling, Felder
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P Probleme

1.3.1. Induktionsgesetz und Stokesscher Satz

Eine kreiszylindrische Feldspule mit #» = 15000 Windungen hat die Linge ! = 30 cm. Sie wird
von einem Wechselstrom I, e~i¢¢ durchflossen, dessen Amplitude die GréBe I, = 0,06 A hat.
Fir die Kreisfrequenz ist o = 27 - 1000 s zu setzen.

Unter einem Winkel von ¢ = 30° gegen die Feldspule geneigt (vgl. Bild 1.11) befindet sich eine
kreiszylindrische Induktionsspule mit 7, = 100 Windungen, deren Radius 7, = 1 cm betragt.

2
Bild 1.11. Induktionsspule I in einer Feldspule 2

Berechnen Sie die induzierte Spannung in der Induktionsspule. Welcher Wert ergibt sich fir die
@-Komponente des elektrischen Feldes an der Peripherie der Spule? Wie gro ist die Rotation
des elektrischen Feldes?

Losung

In der Feldspule wird die magnetische FluBdichte

—jwt
nl, e~iv

l

[B] = | #o

erzeugt. Fir ihre zeitliche Ableitung erhélt man

nlo e—iwt
l

Bl = | i

Das in der Feldspule erzeugte magnetische Feld trifft unter dem Winkel ¢ = 30° auf den kreis-
férmigen Offnungsquerschnitt der Induktionsspule. Sie sei ebenso wie die Feldspule mit Luft
gefiillt, d. h., fiir beide Spulen betrigt die Permeabilitdt 1y = 1,257 - 106V s A=* m~. Wir er-
halten damit fiir die Anderung der Durchflutung in der Induktionsspule

e—iwt

ff B dUA = ) nd cos pA;. (3)
Al

Hierdurch wird in jeder Windung der Induktionsspule die Umlaufspannung

Uundzgﬁ@dé:—ff%-d?l (4)
Al
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induziert (vgl. 1.1./20). Insgesamt enthdlt die Induktionsspule n, Windungen. Die induzierte
Spannung wird somit gleich

inynuyw cos ¢ 4, e~ivt
: .

(3)

Uind = nlUlind =

Der Faktor i kennzeichnet die Phasenverschiebung =/2 zwischen dem Strom in der Feldspule und
der induzierten Spannung in der Induktionsspule. Dabei wird vorausgesetzt, dal die ohmschen
Verluste vernachlissigbar seien.

Mit Zahlenwerten folgt aus (5)

. 100 - 15000 - 47 - 10-7 « 27v - 10° - 0,866 - 104 - 0,06 e~i2710%

Uing =1 0.50 V =i0,615 e-i2n-10% V

Als effektive Spannung erhilt man
Uy = % 13 U, = 0,7071 - 0,615 V = 0,435 V.

Fiir die in einer Windung induzierte Spannung ergibt sich

Uind _ 10,615 B_izn‘loat

=10,00615 e~i2710t §,
ny 100

Ulind =

Diese Spannung ist nach (4) mit der elektrischen Feldstirke € durch die Beziehung
2
Uina = $ €-ds = [ Cpridg (6)
0

verkniipft. Wir beriicksichtigen, daB aus Symmetriegriinden die Komponente €, von ¢ un-
abhéngig ist. Damit folgt aus (6)

U..
Using = 271,€,  baw. €, = —917_;:'1. (7
2rry

Zahlen eingesetzt, liefert

T 0,00615 - e~i2m-10%

¢
? 27 - 0,01

Vm?!=1i0,0979 e-i2n-10% V m-1,

Nach dem STokEsschen Integralsatz (1.3./10) 148t sich das in (4) stehende Umlaufintegral in ein
zweidimensionales Integral umwandeln:

95@-d5=ffrot(€~d9i=-ff\3d91. (8)
C Ay A

Diese Beziehung besteht fur sémtliche Flichen 4, und ihre Begrenzungskurven C. Daraus folgt
die MaxwgrLLsche Beziehung

rot € = —%. 9)

4%
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Durch (9) ist auch der Rotor des induzierten elektrischen Feldes € bestimmt. Er ist dem zeit-
lichen Differentialquotienten der magnetischen FluBdichte entgegengerichtet, hat also im vor-
liegenden Fall die Richtung der Feldspulenachse n. Seine GréBe ist durch (2) bestimmt. Bezieht
man sich bei der Losung auf den Realteil, so folgt durch Einsetzen von (2) in (9)

o

roty € = I, sin wi
bzw. in Zahlen

210-7. 27 - 108 . 15
roty € = in - 10 20713010 15000 0,06 sin 2r + 10% Vm—2 = 23,7 - sin 2r - 10% Vm—2.
1.3.2. Magnetfeld eines zylindrischen Drahtes

Ein sehr langer zylindrischer Draht vom Radius R = 5 mm wird von Gleichstrom der Stirke
I =10 A durchflossen. Berechnen Sie das Magnetfeld im Innern des Leiters fiir den Achsen-
abstand r = 2mm und im AuBenraum fir » = 20 cm. Bestimmen Sie den Rotor des Magnet-
feldes.

Losung

Wir legen unserer Betrachtung Zylinderkoordinaten r, ¢, z zugrunde. Aus Symmetriegrinden
kann eine Abhéngigkeit von der Winkelvariablen ¢ nicht bestehen. Die magnetischen Feldlinien
sind daher Kreise, die von der Zylinderachse im Mittelpunkt senkrecht durchsetzt werden. Di-
elektrische Verschiebungsstréme brauchen nicht beriicksichtigt zu werden, da der Draht von
Gleichstrom durchflossen wird. Dieser ist iiber den gesamten Zylinderquerschnitt verteilt. Wir
erhalten daher fiir die Stromdichte

I

1] = —,
nR?

S = (1)

Nach dem AmpEREschen Gesetz (1.1./25) und (1.1./26) iiber die Verkettung von elektrischem
Strom und Magnetfeld gilt die Beziehung

gigs-dngfs.dm, 2)
(o} 44

wobei A4 die von der Randkurve C' umschlossene Fliache angibt. Wéahlt man fir C einen Kreis
mit dem Radius r, so folgt aus (2)

2m
gsgg.dézf@wrdqp:Qm‘@?:ff‘s»dﬂ. (3)
¢ 0 44
Im Falle r < R wird das rechts stehende Integral (vgl. Bild 1.12)
I dA =2 g =L =R 4
[ =rm i3 =4 (r=B). )
a1
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Damit erhilt man aus (3) und (4) fir den Innenraum

174

Bild 1.12. Zur Berechnung des Magnet-
feldes im Innen- und im AuBenraum
eines sehr langen stromdurchflossenen
geraden Drahtes

Dagegen ergibt sich im Falle » = R

J[3-aA=1 (®)
a4
und damit in Verbindung mit (3)
" I
o 27 (r= F) ™

Mit Zahlenwerten folgt aus (5)

. —3 .
9, = =110y 197 Amet,
2m - (5-109)2
aus (7)
10
= 0 Amt—7,96 Amt.
% = 5020 4™ o

Zur Bestimmung der Rotation des Magnetféldes wenden wir den SToxEsschen Satz (1.3./10)

H-ds = rot § - dU ®)
fowa- ff
an. Durch Vergleich mit (2) erhalten wir
[frot-ad¥A = [[F-dA. (9)
24 a4

Diese Beziehung besteht fiir sémtliche Flichen 44. Es miissen daher die Integranden iiberein-
stimmen. Hieraus erhilt man im vorliegenden Fall fehlender dielektrischer Verschiebungsstréme

rot § = 3. (10)
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Im Innern des Drahtes ist der Rotor des Magnetfeldes daher gleich der Stromdichte . In Zahlen
folgt
I 10
t9 = = — = ——— Am2 = 637 Am2.
rot bl = |§] = = = ~— - Am m

Dagegen ist im AuBenraum die Rotation des Magnetfeldes gleich Null.

1.3.3. GleichmifBig geladene Kugel — Oberflichenintegral und Divergenz

Eine Kugel vom Radius R = 10 cm ist gleichmi8ig elektrisch geladen, d. h., jeder Punkt hat die
gleiche Ladungsdichte

o = lim Lﬁ .
A0 AV’

Im Abstand » = 1 m vom Kugelmittelpunkt wird eine von der Kugel weg gerichtete elektrische

Feldstarke der GroBe 1 V m—! gemessen. Berechnen Sie daraus die elektrische Ladungsdichte o

in der Kugel und das elektrische Feld a) im Abstand r» = 5 cm, b) im Abstand » = 2 m vom Kugel-

mittelpunkt. Die Dielektrizitétskonstante ist tiberall gleich ¢, Wie groB ist an den genannten

Stellen die Divergenz des elektrischen Feldes?

Losung

Nach der Definitionsgleichung (1.1./6) far die elektrische Erregung und auf Grund des Zusammen-

hanges (1.1./15) zwischen elektrischer Erregung und elektrischer Feldstéarke gilt die Beziehung
e ff ©-a% =@ = Zxmo. (1)

% 3

Das Integral (1), iiber die Kugeloberfliche mit einem Radius » > R erstreckt, ergibt
egdmr?E, = Q. (2)
Hieraus erhalten wir fiir die Ladungsdichte

_ 3eprC,

o= 3)

Im Abstand r = 1 m ist €, bekannt. Damit kénnen wir ¢ aus (3) berechnen. Gleichung (2) gilt
tar den AuBlenraum der Kugel, d. h. fir > R. Als Feldstarke im AuBenraum folgt aus (2)

-2 (4)

Ist die Feldstérke fur einen speziellen Radius 7, des Aulengebietes bekannt, so berechnet man
diese fiir den Radius » am zweckméBigsten gemal

(3)



1.3. Rotation und Divergenz elektromagnetischer Felder 55

Das Feld im Innern der Kugel erhalten wir auf Grund der Beziehung
4
[[ &G - dY = dme,Cp2 = [[[odV = — w3, 6)
44 av’ 3

wobei < R ist. 44 bezeichnet die Oberfliche, 4V das Volumen der Kugel vom Radius 7. Aus (6)
folgt als Feldstdarke im Innern der Kugel

B
(@r)r<R = 350' (7)

Einsetzen der Zahlenwerte ergibt nach (3) fiir die Ladungsdichte’

. .10-12
o— 2888 10T s — 2,655 - 1075 C ms.
10-3
Nach (7) erhélt man fir das Feld im Abstand r = 5 cm vom Kugelzentrum

~ 5-102.2,655-108

€, = 3.8.85. 102 Vm—t = 50 Vm1.

Fur das Feld im Abstand » = 2 m folgt nach (5)
1 ~
€, =10- Y Vm—! = 0,25 Vm~1.

Die Divergenz des elektrischen Feldes berechnen wir in Kugelkoordinaten nach (1.3./20). Im vor-
liegenden Fall existiert nur die Komponente €,. Damit ergibt sich

div € =

L2 o). ®)

L2
72 or

Far das Kugelinnere erhalten wir aus (7)

i 3
dive—L 2 (Te) -2 (r < R). )
r2 or \3g, &
Dagegen folgt aus (4) fiir das AuBengebiet
. 10/@Q
divf=——|—] =0 > R). 10
a r2 or (4#50) r ) (10)

Die Divergenz der elektrischen Erregung ® = & ist also gerade gleich der elektrischen Ladungs-
dichte.

1.3.4. Kontinuitétsgleichung

Bei einer nichtstationdren Hochststromentladung (Pinchentladung) flieBe im Plasmastrahl ein
Strom, dessen Dichte durch

S=3e (2405 ) )
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gegeben ist. Darin bedeutet J, die BesseL-Funktion nullter Ordnung, R = 2,5 cm gibt den Ra-
dius der zylinderférmigen Entladungssidule an. Fiir die Stromdichte in der Zylinderachse werden
zur Zeit t = t, die Werte
J(zg) = —2,1-10° A em~2,
J(zy + A2) = —1,7 .10 A cm~2, Az =5 cm
gemessen. Berechnen Sie daraus die Anderung der Ladungsdichte im Entladungsraum zwischen

z =z und z = 2, + 4z. Welche numerischen Werte ergeben sich auf der Zylinderachse und fir
r=0,5R?

Losung

Nach dem AMmPEREschen Gesetz (1.1./25) und (1.1./26) tiber die Verkettung von Strom und Magnet-
feld gilt fir jede beliebig gekrimmte Flache 4,, die von einer Randkurve C begrenzt wird, die
Beziehung

$o-ds=[[(&+D) ax,.
(o] A4y

Wir betrachten zwei verschiedene Fldchen 4; und 4,, die von derselben Kurve C begrenzt werden.
Da fiir diese das Integral links identisch ist, miissen die auf der rechten Seite stehenden Integrale
itber die Flidchen 4, und 4, tibereinstimmen:

£f<s+fb)-dwl=4ff<s+é>>~dm. @)

aa aa

! aa {14 /

Bild 1.13. Kontinuitédtsgleichung div J 4 % =0

Bilden wir aus den beiden gekrimmten Fldachen 4, und 4, die geschlossene Fliche 4 und orien-

tieren die Flachennormalen d¥ so, daB diese in allen Punkten nach aulen weisen (vgl. Bild 1.13),
so folgt aus (2)

&+ D)-aw=o0. 3)
A

Nach dem Gaussschen Satz (1.3./17) kénnen wir schreiben

gjﬁs-dm=fffdiv3dv. )
A 14
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Ferner gilt nach (1.1./6)

. Q o .
fﬁ@d%:%ﬁfb.dm=y=gﬁﬁd% (5)

wobei ¢ die Ladungsdichte, @ die gesamte Ladung im Volumen V angibt. (4) und (5) eingesetzt
in (3) liefert

J[faivyar+ < fffav=0
14 v

bzw.

Gleichung (6) wird als Kontinuititsgleichung bezeichnet.
In Zylinderkoordinaten folgt, wenn geméf (1) nur eine Komponente in Richtung der Zylinder-
achse vorhanden ist,

. R r\ 0Je(2)
divy = =% = J,[2,4056 — ) =222, 7
YT °( R) o )
Wir setzen entsprechend dem MeBergebnis
o o ; o _ s
03:(2) _ Bialzo + 42) — J(zo) _ 1,74 21 107 Am—3 = 8 . 107 Am-3.
oz Az 5.10-2

Damit erhalten wir aus der Kontinuitétsgleichung (6)

% _ _g.10w,(2,405 =) Am-s. (8)
at R

Aus Tafeln tiber Zylinderfunktionen entnehmen wir
Jy(0) = 1,000, J0(1,2025) = 0,6698.

Hieraus ergibt sich nach (8) fiir die Anderung der Ladungsdichte in der Zylinderachse

QD

—‘i: —8.107 Am-3.

Im Abstand r = 0,5R = 1,25 cm ergibt sich

aa—i = —8.107.0,6698 Am—3= —5,2 . 107 Am=3.

Der nichtstationére Entladungsvorgang ist mit dem Aufbau eines negativen Raumladungsfeldes
verkniipft.
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A1.3.1.

Al13.2

A1.3.3.

A1.34.

A1.3.5.
A 1.3.6.

A1.3.7.
A1.3.8.

A 1.3.9.

A 1.3.10.

A1.3.11.

A 1.3.12.

A 1.3.13.

A 1.3.14.

A1.3.15.

A 1.3.16.

Aufgaben

Berechnen Sie die Rotation des Feldes
€E, = Cy? + 22, Gy = Ca? + 27, €, = C(a® + 9?).

Welche Rotation hat das elektrische Feld € = f(r) r, wenn t den Ortsvektor be-
zeichnet? Besitzt dieses Feld ein Potential?

Untersuchen Sie, unter welchen Bedingungen das Feld
€, = Cprm £ Copne + Cyzms, €, =0, €, =0
ein Potential hat.

C N .
Berechnen Sie div t, div —, div (z ei?r).
”

Driicken Sie div (€ x ) durch die Rotation der GréBen € und § aus.

Beweisen Sie aus dem Entwicklungssatz % x (B X €) = (A-€) B — (A - B) € die
Beziehung A€ = grad div & — rot rot €.

Berechnen Sie aus dem Entwicklungssatz grad (% - 8) und rot (% X B).

Stellen Sie die Bedingungsgleichungen in Zylinderkoordinaten dafiir auf, daf das
Vektorfeld €(t) ein Potential hat.

Beweisen Sie mittelsy Xy = 0 die Beziehungen rot grad ¢ = 0 und div rot A =0.
Eine Feldspule aus 20000 Windungen mit der Lénge 40 cm und kreisférmigem
Querschnitt wird von einem Wechselstrom der effektiven Stromstirke 0,08 A durch-
flossen. Die Frequenz des Wechselstromes betragt 100 Hz. In der Feldspule befindet
sich eine Induktionsspule aus 25000 Windungen. Sie ist unter dem Winkel ¢ = 45°
gegen die Feldspulenachse geneigt. Die Induktionsspule hat einen kreisférmigen
Querschnitt mit dem Durchmesser 4 cm. Auch die Querschnittstliche der Feldspule
ist kreisformig. Berechnen Sie die effektive induzierte Spannung (1 = ).

Berechnen Sie zur vorangegangenen Aufgabe die ¢-Komponente des elektrischen
Feldes an der Peripherie der Induktionsspule.

Bestimmen Sie zu den beiden vorhergehenden Aufgaben den Rotor des elektrischen
Feldes.

Bestimmen Sie unter Verwendung des Induktionsgesetzes und aus der Geschlossen-
heit der Feldlinien den Ausdruck div 8.

Ein kreisfé6rmiger Hohlzylinder mit dem Innenradius R, = 5 cm enthalte koaxial
einen massiven Kreiszylinder mit dem AuBenradius B; = 1 em (koaxiale Zylinder-
anordnung vgl. Bild 2.3). Im Innenzylinder flieBe Gleichstrom der Stiarke I =1 A,
dessen Richtung die z-Achse kennzeichne. Ein Strom gleicher Stéirke flieBe in ent-
gegengesetzter Richtung im AuBenzylinder. Der AuBenradius des AuBlenzylinders
sei Ry, = 7 cm. Geben Sie das Magnetfeld in den verschiedenen R&umen an.
Welche Feldstiarken § erhédlt man fiir die folgenden Abstéinde von der Achse des .
Innenzylinders: a) r = 0,5cm, b) r =4 cm, ¢) r = 6 cm, d) r = 8 em?

In der vorangegangenen Aufgabe trage der Innenzylinder, bezogen auf die Linge
I =1m, die Ladung @ = 10-® As. Berechnen Sie die elektrische Feldstirke fur
7 =6 cm.

Ein idealer zylindrischer Leiter wird von Wechselstrom der effektiven Stromstirke
1 A durchflossen. Dieser ist vollstindig auf die Oberflache des Leiters konzentriert.
Der Radius des Leiters ist » = 1 cm, die Lange kann als unendlich angenommen
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werden. Wie grof} ist die magnetische Feldstirke a) an der Oberfliche, b) im Ab-
stand 5 cm von der Achse, ¢) im Abstand 0,5 cm von der Achse?

A1.3.17. Eine zylindrische Plasmasiule mit dem Radius R = 5 cm besitzt die konstante
Raumladungsdichte ¢ = 10-¢ Asm=3. Wie groB ist die elektrische Feldstirke fiir
die Achsenabsténde a) r = 2 em, b) r = 5cm, ¢) r = 10 em?

A 1.3.18. Bei einer Gasentladung fillt in der Plasmasiule die elektrische Feldstirke € bei
axialem Fortschreiten um 5 cm von 45 V em=1 auf 42 V cm~1. Berechnen Sie daraus
die Ladungsdichte in der Achse.

1.4. Maxwellsche Gleichungen

E Einfiihrung

Die MaxwerLsche Kontinuumstheorie fafit die elektrischen und magnetischen Er-
scheinungen in idealisierender Form zusammen. Aus den experimentellen MeB-
ergebnissen werden zwischen den Gréfien des Feldes und den GréBen des Mediums
allgemeingiiltige Beziehungen abgeleitet. Sie lassen sich auf ein System von vier
Differentialgleichungen, die MaxwrrLschen Gleichungen, reduzieren, in denen die
Gesamtheit unserer Erfahrungen iiber elektromagnetische Felder und Wellen ent-
halten ist. Der technisch interessierende Einzelfall ergibt sich durch Integration des
MaxwerLschen Systems unter Beriicksichtigung der Rand- und Anfangsbedin-
gungen.

Die MaxweLLschen Gleichungen stellen fiir die elektromagnetischen Erscheinungen
das Analogon zu den Newtonschen Axiomen der Mechanik dar. Wie diese erfassen
sie nur die klassische Physik. Dagegen erfordert die Behandlung quantenhafter und
relativistischer Effekte die Einfithrung zusétzlicher Axiome, die sich auf Grund der
Quanten- und der Relativitdtstheorie unter Beriicksichtigung elektrischer und
optischer Fundamentalkonstanten ergeben.

Die einzelnen Gleichungen der MaxwerLLschen Theorie wurden bereits in den Ab-
schnitten 1.1. bis 1.3. bei der Definition der elektromagnetischen Grundgréfen und
bei der Behandlung der Vektoroperatoren abgeleitet. Im folgenden wird das System
der MaxwEeLLschen Gleichungen noch einmal zusammengefaft und verallgemeinert
dargestellt. Aus der Theorie werden der Energiesatz und die Randbedingungen iiber
das Verhalten der elektromagnetischen Gréflen an der Trennfliche zweier Medien
abgeleitet.

Nach dem Ampéreschen Gesetz (1.1./25) und (1.1./26) besteht zwischen dem Strom
durch eine Fliche 44 und der magnetischen Umlaufspannung in ihrer Berandung
die Verkettung

[[@+ - aA=¢f-ds. (1a)
44 C

Das Faradaysche Induktionsgesetz (vgl. 1.1./20) besagt: Die Anderung des magne-
tischen Flusses durch eine Flidche 44 ist mit einer elektrischen Umlaufspannung in
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ihrer Berandung verkniipft:

|

tff%-d?lz~§ﬁ@-d§. (2a)

44 c

D

Mit dem negativen Vorzeichen auf der rechten Seite in Gleichung (2a) wird die
Lenzsehe Regel zum Ausdruck gebracht (vgl. Problem 1.4.1.).

Quellen der elektrischen Erregung ® sind nach (1.1./7) die elektrischen Ladungen.
Daraus folgt

#@-d%{:fffng:Q. : (32)
A 14

o bezeichnet die Dichte der elektrischen Ladung (Einheit: C m-3). 4 gibt dié Ober-
flache des Volumens V an.
Das Magnetfeld B ist im Gegensatz zum elektrischen Feld quellenfrei. Daher gilt

Sff B.dA =0. (4a)
Die Gleichungen (1a) bis (4a) stellen die Maxwellsechen Gleichungen in Integralform
dar.

Wendet man in (1a) und (2a) rechts auf die Ausdriicke fiir die Umlaufspannungen
den StoxrEsschen Satz (1.3./10) an, so folgt

Po-ds=[[rot9-dA, PE-ds=[[rot & .
C 44 C 44

Damit ergeben sich anstelle von (1a) und (2a) die Beziehungen

[f@®+Q)-dA = [[rot §:dYA, (1b)
A4 44

{f%-d%[:fdffrot@-dgl. (2b)
A 4

Auf die linken Seiten der Gleichungen (3a) und (4a) kann man den Gaussschen
Satz (1.3./17) anwenden:

ffo-du = [[[divdar, (fB-dA= [[[divsar.
4 4 4 7
Daraus erhilt man anstelle von (3a) und (4a)
[[fdivddV = [[[oaV, (3b)
Vv 14

[[[divedV =o0. (4b)
14
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Die Gleichungen (1 b) und (2b) gelten fiir sémtliche Flichen 44, die Gleichungen (3b)
und (4b) fir sémtliche Rdume V. Daher miissen die Integranden iibereinstimmen.
Hieraus folgen die MaxwgsrLschen Gleichungen

D + 3 =rot 9, 1)

B = —rot €, 2)
div® =, 3)
div® = 0. (4)

Bei ihrer Losung sind die nach (1.1./14), (1.1./15) und (1.1./23) bestehenden linearen
Beziehungen

zu beriicksichtigen.

Fiir die mathematische Berechnung spezieller elektromagnetischer Felder sind aufer
den MaxwerLschen Gleichungen als den Differentialgleichungen des Problems die
Randbedingungen iiber das Verhalten der elektromagnetischen Gréflen an der
Grenze zweier Medien I und I zu berticksichtigen.

Die Eigenschaften der elektrischen Feldstirke beim Ubergang zwischen zwei Medien
ergeben sich aus der MaxweLLschen Gleichung (2). Sie wird fiir die folgende Ab-
leitung am zweckméBigsten in Form der Integralbeziehung (2a) angewandt. Als

ASI

MediumI  4h, 5;17/;777
—

Medium I
Bild 1.14. Randkurve C zwischen zwei Medien

Integrationsgebiet 44 wird ein langgestrecktes Rechteck zwischen den beiden
Medien I und II gemaf Bild 1.14 betrachtet. Seine Grundlinie As sei grofl gegen
die Hohe Ah. Fiir die magnetische Durchflutung der Fliache A4 erhdlt man im
Grenzfall A2 — 0, wenn die Rechteckfliche 44 = As Ak in eine Strecke entartet,

lim [[®B-dA =0, (8)

dh=>0 dsdh



62 1. Grundgesetze des elektromagnetischen Feldes

Das in (2a) rechts stehende Umlaufintegral iiber die Berandungskurve ¢ der Fliche
A4 muB daher verschwinden:

lim @ - ds = 0. (8a)
4h—0 ¢

Die Léange As der Rechteckgrundlinie kann andererseits als so klein vorausgesetzt
werden, dafl sich die elektrische Feldstdrke auf ihr innerhalb eines Mediums prak-
tisch nicht verdndert und mit ihrem Mittelwert eingesetzt werden kann. Aus (2)
bzw. (2a) folgt damit in Verbindung mit (8)

P G- ds =G A8 + Gpp- A3y + -+ = 0. (9)
(o}

Die Beitrége lings der Hohen 4k, und 4%, sind zu vernachldssigen, da nach Voraus-
setzung Ak <€ As gilt. Wie man sieht (vgl. Bild 1.14), besteht auf der Randkurve ¢
die Beziehung

Ag[ = _A§II = Ag- (IO)

Im Grenzfall kennzeichnet As das tangentiale Linienelement im betrachteten Rand-
punkt. Damit folgt aus (9)

(G — Cy) - 48 = (@tangl - (gta.ngll) 4s =0
bzw. wegen As == 0
@bangl = @Langll .

Es bezeichne n den Einheitsvektor der Flachennormalen. Im folgenden wird n so
orientiert, daBl es in das Medium I hinein weist.
Man kann die abgeleiteten Beziehungen in der Form

€ —€C)xn=0 (11)

schreiben. Das bedeutet: Die Tangentialkomponenten des elektrischen Feldes sind
beim Ubergang zwischen zwei Medien stetig.
In gleicher Weise folgt aus der MaxwgLLschen Gleichung (1) bei endlicher Strom-
dichte § + D fiir die magnetische Feldstirke

| (9 — S xn=0|. (12)

Auch die Tangentialkomponenten des magnetischen Feldes sind an der Trennfliche
zwischen zwei verschiedenen Medien stetig, wenn die Stromdichte nicht iiber alle
Grenzen ansteigt.

Das Verhalten der magnetischen Feldstérke bei Wechselstromen im Grenzfall ver-
schwindenden elektrischen Widerstandes wird im Problem 1.4.3. dargestellt.
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Die Eigenschaften der elektrischen Erregung © gehen aus der MaxwgLLschen Glei-
chung (3) in der Integralform (3a) hervor. Als Integrationsvolumen V wird ein
Zylinder im Grenzgebiet zwischen beiden Medien gewahlt, dessen Hohe 4% klein ist
gegen die Abmessungen der Grundfliche 44 (vgl. Bild 1.15). Bei der Integration

TA(ZI=AAﬂ
MediumI < ’
< 7
*S/ 1
AQp=-4An
Medium IT z ’

Bild 1.15. Integrationsvolumen ¥V an der Grenze zweier Medien. Die Orientierung
der Flachennormalen n (statt A%, bzw. AU;; lies AU; bzw. 4%;;)

itber die Oberfliche dieses Volumens brauchen nur die Beitrdge der Zylindergrund-
und -deckfliche beriicksichtigt zu werden. Im Grenzfall 44 — 0 gehen diese beiden
parallelen Flichen in die Tangentialebene iiber. Fiir die betrachteten Flachen gilt
die Beziehung

— ANy = A, = AAn.

Damit erhédlt man
f AU =Dy AW + Dy 4%y = (Dy — Do) - n A4, (13)

Das links stehende Oberflichenintegral zur Bestimmung der Ladung im Volumen
A4 Ak wird im Grenzfall 4% — 0 gleich

[[[edV =044, (14)

A4 4h

wobei o die Dichte der Oberflichenladung, gemessen in As m-2, angibt. Aus (13)
und (14) ergibt sich damit

| (D — D) n=0 | (15)

Gleichung (15) besagt: Die Normalkomponente der elektrischen Erregung verhilt
sich beim Ubergang zwischen zwei Medien unstetig. Der Unstetigkeitssprung ist
gleich der Oberflichenladungsdichte o.

Ist das Medium II ein idealer Leiter, d. h. ein Metall, so gilt ®;; = 0. Man kann
dann anstelle von (15)

Dyn— Dy — o (158)

schreiben.
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Uber die Eigenschaften der magnetischen FluBdichte B beim Ubergang zwischen
zwei Medien folgt aus der MaxwELLschen Gleichung (4a)

(SBI — %II) -n=20|. (16)

Die Normalkomponenten der magnetischen FluBdichte verhalten sich an der Trenn-
fliche zwischen zwei Medien stetig.

Aus den MaxwerLLschen Gleichungen lafit sich der Energiesatz fiir elektromagne-
tische Felder ableiten. Hierzu multipliziert man die Maxwerrsche Gleichung (1)
skalar mit €, die MAXwELLsche Gleichung (2) skalar mit §. Die beiden sich ergeben-
den Beziehungen werden addiert:

C-DLE-F+ 9 B=C-rotH — 9 -rot G. (17)
Anstelle der rechten Seite kann
—div(EX ) =C-rot H — H 10t € (18)

geschrieben werden (vgl. Aufgabe A 1.3.5.).
Definiert man den Poyntingschen Vektor

S=CEx9 | (19)

so ergibt sich aus (17) und (18) der Poyntingsche Satz

16 2+63+9 B+dive=0]. (20)

Die einzelnen Summanden haben die Einheit
€ D]=[C-J]=[9H B] =[divS] =Js?m3.

Sie kennzeichnen Energiegrofien, bezogen auf die Raum- und Zeiteinheit. (20) laft
sich unter Verwendung der linearen Beziehungen (6) und (7) integrieren. Aus dem
ersten Summanden der Gleichung (20) folgt

f@-d@:f@a‘bdt:ig—f@mt:,1@-@. @1

Der dritte Summand liefert

vl

f@.d%:f@-%dt:ga—ws;zdt:%@-%. (21a)

Diese Gréflen haben die MaBeinheit J m-3. Sie geben die elektrische bzw. magne-
tische Energiedichte des Feldes an. Der zweite Summand in (20) kommt durch die
Leitungsverluste zustande. Bei verschwindendem Widerstand ist wegen € = 0 dieser
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Summand nicht vorhanden. € . & charakterisiert die Wirmeentwicklung (Joulesche
Wiirme) des elektromagnetischen Feldes.
Die Einheit des Vektors @ ist nach (19)

[G]=[CXx Y]] =JsTm2.

Der Poyntingsche Vektor kennzeichnet die Energiestromdichte, d. h. die infolge
Ausstrahlung flielende Energie, bezogen auf die Flachen- und Zeiteinheit.
Réumliche Integration der Gleichung (20) ergibt, wenn man auf den letzten Sum-
manden den Gaussschen Satz anwendet,

[[fe-dav+ [[[o-BdVv—+ [[[ec-gaV + ff e dA =o. (22)
v v v A

Hierin hat jeder Summand die Dimension einer zeitlichen Energiedichte bzw. Lei-
stung. (22) enthédlt den Energiesatz fiir elektromagnetische Felder, bezogen auf ein
Volumen V. Er besagt, von rechts nach links gelesen, dafl Energieverluste infolge
Ausstrahlung und Wéarmewirkung durch die Verdnderung der magnetischen und
elektrischen Feldenergie kompensiert werden.

Es bezeichnen somit nach (21) und (22)

Wezéfff@@cﬂ’ (23)
14

die elektrische,

1 " B
Wm:Ef/ng-SBdV (24)
Vv

die magnetische Energie des Feldes.
Ww=[[[C.-JaV (25)
v
gibt die Warmeleistung des Feldes an,
Ws=¢§ Cx p-du (26)

bezeichnet die Verluste durch Warmestrahlung.

P Probleme

1.4.1. Lenzsche Regel

Eine kreiszylindrische Feldspule enthilt #» = 15000 Windungen (Querschnitt 4 = 4 cm?). Sie
wird, von rechts nach links gesehen, vom elektrischen Strom im mathematisch positiven Dreh-
sinn durchflossen (vgl. Bild 1.16). Die Stromstérke steigert sich in der Zeit {, = 10 s von Null

5 Schilling, Felder
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auf I = 10 A. Links gegeniiber der Feldspule, im Abstand » = 1 m auf der Zylinderachse, be-
findet sich eine Induktionsspule aus #n; = 1200 Windungen mit der Lange I; = 10 cm, dem Quer-
schnitt 4; = 1,5 cm? und dem ohmschen Widerstand R = 1£). Berechnen Sie den in der In-

F

N

—

Bild 1.16. Lexzsche Regel — F Feldspule, Sp Induktionsspule

duktionsspule induzierten Strom und sein Magnetfeld. Der induktive Widerstand der Induk-
tionsspule kann vernachlassigt werden.

Losung

Die Feldspule stellt, nachdem der Strom die volle Stérke I erreicht hat, einen Magneten mit dem
magnetischen Moment

m = puenlA (1)
dar. Nach (1.2.7./6) bzw. (1.2.7./7) wird im Abstand r links vom Feldmagneten ein Feld der Stirke

_oomr nl¥U
2rpgrt  2mrd

9 (2)

aufgebaut. Es induziert nach (1.4./2) in der Induktionsspule die elektrische Umlaufspannung

Ulnd:n1¢@d§=—n1'§;‘/./%clﬂ (3
A1

; orientieren wir in Richtung der z-Achse, also wie 9.
In der Zeit At steigt nach (2) die magnetische FluBidichte um

e A ﬂ

~

AB = g 49 = 4
B = 49 P (4)
Wir setzen diese Grofle in (3) ein und erhalten fiir die induzierte Spannung
npnul W - A npnu AA
Upng = — I go . 1__ "M Mo~3 I (5)
Tty 213t

Sie ist, wie das Vorzeichen zeigt, im mathematisch negativen Drehsinn orientiert. In den Win-
dungen der Induktionsspule wird dadurch ein Strom der Stérke

nynuaf A Ay

6
2R, ®

Iing = —
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hervorgerufen. Er flieBt im Uhrzeigersinn und erzeugt dabei das Magnetfeld

—nrnpul AUy It niling

= e = 7
ki)md 271:Rr3t0l ’ ind 1 ( )

Es ist dem verursachenden Magnetfeld (4) entgegengerichtet (vgl. Bild 1.16). Desgleichen ist
das magnetische Moment des induzierten Feldes gegen das induzierende Moment orientiert
Mit den gegebenen Zahlenwerten folgt fiir den induzierten Strom

~1200-15000 - 4m -1077.10-4-10"*-1,5. 104 A
2r-1,0-1.10

Tina = = —0,216 yA,

fur das induzierte Magnetfeld
Hipg = —1200-2,16 - 10-6 Am~1 = —2,59 - 10-3 Am~1.

Die Minuszeichen in den numerischen Ergebnissen bringen zum Ausdruck, daB die induzierten
Effekte der induzierenden Ursache entgegenwirken.

1.4.2. Relaxationszeit

An der Oberfliche von Gummi wird die Raumladungsdichte ¢ = 10712 As m—2 erzeugt. Unter-
suchen Sie die Abnahme der Ladung an der Oberfliche mit der Zeit t. Welcher Wert ist nach einer
Stunde zu erwarten? Bestimmen Sie die Relaxationszeit des Materials. Fiir die Leitfdhigkeit des
Gummis ist der Wert p = 10-14 Q-1 m=1, fiir die Dielektrizititszahl e, = 2,5 einzusetzen.

Losung

Wir benutzen die MAXwELLschen Gleichungen (1.4./1) und (1.4./3), in denen wir ® = ¢€, § = y€
einsetzen:

rot § = € + yE (1), div ¢€ = o. (2)
Auf (1) wenden wir die Operation div an. Damit folgt

div e€ + div y€ = 0. 3)
In Verbindung mit (2) ergibt sich daraus die Differentialgleichung der Ladungsdichte

e +ye=0. (4)
Sie hat die Losung

bl

-2y

0=g¢ ° . (5)
Der Ausdruck
&
T=—
v

hat die MaBeinheit s. Er wird als Relaxationszeit des Materials definiert. Im Verlauf dieser Zeit
sinkt die Ladung auf 1/e ihres Anfangswertes.

5%
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Fiir Gummi erhdlt man als Relaxationszeit

2.5.885.10-12
r=f 28880 10 55109 — 37 min.
y 10—
Nach einer Stunde ist daher die Raumladungsdichte auf

3,6 - 10°
2,2 - 10®

o (1h) =102 exp (— ) Asm=2=1,9.10"2 Cm3,

d. h. auf 199 des Anfangswertes abgesunken.

1.4.3. Oberflichenstromdichte — Unstetigkeit der magnetischen Feldstirke
bei Wechselstromen in idealen Leitern

Ein kreiszylindrischer idealer Leiter mit dem Radius R = 5 mm wird von Wechselstrom der
effektiven Stromstérke I.;; = 2 A durchflossen. Die Zahl der Perioden betragt 50 s—. Unter-
suchen Sie das Verhalten der magnetischen Feldstirke an der Trennfliche zwischen beiden
Medien. Wie groB ist die Oberflachenstromdichte?

Losung

Infolge des Skineffektes (vgl. 5.3.1.) konzentriert sich bei einem von Wechselstrom durchflossenen
idealen Leiter der gesamte Strom auf der Oberflache. Im Innern des idealen Leiters ist daher die
Stromdichte gleich Null, auf der Oberfliche dagegen unendlich groB. Es gilt somit

=0 fir r<R. (1)

Im AuBlenraum an der Grenze zum Leiter, d. h. fiir » = R, besteht nach dem AmpEREschen Ver-
kettungsgesetz (1.1./25) die Beziehung

Po-ds=1 bzw. D= —. 2)

Die Tangentialkomponente des magnetischen Feldes verhélt sich also im Gegensatz zu (1.4./12)
unstetig. Wir leiten dieses Verhalten aus der MaxwEeLLschen Gleichung (1.4./3a)

[[@+Dax=Po-as (3)
44 c

ab. Dazu betrachten wir im Grenzgebiet zwischen beiden Medien ein Rechteck As A% gemilB
Bild 1.14. Bei unendlicher Stromdichte & bleibt das Flachenintegral auch fur 4% — 0 endlich.
Infolgedessen verhalten sich die Tangentialkomponenten der magnetischen Feldstéirke un-
stetig.

Da sich der Strom auf die Oberflache konzentriert, ist es zweckmaBig, anstelle der Stromdichte
(MaBeinheit A m—2) eine neue GroBe, die Oberflichenstromdichte §, zu definieren. Sie hat die
Einheit A m~!. Unter Verwendung dieser Gro8e erhalt man auf der linken Seite (3)

lim’ [[(3+D)-dA= & - (45 xn). (4)

A44—0 44
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Die rechte Seite (3) wird gemd8 (1.4./11) bzw. (1.4./12) behandelt. Hieraus folgt (vgl. 1.3./43)
R - 48xn) = (P — D) 48 bzw. (X ®)-48 = (P — H1) 48, (5)

Die Tangentialkomponente des magnetischen Feldes $ verhilt sich an der Ubergangsstelle zu
einem idealleitenden, von Wechselstrom durchflossenen Medium unstetig. Nur wenn der Tan-
gentenvektor 43 die Richtung des Oberflachenstromes { besitzt, ergibt sich aus (5)

(D1 — Hy1) - 439 = 0. (6)

Im idealen Leiter gilt 11 = 0. Das Magnetfeld 9y ist daher an der Oberfldche normal zum Ober-
flichenstrom & gerichtet.
Im vorliegenden Fall betrigt die effektive Oberflachenstromdichte

2

—_ = —————— Am™! = 63,7 Am~!.
2nR 2m - 5. 103

[Reit] =

Der Momentanwert der Oberflichenstromdichte ist durch

I

Koy =12
eff V 9mR

ei®t — 90,0 eil0ont Am-1

gegeben. Das magnetische Feld § hat fiir r = R nur eine Komponente $,,. Sie ist gleich dem
Betrag der Oberflichenstromdichte | &).

1.4.4. Wirmeverluste und Poyntingscher Vektor

Ein zylindrischer Kupferdraht (ycy = 5,9 - 107QQ1 m~1) mit dem Radius R = 5 mm wird von
Gleichstrom der Stirke I = 15 A durchflossen. Berechnen Sie die Wirmeleistung, bezogen auf
die Liange I = 1 m, und untersuchen Sie die Strahlung.

Losung

Die Stromdichte betrigt

I
= —- (1)

Fir die elektrische Feldstirke folgt

1% I
[y =
, 1% nR%y

2)

Sie hat die Richtung des elektrischen Stromes, die als z-Achse gewihlt wird.
Das magnetische Feld hat nur eine Komponente in Richtung der polaren Koordinate ¢. Ihre
GroBe betragt an der Peripherie (r = R)

I

@(p = 9nR’ (3)

B



70 1. Grundgesetze des elektromagnetischen Feldes

Die Warmeleistung wird nach (1) und (2) gleich

. I2 12

Als Poy~NTiNGgschen Vektor erhdlt man (vgl. 1.2./7)

€ =CxH =Ce, XxDpey = —C,Hpe,, )
d. h., dieser hat nur eine in Richtung —e, weisende Komponente. Es gilt also

I2
= T

Hieraus ergibt sich durch Integration iber die Mantelfliche

I2 12]

4

Wegen D =0, B = 0 sind die elektrische und die magnetische Energie konstant. Auf Grund
des Poy~TINGschen Satzes (1.4./20) kann daher die in Form von Wérme dem elektromagnetischen
Feld entzogene Energie nur durch eine einlaufende Strahlung kompensiert werden. Diese Energie-
strahlung erfolgt gem#B (6) radial in den zylinderférmigen Kupferstab hinein.

Der metallische Leiter ist hiernach lediglich in bezug auf den elektrischen Strom als Leiter an-
zusehen. Fiir die Energie ist der Kupferstab dagegen ein nichtleitendes Medium. Diese wird iiber
das den Zylinder umgebende Vakuum in Form von Strahlung zugefiithrt. Das Vakuum stellt
beziiglich der Energie einen Leiter, beziiglich des elektrischen Stromes dagegen einen Nichtleiter
dar. Fur die Wirmeleistung folgt aus (4) fur I = 1 m

. 52
W, = 15 W =49 mW = 1,2 . 10-5 keal 5%,
75,9107 52 109

1.4.5. Energie, Ladungsdichte und Druck im elektrischen Feld

Ein Plattenkondensator mit der Plattenfliche 4 = 400 cm? und dem Plattenabstand I = 2 mm
stehe unter der Spannung U = 220 V. Berechnen Sie die gespeicherte elektrische Energie. Wie
groB ist die Kraft, mit der sich die beiden Platten anziehen? Welcher Druck wirkt im homogenen
elektrischen Feld des Plattenkondensators? Wie groB ist die Ladung? (¢ = ¢,.)

Losung

Nach (1.4./21) und (1.4./22) ist die Energie des elektrischen Feldes im Volumen V = 4 . [ zwischen
den beiden Platten durch ‘

W, =—@-®V=%%@2Az )

gegeben. Verschiebt man eine der Platten gegen die elektrischen Krifte um die Strecke d/ (vgl.
Bild 1.17), so vergréBert sich damit die gespeicherte Energie um

dWe=—%e,,@29r-dt=—g.dt. @)
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Fur die Kraft, mit der sich die beiden entgegengesetzt geladenen Platten anziehen, erhilt man
daraus

1
F = — &CA. (3)
2
Sie ist vom Plattenabstand unabhingig.

27/7/7’7’7:7/7 + — - -

+— - -
+ — s - -
+ —> - -

feste +
Flatre Q ~——

Bild 1.17. Die Anziehungskraft zwischen zwei
L / + - entgegengesetzt geladenen Platten

- 4

Der Druck p gibt das Verhéltnis der senkrecht auf die Fliche wirkenden Kraft zur FlichengréBe
an. Aus (3) folgt

1
p= £ 82 |. 4)

Die elektrische Feldstirke im homogenen Feld des Plattenkondensators ist gleich

U 220

€] = — = Vm=1 = 11000 Vm~t.
l 2.1072

Als Energie ergibt sich damit aus (1)

We = % -8,85-10712. (1,1 - 10%)2.400-10%.2.10%J = 4,28 . 108 J,
also nur ein sehr kleiner Wert. Die Anziehungskraft wird nach (3)

F= %— -8,85-10712. (1,1 - 10%)2.400 - 10—* N = 2,14 - 10> N.

Fir den Druck erhdlt man aus (4)

p =1,07-103 Nm—2 = 1,07 - 105 mbar.
Die Ladungsdichte wird gleich

0=¢e6p-n=¢|C| =885-1022.1,1-10* As m~2 = 9,73 . 108 C m~2.
Eine Platte trégt also die Ladung 3,89 - 10-° As.
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1.4.6. Feldenergie eines permanenten Magneten

Ein permanenter Ringmagnet aus GuBstahl habe den mittleren Durchmesser 2R = 30 cm
(s. Bild 1.18). Die Breite des Luftspaltes betrage b6 = 1 cm, die Schnittfliche 4 = 25 cm?. Be-
rechnen Sie die magnetische Energie und den Druck infolge der magnetischen Krafte. Die Sétti-

Bild 1.18. Ringmagnet mit Luftspalt

gungsfeldstirke betrage B = 1,25 Vs m~2. Beweisen Sie, dal die magnetische Energie des Luft-
spaltes mit der Energie des Ringmagneten tibereinstimmt. Wie grof ist die magnetische Feld-
stirke im Luftspalt und im Innern des Magneten?

Losung
Die magnetische Energie im Luftspalt ist (vgl. 1.4./21)

B2A4b
240

1
Wp==9 BV =

Fir den Druck erhdlt man analog der Gleichung (1.4.5./4) fur das elektrische Feld

B2
B 21y '

1
- —9.B 2
p=59 2)
Zur Rickfithrung der magnetischen Energie des Luftspaltes auf die FeldgroBen im Innern des
Magneten gehen wir von der magnetischen Spannung aus. Umfidhrt man einmal die gestrichelte
Kurve € im Bild 1.18, so ergibt sich wegen des Fehlens elektrischer Strome aus der MAXWELL-
schen Gleichung (1.4./1a) fiir die magnetische Umlaufspannung

¢@-dr:0. 3)

Wir setzen im Ringmagneten eine homogene Magnetisierung voraus. Das Feld im Innern des
Magneten bezeichnen wir mit 9;, das im Luftspalt mit §,. Damit folgt aus (3)

(@xR — b) ; + b9, = 0. )

Ist die Feldstérke im Auflenraum bekannt, so erhélt man aus (2) fur die Feldstdrke im Magneten
b

9 = Da- (5)

T 2%R —b
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Mit dem Aufbau des im Umlaufsinn gerichteten Feldes im Luftspalt bildet sich also im Magneten
ein dem Umlaufsinn ent gegengerichtetes Feld aus.
Aus der MaxweLLschen Gleichung (1.4./4) ergibt sich

B; = B, = B. (6)

Die magnetische Energie des Luftspaltes wird daher gleich

W, = % Ab — @'—52 (2rR —b) A. (7)

Sie stimmt bis auf das Vorzeichen mit der magnetischen Energie des Ringmagneten iiberein.
Dieses Ergebnis ist eine Folge der verschwindenden Umlaufspannung nach (3).
Zahlen eingesetzt, folgt aus (1)

1,25%. 25 - 10-4 . 102

Wa = J=1557,
m 2 dm . 107 0
aus (2)
2
p= —1’25— Nm=—2=6,22-10° Nm—2 = 6,34 at.
2. 4m - 1077

Magnetische Feldenergie und Druck liegen also um GréBenordnungen iiber den entsprechenden
Werten des elektrischen Feldes.
Im Luftspalt ist die Feldstérke

1,25

Hy= —=2 _ Am-1=995105Am,
4 - 1077
im Innenraum
2 .005. 105
Ho— 20299540 107100 A met.

T 30r. 102 — 10-2

A Aufgaben

Al4.1. Ein gerader Magnet mit dem magnetischen Moment m,, = 10~* V m s wird einer
l Spule aus 1000 Windungen mit dem kreisférmigen Querschnitt 4 = 2 cm? auf
50 cm gendhert. Der ohmsche Widerstand betrigt 0,2); der induktive Wider-
stand ist dagegen zu vernachldssigen. Berechnen Sie den induzierten Stromsto
fIde.

Al42. Berechnen Sie zur vorhergehenden Aufgabe das induzierte magnetische Moment im
Verhiltnis zum induzierenden Moment, wenn das induzierende Feld gleichmiBig
in der Zeit t; = 0,1 s aufgebaut wird.

Al1.4.3. Berechnen Sie die Relaxationszeit von Polystyrol (y = 10-18Q-1m-1, ¢ = 2.6).

Al44. Fur Kupfer wird, wie allgemein fiir Metalle, mit einer Dielektrizitdtszahl e, > 1000
gerechnet. Die Leitfahigkeit des Kupfers betrigt v = 5,9 - 107Q-1m-1. Welche
. Grofenordnung ergibt sich daraus fiir die Relaxationszeit?
A14.5. Beweisen Sie aus den MaxweLLschen Gleichungen, da im Nichtleiter die Ladungs-
dichte konstant ist.
A14.6.% Leiten Sie aus den Ubergangshedingungen das Brechungsgesetz der elektrischen
Feldlinien in Isolatoren (y = 0) ab.
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A14.7%
A14.38.

A1.4.9.

A1.4.10.

Al.4.11.

Al4.12.

A1.4.13.

Al4.14.%

Wie lautet das Brechungsgesetz der magnetischen Feldlinien?

Wie groB ist stiindlich die Warmeentwicklung eines Aluminiumdrahtes der Linge
1=100km, des Querschnittes 4 =2mm? und der Leitfihigkeit y =4,2-10°Q-1m"1,
wenn an diesem eine Spannung von 10000 V anliegt?

Fir eine elektromagnetische Welle werden in Luft die elektrische Feldstirke
10-3Vm~! und orthogonal dazu gerichtet die magnetische Feldstéirke 2,65-10-8 Am=1
gemessen. Berechnen Sie die elektrische und die magnetische Energiedichte sowie
den Povynringschen Vektor.

In ein elektrisches Feld wird eine Platte von 50 cm? Flache gebracht und ihre Ober-
flichenladung gemessen. Variiert man die Stellung der Platte im Raum, so wird als
Maximum eine Ladung von 5,53 - 10-1% As (auf einer Seite) gemessen. Berechnen
Sie daraus die elektrische Feldstarke.

Eine Kugel vom Durchmesser 2R = 10 cm trage die elektrische Ladung @ = 10-*As.
Welcher Druck muB} auf die Oberfliche der Kugel wirken, um ihre Expansion zu
verhindern?

Berechnen Sie die magnetische Energie einer Feldspule der Linge ! = 40 cm mit
dem Querschnitt 4 = 2 cm?, deren » = 15000 Windungen vom Strom I = 3 A
durchflossen werden. Wie gro8 ist der Druck?

Die groften in Eisenkernen erzielbaren magnetischen Flufdichten liegen bei
2,2 Vs m~2. Wie groB ist die hierdurch gespeicherte magnetische Energie, bezogen
auf das Volumen V' = 1 m??

Eine Kugel vom Radius B = 10 cm trigt die Ladung @ = 10~* As. Wie groB ist

“die potentielle Energie Wy, d. h., welche Energie ist aufzuwenden, um die Kugel

aufzuladen?



2. Statische elektrische und magnetische Felder

2.1. Elektrostatik

E Einfiihrung

Bei statischen Feldern erfolgen keine zeitlichen Feld- und Dichtednderungen. Auch
Stromungen von elektrischer Ladung oder Energie finden nicht statt. Es gilt allgemein

3

=0, dh =0, D=0, $=0, §=0, D=0.

Ferner mul} in Leitern
E=0

erfiillt sein.
Fiir KNichtleiter erhélt man aus den Maxwzruschen Gleichungen (1.4./1) bis (1.4./4)

rot § =0, rot € =0,
} (1)

div 6 = 0; div® = p.
In diesen Gleichungen kénnen die magnetischen Gréfien $ und B unabhingig von

den elektrischen Groflen € und ® behandelt werden. Fiir € und ®© bestehen somit
die beiden Grundgleichungen des elektrostatischen Feldes

@)
®3)

Zwischen ihnen ist die Verkniipfung durch die Dielektrizitatskonstante ¢ zu bertick-
sichtigen:

D = ¢E. 4)
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Damit erhédlt man anstelle von (3) bei homogenen Medien
div 6 = 2. (3a)
e

Nach (2) kann € im elektrostatischen Feld stets als Gradient eines skalaren Po-
tentials

C= —grad® (5)

dargestellt werden. (5) in (3) bzw. (3a) eingesetzt, ergibt die Poissonsche Gleichung

AP =—2]. ()

Die Bedeutung des Laprace-Operators /\ in verschiedenen Koordinatensystemen
wurde in 1.3. angegeben.

Kennt man die Verteilung der Ladungen im Raum, so kann entsprechend (1.1./8)
und (1.1./9) das Feld aus diesen berechnet werden:

_ 1 0(@) -

Darin ist P der Punkt, in dem das Feld bestimmt wird, @ ein Punkt des Integrations-
bereiches mit der Ladungsdichte p.

Ist die Ladung tiber eine Oberfliche verteilt und bezeichnet ¢ die Flidchenladungs-
dichte, so erhilt man anstelle von (7) das Potential aus

41f]“@dA. 8)
E Tpo

Im ladungsfreien Raum geniigt @ der Larraceschen bzw. Potentialgleichung

‘A@zo. )

Bei der Berechnung spezieller Felder hat man die Randbedingungen zu berticksich-
tigen, die aus den Ubergangsbedingungen (1.4./11) und (1.4./12) sowie (1.4./15) und
(1.4./16) hervorgehen. Im folgenden werden die aneinandergrenzenden Medien durch
die Indizes I und IT gekennzeichnet.

Fiir elektrostatische Felder miissen nach (1.4./11) die Tangentialkomponenten der
elektrischen Feldstérke € und bei nichtleitenden ladungsfreien Medien nach (1.4./15)
die Normalkomponenten der Verschiebungsdichte ® iibereinstimmen. Diese beiden

®(P) =
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Forderungen werden erfiillt, wenn in jedem Punkt der Grenzfliche die Bedingungs-
gleichungen

(®I)Rand = (®II)Rand’ (10)
a5 =% (11)
On [Rand on Rand

befriedigt werden. n bezeichnet dabei die Variable in Richtung der Flichennormalen.
Es miissen also sowohl die Potentiale selbst als auch ihre Ableitungen in Richtung
der Flichennormalen {ibereinstimmen. Die Gleichung (10) gewéhrleistet die Uber-
einstimmung der Ableitungen in Richtung einer beliebigen Flachentangente und da-
mit die Gleichheit der Tangentialkomponenten des elektrischen Feldes. Aus (11) folgt
die Gleichheit der Normalkomponenten von ®.

Eine anschauliche Methode zur Losung der Potentlalglelchung (9) mit den vor-
gegebenen Randbedingungen ist das Spiegelungsverfahren. Man fithrt dabei virtuelle
Ladungen derart ein, dal diese zusammen mit den realen Ladungen ein Feld auf-
bauen, das die vorgegebenen Randbedingungen befriedigt.

Beispiel 2

Eine Punktladung der Stirke @ = 102 As befindet sich in 2 m Héhe iiber einer idealleitenden
Ebene. Welches elektrische Feld wird dadurch aufgebaut?

Zur Losung geht man von der LaprLaceschen Gleichung (9) aus, die fur den gesamten ladungs-
freien Raum gilt. Der Raum oberhalb der Metallebene wird durch z > 0 gekennzeichnet (vgl.
Bild 2.1). Auf der Ebene z = 0 und im Raum z < 0 des metallischen Koérpers mull das Potential

z

77220 Bild 2.1. Spiegelung an einer Ebene

D = P(x, y, z) konstant sein. Man kann daher als Randbedingung @(z, y, 0) = 0 ansetzen.
Ebenso gilt @ = 0 fiir z < 0. Nun soll die Lésung fir den Raum z > 0 ermittelt werden.

Die Potentialgleichung (9) lautet nach (1.3./40) in Kugelkoordinaten, wenn man eine Abhingig-
keit nur von der radialen Koordinate » voraussetzt,

@p 2 00

il = = =0. 12
or? r or (12)
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Diese Gleichung hat als Losung das Potential der Punktladung

D=0, = i , (13)
: dmer

wie man sich durch Einsetzen iiberzeugt. Die Losung (13) befriedigt jedoch nicht die Rand-
bedingungen an der Grenzfliche = 0. Um auch die Randbedingungen zu erfiillen, nimmt man

im Medium 2 < 0 eine Ladung @’ = —@ spiegelbildlich zur Ladung @ an. Die von ihr im Raum
z > 0 ausgeitbte Feldwirkung wird ebenfalls durch ein Potential der Form (13) dargestellt:
Q/
Dy = . 14
@ 4mer’ (14

" gibt die Entfernung des Aufpunktes P vom Ort der virtuellen Ladung @ an. Bedeutet & die
Hohe der Ladung @ iiber der Ebene, so folgt damit aus (13) und (14) fiir das Potential der Punkt-
ladung iiber der leitenden Ebene

Q@ (1 1 Q 1 1
- +¢,,=_<___/)=__ — . (15)
e roor @“<W2+yﬂ+@—hﬁ %ﬂ+y2+(z+hﬁ)

Daraus lassen sich mittels (5), (4) und (3a) simtliche GroBen des Feldes sowie simtliche Ladungs-
verteilungen berechnen.

In gleicher Weise wie bei der Punktladung kann man nach dem Spiegelungsverfahren
in geeigneten Spezialfdllen oder durch zweckentsprechende Vernachlassigungen und
Idealisierungen die Potentiale fiir lineare, flichenhafte oder rdumliche Ladungs-
verteilungen gegeniiber Ebenen, Kanten und Ecken, Kugel- und Zylinderflichen
bestimmen.

Zur Definition der Kapazitit betrachtet man zwei Leiter L, und L_, auf denen sich
die Ladungen +@ und —@ befinden. Infolge der unterschiedlichen Ladungen be-
steht zwischen den Leitern einer Potentialdifferenz U = @, — &_. Als Kapazitét
des aus den beiden Leitern L, und L_ bestehenden Kondensators definiert man den
Ausdruck

_Q 9
O=F =" (16)

I .
[E-de

Ly
C wird in Farad (F) gemessen:

16

P =17

=1AsV1,

Die von einem Kondensator gespeicherte elektrische Energie kann man allgemein
durch Anwendung des GREENschen Satzes der Potentialtheorie berechnen.
Der GreENsche Satz folgt aus dem Gaussschen Satz (1.3./17), wenn man in diesem

S =Ygrad @ (i7)
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setzt. Es ergibt sich zunéchst

[[] div (¥ grad @) dV = {f ¥ grad @ - 4. (18)
Wird

div (¥ grad @) = ¥ div grad @ + grad @ - grad ¥ (19)

berticksichtigt, so folgt damit der Greensche Satz in der Form
[[[(PAD + grad @ - grad W) dV = {f ¥ grad @ - dU. (20)

Hier kann man ¥ = @ setzen. Wird die Betrachtung auf Potentialfunktionen be-
schrankt, fiir die A\®@ = 0 gilt, so ergibt sich

fffgradz@dV = # @ grad @ - dU. (21)

Die Integration links erfolgt iiber den gesamten Raum mit Ausnahme der beiden
Leiter. Das Oberflichenintegral rechts ist iiber die unendlich ferne Kugel und iiber
die Leiterflichen zu erstrecken.

Bei der Integration iiber die unendlich ferne Oberfliche einer Kugel ergibt sich der
Wert Null. Somit verbleibt rechts allein das Integral iiber die Leiterflichen. Im
linken Integral kann € = —grad @ gesetzt werden. Ferner konnen beide Seiten der
Gleichung mit ¢ multipliziert werden. Das liefert als elektrische Energie W, des iiber
den gesamten Raum erstreckten Feldes

2. = [[[E-D — {f oG- aU. (22)

Langs der Leiterfliche ist @ entweder gleich @, oder gleich @_. Ferner gilt fiir die
in den Leiter hineinweisenden Flichenelemente (vgl. Bild 1.15 sowie 1.3.)

A% = —n dd. (23)

Man erhélt daher

2, = @, ff eC-ndd + & (f G- ndd. (24)
L.

L,

Die Integrale iiber die Leiteroberflichen geben die Ladungen auf diesen an. Daher
folgt allgemein fiir jeden beliebigen Kondensator

2W, = (@, — .)Q (25)
bzw. wegen (16)

W, = =% = é cuz|. (26)
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P Probleme

2.1.1. Plattenkondensator

Ein Plattenkondensator hat die Plattenfliche 4 = 400 cm?. Der Abstand beider Platten betrégt
d =1 mm. Das Zwischenmedium ist Luft, die unter dem Druck 0,5 Torr steht. Unter diesen
Verhiltnissen betragt die Durchbruchspannung 35 V (vgl. Tabelle 2).

Berechnen Sie, wie gro3 die Ladung ist, bei der die Entladung durch Funkeniiberschlag erfolgt.
Wie groB ist die Energie dieser Entladung?

Tabelle 2. Durchbruchspannung in Luft, bezogen auf 1 mm

P U P U

in Torr in Volt in Torr in Volt
0,1 180 20 200
0,2 60 50 400
0,5 35 100 600
1,0 40 300 2000
2,0 50 760 3000

10 130

Losung

Die Potentialgleichung lautet in Cartesischen Koordinaten

2 2 2
o B B0 B0
ox? ay? oz?

®

Wir betrachten das Innere des Kondensators und sehen von Randstérungen ab. Das ist nur ge-
stattet, wenn die Abmessungen der Platten gro8 sind gegen den Plattenabstand d.

Eine Abhingigkeit des Potentials kann nur in Richtung z des Plattenabstandes bestehen. In den
parallel zur Plattenfliche weisenden Richtungen x und y ist jeder Punkt gleichberechtigt, da
Randstérungen vernachléssigt werden konnen. (1) vereinfacht sich daher zu

2
d@zo

dz?

&)

mit der Losung

¢ = —az+ 0. (3)
Fiir das elektrische Feld erhdlt man daraus gemaB € = —grad @
€,=0, G,=0, G, =a. (4)

Es hat im Kondensator iiberall die gleiche Starke und die gleiche Richtung. (Ware in (3) das posi-
tive Vorzeichen gewahlt worden, so stinde in (4) —a statt a.)

Im Innern der Metallplatten, die als ideale Leiter vorausgesetzt werden, kann ein elektrisches
Feld nicht existieren. Aus der konstanten elektrischen Erregung ® = ¢€ folgt daher nach (1.4./15)
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fiur die Oberfléchenladungsdichte
c=9-n. (5)

Die entgegengesetzten Ladungen an der oberen und an der unteren Platte ergeben sich, wenn
man beriicksichtigt, daB die Flichennormalen n in den Kondensatorraum hinein weisen, also

7
12 T Tw Ty T )
+ 4+ 4 +" + 4+  Bild 2.2. Plattenkondensator
7.

oben und unten in Bild 2.2 einander entgegengerichtet sind. An der unteren Platte erhilt man
aus (5) und (4)

D, =¢ea =

. (6)

o

Die Ladung auf der unteren Platte ist also gleich
Q = cad. (7)

Fiir die Spannung U folgt aus (4)
d
U= G, =ad. (8)

Aus (7) und (8) ergibt sich als Kapazitit des Plattenkondensators

Q eA
C==="
U d

Die gespeicherte elektrische Energie wird nach (1.4./21), (4), (6) und (9)

1 1 1
We=—C .-D4A4d = — Q2 - = — CU=2. 10
Ve=5€-2 5 ¢ 3 (10)

L
c
Im vorliegenden Fall betrigt die Kapazitit

88510712400 - 10~

c
10-3

F =3,54.10"1F = 354 pF.

Daraus ergibt sich bei der Spannung U = 35 V die Ladung’
Q=CU=23,54-10"1 .35 As = 1,24 - 108 C.

Fur die Energie folgt
We= % -3,64-10710. 352 = 2,17 - 107 J.

6 Schilling, Felder
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2.1.2. Kapazitit des Zylinderkondensators

Ein metallischer Kreiszylinder mit dem Grundflichenradius R, = 30 cm enthdlt in seinem
Innern koaxial einen zweiten Zylinder mit dem Radius R; = 25 cm (vgl. Bild 2.3). Die Linge

Bild 2.3. Zylinderkondensator (Koaxialleitung)

beider Zylinder ist gleich I = 2 m. Der Zwischenraum ist mit Kautschuk ¢, = 2,5 gefiillt. Wie
groB ist die Kapazitit des Kondensators? Randstérungen sind zu vernachléssigen.
Losung

Wir fithren Zylinderkoordinaten ein. Es kann lediglich eine Abhédngigkeit von der Variablen »
bestehen. Nach (1.3./39) lautet daher die Potentialgleichung im ladungsfreien Raum

Li(a)_, "
rodr\ dr
Daraus folgt
do
— = 2
T 2)

wobei a eine Konstante bezeichnet. Hieraus erhilt man weiter
D =alnr +b. (3)

Nach (1.2./9) ergibt sich wegen € = —grad @

Die Flichenladung betrigt nach (4) auf der Innenseite des Aulenzylinders
Q =€, - 2nR, - I = 2neal. (5)

Der gleiche Wert mit entgegengesetztem Vorzeichen folgt fur die AuBlenseite des Innenzylinders.
Die Spannung zwischen Innen- und AuBlenzylinder ist gleich

i

Ra Ra
U:f@,dr:a CE:alnR—a. (6)
7 R
Ry Ry
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Hieraus folgt fiir die Kapazitét

o= _
U

Einsetzen der Zahlenwerte ergibt

_ 2:-2-8,85-10712.2

c F=1,23.10°F.
30
In —
25
2.1.3. Potentialberechnung durch Spiegelung an einer Ebene

Ein durch eine Kugel vom Radius R =: 10 cm idealisierter Korper befindet sich in der Hohe
h = 2,60 m uber der Wasseroberflache (e, = 88). Der Zwischenraum ist Luft. Wie gro8 ist die
Spannung gegen den direkt unter dem Schwerpunkt des Kérpers befindlichen Punkt der Wasser-
oberflédche, wenn sich auf dem Kdérper die elektrische Ladung @ = 108 As befindet?

Losung

Wir bezeichnen das Potential in Luft (z > 0) mit @1, das Potential in Wasser (z < 0) mit @y.
Nach (1.4./11) miissen an der Grenzfliche die Tangentialkomponenten des elektrischen Feldes
uibereinstimmen. Das erfordert fiir z = 0

&; = Dyg. (1)

Bei einem urspriinglich ungeladenen, nichtleitenden Medium mussen auBerdem die Normal-
komponenten der dielektrischen Verschiebung tibereinstimmen. Daraus folgt fiir z = 0

P oDy 0P oDy
= = =1 bzw. — = . 2
ot on n on “ e 0z I 0z @

Wir idealisieren den K¢rper vom Radius R durch seinen Schwerpunkt. In diesem kénnen wir uns
die gesamte Ladung @ vereinigt denken (vgl. 1.3.3./4). Als Losung des zugrunde liegenden Po-
tentialproblems nehmen wir im Medium I eine Potentialfunktion

1 (@ &
o= (£+9). ®)
TEp \ 7 v
im Medium IT
Q"
Py = —— 4
i dmery @

an. r bezeichnet die Lénge der Strecke QP, » die Lange Q"P. @’ und Q" befinden sich im Medium IT
spiegelbildlich zu ¢ (vgl. Bild 2.4).
An der (irenzebene z = 0 ist

Tpg =t Tpg’ = T-

6*
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Ferner gilt dort
I

h
2 72

T

L 21
r ’ oz 1

¥l

Damit ergibt sich aus (1) und (2) das Gleichungssystem

Q-+ _ @
= I, Q — O = Q//
e err ¢
mit der Losung
P ek ) v 2@
e+ e e+ e

Als Potential auf der Kugeloberfliche erhdlt man aus (3)

i 1 e — 1
O = — (= [_511_/ 0
47181 R 8[—’—511 r

(M

Die GroBe # ist fur jeden Punkt der Kugeloberfliche etwas unterschiedlich. (7) gilt ndherungs-
weise unter der Voraussetzung, daB der Kugelradius klein ist, d. h. R<< ¢’ gilt. In diesem Falle

Medium I
(Luft)

z=0

Medium I
(Wasser)

Q'bzw. Q" Spiegelung

Bild 2.4. Zur Potentialberechnung durch

kann man fiir alle Kugelpunkte »” = 2k setzen. Im Punkt P direkt unter dem Schwerpunkt des

geladenen Korpers betrigt nach (4) das Potential
Q" Q

Dy = = .
W 4TT€IIh 27(‘.'(61 + SII) h

Als Potentialdifferenz folgt somit aus (7) und (8)

Q [2 3€I+€H i|

40 = £
B (e +em)h

Mit den vorgegebenen Zahlen erhélt man

AP

_ 10-¢ 2 3488
T 8r-8,85-1072[0,1 (1 -+ 88)2,50

Ist das Medium IT ein Metall, so liegt der Grenzfall ey — oo vor.

]V=889V.

()

(C)

(@]
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2.1.4. Spiegelung an einer Kugel

Eine punktférmige Ladung @ = 10-7 As befindet sich in der Entfernung » = @ = 25 cm vom
Mittelpunkt einer leitenden Kugel mit dem Radius R = 15 cm. Bestimmen Sie die Potential-
funktion.

Losung

Wir definieren die einzelnen Punkte durch Kugelkoordinaten. Koordinatenanfangspunkt ist der
Kugelmittelpunkt. » = @, ¢ = 0 bezeichnet den Ort der Ladung Q. Die Winkelkoordinate ¢ ist
beliebig wihlbar. Die Wirkung der Kugel kann durch eine virtuelle Ladung @’ im Innern der Kugel

Bild 2.5. Spiegelung an einer Kugel

ersetzt werden. Sie liegt auf der Verbindungsgeraden von Kugelmittelpunkt und Ladung Q. Thre
r-Koordinate sei b; 9 ist ebenfalls Null.

Bezeichnet man die Radiusvektoren von den Ladungen @ und @’ nach dem Aufpunkt P mit ¢
und t” (vgl. Bild 2.5), so ergibt sich fiir das Potential

00, €

T

1)

"Auf der Kugeloberfliche muB @ konstant sein, Wir setzen diesen konstanten Wert gleich Null
und erhalten damit

L _ 9 (@)
[tk| ltg’|’

wobei der Index K auf die Kugeloberfliche hinweist. Die Beziehung (2), fiir einen beliebigen
Punkt P(R, ©, ) auf der Kugeloberfliche aufgestellt, ergibt nach dem Cosinussatz
Q &

= — . (3)
Vb2 + R* — 2bR cos & Va2 + B2 — 2aR cos &

Darin bezeichnet b die radiale Koordinate der virtuellen Ladung @’. Aus (3) erhilt man

/2

2
b+%~—2Rcosz9

D

_b 4
=- @

2

Q

—_—
a+li—2Rcosz9
a
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Wie aus den mittleren Summanden in Zahler und Nenner zu erkennen ist, besteht diese Be-
ziehung fir alle Winkel ¢, wenn

Rt=a-b bzw. b= — (5)
a

gilt. Die radiale Koordinate b der virtuellen Ladung @’ ist also reziprok proportional der radialen
Koordinate a (Gesetz der reziproken Radien). (5) eingesetzt in (4) liefert

Q2 =@ b bzw. Q' =—Q ]/b— (6)
a /| a
Im vorgegebenen Fall ist
. 10-2)2
b = (18 - 10797 m=9cm,
25102

Q =107 VQ% As = 6-107% As.

Damit folgt aus (1) fir das Potential des Punktes P, wenn man mit r, ¢, ¢ dessen Kugelkoordinaten

bezeichnet,
o 1 R?
=@ V72 — 2ar cos & + a? T a Va2 — 2arR? cos & + R* ’ ™
2.1.5. Dielektrische Kugel im homogenen Feld

In Luft bestehe ein homogenes elektrisches Feld der Stirke £ = 10 V m~!. Dieses wird durch
eine Kugel aus Harz vom Durchmesser 2R = 20 cm gestort. Berechnen Sie das Feld im Innern
der Kugel, wenn das Harz die Dielektrizitétszahl ¢, = 6 hat.

Lésung
Das homogene elektrische Feld bei Abwesenheit der Kugel ist durch sein Potential

®=—Ex (1)
bestimmt. Die Feldrichtung wird als z-Achse gewihlt.
Man kann sich das Feld (1) entstanden denken aus der Uberlagerung zweier Felder, die von
zwei Ladungen @ und @ = —@ im Unendlichen ausgehen. Wir betrachten dazu das Feld zweier

Ladungen 4@, deren Cartesische Koordinaten 2 = 4-2,, ¥y = 0, z = 0 lauten. Nach (1.1./8) hat
das durch diese Ladungen hervorgerufene Feld das Potential

oL L) o

T dme 'PQ 7 PG
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Bezeichnet man die Koordinaten des Punktes P mitz,,z,s0 erhdlt man aus (2) fiir dasPotential @
in diesem Punkt

Q 1 1
D, = — —
Y dme (V(x — a2+ + 22 Y@+ a)?+ 422
Q 1 Zo% Tk
=2 =1+ — .1 —  x..|].
4me onz+z2+y2+22 +x02+--'+ +x02+"‘ i
Im Grenzfall x, — oo folgt daraus
o= < .. ®)
2mex,y?
Riickt man also die beiden Ladungen @ und § = —@ in das positive und negative Unendliche
und laBt sie gleichzeitig derart wachsen, da8
@ _ _pg, )

2
2mex,

konstant bleibt, so entsteht damit das homogene Feld (1). Die Ladung € im positiv Unendlichen
muB negativ sein, da das elektrische Feld von den Orten positiver zu Orten negativer Ladung
weist.

In das Feld (1) bringen wir die dielektrische Kugel vom Radius R, deren Mittelpunkt wir als
Koordinatenanfangspunkt wihlen. Jede der beiden Ladungen @ und @ erzeugt in der Kugel
eine spiegelbildliche Ladung. Nach dem Gesetz der reziproken Radien (2.1.4./5) ist der Ort der
spiegelbildlichen Ladungen durch

,_ B -
% = Py (5)

bestimmt. Im Grenzfall @, — oo ergeben die Spiegelbilder einen Dipol, dessen Moment m die
Richtung der 2-Achse hat. Sein Potential @,, erhilt man aus (1.2.5./9).

Bei der dielektrischen Kugel bleibt die GréBe der gespiegelten Ladung unbestimmt. Daher ist
uns der Betrag m des Dipolmomentes zunéchst unbekannt.

Das Potential auBerhalb der Kugel setzt sich aus dem Potential (1) des homogenen Feldes und
dem Stérpotential @, des virtuellen Dipols zusammen:

m-t ma
D, = —Ex+ = —Eyzz + (6)

4me,rd 4me,rd

Diese Beziehung kann man allgemeiner auch

- grad 1 (6a)
r

m
@, = —Hyx — n

TE,

formulieren.
Schreibt man das Potential (6) in Kugelkoordinaten geméf (1.2./10), so erhilt man

D, = |—E,r
N ( o 4me,r?

) cos ¥ sin . (6b)
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Fir das Innere der Kugel gehen wir vom Ansatz eines homogenen Feldes
@, = —E;x = —E;rcos9sing (7)

aus. An der Grenze zwischen den beiden Medien, d. h. fiir » = R, miissen nach (2.1./10) und
(2.1./11) die Bedingungsgleichungen

(Pa)r=r = (Pi)r=r

] (8)
(), = () f
& |— —Si —_—
or |r=R or Jr=r

erfillt werden. Damit ergibt sich

und

m

B, =8 + ——, 9
=B ©)

£ m
E,=E =& — ——. 10
2 Ve, 2me, R3 (19

Hieraus erhalt man fir m und E;
M _ & fa py_ frel — 1o (11)

dne, B, & + 2¢, g1 -2

B——5_p__3 p. (12)

= N -
& + 2¢, Erel + 2

Das homogene elektrische Feld im Innern der Kugel ist somit fiir

&
rep = — >1
€a

schwicher als das ungestorte homogene Feld auBerhalb der Kugel. Im vorliegenden Fall erhilt
man

Bi= 2 B= 3. 10Vm =375V m,
612 5

Dagegen ergibt sich fiir das Feld der elektrischen Verschiebungsdichte

D, =B = 3BeatiBy = __%Q'LD&’ (13)
& + 28, €] + 2

mit den vorgegebenen Zahlenwerten

D _3-6

— = 2,25.
D, 6 +2

Die Erregungslinien im Innern der Kugel sind somit fiir ;) > 1 gegeniiber dem duBeren Feld
stdrker konzentriert (vgl. Bild 2.6).
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Im Grenzfall e5) — oo (Metall) folgt aus (13) D; = 3D,, dagegen E; = 0. Die elektrische Erregung
wird also auf das Dreifache gesteigert. Der entgegengesetzte Grenzfall ¢, — 0 (Hohlkugel in
metallischem Medium, gendhert auch Luftblase in Wasser) fithrt aut £, = 1,5E,, D; = 0.

N

Cl
Bild 2.6. Kugel im homogenen Feld.
Elektrische Feldlinien fiir ¢, < 1 bzw.
Erregungslinien fiir ¢, > 1
2.1.6. Potential paralleler Drihte

Zwei parallele Drihte, deren radiale Ausdehnung zu vernachldssigen sei, haben voneinander den
Abstand 2a = 50 cm (vgl. Bild 2.7). Der erste Draht trigt, bezogen auf die Lingeneinheit, die
Ladung ¢;" = 1077 As m~!. Auf dem zweiten Draht befindet sich eine Ladung der linearen Dichte
g, = —10-7 As m~1. Bestimmen Sie das Potential und die Aquipotentiallinien. Der Zwischen-

raum sei Luft.

Bild 2.7. Parallele Drihte mit entgegengesetzten Ladungen. Aquipotentialflichen
und Feldlinien

Losung
Wir betrachten zunéchst nur das Feld eines Drahtes. Im Abstand » von der Achse gilt nach (1.1./6)
ir die Radialkomponente der elektrischen Erregung

D, 2mr =¢'. (1)
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Die iibrigen Komponenten verschwinden. Mit ® ist auch die elektrische Feldstérke bestimmt.
Aus dieser erhédlt man gemaB

B
f(§~dr=
i

die Potentialdifferenz zwischen zwei Punkten 4 und B.

Werden samtliche Potentialwerte eines axialsymmetrischen Feldes auf das Potential fiir rg =1m
bezogen, so kann man das Potential eines Punktes 4 mit dem Abstand r, = r von der zylin-
drischen Achse auch schreiben

B

9 gp=-4 e @)
2meyr 2re, 74
A

o) = L 1L, (3)
2me, 7

Befinden sich zwei elektrisch geladene, unendlich lange, parallele Geraden im Raum und hat ein
Raumpunkt P von diesen die Abstdnde r, und r,, so erhilt man fiir sein Potential aus (3)

7 1 7 1
®=-—""—]n—+——In—. 4
2me, In ry + 2me, " Ty @

Im Falle ¢," = —¢q,’ = ¢’ folgt aus (4)

D = . In 12—. (5)
2me, ry

Wir legen den Koordinatenanfangspunkt in die Mitte zwischen den beiden Geraden. Die Gerade-
selbst bezeichnen die z-Richtung. Senkrecht dazu, in Richtung der Verbindungslinie beider Ge
raden, verliuft die x-Achse. Beide Drihte schneiden also die z-Achse, und zwar in den Punkten
z = +a, y =2z = 0. Kennzeichnen wir einen Punkt P durch seine Cartesischen Koordinaten
x, ¥, 2, so ergibt sich fiir seine Abstdnde von den beiden Geraden

= Vi@ —a)?® + ¢, ry = Vo + a)® + 2. (6)
. Damit folgt fur sein Potential nach (5)

| &+ o

» =1 .
drey, (x — a)® + y?

Mit den vorgegebenen Zahlen ergibt sich

—7 < 2 _|_ 92 2 1 52
_ 10 In (x 4 0,25)% 4 V = 21701g (x 4 0,25)* + y V.
4m-8,85- 1012 (z — 0,25)2 + 2 (z — 0,25)2 1 42

Im Koordinatenanfangspunkt ist das Potential gleich Null, auf den beiden Drahten unendlich
groB.
Die Aquipotentiallinien sind nach (5) durch

2 2 2
@ = const, d. h. Tt (x_w =C (7
7.12 (ZL‘ —_ a)Z + y2
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bestimmt. (7) kann in der Form
(@ — a0 + 2 = B (8)

geschrieben werden mit

C+1 4a2C
—ottl g 400 9
=0T T C—1y ®

Als Aquipotentiallinien in der Ebene senkrecht zu den beiden Drihten ergeben sich also Kreise.
Thre Mittelpunkte liegen auf der z-Achse. Soll 2, = a sein, so mul C = 4 oo gewéhlt werden.
zy = —a wird fiir ¢ = 0 angenommen. In beiden Fillen ist nach (9) der Kreisradius gleich Null.
Die Aquipotentialflichen entarten hier in die beiden ladungtragenden Geraden.

2.1.7. Kapazitit einer Vertikalantenne (Linienladung)

Ein zylindrischer Stab hat den Durchmesser 27y = 5 mm und die Lénge I = 3,50 m. Er ist als
Vertikalantenne senkrecht in die Hohe gefiithrt und befindet sich mit seinem unteren Ende im

2r

1

-———

Bild 2.8. Vertikalantenne mit ihren Aquipotentialflichen und Feldlinien

Abstand @ = 10 cm vom Erdboden entfernt. Berechnen Sie seine Kapazitidt gegen die als ideal-
leitend vorausgesetzte Erde (vgl. Bild 2.8).

Losung

Wir berechnen zunéchst das Potential einer gleichméBig mit elektrischer Ladung versehenen
Linie gegen die idealleitende Erde und schlieBen daraus auf das vorgegebene Problem. Die Stab-
achse wahlen wir als z-Achse, ihren Mittelpunkt als Anfangspunkt des Koordinatensystems.
Bezeichnet
Q

(1)

qu
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die lineare Ladungsdichte, so ergibt sich in Analogie zu (2.1./7) und (2.1./8) fiir das Potential
der Linienladung im Punkt P,

+
d

f 2 2)
VPPO

1

7

Die Entfernung vom Aufpunkt Poy(xy, ¥y, 2,) zum Punkt P(0, 0, z) des Integrationsgebietes ist
gleich

PP, = Vo + Yo + (2 — 2)%. (3)
Damit folgt
L
Dy, = 2 [ln [Vag? + 4e2 + (29 — 2)® + 2 — zol] 3 (4a)
4me, —=
2
. 2 1\? l
Zo +?/0+Zo_5 +TZ'_20
=4 . 4)
4re, . 7\2 1
]xo +%2+(20+‘2—) ‘“?"20

Die Linienladung influenziert auf der Erde eine Ladung, deren Potential @, sich durch Spiegelung
ergibt. Im Aufpunkt P, ist dieses gleich

! !
—?—Za —E—Za

o, — L [ 4 _ de (5)
e, "PsPo 47160 Vaeo? + 4% + (2 — 2)?

3
— 2 -2 -2
21 2a l 2a

Durch Auswerten nach (4a) erhidlt man

2
l/x02+y02+(zoﬁl‘%+2a) ——é—2a—z0
QDS:—LIn

4me, 3 2 3 )
x02+y02+(z0+7l+2a) —?l-—Qa—ZO

Das Potential der Linienladung bei Anwesenheit der Erde ergibt sich aus der Uberlagerung
von (4) und (6):

O =0 - D,. )

Ist die Lange des Kreiszylinders groBl gegen den Radius 7, seiner Grundfliche, so 148t sich das
Potential wie folgt genéhert berechnen: Die Aquipotentialflichen des von der Linienladung aus-

gehenden Feldes konnen fiir [>>Vw,® 4 y,* durch Zylindermantelflichen gendhert werden.
Wir ersetzen den vorgegebenen Zylinder durch eine Aquipotentialfliche, deren Schnittflichen-
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radius Va? + yo? im Punkt z, = 0 identisch mit dem Radius 7, des vorgegebenen Stabes ist.
Das Potential hat auf dieser Aquipotentialfliche nach (4), (6) und (7) die Gréfle

o— 2 1, Varg + 12 4 1 Varg + (31 + 4a)® — (31 + 4a)

dregl  Yar? + 12— 1 Varg? + (I + 4a)t — (I + 4a)

Q ) Varg2 + 12 + 1 Varg + (I + 4a)? + (I + 4a)
+ (

= n
dmegl  Yar? + 12 — 1 Varg? + (31 - 4a)? + (31 + 4a)

. (®)

Bertcksichtigt man hierin 7y << 7, so folgt

o @

T dmeyl

12l + 4a)

1 .
o 70331 + 4a)

Als Kapazitidt der Vertikalantenne gegen die idealleitende Erde erhélt man somit

_ 4re,l
=—
o P+ 40)

73(31 + 4a)

(10)

Mit den vorgegebenen Werten ergibt sich

o _ 4m-8.85-10712-3,50
N 3,502 . 3,90
0,0025%. 10,90

F = 28,9 pF.
In

Im allgemeinen ist der Abstand a von der Erdoberfliche klein gegen die Lange I. Unter dieser
Voraussetzung folgt

2meyl

In —
V3 o

A Aufgaben

A2.1.1. Berechnen Sie die Kapazitit eines Plattenkondensators mit der Plattenfliche
A = 25 cm?, dessen Platten einen Abstand von 0,1 mm haben. Der Zwischenraum
ist mit Paraffin (e, = 2,3) gefillt.

A2.1.2. In atmosphirischer Luft (¢ = ¢,) betrigt die Uberschlagsspannung bei 1 mm Ab-
stand U = 3000 V. Sie wichst proportional dem Abstand. Wie gro8 ist die Energie,
die ein Plattenkondensator der Plattenfliche 4 = 100 ¢cm? speichern kann, wenn
der Plattenabstand 1 cm betrigt?

A21.3. Stellen Sie die Formel fiir die Kapazitit zweier konzentrischer Kugeln auf. Wie gro§
sind die elektrische Feldstdrke und die Spannung?
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A21.5.

A2.1.6.

A 2.1.10.

A2.1.11.

A2.1.12.

A21.13.*

A2.1.14.%

A21.15.

Wie groB ist die Kapazitit einer Kugel gegen den unendlich fernen Raum (eine
konzentrische Kugel vom Radius B — o0)?

Welchen Radius muBl eine Kugel besitzen, wenn ihre Kapazitit gegen den un-
endlich fernen Raum 1 F betragen soll?

Eine Punktladung der Stirke @ = 107! As befindet sich gegeniiber einer Metall-
platte im Abstand z, = 50 cm. Berechnen Sie das elektrische Feld. Welche Feld-
stdrke ergibt sich auf der Geraden, die von der Metallplatte zur Ladung gerichtet
ist, in der Entfernung [ = 2 m von der Metallplatte?

Eine Kugel vom Radius R = 20 cm befindet sich in Luft gegeniiber einer Metall-
platte. Der Abstand des Kugelmittelpunktes betrdgt # = 3 m. Berechnen Sie ge-
nihert die Potentialdifferenz, wenn die Kugel eine Ladung von 5 - 10-% As trigt.
In ein homogenes elektrisches Feld der Stirke E, wird eine Metallkugel vom
Radius R gebracht. Geben Sie das Potential an, a) wenn die Kugel ungeladen ist,
b) wenn sie die Ladung @ tragt.

In das homogene Feld der Stirke 100 Vi~ in Luft wird eine Kugel aus Harz
(e, = 20) gebracht. Der Radius der Kugel betrigt E = 1 cm. Berechnen Sie das
elektrische Moment der virtuellen Ladungen. Wie grof ist die elektrische Feld-
stirke in der Kugel?

Eine Gerade hat die elektrische Ladungsdichte ¢’ = 10~1® As m—*. Parallel dazu im
Abstand 2a = 1m verlduft eine Gerade mit der Ladungsdichte g," = —10-1°Asm™!.
Berechnen Sie die elektrische Feldstédrke in der Mitte zwischen den beiden Ge-
raden.

Bestimmen Sie die Aquipotentialflichen zweier paralleler Geraden, die gleiche
elektrische Ladungsdichten aufweisen.

Parallel zu einem Kreiszylinder mit dem Durchmesser 2R, = 5 cm verlduft ein
Draht im Abstand a = 1,50 m von der Zylinderachse. Wie gro8 darf die Ladungs-
dichte auf dem Draht sein, wenn das Zylinderpotential nicht um mehr als 100 V
ither dem Erdpotential liegen soll?

Eine zylindrische Leitung mit dem Durchmesser 2R, = 3 cm wird von einem dazu
parallel verlaufenden Draht influenziert. Der Durchmesser des Drahtes sei zu ver-
nachldssigen. Sein Abstand von der Achse des zylindrischen Leiters betrage
a= 2,6 cm. Die Ladung des Drahtes, bezogen auf die Léngeneinheit, sei
g’ = 10-8 Asm~?. Fiihren Sie eine Spiegelung am Kreiszylinder durch, indem Sie
vom Feld zweier Driahte ausgehen und parallel zum influenzierenden Draht virtuelle
Ladungen anbringen. Bestimmen Sie das Potential. Wie groB ist dieses auf der
Oberfliache des Zylinders?

Ein Kreiszylinder mit dem Radius R, befindet sich in der Mitte zwischen zwei
Drihten, die voneinander den Abstand 2¢ haben. Die spezifischen Ladungen der
Driihte seien ¢’ und —gq’; der Zylinder sei ungeladen. Berechnen Sie durch Spiege-
lung das Potential.

In das homogene elektrische Feld der Stirke E; wird ein ungeladener Metallzylinder
gebracht, so daB seine Achse senkrecht zur Feldrichtung steht. Bestimmen Sie das
Potential des entstehenden Feldes.
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2.2. Berechnung ebener statischer Felder durch konforme Abbildung

E Einfiihrung

Die Losung der Potentialgleichung zur Berechnung ebener elektrostatischer Felder
kann in vielen Féllen mit Hilfe einer konformen (winkeltreuen) Abbildung durch-
gefithrt werden. Dazu seien die Cartesischen Koordinaten z und y eingefiihrt. Man
faft sie in der komplexen Variablen

r=a 41y (1)
zusammen.
Es bezeichne

w=w) =ul,vy) +1v,y) (2)

eine komplexe Funktion der Variablen z. Diese Funktion w = w(z) vermittelt die
Transformation der komplexen z-Ebene auf die komplexe w-Ebene.
Ist der Grenzwert

lim L TR T wE) S (3)

unabhéngig davon, wie 4z = Ax + i 4y gegen Null strebt, d. h., ist der Differential-
quotient (3) in der x,y-Ebene richtungsunabhéngig, so definiert man diesen als Ab-
leitung w'(z) der Funktion w(z).

Im Falle w'(z) & 0 vermittelt w = w(z) eine konforme Abbildung der w-Ebene auf
die z-Ebene. Infinitesimal kleine Dreiecke werden winkelgetreu von der w-Ebene
auf die z-Ebene abgebildet. Zwei Kurven, die sich in der w-Ebene unter einem be-
stimmten Winkel schneiden, schneiden sich auch nach ihrer Abbildung auf die
z-Ebene unter diesem Winkel. Insbesondere behalten zwei zueinander orthogonale
Kurvenscharen, also z. B. Aquipotential- und Feldlinien, diese Eigenschaft auch nach
der Transformation w = w(z).

Setzt man im Differenzenquotienten (3) Ay = 0 und berechnet den Differential-
quotienten lings der reellen Achse, d. h. fiir 4z = Az, so folgt

wne) = lim M8 ARN) Zu@y) |y, v Any) = v@y)
dz—0 Az 420 Ax
ou , o0V
T @)

Andererseits kann man Ax = 0 setzen und mit Az = i Ay rechnen, den Differential-
quotienten also langs der imagindren Achse bestimmen. Dann ergibt sich

wi(z) = lim uay + dy) — uzy) e Ay) — v(@y)
Ay—0 1 Z]@/ Ay—0 AZ/
1 ou , ov
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Der Vergleich von (4) und (5) fithrt auf die Cauchy-Riemannschen Differential-
gleichungen

8u_8v 82)_ ou ©
oy’ o~ oy )

Sie miissen erfiillt sein, wenn eine komplexe Funktion in einem bestimmten Punkt
differenzierbar sein soll. Dieser Satz ist umkehrbar, was hier nicht bewiesen wird.
Aus (6) folgt, wenn man die erste Gleichung nach z, die zweite nach y ableitet,

Pu v v Pu ™
ox2 oy ox’ or oy oy

Regulidre komplexe Funktionen sind von der Reihenfolge der Differentiation un-
abhédngig. Daher erhélt man aus (7)

Pu P
Ebenso ergibt sich, wenn man in (6) die erste Gleichung partiell nach y, die zweite
partiell nach « differenziert,

o o
i 0. 9)
Sowohl der reelle als auch der imaginédre Anteil einer reguldren Funktion w = w(z)
erfiillen also die zweidimensionale Larracesche Gleichung A\® = 0. Die reellen und
die imagindren Anteile der reguldren komplexen Funktionen sind Potentialfunk-
tionen. Hierin liegt die Bedeutung der Theorie fiir die Berechnung zweidimensionaler
statischer Felder. Dagegen ist eine Ubertragung auf Felder, die von drei Raumkoor-
dinaten abhingen, nicht mdéglich.

Bei der Anwendung der Theorie konformer Abbildungen auf die Losung der LAPLACE-
Gleichung sucht man ein fiir die z-Ebene vorgelegtes Randwertproblem auf ein
bereits gelostes Problem in der w-Ebene zu transformieren. Die Aquipotentiallinien
und die Feldlinien in der w-Ebene behalten ihre Eigenschaft auch nach der konformen
Abbildung in die z-Ebene. Bezeichnen also die Geraden u = u, die Aquipotential-
linien, die Geraden v = v, die Feldlinien in der w-Ebene, so ergeben sich nach der
konformen Abbildung (2) die Aquipotential- und die Feldlinien des Problems in der
z-Ebene gemdf

u(e,y) = uqy und v(xy) = vg.

Beispiel 3

Es soll das Feld in einer unendlich langen, zylindrischen Koaxialleitung bestimmt werden. Dieses
ist nicht von der Koordinate in Richtung der Zylinderachse abhingig. Es kann also durch die
beiden Cartesischen Koordinaten & und y oder durch die Polarkoordinaten » und ¢ ausgedriickt
werden. Somit liegt ein ebenes Problem vor; man hat das Potential zwischen zwei konzentrischen
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Kreisen zu bestimmen. Diese sind als Aquipotentiallinien vorgegeben. Daher ist zu vermuten,
daB simtliche Aquipotentiallinien in der z-Ebene konzentrische Kreise sind.

In der komplexen w-Ebene betrachtet man das Feld des unendlich ausgedehnten Plattenkonden-
sators ohne Randstérungen. Bei diesem kennzeichnen die Geraden » = u, die Aquipotentiallinien,
die Geraden v = v, die Feldlinien (s. Bild 2.9). '

Wenn die Vermutung iiber die Aquipotentiallinien in der z-Ebene richtig ist, missen sich die

z-Fbene —————— Aguipotentiallinien
—— — — Feldlinien

Bild 2.9. Konforme Abbildung w = In z zur Berechnung des Feldes
in der zylindrischen Koaxialleitung

Geraden u = u, durch eine konforme Abbildung w = w(z) in die konzentrischen Kreise in der
z-Ebene uberfithren lassen.

Als Koordinatenanfangspunkt in der z-Ebene wird der Mittelpunkt der beiden vorgegebenen
konzentrischen Kreise gewidhlt. Ferner ist es zweckmiBig, z in Polarkoordinaten darzustellen:
z = x + iy = r ei?, Durch die konforme Abbildung

w=u-+iv=Inz=Inr 4 ip (10)
wird die w-Ebene auf die z-Ebene abgebildet. Dabei bleiben die Schnittwinkel zwischen den

Geraden, also auch die Orthogonalitit der Aquipotential- und der Feldlinien unveréndert.
Durch Trennung des Realteiles vom Imaginérteil folgt aus (10)

w=Inr=In Vx2+y2, (11)

v = arctan L. (12)
x

Aus den Geraden u = u, als den Aquipotentiallinien in der w-Ebene werden also die konzen-
trischen Kreise 2% + y2 = 72, Sie charakterisieren die Aquipotentiallinien in der z-Ebene.
Fur das Potential in der z-Ebene erhédlt man

@ = const w = const In }a% 4 y2 = const In . (13)

u, v, 7, @ geben die Zahlenwerte in m an, sind jedoch dimensionslos, da z. B. In 7 nur von einer
reinen Zahl gebildet werden kann. const hat im vorliegenden Fall die Einheit V.

7 Schilling, Felder
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AlsFeldlinien ergeben sich gemif (12) aus den Geraden v = v, die Geraden y = const «. Fir die
Feldstérke errechnet man aus (13) in Zylinderkoordinaten

€, = _2 mt — _ const m~1,
or r

Der Wert der Konstanten kann aus der Ladung auf den koaxialen Zylindern itber die elektrische
Erregung ® berechnet werden. Damit ist das elektrische Feld zwischen den Zylindern in Ab-
hingigkeit von der elektrischen Ladung bestimmt.

Anstelle der Geraden » = u, kénnen auch die Geraden v = v, gewahlt werden, und man kann
untersuchen, welches elektrostatische Problem dadurch geldst wird. Das mit dieser konformen
Abbildung verkniipfte Feldproblem wird in 2.2.1. behandelt.

In zahlreichen Fillen der Elektrotechnik sind die Aquipotentiallinien als Strecken
vorgegeben, die durch einen Knick unterbrochen sind. Es tritt dann das Problem
auf, das innerhalb eines Vielecks bestehende Feld durch konforme Abbildung auf
ein bekanntes Feld zu transformieren. Hierzu wendet man den Satz von Christoffel-
Sehwarz an. Dieser bildet das Innere eines Vielecks in der z-Ebene auf die obere

Az

B B N R
g @ az %y a5 A ay
§-£tbene
§=§+ip

Bild 2.10. Konforme Abbildung eines Vielecks nach CHRISTOFFEL-SCHEWARZ

{-Halbebene, das Vieleck selbst auf die reelle Achse in der (-Ebene ab. In der w-
Ebene sei das Feld bekannt. Durch konforme Abbildung der w-Ebene auf die {-Ebene
entsteht {(w), woraus man z = 2({) = z[{(w)] bilden kann.

Es seien die Winkel des Vielecks in der z-Ebene mit

,87;:0(2'72' (7/:1,2,,72/) (14)

bezeichnet (vgl. Bild 2.10). §; liegt innerhalb des Wertebereiches von Nulljbis 2,
o; somit zwischen Null und zwei. Die Eckpunkte des Vielecks erhalten bei ihrer Ab-
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bildung auf die ¢-Ebene die Koordinaten &; = «;. Nach dem Satz von CHRISTOFFEL-
Scawarz wird die konforme Abbildung des Innengebietes eines Vielecks in der
z-Ebene auf die obere {-Halbebene durch die Transformation

4
z=20) =4 [ (s —a) (s — a))* 1 (s — ap)*1ds + B (15)
0
bewirkt.

Beispiel 4

Es soll ein Rechteck in der z-Ebene auf die obere Halbebene in der {-Ebene konform abgebildet
werden (vgl. Bild 2.10a). Dabei kann man aus Grinden der Symmetrie annehmen, da die
Punkte 4, und 4, in der {-Ebene auf a; = —1, a;, = +1 fallen, die Punkte 4, und 4, dagegen

/44 A_y
b
As a Az
z-Ebene
7
A Al 4 4 Bild 2.10a. Konforme Abbildung eines
- i —» ¢ Vierecks
-7 -C c 17
C-Lbene
auf @y, = —c, a; = +c. Die Winkel sind alle gleich /2, der Exponent im CERISTOFFEL-SCHWARZ-
Integral ist daher wberall gleich —;— - 1= —%. Aus (15) folgt als Transformation, die das

Innere des Rechtecks in der z-Ebene auf die obere {-Halbebene abbildet,

2=A __ds tBod [ —1 B e
J Vs+1Vs—1Vs—cls+c¢ (82 — 1) (s2 — ¢?)
0 0

Das auftretende Integral ist nicht elementar auswertbar. Es wird durch das elliptische Integral
erster Gattung

F(k; C) Zf——d—“——___.s____ (17)
V1 — &) (1 — k2s?)
[0}

geldst. Die konforme Abbildung (16) schreibt sich somit

4
zziF(i,5)+B:i ds + B. (18)
c c c / o2
Y= -5)
0
0

7
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Hat man die konforme Abbildung z = z(w) bestimmt, die das vorgegebene Problem
in der z-Ebene in eine bereits bekannte Losung fir ein Feldproblem in der w-Ebene
tiberfithrt, so kann die Feldstirke in der z-Ebene nach einem einfachen Differen-
tiationsgesetz sofort angegeben werden. Definiert man die w-Ebene so, daf} die Va-
riable » bis auf einen konstanten Faktor den Wert des Potentials in der w-Ebene
angibt, so gilt fiir die elektrische Feldstérke

€, = —% = —const %, ¢, = —const 2—; (19)

Fiir den Betrag der Feldstérke folgt

e ou\? ou\?
== / y 2 I —_— —_ y 4
€] =}G,* + G2 = const V(@x) + (8y) (20)
woraus sich wegen der CaucHY-RiEMaNNschen Differentialgleichung (7)
ov\2 8u ou v dw
S| = — — ) = i i =] = t | —
|€] = const l/(ay) + (63/ = const ‘/’ 5 % V % i 2 const | —— }

(21)

ergibt. Der Betrag der Feldstérke ist proportional dem Absolutbetrag des Differential-
quotienten w’.

x, ¥, u, v haben nach (19) die Einheit m, const hat die Einheit V m-!. Man kann
jedoch auch mit dimensionslosen Gréfen w = w + iv und z = x + iy arbeiten.

Beispiel 5
Nach Beispiel 3 bildet die Transformation
w=Inz

das homogene Feld eines Plattenkondensators in der w-Ebene auf das Feld zwischen zwei ko-
axialen Zylindern (z-Ebene) ab. Das Potential in der w-Ebene ist durch @ = const % bestimmt.
Fiir den Betrag der Feldstérke in der w-Ebene erhédlt man z. B. mit const = 10 V, wenn samt-
liche geometrischen GréBen Zahlenwerte in m angeben,

Sl = 164 = | =22 | 1t = 10 V.

Der Betrag der Feldstérke in der z-Ebene wird gleich

|€,)| = const dw V m-,

wn

Schreibt man entsprechend dem vorliegenden Problem z = r ei?, so folgt also

10
€yl = . Vmt.
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Das Feld 148t sich hiernach um so stirker konzentrieren, je kleiner der Radius des Innenleiters
gewihlt wird.

Erfolgt die konforme Abbildung z.B. nach CHRISTOFFEL-SCHWARZ in mehreren
Stufen

w=w(@Q), Q=80&), ... GL==04L0), (22)
so erhélt man den Betrag der Feldstédrke nach der Kettenregel
, dw dQ dc,
|@z, = const m d—é_l . E (23)
P Probleme
2.2.1. Das Feld zwischen geneigten Platten

Zwei metallische Platten sind gegeneinander unter dem Winkel o = 2° geneigt. Der Abstand
am unteren Ende betridgt d = 0,1 mm, die Breite einer Platte b = 25 cm, die Lénge I = 40 cm.
Randstérungen werden in erster Naherung vernachldssigt. Berechnen Sie die Kapazitdt dieses
Kondensators und bestimmen Sie den Feldverlauf.

Losung
Wir schreiben die komplexe Variable z in Polarkoordinaten

2=z + iy = rel? (1)
und betrachten die konforme Abbildung

w=u-+iv=Inz=Inr + ip. (2)

Durch Trennung von Real- und Imaginérteil ergibt sich
u =1Inr=In}a? 4 ¢, v:q;:arotani. (3)
@

Die fur den ganzen Raum formulierte Losung gilt nur zwischen den geneigten Platten.

Wir wihlen in der w-Ebene die Geraden v = v, = ¢ = const als Aquipotentiallinien, die Ge-
raden u = u, = In 7y = const als Feldlinien (vgl. Bild 2.11). Far die z-Ebene ergeben sich damit
aus (3) als Aquipotentiallinien die Geraden

Y = x tan @, (4)
als Feldlinien die Kreise

2? + y? = 1% (5)
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Da ¢ = g, die Aquipotentiallinien angibt, kénnen wir nach (3) das Potential in der Form
@ = const - arctan Y _ const ¢ (6)
@
schreiben. Fir die elektrische Feldstirke erhalten wir gemifl € = —grad @ aus (1.2./9)
1
G, =0, €, = —const —. (7)
7

Die Ladungsdichte auf der rechten Platte wird gleich

const

Dy = —& .

daraus folgt fiir die gesamte Ladung auf der linken Platte

T
dr' 2
Q=—soconst-l-/—r=—soeonst‘l-lnl“-. (8)
'/‘é 71
T1

N
N
N
N

1 | JE— |
7

7777 Vi
w-Ebene
Aguipotentiallinien
z7-Ebene — — — Feldlinien

Bild 2.11. Konforme Abbildung w = Inz zur Berechnung des Feldes
zwischen zwel geneigten Platten

Aus Bild 2.11 entnimmt man fiir << 1

der-a, r=n+b=2 10 ()
04

Demzufolge ergibt sich aus (8)

@ = —gconst - - In <1+%X)
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und weiter
const = ————Q,—b. (10)
o«
Jeln (1 4+ —=
£ n ( + d)

Die Spannung zwischen den beiden Platten betréigt

n/2+a
U= Cprdp = —consta = __Qa__b__ (11)
&l In (1 + -2‘)
d
/2

Fir die Kapazitidt des Kondensators folgt damit die Formel

gl In (1 +b %)

Q
(=== 12
U " (12)
Im Falle ; & 7, >> b erhilt man den Plattenkondensator. Es gilt dann
b b
2oL,
d 71
(12) liefert in diesem Falle
o=@l _ad (13)
d d

in Ubereinstimmung mit (2.1.1./9).
Mit den vorgegebenen Zahlen ergibt sich aus (12)

8,85 - 10-12. 0,40 In (1 +0,25 Ts?%)
C= 7 /180 . F =4,5.10-° F = 450 pF.
2.2.2. Elektrisches Feld zwischen den Schenkeln einer metallischen Ecke

Bestimmen Sie das elektrische Feld zwischen den Schenkeln einer Ecke (vgl. Bild 2.12). Der
Offnungswinkel betriagt 90°, die Linge jedes Schenkels I = 20 cm, die Breite b = 10 cm. Durch
eine duBere Ladung, die man sich in unendlich groSer Entfernung konzentriert denken kann,

e ] Bild 2.12. Metallische Ecke
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wird auf der Oberflache im Innenraum der Ecke eine Ladung der Stirke @ = 10~°® As influenziert.
Das elektrische Feld ist mittels konformer Abbildung zu berechnen, d. h., die Verdnderlichkeit
des Feldes mit der Raumkoordinate z ist unberticksichtigt zu lassen.

Losung
Das Feld einer Ecke kann durch die konforme Abbildung
w = 2% bzw. u + iv = (@ 4 iy)? (1)
berechnet werden. Die Auflosung dieser Gleichung nach Real- und Imaginirteil liefert
u=z®—y2, v =2zy. (2)

Wir wihlen die Kurven » = const als Aquipotentiallinien. (1) transformiert diese in die Hy-
perbeln 22y = const. Im Grenzfall v = 0 entarten diese Hyperbeln in die aus den positiven Teilen
der - und der y-Achse gebildeten Ecke. Die orthogonal zu den Aquipotentiallinien verlaufenden
Feldlinien sind in der w-Ebene durch die Geraden u — const, in der z-Ebene durch die Hyperbeln
z® — y? = const bestimmt. ‘

Das Potential ist durch

@ = const v = const « 2zy (3)
gegeben. Daraus erhilt man die Feldstdrke
€, = —2 const y, €, = —2const z. (4)

Die elektrische Feldstirke ist somit am kleinsten in der Umgebung der (inneren) Ecke. Das geht
auch aus

dw

hervor.
Als Dichte der Oberflichenladung erhédlt man auf dem vertikalen Schenkel

Dn(y) = —2¢ const y, (6)
auf dem horizontalen
Dp(z) = —2¢ const z. 7)

Hieraus ergibt sich fiir die gesamte Ladung @

! l
—2g,b const (fy dy + [= dx) = —egzb const 12 = Q,
0 0

woraus

Q

const = — 8—01)72 (8)

folgt. Im vorliegenden Fall erhdlt man

102 Vm—2

const = — =
8,85.10"12.0,1.0,04

—2,825-10* Vm—2,
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Fir die Feldstarke ergibt sich damit in der Mitte auf dem horizontalen Schenkel
¢, =0, €, =5,65-10Vm,
dagegen in der Mitte auf dem vertikalen Schenkel

G, =565-100Vm?, G, =0.

2.2.3. Abbildung einer Kreisfliche auf einen Streifen — Elektrisches Feld
zwischen zwei Zylinderhalbschalen

Zwei durch einen schmalen Spalt unterbrochene Zylinderhalbschalen tragen entgegengesetzte
Ladungen. Bestimmen Sie das elektrische Feld und die Aquipotentiallinien.

Losung

Wir bilden das Innere des Kreises vom Radius R in der z-Ebene auf die obere Halbebene der
{-Ebene ab. Das geschieht durch die konforme Abbildung

[ Lk S WO i ()
z2— R C+i
Zum Beweis setzt man
C=l] et (2)
und berechnet
& —i] = V(Zletr — i) (jel e + 1) = V[Z[2 + 1 — 2 [{[siny, 3)
[&+i) = V(eI + 1) (IC e + D) = V]I + 1 + 2| sinyp. @)

Die Forderung |z| < R fithrt auf

il _ pVEP+1—2[siny _
G+ YigE+ 1+ 2 siny

Diese Bedingung ist fiir den Wertebereich 0 <y < +, also fiir die obere Halbebene der kom-
plexen Variablen { erfillt. Durch (1) wird der Kreis vom Radius R in der z-Ebene auf die
reelle Achse der {-Ebene abgebildet.

Wie man aus (1) erkennt, wird der Punkt z = R in den unendlich fernen Punkt der {-Ebene,
der Punkt z = —R in den Nullpunkt der {-Ebene transformiert. z = iR entspricht { = —1,
z = —iR dagegen { = 1. Die untere Hilfte des Kreises in der z-Ebene wird daher auf den
positiven Teil der reellen Achse in der {-Ebene, der obere Halbkreis auf den negativen Teil der
reellen Achse abgebildet.

In deér w-Ebene liege ein homogenes Feld vor. Die Transformation

R.

w=1In¢ (5)
mit
w=u -+ iv, L= 1f el (5a)

vermittelt eine Abbildung des Streifens

O<ov<m
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auf die obere {-Halbebene. Dem linken Teil der reellen Geraden in der komplexen {-Ebene, d. h.
dem Wert i = =, entspricht in der w-Ebene die obere Gerade v = n (mod 2r), dem rechten Teil,
d. h. ¢ = 0, die untere Gerade » = 0 (vgl. Bild 2.13).

Ay
z-Ebene
A3 As .
i
-7 1 +7
&-£Lbene
y
A7

i e o s
|
)i A

|
|
% 7L, 777 oy

A4
w-Lbene

Bild 2.13. Konforme Abbildung zur Berechnung des Feldes
zwischen zwei zylindrischen Halbschalen

(5) und (1) zusammengefaBt, ergibt als Gleichung zur Transformation der Kreis- auf die Streifen-

flache
zo:ln,z+R. (6)
i(z — R) .

Setzt man hierin z = @ + iy, w = % + iv und trennt den Real- vom Imaginarteil, so folgt nach

den Gesetzen iiber das Logarithmieren komplexer GréBen

(2;2 + yZ — RZ)Z + 4y2R2 (7)
[ — B} + y°F

22 1 g2 2
v = arctan E——y—R— (8)
2yR

u=iln
2
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Wir legen die Aquipotentiallinien durch v = v, fest. Fiir diese ergibt sich aus (8), wenn man dort
das Argument gleich einer Konstanten C setzt,

@ + (y — CR)2 = R¥(1 + C?). 9)

Fir y = 0 erhilt man aus (9) « = 4 R. Als Aquipotentiallinien ergeben sich somit Kreise, deren
Mittelpunkte auf der y-Achse liegen. Sie gehen alle durch die beiden Punkte (4 R; 0) und (—R; 0),
die die positive von der negativen Ladung trennen (vgl. Bild 2.13) und von der Betrachtung
auszuschlieBen sind. Die konforme Abbildung (6) ergibt also Aquipotentiallinien, die gerade dem
vorgegebenen Problem entsprechen.

Als Feldlinien erhalten wir aus (7) die durch
(@ 4 B)* + y* = Cl(z — R)* + 9] (10)
bestimmten Kurven. Umgeformt folgt

( 1+C

2 C
x—i—R————) + y% = 4R?

1 -0

—c (11)

Die Feldlinien sind Kreise, deren Mittelpunkte auf der z-Achse liegen. Der Spezialfall ¢ =1
ergibt eine Gerade durch den Schwerpunkt der Halbkreise. Fiir v = R, y = 0 entarten die Feld-
linienkreise in einen Punkt.

2.2.4. Das Feld einer aus der Ebene herausspringenden Kante

Aus einer Ebene ragt eine spitze Kante der Liange I heraus, die eine elektrische Ladung tragt.
Berechnen Sie das Feld in der Umgebung dieser Kante.

Losung

Wir charakterisieren die Ebene mit der herausragenden Kante durch die reelle Gerade in der
z-Ebene, aus der im Koordinatenanfangspunkt eine Spitze der Lange I herausragt (s. Bild 2.14).
Die z-Ebene bilden wir mit Hilfe des CHRISTOFFEL-SCEWARZ-Integrals auf die {-Ebene ab, wobei
die Gerade mit der herausragenden Spitze in die reelle Achse der {-Ebene tiberfithrt wird. Dabei

A
A
30 £
z~Ebene
7

Bild 2.14. Konforme Abbildung zur Berech-

Y , nung des Feldes einer aus der Ebene heraus-

> e 0 3 ragenden spitzen Kante

+7
§-£bene
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lassen wir die Punkte B und D in der z-Ebene zusammenfallen, rechnen also mit einer unendlich
diinnen Spitze. Es ergeben sich daher die Winkel

T 1 1
= — E t——1=——]|,
Br 2 ( xponent — 2)
Be =2m (Exponent 2 — 1 = 1),
b 1 1
== E t— —1 = ——].
bp 3 ( Xponen 5 2)

Den Punkt C legen wir in der {-Ebene auf den Koordinatenanfangspunkt. Die Punkte B und D
kénnen auch in der {-Ebene zueinander symmetrisch gelegt werden; sie erhalten hier die reelen
Koordinaten —1 und +1. Nach dem Satz von CHRISTOFFEL-SCHWARZ (2.2./15) erhélt man damit
folgende Beziehung fir die Abbildung der z-Ebene auf die {-Ebene

‘ _1 _1
z=z(C)=Af(.s+1) 25(s—1) 2ds+ B (1)
0
bzw.
¢
z='AfV28 ds+B =AYV —1—id + B. @)
sz — 1

0

Dem Wert z = il entspricht der Wert { = 0. Wir setzen diese Beziehung in (2) ein und erhalten
B =il. Ferner soll z =0 auf { = 1 fihren. Daraus ergibt sich 4 = 1. Somit erhalten wir
endgiiltig fir die konforme Abbildung der z-Ebene auf die {-Ebene

z=1Yy2—1 bzw. (= /j—:+1. 3)

Schreiben wir ¢ = & + iz, so kénnen wir die Aquipotentiallinien durch % = 7, festlegen und
damit die gestellte Aufgabe auf den Plattenkondensator ohne Randstérungen zuriickfithren.
Fir das Potential erhélt man daraus

Q):C":%Q—szwwﬂ—ymféw—<lux2—y2)- )

Die Komponenten der Feldstdrke werden gleich

6, = G2z e e e ey 17 5)
A YVETE A — @ — )] [0+ 0 g — Al
e 12 12— a2 — g2 — Y2+ a® + y2)% — 4122 ®)
Y

V[V(lz TP ) — 4lnE — (2 + a? — yZ)] [(2 + 22 + y2)2 — 4122 '

Im Grenzfall y >>1, d. h. weit entfernt von der hérausragenden Kante, ergibt sich aus (4) das
Potential des ungestoérten homogenen Feldes

@i =Sy )
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Fir die Komponenten der Feldstirke folgt aus (5) und (6) ebenso wie aus (7)
¢
Cy1=0, (Cysu= -7 = const, (8)

wie beim ungestérten homogenen Feld.
Um das Feld in der Umgebung der Spitze zu untersuchen, setzt man @ = A, y = [ + Ay und
nimmt Az <€ 1, Ay << 1 an. Damit ergibt sich aus (4)

C —_—
(@)ymtamo = = Vay + Va2 + 42, ©)

7

aus (5) und (6) ebenso wie aus (9)
C Ax
2 Viida + Agt) (Vida® + Ayt + Ag)
(/A £ ag + 4y)

(@y)yﬁl,rzo = - . (11)
2 Vida2 + Ay?) (VA2 + Ay? + Ady)

(@x)yal,xzo = -

Das Feld nimmt hiernach in der Umgebung der Spitze sehr groe Werte an; unmittelbar an der
Spitze wichst es iitber alle Grenzen (Feldkonzentration durch Spitzenwirkung).

2.2.5.% Kapazitit zweier Zylinderschalen

Eine Koaxialleitung besitzt einen zylindrischen AuBenleiter mit dem Innendurchmesser
2R = 20 mm. Der Durchmesser des Innenleiters werde mit 2R; bezeichnet. Es sei B;<< R.
Durch zwei zueinander symmetrisch angeordnete Schlitze mit dem Offnungswinkel 2¢, = 2°
(vgl. Bild 2.15) wird die Wandung des AuBlenzylinders in zwei Zylinderschalen geteilt, die auf
entgegengesetztes Potential +®@, und —@, gebracht werden, wihrend der Innenzylinder das
Potential Null besitzt. Berechnen Sie die Kapazitdt des aus den beiden Schalen gebildeten
Kondensators fir die Zylinderlinge ! = 1 m. Die Wandstérke der Zylinderschalen sei zu ver-
nachlidssigen. Welche Feldstirke ergibt sich an den duBersten Schlitzkanten?

Losung

Das elektrostatische Problem wird durch eine Folge konformer Abbildungen gelést.
Durch die erste Transformation

Q=1Inz 1)

wird jeder der beiden Halbkreise auf ein Vieleck abgebildet (vgl. Bild 2.15a und Bild 2.15D).
Die zweite Transformation

3
0= Azf (s — ds) ds LB, @)
g V(s — ay) (s + 1) s(s — ag)
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z~-FEbene
1 6
8 _,
n Bild 2.15a
-Ebene
Z. 1l 8 4=0 A
Zag)  |2=0 l¢=¢g
c 0F' 6'
nR | R l
9% _ a¢
an =0 an =0 Bild 2.15b
&-£oene
5!/ C” D/I E(I F/I
A” 1 't 1 1 n
a, =710 a; . a; d
|
#=0 3_¢ =0 #=9 a¢. =0
an on Bild 2.15¢
Au/ 6 o
9?7,
/ n w-£bene
¢0 =4,
% _
an. g
c” 0" Bild 2.15d

Bild 2.15. Konforme Abbildung zur Berechnung des Feldes in der Koaxialleitung

mit geschlitztem Auflenleiter
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bildet das Innere des von der rechten Halbschale erzeugten Vielecks in der 2-Ebene auf die
obere Halbebene der komplexen Variablen { ab (vgl. Bild 2.15¢). Die dritte Transformation

4

W=Asf—ds—+33 3)
p V(s + 1) s(s — ay)

bildet die obere Halbebene der Variablen  auf das Innere eines Rechtecks in der w-Ebene ab
und fithrt damit das vorgelegte Problem auf das homogene Feld des Plattenkondensators zuriick
(Bild 2.15d). Dabei ist wesentlich, daB ausgezeichnete Aquipotentiallinien (® = 0, @ = @)

und avsgezeichnete Feldlinien 22 = 0} in der z-Ebene diese Eigenschaft auch in der w-Ebene
n

besitzen. Aus (1) und (2) ergeben sich die folgenden Beziehungen:

ay

lnRi+i%=A2f/ (s — ) ds + B,, )
< P V(s — ay) (s + 1) s(s — as)
—1

mﬂ:Ai[ (8 — a;) do + By, 5)
p Vis — ay) (s + 1) s(s — ap)

InR = B,, (6)

1nR+i(l—%)=A2f / (s — ay) ds + B,, )
2 V(s — ay) (s + 1) s(s — ag)

InR = A2f (s — a5) ds + B, )
B V(s —a;) (s 4 1) 8(s — a,)

Wir setzen (6) in die iibrigen Gleichungen ein und formen auf reelle Ausdriicke um. Dabei ist
@G < —1<0<a,<ay

zu beriicksichtigen. Es folgt zunéchst aus (5)

0
R (@ — 8) ds
In = —4 , , 9)
E; lew—aﬂleu—wmy—w

damit aus (4)

%:mf L . (10)
2 Vol s — D (o &9
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(7) und (8) ergeben

£~¢0=A2f (0, —8)ds , (11)

2 : Vis —a) (s + 1) s(ag — s)

B e e P (12)
Vs — a)) (s + 1) s(as — s)

a:z

Zur Bestimmung der vier Unbekannten 4,, a,, a,, a; liegen somit vier Gleichungen vor. Ihre
Auswertung fiahrt auf vollstdndige elliptische Integrale erster und zweiter Gattung.

Im Grenzfall R; — 0 entnimmt man aus Bild 2.15a, daf die Punkte B und ' zusammentfallen.
Der Parameter a, wird dann gleich —1. Damit wéchst der Ausdruck (9) uber alle Grenzen, wie
es fiir R; — 0 sein muB. Setzt man wegen der Beschrinkung auf kleine Schlitzwinkel das Be-
stehen der Ungleichungen

a3 > as, ay > |, (13)

voraus, so lassen sich die Integrale (10) bis (12) genéhert elementar auswerten. (10) ergibt fiir
4 =—1—-—Amit4L1

-1
/ %2 ds = 2 . (10a)
Vs —a) (—s — 1) ay Va,

(11) und (12) liefern

a2

1 ay — 8 ds:i

EO s+ Va

(a, arctan Va, — ]/o;;) = T—C%——V—_‘LWJ s (11a)
3
as

s—mlds o 4q/%, (12a)
]/83((13 — )

Daraus erhilt man das Gleichungssystem
2y, Hady Az(n—q/“l)zl—%- (19
Va, Va,
Seine Losung unter der Voraussetzung (13) lautet

a2=i2, 43=‘1%a 4, = ! . (13)
Po Po

Bezeichnet man in der w-Ebene den Abstand zwischen den beiden Aquipotentiallinien @ = 0
und @ = @, mit a, dagegen die Lénge einer Aquipotentiallinie mit b (vgl. Bild 2.15d), so folgen
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aus (2) und (3) die Beziehungen

4, f & iB-w (16)
f V(s + 1) s(s — ag)
-1
A3f_——(1—_—_i__+33=0g (17)
J Vet 1st—a)
~ ds .
By=a  (18), 4y | ———— + By =ib. (19)
f V(s + 1) s(s — a)
0

Durch Umrechnung auf die elliptischen Normalintegrale ergibt sich?)

2

0
f ds = K(k). (20)
| V(s + 1) s(s — ag) Vaa +1

Weiter erhélt man

—1

f ds -2 kW). 21)
V—(s+ 1) s(s —a) Vag+ 1

-— 00

Hierin bedeutet K das vollstandige elliptische Integral erster Gattung. Der Modul des ellip-
tischen Integrals ist gleich

k=V LI (22)
as + 1

ferner ist

k'=V1—k2=V“3 . (23)

as + 1

Wir setzen (20) und (21) zusammen mit (18) in die Gleichungen (16) und (17) ein und erhalten
daraus das Gleichungssystem

24, Kk)=a (24), 24,
Va:; +1 Vaa + 1

EX)=b. (25)

Die Auswertung der Gleichung (19) fithrt zu keiner neuen Gleichung fir die drei Unbekannten
a, b und 4;. Man kann daher eine dieser Gréfen, z. B. a, frei wihlen, womit die anderen beiden
durch (24) und (25) bestimmt sind.

) vel. [3]

8 Schilling, Felder
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Fir die Losung des Problems, die Kapazitét des aus den beiden Schalen gebildeten Kondensators
zu bestimmen, ist es jedoch nur erforderlich, das Verhéltnis b/a zu kennen. Die Folge der kon-
formen Abbildungen (1) bis (3) tiberfiihrt das Feld zwischen den Halbschalen in das Feld des
Plattenkondensators mit den Abmessungen bl und dem Abstand a. Nach (2.1.1./9) folgt fiur die
Kapazitit des Plattenkondensators

bl

™

eA
— — 2
C = (26)

|

Hierin (24) und (25) eingesetzt, ergibt unter Annahme von ¢ = ¢, fir die Kapazitdt der entgegen-
gesetzt geladenen Zylinderhalbschalen

=)
1= a4+ 1 @7)

)

Im vorliegenden Fall ist nach (15)

. 4
o 1818180,
Po 14. ¢

Damit folgt nach (22) und (23)

bl el 7610, KT R —1_29. 10
17-10° + 1

Zur Berechnung der vollstéandigen elliptischen Integrale wendet man im vorliegenden Fall am
zweckmaBigsten die Formeln

— e— ——4 . e
K(k)= (1 + =+ ) (28)
Hl'ld

K@) =1n % (29)

fur kleine Werte k an. Es ergibt sich mit hinreichender Genauigkeit

K(7,6-10% = =,  K1—29-10"%) =In 4 1087
2 7,6 -107°
Somit folgt fiir die gesuchte Kapazitit der gesamten Anordnung
_885-.1012.10,87.2-1
B 3,14
Die Feldstirke in der z-Ebene ergibt sich durch Berechnung des Differentialquotienten

c F=6,12-10"1F.

dw| _ |dw df d@
dz |~ |dgae de
_ 4, VE—a) G+ D EE—a)| 1 _ |45V —ay| 1 (30)
V(& 4+ 1) (¢ — a,) Ay(C — ay) r Ay (C—ag)| r
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An der duBersten Schlitzkante E ist { = a,. Die Feldstirke wichst also an der scharfen Kante
iiber alle Grenzen (Spitzenwirkung).

A

A2.2.1.

A2.2.2.
A223.

A224.

A225.

A22.6.

A2.2.7.

A22.8%*

8%

Aufgaben

Welchem elektrostatischen Problem entspricht die konforme Abbildung
w= L?
z
Untersuchen Sie die konforme Abbildung
w=1z.
Untersuchen Sie die konforme Abbildung
2z = ccoshw.
Welche geometrischen Transformationen werden durch die konformen Abbildungen
1 1 1 1
a)w:-2—<z—?), b)w=?(z+z>
auf den Einheitskreis in der z-Ebene bewirkt; d. h., welches Bild liefert der Einheits-
kreis in der z-Ebene bei der Abbildung auf die w-Ebene?

Welche geometrische Transformation wird durch die konforme Abbildung
w=2z + i
z

a) auf zum Einheitskreis konzentrische Kreise,
b) auf Gerade durch den Koordinatenanfangspunkt in der z-Ebene bewirkt?

Untersuchen Sie die Eigenschaften der konformen Abbildung
2

w=2z -+ ay
z

£
(4

4 g Bild 2.16. Platte iiber unbegrenzter Ebene

Welche Transformationen ergeben sich fiir Kreise um den Koordinatenanfangs-
punkt sowie fir Gerade durch den Ursprungspunkt?

Geben Sie die konforme Abbildung an, um nach Bild 2.16 das Feld einer Kon-
densatorplatte zu berechnen, die sich iiber giner unbegrenzten Ebene befindet (Ver-
fahren zur Berechnung der Randstérungern dines Plattenkondensators).

Welche konformen Abbildungen sind durchzufithren, um das elektrische Feld
zwischen den Schalen eines geschlitzten zylindrischen Leiters mit endlicher Wand-
stédrke zu berechnen? Die beiden Halbschalen befinden sich auf entgegengesetztem
Potential. Der Innenleiter hat das Potential Null. Stellen Sie die Gleichungen zur
Bestimmung der Parameter auf.

In der zylindrischen Koaxialleitung mit geschlitztem Auflenleiter befinden sich
die beiden Halbschalen des AuBenleiters auf dem Potential +@®,, der Innenleiter
auf dem Potential —®,. Welche konformen Abbildungen sind zur Berechnung
der Kapazitat durchzufithren?
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2.3. Magnetische Eigenschaften der Stoffe

E Einfiihrung

Die Magnetisierung 9t eines Stoffes ist nach (1.1./23) durch die Beziehung

B =pH =md + M (1)

definiert. Zwischen der Magnetisierung 9t und der magnetischen Feldstdrke $ be-
steht nach (1) der Zusammenhang

M= (r — u) O = uexH. (2)
Darin bezeichnet
M — Mo
Mo

die magnetische Suszeptibilitit.
Als Suszeptibilitdt je Kilomol definiert man die Grofle

= —1 (2a)

x =

_xM

Q >
die sich aus den atomaren Eigenschaften ableiten 1at. M gibt darin die Masse eines
Kilomols, ¢ die Massendichte an.

Ein kleiner Kérper vom Volumen A4V mit der Magnetisierung 9t in ]edem Punkte
stellt einen Magneten mit dem magnetischen Moment

Amy, = ‘)JEAVl 3)

dar.

Beispiel 6

Die Zelle eines magnetischen Informationsspeichers habe das Volumen AV = 10~ m?3. Der
bindre Grundzustand O sei durch Saéttigungsmagnetisierung in Richtung der z-Achse gekenn-
zeichnet. Die Sattigungsmagnetisierung sei gleich Mgy = 1,2 Vs m~2. Bei Speicherung der In-
formation O stellt die Zelle daher einen Magneten mit dem Moment

e

Amy =1,2-107% Vsm
dar, das die Richtung der z-Achse hat.

Fir diamagnetische Stoffe ist » << 0. Diese haben urspriinglich kein magnetisches
Moment. Es wird erst durch das duflere Feld induziert, wobei die LENzsche Regel
gilt (vgl. 1.4.1.). Der induzierte elektrische Strom, dessen Triger die Elektronen
sind, ist daher dem Strom der Feldspule entgegengerichtet. Ebenso ist das magne-
tische Moment der Elementarmagnete dem Moment der Feldspule entgegengerichtet.

In paramagnetischen Stoffen haben die Molekiile auch ohne das duflere Feld magne-
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tische Momente. Die magnetischen Momente sind statistisch iiber den gesamten
Korper verteilt, so dafl dieser als Ganzes kein magnetisches Moment zeigt.

Im Magnetfeld erhalten die Achsen der molekularen Momente eine Vorzugsrichtung.
Nur ein schwach iiberwiegender Teil der Molekiile besitzt eine magnetische Kom-
ponente in der Vorzugsrichtung, wihrend bei einem nur wenig kleineren Teil diese
Komponente in die entgegengesetzte Richtung weist. Infolgedessen ist die Suszep-
tibilitdt bei paramagnetischen Stoffen nur wenig gréfBer als Null (vgl. Tafel 3).

Als Ursache dafiir, dafl ein dufleres Feld die vollstandige Gleichrichtung der Elemen-
tarmagnete nicht erzwingt, hat man die Warmebewegung der Molekiile anzusehen.
Infolgedessen ist die magnetische Suszeptibilitdt » temperaturabhingig. Fiir nicht
zu tiefe Temperaturen gilt das Curiesche Gesetz

%= —. (4)

Bei den ferromagnetischen Stoffen sind Permeabilitdt und Suszeptibilitdt auch in
grober Naherung nicht mehr als Materialkonstanten aufzufassen. Schreibt man den
Zusammenhang zwischen den Feldgréfen in den Formen (1) und (2), so sind x und »
nicht nur von der Stdrke des dulleren Feldes, sondern auch von der Vorgeschichte
der Magnetisierung abhéngig.

B
3

&

BR ;
»  Bild 2.17. Hysteresisschleife. H, Koerzitivfeld-

/ H stdrke, By Remanenz

A

He

Das Verhalten ferromagnetischer Stoffe wird durch die Hysteresisschleife 8 = B(9)
oder auch M = M(P) dargestellt (vgl. Bild 2.17). Steigert man, ausgehend vom
unmagnetischen Zustand, die Feldstdrke ©, so nimmt die Magnetisierung 9 bzw.
die magnetische Fluidichte 8B zunéchst stédrker, dann schwécher zu, bis die Sitti-
gungsmagnetisierung erreicht ist. Fallt $ danach wieder, so nimmt die Magnetisie-
rung langsamer ab, als sie aufgebaut wurde. Fiir § = 0 ist noch immer eine be-
stimmte Magnetisierung Myr = By vorhanden, die als Remanenz bezeichnet wird.
Der ferromagnetische Stoff ist also dann auch ohne dulleres Feld magnetisch. Wird
jetzt ein magnetisches Feld in der entgegengesetzten Richtung aufgebaut, so nimmt
die Magnetisierung weiter ab, bis sie den Wert Null erreicht. Die hierzu gehérige
GriBe der Feldstiarke H bezeichnet man als Koerzitivieldstirke H.. Mit der weiteren
VergroBerung der Feldstdrke in der entgegengesetzten Richtung wird auch die
Magnetisierung des Korpers in der entgegengesetzten Richtung aufgebaut und er-
reicht schlieBlich symmetrisch zur urspriinglichen Sattigungsmagnetisierung ihren
Endwert. Durchlduft § nun eine Folge von entgegengesetzt gleich grofen Endwerten,
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so stellt sich auch fiir die Magnetisierung It eine zyklische Wertefolge ein. Die gra-
phische Darstellung dieses Verhaltens wird als duflerste Hysteresisschleife be-
zeichnet.

Wihrend die Séttigungsmagnetisierung eine Materialkonstante ist, sind die Koerzitiv-
feldstdrke und die Remanenz innerhalb gewisser Grenzen auch noch von anderen
GroBen, z. B. der inneren Spannung, der Schichtstérke, der geometrischen Form,
abhéngig.

Die Grofle

=2 (ta)

ist bei ferromagnetischen Stoffen nicht konstant. Sie ist eine mehrdeutige Funktion
der magnetischen Feldstérke bzw. der magnetischen FluBdichte. Betrachtet man
nur die duflerste Hysteresisschleife aller moglichen Kurven, so gehéren zu jedem
Wert H zwei Werte B und damit zwei Werte u.

Neben der gemédl (1) bzw. (1a) definierten gewchnlichen Permeabilitédt bezeichnet
man die Grofle

Ma = T3 ()
als differentielle Permeabilitit. Sie ist fir alle Wechselvorgénge von Interesse.

Die ferromagnetischen Eigenschaften treten nur unterhalb einer bestimmten Tem-
peratur, dem Curie-Punkt @, auf. Oberhalb ihres CuriE-Punktes verhalten sich ferro-
magnetische Stoffe paramagnetisch. Thre Suszeptibilitdt wird dann durch das Curie-
Weilsche Gesetz

x = (6)

bestimmt. Paramagnetische Substanzen unterscheiden sich hiernach von den ferro-
magnetischen lediglich dadurch, daf ihr Curre-Punkt am absoluten Nullpunkt liegt.
Der Curie-Punkt kennzeichnet dabei die Temperatur, oberhalb der das duflere Feld
nur ein geringfiigiges Ausrichten der Elementarmagnete gegen die Warmebewegung
erzwingen kann.

Das starke Anwachsen der magnetischen Suszeptibilitdt nach Unterschreiten der
Curie-Temperatur zeigt, daBl bei der Magnetisierung nicht einzelne freibewegliche
Magnete ausgerichtet werden, sondern daf es sich um eine Gruppenerscheinung
handelt. Jede dieser Gruppen, die als Wrisssche Bezirke oder auch als Doménen
bezeichnet werden, besteht aus in sich gleichgerichteten Elementarmagneten. In
einem WEeissschen Bezirk ist das ferromagnetische Material auch bei Abwesenheit
duferer Felder bis zur Séattigung magnetisiert, d. h., simtliche Elementarmagnete
des Bezirks sind gleichgerichtet.

Antiferromagnetische Stoffe, wie MnO, MnF,, x-Fe,0,, bestehen aus Ionen. Sie sind
derart angeordnet, daf benachbarte Ionenpaare antiparallele Spinrichtungen haben.
Man kann sich daher das Kristallgitter aus zwei ferromagnetischen Untergittern
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zusammengesetzt denken, die entgegengesetzte Spins aufweisen. Diese Stoffe sind
nach auBen hin diamagnetisch. Nach Uberschreiten einer der Curie-Temperatur
entsprechenden Temperatur zeigen sie wie ferromagnetische Substanzen oberhalb
des Curie-Punktes paramagnetisches Verhalten.

Bei ferrimagnetischen Substanzen oder Ferriten sind die Untergitter nicht gleich
besetzt. Daher iiberwiegt eine Magnetisierungsrichtung. Derartige Stoffe, z. B.
Eisen-Nickel-, Manganoxid, zeigen daher ferromagnetische Eigenschaften, jedoch
ist ihre Sattigungsmagnetisierung kleiner, als es dem Gesamtmoment ihrer Ionen
entspricht.

P Probleme

2.3.1. Steighthenmethode zur Bestimmung der Suszeptibilitit

Zwischen die Polschuhe eines Elektromagneten wird ein Schenkel eines mit fliissigem Sauerstoff
gefiillten Rohres gebracht (vgl. Bild 2.18). Die Steigh6he in diesem Schenkel betriagt # = 2,0 mm.

Bild 2.18. Steighthenmethode

Das Magnetfeld zwischen den Polschuhen hat die Stirke H = 10> A m~1. Berechnen Sie daraus
die magnetische Suszeptibilitit » des fliissigen Sauerstoffes (Dichte ¢ = 1,118 g em™3).

Losung
Die Energiedichte des Magnetfeldes im leeren Raum ist gleich
1 2
win(pg) = ) 1o9?,
im Raum der Permeabilitit » dagegen
) = = u?
m\t) = Py M.
Steigt die Flussigkeit um d#, so ist demzufolge die Energie

1
AW, = ) (r — po) % dh (1)

aufzuwenden. Steht die Fliissigkeit bereits auf der Héhe % und soll um di weiter angehoben
werden, so ist dazu die potentielle Energie

AW o = mg dh = r2mhog dh (2)
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erforderlich. Das Gleichsetzen dieser beiden Ausdriicke liefert

{ .
5 (= o) 8 = hog ®)

bzw. als Steighohe

— 2 Py
p W) & % 11092 (4)
209 209

Fir die Suszeptibilitdt folgt damit die Gleichung

20gh -
= —:‘Z-z- (5)
Uo®

Mit den vorgegebenen Zahlen erhalten wir

2. 103 . .9.10-3
v — 2.1,118 . 10%.9,81 10 — 0,0035.
47 - 1077 - 1010

2.3.2. Magnetisierungsenergie

Eine Speicherzelle mit dem Volumen V = 1076 m? wird durch ein duBeres Feld ummagnetisiert
und anschlieBend durch einen entgegengerichteten Impuls wieder in den Ausgangszustand ge-
bracht. Dabei wird die duBerste Hysteresisschleife einmal durchlaufen (vgl. Bild 2.17). Berechnen
Sie die Energie, die hierbei irreversibel aufzuwenden ist. Die Hysteresisschleife ist durch ein
Rechteck zu nihern, dessen Ausdehnung durch die Koerzitivfeldstirke und die Sittigungs-
magnetisierung bestimmt wird. Als Sattigungsmagnetisierung ist Mg = 2,0 Vs m~2, als Koerzitiv-
feldstidrke H, = 5 - 10* A m~! einzusetzen.

Losung
Nach (1.4./21) éndert sich die Energiedichte bei der Magnetisierung um
dwy = $ - dB. 1)

Bei einmaligem Durchlaufen der Hysteresisschleife erhélt man daraus fir die aufzuwendende
Energie

Wm=V56$)-d%. (La)
GemiB (2.3./1) schreiben wir

dAB = po dH + dI. (2)
Damit folgt aus (1)

gS@-d%=,uugS@-d©+gﬁ@-d9)‘c. 3)

Das erste Umlaufintegral verschwindet. Das zweite ist gleich der von der Hysteresisschleife ein-
geschlossenen Flache:

gﬁbd?R:gS@d%:WT’“. 4)
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Bei Annéherung durch das Rechteck aus Sattigungsmagnetisierung und Koerzitivieldstérke er-
gibt sich aus (3)

Vgﬁ@.d%:VgSSg-dsm=10—16-2-2,0-2-5-104J=4.10—11J.

2.3.3. Richardson —Einstein — de-Haas-Etffekt (Gyromagnetischer Effekt)

Nach dem Modell der klassischen Physik ist der Magnetismus auf Elementarstréme, d. h. auf
kreisende Elektronen, zuriickzufithren. Bei der Magnetisierung werden diese gleichgerichtet. Die
Magnetisierung oder Entmagnetisierung eines Stoffes mufl demzufolge mit einem mechanischen
Drehimpuls verkniipft sein. Berechnen Sie diesen nach der klassischen Atomtheorie.

Losung

Ein Elektron e~ umfahre mit der Geschwindigkeit v eine Kreisbahn vom Radius 7. Das entspricht
dem Strom

I=— (1)

z Bild 2.19. Umlaufendes Elektron

(vgl. Bild 2.19). Das magnetische Moment dieses Kreisstroms ist gleich

e
m:onQI:uo?bx:, (2)

wobei A den Kreisflichenvektor angibt. Durch das kreisende Elektron (Masse m,) entsteht der
Drehimpuls

I = mer X 0. (3)

Das magnetische Moment und der erzeugte Drehimpuls sind somit durch die Formel

e
m= g~ ! (4)
“«lite

miteinander verkniipft.

Zur experimentellen Messung (vgl. Bild 2.20) héingt man einen Eisenstab in eine Spule und
schickt durch diese den aperiodischen Entladungsstrom eines Kondensators. Nach der Entladung
geht die Magnetisierung 3¢ nicht wieder auf Null zuriick. Infolge der Remanenz bleiben im
Mittel N Bahnvektoren der Elektronenbahnen in der Magnetisierungsrichtung. Der Stab behilt
somit die Magnetisierung

My = Nm. ()
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Die Anderung des Drehimpulses ist gleich
48 = NI. (6)

L

Bild 2.20. Nachweis des gyromagnetischen Effektes

Sie kann aus der erzeugten Drehschwingung des Eisenstabes, in die die mechanischen GréBen
der Anordnung eingehen, gemessen werden. Andererseits kann die remanente Magnetisierung iy
experimentell bestimmt werden. Aus dem Verhéltnis beider MeBwerte folgt nach (5) und (6),
wenn man (3) und (4) beriicksichtigt,

|41 N 2m”

Einsetzen der Zahlenwerte ergibt

. ~6 . . 19
M| _ 12574078 4,60 10 o s At et
A1 2.9,1. 103

Experimentell erhidlt man dagegen

’i’ﬁ—ﬁ] = M 991.105 Al m 1.
m

Aus der groBenordnungsmiBigen und qualitativen Ubereinstimmung beider Ergebnisse folgt,
daB die Elementarmagnete an Drehimpulse gebunden sind und nicht auf elementare Magnet-
stdbchen im Atom zuriickgehen. Andererseits zeigt die Abweichung von der klassischen Theorie,
daB weder das elementare magnetische Moment noch der Drehimpuls auf umlaufende Bahn-
elektronen zuriickzufiithren sind.

Wie in der Quantentheorie aus optischen Untersuchungen geschlossen wird, haben die Elektronen
einen Spin. Sie vollfithren eine Kreiselbewegung um die eigene Achse. Hierdurch wird ihnen ein
bestimmtes magnetisches Moment und ein bestimmter Drehimpuls erteilt. Das Verhiltnis dieser
quantentheoretisch zu ermittelnden GréBen wird durch die experimentellen Messungen bestitigt.

A Aufgaben

A23.1. Wie groB ist die Suszeptibilitidt einer Fliissigkeit, wenn ein Magnetfeld der Stirke
H =4-105 Am™ einen Héhenunterschied im U-Rohr von & = 5,5 mm erzeugt?
Die Dichte der Substanz ist ¢ = 1,1 g cm~3.
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A23.2.

A23.5.

A 2.3.6.

A2.3.7.

A23.8.

2.4.

E

Eine diamagnetische Fliissigkeit der Suszeptibilitdt x = —5-10% wird in ein
U-Rohr gebracht. Welche Feldstirke ist erforderlich, um einen Héhenunterschied
von b = 1,0 mm zu erzielen, wenn die Dichte der Fliissigkeit ¢ = 1,4 g cm~2 be-
tragt?

Stellen Sie die Formel fiir die Steighéhe in einem U-Rohr bei Anwesenheit eines
elektrischen Feldes auf.

Eine Legierung hat bei 18°C die magnetische Suszeptibilitdt » = 3,3 - 104, Be-
rechnen Sie nach dem CurIEschen Gesetz die Suszeptibilitit fiir —196°C (CURIE-
Temperatur @ = 0 K).

Berechnen Sie aus der Sittigungsmagnetisierung des Eisens das magnetische
Moment eines Atoms. Die Sittigungsmagnetisierung betrigt Mg = 2,18 Vs m~2,
die Dichte ¢ = 7,8 g cm—3, die relative Atommasse 4, = 55,8.

Vergleichen Sie das magnetische Moment eines Eisenatoms mit dem Bomrschen
Magneton

Die Hysteresisschleife fiir Schmiedeeisen werde durch ein Rechteck genihert, dessen

“eine Seite durch die doppelte Koerzitivfeldstirke, dessen andere Seite durch die

doppelte Sattigungsmagnetisierung bestimmt ist. Welche Energie ist fur einen
Umlauf erforderlich? (Masse m = 1 kg, Dichte ¢ = 7,8 g cm—3, Séttigungsmagne-
tisierung Mg = 2,1 Vs m—2, Koerzitivieldstirke H, = 2,5+ 103 Am™1.)

Der Curie-Punkt des Eisens liegt bei 1043 K. Berechnen Sie die mittlere Warme-
energie eines Teilchens nach der klassischen Statistik und bestimmen Sie die magne-
tische Feldstirke H, die zu einer so groflen Energie fithrt, daB sie die Wirme-
energie kompensiert.

Randwertaufgaben der Magnetostatik

Einfiihrung

Das Verhalten der elektromagnetischen Grof8en im Falle des statischen Feldes wird
durch die MaxwerLschen Gleichungen (2.1./1)

rot § =0 (1), rot € =0 (1a),
div® =0 2), div® = (2a)

und die Randbedingungen (1.4./12) und (1.4./11)

(1 — D) xn=0 (3), €E —Cpxn=0 (3a)

sowie (1.4./16) und (1.4./15)

(Br—Bu)-n=0 (4), (D1 — D) n=0c (43)

bestimmt. Fiir ¢ = 0, 0 = 0 entsprechen sich somit die GréBen € und § zur Be-
schreibung des Feldes einerseits und die Grofen ® und B zur Charakterisierung des
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Mediums andererseits. Man kann daher wegen (1) das skalare magnetische Potential ¥
mittels

H =—grad ¥ (3)
einfiihren. Durch Ubertragung der Formeln (1.2./9) ergibt sich fiir ¥ die Differential-

gleichung
l AP =0 (6)

Die Ubertragung der Formeln (1.2./10) und (1.2./11) fithrt fiir das magnetische
Potential auf die Randbedingungen

(‘-IUI)Rand = (ngI)Rand> i (7)
oW, (8%
i (W)Rand — ( on Rand \ (8)

Infolge der Analogie zwischen den elektrischen und den magnetischen Gréfien
kénnen die in den Abschnitten 2.1. und 2.2. dargelegten Methoden auf die Magneto-
statik iibertragen werden.

Fir die magnetostatische Betrachtung sind auf Grund der technischen Anwendung
besonders homogene Felder von Interesse. Bei homogenen Feldern laufen die Feld-
linien parallel. Wird ein Ellipsoid (Grenzfille: Kugel, Zylinder bzw. zylindrischer
Stab, Scheibe) in ein homogenes Feld gebracht, so bildet sich auch in diesem Kdorper
ein homogenes Feld aus. Es hat die Stidrke H;, die im allgemeinen von der Stirke H,
des dulleren Feldes abweicht. Der Zusammenhang zwischen den beiden Feldgréfien
wird bei homogenen Feldern in der Form

9.
. L — 9
R ©
dargestellt. N wird als Entmagnetisierungsfaktor bezeichnet. Er ist von der Geo-
metrie des eingeschlossenen Ellipsoids und von der Richtung des duBeren Feldes
abhéngig (vgl. 2.4.2./18). Die GroBe

fre = 4 (10)

~a

gibt die Permeabilitdt des eingeschlossenen Mediums relativ zur Permeabilitit des
umgebenden Mediums an.
Ist das umgebende Medium Vakuum, so kann man

W
Mrel = Uri = = (11)
Mo
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schreiben. Fiir die Feldstédrke im eingeschlossenen Medium erhilt man dann

M
| = — N =, 12
D1 = 9a " (12)
wobei
M = wolun — 1) O (13)

die Magnetisierung des eingeschlossenen Mediums angibt. Auf Grund dieses Zu-
sammenhanges wird N Entmagnetisierungsfaktor genannt.

Ersetzt man fiir den Fall, dal das umgebende Medium Vakuum ist, die relative
Permeabilitat durch die Suszeptibilitét, so folgt aus (9)

_ _ 5
o= | (14)

Fiir das Rotationsellipsoid mit der numerischen Exzentrizitit ¢ hat der Entmagne-
tisierungsfaktor den Wert (vgl. 2.4.2.)

2 |
y=" g(-;—lans—s). (15)

&3 1—¢

Bei der homogenen Kugel ergibt sich daraus durch Reihenentwicklung fiir den Grenz-
fall ¢ — 0 der Entmagnetisierungsfaktor N = 1/3. Der Entmagnetisierungsfaktor
wird sinnvoll nur fiir das homogene Feld des Ellipsoids und seiner Ausartungen
Kugel, Stab, Scheibe angewandt. In allen anderen Féllen ergeben sich innerhalb des
betrachteten Korpers inhomogene Felder.

Die aufgefithrten Formeln fiir den Entmagnetisierungsfaktor N gelten unter der
Voraussetzung eines Magnetisierungsgesetzes nach (3.1./1)

B = pe + M.
In einer Reihe von Lehrbiichern wird die Magnetisierung durch
B = e + 4=’

definiert. In diesem Falle ergibt sich ein Entmagnetisierungsfaktor N', der mit IV
durch die Gleichung

N’ =4nN

zusammenhéngt. Fiir die Suszeptibilitédt besteht die Umrechnungsformel

’
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P Probleme

2.4.1. Entmagnetisierungsfaktor einer homogenen Kugel

Berechnen Sie den Entmagnetisierungsfaktor IV einer Kugel unter der Voraussetzung, daf die
Kugel vollig homogen ist. Wie grof3 ist die Feldstérke in der Kugel, wenn diese die relative
Permeabilitit u, = 75000 (Sattigungsmagnetisierung fiir Mo-Permalloy) besitzt. Die AuBenfeld-
stirke ohne Kugel betragt H, = 10* A m~'. Das Auflenmedium sei Vakuum.

Losung

Wir tibertragen die Formeln aus 2.1.5. auf das Magnetfeld und erhalten nach Formel (2.1.5./12)
fur das homogene Feld in der Kugel

R 3
0= Do = Da- (1)
) Mi + 24 * Hrel + 2 :

Dabei ist
fre ==L )
2

die relative Permeabilitdt des Innenmediums gegen das AuBenmedium. Zur Bestimmung des
Entmagnetisierungsfaktors N schreiben wir nach (2.4./9)

R S 3
R T ®

(1) umgeformt liefert

b= — @
1+ 3 (trer — 1)

-

Aus dem Vergleich von (3) und (4) ergibt sich
y=21
3

Mit den vorgegebenen Zahlen erhalten wir aus (3)

10000 - Am~?

1+ % (75000 — 1)

= (0,40 Am~1.

191l =

Innerhalb der Kugel ist also nur ein schwaches Feld festzustellen.

2.4.2. Magnetfeld in einem Rotaticnsellipsoid

Berechnen Sie das Magnetfeld in einem Rotationsellipsoid mit den Halbachsen ¢y = b, = 4 cm,
¢o = 10 em. Die relative Permeabilitit des Mediums gegen das AuBenmedium betragt u, = 125.
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Das AuBenfeld verlduft parallel zur groen Achse und hat die Stirke H, = 10 A m™.

Losung
Wir fithren rotationselliptische Koordinaten u, v, @ ein. Sie sind mit den Cartesischen Koordinaten
z, Y, z gemaf

2 = ¢ sinh u sin v cos @,
y = ¢sinhusinvsing, (1)
z = ¢ cosh u cos v

verkntiipft. Die elliptische Koordinate « ist mit @, y, z durch die Gleichung

2 2 2
Gl z 1 (1a)

¢? sinh2?w ¢® cosh u?

verbunden. % = u, stellt nach (la) ein Rotationsellipsoid dar, fiir das a, = b, = ¢ sinh u,,

¢y = c cosh uy, ¢ = Ye? — a,? gilt.
Wir rechnen die Potentialgleichung A® = 0 in u, v, p-Koordinaten um, wobei wir Beziehungen
der Form

benutzen. Es folgt bei Unabhéngigkeit von der zyklischen Koordinate ¢
2 sinh % sin » @ + g sinh % sin » @- =0. (2)
ou ou ov ov

Als Losung dieser Gleichung fiir den Innenraum schreiben wir

®; = Cjz = C; cosh w cos v. (3)

Im Auflenraum gehen wir von dem Ansatz

@, = C, cosh u cos v -+ f(u) cos v (4)

aus. Das Feld im AuBenraum setzt sich also aus der Uberlagerung eines homogenen Feldes und
eines durch das Ellipsoid verursachten Stérfeldes zusammen.
Wir setzen (4) in (2) ein und erhalten fir f(») die Differentialgleichung

diu [sinh u (% — 2 sinh uf(u):| =0. (©)

Mit dem Ansatz

flu) = cosh u g(u) (6)
ergibt sich aus (5)

d%g  3sinh?w 4-1dyg

dut T sinhucoshw du w
Diese Gleichung hat die Losung

A coshu —1 2
= — (I B. 8
o) 2 (n coshu +1  cosh u) * ®)
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Hierin kann man B = 0 setzen. Fiir das Potential des AuBenraumes folgt

coshu . coshu —1 )
5 In m) cos v 4 C, cosh u cos v. (9)

P, =4 (1 +
C, ist als vorgegeben zu betrachten.
An der Oberfliche des Ellipsoids bestehen die Randbedingungen

60, 00,

—t mit ty = A (10)
on

@ =0,, /‘r'a_‘
n Ha

Die Ableitung in Richtung der Oberflichennormalen n ist identisch mit der Ableitung in Richtung
des Linienelementes ds;,. Das allgemeine Linienelement ds im u,v, ¢-Raum ist durch

ds? = da? + dy® + dz? = (cosh® w — cos? v) (du? + dv?) + sinh? w sin® v dg® (11)
bestimmt. Fiir festes » und festes @ erhélt man aus (11) als Linienelement der u-Linien
ds, = Vcosh? u — cos? v du. (12)

Die Ubergangsbedingungen (10) ergeben damit fiir u = u, das Gleichungssystem

4 (L ‘_ilnfﬁlluo__l —C=—0C,, (13)
cosh u, 2 coshwuy +1

) c?sh Uy +_1_1ncoshu0—1 — 1,0, — 0. (14)
sinh? u, 2 cosh u; + 1

Seine Lésung lautet

C; = O; " G (15)
cosh uy —
1— — 1) sinh? 1 + — cosh %y In ———2——
(1 ) sinh? u, ( + ) o Cosh g T 1)
A = cosh u, sinh? u, (¢, — 1) C;. (161
Fiithrt man die numerische Exzentrizitit
et 1 (17
Co ccoshu,  coshu,
ein, (¢ und ¢, wie in (1a)), so folgt aus (15),
0 = e : (15)
— & + &
1 —1 —1 —
=1 (2 o e)

Wie aus (3) und (4) zu entnehmen ist, gibt C;/C, das Verhiltnis zwischen dem homogenen Feld
innerhalb und dem homogenen Feldanteil auBerhalb des Ellipsoids an. Dafiir ergibt sich nach
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(17) und (18)
_ 1100 — 16

— 0,917,
10
%= 0,16 11 1,017 = 0,008,
s g p194 22 (=222l o017
0,917 \2 ~ 0,083

Dem homogenen Feld im AuBlenraum von 10 A m~! entspricht im Innern des Ellipsoids ein Feld
der Stiarke 0,66 A m—1.

2.4.3. Magnetield in einem Kreiszylinder
Berechnen Sie das Magnetfeld in einem diinnen Kreiszylinder. Das Feld im umgebenden Medium
ist parallel zur Zylinderachse gerichtet. Welchen Wert hat der Entmagnetisierungsfaktor N?
Losung
Wir gehen von (2.4.2./15) und (2.4.2./16) aus. Das durch (2.4.2./1a) fiir u = u, festgelegte Ellipsoid
entartet in einen Kreiszylinder, wenn der Grenzubercang e—1bzw. uy—0 durchgefuhrt wird.
Aus (2.4.2./18) erhilt man fur

0=1—¢—0
das Verhéltnis der Feldstérken auBerhalb und innerhalb des Zylinders

C 2
—2 _ 1 % = .
%) + %6 (ln 3 2) 1)

Der natiirliche Logarithmus In § strebt schwécher einem Grenzwert zu als jede Potenz 67. Es
folgt daher

lim Ca _
=0 C; =1. @

In einem diinnen Stab gilt somit
H =H,. (3)

Das Innenfeld ist unabhéngig vom Medium gleich dem homogenen AuBenfeld. Auf Grund der:
Gleichung (2.4./9) folgt hieraus tir den Entmagnetisierungsfaktor

N=0. (4)
2.4.4. Homogenes Magnetfeld in einem Hohlraum

In Texturisoperm, das die relative Permeabilitit u,, = 125 besitzt, befindet sich ein kugelférmiger
Hohlraum mit der relativen Permeabilitét y;, = 1. Das homogene Magnetfeld im Isoperm hat die
Stirke H, = 1000 A m~*. Wie grof3 ist die Feldstédrke im Hohlraum?

Losung

Nach (2.4./9) ist das homogene Magnetfeld in der Kugel durch

Ha

A —
14+ N — 1)

9 Schilling, Felder
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bestimmt. Im vorliegenden Fall ist

Hir 1 S
g = M 2 2
Hrel far 12 (2)

(=}

Der Entmagnetisierungsfaktor N hat nach (2.4.1./5) fir die Kugel den Wert 1/3. Somit erhalten
wir

Hi = %——Am‘l = 997,4Am'1.
1 —_
* 3 125

Das homogene Feld des Innenraumes hat praktisch die gleiche Intensitdt wie das ungestorte
homogene Feld des AuBenraumes.

A Aufgaben

A24.1. Eine Kugel der relativen Permeabilitit u, = 10000 (Sattigungsmagnetisierung von
Hyperm 20) wird in ein homogenes Feld der Stirke H, = 20000 A m~* gebracht.
Wie groB ist das Feld H; in der Kugel?

A24.2. Im AuBenfeld liege die Feldstirke H, = 1000 A m~! vor. Das Aulenmedium sei
Luft. Wie groB ist das Feld in einer homogenen Kugel mit der Suszeptibilitit
x = 10737

A243. Bestimmen Sie aus dem Feld eines Rotationsellipsoids durch Grenziibergang den

Entmagnetisierungsfaktor eines homogenen Vollzylinders, wenn die Magnetisierung
senkrecht zur Zylinderachse erfolgt.

A24.4. Wie groB3 ist das Magnetfeld in einem langgestreckten zylindrischen Hohlraum
(Vakuum), wenn das homogene Feld im umgebenden Medium senkrecht zur Zy-
linderachse gerichtet ist und die Stdarke H, = 10000 Am=! hat? Die relative
Permeabilitdt des umgebenden Mediums sei gleich w,, = 10000.

A24.5. Berechnen Sie durch Grenziibergang aus einem Ellipsoid den Entmagnetisierungs-
faktor einer flachen Scheibe bei Magnetisierung senkrecht und parallel zur Platten-
ebene.

A24.6. Eine flache Scheibe der relativen Permeabilitat u,; = 1000 befindet sich in einem

homogenen Magnetfeld der Starke H, = 20000 A m~*. Wie gro8 ist das Feld in
der Scheibe, wenn diese so gedreht wird, da8

a) die Feldlinien parallel zur Scheibe verlaufen, b) die Feldlinien senkrecht zur
Scheibenebene stehen?

A24.7. Berechnen Sie den Entmagnetisierungsfaktor eines Rotationsellipsoids mit den
folgenden Halbachsen: ay = b, = 8 cm, ¢, = 15 cm. Das homogene AuBlenfeld ver-
lauft parallel zur Rotationsachse.

A24.8. Im Zentrum einer groBen Kugel aus Supermalloy (u, = 900000) befindet sich
ein kleinerer kugelférmiger Hohlraum. Aulerhalb der massiven Kugel betrigt die
Feldstarke H = 10® A m~. Wie groB8 ist die Feldstdrke in der kleinen Hohlkugel,
wenn man annimmt, da8 diese den Ubergang der Feldlinien aus dem AuBenraum
in die massive Kugel nicht stort?

A2497*%  Stellen Sie die Formel fir das homogene Feld H; im Innern einer Kugelschale auf,
die in ein duBeres homogenes Feld der Stérke H, gebracht wird. Berechnen Sie
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A 2.4.10.%

A24.11.

das Feld H; fur H, = 1000 Am™, R =99cm, R, = 10,0cm, u, = 100000

(Permalloy).

In einem inhomogenen Magnetfeld der Form $ = H f(x)i mit ? > 0 be-
. @

finden sich para- und diamagnetische Stoffe kleiner Ausdehnung. Berechnen Sie

die resultierende Kraft auf diese und leiten Sie daraus ihr Verhalten im inhomogenen

Feld her.

Berechnen Sie die Inklination der Magnetnadel als Funktion der geographischen

Breite, wenn die Erde als gleichméBig magnetisierte Kugel aufgefat und die

MiBweisung der Magnetnadel vernachléssigt wird.



3 o Der stationiire Strom und sein Magnetfeld

3.1. Das Magnetfeld homogener Leiter, in Stromschleifen und Spulen

E Eintiihrung

Die MaxwerLsche Theorie stationérer Felder untersucht Vorginge, bei denen sich
das Feld zeitlich nicht dndert. Sdmtliche Ableitungen nach der Zeit sind gleich Null:

< —o.
a

Im Gegensatz zur Elektrostatik werden Gleichstrome zugelassen. Die Stromdichte
ist konstant, jedoch nicht gleich Null. Aus 1.4. erhédlt man bei stationidren Feldern
das folgende System der MaxwEeLLschen Gleichungen

rot € =0, (1)
rot =3, (2)
div® =g, (3)
div® = 0. (4)

Zu seiner Loésung werden das skalare Potential @ und das Vektorpotential 9( ein-
gefiihrt. Aus Gleichung (1) folgt wie im statischen Falle die Existenz eines skalaren
Potentials @ zur Darstellung der elektrischen Feldstérke:

[ € = —grad @ l (5)

Gleichung (4) gestattet es, die magnetische FluBdichte B aus einem Vektorpotential
A abzuleiten:

B =rot A |. (6)
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Zwischen 8B und 9 besteht die Verkniipfung

B =pud.
Man kann daher die magnetische Feldstarke $ mittels

1
= —rot A (7)
v u
durch das Vektorpotential 9 ausdriicken.
Fiir ein einheitliches Medium ergibt sich aus (2) in Verbindung mit dem Ansatz (7)
urot § = rot rot A = u3J. (8)

Wendet man die Operatorenbeziehung A = grad div — rot rot an (vgl. A 1.3.6.),
so folgt aus (8)

rotrot A = grad div Y — AU = uJ. 9)

Bei vorgegebener magnetischer FluBdichte B ist das Vektorpotential A nur bis auf
den Gradienten einer beliebigen Ortsfunktion f = f(r) bestimmt: Wird die Be-
ziehung (6) von einer Vektorfunktion ,(x) erfiillt, so wird sie auch von der Vektor-
funktion

A(r) = Ao(r) -+ grad f(x) (10)
erfiillt. Das folgt aus der allgemeingiiltigen Gleichung

rot grad f(r) = 0.
Mit

B = rot Wy(t)
wird daher auch die Beziehung

B = rot [A(r) + grad f(r)]

befriedigt. Ist demzufolge eine beliebige Losung ,(r) der Gleichung (6) bekannt, so
kann die Ortsfunktion f = f(r) derart festgelegt werden, daBl sie die Bedingungs-
gleichung

div grad f(r) = —div Ay(r) (11)
erfiillt. Fiir das Vektorpotential A = 2A(r) nach (10) ergibt sich damit
div % = div (A, + grad f) = 0. (12)

Hat man eine Funktion f(r) mit der geforderten Eigenschaft (11) bestimmt, so erhilt
man anstelle der komplizierten Gleichung (9)

IA‘X = —uJ (13)
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als Differentialgleichung des Vektorpotentials . Diese stimmt mit der Poissonschen
Gleichung (2.1./6) tiberein.
Als Losung der Gleichung (13) im Punkte P, erhélt man analog (2.1./8)

1 uJ(P) dV(P)
A(P,) _ZﬂfffT' (14)
X

P durchlduft bei der Integration alle Punkte des Volumens V.
Beispiel 7

Es ist das Magnetfeld eines stromdurchilossenen geraden Leiters aus seinem Vektorpotential
zu bestimmen. Die Stromstérke sei I.

z
¢

TPpy

(5. 9p2p)

N
[}
S|~

z=0

Plr,@,2)

|~

z=-

Bild 3.1. Zum Magnetfeld eines geraden Leiterstiicks der Lange [

Zur Losung dieser Aufgabe wird die Richtung des elektrischen Stromes als z-Achse gewahlt. Es
gilt somit J = J,e,. Ferner ist J dV = I dz. Fir ein endlich langes Leiterstiick der Lénge I
kann man den Koordinatenanfangspunkt in die Mitte des Leiters legen (vgl. Bild 3.1). Es seien
o Pos %o die Zylinderkoordinaten des Punktes P, in dem das Feld bestimmt werden soll. Die
Punkte P des Integrationsgebietes werden durch die Zylinderkoordinaten r, ¢,z dargestellt.
Nach (14) erhdlt man damit als einzige Komponente des Vektorpotentials

L
+ 2
I d
A = £o 7__; (15)
4= | Ye—a + 1o
3
)

Dieses Integral wird mit Hilfe der Substitution { = z — 2z, umgeformt:
!
L
Al
4r V2 + vl
!

2o

A (16)

2
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Zur Berechnung des Magnetfeldes ist es nicht erforderlich, dieses Integral auszuwerten. Nach (7)
und (1.3./7a) erhédlt man durch Differentiation

'—_Zo

1
= o ery 4w fl/ﬂ - r23 (17

“'—_Zo

Die anderen beiden Zylinderkomponenten sind gleich Null. Aus (17) folgt, wenn man nunmehr
integriert,
! !

> "% o> T

I 2 N 2

Im Grenzfall eines unendlich langen Leiters ergibt sich fiir das Vektorpotential 2 nach (16)
ein unbestimmter Ausdruck. Dagegen erhilt man aus (18) durch Grenziibergang I — oo far die
magnetische Feldstirke in der Umgebung eines unendlich langen stromdurchflossenen Drahtes

lim 9, = L. (19)

v
=00 2mr,

Wie man aus dieser Ableitung entnimmt, ist es nicht immer zweckméBig, das Vektorpotential
direkt zu berechnen. In zahlreichen Féllen ergeben sich die magnetischen Feldkomponenten
auch, wenn das Vektorpotential selbst in einen unbestimmten Ausdruck iibergeht.

Aus der Losung (14) fur die Poissonsche Gleichung (13) 1468t sich das Biot-Savartsche
Gesetz ableiten (vgl. Bild 3.2). Es gilt fiir linienférmige Leiter und Strombahnen.

as
Bild 3.2. Zum magnetischen Feld eines Strom-
P 1 Y] elements I d3(P) im Punkt P,
2

Aus dem Leiter wird ein Linienelement d3 = d3(P) herausgegriffen. Sein Beitrag
zum Vektorpotential ist durch § dV = I d3 bestimmt, wobei I die Stromstérke im
Leiterelement bezeichnet. Fiir den Beitrag des herausgegriffenen Stromelementes
I d3 zum Vektorpotential folgt damit nach (14)

,uIdé’a
e

d = (20)

Der Beitrag zur magnetischen FluBdichte 9B ergibt sich aus (20):

I dé d@
as = ”—rtpo - Vpo - (21)
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Bei der Rotorbildung ist nur die Gré8e r = rpp, des Abstandes zwischen P und P,
zu differenzieren, da das Leiterelement d3(P) nicht vom Aufpunkt P, abhingt.
Daher erhélt man (vgl. 1.2. A 3.)

ds 1 dsxr dsxe
Voo X — = Vpo —x dg — = T :

Po X , Po X dg o 12 (22)
wobei e, den Einheitsvektor in Richtung ¢ angibt.
Setzt man (22) in (21) ein, so folgt das Bror-SavartTsche Gesetz in der Form

ul d3 X e, I (23)
d = —_—— . = —— .
B y— bzw a9 i d3 x e,

Das Bror-SavarTsche Gesetz in der differentiellen Schreibweise (23) kann anschau-
lich so aufgefallt werden, daf} der gesamte Stromkreis mit Ausnahme des betrach-
teten Leiterelementes gegen Strahlung nach auBen abgeschirmt ist. Die Feld-
starke B im Punkte P, folgt durch Summierung iiber die von sdmtlichen Strom-
elementen erzeugten differentiellen Felder.

P Probhleme

3.1.1. Das Magnetfeld der Koaxialleitung (Zylinderkondensator)

In einer Koaxialleitung (Zylinderkondensator unendlicher Lange, vgl. Bild 2.3) betragt der
Radius des kompakten Innenleiters RB; = 3 mm, der Innenradius des AuBenleiters B, = 8 mm.
Berechnen Sie das Magnetfeld, wenn die Stromstérke I = 0,1 A betrigt. Wie groB ist die Feld-
stdrke a) an der Innenleiter-, b) an der AuBenleiterwandung?

Losung

Wegen der MaxweLLschen Gleichung (3.1./2) besteht zwischen der Stromdichte § und der magne-
tischen Feldstirke § die Beziehung

rot = . (1)
Nach dem SroxEesschen Satz (1.3./10) gilt

[[rotp-du=¢-as. 2)
Beim Umlauf auf einer Kreisbahn mit dem Radius r folgt

P o-ds =207, (3)
Andererseits erhilt man fiur R, <r < R,

ffs-a%t:L (4)
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wobei I die Stromstérke im Innenleiter bezeichnet. Daraus ergibt sich

o = L (5)

T om”

Die tibrigen Komponenten verschwinden, wenn man Randstérungen an den beiden Leiterenden
vernachlédssigen, d. h. wie mit einem Zylinderkondensator unendlicher Lénge rechnen kann.
An der Innenleiterwandung folgt mit den vorgegebenen Zahlen

0,1

= 2———3——1'6—3' Aml = 5,31A m—l,
T-3.10"

(@r)i

an der Auflenleiterwandung

0,1

————— Am1=1,99 Am™1.
2r - 8103

(D7) =
Diese Werte sind identisch mit der Oberfldchenstromdichte.

3.1.2. Ringspule (Toroid)

Eine Spule aus » = 1000 Windungen ist gleichm#Big auf einen Ring mit kreisformigem Quer-
schnitt gewickelt. Der AuBendurchmesser 2R, und der Innendurchmesser 2R; des Ringes seien
grofB3 gegen den Querschnittdurchmesser 2(R, — R;) (vgl. Bild 3.3). Berechnen Sie das Magnetfeld
in der Ringspule, wenn durch diese der Strom I = 0,1 A flieBt (R, = 10 cm, R; = 9,5 cm).

Bild 3.3. Ringspule

Losung
Wir gehen von der MaxwEerLschen Gleichung (3.1./2)

rot  =J (€
aus. Integration liefert nach dem StoxEesschen Satz (1.3./10)
[[rotp-au=¢p-as=[[F-au=1. )

Als Integrationsweg C wihlen wir eine innerhalb des Ringes verlaufende Kreislinie, und zwar
den Mittelwert

®3)
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Die Kreislinie umschlingt den flieBenden Strom n-mal. Es folgt damit aus (2)
¢ ©-ds = HomR = nl. 4)
Wir kénnen die Lange 2rR der Umlaufkurve gleich I setzen und erhalten damit aus (4)

="l (3)
l (R, + R;)
Diese Formel stimmt mit Gl. (1.1./18) fiir die Feldstérke in einer Zylinderspule iiberein. Die
Zylinderspule ergibt sich aus der Ringspule, wenn diese auseinandergebogen wird.
Zahlen eingesetzt, folgt aus (5)

e —1000-01 4 163 Am.
314-195-10¢

3.1.3. Ringspule mit Luftspalt

Ein mit einem Schlitz der Breite b6 = 2,5 mm versehener Ringmagnet ist mit einer Spule aus
n = 10000 Windungen umwickelt (vgl. Bild 1.18 und Bild 3.3); durch die Spule flieBt der Strom.
I = 0,02 A. Die gesamte mittlere Lénge einer Feldlinie im Ringmagneten betrigt einschlieBlich
des Luftspaltes I = 25 cm. Der Querschnitt 4; des Ringmagneten ist gleich 2 em2. Wie durch
Induktionsmessungen festgestellt wird, entspricht dem durch die Spulenwindungen erzeugten
Magnetfeld

H, = nTI = 800 Am™!

im Ringmagneten die magnetische FluBdichte
B; = 0,060 Vs m2.
Die Permeabilitit im Spalt ist gleich u, = .
Berechnen Sie das Magnetfeld im Ringmagneten und im Spalt unter der Voraussetzung, dafl

durch den Luftspalt keine Streuung des Magnetfeldes erfolgt und daB man das Feld im Ring-
magneten als homogen auffassen kann. Wie grof ist die Magnetisierung?

Losung
Nach (1.1./25) gilt

¢ o-as=nl. (1)
Daraus folgt

Hi(l —b) 4+ Hyb =nl = Hl. (2)
Darin bedeutet H; die Stérke des Feldes im Ringmagneten, H, im Luftspalt. H,, wird als sym-
bolische Grofe eingefithrt und gibt das Feld einer Spule der Lénge ! aus » Windungen geméif

(1.1./18) an. Die Quellenfreiheit div 8 = 0 der magnetischen FluBdichte bedingt die Beziehung

Bi4; = B,A,, (3)
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wobei 4, den Querschnitt des Luftspaltes angibt. Dieser ist bei einem homogenen Feld, wenn
keine Streuung der Feldlinien stattfindet, gleich dem Querschnitt 4; des Ringmagneten.
Ferner gilt im Luftspalt

Ba = :“aHa! (4>
dagegen im Ringmagneten
By = ol + M. (5)

(4) und (5) in (3) eingesetzt, ergibt wegen u, = y,
.LM
(Hi + —) A = HA,. (6)
Mo

(2) und (6) bilden ein Gleichungssystem zur Bestimmung der beiden Unbekannten H; und H,.
Es folgt

H + L i —v)
_ o 7
Hy— —— o 4 (7)
foAp+A0—b) !

Hyld, — L b4,

H—=— f (8)
A — A (1 —b)

Aus (5) und (8) erhilt man fiir die Magnetisierung des Ringmagneten die Gleichung

H,A,l — MA,
— B — uH =B — p, —owfat = B 9
M B; Motdj i Mo Ab + A, —b) 9)
woraus
[ Bi[4b + 4,1 — b)] — poH A, . (10)

A,0—b)

folgt. (10) eingesetzt in (7) und (8), gibt die gesuchten Feldstirken. Kann man 4; = 4, = 4
setzen, so fithren (7) und (8) auf

Ha:H\v+ — Hi=H\v4 R (11)
ol Hal
wahrend man aus (10)
M= Bil;ﬂobﬂl (12)

erhilt.
Die Feldstirke im Luftspalt iibersteigt die im Magneten um

H, — H; = A[— (13)
Ho
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Man kann das homogene Feld im Magneten in der Form (2.4./12)

yu
Mo

H —H, — (14)

schreiben. Hieraus ergibt sich der Entmagnetisierungsfaktor N des Ringmagneten, wenn (14)
mit der zweiten Gleichung (11) verglichen wird:

v=2>t.
l
Im vorliegenden Fall ist der Entmagnetisierungsfaktor gleich
0,25

= ==2 = 0,01. 15
%5 (15)

Wir setzen M aus (12) in (11) ein, womit folgt

=B B g _pg (16)

Mit den vorgegebenen Zahlen erhalten wir

= —2060 478100 Amt,
1,257 105
. 4
H, = (800 — 75 10° — 800, 1095) Amt — 325 A m-1.
0,25 — 0,0025

GemdB u,H, = u;H; ergibt sich hieraus fur die relative Permeabilitdt

4,78 . 10*
25

il = = 1900.

Die Magnetisierung wird nach (13) gleich

M=47-1077. (4,78 — 0,32) - 10* Vsm—2 = 3,54 . 102 Vs m2,

3.1.4. Magnetfeld eines Drahtringes und einer kurzen Spule

Ein Drahtring mit dem Durchmesser 2R = 8 cm wird von einem Strom der Stdrke [ =4 A
durchflossen. Wie grof ist das Magnetfeld auf der durch den Mittelpunkt gehenden Achse? Be-
rechnen Sie speziell die Stirke des Feldes im Mittelpunkt und auf der Achse im Abstand
2o = 50 cm.

Wie groB ist das Feld, wenn anstelle des Drahtringes eine sehr kurze Spule aus n = 80 eng-
gewickelten Windungen benutzt wird? Dabei ist vorauszusetzen, daf die Spulenlidnge ! klein ist
gegen den Querschnittsradius der Spule.
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Losung
Nach dem Bror-Savarrschen Gesetz (3.1./23) gibt

ﬁIdéX‘c
4 73

as = (1)

die durch ein Stromelement I d§ im Punkt P, erzeugte magnetische Feldstirke an.
Wir legen den Koordinatenanfangspunkt in die Mitte des kreisférmigen Leiters und wihlen die
Leiterebene als 2, y-Ebene (vgl. Bild 3.4). Es gilt dann fir die Punkte des stromfiihrenden Drahtes

x = Rcosg, y = Rsing. (2)

Bild 3.4. Ringférmiger Draht

Daraus erhilt man fiir den Vektor d3 des Leiterelementes

d3 = R(—sin ¢, cos ¢, 0) de. (3)
Der vom Leiterelement d3 zum Punkt Py (0, 0, z,) auf der Achse gezogene Vektor t ist gleich

t = (—Rcosp, —Rsing, z,). (4)
Daraus ergibt sich

d8 X t = R(z, cos @, 2y sin ¢, R) dg. (5)
Die vém Stromkreis hervorgerufene magnetische Feldstéirke folgt durch Integration:

2n 2m
I d I i
o= = s§xr I R (2o cOS @, 2, sin ¢,3R) de 6)
VB 2

" in F 4n
0

Fiir die Umlaufintegrale iiber die ersten heiden Komponenten erhilt man den Wert Null. Es
bleibt

R2

VRE T 22

In der Mitte der kreisférmigen Windung erhalten wir, wenn wir z, = 0 setzen,

I
'@z = ? (7)

I

i)zzé"é'
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Mit den vorgegebenen Zahlen ergibt sich

Amt =50 Am.

&= 0m

Dagegen folgt fiir das Feld im Abstand z, = 0,5 m auf der Achse
4.0,042
T 20,082 £ 0,5

Fir eine sehr kurze Spule aus 80 Windungen erh6ht sich die Feldstfirke um den Faktor 80. Man
erhilt damit im Zentrum

$, = 4000 A m1,
dagegen im Abstand 50 cm
9., =2,03Am™.

9, =2,54-102 Am,

Diese Multiplikation mit der Windungszahl ist nur gestattet, wenn die Linge der Spule sehr klein
gegen den Querschnittsradius der Spule ist.

3.1.5. Magnetfeld auf der Achse einer endlich langen Spule (Solenoid)

Eine Zylinderspule mit kreisférmigem Querschnitt hat die Lénge I = 5 cm. Der Radius des
Querschnitts betrdgt R = 2 cm, liegt also in der gleichen GréBenordnung wie die Spulenlinge.
Die Zahl der Windungen sei n = 800, der Strom I = 0,04 A. Berechnen Sie das Feld auf der
Spulenachse, in der Mitte und am #uBeren Ende der Spule.
Losung
Wir gehen von der Formel (3.1.4./7) fir die Feldstéarke auf der Achse eines Drahtringes mit dem
Radius R aus. Befindet sich der Mittelpunkt des Drahtringes an der Stelle 2, so wird auf der Achse
an der Stelle z, das Feld

I R2

B )
2V + G — =%

'bz:

erzeugt.
Ein herausgeschnittenes Spulenstiick der Lange dz kénnen wir durch eine Kreisschleife ersetzen,

in der der Strom — I dz flieBt. n bezeichnet dabei die Windungszahl der gesamten Spule. Im

Punkt Py(0, 0, z,) auf der Achse erzeugt das Spulenelement die Feldstirke

- nIR? dz
WWR? + (zy — e

Hieraus erhélt man durch Integration

d9:;

2
nlR? dz
0. = .
z 21 VRE = (z, — 22
!

P
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Durch die Substitution
zo—z= Rtang (4)
ergibt sich

! 1
—2——|—z0 _2‘—20

B D N i / L 2
~ L U DA
arctanzz;—R—l 1/R + (2 I zo) ] B4 (2 ZO)

Wie Gl. (5) zeigt, ist das Feld auf der Achse in der Spulenmitte um so weniger verénderlich, je
linger die Spule ist, d. h., je besser I > R erfiillt ist. Im Grenzfall [ — oo erhélt man in Uberein-
stimmung mit (1.1./18)

(D2)1—>c0 = nTI (6)

Fir die Spulenmitte z, = 0 folgt bei der endlich langen Spule
nl 1 )

? o ZZ ’
Vel

dagegen fir das Spulenende z, = 40,5]

(*i)z)M =

gL ®)
T2 YL
Mit den vorgegebenen Zahlen ergibt sich in der Mitte

~800-0,04 100

Am=500Am1?,
2 V4 + 2,52

9.

dagegen am Ende

_800-0,04 100

9, Am? =297 Am.
2 Ya425

A Aufgaben

A3l Zwei parallele Leiter der Linge ! werden vom Strom I in einander entgegen-
gesetzten Richtungen durchflossen. Bestimmen Sie das Vektorpotential.

A3.1.2. Berechnen Sie das Vektorpotential zweier unendlich langer Leiter, die von einander
entgegengerichteten Stromen durchflossen werden.

 A3.1.3. Zwei unendlich lange parallele Leiter werden von gleichen Strémen in entgegen-

gesetzten Richtungen durchflossen. Bestimmen Sie aus dem Vektorpotential die
magnetischen Feldlinien.
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A3.14. Berechnen Sie den magnetischen FluB in einer Koaxialleitung, bezogen auf die
Lingeneinheit. Der Innendurchmesser des AuBenleiters betrage 2R, = 16 mm,
der Durchmesser des Innenleiters 2R; = 6 mm. Das Zwischenmedium sei Luft.
Die Stromstérke betrage 1 mA.

A3.1.5. Berechnen Sie das Magnetfeld zwischen den beiden Bédndern einer Bandleitung.
Die Breite eines Bandes betrage b = 2 em; der Strom habe die Stirke I = 0,1 A.
A3.1.6. Berechnen Sie das Magnetfeld in einer Ringspule aus n = 18000 Windungen, durch

die der Strom I = 1,5 A flieBt (AuBenradius R, = 20 cm, Innenradius R; = 18 cm).

A3.1.7% Weisen Sie nach, daB bei einem Ringmagneten mit Luftspalt im Falle p; << p,
das Feld im Spalt ndherungsweise so grof ist, als wire die gesamte Spule auf den
engen Raum des Luftspalts gewickelt.

A3.1.8. Ein Ringmagnet der Lidnge I = 20 cm enthilt » = 5000 Windungen, die vom
Strom I = 0,1 A durchflossen werden. Wie gro8 ist das Magnetfeld im Luftspalt
fir py = 1500, wenn die Breite des Spaltes @ = 4 mm betragt?

A3.1.9. Berechnen Sie das Feld in der Mitte eines ringférmigen Leiters (eine Windung)
vom Radius B = 25 cm, wenn die Stromstérke I = 8 A betragt.

A 3.1.10. Wie groB3 ist das Magnetfeld auf der Achse einer aus finf engen Windungen be-
stehenden kreisformigen Spule vom Radius R = 0,50 m, wenn die Stromstérke
I = 200 A betrigt. Berechnen Sie das Feld in der Mitte der Spule und auf der Achse
im Abstand z, = 4 m von der Spulenmitte fiir I << R.

A3.1.11. Zwei Spulen mit den Léngen a) /; = 10 cm und b) I, = 20 cm haben je n = 5000
Windungen und werden vom Strom I = 0,1 A durchflossen. Der Durchmesser sei
fir beide Spulen gleich 2R = 8 cm. Berechnen Sie die magnetische Feldstiarke aut
den Achsen beider Spulen, und zwar 1. in der Mitte, 2. am Rand jeder Spule.

3.2. Krifte aut stromdurehflossene Leiter — GleichstrommefBgerite

E Einfiihrung

Die auf elektrische Strome wirkenden Kréafte ergeben sich aus der Gleichung von
Lorentz

[}%:Am@+nx%). (1)

Darin bezeichnet 4@ die bewegte elektrische Ladung und v ihren Geschwindigkeits-
vektor. € und B geben die elektrische Feldstdrke und die magnetische FluB3dichte
des dufleren elektromagnetischen Feldes an.

Von Interesse sind insbesondere die im magnetischen Feld auftretenden Kréfte

AFn = AQ v X B. 2)

Die auf eine bewegte Ladung infolge eines aufgeprigten Feldes B ausgeiibte Kraft
steht sowohl zur Bewegungsrichtung als auch zum dufleren Magnetfeld senkrecht.
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Um die bewegte Ladung 4@ auf die Dichte des Stromes zuriickzufiihren, betrachtet
man ein Leiterelement mit dem Querschnitt 44 und der Léange As. Die Ladung 4Q
sei gleichméBig iiber dieses Leiterelement verteilt. Fiir die Ladungsdichte erhélt man
somit

_ 49
CT A4 a8 3)

Zwischen Ladungsdichte o, Geschwindigkeit b und Stromdichte § besteht nach

(1.3./11) die Beziehung -

ﬁ . (4)

Sie kann nach der Geschwindigkeit v aufgelost werden. Wird der sich dabei ergebende
Ausdruck in (2) eingesetzt, so erhélt man fiir die Kraft, die ein Feld auf den Strom
der Dichte $ in einem Leiter mit dem Querschnitt 44 ldngs eines geraden Leitungs-
stiickes s ausiibt,

AFm = A4 As I < B. (5)

Der Vektor des Leiterelementes 4s und die Stromdichte  sind gleichgerichtet. Man
kann daher anstelle von (5) die Kraft auch in der Form

AFw =1 As X B (6)

schreiben, wobei I die Stromstédrke angibt.

Wenn die magnetische Feldstérke raumlich variabel ist oder wenn gekriimmte Leiter
vorliegen, unterteilt man diese in differentielle Stromelemente I ds. Die auf ein der-
artiges Element durch das dullere Magnetfeld ausgeiibte Kraft ist nach (6) gleich

d¥, = [ ds x B. (7)
Hieraus erhdlt man die auf den gesamten Stromkreis wirkende Kraft durch Inte-
gration.
Im homogenen Magnetfeld entsteht infolge der LorENTz-Kraft auf einen Stromkreis
ein Drehmoment, das diesen senkrecht zum &ulleren Feld zu stellen sucht. Es ist
gleich

)i)ﬁzmxsg]. 8)

m gibt das magnetische Moment des ebenen Stromkreises an. Hierfiir erhdlt man

m =ulU )

10 Schilling, Felder
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Dabei ist A4 die GroBe der eingeschlossenen Fliche, u die Permeabilitit des den
Stromkreis umgebenden Mediums. Bei einer Spule aus » enggewickelten Windungen
vergrofert sich das magnetische Moment m und damit das Drehmoment 0t um den
Faktor n.
Beispiel 8

Eine Spule aus » = 1000 Windungen mit der Querschnittfliche 4 = 10 cm? wird vom Strom
I = 2 A durchflossen. Das Zwischenmedium ist Luft mit der Permeabilitdt u = uy. Unter dem
Winkel o« = 45° gegen die Spulenachse geneigt, wirkt auf die Spule ein Magnetfeld der Stérke
H = 1500 A m~*. Es fihrt nach (8) zu einem Drehmoment der GréBe

M| = |my X H| = |my| |D] sin 45°.
Setzt man hierin

[my| = nueld = 1000 1,257 -10-%.2.10-10*Vsm = 2,514-102Vsm
ein, so folgt

M| = 2,514 - 10~¢ Vsm - 1500 A m~ . 0,707 = 2,66 - 10~ Nm.

P Probleme

3.2.1. Kraft auf einen stromdurchflossenen Draht im Magnetfeld

Im magnetischen Feld der Starke A = 10> A m~! befindet sich ein gerades Drahtstiick der Lénge

1 = 15 cm. Durch dieses flieBt Strom der Stiarke I = 100 A. Wie groB ist die Kraft auf dieses

Drahtstiick, wenn a) der Leiter senkrecht zum Magnetfeld gerichtet ist, b) unter dem Winkel
= 30° gegen das Magnetfeld geneigt ist?

Losung

Nach der LoreNTz-Gleichung (3.2./6) wirkt auf einen Strom I lings des geraden Leiterstiickes !
im Magnetfeld die Kraft

Fm=IIXB = Iuy [X9. )

Sie stehtsenkrecht zu der vom Stromdichtevektor § und vom Magnetfeld  gebildeten Ebene.
Fir den Betrag der Kraft erhalten wir

Fo = luglH sin g. (2)

Im Falle ¢ = 90°, d. h., wenn J und 9 senkrecht zueinander stehen, ergibt sich mit den vor-
gegebenen Zahlen

F=0,15.1,257-10-%.100 - 10° N = 1,88 N = 192 p.
Sind die beiden Vektoren dagegen unter ¢ = 30° gegeneinander geneigt, so folgt
F =1,88-0,50N=0,94N.

3.2.2, Krifte zwischen stromdurchflossenen Leitern

Zwei parallele Drihte haben voneinander den Abstand » = 0,5 cm. Thre Lange betragt/=2,50m.
Der erste Draht wird vom Strom I, = 5 A, der zweite in entgegengesetztér Richtung vom Strom
I =10 A durchflossen. Berechnen Sie die zwischen diesen beiden Stromleitern wirksamen
Krifte.
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Losung

Nach (3.2./6) wirkt auf ein gerades Leiterstiick 3, das vom Strom I durchflossen wird, im Feld B
die Kraft

Fm = I183XDB. (1)

Ein gerader Leiter, der vom Strom I, durchflossen wird, erzeugt in seiner Umgebung nach
(3.1./19) ein Magnetfeld 9, das in Zylinderkoordinaten nur die Komponente

@)

besitzt. Fiir die magnetische FluBdichte erhdlt man, wenn das umgebende Medium Luft oder
Vakuum ist,

@, = Lo (3)

omr

Das Feld 8 und die Richtung des Stromes I stehen zueinander senkrecht. Die Kraft ., steht
nach (1) senkrecht zum stromdurchflossenen Leiter.

Wir fiihren Cartesische Koordinaten ein und wihlen die Richtung des Stromes I, als z-Achse.
Dann konnen wir schreiben (vgl. 1.2./8)

g = £olo gy @, cos @, 0), )
2rr
I3 =1(0,0, —I). (5)

8 weist in Richtung des Stromes I, der entgegen dem Strom I flieSt. Der Betrag von § ist gleich
der Leiterlange I. (4) und (5) in (1) eingesetzt, ergibt

i i £
5, = bl | 0 g | = telodl @, sing, 0). (6)
2mr 2y
—sing cosg O

Es befinde sich die Leitung mit dem Strom I rechts vom Strom I,. An der Stelle des Stromes I

hat die Winkelkoordinate den Wert ¢ = 0. Somit folgt im vorliegenden Fall entgegengerichteter
Strome aus (6)

o ull

=5 (1,0,0). ™

Man erhélt eine von I, weg in Richtung der positiven z-Achse weisende Kraft. Die beiden ent-
gegengerichteten Strome stoBen einander ab. Fiir den Betrag dieser Kraft folgt

eIl 1,257-107%.5-10. 2,50
2 2 - 5107

= 0,0050 N = 0,51 p.

|Fml N

Stéarkere Krifte treten erst fiir sehr hohe Strome oder bei wesentlich geringeren Abstinden auf..

10%*
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3.2.3. Drehmoment auf eine Spule im Magnetfeld

In einem Magnetfeld der Stirke H = 5 - 105 A m~* befindet sich eine Spule aus n = 5000 Win-
dungen, die vom Strom der Stidrke I/ = 0,1 A durchflossen wird. Die Spule besitzt einen kreis-
formigen Querschnitt vom Radius R = 1,5 cm. Ihre Achse ist gegen das Magnetfeld unter dem
Winkel « = 30° geneigt. Berechnen Sie unter Anwendung der LorENTz-Gleichung das Dreh-

moment, das auf die Spule ausgeiibt wird.

Lésung

Wir wihlen die Querschnittebene der Spule als @, y-Ebene. Die 2-Achse legen wir in die Richtung
der Projektion des Feldes B auf die Querschnittebene (vgl. Bild 3.5). Der Strom flieBe im mathe-
matisch positiven Drehsinn.

L,

Bild 3.5. Spule im Magnetfeld der FluB-
dichte B

&

Das vektorielle Linienelement des Kreises = R ist

d3g = dzi + dyj = R(—sin @i + cos ¢j) dg. (1)
Die magnetische FluBdichte ¥ ist auf Grund der TFestlegung des Koordinatensystems durch

B = B,i + B,t (2)
bestimmt. Fiir die Komponenten von % gelten die Gleichungen

B, = Bcosw, By = Bsinx. (3)
Die auf das Stromelement I d3 wirkende Kraft d§ wird gleich

i j f
dF =1d3 X8 =IBR| —sing cosp 0 de, (4)

sin & 0 cos &
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d. h. ausgerechnet
A% = IBR(cos & cos i + cos « sin gj — sin « cos ¢f) d. (5)

Durch die Komponente B, des magnetischen Feldes wird auf den Stromkreis eine Kraft aus-
geiibt, die in jedem Punkt radial nach auBen gerichtet ist und den Spulenquerschnitt zu ver-
groBern sucht. Sie ist nicht mit einem Drehmoment zu verkniipfen. Dagegen bewirkt die parallel
zur Querschnittebene in Richtung der x-Achse weisende Komponente 9B, in jedem Punkt des
Stromleiters eine Kraft, die fir a << 0 parallel, fiur @ > 0 antiparallel zur z-Achse steht. Die
Gerade 2 = 0, z = 0, d. h. die y-Achse, gibt somit die Achse des entstehenden Drehmomentes
an. Fir den Radiusvektor t folgt daher

t = R cos ¢i. (6)

Als Drehmoment dIR, das von einem Leiterelement d3 verursacht wird, erhdlt man aus (6) im
Zusammenhang mit (5)

i i f !
dM = 1 x dfy = IBR? | cos 0 0 de, (7)
COS X COS @ COsxsSing —sinwcos@

d. h.
dIN = IBR2(sin x cos? pj + cos « cos @ sin ¢f) de.

Das gesamte, von einer vollen Stromwindung erzeugte Drehmoment ergibt sich daraus durch
Integration. Die f-Komponente verschwindet wegen

27
[cospsingdp = 0.
0
Dagegen ist
2
[cos?pdp =m.
0
Als Drehmoment einer Windung erhalten wir damit

M, =r~RUBsinaj =m; X 9. (8)

Das magnetische Moment 1, ist dabei in Richtung der positiven z-Achse orientiert. Sein Betrag
ist gleich

Imy| = e R 9)
Fir die Spule aus n Windungen folgt das Drehmoment

My, = nmy X9 = nu,nR2H sin o . (10)
Mit den vorgegebenen Zahlen ergibt sich als Betrag des Drehmomentes

|y = 5000 1,257 -10-¢ -7 - (1,5-1072)%.0,1 -5-10%- 0,5 Nm = 0,111 Nm.
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3.2.4. Spiegelgalvanometer

Im Spalt zwischen den Polen eines starken Elektromagneten befindet sich eine Spule aus
n = 600 Windungen mit dem Querschnitt 4 = 12 cm? (vgl. Bild 3.6). Sie steht, wenn durch die
Windungen kein Strom flieBt, mit der Achse senkrecht zum &uBeren Magnetfeld (x = 90°).
Die Stérke des duBeren Feldes betrigt H = 5. 10° A m~1. Das Trigheitsmoment der Spule ist
J =4-10"%kgm?, die WinkelrichtgroBe D = 8,5-10"%kgm?s~2. Die Démpfungskonstante
hat den Wert b = 6,5 - 10~ kg m2s—!. Untersuchen Sie die Auslenkung, wenn durch das Gerit
ein Strom der Stérke I = 1 pA flieBt.

Bild 3.6. StrommeBgerit

Losung

Wir betrachten den Auslenkwinkel . Er gibt die Abweichung aus der Ruhelage & = 90° an.
Der Vektor @ hat die Richtung der festen Drehachse. Das Galvanometer folgt der Stroménderung
verzdgert. Infolgedessen stellt sich der Endausschlag erst nach einer gewissen Zeit ein.

Bei einem triagen System ist die Summe aller Drehmomente gleich dem Beschleunigungsmoment:

dz2g
d_tf =My + Mp + My (1)
Darin bezeichnet
Mer =M X O (2)

das elektromagnetisch verursachte Drehmoment, das sich als Vektorprodukt aus dem magne-
tischen Moment m der Spule und der duBeren Feldstirke ergibt. Fur die Komponente des Dreh-
momentes senkrecht zur Ebene aus Spulenachse und Feldstiirke folgt auf Grund der Definition
des magnetischen Momentes

M = ugnAHJ sin « = pgnAHJ cos ¢. (2a)
Bei kleinem Auslenkwinkel ¢ aus der Normallage kann man cos ¢ = sin &« = 1 setzen und erhilt

Mo = pndHJ . (2D)
Die elastischen Kréfte erzeugen das riicktreibende Moment

Mp = —DF. (3)
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Durch die Dampfung entsteht ein den Bewegungsablauf verzégerndes Moment

My = —b -2 dq’ (4)

Wir setzen (2), (3) und (4) in (1) ein. Daraus erhalten wir bei kleinem Auslenkwinkel fiir die
Komponente des resultierenden Drehmomentes in Richtung senkrecht zur Schwingungsebene
der Zylinderachse
&P dtz’
J — + Dy = @5l 5
W + Dy F ®)
Hierin gibt
Dp = ugnHA (6)

den resultierenden magnetischen FluBl n [ f B dA durch die Spulenwindungen an.
Nach hinreichend langer Zeit bewirken die Diampfungen, dafl das System zur Ruhe kommt.
Die zeitlichen Anderungen des Auslenkwinkels verschwinden, und es bleibt in (5)

Doy = Ppl. (7)
Hieraus folgt als MeBauslenkung

Op . pgnAHI
™M= D

Mit den vorgegebenen Zahlen ergibt sich aus (8)

57 . —6 . . . -4 ,5. 5. 106
oy = 1,257 - 10 600 _12 10 5.10%- 10 — 5,32 . 10-% = 0,305°.
8,5.10°°

Verbindet man die Spule mit einem Spiegel, auf den ein Lichtstrahl fillt, so bewirkt der Strom
J =1 pA auf einer Skale in 1 m Entfernung eine Verschiebung der Lichtmarke um

Az =20l = 2.5,32.10%. 1 m = 10,6 mm.

Um die Einstellzeit zu bestimmen, 16sen wir die Differentialgleichung (5) mit den Anfangs-
bedingungen

do

0) =0, e =0. - 9

o (dt)t=0 il @
Eine spezielle Losung der inhomogenen Gleichung ist durch (8) bestimmt. Die allgemeine Losung
der homogenen Gleichung wird am zweckméBigsten durch die Hyperbelfunktlonen ausgedriickt.

Es folgt

b 2 _ 2
= Pl 1 —e 2J|cosh b 4JDt -+ b sinh 12 4D . (10)
D 2J B2 — 4JD 2J

Der zweite Summand in der Klammer setzt sich aus einem mit der Zeit abklingenden und einem
mit der Zeit zunehmenden Faktor zusammen. Wie man hieraus entnimmt, strebt der Zeiger seiner
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Endstellung am schnellsten zu, wenn die Beziehung
b2 =4JD (11)

(aperiodischer Grenzfall) erfillt ist.
In der Exponentialfunktion erhélt man fiir ¢ = 3 s
bt 65-10-5.3

= = 24,3.
2J 2.4.10°°

Nach Einsetzen der Zahlenwerte folgt fur die Argumente der hyperbolischen Funktionen

w t =V8,12 — 21,25 . 3 = 20,0.

2J
Ferner ergibt sich

b

—— =1,18.
Vb* — 4JD

Bei groBem Argument z > 20 kann man genéhert schreiben

. e?
sinh & = cosh z = >

Damit erhalten wir fur das Zusatzglied in (10) mit f = 3 s

24,3,

20,0,
e~—2—?’1—8 1,1 em43 = 0,015,

Nach drei Sekunden hat der Ausschlag 98,59, des Endwertes erreicht. Man kann daher bei einem
MeBiehler von 1,59, mit einer Einstellzeit von drei Sekunden rechnen.

3.2.5. Ballistisches Galvanometer

Es soll die wihrend eines kurzzeitigen StromstoBes tibertragene Ladung
at
Q= [Idt (1)
0

gemessen werden. Hierzu verwendet man ein ballistisches Galvanometer (Spiegelgalvanometer

mit groBer Schwingungsdauer).

Das Feld des Elektromagneten habe die Stéirke H = 5-10°Am='. Die Spule enthalte

n = 8000 Windungen, ihre Querschnittsfliche sei 4 = 15 cm?, ihr Trégheitsmoment
= 7,5-10"° kg m?. Die WinkelrichtgroBe habe den Wert D = 5,0 - 10-® kg m?s~2. Fur die

Dampfungskonstante ergebe sich b = 1,0 - 10-6 kg m2 s~*. Wie groB8 ist die iibertragene Ladung,

wenn die Messung des maximalen Ausschlags ¢, = 7,4° ergibt?

Losung

Wir fassen den kurzzeitigen StromstoB (1) als einmaligen Impuls auf das schwingungstédhige
System auf. Die Zeit rechnen wir vom Ende des StromstoBes an. Fiir ¢ = 0 habe also das Schwin-
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gungssystem die von Null verschiedene Winkelgeschwindigkeit

#(0) = ¢o. (2)
Der Strom erzeugt den Drehimpuls

fMdt = [m(t) xD dt = unA X [ It)D dt. (3)

A bezeichnet den Vektor der Spulenflidche.
Da im Anfangszustand ¥ und § senkrecht zueinander stehen, kénnen wir hierfiir auch schreiben

[ M dt = pgnAH [Idt = &g [ Idt = 5. 4)

Andererseits besteht zwischen dem tibertragenen Drehimpuls und der erzielten Anfangswinkel-
geschwindigkeit der Zusammenhang

[ M dt = Jg,. (5)
Somit folgt als Beziehung zwischen der iubertragenen Ladung und der Winkeigeschwindigkeit

am Ende des StromstoBes

#0) = 222, (®)

Wir kénnen voraussetzen, dafl die Dauer des StromstoBes so kurz ist, da3 an seinem Ende noch
keine merkliche Auslenkung aus der Normallage erfolgt ist. Es gilt daher

@(0) = 0. (7)

Mit Ausnahme des Anfangsimpulses wirkt auf das Schwingungssystem kein erzwingendes Dreh-
moment. Daher besteht nach (3.2.4./5) die Differentialgleichung
& do
J—4+b—=+Dp=0. 8
e 0 T . (8

Thre Lésung unter Beriicksichtigung der Anfangsbedingungen lautet

bt
¢=—M—e 2J sin /2— int. 9)
V4DJ — b2 ) I 21

Um den Maximalausschlag @y und die Einstellzeit ty zu bestimmen, setzen wir die erste Ab-
leitung von @ nach der Zeit gleich Null. Das ergibt als Einstellzeit

— h2
ty = __.__2_'.]_.._. arctan /%.‘.]_Q.._b . (10)
V4JD — b? oo
Wir berticksichtigen die Reihenentwicklung

arctan x = i—ii... (11)
2 z

fur groBe Argumente 2. Aus (10) und (11) ergibt sich die Einstellzeit

J [n b
P JICA KL 12
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Bei der ndherungsweisen Berechnung des Maximalausschlages nach (9) benutzen wir die Reihen-

entwicklung

eV =1—yL . (13)

fur kleine Werte y. Damit erhalten wir, wenn wir (12) in (9) einsetzen,

oy=tandde (= D) (14)
VJID 4 YJD

Die Naherungen (12) und (14) gelten um so genauer, je besser die Ungleichung

b£2VJD (15)
erfillt ist.
Aus (14) folgt durch Umformen die wiahrend des StromstoBes ubertragene Ladung:

VE T b
= + — —) ¢x- (16)
onAH ( 4 VJD>

Mit den vorgegebenen Zahlen erhalten wir nach (15)

b 10-¢
2VJD 2V75-10-5.5,0- 10-°

= 0,026 < 1.

Aus (16) ergibt sich damit

¥7,5-107%.5,0 .10 7,4m

- 14 0,04) == As =3,4.10-°C.
@ 12571058000 - 15104 .5 10° © = ) 180

Fiir die Einstellzeit folgt aus (12) der Wert

A

A3.2.1.

A3.22.

A3.2.3.

A3.24.

ty = /2217 (2 6.095) s — 6,0s.
5,0-10-° \ 2

Aufgaben

In einem Elektronenbeschleuniger rotiert eine Ladung der Stirke @ = 10715 As
mit der Geschwindigkeit » = 0,01¢ in einem Kreisring mit dem Radius R = 2 m.
Wie groB ist der hierdurch verursachte elektrische Strom?

Wie groB ist in einem Magnetfeld mit der Fludichte B = 1 V s m~2 die Kraft auf
ein Drahtstiick der Lénge ! = 10 cm, das von einem Strom der Stirke I = 10 A
durchflossen wird? Das Magnetfeld steht senkrecht zur Stromrichtung.

Berechnen Sie die Kraft, mit der sich zwei parallele Strome der Stiarke I = 100 A
anziehen, die voneinander den Abstand 1 mm haben. Die Lange jeder Leitung sei
gleich 10 m.

Berechnen Sie das Drehmoment, das auf eine kreiszylindrische Spule aus
n = 1500 Windungen im Feld der Stirke H = 1000 A m~! ausgeiibt wird. Der
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A3.2.5.
A 3.2.6.

A3.2.7.%

A 3.2.8.%

A3.2.9.

A 3.2.10.

A 3.2.11.

A3.2.12.

A 3.2.13.

A3.214.%

A 3.2.16.

Radius des Querschnitts ist R = 3 cm. Die Stromstérke betrigt I = 0,2 A. Das
Magnetfeld steht senkrecht zum flieBenden Strom. Das Zwischenmedium ist Luft.
Berechnen Sie zur vorangegangenen Aufgabe das Drehmoment fiir u = 1500 .
Die Feldstarke in einem Spiegelgalvanometer ist gleich H = 10¢ Am~*. Es wird
eine Spule aus n = 3000 Windungen mit der Querschnittfliche 4 = 16 cm? ver-
wendet. Die WinkelrichtgroBe hat den Wert D = 5,5 - 10~ kg m? s=2. Wie gro83
ist der Strom, der einen Ausschlag von einer Winkelminute hervorruft?

Stellen Sie die Formel fiir die Auslenkung eines Spiegelgalvanometers im aperi-
odischen Grenzfall b2 — 4J.D — 0 auf.

In einem Spiegelgalvanometer ist das Trigheitsmoment J = 4 . 10-¢ kg m?, die
Winkelrichtgrofe D = 8,510~ kg m?s~2. Die Dampfung wird so abgestimmt,
dafl der aperiodische Grenzfall vorliegt. Bestimmen Sie die Zeit, die das Instrument
braucht, um 999, des Endausschlages zu erreichen.

Wie groB ist in einem ballistischen Galvanometer die Anfangswinkelgeschwindig-
keit, wenn durch die Spule aus » = 5000 Windungen mit der Querschnittfliche
4 = 12,5 cm? ein StromstoB von 107 As hindurchgeht? Die Feldstérke betrdgt
H = 10°® A m~*, das Trigheitsmoment J = 2,5 - 10~% kg m?.

Berechnen Sie zur vorangegangenen Aufgabe den Maximalausschlag und die Ein-
stellzeit, wenn die Ddmpfungskonstante gleich b = 1,2 - 10-¢ kg m?s~*, die Winkel-
richtgrofe D = 8,8 - 10-% kg m? s~2 ist.

Bestimmen Sie fiir ein ballistisches Galvanometer die Auslenkung, den maximalen
Ausschlag und die Einstellzeit im aperiodischen Grenzfall.

Bestimmen Sie den Zeigerausschlag bei einem Spiegelgalvanometer im Falle
b% < 4JD. Welchen Ausschlag relativ zum Endausschlag erreicht dieses Galvano-
meter im Grenzfall b — 0 nach einer Schwingungsperiode?

Berechnen Sie die MeBauslenkung und die Einstellzeit fir ein Galvanometer mit
den folgenden Daten:J = 7,2 .10 kg m?, D = 2,4 . 103 kg m? 52, @p = 0,13 Vs,
b=6-10"8kgm?s'. Der Strom ist gleich I = 10 A.

Kriechgalvanometer oder FluBmesser. Um den magnetischen FluB durch eine
Spule zu messen, verwendet man das Kriechgalvanometer, das langsame Feld-
dnderungen genau anzeigt. Es besitzt einen kleinen inneren Widerstand, der eine
groBe elektromagnetische Dampfung bedingt. Das racktreibende Richtmoment ist
sehr klein und kann wihrend des kurzzeitigen Stromstofes, der mit dem Aufbau
des magnetischen Feldes verbunden ist, vernachldssigt werden. Dagegen ist es fiir
den Riickstellvorgang zu beachten. Die Massentrigheit kann gegen das grofle
Dampfungsglied wihrend des gesamten MeBprozesses vernachlissigt werden.
Bestimmen Sie fur ein Kriechgalvanometer die MeBauslenkung im Falle
b=26,5-10"2kgm?s?!, @p =4.102Vs, D = 1,3.10-% kg m? s~2. Nach welcher
Gleichung geht ohne zusétzliche dullere Einwirkung der Riickstellprozef vor sich?
Der Stromsto8 ist gleich

[Idt=45-10"%As.

In einer Aufhingung mit der RichtgroBe k = 8 -10-*kgs~2 befindet sich ein
Drahtring mit dem Radius R = 20 cm, der vom Strom I = 0,1 A durchflossen
wird. Parallel dazu im Abstand z, = 2 cm flieBt ein Strom der Stirke I, =1 A.
Berechnen Sie die Endauslenkung der elastischen Aufhingung. Wie lautet die
Differentialgleichung zur Beschreibung des Auslenkvorganges?

Saitengalvanometer. Ein Draht der Lange I = 10 cm ist in einem Magnetfeld der
Stirke H = 10° A m~! senkrecht zur Feldrichtung ausgespannt. Er befindet sich
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in einer Anordnung mit der RichtgréBe & = 2,0 - 103 kg s~2. Stellen Sie die Diffe-
rentialgleichung fur den Auslenkvorgang auf, wenn durch den Draht ein Strom
der Stirke I = 1 mA flieBt. Wie grof8 ist die Endauslenkung?

3.3. Eigenschaften stationdrer Strome — Kirchhoffsche Gesetze

E Einfiihﬁlng

Stationdre Strome verhalten sich wie inkompressible Fliissigkeiten. An die Stelle
des Druckes tritt die Spannung oder Potentialdifferenz, wahrend die Fliissigkeits-
menge durch die elektrische Ladung zu ersetzen ist. Das folgt aus den MAXWELLschen
Gleichungen (3.1./1) bis (3.1./4) fiir das stationidre Feld:

Nach (3.1./5) ergibt sich aus (3.1./1) die Existenz eines skalaren Potentials
€ = —grad @. (1)

Dieses kann bei der Integration in (3.1./1) eingefiihrt werden. Dabei erhélt man unter
Anwendung des STokEsschen Satzes (1.3./10) wegen rot € = 0

[[rot@ - dA =P G- ds = —Pgrad ®-ds = 0. 2)
A C C

Das Integral iiber einen geschlossenen Stromkreis C' 148t sich in Teilabschnitte zer-
legen, die sich aus dem Aufbau des Stromkreises ergeben (vgl. Bild 3.7):

A \[_, HurveC

b
Bild 3.7. Geschlossener Stromkreis
A %
) P, Pn
gﬁgrad@-dé=fgrad¢-d§+---+fgrad¢-dé:O. (3)
C Py Ppy

Daraus folgt, wenn die Integrationen ausgefithrt werden,

(@p, — Pp,) + (Pp, — Dp,) + +++ + (Pp, — Pp,.,) =0 4)
bzw.

=AD;, =0 |. (5)

i

-

Gleichung (5) enthélt das erste Kirchhoffsche Gesetz der Stromverzweigung: In jedem
geschlossenen Stromkreis ist die algebraische Summe der Potentialdifferenzen
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zwischen den einzelnen Abschnitten gleich Null. Die Potentialdifferenzen setzen sich
aus eingepriagten Spannungsquellen (Batterien, Maschinenspannungen) und ohm-
schen Spannungsverlusten

zusammen. In der Wechselstromtechnik tritt dazu die induzierte Spannung.
Durch die MaxwEerLsche Gleichung (3.1./2) wird die Quellenfreiheit des Stromfeldes
zum Ausdruck gebracht:

divd = divrot § = 0. (7)
In Verbindung mit dem Gaussschen Satz (1.3./17) ergibt sich daraus durch Inte-
gration

[f[aivgar = ff3-du=o. ()

av A

Betrachtet man eine Stromverzweigung gemil Bild 3.8, so kann um den Verzwei-
gungspunkt P eine geschlossene Fliche 4 gelegt werden. Fiir die einzelnen durch
diese Fliche 4 hindurchtretenden Stréme gilt nach (8)

EleO'. (9)

Bild 3.8. Stromverzweigung

Entsprechend der Festlegung in 1.3. sind in (9) alle aus dem betrachteten Volumen V
austretenden Stréme positiv, alle eintretenden Stréome negativ zu zéhlen.

Gleichung (9) bringt das zweite Kirchhoffsche Gesetz der Stromverzweigung zum
Ausdruck: An jedem Verzweigungspunkt ist die algebraische Summe der Strome
gleich Null, bzw. der Betrag aller zuflieBenden Strome ist gleich dem Betrag aller
abflieBenden Strome.

Beispiel 9

Betrachtet wird eine Verzweigung in zwei parallele Strome nach Bild 3.9. Das erste KIRCHHOFF-
sche Gesetz (5) fordert, daB die Summe der Potentialdifferenzen tiber jeden der beiden mdoglichen
Stromwege verschwindet. Hieraus folgt, daB die Potentialdifferenz zwischen den beiden Punkten
A und B unabhingig von der betrachteten Stromleitung sein muf:

bp — Dy =Uyp =R, =Ryl,. (10)
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Das zweite KircHHOFFsche Gesetz besagt, daBl die algebraische Summe aller Strome im Punkte B
gleich Null sein muB:

I, —I,+1=0. (11)

U
[
L

I %4 I Bild 3.9. Stréome und Widerstinde in einer

—— | Stromverzweigung

Py E—

2 R

(10) und (11) bilden ein Gleichungssystem zur Bestimmung der unbekannten Stréme; und I,.
Aus diesem erhilt man
IR, IR,

I, = s I, = . 12
"R 4R, * R+ R -

Fiur das Verhaltnis der Verzweigungsstrome folgt daraus

1 1

I, I, = —:—, 12
1+ 42 R, 'R, (12a)
d. h., diese verhalten sich wie die Leitwerte.
I Probleme
3.3.1. Anderung des MeBbereiches eines Amperemeters durch Nebenschluf

Ein StrommeBgerit hat einen MeBbereich bis zu 25 pA.Sein Innenwiderstand betrigt R = 8,2 kQ.
Der MeBbereich soll auf 500 pA erweitert werden. Wie gro muB} hierzu der NebenschluBwider-
stand Ry, (Shunt) sein (vgl. Bild 3.10)?

U

— Bild 3.10. NebenschluBwiderstand Ry
— LI
L Rp=Fe

Losung
Aus den KircEHOFFschen Gesetzen (3.3./5) und (3.3./9) folgt nach (3.3./10) und (3.3./11)
IR, — I,R, =0, I +1,=1. (1)
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In diesem Gleichungssystem ist R; = 8,2 k() bekannt. Wir setzen I; = 25 pA, I = 500 pA und
erhalten damit im Gleichungssystem-(1) als Unbekannte die beiden GréBen R, und I,. I, wird
aus der zweiten Gleichung (1) berechnet und ergibt

I, =1—1, = (500 — 25) uA = 475 uA. (2)
Mit diesem Wert folgt aus der ersten Gleichung (1)

.10-6.8.2. 10
LB, _ 25-107-82-10°, 431,50Q). 3)
I, 475 . 105

Rsh = Rz =

Die Erweiterung des MeBbereiches auf 500 uA wird durch einen NebenschluBwiderstand von
431,5Q bewirkt. Bei einem kleineren Widerstand verringert sich der Strom durch das Ampere
meter. Dagegen fithrt ein groBerer Widerstand dazu, daB die obere Grenze des zulédssigen Stromes
durch den HauptschluBwiderstand iiberschritten und das MeBgerét damit zerstort wird. (3) stellt
somit die obere Grenze der zulidssigen NebenschluBwiderstinde dar.

3.3.2. Verwendung des Strommefgeriites als Spannungsmesser

Es soll der Spannungsabfall lings eines Widerstandes R, gemessen werden. Dazu steht ein Ampere-
meter mit einem MeBbereich bis zu Ijyax = 25 wA und einem Innenwiderstand von R = 8,2 kQ)
zur Verfigung. Zur Messung wird das Gerdt im Nebenschlufl gemdf Bild 3.11 geschaltet. Be-
rechnen Sie, welchen Vorschaltwiderstand Ry man am Instrument anzubringen hat, wenn die
auftretende Spannung Werte von maximal U = 1,5 V erreicht.

Losung

Nach der aus dem ersten KircuHOFFschen Gesetz (3.3./5) folgenden Beziehung (3.3./10) sind die
Potentialdifferenzen tiber die beiden méglichen Stromwege gleich. Es gilt daher (vgl. Bild 3.11)

U, =R111= (By + R) Io- (1)
U
fo— i
U
Ry 4
__{:____:,__g_——_:[a_ Bild 3.11. Vorschaltwiderstand Ry
I R ‘

Hieraus erhilt man
U, U

0= R+ E < m = Igmax- (2)

Wir 18sen in (2) nach dem Vorschaltwiderstand Ry auf und erhalten

Ry= U _k. (3)
oMax

Mit den vorgegebenen Zahlen folgt

Ry = (=5 _82.108)Q = 51,8 10°Q.
25 - 10-°
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Durch VergréBerung des Vorschaltwiderstandes wird der durch das MeBgerit flieBende Strom
verringert. Die berechnete Gréfe Ry stellt also den Mindestwert des vorzuschaltenden Wider-
‘standes dar.

3.3.3. - Wheatstonesche Briicke

Zur Messung des unbekannten Widerstandes R, wird dieser gem#B*Bild 3.12 in eine WHEATSTONE-
sche Briicke geschaltet. Diese enthilt einen homogenen MeBdraht der Linge ! = 1 m. An seine
Enden wird eine kleine MeBspannung gelegt. Parallel zum MeBdraht werden der unbekannte
Widerstand R,, und ein bekannter Widerstand R = 500€) in Reihe geschaltet. An den MeBdraht

A
Ry R
8
¢ 0
) i
@ Bild 3.12. WrraTsToNEsche Briicke

wird ein Schleifkontakt gelegt, der mit dem Punkt 4 zwischen den beiden Widerstdnden R, und R
verbunden wird. Das Amperemeter in dieser Briicke zeige die Spannung Null fiirr y = 18,5 cm.
Berechnen Sie daraus den Wert des unbekannten Widerstandes R.

Losung

Zwischen den Punkten A und B besteht im allgemeinen eine Potentialdifferenz. Wird diese gleich
Null, so ist der Spannungsabfall lings der MeBstrecke y gleich dem Spannungsabfall lings des
unbekannten Widerstandes R,. Es gilt dann

U, = B,I, = L A4I,. 1)
Y

Dabei gibt 1/y den spezifischen Widerstand, 44 den Querschnitt des MeBdrahtes an.
Ebenso folgt
U, = RI,— “=¥ 441, @)
7
Wir dividieren (1) durch (2), wobei der Drahtquerschnitt, der spezifische Widerstand und die
Strome herausfallen:

Be ¥ bzw. R, = Y _R. ®3)
R l—y l—y
Mit den gegebenen Werten folgt
R, = 185, 500Q = 113,5Q.
81,5

Die MeBgenauigkeit hingt maBgeblich von der Homogenitdt des Drahtes und von der Genauig-
keit des Amperemeters in der Briicke ab.
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3.3.4. Widerstand des Halbraumes bei Verwendung eines Oberflichenerders

Zur Erdung eines Strahlungsempfingers wird eine metallische Halbkugel in die Erde ein-
gegraben, so dafl die Durchmesserebene mit der Erdoberfliche abschlieBt (vgl. Bild 3.13). Der
Radius der Halbkugel ist ry = 25 cm. Mit dieser Erdung wird als Ausbreitungswiderstand des

Bild 3.13. Oberflichenerder

Halbraumes bzw. als Erdwiderstand die GréBe R = 12Q) gemessen. Berechnen Sie daraus den
spezifischen Leitwert des umgebenden Bodens.

Losung

Wir berechnen zuniichst den Halbraumwiderstand bei Verwendung der Halbkugel als Erder.
Dazu erginzen wir den Halbraum mit seinen Stromlinien spiegelbildlich zum Vollraum, die
Halbkugel zur Vollkugel. Die Leitfihigkeit bei Ausbreitung des Stromes in den gesamten Raum
ist doppelt so groB wie die Leitfihigkeit bei Stromausbreitung in den Halbraum.

Fiir den gesamten durch die Kugel flieBenden Strom 21 kénnen wir nach dem zweiten KircH-
HOFFschen Gesetz (3.3./9) schreiben

2l = (p - dU. (1)
p
& gibt die Stromdichte, 4 eine beliebige geschlossene Fliche um den Kugelmittelpunkt an.
Wihlt man fiir 4 eine Kugelfliche vom Radius 7 (vgl. Bild 3.13), so folgt durch Auswertung des
Integrals (1)
21 = || 4mr2. (2)

Wir I16sen diese Gleichung nach der Stromdichte § auf und verwenden gleichzeitig das Oxmsche
Gesetz:

30 =y [C0)| = ®3)

e

27y

Zwischen zwei Kugelschalen mit den Radien r; und r, besteht die Potentialdifferenz

T2 T2
1
Ap U= [Geae= L [ L (L _ 1) (4)
2my r? 2my \7rq Ty
I 71
LiBt man r, iiber alle Grenzen wachsen und wihlt fir », den Radius der Halbkugel, so erhilt
man damit den Widerstand des Halbraumes:

U 1

= —= = . 5
I 2rrgy ®)
Er ist doppelt so groB wie der Widerstand einer Vollkugel.
Aufgeldst nach der Leitfahigkeit ¢ folgt
1
= . 6
4 2mrgR (©

11 Schilling, Felder
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Mit den vorgegebenen Zahlen erhalten wir

1

=——Q'm!=53-102Qm?!
270,25 .12

4

bzw. fiir den spezifischen Widerstand des Bodens

1 19,0Qm = 1,9 - 10’Q mm?2/m.

Wie man aus (5) erkennt, kann der gesamte Erdwiderstand gleichwertig durch einen zylindrischen
Leiter ersetzt werden, dessen Linge gleich dem Kugelradius und dessen Querschnitt gleich der
halben Kugeloberflache ist.

A Aufgaben

A3.3.1. Ein Amperemeter hat einen MeBbereich von 0,1 bis 10 mA. Sein Innenwiderstand
ist gleich 1,5 kQ). Welcher NebenschluBwiderstand Ry, ist anzubringen, wenn der
MeBbereich bis zu 1 A erweitert werden soll?

A 3.3.2. Ein Amperemeter gestattet Messungen bis zu 100 mA. Sein Innenwiderstand be-
tragt R; = 9,5 kQ. Um den MeBbereich zu erweitern, wird ein NebenschluBwider-
stand Ry, = 250Q) angebracht. Welche Stréome kénnen damit gemessen werden?

A3.3.3. Welcher Vorschaltwiderstand ist in der vorangegangenen Aufgabe anzubringen,
wenn mit dem MeBgeridt im NebenschluB Spannungsabfille bis zu U = 10000 V
gemessen werden sollen?

A3.3.4. Mit einer WrEATsTONEschen Briicke wird ein Widerstand R, gemessen. Der

- homogene MefBdraht hat die Lénge ! = 50 cm. Potentialausgleich erfolgt fiir
y = 14,4 cm. Der bekannte Widerstand befindet sich auf der entgegengesetzten
Seite der Mefbriicke und ist gleich B = 250Q). Wie gro8 ist R,,?

A 3.3.5. Berechnen Sie den Erdwiderstand fir einen Boden des mittleren spezifischen Wider-
standes 1/y = 8-107(Q) mm?/m, wenn in diesen eine metallische Halbkugel mit
dem Durchmesser 2r, = 50 cm eingegraben wird.

3.4. Elektrische Strome und gleichmiiBig bewegte Ladungen in Gasen
und im Heehvakuum

E Einfiibrung

Die MaxwerLrLschen Gleichungen gestatten keine Aussage iiber die Trédger der
Elektrizitdt. Elektrische Erscheinungen, die auf den Struktureigenschaften der
Elektrizitatstrager beruhen, werden durch die Maxwerrsche Kontinuumstheorie
nicht erfallt.

Zu diesen Erscheinungen gehoéren insbesondere die Gesetze der Elektrizitatsleitung
in Gasen, Flissigkeiten und festen Koérpern. Thre Deutung erfolgt auf Grund einer
atomistischen Theorie.

Durch die Messung der transportierten elektrischen Ladung und aus der Ablenkung
elektrischer Stréme in elektrischen und in magnetischen Feldern werden genaue
Aussagen tiber die Ladungstrager moglich.
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Die Elementarladung e 1iBt sich nach der in 3.4.1. dargestellten Schwebemethode
von MILLIRAN bestimmen. Dabei wird die konstante Geschwindigkeit einer aus
wenigen Elementarladungen bestehenden elektrischen Ladung im elektrischen Feld
beobachtet; es liegt also der Grenzfall eines stationédren Stromes vor.

Zur Messung der Elektronenmasse betrachtet man die Ablenkung von Katoden- oder
B-Strahlen durch ein elektrisches und ein senkrecht dazu gerichtetes magnetisches
Feld (vgl. 3.4.2.).

Die fir Leitungsvorgénge wichtigsten Tréger positiver Ladungen sind die Ionen, die
in Kanalstrahlen auftreten. IThre Masse kann aus der Strahlablenkung in parallel
gerichteten elektrischen und magnetischen Feldern bestimmt werden (vgl. 3.4.3.).

P Probleme

3.4.1. Millikan-Versuch

Zur Messung der elektrischen Elementarladung spritht man nach MiLrigax Oltropfchen zwischen
die Platten eines Kondensators (vgl. Bild 3.14). Durch den Sprithvorgang werden die Tropfchen
mit einer oder mehreren elektrischen Elementarladungen versehen. Ein Lichtstrahl macht die
Oltrépfchen sichtbar, so daB ihr Steigen und Fallen unter dem EinfluB des elektrischen Feldes
und der Schwerkraft mit einem MeBfernrohr beobachtet werden kann.

fl 7% motof =  Bild 3.14. Krifte auf eine Ladung ¢ beim
e MriLpikaN-Versuch

)

Die Messung mit dem in Richtung der Schwerkraft eingeschalteten elektrischen Feld der Stérke
E = 10 Vm~! ergibt bei der Beobachtung uiber eine liangere Zeit die Fallgeschwindigkeit
v, = 1,930 mm s. Dagegen erhélt man bei dem entgegen der Schwerkraft eingeschalteten Feld
gleicher Stirke die Fallgeschwindigkeit v, = 2,551 mm s~. Berechnen Sie daraus die Ladung
des Teilchens (g = 9,81 ms~2, Dichte des Ols ¢ = 0,915 g em—2, dynamische Viskositdat der
Luft n = 1,819 - 10* N s m~2).

Losung

Wir betrachten zunichst die Bewegung des Oltropfchens unter dem EinfluB von Schwerkraft
und Reibung. Die Schwerkraft ist durch

Fy = mg = 5 g (1)

gegeben. Fiir die Reibungskraft gilt das StoxEssche Gesetz
Fgp = —6mnro,, )

wobei v, die konstante Geschwindigkeit des Teilchens angibt. Aus der Gleichgewichtsbedingung
Fg 4 Fg = 0 erhalten wir durch Auflésen nach v, '

o’y
7

©|w

Vg =

(3)

11%
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In dieser Gleichung ist nach Messung der Fallgeschwindigkeit v, nur der Radius des beobachteten
Teilchens unbekannt, der somit bestimmt werden kann.
Mit eingeschaltetem elektrischem Feld folgt anstelle von (1) far die resultierende Kraft

Fo = % nrdeg 4 qE, 4)

wobei ¢ die Ladung des Tropfchens angibt. E ist positiv, wenn das Erdschwere- und das elektrische
Feld gleichgerichtet sind, negativ, wenn beide Felder einander entgegenwirken.

Wir bezeichnen mit v; (i = 1,2) die Tropfchengeschwindigkeit im Falle des eingeschalteten
elektrischen Feldes. v; tritt in (2) an die Stelle von v, Aus der Gleichgewichtshedingung
Fg + Fg = 0 folgt durch Auflésen nach v;

E
vi = vy + 6qw. (5)

Die Messung von v, bei abgeschaltetem elektrischem Feld und von v; bei bekannter Feldstarke E
liefert zwei Gleichungen zur Bestimmung der beiden Unbekannten » und g.
Im vorliegenden Fall wurden »; und v, gemessen. Nach (5) sind diese Gré8en durch

q B

o (6)

V1,2 =Yg

gegeben. Wir addieren diese beiden Gleichungen, beriicksichtigen (3) und Iésen nach s auf.
Damit erhalten wir

o3 1/77(”1-1" v) )
2 o9

o

Subtrahieren wir dagegen (6) von (5) und setzen in den sich ergebenden Ausdruck (7) ein, so
folgt durch Auflésen nach der Ladung

3
_ 92 v+ 0
2 |B| og

q

Mit den vorgegebenen Zahlen erhalten wir

3
_ 9m-(1,819.107%)2 4,481 - 10-3
- 2.108 0,915 - 10%.9,81

(—0,621 - 10-%) As= —4,81 - 10710 C,

Zur Messung der Elementarladung e wird eine groBe Zahl von Oltrépfchen beobachtet. Dabei
stellt man fest, daB siémtliche Ladungen ¢ als ganzzahliges Vielfaches einer ElementargroBe e
geschrieben werden kénnen:

q = Ze. 9)
Genaue Messungen in der beschriebenen Art ergeben e = 1,602 . 107! As. Das Elektron hat

die Ladung —e = —1,602 - 10-1% As.
Im vorliegenden Fall trigt das Oltrépfchen somit 3 Elektronenladungen.
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3.4.2. Messung der spezifischen Elektronenladung
mit dem Braunschen Katodenstrahlrohr

Es soll das Verhiltnis zwischen der Elementarladung e und der Elektronenmasse m, bestimmt
werden. Zu diesem Zweck untersucht man in einer BrauNschen Réhre nach Bild 3.15 die Ab-
lenkung eines Elektronenstrahles durch ein senkrecht dazu gerichtetes elektrisches Feld €. Die
Elektronen durchlaufen dabei einen Kondensator der Linge lx, durchqueren einen feldfreien
Raum und treffen danach mit dem Achsenabstand o, auf einen Leuchtschirm S. Der Abstand
zwischen der Austrittsstelle aus dem elektrischen Feld und dem Leuchtschirm ist gleich Ig.

Ablenkungsraum
[

l SchirmS

Bild 3.15. BravNsche Rohre

Die Ablenkung héngt auBer von der elektrischen Feldstirke € von der Geschwindigkeit v, der
Elektronen beim Eintritt in das elektrische Feld ab. Diese ist in der Regel nicht bekannt. Um sie
festzustellen, setzt man den Elektronenstrahl zusétzlich einem magnetischen Feld § aus. Es ist
so gerichtet, daB es der Auslenkung durch das elektrische Feld € entgegenwirkt. Seine GrofBe
wird derart geregelt, dal sich die auslenkenden Krifte des elektrischen und des magnetischen
Feldes gerade aufheben, der Strahl also genau wieder in der Achse verlduft.

Berechnen Sie die spezifische Elektronenladung, wenn folgende MeBdaten vorliegen~ lx = 5mm,
lg=25cm, g9, =3, 71em, £ =1000 Vm~1, H = 325 Am~1.

Welcher Wert ergibt sich fir die Elektronenmasse, wenn e = 1,602 - 10—15 As bekannt ist?

Losung
Wir betrachten zunéchst den Fall, daB nur das elektrische Feld eingeschaltet ist. Durch dieses
wirkt auf die Elektronen die Kraft §, = —e€, die zu einer Beschleunigung a fithrt:

Fe = —e€ = mea. (1)

Diese Beschleunigung ist senkrecht zur Geschwindigkeit v beim Eintritt in das homogene elek-
trische Feld des Plattenkondensators gerichtet. Sie iiberlagert sich auf die Anfangsgeschwindig-
keit, die in der Achsenrichtung liegt. Die Elektronen durchlaufen den Kondensator in der Zeit

I
= K, (2)
Yo

Sie verlassen ihn mit dem Achsenabstand
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Setzen wir (1) und (2) in (3) ein, so folgt

2
e— —LeBl (4)
2 Mevy?

Nach Durchlaufen des Kondensators haben die Elektronen auBer der Geschwindigkeitskom-
ponente b, in Achsenrichtung eine Geschwindigkeitskomponente in Richtung des elektrischen
Feldes der GroBe

v, =at = LEZK. (5)
MYy

Sie treffen infolgedessen mit der Achsenablenkung

l 1 eBlg(lx + 21
o=zt o8 = Ll + 2
Vo 2 Mg

(6)

auf den Schirm.

In (6) ist auBer m, die Anfangsgeschwindigkeit v, unbekannt. Um diese zu bestimmen, schaltet
man ein Magnetfeld § ein, das senkrecht zur Anfangsgeschwindigkeit und senkrecht zum elek-
trischen Feld € gerichtet ist. Nach der LoreENTz-Gleichung ist die auf ein bewegtes Elektron
durch ein Magnetfeld § wirkende Kraft gleich

Fm = —€0XB = —ueb X9H. (7
Das Magnetfeld hebt die Auslenkung durch das elektrische Feld gerade auf:

Fe + Fm = 0. ®)
Dazu muB nach (1) und (7) die Beziehung

B = ug,H (9)

gelten.
Mit den vorgegebenen Zahlen folgt aus (9), wenn wir nach v, auflésen,

1000

= ——————— ms?!=245.10m st
4r - 1077 . 325

Vo

Diesen Wert kénnen wir in (6) einsetzen und nach der spezifischen Ladung auflésen. Es ergibt
sich
e 2-371-107%2,45-106)
e 1000 - 5 - 10-3 . 0,505
1G

i

j.
Setzt man e = 1,602 - 10-°1 As als bekannt voraus, so erhidlt man fiir die Elektronenmasse

Askg = 1,76 - 101 C kg1

1,602 103 kg

Mo = e qgn ol 107 ke
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3.4.3. Messung der spezifischen Ionenladung nach Thomson (Parabelmethode)

Bei einer Gasentladung entstehen einfach positiv geladene Ionen, die sich mit unterschiedlicher
Geschwindigkeit bewegen. Um die auftretenden Teilchen zu analysieren, wird ihre spezifi-
sche Ladung e/m; bestimmt (m; Ionenmasse). Hierzu werden die Teilchen in Form eines
Massenstrahles durch ein Ablenksystem geleitet. Dieses besteht aus einem homogenen elek-
trischen Feld € und einem parallel dazu gerichteten homogenen magnetischen Feld $. € und §
stehen senkrecht zur Strahlrichtung beim Eintritt in das Ablenksystem (vgl. Bild 3.16). Die Ab-
lenkung ist fur die einzelnen Teilchen verschieden und héngt von ihrer Anfangsgeschwindig-
keit v, ab. Nach Durchlaufen des Ablenksystems treffen die Teilchen auf eine Photoplatte, wo
ihre Spur sichtbar gemacht werden kann. Sie hat die Form einer Parabel.

Y

ju
8 =S

Der Leuchtschirm habe vom Eintrittsspalt den Abstand I = 30 cm. Die elektrische Feldstirke
betrage £ = 10 V m~1, die magnetische H = 8 - 105> A m~'. Auf der Photoplatte ergebe sich als
Spur der abgelenkten Teilchen die Parabel

Bild 3.16. Tromsoxsche Parabel-
methode. M Magnetpole, P Konden-
satorplatte

yr=Cz (1)
mit
¢ =0,126 m. (2)

Berechnen Sie daraus die spezifische Ionenladung e/mj.

Losung

Auf die bewegten, mit einer positiven elektrischen Elementarladung versehenen Tellchen wirkt
nach der LoreENTz-Gleichung (3.2./1) die Kraft

T =eC + o xD). (3)

Wir wihlen die Richtung der Anfangsgeschwindigkeit als z-Achse, die Richtung der beiden
Felder als z-Achse. Bei positiven Tonen fithrt somit das elektrische Feld zu einer Ablenkung in
Richtung der z-Achse, dagegen das Magnetfeld zu einer Ablenkung in Richtung der y-Achse.
Fir die Ablenkung @ durch das elektrische Feld erhalten wir nach (3)
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a, bedeutet die Beschleunigung durch das elektrische Feld. ¢ bezeichnet die Zeit, gerechnet vom
Eintritt des Teilchens in das Ablenksystem.
Um vom Eintrittsspalt bis zur Photoplatte zu gelangen, ist fiir ein Teilchen mit der Anfangs-
geschwindigkeit v, = v, die Zeit
l =
by = — (5)
Yo
erforderlich. Setzen wir diesen Wert in (4) ein, so folgt fir die aut der Platte feststellbare Ab-
lenkung in Richtung der z-Achse

25
2myvy?

(6)

Die Ablenkung in Richtung der y-Achse kann in gleicher Weise bestimmt werden. Aus (3) und (5)
ergibt sich
evyBt?  euHI?

(7)

<
II
Lo |

my 2mpw,

In (6) und (7) ist die Anfangsgeschwindigkeit v, unbekannt. Wir kénnen diese GréBe eliminieren
und erhalten

2L12]2
0 & WHE (8)

m; 28
Durch Vergleich mit (1) folgt

27272 N
0= L WHT 9)
my 2E

(9) kann nach der spezifischen Ionenladung aufgelost werden. Setzt man den ermittelten Wert (2)
ein, so ergibt sich
e 0,126 - 2 - 108

— = Askgt =277.108 Ckg*.
my  (47-1077.8.10%. 0,30)2

Bei einfach geladenen Ionen erhalten wir daraus fiir die relative Tonenmasse My des Isotops

1,602 - 10-1°

My =mla= 5

- 6,02.10% = 34,8,

Aus Tabellen iiber die relative Ionenmasse entnimmt man, daB es sich bei der betrachteten Sub-
stanz um ein Isotop des Chlors handelt.

A Aufgaben

A34.1. Berechnen Sie die elektrische Ladung eines Schwebeteilchens, wenn dieses nur unter
dem EinfluB der Schwerkraft die konstante Fallgeschwindigkeit v, = 9,68 mm s—*
hat, dagegen bei dem in Richtung der Schwerkraft eingeschalteten elektrischen Feld
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E =5-10°Vm~'im Fadenkreuz der MeBanordnung verbleibt (§ =1,819-10-5Nsm~2,
g=98lms2, o=0915gcm3).

A3.4.2. Welche elektrische Feldstéirke ist erforderlich, um ein Oltrépfchen, das eine elek-
trische Elementarladung tragt, gegen die Schwerkraft unbeweglich im Fadenkreuz
zu halten (p = 0,915 g cm~2, Teilchenradius » = 1 pm)?

A34.3. Berechnen Sie die Fallgeschwindigkeit fiir ein Oltrépfchen, das eine elektrische
Elementarladung trigt. Der Tropfchenradius ist gleich 10 um. Das elektrische Feld
der Stirke F = 108 V m~! wird einmal parallel, das andere Mal antiparallel zum
Erdschwerefeld gerichtet (n = 1,819-10°Nsm=2,9=9,81ms2,90 = 0,915gcm™3).

A344. Welche Geschwindigkeiten ergeben sich in der vorhergehenden Aufgabe, wenn das
Oltroptchen zwei Elementarladungen tragt?
A3.4.5. Wie groB ist der Ablenkwinkel « fiir ein Elektron, das senkrecht zu den Feldlinien

auf ein homogenes Feld der Stirke E = 10* V m=! trifft und im Feld die Strecke
! =1 mm zuriicklegt? Die Anfangsgeschwindigkeit des Elektrons betridgt 0,01c.
Wie gro8 ist die Geschwindigkeitskomponente in Feldrichtung nach erfolgter Ab-
lenkung?

A 3.4.6. Um den Elektronenradius 7, abzuschéitzen, nimmt man das Elektron als kleine
Kugel an, die mit der Ladung e~ versehen ist. Welcher Wert ergibt sich fir 7,
wenn die potentielle Energie gleich der Ruhenergie des Elektrons gesetzt wird?

A34.7. Zur Messung der spezifischen Ionenladung nach der Parabelmethode wird ein
Magnetfeld der Stirke H = 5.10° Am~ und ein elektrisches Feld der Stirke
E =8:10°V m! verwendet. Die Lange der Ablenkplatten betrdgt I = 35 cm.
Berechnen . Sie die von den beiden Isotopen des Chlors erzeugten Parabeln. Wie
groB ist die auf der Photoplatte festzustellende Ablenkdifferenz zwischen den beiden
Parabeln in der Richtung senkrecht zur Anfangsbewegung und senkrecht zum
elektrischen Feld, wenn in Richtung des elektrischen Feldes eine Ablenkung von
5 em erfolgt? Die relativen Isotopenmassen sind gleich 35,0 bzw. 37,0.

3.5. Grundgesetze der elektrischen Leitung in Fliissigkeiten und festen Korpern

E Einfiihrung

Wird ein Stoff AB in einer Fliissigkeit gelost, so bildet sich ein Gleichgewicht zwischen
den nichtzerfallenen Molekiilen AB und den Ionen A+, B- aus:

AB 2 A+ + B-. (1)

Bei starken Elektrolyten, z. B. bei NaCl, zerfallt der weitaus gréBte Teil der Molekiile
in Tonen Na+*Cl-. Der Dissoziationsgrad « gibt den Anteil der in Ionen zerfallenen
Molekiile zur Gesamtzahl der gelosten Molekiile an (vgl. Tabelle 3).
Es bezeichne ¢ die Konzentration des gelosten Stoffes, d. h. die Zahl der Kilomol je
Kubikmeter bzw. die Zahl der Mol je Liter. Dann gilt
c= m 2
M @)
Darin gibt m* die Masse des gelosten Stoffes, bezogen auf einen Kubikmeter Fliissig-
keit an. M bedeutet die molare Masse (M = M, kg kmol-1). Bei einwertigen Elektro-
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lyten der Form AB 2 A+ 4 B~ ist die Zahl der Ladungstrédger je Kubikmeter gleich
N, =N_=ucN,. (3)

Darin bedeutet

N, = 6,0220 - 1026 kmol-!

die Avogadrosche Zahl.

Dagegen ist bei Elektrolyten Az Bz, > Z,A% *+ Z,B%- die Zahl der Ladungstriger
durch

l\/Y+ = ZQGCNA, N_= ZI(XCNA (4)
gegeben.

Beispiel 10

HBr hat die relative Molekiilmasse 80,9. ¢ = 0,10 mol/l bedeutet also 8,09 kg je m?® Flussigkeit.
Der Dissoziationsgrad ist nach Tabelle 3 gleich 0,90. Die Zahl der positiven und der negativen
Ionen je Kubikmeter ist daher in einer zehntelnormalen Bromséureldsung gleich

N,=N_=10,90-0,10 - N, kmol/m?® = 0,09 - 6,02 - 1026 m—3 = 5,42 . 10> m~3,
Dagegen folgt fiir H,CO; & 2H* 4 CO42~ mit o« = 0,001 7 fiir ¢ = 0,1 mol/l:

N, =2-0,0017 - 0,1 N kmol/m? = 2,05 - 102 m~,
N_=1-0,0017-0,1 ¥ kmol/m? = 1,02 - 102 m-3.

Durch ein von aullen angelegtes Feld werden die positiv geladenen Kationen A+ zur
Katode, die negativ geladenen Anionen B- zur Anode gezogen. Die Elektrizitits-
leitung durch Fliissigkeiten ist daher mit einem Massentransport verbunden. An der
Anode geben die Anionen B- ihre Ladung ab, der Stoff B wird abgeschieden. Die
Kationen A+ geben ihre Ladung an der Katode ab, der Stoff A wird abgeschieden.
Bei einfach geladenen Ionen ist der Ausgleich einer Elementarladung mit dem Ab-
scheiden einer Atomgruppe A bzw. B verbunden. Das Abscheiden eines Kilomols
mit einer einwertigen Atomgruppe bedeutet daher, daB zu jeder Elektrode die elek-
trische Ladung

+Nse=+F ()

gewandert ist. F wird als Faradaysche Konstante bezeichnet. F' hat den Wert

| F = 6,0220 - 102 . 1,6022 - 10-1° As kmol-! = 9,6485 C kmol-! |. (5a)

Beispiel 11

In einer Silbernitratlésung zerfallt das Molekiil AgNOj, in die Tonen Agt und NO,~. An der Katode
wird 1 kmol (107,87 kg) Silber abgeschieden, wenn ein Ladungsausgleich von

g = [1dt=9,6485-107 As
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erfolgt ist. Es wird somit

M _ _ 107,87 kg/kmol — 1,118 mg As )
F 90,6485 - 107 As/kmol

Silber abgeschieden (mit M = A4, kg/kmol als molare Masse; A, bezeichnet die relative Atom-
masse).

Allgemein wird die Menge des abgeschiedenen Stoffes durch die FaArapayschen
Gesetze der Elektrolyse bestimmt (vgl. 3.5.1.). Elektrolytisch abgeschiedene Stoff-
mengen lassen sich sehr genau messen. Aus der Masse des abgeschiedenen Silbers
und seiner relativen Atommasse kann daher nach (3) die Farapaysche Konstante
F = N ze bestimmt werden. Da e aus dem Millikanversuch 3.4.1. bekannt ist, liefert
die Messung von F gleichzeitig ein Verfahren zur Messung der AvoaaDRoOschen
Zahl N,. Die Avogaprosche Zahl und die Borrzmanx-Konstante £ = 1,3807 - 10-23
J K-1 sind mit der Gaskonstanten B = 8,314 . 103 J K- kmol-! durch die Beziehung

N =R ™M

verkniipft. R ist aus Messungen iiber die Eigenschaften der Gase genau bekannt.
Die Messung von F bzw. N, liefert somit auch ein Verfahren zur Messung von k.
Seine Messung kann ebenfalls auf spektroskopischem Weg erfolgen (vgl. [25] 4.2.),
wobei sich genaue Ubereinstimmung der auf zwei véllig verschiedenen physikalischen
Wegen abgeleiteten Grofien ergibt.

Bei den elektrischen Leitungsvorgingen in Flissigkeiten und festen Korpern be-
wegen sich positive und negative elektrische Ladungen unter dem Einfluf} eines elek-
trischen Feldes. Es bezeichne NV, die Zahl der Tréger positiver Ladung je Raumeinheit,
N_ die entsprechende Zahl der Tréger negativer Ladungen. Z, und Z_ kennzeichnen
die Zahl der Ladungen je Ladungstriger. v, bzw. v_geben die mittleren Driftgeschwin-
digkeiten der Ladungstridger unter dem EinfluBl des elektrischen Feldes an. Sie sind
klein gegen die mittleren Geschwindigkeiten der Teilchen und diirfen miit diesen
nicht verwechselt werden (vgl. 3.5.2. und 3.5.3.).

Fiir die von den positiven bzw. negativen Ladungstrigern verursachte elektrische
Stromdichte gilt

j+ = N Zepy, j-=—N_Z_ep_. (8)
Die resultierende Stromdichte ist gleich
=i+ +ij-=DNZo, — N.-Zyp )e. (9)

Dabei ist zu beachten, dafl die Geschwindigkeiten b, und p_ einander entgegen-
gerichtet sind. Nach dem OnMschen Gesetz besteht die Beziehung

3 = 5G. (10)

Im folgenden wird vorausgesetzt, dafl die elektrolytische Substanz in der Fliissigkeit
nur in sehr geringer Konzentration vorhanden ist. Die Geschwindigkeit der Ladungs-
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trager wichst dann proportional dem &uferen elektrischen Feld. Sie ist bei positiven
Ladungen dem &duBeren Feld gleich-, bei negativen Ladungen dem &ufleren Feld
entgegengerichtet. Man schreibt daher

. =bGC, o.=—bC (11)

und definiert die Skalare b, bzw. b_ als Beweglichkeit der Ladungstriger. Durch Ein-
fithren von (11) in (8) folgt

) § = (N.Z.b. + N_Z b)) e€. (12)
Die Leitfahigkeit ist also nach dem Onmschen Gesetz (10) durch
v = (N,Zb. + N_Zb )e (13)
gegeben. Bei nach auflen hin neutralen Lisungen ist
N.Z, =N_Z_ =N2Z, (14)
so dafl man anstelle von (13) die Gleichung
y=NZb, +b)e (15)

erhélt.

Die Messung der Leitfdhigkeit eines Stoffes liefert nach (15) nur die Summe der Be-
weglichkeiten aller Ladungstrégersorten. Um die Beweglichkeit einer Ionenart zu
bestimmen, ist es erforderlich, den von ihr verursachten elektrischen Strom un-
abhéngig von den anderen Ionen zu bestimmen bzw. die Stromdichte einer Tonenart
im Verhéltnis zur gesamten Stromdichte festzustellen. Das geschieht am einfachsten
nach der Methode der wandernden Grenzschicht (vgl. 3.5.2.). Aus diesen Messungen
ergibt sich nach (8), (10) und (11), wenn man (14) berticksichtigt,

il b
I by + b

Das Verhaltnis (16) wird nach HirTorF als relative Uberfiihrungszahl der positiven
Tonen bezeichnet. Wie aus (16) hervorgeht, ist die Summe der relativen Uberfithrungs-
zahlen gleich eins.

Die Beweglichkeit eines Ions hdngt nur im Grenzfall unendlicher Verdiinnung von
ihm allein und dem Losungsmittel ab. Bei endlicher Konzentration wirken sdmtliche
beteiligten Reaktionspartner auf die Beweglichkeit eines Tons mit. Infolgedessen
stellen die abgeleiteten Formeln nur erste Naherungen dar.

In Tabelle 4 sind die Beweglichkeiten verschiedener Tonen zusammengestellt. Sie
werden iiblicherweise auf die FArRaDpAYsche Konstante bezogen. Die absoluten Zahlen
erhdlt man daraus nach Beispiel 12 im Anschlufl an Tabelle 4.

In festen Korpern, insbesondere bei den metallischen Leitern, erfolgt die Elektrizi-
téatsleitung im wesentlichen durch Teilchen einer Sorte, in der Regel durch Elektronen
Die elektrische Stromdichte wird fiir Elektronen nach (9) durch

= —N_ev. = Nep = NebG, (17)

(16)
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die elektrische Leitfséhigkeit nach (10) und (11) durch
y = Neb. (18)

dargestellt. b ist in (17) dem Elektronenstrom entgegen, dem elektrischen Feld
parallel gerichtet. IV bezeichnet die Zahl der Teilchen je Raumeinheit.

Im Gegensatz zur Elektrizitdtsleitung durch Fliissigkeiten ist bei festen Kérpern die
Zahl der Ladungstrager N nicht bekannt. Da auch die Beweglichkeit b der Ladungs-
trager nicht bekannt ist, liefert die Messung der Leitfahigkeit auch bei festen Korpern
nur eine Gleichung fiir zwei Unbekannte. Eine zweite Gleichung zur Bestimmung
von IV und b ergibt sich aus der Ablenkung des Elektronenstroms durch ein magne-
tisches Feld. Die hierauf beruhende physikalische Erscheinung bei der Elektrizitéts-
leitung in festen Korpern wird als Hall-Effekt bezeichnet. Der Havv-Effekt wird
in 3.5.5. behandelt.

Wie die Messung der elektrischen Leitfdhigkeit und des Havrr-Effektes zeigt, ist bei
einer Reihe von Metallen, z. B. bei Kupfer und bei Silber, die Zahl der Leitungs-
elektronen gendhert gleich der Zahl der Atome. Dagegen zeigen andere Metalle,
z. B. Wismut, ein Differieren um GréBenordnungen zwischen den genannten GréBen
(vgl. Tabelle 5).

Tabelle 3. Dissoziationsgrad « bei Zimmertemperatur
Sduren und Laugen

Stoff Konzentration ¢ ©

in mol =%
HBr 0,1 0,90
H,CO, 0,1 0,0017
Ca(OH), 0,1 0,90
HCI 1 0,78
KOH 1 0,77
NaOH 1 0,73
Salze
Stoft ¢ in mol 1-1 0,1 0,01 0,001
A+B- (z. B. KCI) 0,83 0,93 0,98
A*H(B), (z. B. BaCl,) 0,75 0,87 0,95
(A+),B— (z. B. K,S0,) 0,75 0,87 0,95
A++B~ (z. B. BaSO,) 0,40 0,65 0,75

Tabelle 4. Ionenbeweglichkeit b bei unendlicher Verdiinnung

Ion b in Ion bin

Q-1 m? kmol-* F-! Q-1 m2 kmol-! F-1
H+ 315 OH- 174
Nat 42,6 F- 47,6

K+ 63,7 Cl- 66,3
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Fortsetzung Tabelle 4

Ion b in Ion bin
Q-1m? kmol-! F-1 Q-1m?kmol-1! F-1
Cst 66,8 Br- 68,2
Agt 53,2 J- 66,8
Cu++ 45,3 Cl0,~ 55,8
Zntt 45 BrO,- 49
Fett 45 NO,;~ 62,6
Fet++ 61 CH,CO0~ 35
Catt 50,4 SO, 68,7

Beispiel 12

Es soll die Beweglichkeit der Kalium-Ionen bestimmt werden. Aus
by = 63,7071 m? kmol~* F-1

folgt mit ¥ = 9,65 - 107 As kmol—!

b — 63,7 V-1 A m2 kmol-?
K™ 79,65 - 107 As kmol!

= 0,66-10%m/s Vm—! =0,66-10"6m2 V-1g1,

Das bedeutet: In einem Feld der Stirke 10° V m—! driften die Ionen in einer Sekunde um die
Strecke 0,66 mm in Feldrichtung.

P Probleme

3.5.1. Faradaysche Gesetze der Elektrolyse

An eine stark verdiinnte Losung von CuSO, wird eine elektrische Spannung gelegt, wodurch es
an der Katode zur Abscheidung von Kupfer kommt. Die Abscheidung erfolgt tiber eine Zeit
von ¢t = 1 h, wobei die konstante Stromstirke I = 10 A aufrechterhalten wird. Wie gro8 ist die
Menge des abgeschiedenen Kupfers (4¢, = 63,54, Zg, = 2)? Welche Menge wird abgeschieden,
wenn die Losung ein Chromsalz enthélt (4g, = 52,00, Zg, = 3)?

Losung

Die Molekiile des geldsten Salzes setzen sich aus den Z-fach positiv geladenen Kationen und den
Z-fach negativ geladenen Anionen zusammen. Im vorliegenden Fall werden die Kationen von
den zweifach positiv geladenen Kupferionen Cut+ reprisentiert, die Anionen von der Gruppe
SO, . Unter dem EinfluB des elektrischen Feldes wandern die Kationen zur Katode, die Anionen

zur Anode. Dabei trigt jede positive elektrische Ladung et die Masse
M

=, 1

"=, W

wobei M = A, kg kmol~! die molare Masse der Kationen angibt. Durch N Elementarladungen
wird die Masse
m = N Adm = N (2)
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abgeschieden. Die gesamte zur Katode gewanderte Ladung ist mit dem Strom I und der Zeit ¢

durch die Beziehung
Ne =1t
gegeben. Wir setzen (3) in (2) ein und erhalten fiir die abgeschiedene Masse

M
T ZNe

m It.

Hierin bezeichnet
Nye = F = 9,6485 - 107 As kmol~?

die FaAraDAY-Konstante.
Als elektrochemisches Aquivalent definiert man

g'
ZF |

Mit diesem ergibt sich aus (4) das

1. Faradaysche Gesetz

m = kIt = ﬁlt
. ZF

Als Verhiltnis der abgeschiedenen Massen bei gleichem Wert It folgt aus (7) bzw. (4) das

2. Faradaysche Gesetz

my ky

My ko

MI/ZI
M,/Z,

Mit den vorgegebenen Zahlen erhalten wir fiir die Masse abgeschiedenen Kupfers aus (4)
63,54
2.9,65-107
=0,3293 mg A~1s1.10.3600 As = 11,86 g.

Moy = kg A-1s71.10- 3600 As

®3)

(4)

(6)

Die GroBe kg, = 0,3293 mg A~! s bezeichnet das elektrochemische Aquivalent des zweiwertigen

Kupfers.
Fir die Masse des abgeschiedenen Chroms ergibt sich aus (8)

52,00 - 2

11,86 g = 6,47 g.
3. 63,54 & '8

mey =
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3.5.2. Tonenheweglichkeit und relative Uberfiihrungszahl

In einem graduierten Rohr (vgl. Bild 3.17) wird eine Losung aus Kupferchlorid auf eine Losung
aus Eisenchlorid geschichtet, so daB eine deutlich erkennbare Schichtgrenze entsteht. Die beiden
Losungen sind an ihrer Fiarbung deutlich zu erkennen; es kénnen jedoch auch kompliziertere

—
A
Cu:c‘/z/
\‘I:é é——— Volumen vV
sx/é5;§ __L:
N\++ 7 ]
LFe C,

Bild 3.17. Messung der relativen Uberfithrungs-
zahl in einem graduierten Rohr

Grundfliche A

optische Beobachtungsmethoden angewandt werden. Bei der Elektrolyse wird ein Strom von
I = 19,56 mA festgestellt. Das Rohr hat den Querschnitt 4 = 15,0 mm?. Die Grenzschicht
wandert in der Zeit 4t = 254,5 s iiber eine Strecke von Al = 8,00 cm nach oben. In der Fliissig-
keit von 100 cm?® sind 1,345 g Kupferchlorid gelost. Fiir die Leitfdhigkeit der Losung wird der
Wert y = 1,9420-1 m~! gemessen. Welche Werte ergeben sich fiir die Beweglichkeit der Kupfer-
ionen und fiir die Beweglichkeit der Chlorionen?

Losung
Nach (3.5./12) ist die elektrische Stromdichte durch die Gleichung
S = (N3 Z.by + N_Z_b_) G (1)

bestimmt. § = j; + j_ setzt sich aus dem Strom j, der Kationen und dem Strom j_ der Anionen
zusammen. Im Falle N.Z, = N_Z_= NZ ist

i+ = NZb,eG, j—= NZb_eG. (2)
Das Ormsche Gesetz besagt nach (3.5./15)
y = NZe(bs + b.). 3)

Damit liegt eine Gleichung zur Bestimmung von b, und b_ vor.
Wie die Untersuchung tiber die wandernde Grenzfliche ergibt, werden in der Zeit At die Ionen
im raumfesten Volumen AV = A4 Al durch andere ersetzt. Hierdurch entsteht ein Ionenstrom
der Stirke

NZeAV

Io=A4l,= TR 4)
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Andererseits kdnnen wir den Strom positiver Ionen durch i, ausdriicken. Durch Vergleich mit (4)
erhalten wir

Al : ~
Z = b‘{@“ (O)

Nach (1) kann die elektrische Feldstirke € durch den Gesamtstrom AJ ausgedriickt werden:

I
6= — 6
¢ = YZo o0 ©

Aus (5) und (6) folgt eine zweite Gleichung zur Bestimmung der Tonenbeweglichkeiten:

by  NZe L

= —. (7)
by+ b I At

Die Zahl der Ladungstriger je Raumeinheit ergibt sich aus der Konzentration ¢ der Losung
und dem Dissoziationsgrad «:

N, =acN,. (8)

Im vorliegenden Fall ist die relative Molekiilmasse gleich 134,5, die Konzentration also ¢ =0,01g/1.
Dem entspricht nach Tabelle 3 der Dissoziationsgrad o = 0,87. Daraus folgt wegen Z., = 2

NZ =2.087-0,01N, = 0,0174N,.

Wir berticksichtigen N e = F = 9,648 - 107 As kmol~* und erhalten aus (3)
1,942 V-t m?st = 0,0174 - 9,648 - 107(b. 4 b_),

wahrend aus (7)

. . 7 . 102
br _ 00174.9.648-10° . 0 (8-10
by + b_ 19,56 - 10-3 254,5

= 0,405

folgt. Durch Auflésung des Gleichungssystems ergibt sich

20-1 m2 -1

b, = 4_5’_0—?.&. =4,68.10"m/s Vm?,
4

66,40t m? kmol—*

b_
F

=6,88-10""m/s Vm.

Die Driftgeschwindigkeiten sind also sehr niedrig.

3.5.3. Driftgeschwindigkeit der Elektronen in festen Korpern

An eine Kupferleitung wird die Feldstirke £ = 0,1 V m~! gelegt. Wie gro8 ist die Driftgeschwin-
digkeit der Elektronen? Kupfer hat die elektrische Leitfahigkeit y = 0,57 - 1082 ~'m~1, die
Massendichte p = 8,9 g cm~3, die relative Atommasse 4, = 63,5.

12 Schilling, Felder



178 3. Der stationédre Strom und sein Magnetfeld

Losung
Infolge des elektrischen Feldes € fithren die Elektronen eine Driftbewegung entgegen der Feld-
richtung aus. Die Driftgeschwindigkeit werde mit v_ = —bp bezeichnet. N gebe die Zahl der

Elektronen je Raumeinheit (m®) an. Als Stromdichte folgt
§ =j.= —Nev_ = Nev. (1)

Die Zahl NV der Leitungselektronen kann angenéhert gleich der Zahl » der Atome gesetzt werden,
da ungefiahr jedes Kupferatom ein Leitungselektron liefert. Fur die Zahl der Atome je Raum-
einheit erhalten wir

2 4
= = ———— N, 2
" my A, kg kmol-t A @)

wobei m, die Masse eines Atoms angibt.
Die Stromdichte bei bekannter Leitfihigkeit und bekannter Feldstirke folgt aus dem Ommschen

Gesetz
F=yE. (3)

Wir denken uns einen homogenen Leiter, dessen Querschnitt gleich der Flacheneinheit ist (1 m?).
Der Betrag des Vektors § gibt die Ladung an, die in der Zeiteinbeit (1 s) einen bestimmten Quer-
schnitt 4, des homogenen Leiters passiert:

=9 €= —Ney. 4)

Hieraus erhalten wir fir die Driftgeschwindigkeit der Elektronen

P = € = 2 A, kg kmol-1. (5)
Ne oV e

Mit den vorgegebenen Zahlen folgt

. 108 . .
_ 0,57 - 108 . 0,1 - 63,5 m s — 0,41 mm s-1.
8,9:10%.6,02-10% .1,6-10-1°

Auch in festen Korpern ist die Driftgeschwindigkeit also sehr klein.

3.5.4. Ohmsches Gesetz

In einem Kupferblock mit dem Volumen 1 m? betrigt die Innere Energie der Leitungselektronen
bei300 K U = 1,69 - 10'* J (vgl. [25] 3.4.1.). Die mittlere freie Weglédnge der Elektronen zwischen
zwei ZusammenstoBen mit Kupferatomen ist durch die Gleichung

1

A= (1)
4 ]/2—71:7‘021\7

gegeben [vgl. [25], Gl. (3.4./5)]. Darin bedeutet r, den Radius des Wirkungsquerschnittes eines

Kupferatoms, N die Zahl der Leitungselektronen je m3. Zusammenstéf8e zwischen Elektronen

konnen wegen der geringen Ausdehnung der Elektronen vernachlédssigt werden.

Wird an ein Metall eine Spannung gelegt, so wirkt auf jedes Leitungselektron eine Kraft, die es

in Richtung des elektrischen Feldes beschleunigt. Wahrend der Zeit zwischen zwei Sto8en erwirbt
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das Elektron eine Driftgeschwindigkeit v, die fiir den entstehenden elektrischen Strom verantwort-
lich ist. Bei jedem ZusammenstoB verliert das Elektron die Driftgeschwindigkeit wieder.

Leiten Sie nach diesem Modell eine Gleichung zwischen der mittleren freien Weglénge, der mitt-
leren Elektronengeschwindigkeit » und der Driftgeschwindigkeit v her. Bestimmen Sie aus der
Leitfahigkeit y = 0,57 - 108Q)~2 m~! des Kupfers den Wirkungsquerschnitt der Kupferatome fir
StoBe mit Leitungselektronen. Nach 3.5.3. kann die Zahl der Leitungselektronen fiir Kupfer
gleich N = 8,4 - 10%® m~2 gesetzt werden.

Losung

Die mittlere Geschwindigkeit » der Leitungselektronen ist mit der Inneren Energie des Elek-
tronengases durch

Nm,
2

U =

u? bzw. U= l 20 (2)
| Nom,

verkniipft. Bei fehlendem elektrischem Feld sind die Elektronengeschwindigkeiten iiber alle

Richtungen gleich verteilt.
Zwischen zwei Zusammenstofen vergeht im Mittel die Zeit

At =2 3)
u

Unmittelbar nach dem ZusammenstoB hat das Elektron die Driftgeschwindigkeit Null. Am
Ende der Zeit A¢ hat es nach dem zweiten NEwToNschen Axiom die Geschwindigkeit

b gy = —e@ At = el @)
My Ml
erlangt. Im Mittel besitzt ein Elektron somit die Driftgeschwindigkeit
p= L (5)
2 meu
Nach (3.5./5) ist die durch den Elektronenflufl verursachte Stromdichte gleich
- 1 e2AN
1:1_:—eND=~—E/h (6)
2 meu
Aus dem Vergleich mit dem OHMschen Gesetz erhalten wir somit
1 e2AN
y— L W)
2 meu

Nach (2) folgt far die mittlere Geschwindigkeit der nach allen Richtungen sich bewegenden
Elektronen

. T
° = 2-1,68-10 ms?t=2,10-10ms1,
8,4-1028.9,1. 103

Dagegen liegt nach 3.5.3. die Driftgeschwindigkeit nur in der Gré8encrdnung mm s=1.

12



180 3. Der stationdre Strom und sein Magnetfeld

Fiir den Radius des Wirkungsquerschnittes ergibt sich aus (7) und (1)

€

To= ———
VS 1/2— TYMU

mit den vorgegebenen Zahlenwerten

1,6 . 1019

0 = m=2,6.10"12m.
V8,0-1,41 -7-0,57-108.9,1.10-31.2,1 . 106

r

Das Kupferatom hat den Radius 1,3 - 10~ m. Die Leitungselektronen werden also durch die
duBeren Elektronen der Kupferatome nur wenig beeinfluBt.

3.5.5. Hall-Effekt

Ein Streifen aus Wismut wird von elektrischem Strom I durchflossen. Er befindet sich in einem
homogenen Magnetfeld 9B, dessen Feldlinien den Leiter senkrecht durchsetzen (vgl. Bild 3.18).
Infolge dieses Feldes wirkt nach der LorenTz-Gleichung auf die elektrischen Ladungstriager eine
Kraft. Sie fithrt dazu, daB sich die Elektronen auf dem oberen Teil des Streifens in Bild 3.18 an-

<

Bild 3.18. Messung der HarL-Spannung in
_, |.{ |.{ |..| einem Elektronenleiter

reichern. Hierdurch entsteht zwischen dem oberen und dem unteren Streifenende eine elektrisch
Spannung Uy, die als Harn-Spannung bezeichnet wird. Der Wismutstreifen habe die Breite
a = 10 cm, die Dicke d = 1 mm und die Linge I = 1 m. Die Stromstérke quer zu den magne-
tischen Feldlinien betrage I = 10 A. Das magnetische Feld besitze die Fludichte B=0,7Vsm=2
Dabei wird die Hall-Spannung Uy = 3,5 - 10~3 V gemessen. Berechnen Sie daraus die Beweglich-
keit b der Elektronen in Wismut. Wie gro8 ist die Driftgeschwindigkeit, wie gro3 die Zahl der
Ladungstriger? Vergleichen Sie die Zahl der Elektronen je Raumeinheit mit der Zahl der Atome
je Raumeinheit (o = 9,8 g cm=3, 4, = 209,0, y = 8,6 - 105V m A™).

Losung

Unter dem EinfluB des magnetischen Feldes wirkt auf ein Elektron mit der Ladung —e die Kraft

Fm = —eDXB. (1)
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In Bild 3.18 wird daher in der Richtung nach rechts auf jedes Elektron im Mittel die Kraft
Fy,=evB (2)
wirksam. Sie fithrt dazu, daB sich die Elektronen im oberen Teil des Streifens ansammeln. Dadurch

entstehen abstoBende Krifte, d. h., es wird ein elektrisches Feld €y aufgebaut. Man bezeichnet
dieses als Harr-Feld. Im Gleichgewichtszustand besteht die Beziehung

—eo X B — Gy = 0. (3a)
Hieraus folgt fiir die Harr-Feldstérke
Ey =B bzw. Cg=—0X9DB. (3)

Die Stromstérke I 1a8t sich durch die Dichte N und die Geschwindigkeit » der Ladungstréger
ausdriicken:

I = NevAd = Nevad. (4)

A = ad bezeichnet den Leiterquerschnitt. Wir I6sen (4) nach » auf und setzen diese GréBe in (3)
ein. Damit ergibt sich

IB JIx B
= bzw. = — . 5
Ned . G Ne 2

H

Fir die der Messung zugéngliche Harr-Spannung erhélt man

1B

Ug = Ega= . 6
H HO = (6)
Allgemein schreibt man Gleichung (5) bei Elektronenleitung in der Form

@H:RHSX%! (72)
Gleichung (6) in der Form

a
Die GroBe
1 1
Ry=—=—— 8
B Ne Ne ®

wird als Harr-Konstante bezeichnet. Ry ist bei Elektronenleitung negativ. Erfolgt dagegen die
Elektrizititsleitung durch positive Ladungstréiger, so ist

1
By = Ve’ (8a)

d. h. positiv. Dieser Fall liegt z. B. tiir Kadmium vor.
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Aus der Messung der Harr-Spannung kann somit nach (8) und (7b) die Ladungstrigerdichte NV
bestimmt werden. Auerdem kann auf die Art der Ladungstriger geschlossen werden.
Wir fithren gem&f (3.5./17) die Beweglichkeit b ein:

S = Neb = Neb. )

Nach dem Onwmschen Gesetz § = y€ kénnen wir y = Neb schreiben. Anstelle von (8) erhilt
man somit

Ry——L_z0__1Y (10)

Die Beweglichkeit b geht demnach aus der Harr-Konstanten Ry und aus der Leitfidhigkeit

hervor:

Wir setzen die MeBergebnisse in die nach Ry aufgeldste Gleichung (7) ein und erhalten

_ Ugd  3,5-103.10-3

—Ry = = 3 A-1g-1,
H= T7p 0.07 8F

Damit folgt nach (8) fiir die Elektronenzahl je m?

N = — m-—2% = 1,25.10% m-3,
5-1077.1,60 - 1071

Im Gegensatz dazu betrigt die Atomzahl je m?

oV o _98.10%.6,02. 10% n

— -3 —2,8.10% m-5.
4, kg kmol-* 209

n =

Bei Wismut liefert also im Gegensatz zu Kupfer und Silber nur ein kleiner Bruchteil der Atome
ein freies Elektron.
Fur die Beweglichkeit erhalten wir aus (11)

m st
b=28,6.105.5.10"7
v

= 0,43 m?> V-1s1,

m-1

Dieser Wert liegt um zwei GréBenordnungen iiber dem des Kupfers. Um die Teilchengeschwindig-
keit zu bestimmen, ermitteln wir den Widerstand und fiir I = 10 A die Feldstarke:

Rt 1 o_o020,
vad 8610510 10-°
oL BL_ 00210 ¢ 619V mo.

! l 1
Damit ergibt sich fir die Driftgeschwindigkeit der Elektronen

v =>0E =0,43-0,12m s = 5,2 cm s~1.
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A3.5.1.

A3.5.2.

A 3.5.3.

A3.5.4.

A 3.5.5.

A 3.5.6.

A 3.5.8.

A 3.5.9.

Tabelle 5. Harr-Konstante Ry, Beweglichkeit b, Leitfdhigkeit y,
Zahl N der Ladungstrager, Atomzahl »

Stoff

Ag Cu Au Bi Cd
Ry in 10710 m® At st —0,84 —0,536 —0,704 —6330 40,589
bin 103 m?2V-1g?t 5,2 3,1 3,2 525 0,78
pin 108Q-1 m-? 0,62 0,57 0,45 0,0083 0,132
N in 102 m—° 7,4 11,6 8,9 0,0010 10,6
nin 102 m—3 5,9 8,4 59 2,8 4,6
Bin Vs m—2 0,3.--2,2 1,13 0,69 0,393 1,07

Anmerkung: Die Harr-Konstante Ry und die Ladungstriagerzahl N sind von der
magnetischen Fludichte abhéngig.

Auigaben

Berechnen Sie das elektrochemische Aquivalent fiir Aluminium (4,4, = 26,98,
Z 5, =3), Wasserstoff (4x = 1,008, Zy = 1) und fiir die OH-Gruppe (M og =17,01,
Zoy = 1).

Das elektrochemische Aquivalent fiir Silber ist ky, = 1,1179 mg A-2s1. Be-
rechnen Sie daraus die FarapaY-Konstante F (4, = 107,87, Z,, = 1).

Ein Ring von 300 mm?2 Obertldche soll galvanisch eine 0,01 mm dicke Goldschicht
erhalten. Wie lange muB} der Ring in der Losung bleiben, wenn ein Strom von 0,5 A
flieBt (ks = 0,681 mg A~1 s, Dichte g, = 19,3 g cm=3)?

Berechnen Sie die elektrische Leitfdhigkeit einer Kochsalzlésung der Konzentration
¢ = 0,01 mol/l. Die Tonenbeweglichkeiten sind Tabelle 4 zu entnehmen. Der Dis-
soziationsgrad kann gleich eins gesetzt werden.

Berechnen Sie zur vorangegangenen Aufgabe die Geschwindigkeit der Kalium-
ionen, wenn die Stromdichte § = 1,0 mA mm~2 betrigt.

Mit welcher Geschwindigkeit bewegen sich Wasserstoffionen (by nach Tabelle 4),
wenn das duBere Feld die Stidrke 1 V cm™ besitzt?

Die Messung der Ionenbeweglichkeit nach der Methode der wandernden Grenz-
schicht erfordert fiir genaue Messungen, daf3 die Schichtgrenze wihrend der Unter-
suchung scharf erhalten bleibt. Hierzu wird die Konzentration der nicht unter-
suchten Indikatorlésung unterhalb der MeBlésung so gewihlt, daBl sowohl die
Kationen der Mefl6sung als auch die Kationen der Indikatorldsung mit gleicher
Geschwindigkeit wandern. Es sei eine CuCl,-Losung der Konzentration ¢ = 0,01 mol/l
zu untersuchen. Als Indikator werde eine CaCl,-Losung verwendet. Welche Kon-
zentration mufB diese haben (Werte nach Tabelle 4)?

Wie groB ist die Driftgeschwindigkeit der Elektronen in einem Kupferdraht von
1 mm? Querschnitt, wenn ein Strom von 1 A flieBt (bgy = 3,1 - 1073 m2 V-15-1)?
Welche Elektronenbeweglichkeit ergibt sich fir Silber, wenn die Zahl der Atome n
gleich der Zahl der Elektronen N gesetzt wird (g4 = 10,6 g em=2, 4,, = 107,9,
Vag = 0,62 - 105Q-1 m-1)?
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A 3.5.10.

A 3.5.11.

A3.5.12.

Wie grof} ist die Harr-Spannung in einem Kupferstreifen, durch den der Strom
I =100 A flieBt? Das Magnetfeld hat die Stdrke H =5 - 10> A m~'. Die Streifen-
dicke betragt 0,1 mm (Ryg = 0,66 - 10710 m?® A-1571).

Die Elektronenbeweglichkeit in Kupfer betrdgt 3,8 10-2m/s V m~. Berechnen
Sie die Driftgeschwindigkeit fiir £ = 0,1 V m1.

Aluminium hat die Harr-Konstante Ry = —0,34 . 1071°A-1s~' m3. Berechnen
Sie daraus die Zahl der Elektronen je Raumeinheit.



4- Quasistationire Stromkreise und elektro-
magnetische Wellen auf Leitungen

4.1. Quasistationdire Stromkreise

E Einfiihrung

Die quasistationdre Naherungsmethode wird bei Jangsam verédnderlichen elektro-
magnetischen Feldern angewandt. Im allgemeinen sind die Anderungen periodisch,
so dafl man von niederfrequenten Wechselstrémen spricht. Ihre Zeitabhingigkeit
kann in der Form sin wt oder ei*! bzw. Y a, el dargestellt werden.

n
Zur Integration der MaxwerLschen Gleichungen wird der Stromkreis in kleine Ab-
schnitte unterteilt und innerhalb eines jeden Teilstiicks mit einem einheitlichen
Schwingungszustand gerechnet. Diese Methode ist zulédssig, wenn die Ausdehnung A7
eines Abschnitts klein gegen die Wellenlénge 4 = ¢/f = 2nc/w ist:

Az<<,1]. (1)

Ein Gebiet kann, wenn dafiir (1) erfiillt ist, den ganzen Stromkreis umfassen. Es ist
jedoch auch eine Unterteilung in differentiell kleine Abschnitte moglich (vgl. 4.4.).
Die quasistationdre Naherung besteht darin, dafl das Magnetfeld wie bei stationdren
Prozessen berechnet wird. Von den Verschiebungsstromen verursachte Felder bleiben
unberiicksichtigt. Bei der Magnetfeldberechnung werden also Verschiebungsstréme
gegen die in der Umgebung flieBenden elektrischen Stréme vernachlissigt:

[ D-au| <[ S-au|. 2)

In den MaxweLLschen Gleichungen (1.4./1) bis (1.4./4) wird bei quasistationdren
Rechnungen die Verschiebungsstromdichte ® vernachldssigt. Es ergeben sich damit
die Gleichungen

rot =g, 3)

ob § — — ,
rot € 7
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div® =p, (5)
div® = 0. (6)

Bei langsam verdnderlichen Feldern arbeitet man mit den Koeffizienten der Selbst-
und der Gegeninduktion. Sie ergeben sich auf Grund der folgenden Betrachtung:

Die magnetische Energie W,, folgt nach (1.4./21) aus den FeldgréBen $ und B

geméf
m:%fff@-%dlf. (M)
Vv

Das Integral erstreckt sich iiber den gesamten Raum. V kennzeichnet also z. B.
eine Kugel um das betrachtete Leitersystem mit dem Durchmesser 2R — oco.

Nach (3.1./6) kann die magnetische FluBdichte durch das Vektorpotential U aus-
gedriickt werden. Damit erhdlt man

sz—%fff@-rot%d% (7a)
14

Fiir zwei beliebige Vektoren 9 und $ gilt nach (A 1.3.5.)
div( AXO) = H -rot A — A -r0t H. . (8

Hiermit ergibt sich aus (7a)

:_fffdw%x@ dV+—fff%I rot § dV. (7b)

Der erste Summand verschwindet:
Nach dem Gaussschen Satz (1.3./17) besteht die Beziehung

[[fdiv @x9) dv = ff @x)-ds, )

wobeéi ¢ die Oberfliche des Volumens 7 angibt. Fiir das Oberflichendifferential der
Kugel gilt

do = R?sin ¢ d¢ de. (10)
Das Vektorpotential 9 ist nach (3.1./14) auf der Kugeloberfliche gleich

A = %"—fff dVP (11)

Bei der Integration sind simtliche Punkte P auf den Stromleitern zu durchlaufen.
Der Index K charakterisiert, dafi das Vektorpotential fiir einen Punkt auf der Kugel-
oberfliche bestimmt wird.
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Nach (11) verschwindet das Vektorpotential % im Grenzfall R — oo mindestens wie
C,/R, wobei C; eine vom Leitersystem abhédngige Konstante ist. Die Feldstdrke $
folgt nach dem BroT-Savarrschen Gesetz

1 1

d. h., sie verschwindet auf der Kugel mindestens wie Cy/R% Dagegen wichst die
Kugeloberfliche nur wie CyR2. Aus (10), (11) und (12) erhélt man daher, dal das
Integral (9) tiir R — oo mindestens wie

¢, C const
2 21 72 T
Coft R R? R

verschwindet.
Die magnetische Energie ist somit nach (7b) durch

Wm:%ff:[%~rot@dV (13)
v

bestimmt. Auf Grund von (3) kann man hierfir

m:—fffex (14)

schreiben. Da & auBerhalb der Leiter verschwindet, braucht das Integral (14) nur
iiber simtliche Punkte P der Leiter erstreckt zu werden. Man erhilt

I/Vm :%fff Q[P'SPdVP' (15)
Ve

Das Vektorpotential in einem Punkt P der Leiter errechnet sich wie das Potential 20y
in (11) nach (3.1./14) auf Grund der Formel

A= A = 2 i}_@_dﬁ, (16)
47 Tpo
Ve

wobei @ wieder simtliche Punkte auf den Leitern durchlduft. Rechnet man fiir den
gesamten Raum mit einheitlicher Permeabilitdt, so folgt aus (15) und (16)

(o SN e
:_“_//fff/udvodvp‘ (17)
87 7pg
Ve Ve

Bei elektrotechnischen Problemen interessiert vielfach die Wirkung zweier Leiter 7
und 2 aufeinander, z. B. der Hin- und der Riickleitung eines Stromkreises. Fiir diesen
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Fall kann (17) in vier Teilintegrale zerlegt werden:

P und @ auf 1 (Selbstinduktion des Leiters 1),
P und Q auf 2 (Selbstinduktion des Leiters 2),
Pauf 1, Qauf?2 (Gegeninduktion 2 auf I),
Pauf 2, Qauf 1 (Gegeninduktion I auf 2).

Das Ergebnis der Integration (17) wird in der Form

1 N
Wm = —2' (L11[12 + 2L1211[2 + L22[22) ( (18)

dargestellt. Darin geben I, und I, den Strom in 1 und 2 an. Fur die beiden Koeffi-
zienten der Selbstinduktion ergeben sich aus (17) die Definitionsgleichungen

_ s ir g
Ly = y ffffff o dV,dVp, (19)
Vel

HY Yo

o u ipi@
o= [ .
v

F30) Va®

Als Koeffizienten der Gegeninduktion definiert man nach (17) und (18)

. :L ip‘iQ -
s NI e

Vet Vo®
M ip ‘ ig
= - —dV,dVp. 21
4nffff./;[ Tpq VodVe &b
Vp® 720)

Die Stromliniendichtevektoren i, und i, sind rein geometrische Gréflen. Sie ergeben
sich aus den Stromdichtevektoren §p und Sy, indem diese durch die Stromstérken
dividiert werden:

. Sp ) Je
LS =99 29
ip In 19 T, (22)

Ip und I sind je nach der Integration tiber 1 oder 2 identisch mit I, oder I,.
Bei einem System zweier paralleler, von entgegengerichteten Strémen durchflossenen
Leiter gilt

I, =—-I,=1. (23)
Ferner kann man zusammenfassend

L= Lu T L22 - 2L12
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schreiben und L als Koeffizienten der Selbstinduktion des gesamten Stromkreises
definieren. Aus (18) ergibt sich damit

Wy = %le ) (24)

Die Induktionskoeffizienten haben nach (24) die MaBeinheit

_ o

= Vs A-! = H (Henry). (25)

Beispiel 13

Eine Spule mit der Selbstinduktivitdt L;; = 0,1 H speichert bei einem Strom der Stirke
, = 2 A die magnetische Energie

W = % L 0,1-225 =0,27.

Ein Stromkreis aus zwei parallelen Drihten mit der Selbstinduktivitdit L = 1 mH speichert
bei einem Strom der Stérke I = 0,1 A die magnetische Energie

W — % 10-9.0,12F = 5 pJ.
Nach (3) gilt auBlerhalb eines Leiters in quasistationdrer Néherung
rot § = 0. (26)

Man kann daher das magnetische Feld aullerhalb der Stromleiter durch ein magne-
tisches Potential ¥ darstellen:

9= —grad ¥ |. 27)

Wegen div 8 = div 49 nach (6) gilt fiir Medien mit einheitlicher Permeabilitdt
div grad ¥ =0 bzw. A¥Y =0. (28)
¥ erfiillt die Potentialgleichung.

Die Potentialfunktion ¥ ist keine eindeutige Funktion des Ortes; sie ist mehrdeutig:
Bei der Integration iiber den Leiterquerschnitt folgt

[[rot9 AU = [[F-dUA=1. (29)

Andererseits kann man nach dem Stoxesschen Satz (3.1./10)

[[rot§-dU = ¢ §-ds (30)
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schreiben, wobei das Umlaufintegral iiber die Begrenzung des Leiterquerschnitts
zu erstrecken ist. Fiir das Umlaufintegral {iber eine geschlossene Kurve C, die den
Strom I umschlingt, folgt aus (30) mittels (27) (vgl. Bild 4.1)

P9 ds=—Pgrad ¥ . ds = —  Wds = ¥, — ¥j. (31)
C c (o

Wegen (29) und (30) ergibt sich bei einmaligem Umfahren des Leiters
Y)— ¥y =¥y—¥o=1. (32)

Da die Punkte 4 und B bei einmaligem Umfahren des Leiters zusammenfallen,
erhilt man fiir ¥ an ein und demselben Raumpunkt verschiedene Werte. Bei mehr-
maligem Umlauf unterscheiden sich zwei »Zweige« der Potentialfunktion ¥ um ein
ganzzahliges Vielfaches der Stromstérke.

Die eindeutige Festlegung auf einen bestimmten Zweig wird bei linearen Leitern,
d. h. bei Leitern mit dem Querschnitt Null, wie folgt vorgenommen: In den Strom-
kreis, mit diesem als Berandung, wird eine Fliche S gelegt (vgl. Bild 4.1). Sie kann
beliebig gekriimmt sein. S wird als Verzweigungssehnitt bezeichnet. Der Durchgang

Leiter
(Hinleitung) y
4l 0{/1 =q0l Yu

¢
Bild 4.1. Verzweigungsschnitt

durch diese Flidche S bei Operationen im elektromagnetischen Feld wird untersagt.
Damit wird die Potentialfunktion ¥ im gesamten Raum mit Ausnahme des Ver-
zweigungsschnittes S zu einer eindeutigen Funktion.

Nachdem ¥ eindeutig festgelegt ist, kann die Potentialfunktion mittels (27) zur Be-
rechnung der magnetischen Feldenergie verwendet werden. Aus (5) ergibt sich

W, — %f[f 92 AV = %gradz'{de. (33)

Der GreeNsche Satz in der Form (2.1./20) besagt nach (2.1./21) fiir Funktionen,
die der Potentialgleichung geniigen,

[/ grad> ¥ dV = ¢ ¥ grad ¥ - AL (34)
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Fiir die magnetische Energie erhilt man damit aus (33)

W, = % 5]‘;6 ¥ grad ¥ 9. (35)

Wegen der Mehrdeutigkeit von ¥ in den Punkten des Verzweigungsschnittes § sind
diese aus dem Integrationsgebiet V auszuschliefen. Das Integral ist also iiber den
gesamten Raum mit Ausnahme der Abgrenzung, d. h. der durch den Verzweigungs-
schnitt S geschaffenen Begrenzung, zu erstrecken. Daher lduft das Oberflichen-
integral (35) sowohl iiber die obere als auch iiber die untere Fliache von S. Der Ver-
zweigungsschnitt umfaft ein Gebiet endlicher Energiedichte, seine réumliche Aus-
dehnung ist gleich Null. In den Leitern, die als ideale Leiter vorausgesetzt werden,
ist ebenfalls keine magnetische Energie enthalten. (35) liefert daher bei der Inte-
gration iiber die obere und die untere Fliche des Verzweigungsschnittes die gesamte
magnetische Feldenergie.

Bei der Integration iiber die obere Flache von § folgt

[[ Perad 7 dU = — [ Wo9 - dUo = — [ [ Woi - AU, (36)
Dagegen ergibt sich wegen

Ao = —dAy = dA (37)
bei der Integration iiber die untere Fliche

[[#grad ¥ dA = —[[ e - dUy = [[ Pup - dU. (38)

Somit erhdlt man fiir die magnetische Energie

Pi’m:%ff(WU—’P@@-d%:’l;—]ff@-dﬁzé/fﬁfs-dﬂl. (39)
A A A

A gibt die vom Stromkreis umschlungene Fliche an. Die Grofle
Gp = [[ B dU (40)
A

kennzeichnet den magnetischen Flul durch den Stromkreis.
Nach (39) und (40) kann man fiir die magnetische Feldenergie auch schreiben

1

Andererseits 148t sich nach (24) die magnetische Feldenergie durch den Induktions-
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koeffizienten L ausdriicken. Zwischen L und @p besteht nach (24) und (41) die Be-
ziehung

[¢F=ffss.d91=u ‘ (42)

Fiir die induzierte Spannung bei Anderung des Stromes I ergibt sich daraus auf
Grund der MaxweLLschen Gleichung (4) mit Hilfe des STorEsschen Satzes

o b @ B _
LI wgff%.d%——gﬁ@-d?——%a . 43)

Die Gleichung (43) gibt die Moglichkeit zur Messung der Induktivitidt eines Strom-
kreises aus der Anderung des Stromes und der induzierten Gegenspannung.

Beispiel 14

Wird in einer Spule mit der Selbstinduktivitidt L,; = 0,1 H der Strom I; = 2 A im Verlauf der
Zeit At = 0,01 s ausgeschaltet, so wird damit in Richtung des Stromes I, die Spannung

2
|Uipa! = 0,1 - m—V=2OV

’

induziert. Aus AI, = 2 A, At = 0,01 s, U;,q = 20 V folgt andererseits L;; = 0,1 H.

Einen unverzweigten Stromkreis kann man durch die Ersatzschaltung nach Bild 4.2
darstellen. Nach dem PoynriNaschen Satz (1.4./22) besteht die Beziehung

W8+Wm+Ww:—5§66-d91. (44)
m— T T 1

| |

l l

| l

| I

| |

| L R

N . 1%

Bild 4.2. Ersatzschaltung eines unverzweigten Stromkreises

Die Summanden auf der linken Seite geben die Energieénderung im Raum ¥ an.
Nach (2.1./26) und (2.1./16) ist die elektrische Energie eines Kondensators gleich

w,_ U2 _ @

5 =30 43
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wobei @ die elektrische Ladung einer Kondensatorplatte angibt. Die magnetische
Energie ist durch (24) bestimmt. Fiir die Warmeleistung erhdlt man nach (1.4./22)
und (1.4./25) bei einem homogenen Leiter

2
szfff@-SdV=—fff°"dV ”A‘Iff — RI?. (46)

Die Ladung @ ist durch

Q=[Id (47)
gegeben. Damit folgt aus (45)

. j I 1dt

=2 _ I —, (48)

wéahrend sich aus (24)

W = LIT (49)
ergibt.
Die in das Gebiet V einfliefende Energie ist gleich

—ff ¢ au =u.1, (50)

wobei U, die &ullere bzw. eingeprigte Spannung bezeichnet. Setzt man (46) sowie (48)
bis (50) in den PoyNTINGschen Satz (44) ein, so kiirzt sich die Stromstérke I heraus,
und man erhélt

Idt
LI + RI + fo =U.,. (51)

Durch Differentiation entsteht hieraus die Sehwingungsgleichung

Lf+RI'+%I:U'e (52)

Die Losung dieser Gleichung erfolgt in der Elektrotechnik mit Hilfe des Ansatzes
I =1, e (53)

Fiir die freie Séhwingung ist U, = 0 und damit auch U, = 0. Setzt man U, =0
zusammen mit (53) in (52) ein, so erhdlt man eine algebraische Gleichung mit den
Lésungen

i R2 iR
W=+ ]/E —a T (54)

18 Schilling, Felder
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Bei Vernachlissigung der Dampfung folgt aus (54) die
Thomsonsche Formel Wy = —— |. (55)

Die Losung mit negativem Vorzeichen ist physikalisch nicht sinnvoll.

o = wo/2w bezeichnet die Bigen- oder Resonanzfrequenz des Schwingkreises. R, L, C
sind im allgemeinen frequenzabhingig. Der Widerstand R(f,) = R, wird als Re-
sonanzwiderstand bezeichnet. ,

Fir die erzwungene Schwingung ist besonders der eingeschwungene Zustand von
Interesse. Wird der Stromkreis an eine Wechselspannung

U, = U, el (56)

gelegt, so kann man zur Bestimmung des Stromes im eingeschwungenen Zustand
von dem Ansatz

I = Iet (87)
ausgehen. Mit den Funktionen (56) und (57) ergibt sich aus (52)
I, (—-w2L + iwR + %) =iwU,.

Hieraus folgt das Onmsche Gesetz fiir Wechselstrom (vgl. Bild 4.3)

U, L . 1
¢ _5}1—R+1(wL—R—) . (58)
Der komplexe Widerstand
R = [R]elr (58a)
wird als Impedanz bezeichnet. Sein Absolutbetrag
R L LY
R =/ B+ (w - ‘m) (59)
wl 7 7
wl- (U—C:
7 g ] Bild 4.3. Onmsches Gesetz fiir Wechselstrom
wC
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gibt den Scheinwiderstand an; fiir den Phasenwinkel ¢ erhdlt man

1
ol — —

wC

tan ¢ = 7

(60)

Der reelle Anteil R des komplexen Widerstandes R in (58) wird als Wirkwiderstand,
der imagindre Anteil wL _% als Blindwiderstand definiert.

) w
¢ kennzeichnet die Phasenverschiebung zwischen der Spannung U = U, ei* und

dem Strom

I =16 = \UTO\ eilet-p) (61)

Beispiel 15

In einem niederfrequenten Stromkreis mit der Frequenz f = 50 Hz sei L = 1,25 H, C = 15 uF,
R =600Q.
Man errechnet

oL =125.2r7-500 = 392,7Q), 1 !

=—" (0 =212,2Q.
wC 15-10-%. 27 - 50

Daraus folgt der Blindwiderstand wL — % = (392,7 — 212,2)QQ = 180,5 Q. Die Impedanz
w

ist gleich R = (60 +1180,5)Q, fir den Scheinwiderstand folgt |R| = V602 + 180,52Q
= 190,20, als Phasenwinkel erhilt man

180,5

@ = arctan = 71,6°.

Das periodische Verhalten des Stromes und der Spannung wird in der Gaussschen
Ebene durch zwei rotierende Vektoren dargestellt (vgl. Bild 4.4). Schreibt man die
zeitliche Abhéngigkeit in der Form e*!, so rotieren die beiden Vektoren entgegen

dem Uhrzeigersinn. Bei positiver Phasenverschiebung ¢ eilt der Spannungsvektor U
um diesen konstanten Winkel dem Strom I voraus.

In(0),Im(1) U

Bild 4.4. Rotierende Vektoren in
der GavUssschen Ebene

Re (), Re(I)

13%
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P Probleme

4.1.1. Wirmewirkung im Weehselstromkreis

Eine Spule der Induktivitit L = 500 mH wird mit einem Schichtkondensator der Kapazitit
C = 10 F in Reihe geschaltet. Der ohmsche Widerstand betrigt R = 400Q). Berechnen Sie die
effektive Stromstirke und die Warmeleistung, wenn der Stromkreis durch eine Spannungsquelle
mit der effektiven Spannung U,s; = 220 V gespeist wird und die Frequenz f = 50 Hz betragt.

Lisung
Fur die Berechnung der Warmeleistung missen wir die Spannung und den Strom miteinander

multiplizieren. Aus diesem Grund beziehen wir uns auf die Realteile und schreiben fiir die Span-
nung

U = U, cos wt (1)

und nach (4.1./61) fiir den Strom

I=—lggﬁcos (0t — ). 2)

Durch Integration iiber eine Periode v = 2r/w erhalten wir fiir die Leistung

— 1 U,2
P= Ul =— cos wt cos (wt — @) dt
T J IR
0

T2 T T
— Y (cos @ [ cos? ot df + sin g | cos ot sin wt dt) . (3)
T |9 i 0

Das zweite Integral verschwindet. Das erste liefert

1 U2

2R

cos @. (4)

Definieren wir
1 S =
st =5 V2 Uy = 0707 U (5)

und setzen diesen Ausdruck in (4) ein, so ergibt sich bis auf den Faktor cos ¢ ein der Warme-
wirkung bei Gleichstrom entsprechendes Gesetz:

Usss
P =—2 cosep. 6
R @ (6)
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Der Scheinwiderstand ist nach (4.1./59) gleich

2 Ly
|9 =1/R + (coL— wC)

= V402+(2n.50-0,5 -

1
2r 5010108

Fir die Phasenverschiebung erhalten wir nach (4.1./60)

oL — L
= arctan wC
R
= arctan —162 = —76,1°.
40

A_us (7) folgt als effektive Stromstirke

Tyg=Ze 220 ) y334,

Hieraus ergibt sich als Stromleistung

2

2 22
P = Ugg;l 45 cos p = U cos @ 0 cos 76,1°' W = 70,1 W.

1| ~ 165,8

4.1.2. ' Leistungsanpassung

)ZQ — 165,8Q.

(7}

Eine Spannungsquelle (vgl. Bild 4.5) hat den inneren Widerstand R; = (4.5 +10,5)Q. Die
Generatorspannung bei Leerlauf ist durch U = U, sin wt gegeben, mit U, = 310 V. Welcher
suBere Widerstand %, ist anzubringen, um dem Generator ein Maximum an Wirkleistung zu

entnehmen? Wie gro8 ist die Leistung bei reellem innerem Widerstand?

Bild 4.5. Spannungsquelle mit Innen- und

AuBenwiderstand

Losung

Die am Verbraucher anliegende Spannung ist gleich

U = U,sin wti.

R + R,

(1)
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Der Strom hat die Stirke

T T o
j U _ U, sin ot ) @)
R, R + R,

Wir kénnen die Widerstdnde in der Form
R, = R, eire, R = R, eivt (3)

schreiben.
Fir die Wirkleistung erhalten wir aus (1) und (2)

E [Ral cos @,

Py = Uetilerr cosgu = = R F e
i+

4)

(4) ist eine Funktion der beiden unabhéngigen Variablen R, und ¢,. Soll diese ein Maximum
annehmen, so miissen die beiden Gleichungen

OPw _ 0, Py _ 0 (5)
oR, P,

erfillt sein. Als Losung der Gleichungen (5) ergibt sich

B, =E;, @.=—¢  bzw. ‘ Ry = RKi* |, (5a)

wobei R*¥ den konjugiert komplexen Wert von % bedeutet.
Mit diesen Werten folgt fiir die maximal zu entnehmende Wirkleistung

- Eﬁ oS @; U 1
- 4R; 1 + cos 2¢; -

(6)

P .
w 8R; cosg;

Im vorliegenden Fall muBl der AuBenwiderstand gleich R, = (4,5 — 10,5)Q sein. Ferner erhalt
man mit den vorgegebenen Zahlen aus (6)

2
Py =2 W 267KW.
545

Besteht der Innenwiderstand nur aus dem ohmschen Widerstand, so folgt aus (6) wegen ¢; = 0,
P, =0

U2 U.2. .
Puo — =9 — 2ol 7
WS8R, 4R, @
Ugest = % V2 U, bezeichnet die effektive Spannung der Spannungsquelle bei Leerlaut.
4.1.3. Freie elektrische Schwingungen

Ein Schwingkreis besteht aus einem Kondensator mit der Kapazitit ¢ = 10 pF und einer Spule
der Induktivitdt L = 0,2 mH. Der ohmsche Widerstand ist gleich R = 450 m(). Berechnen Sie
die Resonanzfrequenz und die Resonanzwellenlinge des Schwingkreises. Wie grof3 ist die Ab-
klingzeit (Zeit des Abklingens der Amplitude auf 1/e)?
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Losung

Nach (4.1./52) lautet die Differentialgleichung freier elektrischer Schwingungen
. , 1
LI+RI+FI=0. (1)

Zur Losung gehen wir vom Exponentialansatz
I = I eiwt (2)

aus. Mit diesem erhalten wir aus (1)
. 1
—Lwy? + iRw, + —E I, el = 0. (3)

Diese Gleichung hat die Losung

/1 _ R iR
LC  4I2 2L’

Wy = % (4)
Fir LI_C erhélt man einen Wert in der GréBenordnung 104, fir % dagegen nur in der GroBen-

ordnung 10% Der Widerstand wirkt sich im vorliegenden Fall im Vergleich zu L und € praktisch
nicht auf die Resonanzfrequenz aus. Es folgt nach der THOMsoNschen Formel

1 1
Wy = —

= g1 = 447108571,
VIC V2 10 . 10

Als Resonanzfrequenz ergibt sich
fo =20 —7,11.107 Hz,
2m

als Resonanzwellenldnge

_ G 3-108

0 = =———m=4,2m (UKW-Bereich).
fo 7,11 .107

Fir die Abklingzeit erhalten wir aus (4) in Verbindung mit (2)

.0.2.10-8
2L _ 2:02-107 g9 ms.
R 0,450

4.1.4. Einschaltvorgang im Stromkreis mit Selbstinduktion

Eine Spule hat die Selbstinduktivitit L;; = 85 mH. Der ohmsche Widerstand betrégt
R = 12,5 mQ. Untersuchen Sie den EinschaltprozeB. Bestimmen Sie, welche Zeit vergeht, bis
der Strom 999, seines Endwertes erreicht hat.
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Losung

Die Spule der Induktivitdt L = L;; erzeugt bei Stroménderungen die Gegenspannung

) ar
Uing = —L_d_t" (1)

Diese ist zur Spannung U zu addieren, die von der Spannungsquelle geliefert wird. Es folgt damit
far die Stromstérke I

fo— 4 bzw. L‘;—f+RI:U. @)

Zum Zeitpunkt der Einschaltung des Stromes, d. h. fiir ¢ = 0, hat dieser die Stirke I(0) = 0.
Als Lésung der Differentialgleichung (2), die diese Randbedingung erfiillt, ergibt sich

R
—-= =t
R Ay

Bild 4.6. Der Anstieg der elektrischen
Stromstirke beim Einschaltvorgang

Der erste Summand kennzeichnet eine spezielle Losung der inhomogenen Gleichung. Den zweiten
Summanden erhdlt man durch e-Ansatz aus der homogenen Differentialgleichung. Er klingt mit
zunehmender Zeit ¢ exponentiell ab, der Strom steigt entsprechend an (vgl. Bild 4.6). Die Zeit
fy, 99, die vergeht, bis der Strom 999, seines Endwertes erreicht hat, ergibt sich aus der Zeit bis
zum Abklingen des zweiten Summanden in (3) auf den Wert 0,01. Man erhalt

805 L4615 =314s.

fo.00 = —f—%—]n 100 =

)

Dieser groBe Wert ist durch die hohe Induktivitit und durch den relativ kleinen ohmschen
Widerstand bedingt.

4.1.5. Dimpfung eines Galvanometers

In einem Galvanometer liefert die bei der Bewegung der Spule induzierte Gegenspannung den
Hauptanteil an der Ddmpfung. Gegeniiber dieser elektromagnetischen Ddémpfung kann die
Dampfung durch Wirbelstréme und Reibung im allgemeinen vernachléssigt werden. Berechnen
Sie unter dieser Voraussetzung die Dampfung eines Galvanometers mit dem magnetischen Flu
@p = nBA = 0,015 Vs, dem Innenwiderstand R; = 2602 und dem AuBlenwiderstand R, = 420Q)
(vgl. 3.2.4. Spiegelgalvanometer).
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Losung
Nach (3.2.4./5) wird der Zeigerausschlag des MeBgerites durch die Gleichung

d2
dfj +b + Dy = @5l (1)

bestimmt. ¢ gibt darin die Auslenkung aus der Ruhelage an. In der Ruhelage steht die Spulen-
achse senkrecht zur Feldrichtung (« = 90°). Unsere Aufgabe besteht darin, den Koeffizienten b
im zweiten Summanden der Gleichung (1) zu bestimmen. Dazu setzen wir voraus, daB das magne-
tische Feld innerhalb der Spule homogen ist.

Eine Verdrehung aus der Ruhelage um den Winkel Ag infolge eines MeBstromes fithrt dazu,
dafl die Spule von dem magnetischen FluB

Af[%B.d% = nBA Ag (2)

durchsetzt wird. Fir die Anderung des magnetischen Flusses mit der Zeit ¢ ergibt sich daraus,
wenn man mit kleinem Auslenkwinkel rechnet,

a de de
_ = — «d¥Y =nBA —+— = dp —. 3
Uina = ff B AU =nbd Frar ®)

Der induzierte Strom wird daher gleich

U; D d
Iing = 7 d_ — — L (4)
+ R, B + R, &

Er ist nach der Lexzschen Regel dem MeBstrom I entgegengerichtet. Infolgedessen verursacht
er ein Drehmoment, das dem vom MeBstrom erzeugten entgegenw1rkt
Far das durch I hervorgerufene Drehmoment I gilt

M=mx$ bzw. M| = unlAH = Ogl. (5)
Thm wirkt nach (4) das induzierte Drehmoment

¢’F dfl’

Pelia = = BR A

(6)

entgegen. Als Differentialgleichung des Auslenkwinkels folgt damit, wenn das Trdgheitsmoment
und die Winkelrichtgrofe eingesetzt werden,

2 2
g Lo +D¢:@FI——&——~E’E .
ar R, + R, at

)

Hier kann wegen des Faktors ¢ der Koeffizient

Dt (nuHAY
Ri + B, Ri + R,
als Ddmpfungskonstante definiert werden.

Mit den vorgegebenen Zahlen ergibt sich

2
pe 005 5o sai.10Js.
260 + 420

b =
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Ad41.1.

A4.1.2.

A4.1.3.

Ad.1.4.

A4.1.5.
A4.1.6.

A4.1.7.

A4.1.8.
A4.1.9.

A 4.1.10.

A4.1.11.

A4.1.12.

A4.1.13.

Autgaben

In einem Stromkreis gilt L = 40 mH, R = 15Q. Die Frequenz betrigt / = 50 Hz.
Berechnen Sie den Blind- und den Scheinwiderstand. Wie grof ist die effektive
Stromstérke, wenn die effektive Spannung U,; = 220 V vorliegt? Berechnen Sie
die Phasenverschiebung ¢ zwischen Spannung und Strom.

Wie grof} sind der Schein- und der Blindwiderstand in einem Stromkreis mit der
Induktivitdt L = 25 mH, der Kapazitdt C = 0,5 uF und dem ohmschen Wider-
stand R = 100Q? Die Frequenz betrigt f = 500 Hz. Wie dndert sich das Ergebnis
fir f = 5000 Hz?

Eine Spule mit der Induktivitit L = 2,5 H und dem ohmschen Widerstand
R = 200 kQ wird mit einem Kondensator in Reihe geschaltet. Wie groB muB dessen
Kapazitdt C sein, wenn der Blindwiderstand der Spule kompensiert werden soll?
Die Frequenz betrage f = 10000 Hz. Welches Ergebnis erhdlt man bei Parallel-
schaltung?

Eine Spule der Induktivitit L = 5 mH und ein Kondensator der Kapazitit C =2pF
sind in Reihe geschaltet. Der ohmsche Widerstand sei zu vernachlédssigen. Bei
welcher Frequenz wird der Blindwiderstand der Spule durch den Kondensator
kompensiert? Wie verdndert sich das Ergebnis bei Parallelschaltung?

Berechnen Sie zu A 4.1.1. die Warmeleistung des Wechselstromkreises.

Ein Stromkreis mit der Induktivitdt L = 1,5 mH und dem ohmschen Widerstand
R = 50 ist an eine Spannungsquelle mit der effektiven Spannung U,;; = 10000 V
angeschlossen. Berechnen Sie die Wirmeleistung. Die Frequenz betrigt
f=5-10"Hz.

Berechnen Sie die Resonanzfrequenz eines Schwingkreises mit der Induktivitat
L =25mH, der Kapazitit C = 0,8 pF und dem ohmschen Widerstand
R = 3,5 mQ. Welche Abweichung ergibt sich gegen die Resonanzfrequenz nach
der THOMSONschen Formel?

Berechnen Sie zur vorangegangenen Aufgabe die Abklingzeit.

Berechnen Sie fiir einen Gleichstromkreis mit der Induktivitit L = 125 mH und
dem ohmschen Widerstand R = 2,5Q die Zeit, die beim Einschalten vergeht, bis
der Strom 99,9 9% des Endwertes erreicht hat.

Stellen Sie die Gleichung fiir das Ausschalten eines Gleichstromes in einem Strom-
kreis mit Selbstinduktion auf.

Nach welcher Zeit ist ein Gleichstrom in einem Stromkreis mit der Induktivitat
L = 10 H und dem Widerstand R = 2 k() beim AusschaltprozeB auf 19, des An-
fangswertes abgesunken?

Ein Kondensator der Kapazitit C = 100 uF befindet sich zur Zeit ¢ = 0 unter der
Spannung U = 220 V. Er wird iiber einen Widerstand R = 10 kQ entladen. Geben
Sie die Formel fiir den zeitlichen Stromverlauf an. Nach welcher Zeit ist der Strom
auf den Wert 1/e abgesunken? ‘

Untersuchen Sie das Verhalten eines Schwingkreises, der eine Spule mit Eisenkern
enthalt.
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A4.1.14. Berechnen Sie die Dampfung eines Galvanometers mit dem magnetischen FlufB
@y = 0,050 Vs, dem Innenwiderstand R; =400Q und dem AuBenwiderstand
R, = 6000Q).

A4.1.15. Wie grof} ist maximal der Spannungsabfall am Nutzwiderstand, wenn eine Span-

nungsquelle mit reellem Innenwiderstand R; vorliegt? Die Leerlaufspannung sei
gleich U = U, sin wt.

A 4.1.16. Wie lautet die Anpassungsbedingung bei einer Spannungsquelle, wenn die Schein-
leistung Py = Uil ep; zu einem Maximum werden soll?

4.2, Grundlagen der Vierpoltheorie

E Einfiihrung

Vierpole sind Netzwerke mit vier AnschluBklemmen, zwei fiir den Eingang, zwei fir
den Ausgang (vgl. Bild 4.7). Sie werden als aktive Vierpole bezeichnet, wenn sie Strom-
oder Spannungsquellen enthalten, die auf die angeschlossenen Netze zur Wirkung
kommen. Beispiele fiir aktive Vierpole sind Transistoren und Roéhren. Passive Vierpole
enthalten keine Strom- oder Spannungsquellen, bzw. ihre Wirkung ist nach auBlen
hin kompensiert. Dampfungsglieder, elektrische Filter, Schwingungssiebe und Trans-
formatoren sind Beispiele fiir passive Vierpole.

I &
o— 9
Y l”z
Bild 4.7. Stréme und Spannungen beim Vierpol
L I

Bei passiven Vierpolen ergibt sich aus den KircHHOFFschen Stromverzweigungs-
gesetzen als Beziehung zwischen dem Strom I; und der Spannung U, auf der Ein-
gangsseite und dem Strom I, und der Spannung U, auf der Ausgangsseite eine Ma-
trizengleichung der Form

(U1> = (Au A12) (Uz) . (1)
I = Ay Ay I,

Ay, Ags, Agy, Ay, sind im allgemeinen komplex und frequenzabhéngig. 4;, hat die
Dimension eines Widerstandes, 4,; die eines Leitwertes. Bei 4,; und 4,, handelt es
sich um dimensionslose Grofen.

Fithrt die Vertauschung der Eingangs- und Ausgangsklemmen zu keiner Anderung
der Stréme und Spannungen in den angeschlossenen Netzen, so wird der Vierpol als

lingssymmetrisch bezeichnet (vgl. Bild 4.8 und 4.9). Fiir langssymmetrische Vierpole
folgt auf Grund der Vertauschungsmoglichkeit

Ay = A, (2)
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R(Q2)
o 1 °

NG, - - i
L2 gﬁ/(sz )

o— - Bild 4.8. Langssymmetrisches IT-Glied

R A
b Q) —2—(!2)

g7

. o Bild 4.9. Lingssymmetrisches T-Glied

A
97 i‘?z
— o - Bild 4.10. Unsymmetrisches II-Glied
Ay HAs

7

o . o Bild 4.11. Unsymmetrisches T-Glied

Vierpole kénnen als II-Glied nach Bild 4.8 bzw. 4.10 oder als T-Glied nach Bild 4.9
bzw. 4.11 dargestellt werden.
Fiir das II-Glied in nach Bild 4.8 erhilt man nach den KircHHOFFschen Gesetzen

R
A=+ B2 4=, A21=@<1+T@)' (1a)

Beim T-Glied des lingssymmetrischen Vierpols nach Bild 4.9 ergibt sich

RE RE;

Ay =1+ 5 A12:§R(1+T), Ay =@, (1b)

Aus (1a) und (1b) folgt: Fiir das langssymmetrische IT-Glied und fiir das lingssym-
metrische T-Glied ist die Koeffizientendeterminante der Matrix in (1) eins:

A — Ay dy = 1. (1c)

Unsymmetrische Glieder lassen sich aus symmetrischen zusammensetzen.



4.2. Grundlagen der Vierpoltheorie 205

Anstelle der Koeffizienten A;;, 4.y, Ay, Ago fithrt man das UbertragungsmaB g und
den Wellenwiderstand 3 ein.
Das UbertragungsmaB ¢ des lingssymmetrischen Vierpols wird durch die Beziehung

coshg =4, =1+ 5 (3)

definiert. Daraus ergibt sich wegen (2)

sinhg = Jeosh? g — 1 = YA, Ay = ]/ER@ (1 T %@E)

Der Wellenwiderstand 3 des lingssymmetrischen Vierpols ist durch

Ay,

festgelegt. Fiir das I1-Glied erhélt man daraus ebenso wie fiir das T-Glied

R 4/ R -
T
Werden die GroBen Ay, 44y, Aoy mittels (1¢), (3) und (5) durch 8 und g ausgedriickt,

so folgt anstelle von (1) als allgemeine Beziehung zwischen den Strémen und Span-
nungen am Eingang und Ausgang eines Vierpols

U, cosh ¢ Zsinhg\ /U,
=1 . (6)
I, 3 sinhg coshgl)\ 1,

Anstelle der hyperbolischen Funktionen kénnen Exponentialfunktionen eingefiihrt
werden. In diesen schreiben sich die Vierpolgleichungen

U, ‘ U, + 31, U, — 31, ed
I, = "2— U, + 8]2 U, — 812 - . (6a)
3 3

Aus (6) folgt der Eingangswiderstand

Ra
3 7
N
1 4+ — tanh
+ 75 tanhyg

+ tanh ¢
U,
Rg = T 3
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mit

(7a)

Es findet somit durch einen Vierpol stets eine Transformation des Widerstandes 9t,

am Ausgang in den am Eingang gemessenen Wert iy statt (vgl. Bild 4.12).

%y

Bild 4.12. AbschluBwiderstand %, und
Eingangswiderstand Ry des Vierpols

Bei KurzschluBl ®, = 0 ist der Eingangswiderstand gleich
Rx = Jtanhyg,

bei Leerlauf $t, = oo ergibt sich fiir den Eingangswiderstand

(7h)

(7c)

(8)

Ry, = Jcothyg.
Aus (7b) und (7c) erhilt man den Wellenwiderstand 3 und das UbertragungsmaB ¢
gemdl
— /R
3 =7RxR,, tanhg = [/ |
R

Fiir die Spannungsiibersetzung des Vierpols folgt aus (6) und (7)

U, Ra

U,  Racoshg + Zsinhg ’

fiir die Stromiibersetzung

I, 3

I, ~ 3coshg + R,sinhg

Ist der AbschluB3widerstand des Vierpols gleich dem Wellenwiderstand

5RA = 8;
so erfolgt keine Widerstandstransformation, und es gilt

gﬁE:gﬁA:8
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Dieser Fall wird als Anpassung (Widerstandsanpassung) bezeichnet. Zwischen den
Spannungen und Stromen am Ausgang und am Eingang des Vierpols bestehen nach
(9) und (10) bei Anpassung die Beziehungen

U,=U,; e, (11a)

I, =1 e9. (11b)
Das UbertragungsmaB ¢ setzt sich aus Real- und Imaginirteil zusammen:

g=inx+p. (12)

o bezeichnet das Phasen-, § das Ddmpfungsma8.

Die Ddmpfung wird in Neper (Np) oder in Dezibel (dB) angegeben: Besteht zwischen
zwei Amplituden bzw. zwei Effektivwerten (des Stromes oder der Spannung) das
Verhéltnis

4,
— =ef >
a, ef =1,
so gibt
A 4

das Dampfungsmal in Neper an.
Die Leistung ist proportional dem Quadrat der Amplitude. Man erhalt
Py 47

_2 — 28
P, 4z

Allgemein ist es zweckméBiger, das Dampfungsmall auf Logarithmen zur Basis 10
zu beziehen. Man definjert als Dampfungsmal in Dezibel (dB):

A
b=101g i} dB =201g =*dB
P, Ay
U s . (14)
=20 lg 4B =20lg <2 dB

2eff 2eff

Zwischen der Angabe in Neper und der Angabe in Dezibel besteht die Beziehung
b

T, 208
10 — 28 . 2P
10 e bzw. 10’
woraus die Umrechnungsformeln
8,686 dB =1 Np, 1dB =0,1151 Np (15)

folgen.
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Beispiel 16

Durch ein Dampfungsglied werden die Spannung und der Strom auf 19, ihres Ausgangswertes
herabgesetzt. Fiir die Dampfung in Neper folgt

100

B = InTNp = 4,60 Np.

Das DimpfungsmaB in Dezibel ist

2
b=201g}—(1)—0dB=101g (?) dB = 40 dB.

P Probleme

4.2.1. Dimpiungsglied
Ein Vierpol, der aus reinen Wirkwiderstinden aufgebaut ist, soll den Wellenwiderstand Z = 3002
und die Leistungsddmpfung b = 10 dB haben. Berechnen Sie die einzubauenden Widerstéinde

tir ein II-Glied. Welche Spannungs-und welche Leistungsiibersetzung erfolgt, wenn der Ausgang
mit dem Wellenwiderstand abgeschlossen ist?

Losung

Bei einem II-Glied gilt nach (4.2./5) fiir den Wellenwiderstand
3—7— V g I S
RG
14+ —, 1
V + 3 (1)

und nach (4.2./3) fiir das Ubertragungsmaf

coshg:l—{—R—QG—. 2)

In (2) kénnen wir nach dem Additionstheorem der hyperbolischen Funktionen schreiben
cosh ¢ = cosh (ix + f) = cosh f cos o« + isinh fsino. (3)
Da nach (2) cosh g rein reell sein muB, folgt

R
2 b
sinh fsinx = 0. (2b)

coshfcosax =1 +
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Die Dampfungskonstante soll von Null verschieden sein. Es muf3 daher nach (2b)
=0
gelten. Damit ergibt sich aus (2a)
RG = 2(cosh g — 1).
Den vorgegebenen Wert b = 10 dB rechnen wir um:
f =10.0,1151 Np = 1,151 Np.
Damit erhalten wir
RG = 2(cosh 1,15 — 1) = 2(1,74 — 1) = 1,48,
Fiir das Verhiltnis der beiden unbekannten GroBen folgt aus (1)

R 1 R .
- bzw. = 1,233 -105Q2.
3000 = VG Zw a

1,48
1 puk i
Hieraus ergibt sich fiir den Langswiderstand f = R und fiir die Querableitung & = G

R =4270Q), %:289().

Ist der Vierpol mit dem Wellenwiderstand abgeschlossen, so kénnen wir
U,=Z7I,

setzen. Damit erhalten wir aus (4.2./11) wegen o = 0
U,=U,éep, I, =1,6f.

Fur die Spannungsiibersetzung folgt damit

Uy

— e115 — 0,317.
U,

Die Leistungsiibersetzung wird, wie gefordert, gleich

2
(U) = =230 — 0,10.
U,

4.2.2, Schwingungssieb (Drosselkette)

Bild 4.13 zeigt eine Drosselkette, die sich aus reinen Blindwiderstédnden aufbaut. Die Daten der
eingebauten Schaltelemente sind L = 0,1 H, € = 100 pF. Untersuchen Sie die Ubertragungs-

eigenschaften.

14 Schilling, Felder
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L L
2 2z
00—

=

o— o  Bild 4.13. Drosselkette

Losung
Es liegt ein T-Glied vor mit

R =inL, ©=ioC. (1)

Fur den Wellenwiderstand folgt nach (4.2./5)

/%R RE L w?L0
=]@‘/1+T=V51/1— I (2)

Nach (4.2./3) und (4.2./1c) erhalten wir fiir das Ubertragungsma8

2
COShg—COSh‘BCOSOL—"-lSlnhﬂSID(x—I#—'ERT@ZJ.—O)ZLO- (3)

Durch Trennung des Realteiles vom Imaginérteil entsteht

2
coshfcosa =1 — w2LC’ (4)

sinh fsinx = 0. (5)

Gleichung (5) gestattet zwei Losungen. Im ersten Fall ergibt sich

& = 0 (mod ), cosx = 1. (6)
Wegen cosh § = 1 muBl cos x = —1, also & = = sein. Dann ist (4) 16sbar fir
w=w mit Wy = 2z (7)
= Wg (4 Vo

Wie man aus (2) entnimmt, bedeutet diese Bedingung, dal der Wellenwiderstand des Vierpols
imaginér ist:
1 L ] / wLC VL

Der Dampfungskoetfizient ist gleich

(8)

2
= arcosh (TLC — 1) . 9)

Er steigt mit zunehmender Frequenz rasch an.



4.2. Grundlagen der Vierpoltheorie 211

Im zweiten Fall ist
sinh =0, d. h. g =0. (10)
Aus (4) folgt damit

2
coso =1 — “’;‘O. (11)

Diese Gleichung ist losbar fir cos« = —1, d. h. fir

=< wp = 2 (12)

B VLC

Man erhilt eine ungedimpfte Ubertragung, jedoch tritt eine Phasenverschiebung auf. Der
Wellenwiderstand ist

L w?LC L./ w?
=|/=1|/1— =1|/=1/1——, 13
ol Er el [ (s w
also rein reell.
Zusammengefalt ergibt sich: Kreisfrequenzen bis zu

o = 2 _ 2 sl — 6,32 10° 51,

VIC ¥0,1-100 - 1012

d. h., Frequenzen

6,32 - 10°

=1,01-10° Hz
2n

fgfg=

werden ungeddampft abertragen. Frequenzen oberhalb dieser Grenzfrequenz werden gedampft.
Bei wesentlicher Uberschreitung der Sperrfrequenz wirkt der Vierpol als Sperre. Der Bereich
f = fg wird daher als Durchlaibereich, der Bereich f > f; als Sperrbereich bezeichnet.

4.2.3. Doppelsieb

Ein Kurzwellenempfanger enthilt einen Vierpol nach Bild 4.14. Er soll derart abgestimmt
werden, daBl Frequenzen zwischen wy= 2w -10"s™! und oy =2r-1,2.10"s™! ungedampft
empfangen werden kénnen, jedoch sollen Stérungen aus den Frequenzbereichen daritber und
darunter ausgeschlossen werden. Welcher DurchlaBbereich ergibt sich, wenn die Spulen die Induk-
tivitdten L;/2 = 0,5 mH, L, = 0,01 mH haben?

~

gz 6 4
L, G
o . Bild 4.14. Doppelsieb
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Losung
Der Langswiderstand des T-Gliedes ist gleich

%:i(le—wlc ) (1)
1

Fir die Querableitung erhalten wir

G = i(wCz— w;@). (2)
Aus (4.2./3) folgt

coshg:l—{—m;fj—, (3)
d. h.

- ) -2

cos x cosh f + isinxsinhf =1 — @Gy 5 wly .
Der Bereich gedampfter Wellen ist durch

sinax =0, sinh 8 = 0, (4)
der DurchlaBbereich durch

sino == 0, sinhf =0 (5)

bestimmt. Sollen geddmpite Wellen vorliegen, muf also cos « die Werte +1 oder —1 annehmen.
Fiar cos oo = +1 ergibt sich der Bereich gedimpfter Wellen aus der Forderung cosh g > 1.
Nach (3) bedeutet das

1 1
Ly — —— C, — 0. 6
(o2 wol)(w o) < )
Wir setzen
1 1
2 = 2 -
T T T Lo, @

und erhalten damit anstelle von (6)

(@ — %) (0 — ) < 0 (62)
als Bedingung fur die Existenz geddmpfter Wellen.
Fiir cos « = —1 muf} nach (3) bei gedampften Wellen
4w?

(0? — @?) (0* — wy?) > L,C,

erfullt sein.



4.2. Grundlagen der Vierpoltheorie 213

Die Grenzen zwischen Durchla- und Dampfungsbereichen erhélt man aus (6a) und (8):

W, W W = _1_ 2 2 4 :/.l_ w2 4+ Wy 4 2—&)20)2 (9)
1> We» LII 2 w,® 4 w2 Llcz T 4 1 o T Llcz 17w "

coshy=71+ %1
J

*7 b e

sereich ' | Durchios- |
lbem'm |

Bild 4.15. DurchlaBbereich und Sperrbereiche eines Doppelsiebes

Bild 4.15 zeigt den Verlauf von cosh g nach (3). Soll die Schwingung den Vierpol ungeddmpft
passieren kénnen, so muBl cosh ¢ im Intervall

—1=<coshg = +1 (10)

liegen. Der DurchlaBbereich wird hiernach zwischen w; und w, durch einen Dampfungsbereich
unterbrochen. Um diese Unterbrechung zu beseitigen, stimmen wir die Bauteile so ab, daB

W] = Wy = Wy, d. h. L,C, = L,C, (11)

gilt. Fir die Grenzen erhalten wir damit nach (9)

20 C, Cp2
w111 = 0, V1+ O: F2 ]/0—14-0—:2 (12)

Mit den vorgegebenen Zahlen folgt

G L.
¢, I, ’

Fiir die Wurzeln in (12) ergeben sich damit dié Werte 0,905 und 1,105. Die Kapazitdten miissen
daher gleich

09052 0,9052
4rmfrL, 4w 10%. 0,001

0y = 1000, = 21 pF

F = 0,21 pF,

1

sein. Als Grenzen des ungedémpiten Bereiches f;---f1 erhalten wir damit
1,105

= 107 Hz, =
fi z fu 0.905

107 Hz = 1,22 - 107 Hz.
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4.2.4. Wien—Maxwell-Briicke zur Messung der Induktivitit

Zur Messung des Wechselstromwiderstandes einer Spule wird diese in eine MeBbriicke mit den
festen bzw. stufenweise regulierbaren Widerstinden R, und R, und dem variablen komplexen

Widerstand R + - 10 geschaltet (vgl. Bild 4.16). Stellen Sie die Bedingung dafur auf, daB
iw

zwischen den Punkten 4 und B keine Spannung vorhanden ist.

Wie groB sind die Induktivitdt L, und der ohmsche Widerstand R,, wenn fur die festen Wider-

stinde die Werte B, = R, = 1 k(Q eingestellt sind und bei Stromahgleich fiir die stetig veréinder-

lichen GréBen R = 250kQ), C = 1,5 - 10-8 F gemessen wird?

Bild 4.16. WieN—MaxwEgLL-Briicke

Losung
In Bild 4.16 addieren sich die parallel geschalteten Widerstinde gemi8

1 . 1
—E-—{—ICL)C:%. (1)

Soll zwischen 4 und B keine Spannung bestehen, also durch das MeBgerit kein Strom flieBen,
so miissen die beiden Gleichungen

(Ry + iwLy) I, = Ryl,, 2)
R, = R, (3)

erfiillt sein. Durch Division erhidlt man

Trennung von Real- und Imaginérteil ergibt

B, R,

By = R

L, = CR,R,. (6)
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Wir setzen die vorgegebenen Werte ein und erhalten

3. 103
=M__Q=4,0Q'
250 - 103

z

L,=1,5-10"%.10%. 103 As V-1 (V A~1)2 = 0,015 H.

In gleicher Weise kénnen Kapazitdten gemessen werden.

4.2.5. Eisenloser Transformator

Ein Transformator besteht primérseitig aus einer kreiszylindrischen Spule mit n; = 20 Win-
dungen. Sekundérseitig befindet sich eine Spule mit n, = 2000 Windungen. Die Lingen und die
Querschnittsradien beider Spulen sind gleich: I, =1, = ! = 25 cm, R;, = Ry, = R, = 2 cm.
Der Drahtquerschnitt ist primérseitig gleich 4, = 1 cm?, sekundérseitig gleich 4, = 1 mm?2.
Beide Spulen bestehen aus Kupferdraht (y = 5,9 - 107Q-1m). Sie seien vollstindig miteinander
verkettet, d. h., der magnetische Flu} einer Spule geht vollstindig auch durch die andere Spule.
Berechnen Sie die Leerlaufspannungs- und die KurzschluBstromiibersetzung des Transformators.
Wie groB} ist der Eingangswiderstand, wenn der Transformator sekundérseitig mit der Impedanz
R4 = 6,6 kQ abgeschlossen ist? Welche Leistung wird iibertragen, wenn dabei primérseitig die
effektive Spannung U, ;; = 220 V anliegt? Wie groB sind sekundéirseitig Strom und Spannung?
Die Frequenz des Wechselstromes betrigt f = 500 Hz.

Wie in 4.3.1. und 4.3.2. abgeleitet wird, sind die beiden Induktionskoeffizienten der Selbst-
induktion durch

2R, 2
e R

Li=Lj = :

(G1=12) 1)

bestimmt. Der Koeffizient der Gegeninduktion ist bei vollstindiger Verkettung durch

2
Tt Rag® iy

Ly, = 1

gegeben (vgl. 4.3.2.).
Lﬁsung
Aus (1) und (2) ergeben sich die Werte

L, = L;; = 2,63 pH, L, = Ly, = 25,3 mH, Ly, = 253 uH. (3)
Fiir die ohmschen Widerstdnde erhdlt man primérseitig einen Wert in der GréBenordnung 1 mQ,
sekundirseitig R, = 4,27Q.
Der Strom I, auf der Primérseite erzeugt auf der Sekundérseite durch die Gegeninduktion den
Spannungsabfall

—AU, = 4iwLy,l,. 4)

Das obere Vorzeichen gilt fiir gleichsinnige Wicklung der beiden Spulen, das untere fiir gegen-
sinnige.
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Fir die Spannungen U, und U, in den beiden Stromkreisen folgt nach Bild 4.17
— Uy + Byl + oLy, & iwly,I, = 0, (5)
U, + iwLyply + Roly + iwLyly = 0. (6)

Die oberen Vorzeichen gelten fiir gleichsinnige, die unteren fiir gegensinnige Wicklungen.

Bild 4.17. Eisenloser Transformator als Vierpol

Das System der beiden miteinander gekoppelten Gleichungen (5) und (6) kann in Form der Ma-
trizengleichung

U=RI (M

zusammengefaBt werden, mit der Spannungsmatrix

U= (Zl) (®)

der Strommatrix

- ()

und der Impedanzmatrix

(R +ioL,\ (B, + ioL, +iwLq, (10)
Fiol,, —R;)  \FiowL, —R,—iok,)’
Sind im Stromkreis kapazitive Widerstdnde eingeschaltet, so kénnen 9, und R, gemiB
. 1 .
le]-

erweitert werden.
Im vorliegenden Fall sind die ohmschen Widerstdnde gegen die Induktanzen zu vernachléssigen;
Kondensatoren fehlen. Es folgt damit aus (5) und (6)

U, = io(LI; + Ly,15), (12)

Uy, = iw(FLyoly — Lyly). (13)
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Bei Leerlauf ist der sekundirseitige Strom I, gleich Null. Fur die Leerlaufspannungsiibersetzung
ergibt sich damit
LF
U,

12
L 14
L (14)

KurzschluB ist durch U, = 0 gekennzeichnet. Als KurzschluBstromiibersetzung erhilt man

I

Ly
. 15
I, (15)

L,

Bei vollstindiger Verkettung folgt nach (1) und (2)

Oo| _m _ 1 (16)
U, Ny i’

1, 7y

Lof ™ 17
i ™ 7 (17)

Mit dem Transformator erfolgt bei Leerlauf die Spannungsiibersetzung 100: 1, bei Kurzschlufl
die Stromiibersetzung 1 : 100. 4 ist gleich 0,01.

Ist der Transformator sekundirseitig mit dem Widerstand 9, abgeschlossen, so verwendet
man zur Berechnung des Stromes und der Spannung die beiden Gleichungen (5) und (6). Darin
lassen sich zwei der vier GroBen Uy, I;, U,, I, auf die beiden anderen zuriickfiithren. Der AbschluB-
widerstand

R4

%A': IZ

(18)

vermittelt eine dritte Beziehung. Eine vierte ergibt sich durch die Eingangsbedingungen.
Wir beschranken uns auf gleichsinnige Wicklungen und benutzen die Definitionsgleichungen (11).
Aus (6) erhalten wir damit auf Grund der Anfangsbedingungen (18)

ioL
]_—___ﬂ_lz_.]_ 19
A eyl (19)

Dieser Zusammenhang kann in (5) eingefithrt werden, woraus folgt

Uy

R = =+ =R, + —22 | 20
E= 7 1 R, + s (20)
Hieraus ergibt sich in Verbindung mit (19) der Sekundirstrom
—iwL
I,= el Uy, 21
WO+ R Ly e
wihrend wir fur die Sekundédrspannung wegen (18)
—iwL,R
U, = 2 1 (22)

Fy(Re + Ry) + w2Lis

erhalten.
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Mit den vorgegebenen Zahlen folgt aus (20), wenn die ohmschen Widerstinde vernachléssigt
werden,

(27 - 500 - 253 - 10-¢)2

Q=i79-103Q.
27 - 500 - 25,3 - 10-° 1 6,6 - 10° !

Rp=1i [27': - 500 - 2,53 - 10-% +

Fiar die sekundédre Spannung erhalten wir nach (22) Us.y; = 21980 V, fir den sekundérseitigen
Strom nach (21) I,z = 3,33 A. Wegen des reellen AbschluBwiderstandes besteht keine Phasen-
verschiebung, so daf sich fiir die am AbschluB entnommene Nutzleistung

P = Ugeiplyers = 21980V . 2,33 A =732 W
ergibt.

A Aufgaben

A4.21. Bestimmen Sie den Eingangswiderstand eines kurzgeschlossenen Vierpols.

A4.22. Ein leerlaufender Vierpol hat den Wellenwiderstand 300 (2, das PhasenmaB o = =,
das Dampfungsmaf Null. Wie gro8 ist sein Eingangswiderstand?

A4.2.3. Geben Sie das Leistungsverhéltnis P, : P, = 500 in Dezibel und in Neper an.

A4.24. Als Signal-Rausch-Verhéltnis eines MeBgerites (vgl. 5.2.) werden 35dB angegebeh.

Wie groB ist das Verhiltnis zwischen Signal- und Rauschleistung, zwischen Signal-
und Rauschspannung?

A4.2.5. Ein T-Glied hat die Widerstinde R = 400Q, 1/ = 20Q. Wie groB sind der
Wellenwiderstand und das Ubertragungsma8 g?

A4.2.6. Es soll ein Didmpfungsglied mit dem Wellenwiderstand Z = 180Q und dem Damp-
fungsmaBl 8 = 1,5 Np gebaut werden. Berechnen -Sie die Widerstinde fiir ein
T-Glied.

A427. Zwei Vierpole gleichen Wellenwiderstandes und gleichen UbertragungsmaBes sind

hintereinandergeschaltet. Geben Sie die Ubertragungsformel an. Welcher Wellen-
widerstand und welches UbertragungsmaB ergeben sich fiir den resultierenden
Vierpol?

A428. Zur Unterdriickung von Oberwellen wird ein Vierpol nach Bild 4.18 mit C =0,1pF,
L = 1 mH verwendet. Bestimmen Sie die Grenzfrequenz des Vierpols.

NI

L
2

i

A
T o  Bild 4.18. T-Glied
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A4.29.

A 4.2.10.

A4.2.11.

A4.2.12.

A 4.2.13.

A4.2.14.

A 4.2.15.

A 4.2.16.

Bestimmen Sie den DurchlaBbereich und den Sperrbereich fiir eine Kondensator-
kette nach Bild 4.19. Welche Formel ergibt sich fiir den Wellenwiderstand?

2¢ 2¢
%L
o - —o  Bild 4.19. Kondensatorkette

Welcher DurchlaBbereich und welcher Sperrbereich ergibt sich fiir die Drosselkette
nach Bild 4.20? Wie groB ist der Wellenwiderstand?

Berechnen Sie den DurchlaBbereich fiir ein Doppelsieb nach Bild 4.14 (C; = 2,5 pF,
L, = 500mH, L, = 2 mH).

¢

o I .

2L 2L

o —0 Bild 4.20. II-Glied

In einer Wiex —MaxwELL-Briicke nach Bild 4.16 betragen die festen Widerstinde
R, = 5kQ, R, = 10 kQ). Spannungsabgleich wird fiir R = 550kQ, C = 4,5 - 10-°F
gemessen. Die Frequenz ist gleich f = 50 Hz. Berechnen Sie L, und R,.

Zur Messung von Kondensatoren verwendet man die KapazitdtsmeBbriicke nach
Bild 4.21. Stellen Sie fiir diese die Abgleichbedingung auf und bestimmen Sie
daraus die Gleichungen fiir die unbekannte Kapazitit C, und den unbekannten
Widerstand R,,.

Bild 4.21. KapazitatsmeBbriicke

Berechnen Sie die Leerlaufspannungs- und die KurzschluBstromiibersetzung fiir
einen Transformator mit den Windungszahlen n; = 10000, n, = 10. Wie gro8
ist der Eingangswiderstand fir f= 50 Hz, L, =1,5mH, R, = 15kQ? Die
Spulenquerschnitte sind gleich.

Berechnen Sie zur vorangegangenen Aufgabe die iibertragene Leistung, wenn die
effektive Spannung primérseitig 220 V betrigt.

Stellen Sie die Formel fur den Eingangswiderstand eines Transformators auf, wenn
der AbschluBwiderstand R, gegen die Induktanz wL, vernachlédssigbar klein ist.
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4.3. Berechnung der Induktionskoeffizienten und des Wellenwiderstandes

E Eintiihrung

Die Berechnung der Induktionskoeffizienten kann allgemein nach den Gleichungen
(4.1./19) bis (4.1./21) erfolgen. Thre Anwendung ergibt mehrfache Integrale, deren
Auswertung in der Regel zu komplizierten Rechnungen fithrt. Man ist daher bestrebt,
einfachere Verfahren anzuwenden.

Vielfach fiihrt entweder die Energiegleichung

W, — ‘? Lr (1)

zum Ziel, oder man nutzt den Zusammenhang (4.1./42) zwischen dem magnetischen
FluB und dem Induktionskoeifizienten

Op = [[B-dA = LI 2)

aus.

Beispiel 17

Es soll der Selbstinduktionskoeffizient einer kreiszylindrischen Spule bestimmt werden, deren
Linge 1 groB ist gegen den Querschnittradius R.
Die gespeicherte magnetische Energie ist gleich

Wi :%g-&w. (3)

Das Magnetfeld hat die Stirke

H="—ZI. (4)

Setzt man (4) zusammen mit B = 4, in (3) ein und berechnet das Volumen ¥V der Spule aus
Grundfldche =R? und Lénge [, so folgt

Tuyn>R21?

W =
w 21

(5)
Fiir den aus einer Spule mit der Induktivitat L = L,; bestehenden Stromkreis ist nach (4.1./24)

Wn = % Ly, I2. (6)
Damit ergibt sich aus dem Vergleich von (5) und (6)

Tuen2R?
L, = o l_
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Beispiel 18

Es soll die Induktivitit zweier koaxialer Zylinder bzw. die Induktivitit einer Ko-
axialleitung der Lange I bestimmt werden. Der Zylinderradius des kompakten Innenleiters sei
R;, der Innenradius des AuBenleiters R,. Die Stérungen an den Enden des Zylinders seien zu
vernachldssigen.

Das Magnetfeld im Innern ist gleich

Oy = ! : (8)

27r

Hieraus folgt als magnetischer FluBl (vgl. Bild 4.22)

Ry

. =ff53-d91=polf L. ©)
A

Ry

2Ry
2R

Bild 4.22. Langsschnitt durch eine Koaxial-
leitung mit ihren magnetischen Feldlinien

Durch Auswertung des Integrals ergibt sich

Hol R,
Pp = —"—In—21=1LI. 10
F= o R, (10)

Fur die Induktivitét der Leitung erhdlt man daraus

L=ty B

. 11
2r R; ()

Sie ist der Leiterldnge proportional.

Bei homogenen Leitern dndern sich tiber die gesamte Lange der Leitung weder die
geometrischen Abmessungen noch die Materialeigenschaften. Kapazitit und Induk-
tivitat sind proportional der Leiterlinge. Daher wird bei homogenen Leitungen die
Angabe der Induktivitit und der Kapazitdt auf Leiterstiicke der Lénge 1 m be-
zogen. Diese GroBen werden als Induktivititsbelag L” und als Kapazititshelag C’
definiert. L" hat die Mafeinheit 2 m-, C' die MaBeinheit F m-1. Nach Beispiel 18
ist der Induktivitdtsbelag einer Koaxialleitung

’ Ho Ra
= | .
L 27'C n Ri




222 4. Stromkreise und Wellen auf Leitungen

Fiir den Kapazititsbelag erhdlt man nach (2.1.2./7)

27e
—
In 22
"R

i

¢ = (13)

Bei hohen Frequenzen koénnen die Verluste durch Wérmewirkung vernachlassigt
werden, wenn hochwertiges Isolationsmaterial verwendet wird (vgl. 4.4.). Es besteht
dann zwischen dem Induktivitdtsbelag L’ und dem Kapazitétsbelag 0" bei homogenen
Leitern allgemein die Beziehung

(14)

VET =2 — Ve

(vgl. 4.4./27). ¢, gibt darin die Lichtgeschwindigkeit im Vakuum, »n die Brechzahl
des Zwischenmediums an.
Das Verhaltnis

’

L (15)
V@—Z

hat die MafBeinheit Q. Es gibt bei verlustfreien, homogenen Leitern den Wellenwider-
stand an (vgl. 4.4./9).

P Probleme

4.3.1. Selbstinduktivitit einer Spule
Eine Spule aus n = 15000 Windungen mit kreisf6rmigem Querschnitt hat den Radius R = 0,5 cm
und die Lénge ! = 12 cm. Berechnen Sie den Koeffizienten L;; der Selbstinduktion. Wie gro8 ist

die induzierte Gegenspannung, wenn im Verlauf von 4t = 2 s der Strom I von 0,4 A gleichmBig
auf Null reduziert wird? :

Losung

Der magnetische Flufl durch den Spulenquerschnitt ist gleich
nl
B dU = uHA :/"OTT:Rz' (1)

Nach (4.3./2) besteht die Beziehung
[[%-dA =dp = LI. @)
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Aus dem Vergleich von (1) und (2) erhalten wir damit far L

Tuen>R?

L=L11= 7

®3)

Im Gegensatz zu den homogenen Leitern ist die Induktivitit dér Spule nichtproportional der
Leitungsldnge. Daher ist es nicht méglich, fir sie einen Induktivitdtsbelag zu definieren.
Die induzierte Gegenspannung ergibt sich gemé&f

dI
Uind = _Lu E‘ . 4)

Mit den vorgegebenen Zahlen folgt fiir den Koeffizienten der Selbstinduktion
- 1,257 - 10- - 150002 - (5 - 10~3)2

L, = H=0,185H.
- 0,12
Die induzierte Gegenspannung wird gleich
Uijpa = —0,185 . 0—’24— V=—-0,037V.
4.3.2. Gegeninduktivitit zweier gekoppelter Spulen

Im Innern einer Spule aus n; = 5000 Windungen befindet sich eine zweite Spule, die
ny = 3000 Windungen enthilt. Die Linge beider Spulen ist I = 15 cm. Der Durchmesser des
Spulenquerschnitts betrigt fiur die erste Spule 2R; = 2 ¢m, fiir die zweite Spule 2R, = 1,5 cm.
Das Zwischenmedium ist Luft. Berechnen Sie die Gegeninduktivitédt der beiden Spulen. Welche
Spannung wird in der zweiten Spule hervorgerufen, wenn durch die erste Wechselstrom mit
der Periodenzahl f = 50 Hz und der effektiven Stromstirke I, .;; = 0,1 A flieBt? Welcher Anteil
der in der ersten Spule erzeugten Feldlinien geht durch die zweite Spule?

Losung

FlieBt durch die duBere Spule der Strom I;, so wird damit in der inneren Spule der magnetische
FluB

Oy = [fsﬁ-dﬁi=uonllll TR,2 1)

erzeugt. Die Anderung des Stromes in der suBeren Spule induziert in der inneren Spule die Span-
nung
ny dDp oM a Lp® il_l

U, = — = — . 2
2 dt 7 dt @

Nach (4.1./43) ist die Gegeninduktivitdt L, durch

d,

Uy = —L;,—L
2 12dt
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definiert. Somit erhalt man fiir die Gegeninduktivitit des verketteten Systems

TN Mo o2 '
Ly, = ._/‘_0112_2 4)
Mit den vorgegebenen Zahlen folgt

7+ 1,256 - 10-¢ - 5000 - 3000 - (0,75 - 10-2)2
0,15

H = 0,022 H.

Ly, =

Fiir die induzierte Spannung ergibt sich, wenn man die zeitliche Abhéngigkeit in der Form el!
voraussetzt,

wt—E)_

U, = —iLjpoly = —iLypole J2 et = Lol o1t 12 ei( 2 )

Mit den vorgegebenen Werten erhalten wir

Uy = 0,022 27 - 50 - 0,1 - 1,41 3y 0,98 o=3) v,

Die induzierte Spannung eilt bei vernachlissigharem ohmschem Widerstand dem Strom um eine

Viertelperiode nach.
Die Gegeninduktivitdt zweier Spulen wird im allgemeinen in der Form

L=k VLn Ly, ‘ (6)

dargestelit. & bezeichnet den Kopplungsfaktor. Er liegt im Wertebereich

0<k<1. )

Im betrachteten Fall ist

)

2
k:ﬁz—: 1,6 = 0,75, k2= Ry = 0,5625.
R, 2,0 Rz

Das bedeutet: 56,259, der in der ersten Spule erzeugten magnetischen Feldlinien gehen durch
die zweite Spule.

4.3.3. Wellenwiderstand und Induktivititsbelag der Koaxialleitung

In einer Koaxialleitung betrégt der Durchmesser des Innenleiters 2R; = 6,25 mm, der Innen-
durchmesser des Auflenleiters 2R, = 20 mm. Berechnen Sie den Wellenwiderstand und den In-
duktionsbelag der Leitung. Zur Halterung des Innenleiters wird dieser mit kreisférmigen Stiitzen
aus Kunstharz versehen. Welchen Durchmesser muB3 der Innenleiter an dieser Stelle haben,
wenn der Wellenwiderstand unverdndert bleiben soll? Die Dielektrizitdtszahl des Kunstharzes

sei e, = 4,5.

Losung

Der Induktivitdatsbelag kann nach Beispiel 18 berechnet werden. Eine andere Methode besteht
darin, anstelle des Induktivitédtsbelages zundchst den Kapazitdtsbelag zu berechnen. Nach
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0o
[\
Ot

(2.1.2./7) ist dieser gleich

2mte
R

In —&
i

¢ =

Zwischen C” und L’ besteht nach (4.3./14) die Beziehung

2
re =% = TR
Co?

Hieraus erhdlt man den Induktivitatsbelag

L=ty fa
2m R;

in Ubereinstimmung mit (4.3./12). Der Wellenwiderstand der Leitung wird gleich

7o 1/E /e Ly B
(04 e 2m R,

Hierin kénnen wir y = u, setzen und erhalten damit

gt/ E Ly, B
& & 2w R;

Mit den vorgegebenen Zahlen folgt nach (5) fiir Luft mit e, = 1

Q =69,8Q ~ 70Q.

Z = 120r 51— In 20

T ,2

Als Induktivititsbelag ergibt sich aus (3)

. 10-7
I/ — 4m - 10 In 20
2r 6,25

Hm1=233-10"Hm™.

1)

(5a)

Wird das Zwischenmedium durch die angebrachten Stiitzen verdndert, so verandert sich lings
dieses Leitungsstiickes auch der Wellenwiderstand. Bei vorgegebenen Abmessungen fir das
AuBlenleiterrohr 148t sich das nur durch eine Verkleinerung des Innenleiterdurchmessers kom-
pensieren. Fur e, = 4,5 ergibt sich aus (5) mit dem Wellenwiderstand nach (5a) der Innenleiter-

durchmesser 2R; = 1,7 mm.

4.3.4. Wellenwiderstand einer Bandleitung

Eine Leitung besteht aus zwei parallelen Bandern (vgl. Bild 4.23). Thre Breite betrdgt b = 5 cm,
ihr Abstand voneinander ¢ =1 mm. Das Zwischenmedium hat die relative Dielektrizitéts-
konstante s, = 2,5. Berechnen Sie den Induktivitdtsbhelag und den Wellenwiderstand der Leitung.

15 Schilling, Felder
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Zwischenmedium &

7

2

7

SN

\
Leitungs- :
bander Bild 4.23. Schnitt durch eine Bandleitung

Lisung
Die Stromdichte ist gleich I/b. Wegen rot § = J folgt damit als magnetische Feldstérke

I
H=—.
b
Fir die magnetische Energie in einem Leiterstiick der Lénge [ ergibt sich daraus

2
Wn= % HH?V = % oo % abl.

Sie ist andererseits gleich

Wa = — L'I21,

wl)—

Aus dem Vergleich von (2) und (3) ergibt sich

a
I/ = —
Hrlto b

Zwischen Induktivitits- und Kapazitidtsbelag besteht nach (4.3./14) der Zusammenhang
VL'C" = Veu.

Aus (4) und (5) folgt fir den Wellenwiderstand der Bandleitung

Z— VZ - I/Z%

o

Setzt man hierin y = ug, € = n2,, so ergibt sich

7 = ”__Oii‘
g m b

(1)
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Mit den vorliegenden Zahlen erhalten wir

-3
L' = 1,256 - 10— L Hm!=251-10°Hm,
5102
—3
7= 120n —— 1 o _ 4770,

V25 5-107

4.3.5. Induktivitit zweier Zylinderschalen

Ein zylindrisches Rohr mit kreisférmigem Querschnitt hat die Wandstérke b = 2 mm. Der
Innendurchmesser betragt 2R = 20 mm. Durch zwei symmetrisch zueinander angeordnete
Schlitze mit'dem Offnungswinkel 2¢, = 2° (vgl. 2.2.5. und Bild 2.15) wird der Zylinder in zwei
Schalen geteilt. Berechnen Sie den Induktivitétsbelag der Schalen. Wie groB ist der Wellenwider-
stand der entstandenen Leitung?

Losung

Nach (2.2.5./27) ergibt sich bei verschwindender Wandstirke fiir die Kapazitit, bezogen auf 1 m

Leitungslénge,
K / %
1/ az + 1

= —tT L (1)

(i)

as = (3) @)
Po

gemaB (2.2.5./15). Kann die Wandstérke nicht vernachléssigt werden, so 148t sich die von ihr ver-
ursachte Kapazitdat gendhert nach (2.2.1./12) mit 7 = 1 m berechnen:

& In (1+b—25—)

mit

20 =2 3
' 29, )
Entsprechend den zwei Schlitzen ist die Teilkapazitidt der Bewandung doppelt zu zihlen.
Im vorliegenden Fall ist
d = R sin 2¢, = 2Rg,,
so daB wir anstelle von (3)
b
€y In (1 + E)
0y = ————4- 4)

2@

schreiben kénnen. Mit den vorgegebenen Zahlen folgt

8,85 1072 1n (1 -+ 0,2) - 180

C,)/ =
. 27

Fm! = 46,3 pF m~*.

15%
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Nach (2.2.5.) ist der Kapazititsbelag bei vernachléssigharer Wandstirke ¢’ = 61,2 pF m=1.
Fiir den gesamten Kapazititsbelag erhdlt man damit

Oy =C" 420, = (61,2 4- 2 - 46,3) pF m™~! = 153,8 pF m~*,
Der Induktivitdtsbelag folgt auf Grund der Beziehung (4.3./14):
Ly = e (5)
Og's
Mit dem errechneten Wert erhalten wir

1
(3-108)%.153,8 - 10712
Fiir den Wellenwiderstand ergibt sich

Ly 1/7.23.10%

Ly = Hm?'=1723.-10*Hm.

7 = = |/ ——Q = 22Q).
0y 153,8 . 1072 =
4.3.6. Selbst- und Gegeninduktion einer Zweidrahtleitung

Eine Leitung besteht aus zwei parallelen Drahten. Die Lénge ! der gesamten Leitung ist groB
gegen den Abstand a der beiden parallelen Drihte. Dieser ist groB gegen den Querschnittsradius
7, des einzelnen Drahtes.

Berechnen Sie den Induktionskoeffizienten der Leitung fiir I = 3,8 km, ¢« = 40 cm, 7y = 1,5 mm.
Wie groB ist der Induktivitatsbelag der Leitung?

Losung
Nach (4.1./18) ist die gesamte magnetische Energie durch
1

Wn = o (Lpndy? + 2L 1015 + Lopl,?) M

gegeben. Hierin setzen wir

I, =1, I,=—1I (2)
ein. AuBlerdem gilt L;; = L,,. Wir definieren

Ly = 2(Lyy — Ly). (3)
Damit folgt aus (1)

W, =— Lgl2, (4)

L\':|»—

d. h., Lg bezeichnet den Induktionskoeffizienten des gesamten Leitungssystems aus Hin- und

Riickleitung. )
Um den Koeffizienten Ly, der Gegeninduktion zu berechnen, wenden wir (4.1./21) an:

le = Lff i s d—_—Vl dVg- (5)
4 719
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Darin kann
dv, =%, -ds, = 4, ds,, dV, = A, - ds, = 4, ds, (6)

gesetzt werden, wobei 4 den Leiterquerschnitt, d3 das Element eines Leiterstiicks bedeutet.
Die Stromliniendichtevektoren hingen mit der Stromdichte gemaf

I
~ IQ’)
3

zusammen, wobei die Stromstirke I durch
FU=1 ®)

gegeben ist. Im Falle der parallelen Zweidrahtleitung ist

1, = i — 81 1o = — SZ o %2 (9)
17 " A T A 4 2= X, 9L - x| A ‘
1 1 (3al 41 J2 2 [Fal Ao
Daraus folgt
., dV,dV, e Fody dsy 4, ds, cos (y, Fo) dsy ds,
iy e 1y = — T - =— ,  (10)
T12 [ 1l o] 4145710 "1

wobei (¥, J») den Winkel zwischen beiden Stromrichtungen angibt. Bei der parallelen Zweidraht-
leitung ist cos (8, Jp) = —1. Damit folgt aus (5) und (10)

ds, d
ng:%ffﬂ' (11)
24 719

Wir wihlen die Richtung der Stromdichtevektoren i als z-Achse und erhalten damit (vgl. Bild
4.24)

l 1
Ly = - dey dz,. (12)
47 Va2 + (25 — 2,)°
00
|
L |
A ] le
| r7l7 T/ ! Z,
| |
|y e '
z :
n 25

’ . ]

Bild 4.24. Zweidrahtleitung
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Es folgt
/02 2
Ly =J‘—(21 ln-l—+ﬂ+—l——2ya2+12+2a). (13)
4 a
Unter der Voraussetzung ! >>a ergibt sich
Ly, = - (1 2 1) (14)
2r a

Der Gegeninduktionskoeffizient ist der Leiterlinge nicht proportional. Man kann keinen auf
die Léngeneinheit bezogenen Koeffizienten der Gegeninduktion definieren.
Der Selbstinduktionskoeffizient fiir eine Leitung ist nach (4.1./19)

“ C et Ay, dvy
Ly = / _——.
T

(4%

Bei konstantem Querschnitt 4 und konstanter Stromdichte § folgt

dz, dz," d4, d4,’
Ly -4 Ag [ff[ff /ZI 4 . (16)
e V2 4 (01 - ~1)

Dabei ist zu berticksichtigen, dafl auch Stromelemente, die sich auf der gleichen Querschnittebene
befinden, miteinander wechselwirken. Es ergibt sich durch Auswerten der inneren Integrale
iiber dz, und dz,

b= [[ [ (2=t )

Fiir kreisférmigen Leiterquerschnitt kénnen wir

dd, = 2rr dr,,  d4,” = 2wr dry (18)

schreiben. Ferner gilt in (16)

r = Y(r, cos g, — 7, cos @,')? ++ (ry sin @, — ;" sin @;")2. (18a)

Damit erhalten wir schlieBlich

ul 21 3 :
Ly=—(ln — — —1. 19
u= 5 (n 7o 1 (19)

Wir kénnen nunmehr die Induktivitat des Stromkreises berechnen. Dazu setzen wir (14) und (19)
in (3) ein und erhalten

Le :ﬁi(lni+_). (20)
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Diese GroBe kann im Gegensatz zur Gegen- und zur Selbstinduktion auf die Lingeneinheit be-
zogen werden:

Lg dLg u a 1
L =2 = "2 — 1 (ln — 4+ —}. 21
ST TR G @1)
Mit den vorgegebenen Zahlen folgt
256 - 108
Ly = 1256107 (ln 40 %) Hm' =1,85.10¢ Vs A=t m-1,
T 3

Fir die Lidnge I = 3800 m erhalten wir

A

A43.1.

A4.3.2.

A4.3.3.

Ad4.34.

A4.3.5.

A 4.3.6.

A4.3.7.

Ls=Lg -38-10°m = 7,03 10~ H.

Aufgaben

Berechnen Sie den induktiven Widerstand einer Spule mit kreisfsrmigem Quer-
schnitt. Der Querschnittradius ist gleich Ry = 0,5 cm, die Spulenlinge ! = 20 cm.
Auf der Spule befinden sich # = 10000 Windungen. Das Zwischenmedium ist
Luft. Die Frequenz des Wechselstromes betrigt f = 50 Hz.

Wie groB muBl die Windungszahl einer Kreiszylinderspule mit dem Querschnitt
1 cm? und der Lange 10 cm sein, wenn diese die Induktivitdt a) 1 mH, b) 1 pH
haben soll?

Eine Spule aus n = 15000 Windungen mit dem Querschnittradius R, = 1 cm wird
mit einem Schichtkondensator der Kapazitit C = 10 pF in Reihe geschaltet. Die
Wicklungen der Spule bestehen aus Aluminiumdraht (y = 4,2 - 107Q~1 m=1) mit
dem Querschnitt 72w = 0,5 mm?2. Fiir die Spulenlidnge ist I = 20 cm zu setzen.
Berechnen Sie die Induktivitdt der Spule. Wie gro8 ist der Blindwiderstand, wenn
die Frequenz f = 50 Hz betrigt? Welchen Scheinwiderstand und welche Impedanz
erhilt man? Bestimmen Sie den Winkel der Phasenverschiebung.

Ein Schwingkreis besteht aus einem Kondensator der Kapazitdt 10 pF und einer
Spule mit n = 300 Windungen. Der Radius des Spulenquerschnittes betragt
R, = 5 mm, die Spulenlinge I = 10 cm. Die Wicklungen enthalten Kupferdraht
mit dem Querschnitt 44 = 0,5 mm?2. Berechnen Sie die Induktivitit und den

- ohmschen Widerstand. Wie grof3 sind die Resonanzfrequenz und die Abklingzeit?

(y =5,9-107Q1m™1)

Eine Spule aus 8000 Windungen ist um eine zweite Spule gewickelt, die 1500 Win-
dungen enthilt. Der Durchmesser des Spulenquerschnitts betrigt fiir beide Spulen
2R, = 1 cm, die Linge I = 15cm. Wie gro8 ist die Gegeninduktivitdt? Das
Zwischenmedium ist Luft. ’

In einem Koaxialkabel betragt der Innendurchmesser des AuBenleiters 2R, =40mm,
der Durchmesser des Innenleiters 2R; = 8 mm. Das Zwischenmedium ist Luft.
Berechnen Sie den Wellenwiderstand.

Eine Koaxialleitung besitzt einen AuBenleiter mit dem Innendurchmesser
2R, = 4 cm. Das Zwischenmedium hat die Dielektrizitdtszahl e, = 2,5. Wie groB
muBl der Durchmesser des Innenleiters sein, wenn der Wellenwiderstand den
standardisierten Wert von 70 () annehmen soll?
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A4.38. Wie groB sind L', (’, Z fir eine Bandleitung mit den Abmessungen b = 10 cm,
a = 2 mm? Ferner ist e, = 2,7, u, = 1.

A4.3.9. In einer Bandleitung mit der Breite b = 5 cm soll sich der Wellenwiderstand
exponentiell iiber die Lange ! = 50 cm von Z = 10Q auf Z = 40Q verindern.
Das Zwischenmedium ist Luft. Wie ist der Abstand der Bénder zu verdndern?
Die Kriimmung der Feldlinien und die Randstérungen sind zu vernachlissigen.

A4.3.10. Ein zylindrisches Rohr mit der Wandstarke b = 4 mm und dem Innendurchmesser
2R = 20 mm wird durch zwei symmetrische Schlitze mit dem Offnungswinkel
2¢, = 2° in zwei Halbschalen zerlegt. Berechnen Sie den Induktivitidtsbelag und
den Wellenwiderstand dieser Leitung.

A4.3.11. In einer Zweidrahtleitung betrégt der Drahtabstand ¢ = 50 cm. Der Durchmesser
jedes Drahtes ist gleich 2r, = 2 mm. Berechnen Sie den Induktivitdtsbelag.

A4.3.12. Wie gro8 ist in der vorangegangenen Aufgabe die Selbstinduktivitdt, wenn die
Leitungsldnge 1 km betragt? Welcher Wert ergibt sich fiir I = 2 km?

A4.3.13. Leiten Sie aus der Formel fur die Induktivitit der Zweidrahtleitung die Induk-
tivitdit und die Kapazitit einer Horizontalantenne ab. Wie gro8 ist L fiir eine
Horizontalantenne der Lange I = 2,50 m, die sich in der Héhe & = 20 m iiber der
leitenden Erde befindet und den Drahtdurchmesser 27, = 1 mm aufweist ?

A 4.3.14. Uber dem Erdboden in der Hohe 2 = 5 m ist eine Leitung mit dem Drahtdurch-
messer 2ry = 5 mm ausgespannt. Die Riickleitung erfolgt durch die Erde. Wie
groB ist der Wellenwiderstand?

4.4. Elektrische Leitungen

E Einfiihrung

Ein Widerstand, der an eine Leitung angeschlossen ist, wird durch diese transformiert
(vgl. Bild 4.254a). Hierdurch lassen sich fiir die Mikrowellentechnik Blindwidersténde
herstellen, die mit Spulen und Kondensatoren nicht zu realisieren sind.

Elektrische Leitungen haben im allgemeinen eine grofie Lange. Sie kann gegen die
Wellenldnge nicht vernachldssigt werden. Es ist daher erforderlich, die unterschied-
lichen Schwingungszustédnde auf den einzelnen Punkten der Leitung zu beriicksich-
tigen.

Die Fernleitung elektromagnetischer Wellen 148t sich nach der Theorie quasistatio-
nérer Vorgidnge behandeln, wenn der Abstand zwischen Hin- und Rickleitung klein
gegen die Leiterlinge ist. In diesem Falle kann man die homogene, d. h. rdumlich
unverdnderliche Leitung in differentielle Abschnitte unterteilen und das elektro-
magnetische Feld unabhingig von Randstérungen untersuchen.

Bild 4.25 zeigt das Ersatzschalthild eines Leitungsdifferentials. Auf ihm sind die
Kapazitdt C' dz zwischen den beiden Leiterteilen und die Selbstinduktion L’ dz
gleichmafig verteilt. Sind R," und R," die ohmschen Widerstédnde der beiden einzelnen
Leiter je Meter Leitungslinge, so betrdgt der ohmsche Widerstand des Leitungs-
differentials R' dz = (R, + R,’) dz.
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I, Ridz I+dI
—

//l [’d[ 6z =iz lquy
-~ 4—3
Rydz I+dl
I‘L dz ]

Bild 4.25. Leitungsdifferential

el | #,

{

Bild 4.25a.) Transformation des Abschlufiwiderstandes R, durch eine Leitung
der Linge [

AuBer dem Spannungsabfall infolge des Widerstandes tritt im Stromkreis eine Strom-
verzweigung auf. Sie entsteht dadurch, daf das Fiillmaterial zwischen den beiden
Leitern stets etwas leitend ist. Es erfolgt daher ein geringer Stromiibergang von
einem Leiter zum anderen. Der elektrische Leitwert quer zur eigentlichen Leitung,
bezogen auf die Lingeneinheit, wird als Ableitung G’ definiert. G’ hat die Einheit
Q-1 m-1, Bezeichnet U die Spannung zwischen den beiden Leitern, so ist der iiber
das Differential dz abgeleitete Strom gleich UG’ dz.

Bei der Berechnung des Wechselstromwiderstandes hat man den Skineffekt zu be-
riicksichtigen. Seine theoretische Ableitung erfolgt unter 5.3.1. im folgenden Haupt-
abschnitt. Der Strom flielt mit nachweisbarer Intensitdt bei Wechselfeldern nur in
einer diinnen Schicht am &dufleren Umfang des Leiters; das Leiterinnere ist nahezu
stromfrei. Die Dicke der von einem merklichen Strom durchflossenen Schicht ist
um so kleiner, je groBere Werte die Frequenz annimmt. Bei nicht zu stark ge-
kriimmten Leiteroberflichen kann man den Wechselstromwiderstand so berechnen,
als wére der gesamte Strom gleichméBig auf die Auflenschicht der Dicke

2

iy

verteilt. d wird als Eindringtiefe bezeichnet.

2|

Beispiel 19
Aluminium hat den spezifischen Widerstand

1 =2,7-10"%0Qm.

7
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Fir die Permeabilitidt kann man p = y, setzen. Daraus erhdlt man bei der Frequenz f = 10° Hz
als Eindringtiefe

. . 108
d= / 2:27-10 m = 0,0026 mm.
[ 4m-1077 .27 - 10°

Beispiel 20
Eine Bandleitung bestehe aus zwei Leitungsbédndern der Breite b = 1 em. Der Abstand beider
Bénder betrage @ = 0,1 mm. Das leitende Material sei Aluminium mit dem spezifischen Wider-
stand 1/y = 2,7 - 10-8 Qm. Als Zwischenmedium wird Polystyrol (&, = 2,55, y < 10-3Q-1m1)
verwendet. Zu berechnen sind R’, G', L', C".
Die Dicke des Bandes ist groB gegen die Eindringtiefe. Daher folgt

1 1 1.2,7-10-%

R/=R/= — =—=—"""0Om!=10Qm?
yA4 ~ ybd 10-2.2,6 - 108

und fiir den Widerstandsbelag der Leitung
R =R/ + R/ =21Qm™.

Die Berechnung des Ableitungsbelages erfordert, den Kehrwert des Widerstandes einer Leitung
der Linge ¢ = 0,1 mm mit dem Querschnitt 1 m mal 1 cm und dem spezifischen Leitwert
y < 107133Q-1 m-1 zu berechnen. Man erhilt

-13 , {(-2
¢ < 210 g - 10 m Qe
10—
Fiir den Kapazitiatsbelag ergibt sich
44  2,55.8,85.10712.1.1072
a 104

C = Fm1=23.10"F mt.

Der Induktivitidtsbelag wird gleich

I Be 47 -10-7 .10~
44 10-2

Hm?!'=1,3-10 Hm™!.

Wie aus den errechneten Werten zu entnehmen ist, bestehen die Ungleichungen
Ll R Lwl.

Die GroBen L' dz und R’ dz bewirken lings des Leiterstiickes dz eine Spannungs-
dnderung von U(z) auf U(z) + dU(z). Nach dem ersten KrrcurOFFschen Strom-
verzweigungsgesetz (3.3./5) ergibt sich, wenn man in Bild 4.25 im Uhrzeigersinn um-
lduft,

—U+ L' dziwl - R/dze I+ U +dU + Ry’ dzI =0.

Hieraus folgt die Differentialgleichung

dU

z

¥4

— (wl + R)I |. (2a)
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Fir die Stroménderung erhdlt man nach dem zweiten KircHHOFFschen Strom-
verzweigungsgesetz (3.3./9) (vgl. Bild 4.25)

—I+G@d: U+ C'dziwU +1+dl =0.

Daraus ergibt sich

dl

- =0 + &) U|. (2b)

Zur Losung des aus (2a) und (2b) bestehenden Gleichungssystems wird die zweite
Gleichung differenziert. Aus dem Vergleich der beiden fiir —%g— sich ergebenden

Ausdriicke folgt die lineare Differentialgleichung zweiter Ordnung

a7 dz7
;4 ' ’ . ’ ’ — . 2] — .
e (iol" + R") (iwC" + G)I =0 bzw w7 [ =0 (3)
Die Grofle
y=ia+p= ol + R) (o0 + &) )

wird als Fortptlanzungskonstante bezeichnet.
Fiir die Spannung U erhélt man aus (2a) und (2b) dieselbe Differentialgleichung
wie fiir 7:

d2U
dz?

— 92U = 0. (5)

(3) und (5) lassen sich unabhéngig voneinander durch Exponentialansatz 16sen. Wird
die Zeitabhingigkeit in der Form e’ geschrieben, so lauten die allgemeinen Lo-
sungen der Differentialgleichungen

Ulet) = e Ule) = (T, e + Uy er), (®)
I(et) = eiot I(z) = elot (I, e+ I, e7%). ()
Strom und Spannung setzen sich aus der Uberlagerung zweier Wellen zusammen.

Die konstanten Koeffizienten U,, U,, Iy, I, in (6) und (7) sind nicht unabhéngig von-
einander. Nach (2a) und (2b) bestehen zwischen ihnen die beiden Beziehungen

Ul:—~311, U2:812~ (8)
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Darin wird

iol’ 4+ R’
S Vin' + & ®
als Wellenwiderstand der Leitung bezeichnet.
Mit (8) sind zwei Gleichungen zur Bestimmung der vier Konstanten in (6) und (7)
vorhanden. Zwei weitere Gleichungen ergeben sich durch die Bedingungen am An-
fang und am Ende der Leitung. Am Leitungseingang, fiir z = 0, ist die Spannung
nach (6) durch

U0, 1) = eiot(U, + U,) = U, et (10a)

vorgegeben. Es besteht also zwischen U, und U, der Zusammenhang

U, +U,="U0,. (10)
Die Verhiltnisse am Ende z =1 der Leitung sind durch den AbschluBwiderstand
_ Uy
RNy = m‘ (11a)

bestimmt. Hieraus erhédlt man unter Verwendung der Gleichungen (6) bis (8)

Re Uy et + U, et 1)

3 T SUet e (
Der Zeitfaktor ei“! hebt sich aus den Randbedingungen heraus. Er ist auf die un-
bekannten Koeffizienten ohne EinfluB. Als Losung des Gleichungssystems (10)
und (11) erhélt man

Ug(Ra — B) e U, — Ug(Ry + 3) e
2(8 sinh pl + Ry coshyl =~ 2(3sinhyl + R, coshyl)

U, = (12)
Die Eingangsimpedanz bzw. der Eingangswiderstand ist durch das konstante Ver-
héltnis

_ U

R
zwischen Spannung und Strom am Eingang z = 0 der Leitung definiert. Man bezieht
den Eingangswiderstand auf den Wellenwiderstand 3 und bezeichnet Rg/3 als

normierten Eingangswiderstand. Hierfiir erhdlt man aus (10) in Verbindung mit (12)
sowie auf Grund von (8)

(13)

Ra

Re B + tanh 9l 1
2B 5 . (14)
3 1+ _SA— tanh o1
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Durch die homogene Leitung der Lénge ! mit dem Wellenwiderstand 3 und der
Fortpflanzungskonstanten o wird der Widerstand R, gemif (14) in den Wider-
stand Ry transformiert. Nur wenn der AbschluBwiderstand R, genau gleich dem
Wellenwiderstand 3 ist, findet keine Widerstandstransformation statt, und der Ein-
gangswiderstand ist fiir alle Léngen I des Leiters gleich

R = Ry = 3.

Dieser Fall wird als Anpassung (Widerstandsanpassung) bezeichnet (vgl. 4.2.).
Zur Diskussion der Transformationsformel (14) schreibt man

Ry = B tanhe. (15)
Darin ist ¢ eine komplexe Grofle:
¢c—=bLia. (16)

Setzt man (15) in (14) ein, so folgt nach dem Additionstheorem der hyperbolischen
Tangensfunktion

Re tanh ¢ + tanh yl
= = = . 17
3 1 + tanh ¢ tanh ¢l tanh (¢ 4 77) {an

Die Funktion tanhz = tanh (¢ + iy) wird durch das Tangensrelief dargestellt.
Hierauf beruhen Verfahren zur graphischen Berechnung der Transformationseigen-
schaften verlustbehafteter Leitungen.

Im allgemeinen sind die Verluste durch den ohmschen Widerstand und durch die
Ableitung klein. In den folgenden Ausfithrungen werden daher nur noch verlustfreie
Leiter behandelt.

Konnen die VerlustgréBen R’ und G’ gegen wL’ und w(” vernachlissigt werden, so
wird nach (9) der Wellenwiderstand reell:

5 _1/L (18)

dagegen nach (4) die Fortpflanzungskonstante rein imaginér:

‘ y =ix = io ]W l (19)

In Tabelle 6 sind die Formeln fiir die Wellenwiderstande Z der wichtigsten Leitungen
zusammengestellt (vgl. 4.3.).
Beachtet man die Beziehung

tanhial =i tan o, (20)
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so erhalt man aus (14) fiir den normierten Eingangswiderstand

o —ERTA 4+ itan «l o
Z 1 -1 R tan «l

Diese Funktion laft sich graphisch durch ein Kreisdiagramm darstellen (vgl.
44.1.).
Fiir die Spannung und fiir den Strom folgt aus (6) und (7) im Falle § = 0

Ule) = e Ulz) = et (U e + Uy e, } (22)

I(zt) = et I(z) = elot ([, elor L [, e~is%),
Ausdriicke der Form

U = Uy e =y, ei(wt—w (23)
stellen fortschreitende ebene Wellen dar. Darin bezeichnet u, die Amplitude,

@ =gz t) = ot — kz (23a)

die Phase, k& die Wellenzahl. k¥ wird héufig fur « gesetzt.
Die Amplitude kann gemil

Uy = |t €170 (23b)

charakterisiert werden. Wie daraus zu erkennen ist, kennzeichnet eine komplexe
Amplitude eine Phasenverschiebung ¢,. Eine reelle negative Amplitude bedeutet

Po = —T.

Die Geschwindigkeit, mit der die Phase einer Welle im Raum fortschreitet, heil3t
Phasengeschwindigkeit. Um diese Grofle zu berechnen, betrachtet man das Fort-
schreiten eines konstanten Phasenwertes. Nach (23a) ergibt sich fiir ¢ = const

d d
(_ﬂ) :w—k(—z——) =0.
dt @=const dt @=const

Daraus folgt fiir die Komponente der Phasengeschwindigkeit in Richtung der z-Achse

dz w
( dt )qz:coust k ( )

Elektromagnetische Wellen der Form el(“!=*2) breiten sich hiernach mit der Phasen-
geschwindigkeit

_8 23d
¢=- (23d)
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in Richtung der z-Achse aus, wihrend Wellen der Form el“*+# in Richtung der
negativen z-Achse fortschreiten. Strom und Spannung einer Leitung setzen sich somit
nach (22) aus zwei gegenliufigen Wellen zusammen. Die Uberlagerung der beiden
in entgegengesetzten Richtungen fortschreitenden Wellen nach (22) ergibt eine
stehende Welle (vgl. 4.4.1. bis 4.4.3., insbesondere 4.4.3./5).

Das Schwingungsbild einer fortschreitenden Welle muf} sich auf einer verlustfreien
Leitung mit der Periode einer Wellenldnge 2 wiederholen. Das ist nach (22) nur der
Fall fur

x = —| (24)

Die Wellenlinge ist dabei auf das Ausbreitungsmedium der elektromagnetischen
Welle zu beziehen. Aus (23d) und (24) ergibt sich

p= L (25)

wobel f = w/2r die Frequenz bezeichnet. Die Phasengeschwindigkeit bei der Aus-
breitung elektromagnetischer Wellen in einem unbegrenzten Medium mit der Brech-
zahl » ist gleich

o= L (26)

no Y
Darin bedeutet ¢, die Lichtgeschwindigkeit in Vakuum. Anstelle von (25) kann man
daher

27
h=— (252)
w ]/s,u
schreiben. Wird (25a) in (24) eingesetzt, so folgt aus dem Vergleich mit (19)
o > L1 27
== =l (27)

(s. 4.3./14).

Tabelle 6. Wellenwiderstinde bei verlustfreien Leitern

Leitertyp Wellenwiderstand Z Erléduterungen

Vakuum l/ Ho 12020 = 3770 (28)
&
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Fortsetzung Tabelle 6

Leitertyp Wellenwiderstand Z Erlauterungen
Koaxialleitung =D R, R, Innenradius des AuBen-,
— 60 In —*Q R; Auflenradius des Innen-  (29)
€ R, L
r ! leiters
Bandleitung q b Breite, ¢ Abstand der
- S 377 Q) Binder (30
& b
Zweidrahtleitung 1 a a Abstand der Draht-
]/’/_ 120 In—Q achsen, 7, Drahtradius (31
| e 7o
Draht tiber ED 2% h Hohe tiber der leitenden
leitender Ebene ]/ . 60 In TQ Ebene (32)
/& 0
P Probleme
4.4.1. Anpassungs- und Phasenkreis

Eine Flachbandleitung mit dem Wellenwiderstand Z = 240 Q ist mit dem Wider-
stand R, = (192—1i 144) Q abgeschlossen. Untersuchen Sie die Transformation dieses Wider-
standes durch die Leitung. Wie wird der AbschluBwiderstand durch eine Leitung der Lange
! = 15 cm transformiert (A = 1,50 m)?

Losung

Wir betrachten zunichst die Transformation eines rein reellen Widerstandes X < Z durch die
Leitung. Hierzu setzen wir

X

— =m=1. (1;

Z
Nach (4.4./21) ist der Eingangswiderstand durch

_?]iE__ m + itan ol @)
Z ~  1-+imtanal -

gegeben. Den Zihler rechts kénnen wir schreiben

m+itamo¢l=i m 4+ L (1+imtano¢l)+—1— m—L (1 — im tan «l),
2 m 2 m

womit aus (2)

Ry 1 1 1 1 1 — im tan «l
g L R N P 3
zZ 2 (m—!— m) 2 (m m) 1 + im tan «l ®)
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folgt. Da m ein rein reeller Wert ist, hat der letzte Faktor rechts den Absolutbetrag eins. Der
gesamte Ausdruck (3) ergibt daher fir variable Werte I einen Kreis mit dem Radius

Z 2

%_E_L(m+i)‘=i|m_il. 4
m 2 m

Der normierte Eingangswiderstand Rg/Z durchliauft demzufolge bei variablen Werten [ einen
Kreis. Sein Mittelpunkt hat in der komplexen Widerstandsebene die Koordinaten

%(’”*%)’0; (5)

er liegt also auf der reellen Achse. Dieser Kreis wird als Anpassungskreis bezeichnet. Die GréBe
m < 1 gibt den Grad der Anpassung an.
In gleicher Weise erhidlt man aus (2)

m—ZE- -— -;— (tan ol — cot xl) = % (tan &l + cot ) %' (6)

Der normierte Eingangswiderstand durchlduft hiernach fiir konstante Phasen «f und variable
Anpassungswerte m einen Kreis mit dem Radius

S%E - % (tan ol — cot ad) | = — | tan ol + cot ol |. 7)

Der Mittelpunkt dieses Kreises hat die Koordinaten

0, — (tan &l — cot «l). (8)

1
2
Er wird als Phasenkreis bezeichnet.

Man erhélt hiernach unter der Voraussetzung (1) den gesuchten Eingangswiderstand als Schnitt-
punkt des durch (4) und (5) festgelegten Anpassungskreises m mit dem durch (7) und (8) be-
stimmten Phasenkreis «l.

Die Bestimmung des Eingangswiderstandes kann nach Bild 4.26 graphisch erfolgen. In dieser
Darstellung sind die Anpassungskreise durch m, die Phasenkreise durch I/A gekennzeichnet.

Wir betrachten nun den Fall, dal die Leitung mit einem beliebigen komplexen Widerstand ab-
geschlossen ist oder daB der AbschluBwiderstand reell ist, jedoch Ry = Ry > Z gilt.
Nach dem graphischen Verfahren gem#f Bild 4.26 kann man den AbschluBwiderstand als Ein-
gangswiderstand einer Leitung der Léange I’ auffassen, die mit einem rein reellen Widerstand
X < Z abgeschlossen ist. Im vorliegenden Fall ist

Ry 192 —i144

0,8 —1i0,6.
Z 240

Aus Bild 4.26 entnimmt man, daB der Anpassungskreis durch m = 0,5, der Phasenkreis durch
U/A = 0,375 festgelegt ist. Der AbschluBwiderstand Ry = (192 — i 144)Q wird hiernach durch
den reellen Widerstand X = 0,5Z = 12002 reprisentiert, der durch die Leitung der Linge

1" = 0,375 = 0,375 - 1,50 m = 56,25 cm

in den gegebenen Widerstand 9, transformiert wird.

16 Schilling, Felder



242 4. Stromkreise und Wellen auf Leitungen

o W

B a6 o7 4B on 020 4205 027

o T TR e e
M s e st S
094 il {>< < :j:jﬁ\ ( ’
408 -4— : %4 @ % ji\ﬂf\% ><\\

i i 2 S i e S T A
i S S
00 | \
i , e e e e R
o ARt 5 A = Zﬁ*/\ﬁﬁ | 925
lAREE. Bn. iece
0;’# 1 Aoty m=072 G
il n ] Adxh CA AL
%Z - i i ?5470 X i E%K\&Wﬂ, wr
0 FHIT T AN &1% A ’{K/@ 7

B e

) —t T o1

il LS EINAT T T U %
039 | \\\))( XK \7[I=0,375 \/L\«——A/) N
LR SN N o o S A A B

237 036 035 #4340 037 430 4295 919

o

Bild 4.26. Anpassungs- und Phasenkreise in der Widerstandsebene

Fur die Phase erhidlt man

w =27 9 915 5 010,
7 1,50

Zusammen mit «l” = 2x - 0,375 ergibt das

2

o (U + 1) = 27(0.375 + 0,100) = 2 - 0.475.

Als Schnittpunkt des Anpassungskreises m = 0,5 mit dem Phasenkreis (I’ 4 1)/A = 0,475 ex-
halten wir nach Bild 4.26

Rg .
ZE _ 0,51 —i0,12,
Z 1

d.h.
Re = (0,51 —10,12) 2400 = (122 — i 29) Q).
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4.4.2, GrofBter und kleinster Wert des Wirkwiderstandes

Der Widerstand Ry = (150 — 130) Q soll durch eine verlustfreie Leitung mit dem Wellen-
widerstand Z = 120 Q) in einen rein reellen Widerstand transformiert werden. Fiir den Eingangs-
widerstand soll sich dabei ein Minimum ergeben. Welche Leitungsldnge ist hierfiir zu wihlen,
wenn die Wellenlinge 4 = 50 cm betrigt. Wie ist die Abmessung zu wéhlen, wenn der Eingangs-
widerstand ein Maximum werden soll?

Losung

Nach 4.4.1. kann jeder komplexe Widerstand durch eine Leitung der Lange I’ dargestellt werden,
die mit dem rein reellen Widerstand X = mZ (m = 1) abgeschlossen ist. Fiir den normierten
Eingangswiderstand schreiben wir daher nach (4.4.1./3)

Rg 1 (m _1_) o1 ( 1 )1—imtanzx(l+l’)

=== + = (m - — -
m 2 m ) 1 + im tan x(I 4 1)

b

. (1)

Z 2

Rein reelle Werte des Eingangswiderstandes ergeben sich, wenn tan «(l + 1) entweder gleich
Null wird oder iiber alle Grenzen wéchst. Es muB also entweder

l+l’=n% (n=0,1,...) )

oder
A A
I14+V =n—=4+ — =0,1,...
+ L (n=0,1,...) (3)

erfiillt sein. Im ersten Fall erhidlt man

Rg Rg
- = | > =m, (4)
Z Z min

im zweiten Fall
By _|%a| _ 1 -
Z . Z max m

Diese Beziehungen gehen anschaulich aus der graphischen Darstellung nach Bild 4.26 hervor.
Zwischen dem groBten und dem kleinsten Wert des Wirkwiderstandes besteht nach (4) und (5)
der Zusammenhang

By
Z

Re
Z

=1 bzw.  [Rglnin [Reimax = Z2°. (6)

min max

Im vorliegenden Fall betragt der normierte Wert des AbschluBwiderstandes

Ry 150 —i30

— 1,25 —10,25.
7 120 o T nEe

Aus Bild 4.26 entnehmen wir
v

m= 0,72, — =10,30.
A

16%
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Fiir den kleinsten reellen Wert des normierten Eingangswiderstandes folgt damit

R

=m = 0,72,
Z min
fur den groBten
Re| L _ L _ a9
Z |nax m 0,72

Auf dem Anpassungskreis m = 0,72 von I’/A = 0,30 fortschreitend, erhalten wir fir
(I 4 I")JA = 0,50, d. h. fur

!l = 0,204 = 0,20 - 50 cm = 10 cm
den kleinsten Wert des Wirkwiderstandes
Ry = (Rg)min = 0,72 - 120Q = 86Q.
Der grofite Wert des Wirkwiderstandes
Rg = (RE)max = 1,39 - 120Q = 167Q
wird nach Durchlaufen einer weiteren Viertelwellenldange, d. h. far
1 = (0,20 4 0,25) A = 0,451 = 22,5 cm

angenommen.
Die Angaben tiber die Linge der Leitungen erfolgen mit dem Modul /2 = 25 cm.

4.4.3. Messung des Abschlufiwiderstandes einer Leitung

Es soll der AbschluBwiderstand einer Koaxialleitung mit dem Wellenwiderstand Z = 70Q) ge-
messen werden. Hierzu wird zwischen dem Sender S und der Leitung L eine MeBleitung ML
mit dem gleichen Wellenwiderstand geschaltet (vgl. Bild 4.27).

Bei der Messung ersetzt man zunéchst den unbekannten AbschluBwiderstand R, durch einen
KurzschluBl und bestimmt auf der MeBleitung durch Abtasten die Spannungsknoten. Fiir diese
werden auf der Skale die Werte (in mm) 20, 170, 320, 470 gemessen. Nach Einschalten des Ab-
schluBwiderstandes f, werden die Punkte maximaler und die Punkte minimaler Spannung be-
stimmt. Fur das Verhiltnis zwischen den Spannungswerten ergebe sich

Umin _ 0.75.

L max

[

* Bild 4.27. Anordnung zur Messung des
s W 7 AbschluBwiderstandes. S Sender, ML Me8-
leitung mit Skale und verschiebbarem

ML

! MeBverstiarker MV, L Leitung
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Die Punkte minimaler Spannung seien auf der MeBleitung bei 80, 230, 380 gelegen, die Punkte
maximaler Spannung bei 5, 155, 305, 455. Bestimmen Sie aus diesen Angaben den AbschluB-
widerstand der Leitung.

Losung

Der gegebene AbschluBwiderstand 3, kann durch eine Leitung der Lénge I’ ersetzt werden,
die mit dem reellen AbschluBwiderstand X = mZ abgeschlossen ist. Die Leitung der Ersatz-
linge I bewirkt eine Verschiebung der Spannungsminima. Im vorliegenden Fall betréigt diese

Al =1" = (80 — 20) mm = (230 — 170) mm = 6 cm.

Der Abstand zweier Spannungsminima ist gleich 2/2. Aus den gemessenen Werten auf der Me8-
leitung kann man daher die Wellenldnge tiberpriifen:

A= 2(170 — 20) mm = 30 cm.
Fir den Parameter des Phasenkreises folgt

Y80 _ g90.
i 30,0

Der Anpassungskreis ergibt sich aus dem Verhiltnis der minimalen zur maximalen Spannung.
Wir schreiben nach (4.4./22) die Spannung als Uberlagerung zweier Wellen

Uz, t) = elol(U, elo* + U, e~io7), (1)

Die Amplituden sind durch die Formeln (4.4./12) darstellbar. Im Falle verlustfreier Leitungen
folgt wegen v = i x:

Ry — Z) eial Ry - Z) eial
Uy=Upsrb 22" p,oy, et ller @)
2(, cos ol + 1 Z sin ) 2(Ry cos xl + 1 Z sin «l)
Fiir das Verhiltnis der Spannungsamplituden ergibt sich hieraus
L Fa—=Z i, 3)
Uy, Ry+2%

In (3) kann die Darstellung von i, durch eine Leitung der Lange I’ mit dem AbschluBwider-
stand X = mZ berucksichtigt werden. Hierzu hat man I durch 7 + " und R durch X zu ersetzen.
Es ergibt sich

ﬂ — X - Ze—Zix(H—l'). (4)
U, X+2Z

Wir driicken in (1) die Spannungsamplitude U, auf Grund des Zusammenhanges (4) durch U,
aus; fiur die zeit- und ortsabhéngige Spannung schreiben wir also nach (1)

Ulet) = U eiot | —
(ot) = Uy e [ T

1—m efzia(l—%l’) elaz + e-iaz:| . (5)‘
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Der Wert des Spannungsmaximums ergibt sich aus (5), wenn die Betrige der Summanden addiert
werden. Das Minimum folgt aus der Differenz der Betrige. Es folgt somit aus (5)

" _1—m+1
min __ 1+m — m. (6)
U nax 1—m_{_1

1+m

Das Verhdltnis des Spannungsminimums zum Spannungsmaximum auf der Leitung ist gleich
der Anpassung m.

Im vorliegenden Fall erhalten wir m = 0,75. Der gesuchte Widerstand liegt auf dem Anpassungs-
kreis 0,75 und auf dem Phasenkreis I’/2 = 0,20. Nach Bild 4.26 entspricht diesen Werten der
normierte Widerstand )

Ra

7 1,23 +10,22.

Fir den gesuchten AbschluBwiderstand ergibt sich
Ry = (86 +10,15)Q.

4.4.4. Anpassung durch Verinderung des Wellenwiderstandes

Eine Koaxialleitung mit den Abmessungen 2R; = 5 mm, 2R, = 16 mm ist mit dem Wider-
stand R, = (77 + i 32,5)Q abgeschlossen. Wie ist die Leitung zu verdndern, um Anpassung zu
erzielen? Welche Dimensionierungen ergeben sich fiir A = 20 cm?

Losung

Nach 4.3.3. hat die Koaxialleitung den Wellenwiderstand Z = 70Q). Der normierte Abschluf-
widerstand ist somit gleich '

Ry _ T7H1325 1615046,
Z 70

[
Im Kreisdiagramm entspricht das den Kreisen m = 0,63, 7= 0,16 (vgl. Bild 4.28). Wir
schlieBen an R, zunichst eine Leitung 0 mit dem Wellenwiderstand Z, = Z = 70Q an, der wir
die Linge [, = 0,094 geben (vgl. Bild 4.28). Dabei wird der komplexe in einen rein reellen
Widerstand transformiert.

Seine Grofe betrigt nach dem Diagramm

Z,
Rgo = =, (1)
m
in Zahlen
) 70Q
Rpy = — = 111Q.
B 70,63

Gegeniiber einer sich daran anschlieBenden Leitung mit dem Wellenwiderstand Z, représentiert
der ermittelte Eingangswiderstand Ry, einen AbschluBwiderstand R 4;. Der normierte AbschluB.
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Bild 4.28. Anpassung durch Verinderung des Wellenwiderstandes

widerstand betrigt fir diese Leitung
AL TR tB e %o 2

Er 148t sich graphisch darstellen, indem man im Kreisdiagramm den normierten Widerstand
Reo/Zo im MaBstab Z,/Z, verindert, d. h. auf der reellen Achse von Ryy/Z, nach Rgy/Z, fort-
schreitet. Wir wéhlen

Zo _ (3)

Mit den vorliegenden Zahlen erhalten wir

Zs — J0Q =88,20.

Vm 10,63

Daraus ergibt sich nach (2) und (3)

1=

Py _ Rpp Zy L @
Z, Zy Zy V—'rr_b
Gibt man der Leitung 1 die Lénge 4/4, so gelangt man zum normierten Eingangswiderstand
RN
E1 __ 1/7_7{ ) (5)

Z,
Mit den vorgegebenen Werten erhalten wir
R

E1 Y:E)
—= = 70,63 = 0,79.
Zy V
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An die Leitung 1 schlieBen wir als Leitung 2 die Leitung mit den urspriinglichen Abmessungen
an. Thr Wellenwiderstand ist Z, = Z,. Fiir den normierten Abschluwiderstand folgt nach (5)
und (3)

ERM — SREl — sREl @:VE 1

Z, Zy Zy, Zy Vm

Die Leitungstransformation hat zur Anpassung gefithrt. Mit den gegebenen Zahlenwerten er-
halten wir

=1. (6)

Iy = 0,094 = 0,09 - 20 cm = 1,80 cm, 1, = 0,254 = 5,00 cm.

Der Wellenwiderstand Z; = 88,2(Q) wird bei festem AuBenleiterdurchmesser 2R, = 16 mm durch
2R; = 3,68 mm realisiert.

4.4.5.% Eingangswiderstand der Koaxialleitung mit geschlitztem AuBenleiter

Zur symmetrischen Anpassung des AbschluBwiderstandes an eine Koaxialleitung wird der Aullen-
leiterzylinder durch zwei symmetrische Schlitze (vgl. Bild 2.15) in zwei Halbschalen zerlegt, von
denen eine am Ausgang mit dem Innenleiter kurzgeschlossen ist. Der AbschluBwiderstand
(Dipol) befindet sich am Ausgang der beiden Halbschalen. Stellen Sie die Formel fiir den Ein-
gangswiderstand eines derartigen Leitungssystems auf.

Der AuBlenleiter habe die Wandstérke b = 2 mm. Sein Innendurchmesser betrage 2R, = 20 mm.
Die Schlitzwinkel seien gleich 2¢, = 2°. Der Innenleiter habe den Durchmesser 2R; = 6,25 mm.
Der AbschluBwiderstand zwischen den beiden Zylinderhalbschalen sei gleich R4 = (350 —i70)Q2.
Die Wellenldnge betrage 4 = 20 cm. Wie ist die Schlitzlange zu wéhlen, um die beste Anpassung
zu erzielen?

Losung

Wir kennzeichnen den Innenleiter durch den Index 0, die beiden Halbschalen durch 1 und 2.
Fir das Differential des Leitungssystems ergibt sich das Ersatzschaltbild nach Bild 4.29.

3 Ldz Rtz Lrdl
(2)o———¢ ST 0
b 'LC-’ az | |6pdz ||\ l-?\ \paty
L T “ bydz ) Lyl 0t
(0)o l IR = 5
/ , / S Rid.
U;T T Cia %2 @ Gig 72 [I]/ ! W T//7*0’//7
(1) o— * o T+ |
I; Redz  I#dl;
J
n

|7

Bild 4.29. Leitungsdifferential und Abschlul der Koaxialleitung mit geschlitztem
AuBenleiter
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Der Strom I, im Innenleiter ist mit den beiden AuBenstrémen durch
Io= —(I1+Iz) (1)

verkniipft. Nach dem zweiten KircEHEOFFschen Cesetz erhalten wir

dr
— —2=aU, + b0, @)
dz
-y L, 3)
dz
mit
0 =iw(Ch + C), b= —iwCi )

(vgl. Bild 4.29).
Fiur die Spannungen ergibt sich nach dem ersten KircEEOFFschen Gesetz aus den Leitern 1 und 0

dU,
dz

= a*I, + b*I,. (5)

Darin haben a* und b* die Bedeutung
@ —io(Ly + LY — 2Li), b = io(Ly + Ly — 2Liy) ©)

(vgl. Bild 4.29).
Eine dhnliche Gleichung erhalten wir aus 0 und 2:

BT S (7)
dz

Die beiden AuBenleiterhalbschalen liegen spiegelbildlich zueinander. Ein Unterschied in ihrem
elektrischen Zustand kann nur durch die Abschlufiwiderstinde hervorgerufen werden. Wir be-
zeichnen die AbschluBwiderstinde mit B und L.

Fir P = & mubl

Uilz) = Uy(e) = Uz),  L(z) = Is(z) = (8)

gelten. Es liegt dann nur noch ein System aus zwei Leitern vor: dem Auflen- und dem Innen-
leiter. Wegen der Symmetrie auch am Leitungsausgang kann sich zwischen den beiden Halb-
schalen keine Potentialdifferenz ausbilden. Bezeichnet man den Induktivitdts- und den Kapa-
zitdtsbelag der entstandenen Leitung mit L;” und Cy’, so miissen die Gleichungen

_4v iwLyI, 9)
dz

_ar = ioCy'U (10)
dz
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bestehen. Dagegen folgt aus (5)

— =g @ L (11)

Aus (2) und (3) erhidlt man im Spezialfall (8)

_% — 2+ b)T. (12)

2

Durch Vergleich der Koeffizienten gelangt man zu den beiden Gleichungen
inLy = % (a* + b¥), iwC;” = 2(a + b). (13)

Ein zweiter Spezialfall ergibt sich, wenn sich die beiden AuBenschalen auf entgegengesetzten
Potentialen befinden, wahrend der Innenleiter das Potential Null hat.
Es gilt dann

U= —U,=

%, IL=—I=I I,=0. (14)

Induktivitits- und Kapazititsbelag dieser Leitung seien mit Li; und Cj; ‘bezeichnet. Wir ver-
fahren wie im ersten Spezialfall und erhalten das Gleichungssystem

ik = 2(a* — b¥%), iwCi = % (@ — b). (15)

Die insgesamt vier Gleichungen aus (13) und (15) bilden ein algebraisches System zur Riick-
fithrung der vier Koeffizienten a, b, a*, b* auf die GréB8en Ly’, Cy’, Ly, Cy;. Es folgt

’

(o , . (C ,
a:lw(TI+CII), b:lw(; —C’H),

(16)
. , L . , L
a*:lw(LI +%), b*:lco(LI uf-)
Wir setzen (16) in (2) und (3) ein. Durch Addition dieser beiden Gleichungen entsteht
da(. I 1. ,
- % — 5 00y (Ty + T (172)
Ebenso erhalten wir aus (5) und (7)
U O N A A (17h)
dz
Subtrahieren wir dagegen die Gleichungen, so folgt
_WL =T 0w, — T, (182)
dz
S =) Ly, 1. (18b)
dz 2
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In (17) treten nur noch GréBen des ersten, in (18) nur noch Grofen des zweiten Spezialfalles auf.
Die allgemeinen Losungen der Gleichungssysteme (17) und (18) schreiben wir in der Form

I, +1I,= 4, cosoz + Ay sin oz, 19
U, + U, = By;sinoz + By, cos oz (192)
I, — I, = A, cos oz + Ay, sin oz, (19h)
U, — U, = By, sin oz + By, cos oz.
Darin gilt
27
a=——=o0 VL0 = o VLG
Fihrt man die Wellenwiderstande
Ly Ly
Zy = 1 == Zn = |/ == (20)
Or Cn

ein, so ergibt sich aus (17) und (18) durch Koeffizientenvergleich mit den Losungsansitzen (19a)
und (19b)

1
An = 2ZI an Am = - 2ZI Blz,
(21)
2i 21
A21 = ZII an Azz = _711" By,
Am Eingang in das Mehrleitersystem, fiir z = 0, miissen die Anfangsbedingungen
U1(0) = Uos U2(0) = Uo (22)

erfillt sein, wobei Ugelet die zwischen Innen- und AuBenleiter angelegte Spannung bedeutet.
(22) liefert

B, =2U,, B, =0. (23)
Am Ausgang des Leitungssystems rechnen wir mit
B=0, D=o0, R=0%R. (24)

(vgl. Bild 4.29). R, charakterisiert einen komplexen Widerstand, der durch den am Ende der
Leitung angebrachten Dipol verursacht wird. Aus den KIRcHHOFFschen Stromverzweigungs-
gesetzen ergeben sich damit die Randbedingungen

Ul(l) =0, Uz(l) = ERAlz(l)y (25)
die wir auch in der Form

ULy 4 Ul — R, [zlm £L0 L0 ;Iza)} 50
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schreiben kénnen. Hieraus erhalten wir

2 -
—cos ool sin &l + iRy (COS ol sin® al)

By, =2U, 42 ZIII , (26a)
sin? ol — iR, cos ol sin ol ( + )
4Zy  Zn
By = —2U, cot ol — By;. (26b)

Damit sind Strom- und Spannungsverteilung auf der Leitung bestimmt. Der EmgangSWIderstand
des Leitungssystems ist definiert als

U©O) _ _Uy0) + Uy0)

Rg = = (27
® 70 T L0+ L) ’
Daraus erhalten wir
Ra L 4+ — )+ itanal
Re _ " \4z; Zu ) (28)
Zy tan ol cot ol B
14+ -
- I%A( 4Z; Zny )
Der normierte Eingangsleitwert 1a8t sich in der Form
®,3, + itanal
Zy = —==2 29
OeZs 1+ 1,3, tan &l (29)
mit
. Zy
G,3. = 4@ Z; — 4i 7 cot «l (30)

II

schreiben. Das betrachtete Dreileitersystem verhélt sich hiernach wie ein Zweileitersystem, das
mit dem Leitwert 4@, und einer zu dieser parallelgeschalteten leerlaufenden Leitung ab-
geschlossen ist. Die Lange dieser Leitung und die Lange des Zweileitersystems sind identisch mit
der Schlitzlinge I, jedoch weichen ihre Wellenwiderstdnde Zy und Zy; voneinander ab.

Bei der Berechnung von Zj; kann im vorliegenden Fall der Innenleiter unberiicksichtigt bleiben.
Mit den vorgegebenen Zahlen folgt nach 4.3.2. und 4.3.4.

Zy =100, Zy = 220Q.
Aus (30) ergibt sich mit den vorgegebenen Werten

4.70 .70 2l
— — 4i —cot .
350 —i70 22 0,20 m

@a«ga =

Soll der vorgegebene AbschluBwiderstand an die Koaxialleitung optimal angepalBt werden, so
miissen sich die imagindren Anteile herausheben. Das erfordert, da3 die Gleichung

cob 27l _ 22 .70 — 0,012
0,20 m 3502 + 702
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besteht. Sie wird fir

& = grc_l = 1,559,

A

d. h. fir die Schlitzlinge

erfiillt.

A

Ad4.1.

A44.2.
A443.
Ad44.

A4.4.5.

A4.4.6.
A4.4.7.

A4.4.8.

A4.4.9.

A 4.4.10.

| = @20 cm = 4,96 cm

T

Aufgaben

Berechnen Sie die Eindringtiefe bei Kupfer fiir die Frequenzen f = 162/; Hz und
f=100Hz (y =5,9.107Q1m1).

Wie groBl ist der Widerstandsbelag einer Koaxialleitung aus Kupfer, wenn der
Innendurchmesser des AuBlenleiters 2R, = 16 mm, der AuBendurchmesser des
Innenleiters 2R; = 5 mm betragt (f = 101 Hz)?

Der induktive Widerstand ® = i35 soll durch eine kurzgeschlossene Leitung
mit dem Wellenwiderstand Z = 700} dargestellt werden. Welche Linge muB} die
Leitung haben?

Durch eine Leitung mit dem Wellenwiderstand Z = 70( soll der induktive Wider-
stand R, = 135Q in den kapazitiven Widerstand Ry = —i 175Q transformiert
werden. Wie lang muf} die Leitung sein?

Eine Leitung lauft an ihrem Ende leer. Fir welche Leitungslangen wird der un-
endlich groBle AbschluBwiderstand R, = oo in einen Kurzschluf Ry = O trans-
formiert?

An eine leerlaufende Leitung wird am Eingang eine Spannung angelegt. Mit einer
Kontrollampe werden die Spannungsmaxima und -minima festgestellt. Fiir welche
Leiterlingen wird ein Maximum der Spannung beobachtet? Fiir welche Stellen auf
der Leitung bleibt die Lampe dunkel? (LecEER-Leitung)

Berechnen Sie die Eingangsimpedanz einer Bandleitung mit den Abmessungen
@ =2mm, b = 2 cm. Das Zwischenmedium hat die Dielektrizititszahl e, = 3,55.
Die Leitungslange betrdgt | = 7,00 m, die Frequenz f = 2,275 - 10® Hz. Der Ab-
schluBwiderstand ist gleich %, = —i4,0Q.

Wie ist der Widerstand Ry = (45 +115)Q an eine Leitung mit dem Wellen-
widerstand Z = 60() angepalB3t?

Ein Widerstand Ry = (90 — i 30)Q soll durch einen reellen Widerstand R, < Z
und eine Leitung mit dem Wellenwiderstand Z = 60() dargestellt werden. Be-
stimmen Sie Ry/Z = m und l’/A.

Eine Zweidrahtleitung der Lénge ! = 4,5 km mit den Abmessungen 7, = 1 mm,
a = 2 em wird mit Wechselstrom der Frequenz f = 5000 Hz gespeist. Sie ist mit
dem Widerstand Ry = 540€) abgeschlossen. Wie wird dieser durch die Leitung
transformiert ?
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Eine Leitung mit der Linge ! = 2,4 cm und dem Wellenwiderstand Z = 60 ( ist
mit dem Widerstand R, = 150() abgeschlossen. Die Wellenlinge betrigt 2 =20cm.
Wie groB ist der Eingangswiderstand?

Bei der Messung des AbschluBwiderstandes wird eine Verschiebung Al = 15,6 cm
der Spannungsminima gegen die KurzschluBpunkte festgestellt. Die Wellenldnge
betrigt A = 39 cm. Fir das Verhiltnis des Spannungsminimums zum -maximum
ergibt sich Upy;,/Upax = 0,65. Der Wellenwiderstand betrigt Z = 60(2. Wie grof3
ist Ry ?

Eine Leitung mit dem Wellenwiderstand Z = 60Q ist mit dem Widerstand
Ry = (42 4 1 30)Q2 abgeschlossen. Bestimmen Sie den kleinsten und den gréBten
Wert des Wirkwiderstandes, wenn die Leitung verlingert wird. Fur welche Lei-
tungslingen werden diese Werte angenommen? Die Wellenlédnge betrigt A = 20 cm.

Der AbschluBwiderstand einer Leitung mit dem Wellenwiderstand Z = 70Q) be-
trigt Ry = 1750Q. Bestimmen Sie den kleinsten Wert des Wirkwiderstandes bei
der Widerstandstransformation durch die Leitung. Welche Linge muf} die Leitung
haben?

Stellen Sie die Formel fiir den normierten Eingangsleitwert @gZ = Z/Rg einer
verlustfreien Leitung auf, wenn diese mit dem normierten Leitwert &,Z = Z/R
abgeschlossen ist.

Stellen Sie die Formeln fir den normierten Eingangsleitwert und far den normierten
Eingangswiderstand einer leerlaufenden Leitung (&, = 0 bzw. R, = oo) auf. Die
Leitung sei verlustfrei.

Welche Operation ist im Kreisdiagramm durchzufithren, um normierte Wider-
stinde in normierte Leitwerte umzurechnen? Bestimmen Sie danach zu %/Z
= 0,73 4+ 10,20 den normierten Leitwert.

Der AbschiuBwiderstand Ry = (48 — 136)Q soll durch Verinderung der Leitung
an den Wellenwiderstand Z = 60() angepaBt werden. Wie ist die Leitung zu ver-
dndern?

Berechnen Sie den Eingangswiderstand einer Koaxialleitung mit geschlitztem
AuBenleiter fiur die Schlitzlingen ! = 4/4 und I = 4/2.

Definieren Sie den Reflexionsfaktor bei der Wellenausbreitung in einer Leitung
mit dem Wellenwiderstand Z, die mit dem Widerstand 3, abgeschlossen ist.

Bestimmen Sie in erster Naherung den Wellenwiderstand 3 und die Fortpflanzungs-
konstante y einer Leitung unter Berticksichtigung der Verluste durch den ohmschen
Widerstand und durch Ableitung.

Der Transistor als aktiver Vierpol

Einfiibrung

Das Grundmaterial der Transistoren ist Silizium oder Germanium. Beide Stoffe sind
vierwertig; ihre Atome enthalten vier Valenzelektronen. Hierauf beruht der Aufbau
des Kristallgitters dieser Stoffe, der in Form der Diamantstruktur erfolgt (vgl.
Bild 4.30): Jedes Silizium- bzw. Germaniumatom ist von vier anderen umgeben.
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Bei den reinen Kristallen des Germaniums und des Siliziums sind die Valenzelektronen
durch das symmetrische Gitternetz sehr fest gebunden. Es besteht nur eine duflerst
geringe Wahrscheinlichkeit fiir die Bildung freier, d. h. nur an den Kristall gebundener
Elektronen infolge statistischer Prozesse. Reine Kristalle sind daher besonders bei
tiefen Temperaturen praktisch Nichtleiter. Mit zunehmender Temperatur steigt die
Leitfahigkeit jedoch etwas an, im Gegensatz zum Verhalten der Metalle. Der reine
Kristall stellt daher bei nicht zu tiefen Temperaturen einen Eigenhalbleiter dar.

Apositive UberschuB-
ladung (ortsfest)

i freies Elektron

Bild 4.30. Siliziumkristall mit Fremdatom

Baut man im geringen MaBe drei- oder fiinfwertige Fremdatome in das Gitter des
Germaniums oder des Siliziums ein, so wéchst die Leitfahigkeit stark an. Sie liegt
um mehrere GréBenordnungen tiber der des reinen Kristalls. Man bezeichnet der-
artige Kristalle, deren Leitfdhigkeit durch eingebaute Fremdatome stark vergrofert
wird, als Fremdhalbleiter. Thre Leitfahigkeit verringert sich ebenfalls mit abneh-
mender Temperatur.

Bei den Fremdhalbleitern unterscheidet man zwischen UberschuB- und Mangel-
halbleitern.

UberschuBhalbleiter (n-Halbleiter) entstehen, wenn in den vierwertigen Kristall
funfwertige Fremdstoffe, z. B. Antimon, Phosphor oder Arsen, eingebaut werden.
Von den finf Valenzelektronen dieser Stoffe kénnen nur vier mit den Valenzelek-
tronen der benachbarten Silizium- oder Germaniumatome zu einer abgeschlossenen
Schale aus acht Elektronen gebunden werden. Das iibrigbleibende Elektron ist nur
schwach an das Atom gebunden und laft sich mit geringem Energieaufwand ab-
l6sen. Hierdurch wird es innerhalb des Kristalls zum freien Elektron, das einem
duleren Feld folgen und sich durch den gesamten Kristall bewegen kann.

Bei den Mangelhalbleitern (p-Halbleiter) sind in den Kristall Fremdatome mit drei
Valenzelektronen eingebaut, z. B. Bor, Aluminium oder Indium. Dabei bleibt eine
Valenz der Germanium- oder Siliziumatome ungebunden, d. h., in den normaler-
weise abgeschlossenen Schalen tritt eine Elektronenliicke auf. Sie kann von Atom
zu Atom durch den Kristall wandern und verhalt sich dabei wie ein Teilchen mit
positiver Elementarladung und der Masse eines Elektrons. Die Elektronenliicke
wird daher als Defektelektron bezeichnet und wie ein selbstédndiges Teilchen be-
handelt, das sich unter dem Einflul} eines dulleren Feldes durch den Kristall be-
wegt.
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In einem Festkorper kénnen die p- und die n-leitenden Bezirke nebeneinander auf-
treten. Ein Gebiet, in dem ein p- und ein n-leitender Bezirk zusammenstoB3en, wird
als pn-Ubergang bezeichnet. Er ist der grundlegende Bestandteil aller Halbleiter-
bauelemente. Ein kleiner Kristall mit einem pn-Ubergang heiB3t pn-Diode.

Im n-Bereich. besteht ein Uberschul an freien Elektronen, im p-Bereich an Defekt-
elektronen. Liegt keine dullere Spannung an, so diffundieren beim Kontakt zwischen
beiden Halbleiterschichten Elektronen vorwiegend vom n- in den p-Bereich, Defekt-
elektronen vom p- in den n-Bereich. Der n-Bereich wird dadurch positiv, der
p-Bereich negativ aufgeladen. In einer schmalen Ubergangszone (beiderseits des pn-
Uberganges) bildet sich eine Dipolschicht aus (Schottkysche Sperrschicht), deren
elektrisches Feld die weitere Aufladung verhindert: Am pn-Ubergang entsteht eine
Potentialschwelle. Im Gleichgewicht tritt nur noch ein schwacher Elektronenstrom
von der n- zur p-Schicht auf, der durch einen entgegengerichteten Strom von der p-
zur n-Schicht diffundierender Elektronen ausgeglichen wird. Analog liegen die Ver-
héltnisse bei den Defektelektronen.

T
L

‘ +

O— ¢ il —0O
(N

-1

=it Bild 4.31. pn-Schicht

Sperrschicht

- > DurchlaBrichtung

Bei anliegender Spannung wirkt die pn-Schicht als Gleichrichter (vgl. Bild 4.31):
Liegt die n-Schicht an der negativen, die p-Schicht an der positiven Elektrode, so
wird im n-Bereich das Elektronenpotential angehoben, die Potentialschwelle ab-
gebaut. Infolgedessen konnen Elektronen in groferer Zahl die Sperrschicht iber-
winden und in die p-Schicht diffundieren. Analog verhalten sich die bevorzugt vom
p- in den n-Bereich wandernden Defektelektronen.

Bei entgegengesetzter Polung (n-Schicht am positiven, p-Schicht am negativen Pol)
erhoht sich die Potentialschwelle am pn-Ubergang, und der schwache Elektronen-
strom in den p-Bereich{wird verringert. Elektronen, die vom p- in den n-Bereich
diffundieren, sind nur in ganz geringer Zahl vorhanden. Es flieBt daher als resul-
tierender Strom nur ein sehr schwacher elektrischer Strom vom n- in den p-Bereich.
Er wird als Sperrstrom bezeichnet. Erst von einer bestimmten, als Durehbruehspan-
nung Up bezeichneten Grenze an wichst der Strom in Sperrichtung mit zunehmender
Sperrspannung steil an (vgl. Kennlinie Bild 4.32).

I
Sperr= DurchleB-
Up, richtung r/c/?fﬂ/zyy
r Bild 4.32. Strom-Spannungs-Kennlinie
einer pn-Diode
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Fiir den vom Plus- zum Minuspol flielenden elektrischen Strom ist somit die Richtung
von der p- zur n-Schicht DurchlaBrichtung (DurchlaBpolung). Ein in entgegen-
gesetzter Richtung flieBender Strom weist bei nicht zu hohen Spannungen einen um
GroBenordnungen hoheren Widerstand auf (Sperrpolung).

Der Flichen- oder Sperrschichttransistor ist aus drei sich abwechselnden p- und n-
Schichten aufgebaut. Er enthilt also zwei pn-Ubergéinge, von denen bei Anliegen
dulerer Spannung einer in DurchlaBrichtung, einer in Sperrichtung gepolt ist. Man
unterscheidet zwischen npn- und pnp-Transistoren (vgl. Bild 4.33a und Bild 4.33b).
Die mittlere Schicht eines Transistors wird als Basis bezeichnet. Sie mufi dufBerst
diinn sein, wenn der Transistor seine Funktion erfiillen soll. Auf der in DurchlafB3-
richtung gepolten Seite wird die &uBlere Schicht als Emitter definiert, auf der in
Sperrichtung gepolten Seite als Kollektor (vgl. Bild 4.33a und Bild 4.33b).

Emitter Kollektor
£ 1 5{}73/3 ’ c
T

T T

n \pl n

Bild 4.33a. npn-Flachentransistor
in Basisschaltun
L g

-+ = - +

Emitter Hollektor
F , EIJ.Y/:S J c

.

o ln| e

Bild 4.33 b. pnp-Flachentransistor
I J"{"{"{ in Basisschaltung :
T

Man bezeichnet die in den Bildern 4.33a und 4.33b dargestellten Schaltungen eines
Transistors als Basisschaltung. In der Basisschaltung des npn-Transistors nach
Bild 4.33a liegt die Kollektorelektrode C am positiven Pol einer Spannungsquelle,
wéhrend die Basiselektrode B an den negativen Pol dieser Spannungsquelle an-
geschlossen ist. Die Emitterelektrode E ist mit dem Minuspol einer zweiten Span-
nungsquelle verbunden, deren positiver Pol ebenfalls an der Basiselektrode liegt.

- Es bestehen also zwei Stromkreise, der Emitterkreis iiber Emitter und Basis und der
Kollektorkreis iiber Kollektor und Basis. Der Basiselektrode, als dem gemeinsamen
Anschlufipol beider Stromkreise, kann das Potential Null zugeordnet werden. Sie ist
im allgemeinen an Masse gelegt.

Bild 4.34 zeigt das Schaltbild des npn-Transistors in Basisschaltung zusammen mit
dem Nutz- oder Lastwiderstand %ty am Ausgang und den Eingangsklemmen.

In der Transistortechnik werden elektrische Strome, die zum Kristall hinfliefen,
positiv gezahlt. Vom Kristall wegflieBende Strome sind negativ. Beim npn-Transistor

17 Schilling, Felder
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Bild 4.34. Technisches Schaltbild fiir einen npn-Transistor in Basisschaltung

nach Bild 4.34 ist der vom Emitter zum negativen Pol der Spannungsquelle flieBende
Emitterstrom Iy negativ, dagegen der vom positiven Pol zum Kollektor flieBende
Kollektorstrom I positiv.

Die Spannung zwischen zwei Punkten 4 und B wird gemaﬁ (1.2./18) gleich der
Potentialdifferenz

Uip=0,— Dp (1)

gesetzt. Zwischen der Kollektor- und der Emitterelektrode besteht beim npn-
Transistor eine positive Spannung Ugg. Auch die Spannung Ugg zwischen der Basis-
und der Emitterelektrode ist positiv, jedoch kleiner als Ugg.

Im linken Stromkreis des npn-Transistors nach Bild 4.33a flieBen Elektronen vom
Emitter zur Basis, Defektelektronen von der Basis zum Emitter. Bei der Fertigung
der Transistoren erfolgt in der Basisschicht die Dotierung mit Fremdatomen derart,
daf hier nur ein geringer Anteil von Defektelektronen auftritt, verglichen mit dem
Anteil der freien Elektronen in der Emitterschicht. Aulerdem ist die Basis sehr
diinn (wenige um). Es 1a8t sich damit erreichen, daf nur sehr wenige Defektelektronen
aus der Basisschicht mit Elektronen aus der Emitterschicht rekombinieren. Der
weitaus grofite Teil der aus dem Emitter in die Basis diffundierten Elektronen ge-
langt in die Sperrschicht zwischen Basis und Kollektor. Hier werden sie durch ein
starkes elektrisches Feld zur Kollektorelektrode C hin beschleunigt und fliefen tiber
diese ab.

Je nach der Qualitdt des Transistors 148t sich erreichen, dafi der Emitterstrom
zu 95%, bis iiber 999, in den Kollektorkreis iibergeht, an der Basis also nur ein
kleiner Bruchteil des Emitterstromes als Basisstrom erscheint. Emitterstrom Iy
und Kollektorstrom 7 sind daher dem Betrage nach nahezu gleich.

Der Widerstand des Kollektorkreises mit seinem in Sperrichtung gepolten pn-
Ubergang ist wesentlich gréBer als der Widerstand des Emitterkreises. Wegen der
nahezu gleichen Strome liegt daher die Spannung des Kollektorkreises weit tiber der
Spannung des Emitterkreises. Die Basisschaltung fithrt somit zu einer hohen Span-
nungsiibersetzung bei nahezu gleichbleibenden Stromen. Grofle Spannungen und
damit verbunden grofe Leistungen des Kollektorkreises lassen sich durch kleine
Spannungen und kleine Leistungen des Emitterkreises steuern.
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Wichtigste Grundschaltung fiir die praktische Anwendung ist die Emitterschaltung
nach Bild 4.35a und Bild 4.35b. Die Basis liegt auf der Eingangsseite, der Kollektor
auf der Ausgangsseite. Gemeinsame Anschluflelektrode ist der Emitter, der das

(72){_ H m—
i}
B

a)

Bild 4.35. npn-Transistor in Emitterschaltung
R, Eingangswiderstand, iy AbschluB- bzw. Lastwiderstand (auch Nutzwiderstand)

Potential Null erhdlt. Vom ausgeldsten Emitterstrom geht wie bei der Basisschaltung
nur ein geringer Bruchteil an die Basiselektrode, wihrend der weitaus groBite Teil
dem Kollektor zufliefit. Der schwache Eingangsstrom [y ist daher mit einem um
ein Vielfaches grofleren Ausgangsstrom — I verkniipft. Andererseits ist wegen des
in Sperrlchtung gepolten pn-Uberganges der Widerstand im Kollektorkreis bedeutend
groBer als im Basiskreis. Durch die angelegte Batteriespannung werden die Ladungs-
triger wie bei der Basisschaltung nach Passieren der in Sperrichtung gepolten Uber-
gangsschicht stark beschleunigt. Auf der Ausgangsseite ist daher auch die Spannung
um ein Vielfaches gréfler als auf der Eingangsseite. Die Emitterschaltung wirkt
damit sowoh] strom- als auch spannungsverstdrkend.

Bei der Kollektorsehaltung nach Bild 4.36a und Bild 4.36b bildet der Basiskreis
den Eingangs- oder Steuerkreis, der Emitterkreis den Ausgangskreis. Gemeinsamer
Anschlufipol fiir beide Stromkreise ist die Kollektorelektrode, der man das Potential

Null gibt.
—— ] |

n

; H %,
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Blld 4.36. npn-Transistor in Kollektorschaltung
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Der pnp-Transistor hat die gleichen Verstarkereigenschaften wie der npn-Transistor.
Das unterschiedliche Verhalten ergibt sich daraus, daB p- und n-Schichten mit-
einander vertauscht sind. Man kann daher die Eigenschaften des pnp-Transistors
aus denen des npn-Transistors ableiten, indem Elektronen und Defektelektronen
sowie positive und negative Pole der Spannungsquellen vertauscht werden. Damit
erhilt man z. B. die Emitterschaltung nach Bild 4.37.

Die zwischen den Transistorelektroden auftretenden Spannungen bestimmen un-
abhéngig von der Schaltung den Arbeitspunkt. Von den Spannungen héngen die im
Transistor flieBenden Strome ab. Vielfach erfolgt die Kennzeichnung des Arbeits-
punktes durch Angabe der Stréme und Spannungen.

(12)
L I" "‘ |'] I" Bild 4.37. pnp-Transistor in

Emitterschaltung

Beispiel 21

Der Arbeitspunkt eines pnp-Transistors in Emitterschaltung nach Bild 4.37 sei durch Ugg = 0,1V
und Ugg = 5,0 V bestimmt. Soll der Transistor in Basisschaltung auf dem gleichen Arbeitspunkt
liegen, so miissen durch duBere Spannungen die folgenden Potentialdifferenzen erzeugt werden:
Ugp =0,1V, Usg = Ugg + Ugp = (—5,0 + 0,1) V= —4,9 V. In der Kollektorschaltung ist
Ugc =50V, Upc = 4,9V zu wihlen.

Liegt zwischen den Transistorelektroden kein &uferer Widerstand, so sind die
Potentialdifferenzen Ugg, Upg, Uspc identisch mit den anzulegenden Batterie-
spannungen. Ist dagegen ein Widerstand R eingeschaltet, so hat man den an ihm
auftretenden Spannungsabfall RI zu beriicksichtigen. Die von der Spannungsquelle
gelieferte Spannung wird in diesem Fall mit Uy bezeichnet.

Beispiel 22

Der Transistor SC 207 soll in Bild 4.35 auf den Arbeitspunkt Ugg = 6 V, I = 2 mA eingestellt
werden. Betrdgt der ausgangsseitige Lastwiderstand Ry, = 5kQ, so erfolgt fir I = 2mA an
diesem Widerstand der Spannungsabfall Rplc =5-10%3-2.10-2V = 10 V. Die erforderliche
Batteriespannung Uy muB dann gleich

Up = Ucg + Rlc @)
sein, d. h., esist Ug = 16 V zu wihlen.
Der Transistor stellt einen aktiven Vierpol dar. In der Emitterschaltung nach

Bild 4.354a) ist der Basisstrom [y identisch mit dem Eingangsstrom 7;, der Kollektor-
strom I bis auf das Vorzeichen identisch mit dem Ausgangsstrom 7,. Es gilt also



4.5. Der Transistor als aktiver Vierpol 261

i1 hhhh

Bild 4.38. Stréme und Spannungen bei einem Transistor-Vierpol

(vgl. Bild 4.38)
L =IF=1Iy, L=IL=—I. . (3)

Die Stromiibersetzung |7,/I,| wird am groBten, wenn der Ausgangskreis kurzgeschlos-
sen ist, d. h. der Nutzwiderstand i1, gleich Null ist.

Zur Verstarkung von Wechselstrémen iiberlagert man diese den fiir den Betrieb des
Transistors notwendigen Gleichstrémen. Der Eingangs- und der Ausgangsstrom
haben somit die Form

iy = ip = Ip + Iop &', iy = —ig = —(Ig + Ioc ). (4)

Iy und I; bedeuten die Gleichstromanteile. Die periodisch verdnderlichen Anteile
sind in den zweiten Summanden dargestellt.

Als KurzsehluBstromverstirkung der Emitterschaltung definiert man das Verhéltnis
der Wechselstromamplituden bei ausgangsseitigem Kurzschlufl (Lastwiderstand

gRL = O)
Toc
_— . 5
IOB LLZO ( )

Die KurzschluBstromverstarkung ist vom Arbeitspunkt abhéngig. Sie kann aus der
Verdnderung der im Transistor flieBenden Gleichstréme Iy und I berechnet werden.
Kennzeichnet 4 den Arbeitspunkt, 4, einen benachbarten Punkt gleicher ausgangs-
seitiger Spannung Ugg, so erhilt man die KurzschluBstromverstérkung 8 aus

B =

Al

g — _ ) = Io(4y)
= |41,

= |7, — oy ©)

Uce Uce

Bei den Eingangs- und Ausgangswiderstinden unterscheidet man zwischen den
Werten fiir Gleichstrom und denen fiir Wechselstrom. Sie sind ebenfalls vom Arbeits-
punkt abhéngig.
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Fiir den Gleichstrom-Eingangswiderstand gilt bei der Emitterschaltung

—gr. U Uss -
Ry =R = AR A (7)
Der Wechselstrom-Eingangswiderstand gibt das Verhéltnis der Amplituden von
Eingangsspannung und Eingangsstrom an. Er 148t sich aus den Gleichstromwerten
berechnen, wenn die Ausgangsspannung Ugg oder der Ausgangsstrom —I; fest-

bleiben:

Ul~
R, = R = —= =
E}ll,\, R1~, IIN (

(8)

AUBE) _ [ Ugp(4) — Ugg(4,) J
AIB Uce bzw. Ic IB(A) - IB(Al) Ucs bzw. Ic

Fiir die Ausgangswiderstidnde in der Emitterschaltung folgt

Ucr
IC ’

AUcg )
AIC Usk bzw. I ’

Als Leerlaufspénnungsﬁbersetzung definiert man das Verhédltnis der Spannungs-
amplituden bei eingangsseitigem Leerlauf (Leitwert zwischen den Eingangsklemmen
gleich Null bzw. Stromamplitude I, gleich Null):

AUcg ],
- . 10
'AUBE s bzw. Ic ( )

Ry — R — — Ry — Moo — —( 9)

Uso

—_—
[/10

M‘sz
I10=0 N AUI

1

Die Kennlinien eines Transistors stellen den Zusammenhang zwischen den im Tran-
sistor fliefenden Strémen und den Potentialdifferenzen graphisch dar. Von Interesse
ist besonders die Emitterschaltung, fur die folgende Kennlinienfelder angegeben
werden:

a) das Ausgangskennlinienfeld I(Ugg),
b) das Eingangskennlinienfeld I5(Ugg),
¢) das Ubertragungskennlinienfeld I.(Ig) bzw. Io(Ugg).

Bei den Kennlinien bezieht man sich auf zwei Grenzfalle:

1. Spannungssteuerung,
2. Stromsteuerung.

Ihre Unterscheidung ist besonders fiir die Ausgangskennlinien wichtig. Hat die
duBere Spannungsquelle (vgl. Bild 4.38) einen niedrigen Innenwiderstand, der dem
Betrage nach weit unter dem Eingangswiderstand des Transistors liegt, so spricht
man von Spannungssteuerung. Wie aus 4.1.2. folgt, ist in diesem Falle die dem Ein-
gang zugefithrte Steuerspannung vom Transistor nahezu unabhéngig und wird daher
nicht verzerrt. Dagegen kann durch den Aufenwiderstand der Eingangsstrom ver-
zerrt werden. In den Kennlinien wird deshalb die Eingangsspannung als Parameter
ewdahlt.
%m Falle der Stromsteuerung hat die Spannungsquelle einen hohen Innenwiderstand,
der weit iiber dem Eingangswiderstand des Transistors liegt. Der Eingangsstrom ist
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vom Eingangswiderstand nahezu unabhéngig und wird nicht verzerrt, wédhrend im
allgemeinen eine Verzerrung der Eingangsspannung auftritt. Die Kennlinien werden
daher mit dem Eingangsstrom als Parameter dargestellt.

In Bild 4.39 sind die Ausgangskennlinien I(Ugg) des Transistors SC 207 in Emitter-
schaltung fiir eingeprigte Spannungssteuerung (Bild 4.39 a 1) und fiir eingeprégte
Stromsteuerung (Bild 4.39 a 2) dargestellt. Bild 4.39 b enthilt die Eingangskenn-
linien Ip(Ugg), Bild 4.39 ¢ die Ubertragungskennlinien I;(Ig). Bei diesen Kurven
ist die Ausgangsspannung Ugy als Parameter gewdhlt, 4.39 b und 4.39 ¢ sind also
auf Spannungssteuerung beschrankt.

5 Y
—
i
| Parameter
A
I —— 600 yp(mv)
L - | ”
W |
7 580
560
530
0 Z 4 6
Upe (V)

Bild 4.39. Kennlinien des npn-Transistors SC 207
a 1) Ausgangskennlinien bei eingeprigter Spannungssteuerung

Fiir die Verstirkertechnik sind besonders die Betrige der Strom- und der Spannungs-
iibersetzung sowie des Weehselstrom-Eingangs- und -Ausgangswiderstandes von
Interesse. Sie kénnen aus der Kennlinie einfach ermittelt werden. Dabei ist darauf
zu achten, daf die Kenngrofilen vom Arbeitspunkt abhéngig sind. Es mufl daher
entsprechend den Gleichungen (6), (8), (9) und (10) stets ein Parameter festgehalten
werden.

Beispiel 23

Bei Spannungssteuerung entspricht dem Arbeitspunkt 4 (Ugg = 6,0V, Ugg = 600 mV) nach
Bild 4.39 al die Stromstdrke I = 2,0mA. Sie fillt bei konstanter Eingangsspannung
Upg = 600 mV um AI; = —0,1 mA auf 1,9 mA, wenn die Ausgangsspannungum AUgg = —3V
auf 3V gesenkt wird. Daraus folgt nach (9) fiir den Betrag des Wechselstrom-Ausgangswider-
standes im Arbeitspunkt 4

Nach Bild 4.39b entspricht dem Arbeitspunkt 4 der Eingangsstrom Iy = 52 uA. Wachst die
Eingangsspannung von 600 auf 620 mV, so verdndert sich bei konstanter Ausgangsspannung
Ucg = 6V der Eingangsstrom um Alg = 14 yA auf 66 pA. Nach (8) erhdlt man damit fiir den
Wechselstrom-Eingangswiderstand

20102

~ = y =14 .
[Rom] = 2020 = 1410
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Aus Bild 4.39c entnimmt man fir den Arbeitspunkt A4 bei konstanter Ausgangsspannung
Ugg =6V: 4Ip =5 pA, Al = 0,3 mA und daraus nach (6) fiir die KurzschluBstromverstéar-
kung

0310

= 22T 6o,
4 5.10°¢
6 -
\ | [ t-e0
| — 70
4 | : T " Punmeter
= | T80 Ip(uA)
S — I
ROy .-—-—:____ 40 Bild 4.39
—T | 20 a 2) Ausgangskennlinien
} 20 bei eingeprigter
! 7 Stromsteuerung
g 2 4 6 8
[/Cf (V)
80
& : // | Parameter
LA Y UpelV)
< »//
S0 -
3 /60
A
20
[
500 ‘ iLO } 6L0 ‘ 50 Bild 4.39 b. Eingangskennlinien
[/55(//71/)
{
|
3 7
A // /
{ Farameter
32 | 50— /// Upe (V)
& >
= 20
7
/'/
==
0 20 0 40 50 60 0
Ip (uA)

Bild 4.39 ¢. Ubertragungs- oder Mischkennlinien
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Ein Signal mit der Wechselstromamplitude 1 pA am Eingang wird somit durch den Transistor
auf 60 pA verstirkt.

Die Berechnung der Spannungsiibersetzung nach (10) kann auf Grund der Kennlinien in Bild
4.39b vor sich gehen. Im Arbeitspunkt 4 gilt

Upg = 600mV, Ugp =6V, Iy =52 uA.

Die benachbarte Kurve ist fiir Ugg =2V aufgenommen. Bei konstantem Eingangsstrom
Ig = 50 uA (gleiche Ordinate) liest man auf der Abszisse Ugg = 585 mV ab. Daraus folgt die
Leerlaufspannungsverstarkung

4Ucp | _ 4 = 265.
AUBE B 15 - 10_3

Hat das Eingangssignal z. B. die Spannungsamplitude 1 mV, so ist diese am Ausgang auf 265 mV
verstarkt.

Die GroBenordnung des Eingangs- und des Ausgangswiderstandes in der Basis- und
in der Kollektorschaltung kann aus den Werten der Emitterschaltung abgeschétzt
werden.

Beispiel 24

In der Basisschaltung ist
Al =Igl,  |Uy = |Ugsl.

Gegentiber der Emitterschaltung tritt also der Emitterstrom als Eingangsstrom an die Stelle des
Basisstromes. Die Spannung dndert sich auf der Eingangsseite nicht.

Das Verhiltnis der Emitterstrom- zur Basisstromamplitude kann genihert gleich der KurzschluB-
stromiibersetzung angenommen werden, wobei beriicksichtigt wird, daB Emitter- und Kollektor-
strom dem Betrage nach nahezu gleich sind:

~ |4l
s[4l

‘ Al BL4).

Al

A
Daraus folgt fiir den Betrag des Eingangswiderstandes in Basisschaltung

Al

1 1
ER N ES
g = -

Mit den errechneten Werten aus Beispiel 23 ergibt sich

N’AUi

A~ 20Q.

L4 kQ
mB‘v — )
Rl ==

In Tabelle 7 sind die GréBenordnungen der Ein- und Ausgangswiderstédnde sowie der
Strom- und der Spannungsiibersetzungen zusammengestellt (vgl. auch 4.5.2.).

Aus der Kriimmung der Kennlinien geht hervor, dafl die Verkniipfung zwischen den
Eingangs- und Ausgangsgr6Ben nichtlinear ist, daB jedoch die Nichtlinearitit in
kleineren Bereichen im allgemeinen vernachldssigt werden kann. Bei kleiner Aus-
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Tabelle 7. Die GroBenordnungen bei den Grundschaltungen eines Transistors

Basis- Emitter- Kollektor-

schaltung schaltung schaltung
Eingangswiderstand 100Q 1kQ 100 kQ
Ausgangswiderstand 1 MQ 100kQ 100Q
Stromiibersetzung <1 100 100
Spannungsiibersetzung -+1000 1000 <1

steuerung um einen bestimmten Arbeitspunkt kann man gendhert mit Beziehungen
entsprechend den Vierpolgleichungen (4.2./1) rechnen. In der Transistortechnik, ins-
besondere im NF-Bereich, ist es hdufig zweckméafig, die hybride Darstellung

11
Izo =h21110+k22U20 ( )

UIO =k11]10 +k12U20, }

zu verwenden. Uq, 1y, Uy, L5y bezeichnen die Amplituden der Spannungen und der
Strome am Eingang und am Ausgang. Die hybriden Vierpolparameter 4 sind vom
Arbeitspunkt abhingig. In Tabellen werden typische Werte fiir die Transistoren
angegeben. Die Bedeutung der hybriden Vierpolparameter geht aus 4.5.3. hervor.
Bei kleinen Wechselstromen und -spannungen bestimmen die Vierpolparameter voll-
standig die Betriebseigenschaften des Transistors (vgl. 4.5.4.).

Im Bereich sehr niedriger Spannungen zwischen Kollektor und Emitter (Ugg in der
GroBenordnung 0,1...1 V) fallt nach Bild 4.39 a 1 und Bild 4.39 a 2 der Kollektor-
strom [, mit abnehmender Spannung Ugg steil ab. Dagegen bleibt der Strom Ig
nach Uberschreiten dieses Bereiches nahezu konstant, wenn Ugg verdndert wird.
Man bezeichnet die Spannung, von der an der Strom I; bei Spannungserhéhungen
nahezu unverdndert bleibt, als Rest- oder Kniespannung Uggy (vgl. Bild 4.40). Die
schwache Abhédngigkeit der Restspannung Uggp vom Basisstrom kann meist ver-
nachléssigt werden. Uggy liegt zwischen 0,1 und 1 V.

Der Kollektorstrom I geht auch:bei fehlendem Steuerstrom Iy = 0 nicht genau auf
Null zuriick. Bei der Offnung des Eingangskreises, d. h., wenn der Basisstrom auf
Null absinkt, fliet zwischen Emitter und Kollektor ein schwacher Strom weiter.
Er wird als Kollektorreststrom I;o bezeichnet (vgl. Bild 4.40) und betrdgt 0,1 nA
bis einige mA.

7,
A )
Ig=Iz,

Iy=Igt

b
4 Urep Upr

Bild 4.40. Rest- oder Kniespannung Ucgg und Kollektorreststrom I¢q
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Tabelle 8a. Vierpoyvlpara‘meter von Transistoren in Emitterschaltung

Transistor Aufbau hyy hoy hag hys Bemerkung
in kQ in 10-6Q-1 104
SC 100 pnp 0,5 15 32 1,8 typ.
SC 104 pnp 1,8 55 150 6 max.
SC 207 npn 2,3 30 48 3,8 typ.
SF 121 npn 700 95 31 3,5 typ.
SF 122 npn 700 95 31 3,5 typ.
SS 101 pnp 0,2 8 10 1 min.
0,46 14 28 2 typ.
0,9 22 50 6 max.
GC 116 pnp 1,3 56 200 20 max.

Tabelle 8b. Eigenschaften von Transistoren

Transistor Aufbau Zulissige Hochstwerte Rest- Rest-
spannung strom
Strom Leistung Spannung
I Pyo Ucko Ucer Ico
in A in mW inV inV in pA
SC 112 npn 0,1 600 20 0,3
SC 207 npn 0.1 200 40 0,4
SF 127 npn 0,5 600 40 0,3
SF 128 npn 0,5 600 60 0,5 100
SS 10t pnp 0,2 250 33 1 2
GC 116 pnp 0,15 20 0,2 25
GD241 pnp 3,0 35 0,3 1000
GS 121 pnp 0,1 20 0,5

Anmerkung: Der erste Buchstabe S bzw. G kennzeichnet Silizium bzw. Germanium als Grund-
stoff. Durch den zweiten Buchstaben wird die Verwendungsmoglichkeit angegeben: C NF-
Transistoren, D NF-Leistungstransistoren, F HF-Transistoren, S Schalttransistoren.
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P Probleme

4.5.1. KurzschluBistromverstirkung

Der Silizium-npn-Transistor SC 111 1a8t in der Emitterschaltung maximal eine KurzschluB-
stromverstirkung um den Faktor f# = 550 zu. Berechnen Sie die Stromverstérkung in der Basis-
schaltung und in der Kollektorschaltung bei ausgangsseitigem KurzschluB.

Losung

In der Emitterschaltung nach Bild 4.38 wird der Transistor mit dem Basisstrom Iy ausgesteuert.
Der Kollektorstrom auf der Ausgangsseite ist am gréBten, wenn diese kurzgeschlossen ist. Als
KurzschluBstromverstarkung in Emitterschaltung definiert man (vgl. 4.5./5)

IoC

Iop

g ®

Zwischen den Amplituden des Basis-, des Emitter- und des Kollektorstromes besteht nach den
Gesetzen der Stromverzweigung die Beziehung

Iop + Ioc + Iog = 0. (2)
Hierin ist nach 4.5. |Ig| klein gegen |I,g| und gegen [I,¢|. Schreiben wir daher
Ioyg = —Ioc — Iy, (2a)

so ist aus dem Vorzeichen zu erkennen, daB entsprechend der Festlegung, zum Kristall hin-
flieBende Strome positiv zu rechnen, der Emitter- und der Kollektorstrom gegeneinander um
180° phasenverschoben sind.

Wir driicken in (1) Iyp durch Iy und I aus und erhalten

o] 1 i
B = - = . (3)
Ioc oc

In der Basisschaltung wird der Kollektorstrom durch den Emitterstrom gesteuert. Das Ver-
hiltnis zwischen den Betragen der Amplituden bei kollektorseitigem Kurzschluf3 definiert man
als KurzschluBstromverstirkung « der Basisschaltung:

o |Loc | _ Joc @)
Iy Iy
Wir erhalten somit
1 B
B = bzw. & = . (5)
Ly B+1

0.2

Da f eine groBe Zahl ist, liegt x nahe bei eins.
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In der Kollektorschaltung nach Bild 4.36 steuert der Basisstrom den Emitterstrom. Fiir das
Verhéltnis zwischen den Wechselstromamplituden folgt bei ausgangsseitigem (emitterseitigem)
Kurzschlu mittels (2) und (1)

Iog [Log + ool 1
=|—|=—=1+§. 6
l Ipp [og! g ©

Mit dem vorgegebenen Wert erhalten wir aus (5) fiir die KurzschluBstromverstdrkungen in Basis-
schaltung bzw. in Kollektorschaltung

cx=T-0=0,998, y = b551.
51

oot
(S

4.5.2. Eingangswiderstand

Die Emitterschaltung des Transistors SF 121 besitze den Eingangswiderstand ;g = 0,8kQ2,
wihrend der Lastwiderstand 7, am Ausgang Ry = 100 k(2 betriagt. Berechnen Sie die Eingangs-
widerstéinde der Basis- und der Kollektorschaltung. Die Kurzschlufstromverstarkung in Emitter-
schaltung ist f = 95.

Losung

Der Eingangswiderstand ist gleich dem Verhéltnis zwischen der Spannungs- und der Strom-
amplitude an der Eingangsklemme. In der Emitterschaltung nach Bild 4.38 ist der Eingangs-
strom gleich dem Basisstrom. Damit folgt als Verhiltnis der Spannungsamplitude U,, zur Strom-
amplitude I,,

Rp =——=

Nach den Stromverzweigungsgesetzen sowie nach 4.5.1./4 kénnen wir schreiben

R — Uw _Use _ _ Upe _ _ Uws ®
Iop Iop —or + Ioc) Ip(1l — )

Der Eingangswiderstand in Basisschaltung ist nach Bild 4.34 gleich

Wir erhalten daher als Beziehung zwischen den Eingangswiderstinden

1
ER1E:§R1B 1 — o s (4)

bzw. wenn wir die Verkniipfung nach (4.5.1./5) einsetzen,
Rip = Ryp( + 5). (5)

In der Kollektorschaltung nach Bild 4.36 flieBt der steuernde Basiswechselstrom von der Klemme
12 aus iiber die als widerstandsfrei anzusehenden Gleichspannungsquellen zum Transistor und
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von dort zur Klemme 71. Aus Bild 4.36 erhalten wir damit
UlO = '_ERLIOE + UoBE' (6)

Fir den Emitterstrom setzen wir in erster Naherung den KurzschluBstrom nach (4.5.1./6) ein
und beriicksichtigen die Phasenverschiebung:

Iog = —Iop(1 + B). ()
Damit ergibt sich aus (6) die Spannungsamplitude
Uso = Rrlop(l + B) + Uops. (8)

Als Eingangswiderstand der Kollektorschaltung folgt

U U,
R = = = Rl + ) + I°—BE. ©)

IDB 0B

Der zweite Summand ist nach (2) der Eingangswiderstand fiir die Emitterschaltung. Somit
kénnen wir schreiben

Rux = Rp + Re(X + ). (10)

Einsetzen der Zahlenwerte liefert nach (5)

und nach (10)
Rix = (0,8 + 100 - 96) kQ = 9,6 MQ).
Der Eingangswiderstand der Emitterschaltung liegt hiernach im allgemeinen um ein bis zwei

GroBenordnungen iiber dem der Basisschaltung und wird vom Eingangswiderstand der Kollektor-
schaltung um einige GréBenordnungen tbertroffen (vgl. Tabelle 7).

4.5.3. Vierpolgleichung des Transistors

Zwischen den Amplituden der Eingangsspannung U,,, des Eingangsstromes I ,, der Ausgangs-
spannung U,, und des Ausgangsstromes I,, besteht bei einem Transistor die Beziehung

Uyp = halso + h13Uss 1)

Ipg = hordyg + hosUso, )
sofern die Amplituden kleine Gré8en sind.
Fiir den Silizium-pnp-Niederfrequenztransistor SC 104 in Emitterschaltung werden als typische
Werte die hybriden Koeffizienten

hyy = 1,8 kQ), hys = 61074, hgy = 55, hgg = 150 - 1078001

angegeben. Untersuchen Sie die physikalische Bedeutung dieser GréBen.
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Ldsung
Bei KurzschluB U,y = 0 auf der Ausgangsseite folgt aus (1)

U AU AU,
by = JL) bzw.  hy = ( 1) = ( BE) . 3)
" ( Iy J1s0=0 to\an o, \ Al Jre
hy; gibt somit den Eingangswiderstand bei ausgangsseitigem KurzschluB an:
by = (R~ 0s=0- (4)

Im betrachteten Fall ist dieser in der Emitterschaltung gleich
(RyE)U,=0 = 1,8 kKQ.
Aus (2) folgt fir Uy = 0

|
oy = (Ii) bzw. by = (A_I?.) - l Alg
I JU,=0 a1, |y, Alg

Danach kennzeichnet Ay, die KurzschluBstromverstirkung. Bei der Emitterschaltung ist diese
nach (4.5.1./1) gleich

(3)

Uce

.5 = (_I£>U = k21' (6)

ToB

Im vorliegenden Fall ergibt sich also g = 55.
Bei eingangsseitigem Leerlauf ist I, = 0. Damit folgt aus (1)

hyy = (—Ul—o) bzw. Ry = (AUJ) . (7)
Usg ) 1,0=0 AUcg /18

Der Koeffizient A, kennzeichnet das Spannungsverhéltnis zwischen dem Vierpoleingang und

-ausgang bei eingangsseitigem Wechselstromleerlauf. ,, gibt somit ein Maf fiir die Spannungs-
ritckwirkung zwischen den beiden Vierpolseiten. In dem vorgegebenen Fall erhalten wir

(U_m) — 6. 10,
Uzo I,,=0

d. h., geringe eingangsseitige Spannungen bewirken grofie ausgangsseitige Spannungen.
Aus (2) folgt bei eingangsseitigem Leerlauf I,, = 0

I
hoy = ﬂ) 8
= (Uzo I,=0 ®)
bzw
1 Uzo)
Lo (B}~ Ryirmo. sa)
hgs (-[20 I,=0 ’ 0 (

hys kennzeichnet den Ausgangsleitwert bei eingangsseitigem Leerlauf. Mit der vorgegebenen
GroBe erhalten wir nach (8a) fiir den Ausgangswiderstand Ry = Uyy/ly, bei eingangsseitigem
Leerlauf

1
Ro)1,=0 = ———— L = 6,67 k().
( 2 )Im 0 150 - 10-5
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4.5.4. Betriebseigenschaften eines Transistors bei kleinen Signalspannungen
Der Transistor SF 122 ist in Emitterschaltung mit dem Nutzwiderstand Ry, = 5k abgeschlossen.
Bestimmen Sie die betriebliche Stromverstarkung I,y/I,,, die betriebliche Spannungsverstirkung

Uyy/ Uy, den Eingangswiderstand R, = U,o/I,, sowie die Leistungsverstirkung P,/P,. Die Vier-
polparameter des Transistors in Emitterschaltung lauten

By =700Q,  hyp=3,5-100, by =95, By = 31.10-5Q-1.

Losung
Stréme und Spannungen sind nach (4.5.3./1) durch die beiden Gleichungen

UIO =7‘11]10‘5‘ h12U207 (1)
Izo = h21I1o + hzzUzo (2)

verkniipft. Zwischen den Amplituden des Stromes und der Spannung am Ausgang des Vierpols
besteht die Beziehung

Uy = —mLIzo- (3)

Wir setzen (3) in (1) ein und 16sen nach I,,/I,, aut:

120 — h21 . (4)

Iy, 1+ koW

In (1) kénnen wir I;, gemdB (4) durch I,, und weiter I,, mittels (3) durch U,, ausdriicken. Es
folgt nach Umformungen fir die Spannungsverstiarkung

U~y o
U Rpdh+ by
mit
Ah = hyyhoy — hyghy . (6)
Der Eingangswiderstand ergibt sich aus
foo— Jo_ Un  Tullo
1~ = = - B
I, Uso/Uso Iy
woraus man mittels (4) und (5) erhalt
Ri~ = ARy, + by . (7

1+ by,
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Fiir die Leistungsverstirkung folgt schlieBlich bei einem reellen Nutzwiderstand Ry, = By,

P, IR, Ry hgy?
P, IRy, Riw (1 + hypRp)?

Mit den vorgegebenen Zahlen erhalten wir aus (4)

T = % = 82,2.
I, 14+31.10%.5-10°

Aus (6) ergibt sich
Ah =700.31-10"% — 3,5.107%.95 = —0,01155
und damit aus (5)

Uso —95.5-10°

8)

= = = —740.
Ui, —5.10%.0,01155 + 700
Das negative Vorzeichen kennzeichnet die Phasenumkehr. Der Eingangswiderstand wird nach (7)
gleich
— .5.108 L 7
Ry = 0,01155 - 5 - 103 -+ 700 Q = 5560,
1+431-10%.5.10°
die Leistungsverstarkung nach (8)
. 108 2
Vi = Py 510 95 = 60800.

P 556 (1 - 31-105.5.10%)

4.5.5. Arbeitspunkteinstellung durch Spannungsteilerwiderstinde

Fir den npn-Transistor SC 207 in Emitterschaltung soll der Arbeitspunkt Iy = 2 mA, Ugg =4V
mit einer Spannungsteilerschaltung nach Bild 4.41 eingestellt werden. Der Lastwiderstand betriagt
Ry, = 5kQ. Wie sind die Spannungsteilerwiderstinde zu wihlen, wenn die Summe der beiden

Strome I und Iy; gleich dem Funffachen des Basisstromes Iy ist?
Losung
Es gelten die folgenden Beziehungen

Iy — Iy —Ig =0,

Bl = Uggs

Ug — Upg — Byl = 0.

Aus (3) folgt, wenn wir I aus (1), I;; aus (2) einsetzen,

U
UB‘“UBE“‘RI(RBE +IB):0-
I

18 Schilling, Felder
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|
A fﬁ[i}/@
I
° e 5207 1
—T—U
R, V T
/g I ?‘rf T
© _L_ —0

Bild 4.41. Arbeitspunkteinstellung eines Transistors durch Spannungsteilung

Hieraus erhalten wir

B Us — Uss . (5)
Byy Upg + Bylp

Ferner besteht die Beziehung
Ug + Ugc — Rl = 0. (6)
Nach (1) und (2) gilt

LIy _ ., 2Uss
Iy Ryl

Soll dieses Verhaltnis gleich 5 sein, so muf}

Usg
= 7
T (7)

erfillt sein.
Nach Bild 4.39 a 2 ist fur den angestrebten Arbeitspunkt Iy = 45 pA. Damit folgt nach Bild
4.39b Ugg = 585 mV. Aus (7) ergibt sich

585 - 103

=22 0=65kQ,
2.45.10°

Ry

wihrend wir aus (6)
Ug=Ucg + R lc=4+5-102-2.-103) V=14V
und damit aus (5)

14 — 585 - 1073
585-10% L 6,5-10%.45.10-°

Ry =6,5-10° Q =99,4kQ

erhalten.

4.5.6. Relaisschaltung mit Transistoren

Zur Anwendung des Transistors als elektronischer Schalter wird eine Anordnung nach Bild 4.42
verwendet. Sie stellt einen von zwei moglichen Zustdnden her, die mit O und L bezeichnet werden.
Bild 4.43 zeigt die Kennlinien des verwendeten Schalttransistors Trs S und die den Zustédnden O
und L entsprechenden Arbeitspunkte.
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Bei O ist der Ausgangswiderstand des Schalttransistors sehr groB, bei L sehr klein. O entspricht
dem ausgeschalteten, L dem eingeschalteten Stromkreis.

Die Schaltung erfolgt durch einen Lichtstrahl, der auf ein Photoelement einwirkt. Zwischen
dem Fotoelement und dem Schalttransistor befindet sich ein weiterer Transistor Trs V.

Fillt kein Licht auf das Fotoelement, so liegt im vorgeschalteten Transistor Trs V zwischen der
Basis- und der Emitterelektrode die von der Batterie hervorgerufene Spannung Ufg. Sie fithrt
in TrsV zu einem groBen Kollektorstrom IV und einer groen Kollektorspannung U¥g. Im Schalt-
transistor wirkt diese Spannung der durch die Batterie verursachten Spannung zwischen der
Basis- und der Emitterelektrode entgegen, so dafl der Basisstrom des Schalttransistors gleich Null,
der Kollektorstrom gleich dem Reststrom I¢q ist (Zustand O). Durch die duBere Spannungsquelle
und durch geeignete Wahl der eingeschalteten Widerstinde kann im Schalttransistor Trs S die
Spannung Ugg auf sehr groBe Werte gebracht werden. Uy ist nach oben begrenzt, da die Durch-
bruchspannung (vgl. Bild 4.32) nicht erreicht werden darf. Es muB Ugg =< Ucgo sein.

Durch Lichteinwirkung wird das Fotoelement zur Spannungsquelle. Dieseist so geschaltet, daB
die erzeugte Spannung an der Basis des zwischengeschalteten Transistors Trs V der Batterie-
spannung entgegenwirkt und den Basisstrom schwacht. Infolgedessen vermindert sich auch
der Kollektorstrom IV. Die Kollektorspannung Uy nimmt gleichfalls ab. Dagegen steigt der
Basisstrom des Schalttransistors an und fuhrt zu einem grofien Kollektorstrom.

Die Abnahme der Kollektorspannung U¥g im vorgeschalteten Transistor Trs V bewirkt, dal im
Schalttransistor Trs S die Spannung zwischen der Kollektor- und der Emitterelektrode ebenfalls
abnimmt. Trifft der volle Lichtstrahl das Fotoelement, so wird damit in Trs S der Arbeits-
punkt L eingestellt.

Bild 4.42. Relaisschaltung mit Transistoren

Der Strom I des Arbeitspunktes L reicht gerade aus, das an die Kollektorelektrode des Schalt-
transistors angeschlossene Relais anzuziehen. Eine Schwichung oder Unterbrechung des Licht-
strahles fithrt zur Abnahme des Kollektorstromes. Dabei fallt das Relais ab, und es wird ein
technischer Prozef (z. B. ein Alarmzeichen) ausgel6st.

Berechnen Sie die optimalen Werte des Ausgangswiderstandes bei Verwendung des mittelschnellen
Schalttransistors SF 128. Wie grof ist die aufgenommene Leistung?

Welche Schaltleistung wird aufgebracht, wenn der Wicklungswiderstand Ry = 80Q) betrigt
und der Arbeitspunkt L durch I = 400 mA, Ugg = 0,5 V festgelegt ist?

Losung

Fir den npn-Transistor SF 128 entnimmt man Tabellenbiichern tiber Transistoren die folgenden
Angaben:

Die zuliassige Hochstspannung in der Emitterschaltung betrigt Ucgo = 60V, der zuldssige

18*
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Hochststrom I = 500 mA. Als zuldssige Hochstleistung des Transistors werden Pyq = 600 mW
angegeben (vgl. Tabelle 8b und Bild 4.43). Der Reststrom betrigt Io = 0,1 mA, die Rest-
spannung Ucgg = 0.5 V.

Farameter Ig (1 A)

P=600mW

Restsirom §

Y

Bild 4.43. Kennlinien und Arbeitspunkte eines Schalttransistors

Der groBtmogliche Wert des Ausgangswiderstandes (Innenwiderstandes) im Falle des aus-
geschalteten Stromkreises ist somit gleich

Rig = Yoro. (Sperrwiderstand). (1)
I co

Fiir den Ausgangswiderstand bei eingeschaltetem Stromkreis folgt als kleinstmoglicher Wert

Ry = @ (DurchlaBwiderstand). (2)

c .

Die aufgenommene Leistung fiir den Sperrzustand O ergibt sich aus

Po = Ucgolco- 3)
Im offenen Zustand L nimmt der Transistor die Leistung

Py, = Ucgrlc 4)

auf.
Mit den vorgegebenen Zahlen folgt als Sperrwiderstand

60

Rip = — Q = 600 kQ,
107 0,1.10-° *
als DurchlaBwiderstand
0,5
i, = ———Q =1Q.
T 500 - 103

Die aufgenommenen Leistungen im gesperrten und im offenen Zustand sind nach (3) und (4)
Py =60-0,1-103W = 6 mW,

Py =0,5-500.10-% W = 250 mW.
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Als Schaltleistung definiert man die Leistung Py, die vom Nutzwiderstand Ry wihrend der
DurchlaBschaltung aufgenommen wird, d. h., wihrend der Zustand L geschaltet ist. Dafiir er-
halten wir

PN = RLICZ. (5)
Bei dem vorgegebenen Arbeitspunkt ergibt sich aus (5)

Py = 80- (4001032 W = 12,8 W.

4.5.7.% Zweistufiger Vorverstirker mit RC-Kopplung

Fiar den zweistufigen Vorverstirker nach Bild 4.44 wird eine Ausgangswechselspannung
Usyet; = 1,0 V gefordert. Als Verstirker dient fur beide Stufen der npn-Transistor SC 207, dessen
Kennlinien in Bild 4.39 dargestellt sind. Der Arbeitspunkt ist fiir beide Stufen an die Stelle
Ugg =3V, I =10mA, Iz = 28 pA gelegt. Die Vierpolparameter des Transistors lauten in
Emitterschaltung fiir den Arbeitspunkt

by = 2,3kQ, hyp = 3,8 1074, hyy = 30, hyy = 48 - 107801,
Als Betriebsspénnung wird eine Spannungsquelle mit Uy = 15 V gew#hlt. Der Spannungsabfall

an den Emitterwiderstinden Rg; = Rg, = Ry soll 0,4 V betragen. Die Spannungsteilerwider-
stdnde sind durch Ry; = Ryy, = Ry, = 10 k() bestimmt.

Bild 4.44. Zweistufiger Vorverstéirker

Berechnen Sie die erforderliche GréBe der Lastwiderstéinde, die Strom- und die Spannungs-
verstirkung sowie den Eingangswiderstand jeder einzelnen Verstarkerstute. Wie gro8 ist die er-
forderliche Eingangsspannung? Welche Kapazititen miissen die Kondensatoren haben, wenn
gegeniiber hohen Frequenzen fiir wy/2w = 50 Hz als unterer Grenzfrequenz ein Stromabfall

1:12 zugelassen wird?
Losung

Geht man vom zweiten Verstidrkerkreis aus und betrachtet die Spannung in derrechten Schleife
des Bildes 4.44, so ergibt sich die Beziehung

—RgoIg — Up + Rpolc + Uce = 0. (1)
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Wir setzen gendhert Iy = — I und erhalten nach Umformung
Ug — U
Rgy + Ryy = —B——CE
Ie
Mit den vorgegebenen Zahlen folgt
15 —3
R Ry, =———Q =12kQ.
B2 T Bre 105

Soll am Widerstand Ry, ein Spannungsabfall von Rp,/c = 0,4 V erfolgen, so muf

0,4

REz =

sein. Fiir den erforderlichen Lastwiderstand erhilt man damit Ry, = 11,6k().

Re Relr;-})| 1
L 1) (22)

Bild 4.44a

In Bild 4.44a betrachten wir den Vierpol zwischen den Punkten 11’, 12" und 21’, 22’. Die Aus-
gangswechselgrofien des betrachteten Vierpols sind mit denen des Eingangs iiber den relativ
niedrigen Widerstand Ry, gegengekoppelt. Bei der Berechnung dieser Kopplung kénnen die
parallel zu Ry geschalteten Widerstiande Ry, und Ry, als unendlich gro angenommen werden,
so daB iber diese keine Kopplung zu beriicksichtigen ist. Die auftretenden Spannungen sind beim
Vorverstérker so klein, dafl mit den Vierpolparametern gerechnet werden kann. Wir bezeichnen

die Vierpolparameter fiir Rg, = 0 mit #;;, dagegen fiir Rp, 9= 0 mit A%;:
Uy = hardyg + P1sUss
I, = hylig + hpeUsos
Uio = hilip + h12Us0,

Iyy = hiylig + h5aUpo- )

®3)
(4)
5)
(6)

In Bild 4.44a ist der Transistorvierpol fiit Rg, = 0 durch die Punkte 11, 12; 21, 22, dagegen

tir Ry == 0 durch 17, 12'; 21’, 22’ dargestellt.
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Der Emitterwiderstand Ry wird sowohl von I, als auch von I, durchflossen. An ihm erfolgt
der Spannungsabfall Rgy(I{o — I5o). Somit bestehen die Beziehungen

Uto = Uyo + BralIio — T20), (7

Uéo = Uy + REz(IiO - Iéo)- (8)
Die Strome dndern sich nicht:

Io = Iy, )

I5g = Iy (10)

Wir losen (8) nach U,y auf und setzen den sich ergebenden Ausdruck in (4) ein. Indem wir (9)
und (10) beriicksichtigen, erhalten wir

hyy — hooR h.
Ip—=—2 222y 72 7. (11)
0 1 + hzzREz 10 1 + hZZRE2 20

Durch Vergleich der Koeffizienten in (11) und (6) folgt

hgy — P = aaBre (12)

1 + hyyRpy
By — —or (13)

1 + h22RE2
Ebenso gelangt man mittels (3), (7), (9) und (10) zu
(1 + hoy) (1 — hyy)

hiy = hyy Rg,, 14
u n 1 4 hyy R, B ()
hi2 — h12 + hzzREz . (15)

1 + Aoy Ry,

In (12) bis (15) konnen wir in erster Néherung hyyRp, << 1, by <K 1, gy >>1 setzen. Damit folgt
gendhert

ki1 = by + Py Ripo, his = hip + hooRps, } (16)
hél = h21~ héz = hys.

Mit den vorgegebenen Werten erhalten wir
hi; = (2,3 - 10% + 30 - 400)Q = 14,3 kQ,
his =3,8-10"* + 4,8.10%-400 = 19,6 - 103,
hgy = 30,
hjo = 48 . 10-8Q-1,
Damit folgt nach (4.5.4./4) firr die Stromverstirkung

Ty _ ki1 (17)
I 1+ hgoRy,
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nach (4.5.4./5) fiir die Spannungsverstirkung

Uso —hp1 Ry

= _fattie 18
Uto ~ Bradl + 15 )
nach (4.5.4./7) fiir den Eingangswiderstand der zweiten Verstirkerstufe
o = Tl (19)

1+ hgpRey
Mit den vorliegenden Zahlen ergibt sich nach (4.5.4./6)

AR = 14,3 . 103 .48 . 108 — 19,6 - 10-3 - 30 = 98,4 . 10-2.
Hieraus erhalten wir nach (17), (18) und (19)

I/ 7/
o _ 193, o0
110 10

= —225, Ry, =992kQ.

Die erste Verstirkerstufe enthilt parallel zum Emitterwiderstand Ry, die Emitterkapazitit Cp.
Sie wird derart gewihlt, daB ihr elektrischer Widerstand dem Betrag nach klein gegen die reelle
GroBe Ry, ist. Der Emitterwiderstand ist damit praktisch durch die Emitterkapazitit kurz-
geschlossen.
Den wirksamen Lastwiderstand R,y, des ersten Verstarkerkreises berechnen wir aus den parallel-
geschalteten Widerstanden Ry, R,,, Ryr. By ist so groB, daB sein Leitwert zu vernachlassigen ist.
Es folgt

T B (20)
E)"‘1L By, o Ry

mit den vorgegebenen Zahlen Ry, = 3,5 kQ.
Damit erhalten wir nach (4.5.4./4) und (4.5.4./5) fiir die Strom- und fiir die Spannungsverstérkung
der ersten Verstarkerstufe

R M e
I, 1+ hopyy,
U{O - : hzlmlL R (22)
U, Ryp Ak + by
wihrend nach (4.5.4./7) fiir den Eingangswiderstand der ersten Stufe
Ah Ry + kb
R, =——L T (23)
1+ hyy®yy,

folgt.
Die vorgegebenen Zahlen eingesetzt, liefert

_I_i9_=257 Uto

= 39,6, %y =227kQ.
IO l]0 11

Die gesamte Spannungsverstirkung durch beide Stufen ist somit gleich

4 4
Uz  Uio

: =22,5-39,6 = 891.
U10 UO
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Um die Ausgangswechselspannung 1,0 V zu erzielen, muf die Eingangswechselspannung

Ugost = %V = 1,12 mV

betragen.
v b I
.£7.”.. i*_’ Py . o
By | | Bug Ry Rrz By
R i . Bild 444D

Zur Bestimmung der Kapazitdt ¢ zwischen den beiden Transistoren betrachten wir die Ersatz-
schaltung nach Bild 4.44b. Der Ausgangswiderstand R,, der ersten Stufe hat im allgemeinen bei
der Emitterschaltung einen Wert in der GroBienordnung 100kQ) (vgl. Tabelle 7). In Bild 4.44b
kommt daher in der Parallelschaltung links des Kondensators Cg nur der Widerstand Ry, zur
Wirkung. Rechts von U kann man sich auf Ry; und den Eingangswiderstand $,;, des rechten
Transistors beschrianken. Es folgt

1 1 1\~ .
Bret 000 T (R— - m—)
1a __ i ® I1 12/ (24)

1e RI,Z

~

~

Fiir das Verhéltnis zwischen den Strémen am Eingang 9,, bei sehr hohen Frequenzen w — co
und bei der Grenzfrequenz w, ergibt sich daraus

By + —— + (—1- + )_1
Lew _ " iaCg B % (25)
Iieg R +(1 ) 1)—1
L2 i e
By Ry
Hieraus folgt als erforderliche Kapazitit, wenn die Grenzfrequenz w,/2r = 50 Hz betragen soll,
Co = . o
w, (Ryy + IRUST) ) 26
g( BT Ry + Ry, 20
Mit den vorgegebenen Zahlen erhalten wir
-3
O = 10 oo F = 010210 F.
27 . 50 (11,6 + ———=
10 + 9,92

Der Kondensator Cg schlieBt bei richtiger Dimensionierung den Emitterwiderstand Ry kurz.
Dieser braucht im Ersatzschaltbild zur Berechnung von Cy daher nicht beriicksichtigt zu werden.
Am Kondensator Cf tritt ein Spannungsabfall auf, der dem Betrage nach gleich

[Ig]
AU = - E 9
|40} Oy (27)
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ist. Dieser wirkt durch die Gegenkopplung auf den Eingangskreis. Hier flieBt der Basisstrom I,
den wir genahert aus dem Emitterstrom iiber die KurzschluBstromverstirkung B = h,, be-
stimmen:

e

|4U| =
I wCg

g (28)

Bei der Berechnung der Ruckwirkung auf den Eingangskreis ist die Emitterkapazitit daher nur
mit Cy/hy, einzusetzen.

Ce/hy

o - —  Bild 4.44¢

Von den im Eingangskreis vorhandenen Widerstinden beriicksichtigen wir den Eingangswider-

stand $,,, den wir gleich seinem KurzschluBwert 4,; annehmen. Alle anderen Widerstdnde werden

in einem zusammenfassenden Widerstand R’ aufgenommen. Es ergibt sich damit das Ersatzschalt-

bild nach Bild 4.44c. Aus diesem folgt analog (26) fir die erforderliche Kondensatorkapazitit
Op = ——2 . (29)

wg(R' + hyy)
Bei festgelegtem Cy wird die untere Grenzfrequenz wg am groBten fiir R’ = 0. Dieser Fall stellt
die ungiinstigste Moglichkeit dar. Man errechnet daher C'y am einfachsten aus

h,
(Cp)r=0 = —2—. (30)
wghu
Diese Kapazitit gewihrleistet mindestens bis w, herab eine einwandfreie Funktion des Ver-
stdrkers.
Mit den vorgegebenen Zahlen erhalten wir Cy = 41,5 uF.

4.5.8.% Gegentakt-B-Verstirker

Um eine groBe Leistungsverstirkung bei kleiner Verzerrung zu erzielen, werden die Endstufen
von NF-Transistorverstidrkern als Gegentakt-B-Verstarker nach Bild 4.45 aufgebaut.

Die Spannungen sind durch Vorverstirker auf so groe Werte gebracht worden, da mit den
Kennlinien gearbeitet werden muB.

Nach der Lage des Arbeitspunktes im Eingangskennlinienfeld Ig(Ugg) unterscheidet man
zwischen A- und B-Verstirkern.

Bei den A-Verstarkern flieBt im Ruhezustand, d. h., wenn keine Signalspannung anliegt, ein
schwacher Eingangsstrom (Basisruhestrom). Zwischen der Basis- und der Emitterelektrode liegt
eine hinreichend groBe Spannung (Gréfenordnung 0,011 V), so daBl eine Aussteuerung sowohl
nach positiven als auch nach negativen Werten der Signalspannung mdéglich ist.

Dagegen liegt bei B-Verstiarkern der Arbeitspunkt so, dafi der Transistor nur nach einer Seite
ausgesteuert werden kann (z. B. fir U, > 0 beim npn-Transistor). Signalspannungen in der
Gegenrichtung fithren am pn-Ubergang zwischen Basis und Emitter zu Spannungen in Sperr-
richtung und damit zur Sperrung des Transistors.
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Beim Gegentakt-B-Verstirker fithrt der Ubertrager U, das Eingangssignal U, den beiden Tran-
sistoreingéngen mit der Phasenverschiebung = zu. Von den Transistoren arbeitet immer nur einer,
wihrend der zweite gesperrt ist. Ein Wechsel im Arbeitstakt erfolgt jeweils wihrend des Uber-
gangs von der positiven zur negativen Halbwelle des Steuersignals U;, da im Transistor nur fir
eine Spannungsrichtung zwischen Basis und Emitter ein Kollektorstrom flieBt.

Bild 4.45. Endstufe eines Transistorverstarkers (Gegentakt-B-Verstarker)

Nach ihrer Verstarkung durch die Transistoren werden die beiden Halbwellen wieder zusammen
gefaBt. Bild 4.46 veranschaulicht die Vorginge. Zur Realisierung der Gegentakt-B-Verstirkung
legt man den Arbeitspunkt 4 des Ruhezustandes (keine Signalspannung) in beiden Transistoren
auf einen sehr kleinen Kollektorstrom I = I, (vgl. Bild 4.47).

U JErF
— ¢ I

oA AT

A4 3 T P
I
Fa A

Bild 4.46. Spannungen und Stréme bei der Gegentakt-Verstirkung

Der Spannungsabfall in den Spulenwicklungen kann im allgemeinen vernachldssigt werden. An
den Elektroden liegt praktisch die gesamte Batteriespannung:

UB = UCEl = UCEZ = UCE'

; 1,
Urer Yea  Yeeo

Bild 4.47. Kennlinien fiir die Gegentakt-B-Verstirkung
A Arbeitspunkt des Ruhezustandes, 4B Arbeitsgerade
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In der Gegentaktschaltung nach Bild 4.45 wird fiir die Leistungsverstdrkung der npn-Transistor
SF 127 verwendet. Als zulidssige Hochstwerte werden fur diesen Transistor angegeben (vgl. Ta-

belle 8D, S. 267): maximale Spannung Ucgo = 40 V, maximaler Strom fc = 500 mA.

Die vom Transistor in Wirme umgesetzte Leistung darf nicht gréBer als Py, = 0,6 W sein.
Geben Sie die erforderliche MindestgroBe des Arbeitswiderstandes an, wenn die Batteriespannung
Ug = 20 V betrigt.

Wie gro83 ist die von der Gegentaktstufe abgegebene Wechselstromleistung bei vollstandiger Aus-
steuerung, wenn der Arbeitswiderstand R = 80() betridgt? Wie groB ist der Wirkungsgrad?

Die Restspannung des Transistors ist gleich Uggg = 0,3 V. Der Arbeitspunkt fiir den Ruhe-
strom liegt bei Iy = 5mA; Uggy = Up =20V.

Losung

Nach Bild 4.47 werden die Kollektorspannung vom Arbeitspunktwert Ugog, = Up bis zur Rest-
spannung Uggg, der Kollektorstrom Iy vom Arbeitspunktwert I, bis zum maximalen Wert
I nax variiert. I,y muB kleiner als die maximal zulissige Stromstérke / sein, wenn der Tran-
sistor gebrauchsfertig bleiben soll.

Bezeichnen Uycg und I die Amplituden der WechselgréBen, so definiert man

UOCE ) — IOC (1)
UB - UCER ICmax - ICA

m =

. als Grad der Aussteuerung. Maximale Aussteuerung ist durch m = 1 gekennzeichnet.
Die von der Schaltung abgegebene Wechselstromleistung betragt

op — Jocs —Toc _ . (Up — Ucpr)®
2 2R

> (2)
wobei

U
R = IOCE (3)
oC

- den Arbeitswiderstand des Kollektorkreises angibt.

Der Mittelwert der Kollektorwechselspannung ist gleich 2Iy/x. Fir die von der Batterie ab-
gegebene Leistung folgt damit, abgesehen von der durch den kleinen Ruhestrom verursachten
Leistung,

21,0 2

m
2Pp = - Us (Icmax — Ica) Us- (4)

T

Die von einem der beiden Transistoren in Warme umgesetzte Verlustleistung Py ist gleich

(Up — Ucgr)®

m
Py =P — P=—(Igpmax — Lca) Up —m?
k] 4R

Wir bestimmen das Maximum Py, der Verlustleistung. Es ergibt sich aus

dPy
—— =0.

am (6)
Man erhilt
2 Ug

m ==
( )on = UB _ UCER
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Diese GroBe setzen wir in (5) ein und berticksichtigen (3) und (1). Damit folgt

LBZ
Py = —2—, 8
Vo= 3R (8)

Ist die maximal zuldssige Verlustleistung vorgegeben, so kann man mittels (8) den Mindestwert
des Arbeitswiderstandes bestimmen:

U
Rz Ruin = ©
Vo

Far den maximalen Kollektorstrom ergibt sich bei bekanntem R aus (1) in Verbindung mit (3)

Ug — U,
Tomax = Ioa + %‘- (10)

Der Wirkungsgrad der Schaltung gibt das Verhdltnis zwischen der Wechselstromleistung und
der gesamten von der Batterie abgegebenen Leistung an. Nach (2) und (4) folgt

P

s UvB _ UCER . (11)
P

tud
=—m

77 =
Mit den vorliegenden Zahlen ergibt sich aus (9) als Mindestwert des Arbeitswiderstandes

202
min — WQ = 67,6Q.
Im betrachteten Fall ist der Arbeitswiderstand R = 80Q). Wir setzen diese GréBe in (10) ein
und erhalten

0,3

Tmax = 0,005 A + %A — 226 mA.

Der Strom liegt also unter dem zuldssigen Hochstwert I = 0,5 A. Fiir die Strom- und fir die
Spannungsamplitude folgt bei maximaler Aussteuerung m = 1 aus (1)

Ioc = m(Igmax — Loa) = 221 mA,
Upcg = m(Up — Uggr) = 19,7 V.

Fir die von der Gegentaktstufe tibertragene Wechselstromleistung ergibt sich nach (2) im Falle
m=1

2
19,7 W =243 W.

2P =
280

Der Wirkungsgrad wird fir m =1

p=T10T 4o
4 20
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A45.1.

A4.5.2.

A4.5.3.

A454.

A4.5.5.

A 4.5.6.
A4.5.7.

A4.59%

A 4.5.10.

A4.5.11.

A4.5.12.

A4.5.13.

A4.5.14.%

A4.5.15%
A 4.5.16.

Aufgaben

Ein Transistor in Basisschaltung arbeitet bei Ugg = 0,3V, Ugc = 4,5 V. Welche
Spannungen sind in der Emitterschaltung und in der Kollektorschaltung anzu-
bringen, wenn die gleichen Stréme wie bei der Basisschaltung flieBen sollen?

Der Transistor SF 216 hat in Emitterschaltung die KurzschluBstromverstirkung
224...-560. Berechnen Sie den Wertebereich der KurzschluBstromverstarkung fur
die Basisschaltung.

Der Transistor SC 108 habe in Emitterschaltung den Eingangswiderstand
g = 1,5k, Wie groB ist der Eingangswiderstand in der Basisschaltung? Die
Kurzschlufstromverstirkung in Emitterschaltung ist gleich f = 22.

Fiir den Eingangswiderstand in Emitterschaltung wird bei Verwendung des Schalt-
transistors SS 101 die GroBle ;g = 0,7 k(2 gemessen. In der Basisschaltung wird
der Eingangswiderstand R;p = 50Q) festgestellt. Bestimmen Sie die KurzschluB-
stromverstarkung fir alle drei Grundschaltungen.

Bestimmen Sie aus den Vierpolparametern nach Tabelle 8 die Stromverstirkung
fur den Transistor SF 122 in Emitterschaltung, wenn der Nutzwiderstand
Ry, = 10 kQ betrigt.

Berechnen Sie zur vorangegangenen Aufgabe den Eingangswiderstand.

Stellen Sie die Formel fir den Ausgangswiderstand R, = U,/I, des Transistors
auf, wenn der Eingang mit dem Widerstand R (Innenwiderstand der Signalquelle)
versehen ist.

Stellen Sie die Bedingungsgleichung fiir optimale Leistungsanpassung auf und be-
rechnen Sie die optimale Leistungsiibersetzung.

Leiten Sie auf Grund der physikalischen Eigenschaften die k-Parameter fir die
Basis- und fur die Kollektorschaltung aus denen der Emitterschaltung ab.

Bestimmen Sie zu Aufgabe A 4.5.5. die Stromverstdrkungen in der Basis- und in
der Kollektorschaltung.

Bestimmen Sie aus den Kennlinien des Bildes 4.39 die KurzschluBstromverstir-
kung f des Transistors SC 207 fir Ucg =4V, I =4 mA.

Der Transistor SC 207 ist auf den Arbeitspunkt Uqg = 4V, I = 4 mA eingestellt
und wird ausgangsseitig mit dem Lastwiderstand Ry, = 1,5k abgeschlossen. Be-
stimmen Sie die anzulegende Batteriespannung.

Bestimmen Sie fiir den Arbeitspunkt Ig =3 mA, Ugg =4V des Transistors
SC 207 im Grenzfall der Stromsteuerung die Grofien I, Iy, Upg, Ugy (vgl. Bild
4.39).

Der Transistor SC 207 soll durch einen Vorwiderstand nach Bild 4.48 auf die
folgenden Arbeitswerte eingestellt werden: I = 4,2 mA, Iy =70 pA, Ugg =5V,
Der Nutzwiderstand betragt Ry = 1k(). Bestimmen Sie die anzulegende Span-
nung Upg und den Vorwiderstand Ry (Kennlinien nach Bild 4.39).

Berechnen Sie zur vorangegangenen Aufgabe die Leistungsverstarkung.

Mit einem Spannungsteiler soll fiir den Transistor SC 207 der Arbeitspunkt
Io=15mA, Ugg =2V, Ig =50 uA eingestellt werden. Der Lastwiderstand
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A 4.5.17.

A4.5.18.

A4.5.19.

A 4.5.20.

A4.5.21.%

Ad4.5.22.%

A4.5.23%

betragt Ry = 0,8 kQ, die Summe der Stréme I} und Iy; soll das Finffache des
Basisstromes betragen. Bestimmen Sie die erforderliche Batteriespannung Up
sowie die Widerstdnde E; und Ry;.

Fiir den Schalttransistor SS 101 betrigt die hochstzulidssige Spannung Uggo =33V,
der Reststrom Joo = 2 pA. Der maximal zuliissige Strom ist bei der Temperatur
125°C gleich I = 200 mA, die Restspannung Ugggp = 1 V. Berechnen Sie den
DurchlaB- und den Sperrwiderstand, wenn die angegebenen Werte die beiden
Arbeitspunkte im Schaltbetrieb bestimmen.

Berechnen Sie fiir den Schalttransistor SS 101 die Schaltleistung, wenn ein Nutz-
widerstand von 200 () angeschlossen ist. Wie grof sind die aufgenommenen Lei-
stungen im gesperrten und im offenen Zustand? Die Arbeitspunkte seien durch
Iop =150mA, Uggy, =1V, Ico =10 A, Uggo = 12 V festgelegt.

In der Verstdrkerschaltung nach Bild 4.44 soll die untere Grenzfrequenz 162/; Hz
betragen. Die Widerstdnde sind gleich Ry, = 20kQ, Ry, = 5kQ, Ry, = 2kQ.
Wie groBl muB die Kopplungskapazitit sein?

Der Arbeitswiderstand eines Leistungsverstirkers betrigt R = 50k(). Die Ver-
lustleistung darf 0,2 W nicht tibersteigen. Welche Bedingung ergibt sich daraus
fiir den Arbeitspunkt?

Stellen Sie die Formel fiir die Einstellung des Arbeitspunktes bei einem Transistor
mit Vorwiderstand auf, wenn der Widerstand Ry zwischen der Emitterelektrode
und Masse beriicksichtigt wird. Schaltung nach Bild 4.48.

Bild 4.48. Arbeitspunkteinstellung
durch Vorwiderstand

Stellen Sie unter der gleichen Voraussetzung wie in der vorangegangenen Aufgabe
die Formel fiir das Verhéltnis der Spannungsteilerwiderstinde auf, wenn die Arbeits-
punkteinstellung nach Bild 4.41 erfolgt.

R

Bild 4.49. Verstirkerschaltung

Ein Transistor befindet sich in der Gegenkopplungsschaltung nach Bild 4.49. Be-
stimmen Sie die Vierpolparameter dieser Schaltung, wenn die Vierpolparameter
des Transistors bekannt sind.



5- Hochfrequente Wechselfelder

5.1. Das elektromagnetische Feld elektrischer und magnetischer Dipole

E Einfiihrung

Bei den rasch verinderlichen elektromagnetischen Feldern der drahtlosen Uber-
tragungstechnik sind die Voraussetzungen fiir die quasistationidre Rechnung nicht
erfillt. Man mufl die ungekiirzten MaxwgLLschen Gleichungen (1.4./1) bis (1.4./4)

D+ I =rot 9, (1)
B = —rot €, )
div® =p, (3)
div®y =0 (4)

verwenden. In einem einheitlichen Medium bestehen nach (1.4./5) bis (1.4./7) die
linearen Beziehungen

D =€, i (5)
B =uH, (6)
I =7€. (7)

Driickt man § durch B, ® durch € aus, so ergeben sich anstelle von (1) und (3)
die beiden Gleichungen

euG + u =rot B, (La)

div € = L. (3a)

&

Die Gleichung (4) wird wie in 3. durch Einfithrung des Vektorpotentials 9 befriedigt:
B = rot A. (8)
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Setzt man diesen Ansatz in (2) ein, so folgt
rot (€ + %) = 0. 9)

Das Verschwinden der Rotation eines Vektorfeldes bedeutet, daf dieses sich als
Gradient eines skalaren Potentials —@ darstellen 148t. Daraus ergibt sich

= —grad @ — 9. (10)
(8) und (10) konnen in (1a) eingesetzt werden. Man erhéalt (vgl. 1.3. A 6.)
—eu (grad & + A) + uS = rot rot A = —A U + grad div . (11)

Diese Gleichung wird stets dann erfiillt, wenn die beiden Gleichungen

AU — epd + uF =0 (12)

und
div A + eu® =0 (13)

befriedigt werden. Berticksichtigt man in (3a) die Beziehung (10), so folgt
AP+ divil + £ = 0. (14)
&€

Aus (14) ergibt sich mittels (13)

AD — eud + pe =0 |. (15)

Das skalare Potential @ und das Vektorpotential U geniigen nach (12) und (153)
Differentialgleichungen der gleichen Form. Mit der Erfillung dieser Gleichungen
durch @ und U ist die Erfiilllung der MaxwerLschen Gleichungen gewéhrleistet.

Die Losungen der Gleichungen (12) und (15) kénnen durch die retardierten Potentiale

Hevsh = 4; fffwsnr—gﬂ av (16)

A, y,2,1) = ﬁ/ffi(_fﬁ;f_’fldv o

dV =dédy dg

mit

dargestellt werden. Ladungs- und Stromdichte am Ort (&, 7, ) sind bei der Inte-
gration nicht mit ihren Werten zur Zeit ¢, fiir die 9 und @ bestimmt werden sollen,
sondern einem fritheren Zeitpunkt

r—1— L (18)
C

19 Schilling, Felder
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einzusetzen. Die Differenz
b — 7= Jeur

entspricht der Zeit, die fiir die Ausbreitung der Welle vom Integrations- zum Auf-
punkt erforderlich ist. Der Ausdruck

C_co_ 1
no Ve

gibt die Phasengeschwindigkeit der Welle an, die Grofe

r=Ve— 8+ —n+ - 0? (19)

bezeichnet die Entfernung zwischen Integrations- und Aufpunkt; » ist die Brech-
zahl des Mediums.

Ein kleiner Korper wird als Strom- oder Leiterelement bezeichnet, wenn die Strom-
dichte in jedem seiner Punkte gleich ist. Fiir ein Stromelement I dfj kann der Ab-
stand seiner einzelnen Punkte vom Aufpunkt konstant gleich r gesetzt werden.
Das Stromelement im Punkt Py(&, », {) erzeugt also nach (17) im Aufpunkt P(z, y, 2)
das Vektorpotential

A = d(w, g, 2, 8) = L LEDED 4 20)

4n TPpPo

Das von einem beliebigen ausgedehnten Koérper mit bekannter Stromverteilung aus-
gestrahlte Feld laft sich gendhert berechnen, indem man die von den einzelnen
Stromelementen ausgehenden Felder unabhéngig voneinander bestimmt und vek-
toriell addiert. Im folgenden werden zeitlich periodisch verdnderliche Felder der
Form e~ betrachtet.

Ein Leiterstiick der Lénge A, auf dem néherungsweise die elektrische Stromdichte
als rdumlich konstant angesehen werden kann, sich jedoch mit der Zeit ¢ verandert,
wird als Elementardipol bezeichnet. Die Lénge h des Dipols muf} klein gegen die
Wellenldnge 7 sein, wenn die Voraussetzung rdumlicher Konstanz der Stromdichte
erfiillt sein soll: '

ne 2nne
_ — = . 2
S (21)

Anschaulich kann man sich einen Elementardipol als kurze Stabantenne vorstellen,
die oben und unten in einen nach auflen hin abgeschirmten Schwingkreis eingeschaltet
ist (vgl. Bild 5.1). Strahlung erfolgt nur durch die kurze Antenne. Infolge der hin-
und herfliefenden Wechselstréme tragen die abgeschirmten Bauelemente des Dipols
die Ladung +@, wobei @ = Q(t) eine Funktion der Zeit ist. Das elektrische Moment
des Elementardipols ist durch .

m =@} (22)
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>

Bild 5.1. Modell des strahlenden Dipols
-q

bestimmt. Andererseits hdangen die elektrische Ladung @ des Dipols, die in ihm vor-
handene Stromstirke I und sein elektrisches Moment mt = Q) bzw. dm = @ db
durch die Formeln

o
a

10y, 220 = 1y (23)

zusammen. Daraus folgt in Verbindung mit (20) fiir das Vektorpotential des Elemen-
tardipols

. . nr
om (5’ 75 6 t — _)
ﬁ(x,z,z,t):—’u— - ¢
4rr at

Die Grolbe

nr
m(f, 7, Lt — ——-)

4re r

(25)

8(:6, Y, Z’) t =

wird als elektrischer Hertzscher Vektor des vom elektrischen Dipol erzeugten elektro-
magnetischen Feldes bezeichnet. Der HErTzsche Vektor 3 ist orts- und zeitabhéngig.
Mit dem Vektorpotential 9 ist er durch die Formel

A = ep (26)

93
ot

verkniipft. Dieser Zusammenhang wird allgemein als Definition fiir den HErTzschen
Vektor eines elektromagnetischen Feldes benutzt.
Aus (26) und (12) ergibt sich fiir 3 im stromfreien Raum die Differentialgleichung

P )
L (AB — eu8) =0.

Sie wird erfiillt, wenn 3 der Wellengleichung

A8 —eud =0 (27)

19*
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geniigt. Wie aus (12) und (15) folgt, erfiillen im strom- und ladungsfreien Raum auch
das skalare Potential @ und das Vektorpotential % die Wellengleichung.

Das skalare Potential @ ergibt sich nach (26) und (13) aus dem HerTzschen Vektor 3
gemdf3

@ = —div 3. (28)
Fiir die elektrische Feldstérke € erhdlt man damit nach (10)

¢ = —grad div 3 — su3. (29a)
Auf Grund der Beziehung grad div 3 = /\ 8 + rot rot 3 folgt daraus mittels (27)

| € =rotrot 3 |- (29)

Fiir die magnetische FluBdichte B ergibt sich nach (8)

‘ B = eurot 3. (30)

Wie man aus den MaxwerLschen Gleichungen (1) bis (4) herleiten kann, geniigen
auch die elektromagnetischen Feldgréfen im strom- und ladungsfreien Raum der
Wellengleichung. Fur die elektrische Feldstdrke € verlauft der Beweis tiber die
Giiltigkeit der Wellengleichung in der folgenden Weise:

Differenziert man die MaAxwEgLLsche Gleichung (1) nach der Zeit und wendet auf (2)
die Operation rot an, so entsteht fiir § =

¢ =rot 9, prot § = —rot rot €.
Hieraus erhalt man
eu€ = —rot rot € = AG — grad div €.

Im homogenen ladungsfreien Raum gilt nach (3)

divE = 0.
Damit verbleibt die Wellengleichung
AG — eu€ = 0.

Fiir periodisch verdnderliche Felder geht (27) in die zeitfreie Wellengleichung

AB + epe?3 =0 B1)

iiber. Der Zeitfaktor e~! kiirzt sich heraus.
Berticksichtigt man in (31)

n2

e = —,
“ o2
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so entsteht

A3+ k3 =0, (33)
wobei
nw 21
k= C_o = To (34)

die Wellenzahl, %, die Vakuumwellenldnge bedeuten.

Aus dem magnetischen Moment m,, einer Stromschleife definiert man den magne-
tischen Hertzschen Vektor

1 mp(én, 1)

Bm = oy " (35)
Fiir das von der Stromschleife ausgehende Feld ergeben sich die Formeln
EC = —u ;t— rot Bm,
$ =rot rot 3, (36)
(vgl. 5.1.8.).
I Probleme
5.1.1. Hertzseher Dipol (Elementardipol)

Ein elektrischer Dipol befindet sich in groBer Hohe iiber der Erde. Er wird von einem Strom mit
der effektiven Stiarke Iz = 0,1 A und der Frequenz f = 10® Hz durchflossen. Die Linge des
Dipols betrdgt & = 15 cm. Bestimmen Sie das Strahlungsfeld in groBer Entfernung vom Dipol.
Untersuchen Sie die Richtcharakteristik und berechnen Sie die ausgestrahlte Leistung. Wie gro
ist der Strahlungswiderstand des Dipols?

Losung

Wir wihlen den Antennenmittelpunkt als Anfangspunkt des Koordinatensystems. Die z-Achse
legen wir in Richtung der Antennenachse. Der HERTzsche Vektor ist nach (5.1./25) und (5.1./27)
bis auf eine Konstante dem Dipolstrom, d. h. der z-Achse parallelgerichtet (vgl. Bild 5.2). Die
Konstante kann gleich Null gesetzt werden. Wir erhalten damit fiir den Herrzschen Vektor
3=100,0,3,).

Es ist zweckmiBig, Kugelkoordinaten r, &, ¢ einzufithren. Die Antennenachse bezeichnet die
Richtung ¢ = 0. Nach (1.2./12) erhalten wir fiir die Komponenten des Herrzschen Vektors in
Kugelkoordinaten

3r = 3. cos I, 3o = —3;sin ¥, 8(;7 =0. (1)
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3, ist nach (5.1./25) auBer von der Zeit ¢ von der Aufpunktkoordinate » abhéngig, dagegen von &
und @ unabhingig. Nach (1.3./7b) folgt damit

rot, 3 =roty 3 =0, rot, 3 = —sin ¢ Z—SZ- (2)
r.

Des weiteren liefert (1.3./20)

div 3 = cos & 8832 , (3)
”

ferner (1.2./13)

sin 9 03,

2
grad, div.3 = cos 9 &, grads div 3 = —
or? roor

, grad,div3 =0. (4)

Hieraus erhalten wir nach (5.1./28) und (5.1./29), wenn wir B = u$ beriicksichtigen,
@T:O’ ‘bﬁ:()? @w:09 (5)

d. h., nur fir §,, €, €, ergeben sich Werte ungleich Null.

Wir fithren das elektrische Moment m des Dipols ein. Es héngt nur von der Zeit ab. Bei der Be-
rechnung der Feldgr6Ben sind retardierte Potentiale zu verwenden, so daf m in der funktionellen
Abhéngigkeit

m:m(t—«—ﬁf—) (6)

Co

erscheint. Mit dem HERTzschen Vektor ist es durch (5.1./25) verknuipft. Nach (5.1./29) und (5.1./30)
erhalten wir fiir m = m,t

1 sind (o . 1 .
= - — —_—m, — —m,J, 7
O, 4 7 ( or - r “) @
1 cos & [0%m, .. 2 om, 2
G= — (T, — = T 2 ), 8
" dme v (872 et 7o or r? ") @)
i .. 1 . .
€= = 200 (o, — = Hhe | M), ©)
dre r r ar 7

Zwischen der Ableitung nach der Zeit ¢t und der Ableitung nach dem Abstand r besteht die Ver-
kniipfung

om nam_iv—ﬁm
c ot

—— = — 6a
ar e ot (62)

In (8) heben sich daher der erste und der zweite Summand heraus. Wir beschrianken uns auf das
Fernfeld »> A und beriicksichtigen in (7) bis (9) nur Glieder der Ordnung 1/r, wihrend Glieder
hoherer Ordnung in 1/r vernachlissigt werden. Far die Feldkomponente €, folgt damit aus (8)

G, = 0. (10)
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Die anderen beiden Komponenten erhalten wir aus (7) und (9):

9, = Yo S0 (t_”—’), (11)
47 r (4

Gy = L Snd (t— ﬁ). (12)
T 7 c

Das magnetische Feld hat somit fiir > A die Richtung der Breiten-, das elektrische Feld die
Richtung der Léngenkreise um den Dipol (vgl. Bild 5.2). Zwischen dem magnetischen und dem

Bild 5.2. Lage der Vektoren eines Elementardipols

elektrischen Feld besteht keine Phasenverschiebung. Als Verhéltnis der elektrischen zur magne-
tischen Feldstérke ergibt sich

S i -
9y e

In der Dipolachse, d. h. fiir ¢ = 0, verschwinden die Glieder des Fernfeldes. Dagegen ist hier €,
nach (8) ungleich Null. Dieses Glied nimmt proportional 1/72 ab; es entstammt dem dritten und
vierten Summanden in (8). Diese nur in der Achse merkliche Einwirkung des Nahfeldes nimmt
mit zunehmender Entfernung sehr rasch ab.

Die grofite Feldstdrke wird in der Richtung senkrecht zum Dipol # = — gemessen Fiar peri-
odische Strome

(13)

I =1,e"ivt
besteht nach (5.1./23) der Zusammenhang

°m ol
o f) = —iwl,e it

Damit folgt fir die elektrische Feldstérke

nr
. . il . )
Gy = — iwu sin ¢ Ie i ( c) P iZ _hsml‘)e_l(wt_ k) (14)
4nr 2 A r
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fir die magnetische Feldstirke

—1i Ve wlgh sin 9 e —ilwt — k1) . Ioh sin &
Do =—i== —e
4mr S22

fir die Effektivwerte

(Gl = L2802y f L 1 sind
dleff = in 7 eff/t = 2 ” effs
. Vaw sin ¢ 1 A sind
(Dplett = - — — Tetih = > 7, Tess.

—i(wt — k1),

(15)

(16)

(17)

Da 9, und €3 von ¢ unabhingig sind, ist die Feldstérke in der Horizontalebene ¢ = %, d. h.

in der Ebene senkrecht zur Dipolachse, richtungsunabhéngig: Die Horizontalcharakteristik ist
ein Kreis. Der Elementardipol zeigt in der Horizontalebene keine Richtwirkung. Dagegen ist
in jeder den Dipol enthaltenden Vertikalebene die Feldstérke proportional sin 9, also richtungs-
abhingig. Tragt man den zur vorgegebenen Richtung & gehorenden Effektivwert der Feldstirke
tiber dem Winkel auf, so entsteht die Vertikalcharakteristik nach Bild 5.3. Die abgestrahlte

&

W Bild 5.3. Vertikalcharakteristik eines Dipols

Leistung ergibt sich durch Integration iiber die Kugelfldche:
21 T
P= [ [ ()it (Coless 7 sin & A8 dp.
00

Wir setzen (16) und (17) in (18) ein und erhalten

2n T

2
Pzg—%feffszsin3ﬁdﬁd¢.
0 o

Das irnere Integral hat den Wert 4/3; das duBere ist gleich 27, Somit folgt

2 h?
P= '§' nZ ;? Tots? = Rologs®

(18)

(19)

(20)
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Die GroBe

(21)

wird als Strahlungswiderstand des ungeerdeten Elementardipols bezeichnet.

Fiir die Ausbreitung in Luft oder Vakuum ist Z = Z, = 1207 (2. Somit ergibt sich mit den vor-
gegebenen Zahlen

2
P— % = 120 (0—;—5) 0,12 W =20mW, R, =2,00.

5.1.2. Vertikalantenne auf leitender Erde

Eine Stabantenne ist senkrecht in die Hoéhe gefithrt. Die Dicke des Antennenstabes und der
Abstand seines FuBpunktes vom Erdboden sind gegen die Stabldnge I = 2 = 15 cm zu vernach-
lissigen. Bestimmen Sie die elektrische Feldstidrke auf dem Erdboden im Abstand 1 km, wenn
die Strahlungsleistung P = 20 W betréigt. Die Wellenldnge ist gleich A = 3,00 m.

Losung

Wir setzen die Erde als idealleitend voraus. Die elektrischen Feldlinien miissen itberall senkrecht
auf die Erdoberfldche treffen. Das wird gewéhrleistet, wenn wir die Antenne mit ihren Ladungen
an der Erdoberfldche spiegeln. Anstelle des Dipols im freien Raum mit der Lange k haben wir also
einen Dipol der Lange 2% zu betrachten. Dem nach oben gerichteten negativen Ladungsstrom ent-
spricht spiegelbildlich ein nach unten gerichteter positiver Ladungsstrom. Er kann ebenfalls
als ein nach oben gerichteter negativer Strom aufgefaB3t werden. Die Stromstérke ist also ein-
schlieBlich des Vorzeichens oben und unten gleich. Das Feld eines vertikal auf die Erdoberflidche
aufgesetzten Dipols entspricht hiernach dem Feld, das im freien Raum ein Dipol doppelter Linge
in den oberen Halbraum ausstrahlt (vgl. Bild 5.4).

fh
\ N e/ // / ’ . . .. s :
N\~ Ny / Bild 5.4. Elektrische Feldlinien eines geerdeten Dipols.
A <o S e Feldlinien des Dipols im freien Raum
N (-

Fir die effektive elektrische Feldstirke folgt auf Grund dieser Anschauung gemaf (5.1.1./16)

(Cglest = Z /ﬁ sin &

Tesse (1)

Das Verhaltnis zwischen elektrischer und magnetischer Feldstirke ist wie beim Elementardipol
gleich Z.
Bei der Berechnung der ausgestrahlten Leistung haben wir davon auszugehen, daB gegeniiber
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dem Elementardipol sowohl (€)¢; als auch (9g)ess verdoppelt sind. Die Integration erstreckt sich
jedoch nur iiber die Halbkugel, da in die idealleitende Erde kein Feld ausgestrahlt wird. Hier-
durch ergibt sich der Faktor 1/2. Anstelle (5.1.1./20) erhalten wir damit fiir die Strahlungsleistung
des geerdeten Dipols die

2
Riidenbergsche Strahlungsformel P = £ rZ = T2, 2)
. 3 2
Der Strahlungswiderstand des geerdeten Dipols wird
4 h?
By = 3 5 3)

Setzt man fir Z den Wellenwiderstand des Vakuums ein, so folgt
n2
Ry = 160w2 FQ' (4)
Einer Strahlungsleistung von 20 W entspricht im vorliegenden Fall die Stromstirke

Ty = 3P A /220 300, 9954,
dnZy, h 4r - 120 0,15

Diese ergibt an der Erdoberfliche ¢ = n/2 im Abstand 1 km

0,15 1 . B _
(Gj@)eff = 120% 3,_06 1—55 2,25 Vm?1=42.10°Vm1,
5.1.3. Retlektordipol

Zwei parallele, gleich lange Elementardipole (vgl. Bild 5.5) werden von Stromen gleicher Starke
durchflossen. Sie sind unter verschiedenen Phasen angeregt. Untersuchen Sie, wie groB der Ab-
stand zwischen beiden Dipolen sein muf3, damit sich ihre Strahlung in der einen Richtung maximal
verstirkt, in der Gegenrichtung jedoch gerade aufhebt.

acos g

4 y Bild 5.5. Parallele Dipole

Dipol 7 Dipol 2
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Losung

Wir gehen von der Gleichung (5.1.1./14) fur die elektrische Feldkomponente €y aus. Die Kon-
stanten fassen wir in der GréBe E zusammen und schreiben

__ Esind
Ty

6 e —ilwt—kr), (1)

Entsprechend der Aufgabenstellung beschranken wir uns auf die Horizontalebene ¢ = 7/2.
Werden in (1) die Realteile gewihlt, so erhdlt man fiir die von den beiden Dipolen ausgehenden
Wellen

Gy = 22 sin (ot — kry), @)
Iy
B, .
Cgp = —sin (wt — kry + ). (3)
2

E, bezeichnet eine reelle Konstante.
Bei der Berechnung des retardierten Feldes in einem weit entfernten Punkt kénnen wir fiir beide
Strahler mit dem gleichen Azimut ¢ rechnen. Es gilt daher

r, =7y -+ a&cos@. (4)

Im Nenner von (3) und (2) ist der Unterschied zwischen r, und r, vernachléssigbar. Hier rechnen
wir daher mit 7; = 7, = r. Dagegen ist die Differenz r; — 7, = @ cos ¢ im Zihler bei den Phasen
von Bedeutung. Fiir das resultierende Feld der iiberlagerten Wellen ergibt sich dementsprechend

€y = £ [sin (wt — kry) + sin (wt — kry + y)]
r

= 2—?" cos <I-;—a cos ¢ + %) sin (a)t — kr + -;L) (3)

Wie wir hieraus entnehmen, ist die Amplitude der resultierenden Schwingung richtungsabhéngig.
Soll fiir eine Richtung ¢, maximale Verstidrkung, fir die Gegenrichtung jedoch Ausléschung er-
folgen, so miissen nach (5) die beiden Gleichungen

%cos¢p1+ % =0 (mod ), —% cos @, + %:% (mod ) (6)
erfillt sein. Als Losung dieses Gleichungssystems folgt
™ T
Y = 2 (mod 27), ka cos ¢y = —5 (mod 27). (mn

Ist ¢, = =, so erhdlt man aus (7)

_E 4
Y 5
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Wird von den beiden Dipolen im Abstand a = %nur einer an die Spannungsquelle angeschlossen,

so erregt dieser durch seine Strahlung den zweiten. Dabei tritt gerade die Phasenverschiebung
y = ka = w/2 auf. Ein im Abstand /4 hinter einem stromgespeisten Dipol angebrachter un-
gespeister Dipol wirkt daher als Reflektor.

5.1.4. Das Fernfeld einer langen Stabantenne (Halbwellendipol)

Bestimmen Sie das Fernfeld, das eine 20 cm lange Stabantenne unter der Wellenlinge 2 = 40 cm
aussendet. Die Antenne befindet sich hoch {iber dem Erdboden, so dafl von hier keine Riick-
wirkung erfolgt. Welche Feldstiarke wird in der Entfernung » = 1 km unter dem Winkel & = 45°
gegen die Stabachse gemessen, wenn die Ausgangsleistung P = 1 W betrigt?

Losung

Die Antennenlidnge ist nicht mehr klein gegen die Wellenlénge. Sie wird daher im folgenden mit !
bezeichnet.

Wir zerlegen den Dipol in Elementardipole der Lange dz. Fiir das elektrische Feld, das von einem
dieser Elementardipole ausgeht, erhalten wir nach (5.1.1./14)

—iZyI, sind o

d€y =
¢ 2

—i(ot = k1) dg. (1)

Bezeichnet z den Abstand eines Antennenpunktes vom Antennenmittelpunkt (vgl. Bild 5.6),
so gilt fur die Weglidnge vom Elementardipol dz zum Aufpunkt

r = r(z) = r, — z cos I. (2)

E
z¢0s &
Bild 5.6. Stabantenne

Darin gibt 7y die Entfernung vom Antennenmittelpunkt zum Aufpunkt an. Wir setzen (2) im
Exponenten von (1) ein, wihrend wir im Nenner mit r = r, rechnen. Durch Integration iiber die
Antenne folgt

L
(G I_Z;;%? o —ilwt — kro) f I,(z) e~ikzcosd dz. 3)
0

w|~
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Wir setzen auf der Antenne eine Stromverteilung der Form

Iy(z) = I, cos kz (4)

voraus. Bei dieser Stromverteilung hat die —A—-Antenne an ihren beiden Enden Stromknoten.
(3) kann damit aus 2

e—ikz cos?

Ry (—icos @ cos kz + sin kz) + C. (4a)

f cos kze—ikzcos ¥ dp =

berechnet werden. Fiir den Effektivwert bei der Lange | = L3 folgt nach (1.1./28) aus (3), (4)
und (4a) 2

ZoI
Cett = (Cpless = ﬁ cos (—g— cos 19) . (5)
o

Is; bedeutet die effektive Stromstirke im Antennenmittelpunkt. In der Richtung ¢ = /2 erhélt
man fir die effektive Feldstirke des ungeerdeten Halbwellendipols

Die effektive magnetische Feldkomponente ist durch den Zusammenhang mit dem Wellen-
widerstand gegeben (vgl. 5.1.1./13).
Als Strahlungsleistung ergibt sich

2T T

P= ﬁ;’ @.dU = Of Of CoDess?? sin § A do

kg

cos? (1 cosﬂ) dd
2
_ Zoless f 2 . )

2r sin &
0

Der Strahlungswiderstand ist auf Grund der Beziehung
P = Ryl (8)

definiert. Er ist ebenfalls auf den Strom im Antennenmittelpunkt bezogen.
Die Auswertung des bestimmten Integrals (7) ist auf elementarem Wege nicht méglich. Man erhilt

b 21

cos? (—g— cos 19) " :
—\2 ) g8 = _——"tcos dt = 1,22...

sin ¢
0 0
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Daraus folgt als Strahlungswiderstand des ungeerdeten Halbwellendipols

ki3
~
7z cosz(—;— cos '19)
Re=20 | — 2 ) gs--7320 |
57 ox sin & )
0

Driickt man I; nach (8) durch die Strahlungsleistung P aus, so folgt fiir die Feldstérke in Rich-
tung maximaler Strahlung

P Z
& = = Zo 6a
(€g)ets 7 2w (6a)

Mit den vorgegebenen Zahlen ergibt sich nach (8)

Igy= £ — _I-A = 117 mA.
Ry 73,2

Die elektrische Feldstérke wird somit nach (5) in der Entfernung 1 km unter dem Winkel & = 45°
gleich

120w - 0,117

m cos (0,707 . 900) Vm!= 4,4 2103V m-1,
7T - -0,

(€s)ers =

»

5.1.5. Dipolzeile
Vier gleichphasig erregte Halbwellendipole sind in einer Dipolzeile nach Bild 5.7 angeordnet.
Der Mittelpunktsabstand a zweier benachbarter Dipole ist geringfiigig groBer als die halbe Wellen-

lange, so daBl man zwar mit ¢ = % rechnen kann, jedoch kein Kontakt besteht. Stellen Sie die

Formel fiir die elektrische Feldstirke im Fernfeld auf und vergleichen Sie die Richtcharakteristik
mit der des Elementardipols. Wie groB ist die Leistungsddmpfung gegeniiber dem Maximum
fir eine Strahlung, die unter. dem Winkel 10° gegen die Horizontalebene (d. h. fiir 4 = 80°)

beobachtet wird?
&

s

_4
d~2ms:}

Bild 5.7. Dipolzeile
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Losung

Wir betrachten eine Dipolzeile aus » Halbwellendipolen, die wir von unten nach oben mit » = 1
bis ¥ = n numerieren. Die Phasendifferenz, die ein vom #-ten Dipol ausgehender Strahl gegen
den entsprechenden Strahl des ersten Dipols im Fernfeld hat, ist gleich

vkd=vij-;—cosﬁ=wﬂcosﬂ. (1)

Fur die Stirke des vom »-ten Dipol ausgehenden elektrischen Feldes erhidlt man daraus nach
(5.1.4./3) und (5.1.4./6)

ZoIy cos (% cos 19)

Ey =

e —ilwt—vmcos 1‘})' (2)
27y sin &

Die resultierende Feldstirke ergibt sich durch Summierung iiber sémtliche Dipole. Wir erhalten
far den Effektivwert durch Mittelwertbildung

ZigL 445 cos (% cos 19)

n—1
3 = eivmcos @ |, 3
(C)est 27y sin & nz_:1 ®
In (3) errechnen wir den Absolutwert der Summe geméf
n=l<ein cos 19)v 1 — eirncos & _ / (1 — eimncos 19) (1 — e—inncos 19)
y=0 1 — eimcos @ (1 — eimncos 19) (1 — e—imcos 0)
sin (1;_7: cos 19)
=——. 4)
sin (— cos 19)
2
Hieraus ergibt sich fiir das resultierende Feld
ZoI ot5 cos (—721 cos 0) sin (%T cos 19) 71
— __ “oteff
(Cgless = = o f(n,9). (5)

2y sin & sin (% cos 19)

Fir & = 0 folgt nach der BErNouLLi—1"HosrrraLschen Regel aus (5) wie beim Elementardipol

die Feldstarke Null. Dagegen erhilt man fiir ¢ = %

lim f(n,9) =n bzw. lm (€g)ey = 1 ZoI ot ,
s 2 6)
F

d. h. den n-fachen Wert des Halbwellendipols. Die Feldstirke kann somit durch eine Zeile aus
n Dipolen gegeniiber dem einfachen Dipol auf das n-fache gesteigert werden.



304 5. Hochfrequente Wechselfelder

Unter dem Winkel ¢ = 80°, d. h. 10° gegen das Maximum, erhalten wir

cos (90° cos 80°) sin (360° cos 80°) g 208 15,62° sin 62,5

lg (4, 80°) =1 _
g4 80°) =lg sin 80° sin (90° cos 80°) € Toin 80° sin 15,62°

=0,5801.
Dagegen ergibt sich nach (6)
log f(4, 90°) = log 4 = 0,6021.

Fiir die Leistungsdampfung b folgt daraus nach (4.2./14)

>

b= 101g 2O gp — 9015 Eo00) 4 _ g9y 14907
P(80°%) E4(80°) f(4, 80°)
d.h.

b = 20(0,6021 — 0,5081) dB = 1,9 dB.

Ein einzelner Halbwellendipol hat demgegeniiber nach (5.1.4./8) unter 9 = 80° die Leistungs-
dampfung
b=201g — 28 4p _0,194B.
cos (90° cos 80°)

Die Richtwirkung der Dipolzeile aus vier Dipolen ist also bedeutend besser als die des Halbwellen-
dipols.

5.1.6. Dipolgruppe

Eine Dipolgruppe aus m = 4 parallel zueinander angeordneten Halbwellendipolen wird gleich-
phasig erregt. Der Abstand der Dipole voneinander betridgt 4/2. Untersuchen Sie die Richt-
charakteristik. Wie groB ist die Leistungsddmpfung im Empfanger, wenn die Empfangsantenne
aus der Richtung maximalen Empfangs um A¢ = 10° verdreht wird?

Losung

Wir wihlen die Achsenrichtung der parallelen Dipole als z-Achse, die Verbindungsgerade zwischen
den Dipolen als y-Achse (vgl. Bild 5.8). Der Aufpunkt habe die Kugelkoordinaten 7, ¢, ¢. Ko-
ordinatenanfangspunkt ist der Mittelpunkt des ersten Dipols.

Far die Wegdifferenz zweier paralleler, von gleichwertigen Punkten auf benachbarten Antennen
ausgehenden Strahlen ergibt sich

2
d_—_r-l/rzsinzﬁcosch—}—(rsinz?sinzp——%) ~+ 12 cos? &
Ao . A .
A — r—?smﬁsmgz :—2—sm1951n(p. (1)

Die Phasendifferenz zwischen zwei derartigen Strahlen betrigt

kd = = sin 9 sing. (2)
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Bild 5.8. Dipolgruppe

In gleicher Weise wie bei der Dipolzeile folgt daraus fir das effektive Feld (vgl. 5.1.5./5)

ZiI eyt cos (% cos 29) sin (ﬂg sin & sin qp)

(€s)est = .
sin ¢ sin (——2— sin & sin zp)

Durch die Dipolgruppe erfolgt somit eine Richtwirkung auch in der Horizontalebene.
Fiir ¢ = 0 ergibt sich aus (3) durch Grenziibergang

. (mm . mr
~ sin (— sin 9 sin (p) —sind- ¢
lim g(d,¢) = lim 2 — lim 2 —m
¥=0 =0 [x . ] g0 T .
sin (- sin P sing 5 oin -

Wie aus (3) folgt, strahlt die betrachtete Dipolgruppe am stidrksten in Richtung der z-Achse und
entgegengesetzt dazu, d. h. in die Richtungen ¢ = 0 und ¢ = w. Es erfolgt jedoch auch eine
TC

2

Fur die Lexstuncrsdampfung der Strahlung in Richtung ¢ = 10°, & = 90° erhalten wir relativ
zum Maximum im Falle m = 4

relativ starke Strahlung in die Richtung ¢ =

4 sin (90° sin 10°)

- - dB = 1,7dB.
sin (360° sin 10°)

b=201lg

Sie ist etwas geringer als bei der Dipolzeile.

5.1.7. Der Gewinn einer Dipolebene mit Reflektor

Es soll eine sowohl in der Vertikal- als auch in der Horizontalebene scharf gerichtete raumliche
Strahlung erzeugt werden. Hierzu werden die Funktionen der Dipolzeile mit denen der Dipol-
gruppe kombiniert, indem m = 4 gleiche parallele Dipolzeilen mit je » = 3 Halbwellendipolen
zu einer Dipolebene geschaltet werden. Der Querabstand der Dipolzeilen betrigt 4/2.

920 Schilling, Felder
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Um Strahlung nach nur einer Richtung zu gewéhrleisten, wird hinter der Dipolebene im Ab-
stand A/4 eine zweite Dipolebene angebracht, die nicht gesondert erregt wird.

Bestimmen Sie die Intensitidt und die Feldstirke der Strahlung im Vergleich zu einem einfachen
Halbwellendipol.

Lisung

Die Dipolebene allein verkniipft die Wirkung von Dipolzeile und -gruppe. Es folgt daher nach
(5.1.5./5) und (5.1.6./3)

Zolot5 cos (g— cos ‘19) sin (7—;—‘1 cos 19) sin (7% sin ¢ sin zp)

(Cg)est = - — .
27y sin 9 sin (—2— cos 19) sin (? sin ¢ sin q;)

In der Richtung ¢ = 0 (mod =), ¢ = % erhalten wir durch Grenziibergang

Z,I
(Cg)ess = ;re;f mn. (2)

Der Gewinn g gibt die Intensitdt in Richtung maximaler Strahlung, bezogen auf einen %-Dipol

an. Fiir die Dipolebene aus m gleichen parallelen Dipolzeilen mit je » Halbwellendipolen betragt
der Gewinn im Falle des Querabstandes /2 (vgl. 5.1.4./6)

g = (mn)?. (3)
Ohne Reflektor erhalten wir also im vorliegenden Fall
g=(4-3)%=144.

Durch die im Abstand A/4 hinter der Dipolebene befindliche Reflektoranordnung wird nach 5.1.3.
die Feldstirke in der einen Richtung verdoppelt, in der Gegenrichtung annulliert. Der Gewinn
erh6ht sich damit auf

e (4)

i

mit den vorgegebenen Zahlen also auf 576.
Die Feldstidrke erhoht sich um den Faktor 2mn = 24.

5.1.8. Rahmenantenne

Eine kreisformige Stromschleife hat den Durchmesser 2R = 20 cm. Die effektive Stromstirke
betrigt I.;; = 5 A, die Frequenz ist f = 100 MHz. Wie groB ist die Feldstdarke in 10 km Ent-
fernung? Berechnen Sie den Strahlungswiderstand und die Strahlungsleistung (vgl. Bild 5.9).

Losung

Wir wihlen den Mittelpunkt der Schleife als Koordinatenanfangspunkt, die Schleifenebene als
z,y-Ebene. Der Aufpunkt, in dem sich die Empfangsantenne befindet, erhélt die Cartesischen
Koordinaten z, 0, z, die Kugelkoordinaten r, ¢, 0.



5.1. Das Feld elektrischer und magnetischer Dipole 307

R Bild 5.9. Zur Berechnung des Feldes
einer Rahmenantenne

27 ,
)
(1)

—iw (£7_0_
1] e
o = Moo J 2 ’ de’
® o - R cos ¢’ dg’.

’ gibt den Abstand vom Integrations- zum Aufpunkt, ¢’ die Winkelkoordinate des Integrations-
punktes an. Der Abstand " folgt gemif
7’2 =72 4 R? — 2rR cos ¢’ sin &, (2)
worin  den Winkel zwischen dem Radiusvektor des Aufpunktes und der z-Achse bezeichnet.

Im Falle R < r kénnen wir gendhert

" =17 — Rcos¢ sin 9, %:i(l—:—ﬁcosqysinﬁ) (3)
r r r
schreiben. Damit folgt aus (1)
27T
A, = Zoj E‘ e—i(wt—kr) f elkRcos¢’sind o5 ¢’ do’. 4)
T
0
mit k = w/c, = 2/, (Brechzahl n = 1).
Fiir das Integral ergibt sich unter der Voraussetzung 2nR << 4
(5)

2m
f (1 + ikR’ cos ¢’ sin &) cos ¢” dg” = 1 kR sin 9.

0

20%
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Somit erhédlt man wegen

tir die Komponente 3, des (elektrischen) Herrzschen Vektors

3, = l/,u_o R2I, e~i@t—Fkn) sin 8 ™
& 4r

Die anderen Komponenten von 3 sind gleich Null. Aus 3 ergibt sich nach (5.1./29) und (5.1./30)
das Fernfeld

n2l,R? sin § e~i«t—F7)

=— ) 8

D I " (8)
- 72 R? /g sin & e=iwt—¥D) o

6 = =28 Vﬂ — ]/t g, ©)
& r &

Wie man sich durch Nachrechnen iiberzeugt, gelangt man zu diesen Feldgréfen auch, wenn man
nach (5.1./35) itber das magnetische Moment der Stromschleife den magnetischen HerTzschen
Vektor einfithrt und die Feldgrofien nach (5.1./36) und (5.1./37) berechnet.

Die Effektivwerte erhalten wir aus (9):

2R2 gin §
(D8)est = EA‘;‘ % Loty (Crlest = Zo(Do)eit- (10)

Aus dem Vergleich mit (5.1.1./16) und (5.1.1./17) entnehmen wir: Setzt man in (10)

2 P2
2“;R 2T 4 (4 Rahmenfliche), (11)
(Ol A

h =

so stimmen sowohl die beiden elektrischen als auch die beiden magnetischen Komponenten
iberein. Bei der Rahmenantenne haben die magnetischen Feldlinien jedoch im Gegensatz zum
Feld des elektrischen Dipols die Richtung der Léngenkreise, wihrend die elektrischen Feldlinien
in Richtung der Breitenkreise verlaufen. € und $ haben also ihre Rolle getauscht.

Bei kleinen Querschnittsabmessungen kann (11) auf beliebige Rahmenquerschnittflichen 4 er-
weitert werden. Zur Berechnung der Strahlungsleistung setzen wir (11) in (5.1.1./20) ein und
erhalten

_ 8nZ,R*

32t

P

3
Ies? bzw. P = §;_r_ Z

v

A0, (12)

Der Strahlungswiderstand der Rahmenantenne ist also

8ndR? 8w A2Z,
o Zy bzw. Rg = an (13)

Ry =

Mit den vorgegebenen Zahlen folgt bei optimaler Ausrichtung

m2.01° 1
3100

(Do)est = *5Am =548 10" Am,

Cp)ess = 120m - 5,48 - 1076 Vm—1 = 2,07 - 102 V m1.
f
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Fiir die Strahlungsleistung erhalten wir
4

5. 1207 . 104
P = 8- 120rm - 1077 25 W = 9,49 W.
3.3

Der Strahlungswiderstand betrigt

Ry = 0,38Q).

Bei » Windungen vergréBern sich 5 und €, um den Faktor #, P um den Faktor n®

As.1.2.

A5.1.8%

A5.1.9.%

A 5.1.10.

A5.1.11.

As.1.12.

A5.1.13.

Aufgaben

Wie groB ist der Strahlungswiderstand eines Dipols von 25 cm Lénge, wenn eine
Strahlung der Wellenlinge 2 m ausgesandt wird? Der Dipol befindet sich in gro-
Ber Entfernung von der Erde.

Berechnen Sie die effektive Feldstirke in der Horizontalebene eines Dipols der
Linge h =20cm; I; =1 A, A= 1,50 m. Der Dipol befindet sich in groBer
Entfernung von der Erde, der Aufpunkt im Abstand 100 m vom Dipol.

Wie groB ist die effektive Stromstdrke in einem Sender der Frequenz 500 kHz,
der eine Strahlungsleistung von 0,15 W abgibt, wenn die Linge der Vertikalan-
tenne 60 cm betrigt? Der Sender befindet sich in groBer Entfernung von der Erde.
Welche Strahlungsleistung hat ein 20 m hoher Sender, der auf der Frequenz
f = 1,56 MHz sendet und in dem ein Strom der Stirke I.; = 20 A flieBt?
Bestimmen Sie das Feld einer Horizontalantenne, die unmittelbar iiber dem Erd-
boden angebracht ist.

Stellen Sie die Formel auf fiir die elektrische Feldstirke eines Dipols der Lénge
I = J in der Entfernung 7, unter dem Winkel ¢ gegen die Achse (r,>> 4). 1
Stellen Sie die Formel fiir die elelktrische Feldstirke eines Dipols der Linge [ =n —
(n=1,2,3,...) auf. 2
Wie groB ist der Strahlungswiderstand einer auf die Erde aufgesetzten Vertikal-

antenne der Lénge I = —i— ? Der Strom hat am Fupunkt sein Maximum und sinkt

an der Spitze nach einem Cosinusgesetz auf Null ab.

Berechnen Sie den Strahlungswiderstand einer kurzen; auf die Erde aufgesetzten
Vertikalantenne der Lénge h. Der Strom hat an der Spitze die Stidrke Null und
nimmt zur Mitte hin linear zu.

Berechnen Sie die Leistungsdémpfung bei einer Dipolzeile aus 20 Halbwellendipolen
(Abstand 4/2), wenn der Empfanger aus der Hauptstrahlungsrichtung in die Rich-
tung & = 89° gedreht wird.

Unter welchem Winkel ¢ gegen die Achse erfolgt bei einer Dipolzeile aus n Halb-
wellendipolen (Abstand A/2) keine Strahlung? Untersuchen Sie speziell #n = 6.
Geben Sie die Leistungsddmpfung einer Dipolebene aus 20 Zeilen und 20 Gruppen
in der Richtung ¢ = 89°, ¢ = 1° an.

Ein geerdeter elektrischer Dipol mit dem Strahlungswiderstand Rg = 8€) wird
mit dem Strom Iz = 0,3 A gespeist. Welche elektrische und welche magnetische
Feldstédrke werden in 10 km Entfernung in der Horizontalebene ¢ = /2 gemessen?
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A5.1.14. Wie groB sind der Strahlungswiderstand und die Strahlungsleistung einer kreis-
férmigen Rahmenantenne mit dem Durchmesser 2R = 50 cm, wenn diese mit dem
Strom I;; = 4 A gespeist wird? Die Frequenz betrigt f = 20 MHz.

A5.1.15. Eine Antenne hat den Gewinn g = 120. Welche Verstidrkung in dB tritt hierdurch

gegeniiber einem —f—-Dipol ein? Wie groB sind die Spannungs- und die Leistungs-
verstdrkung?

A5.1.16. Eine Antenne hat den Gewinn g = 120. Mit ihr als Empfangsantenne wird die
Feldstarke G =1,5-1073V m—! gemessen. Bei Verwendung einer zweiten
Antenne mi3t man die Feldstirke Cq; = 2,7 - 10~ V. m~*. Wie groB ist der Gewinn
dieser Antenne?

5.2. Ausstrahlung und Empfang elektromagnetischer Wellen

E Einfiihrung

Die Sendeanlage mit ihrer Sendeantenne und die Empfangsanlage mit ihrer Emp-
fangsantenne bilden ein Ubertragungssystem. Sende- und Empfangsantenne mit dem
dazwischenliegenden Feld konnen als Vierpol aufgefalt werden, an dem eingangs-
seitig der Sender, ausgangsseitig der Empféanger angeschlossen sind. Das von der
Sendeantenne ausgestrahlte Feld erzeugt zwischen der Empfangsantenne und der
Erde eine Wechselspannung, die auf der Antenne zu einem elektrischen Strom fiihrt.
Grundlage fir die physikalische Behandlung der GesetzméaBigkeiten beim Empfang
elektromagnetischer Wellen ist das Reziprozititstheorem. Zu seiner Erkldrung geht
man von einem Sender am Ort S aus, der eine Sendeleistung P ausstrahlt. Hierdurch
wird in der Empfangsantenne am Ort A die Spannung U, induziert. Wird die gleiche
Sendeleistung P am Ort A iiber die hier befindliche Antenne ausgestrahlt, so induziert
diese in der Antenne bei S ebenfalls die Spannung U,. Sender und Empfénger sind
also zueinander reziprok: Sie kénnen miteinander vertauscht werden, ohne daf sich
in der Wechselwirkung zwischen beiden Orten etwas dndert.

Aus dem Reziprozitiatstheorem folgt, dall der Gewinn g einer Antenne unabhéngig
davon ist, ob diese fiir die Ausstrahlung oder fiir den Empfang des Feldes verwendet
wird. '

Die von der Antenne ausgehenden Wellen werden durch die Absorption geddmpft.
Hierdurch tritt gegeniiber den in 5.1. fiir verlustfreie Wellenausbreitung abgeleiteten
Formeln ein zusétzlicher Faktor

e (1)

auf. Bei der Bodenwelle, die sich entlang der Erdoberfliche ausbreitet, hdngt 5 im
wesentlichen vom Boden und von der Frequenz ab. In erster Naherung kann man
schreiben
B
- —=. (2)
ﬁ ’;L

-~
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Mittlere MeBwerte fiir B bei verschiedenen Béden sind in Tabelle 9 zusammen-
gestellt. Bei idealleitender Erde ist § gleich Null, wenn die Wellenausbreitung im
Vakuum erfolgt. )

Dezimeter- und Zentimeterwellen werden im allgemeinen nicht als Bodenwellen ab-
gestrahlt. Sie breiten sich, auf ein bestimmtes Ziel gerichtet, durch den freien Raum
aus. IThre Dampfungskonstante hiangt daher nicht vom Boden, sondern von der Atmo-
sphére ab. Melwerte hieriiber gehen aus Tabelle 10 hervor.

Tabelle 9. Mittlere MeBwerte fir B bei der Dampfung elektromagnetischer Wellen

Boden B
in10¢ Npm~1/2  in 10-¢dB m1/2

Meerwasser 50 430
feuchter Boden 290 2500
trockener Boden 900 7800
GroBstadtgeldnde 2100 18000

Tabelle 10. Mittlere MeBwerte iiber die Ddmpfung von Zentimeterwellen
durch die Atmosphére

B beil=3cm f bei A = 6 cm
in10*Npm=' in10%dBm! in 10 Npm= in 10-8dB m—*

durch Regen 22 mm/h 92 800 6 50
Dunst tiber dem Meer 16 140 1 9
iber Festland 1 9 — —

(mittl. Breiten)

Eine Vertikalantenne der Lénge I = hg, auf der die elektrische Stromstédrke I.;;
in jedem Punkt gleich ist, erzeugt nach (5.1.2./1) unter Beriicksichtigung der Damp-
fung im Abstand r die effektive elektrische Feldstidrke (vgl. 1.1./29)

h,
Cots = Zolest _ﬂ.% e, (3)

Die hierdurch zwischen der Empfangsantenne und der Erde hervorgerufene Span-
nung kann in erster Ndherung unter der Voraussetzung bestimmt werden, daff der
Strom auch auf der Empfangsantenne in jedem Punkt gleich ist. Diese Voraussetzung
ist fiir 2 <€ 1 immer gut erfillt.

Stehen die elektrischen Feldlinien und die Empfangsantenne senkrecht zur Erdober-
fliche, so erhdlt man

hE
hsh
Usnt = [ Cegt dz = Corh = ZoLess %3 e, 4)
0
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Darin bezeichnet Ay die Hohe der Empfangsantenne.

Beispiel 25
Eine Vertikalantenne der Hohe hg = 9 m sende auf der Wellenlinge A = 380 m. Die Strom-
stirke betrage I.;; = 20 A. Der Abstand zwischen dem Sende- und dem Empfangsort betrage
r = 150 km. Dazwischen befinde sich trockener Boden (B = 900 - 10-¢ Np m~1/2), Fiir § folgt
aus (2)
900 - 106
=———Npm?!=46-10°Npm.
V380 © P

Als Feldstdrke am Empfangsort ergibt sich aus (3)

9

— 120720 ———
(Codets = 120720 56750 108

exp (—46-1076-.1,5-105) Vm—1=1,2-10Vm'.

Die Antennenspannung wird nach (4) fir hg = 2,5m
Upng=1,2-10"°.2,5Vm™ =3,0-10°V.

Bei Antennen, deren Lénge gegen die Wellenldnge nicht zu vernachlissigen ist, hat
man die Stromverteilung zu bertlicksichtigen. Wegen des Reziprozitétstheorems
braucht man bei der Untersuchung iiber die Wechselwirkung zwischen der Antenne
und dem Feld keinen Unterschied zwischen Sende- und Empfangsantenne zu machen.
Man kann also das von einer Antenne abgestrahlte Feld betrachten und daraus Riick-
schliisse auf den Empfang ziehen.

Um das von einer vorgegebenen Antenne erzeugte AuBenfeld genédhert zu berechnen,
wird diese durch ein Stromelement der Lénge h = h.; ersetzt, in dem die Strom-
stdrke konstant ist. Auf der Antenne nimmt man eine Stromverteilung

L¢(2) = I, cos oz (5)

an. Diese Stromverteilung wird auch bei einer Vertikalantenne vorausgesetzt, deren
Fulipunkt sich nicht an der Erdoberfliche, sondern in der Hohe a befindet (vgl.
Bild 2.8). Man geht also von einer Stromverteilung aus, als erfolge die Speisung
vom Erdboden aus iiber ein strahlungsloses Kabel der Lénge «. Diese Festlegung
ist besonders fiur beschwerte Antennen zweckmédfBig. Bei ihnen ist zur Kopplung
oder Abstimmung am FuBpunkt ein Kondensator oder eine Spule eingeschaltet (vgl.
5.2.2./6).

Das Stromelement wird durch die Gleichung

a+1 a-+1
Igih + [ Igs(z) dz = I [ cos az dz (6)
a a

definiert. Den konstanten Strom I.;; des Stromelementes setzt man gleich dem
Effektivwert des vorgegebenen Antennenstroms im Speisepunkt. Nach (5) besteht
also die Beziehung

Ios; = Lgi(a) = I, cos aax. (7)
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Aus (6) folgt

Ioiih = lo— [sin a(e + I) — sin xa], (8)
09

27 . . .
woraus sich mit x = TT fiir die effektive Antennenhohe

(a‘—l)—sin%-Tg

T

sin 7 7

h= 2 2ma ©)
COS ——

A

o
a

ergibt.
Beispiel 26

Bei einer kurzen Antenne, deren geometrische Lange ! klein gegen die Wellenldnge 4 ist, sind
effektive Hohe 2 und geometrische Linge ! gendhert gleich. Aus (9) ergibt sich bei Anwendung
der Additionstheoreme

Beispiel 27

Fir eine Vertikalantenne mit 'dem FuBpunkt in der Héhe @ = 50 cm und der Linge I =8 m
erhidlt man nach (9) bei der Wellenldnge 4 = 30 m

. 8,5
sin
30 30

I cos 0.5 360°
30

360° — sin 9.5 360° N
30

h = m = 4,19 m.

Als Strahlungswiderstand dieser Antenne folgt nach (5.1.2./4)
2
Ry = 160r2 419 Q =308Q.
30
Beispiel 28
Bei der geerdeten Vertikalantenne mit der Lénge I = ji— folgt

27
g = 7" (9a)

Ein %-Strahler im freien Raum kann derart gedeutet werden, daB zwei %-Strahler spiegelbildlich

zueinander stehen. Die Stromverteilung ist, von den Dipolenden aus betrachtet, durch ein Cosinus-
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gesetz gegeben. Daraus ergibt sich nach (9a), wenn man beachtet, daB in den gesamten Raum
gestrahlt wird,

A A
hijjg =2 — =—.
a2 3 (9b)

™ T

Beim ‘—i- -Dipol nach (9a) hat man den Strahlungswiderstand nach (5.1.2./3) zu berechnen:

4 hajg\?
(Bg)ag = 3 7, (%) =400.

Dagegen folgt beim %—-Strahler nach (5.1.1./21) und (9b)

2 hyo\2
(Rg)z/2 = 3 g (%) =80Q).

Dieser Wert liegt um etwa 109, tiber dem genaueren Wert nach (5.1.4./9).

Beispiel 29

Bei der Rahmenantenne aus » Windungen mit der Empfangsfliche 4 folgt nach (5.1.8./11),
wenn die Rahmenabmessungen klein gegen /4 sind,

Bei der drahtlosen Ubertragung erzeugt man in der Sendestation die Trigerschwin-
gung Uy = U,y sin of und strahlt diese als elektromagnetische Welle aus. Die Trager-
schwingung erfolgt mit hoher Frequenz f (f = fr Tréger- oder Sendefrequenz, o = 2=f
Kreisfrequenz der Tragerschwingung). Auf die Tréagerschwingung wird das Nutz-
signal Uy = Uyy sin wyt moduliert, indem z. B. die Amplitude, die Phase oder die
Frequenz periodisch mit der Kreisfrequenz wy verdndert werden. Die Frequenz fy;
des Nutzsignals mull um GréBenordnungen niedriger als die Trigerfrequenz f sein,
wenn eine einwandfreie Ubertragung erfolgen soll. f;; wird als Modulationsfrequenz
definiert.

Von den verschiedenen Modulationen wird in der Nachrichtentechnik am héufigsten
die Amplitudenmodulation angewandt. Sie fithrt zu Schwingungen der Form

U = Uyl + m sin wyt) sin wt. (10)

Der Faktor m definiert den Modulationsgrad.

Eine amplitudenmodulierte Schwingung kann z. B. durch ein Mikrofon erzeugt
werden, das die Leitfahigkeit des Sendekreises, um einen Mittelwert schwankend,
periodisch verdndert (vgl. Bild 5.14).

Im allgemeinen besteht das Nutzsignal aus der Uberlagerung mehrerer Schwingungen
mit verschiedener Frequenz und verschiedener Amplitude. Der auf die Tréger-
frequenz des Senders abgestimmte Empfinger iiberfiihrt das durch den Modulations-
vorgang frequenzverschobene Nutzsignal wieder in den urspriinglichen Frequenz-
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bereich (Demodulation). Zur einwandfreien Ubertragung miissen bei der Demodu-
lation Schwingungen erzeugt werden, deren Frequenzen mit den entsprechenden
Frequenzen des Nutzsignals tibereinstimmen und deren Amplituden denen des Nutz-
signals proportional sind. Bei der amplitudenmodulierten Schwingung kann die De-
modulation grundsétzlich mit den gleichen Gerdten wie die Modulation erfolgen,
z. B. mit einem Mikrofon.

Der Empfinger setzt sich im Prinzip aus dem fir die Abstimmung erforderlichen
Resonanzschwingkreis und dem Verstirkervierpol zusammen. Die Antenne stellt die
Spannungsquelle des Empféangers dar. Thr Widerstand R ,,; = R; kann als Innen-
widerstand der Spannungsquelle aufgefalit werden. Der AufBenwiderstand R, = R
wird mafgeblich durch den Widerstand des Resonatorschwingkreises bestimmt. Fiir
die am Verstérkervierpol liegende Spannung Uy erhdlt man nach (4.1.2./1) (vgl.
Bild 5.10)

R
Uy = ————— Uppt. 11
' Rame + R A ab
ﬂAn/
~0
Yant 7 Uy
| Bild 5.10. Prinzipschaltbild der
! - Empfangsanlage
Antenne Resonanz- Verstirker-
schwing-  vierpo!

kreis

Bei der Abstimmung des Resonatorkreises verschwinden in (11) die Blindkompo-
nenten. Hierdurch 148t sich erreichen, dafl bei Resonanz die am Verstérker liegende
Spannung Uy ihrem Betrag nach die Antennenspannung U,,, iibersteigt. Der
Quotient

Uy
UAnt

wird als Spannungsiiberhohung definiert.

Fiir den Empfang des Nutzsignals kommt nur den auf die Tragerwelle modulierten
Amplitudenschwankungen Bedeutung zu. Sie verursachen im Empfinger Spannungs-
schwankungen um einen Mittelwert. Nach (10) sind die Spannungsschwankungen
durch

v = (12)

AU = mU, sin wyt (13)

gegeben. Bezeichnet U,,, die vom Sender hervorgerufene effektive Antennenspan-
nung, so kann also bei einem Modulationsgrad m hiervon nur der Anteil m fiir den
Empfang des Signals genutzt werden. Infolge der nach (11) bzw. (12) bei der Ab-
stimmung auftretenden Spannungsiitberhhung erhédlt man somit fiir die am Ver-
stéarkervierpol liegende Nutzspannung

Uy = molU gy - (14)
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Die fiir eine einwandfreie Ubertragung erforderliche Nutzspannung wird durch das
Rauschen bestimmt. Es findet seine Ursache in statistischen Schwankungen bei der
Verteilung der Elektronen.

Das thermische Rauschen tritt bei jedem Wirkwiderstand R auf. Es fithrt zu unregel-
méfigen Spannungsschwankungen, deren Effektivwert mit Uy bezeichnet wird.
Nach NyQuisT rauscht jeder Wirkwiderstand R mit der mittleren Leistung

P =4IcTAf.T (15)

Darin bezeichnet & = 1,38 - 10-23 J K-1 die BoLTzmMaNN-Konstante, 7' die thermo-
dynamische Temperatur (absolute Temperatur), Af die Bandbreite des Frequenz-
bereiches. Blindwiderstédnde liefern keinen Beitrag zur Rauschleistung.

In den Verstdrkern treten spezielle, von der Physik des Verstédrkers abhéngige
Rauscheffekte auf. Das Rauschen von Verstdrkerrohren denkt man durch einen
mit dem Wirkwiderstand R des Eingangskreises in Reihe liegenden Widerstand Ry
entstanden, der als #dquivalenter Rauschwiderstand bezeichnet wird. B und Ry
addieren sich zum Rauschwiderstand Ry (vgl. Bild 5.11):

Ry = R + R,.

Der dquivalente Rauschwiderstand Rj ist fiir Zimmertemperatur definiert. Fir die
in Gebrauch befindlichen Rdohren liegen die Rauschwiderstdnde zwischen 0,5 kQ
und 100 kQ.

Bild 5.11. Aquivalenter Rauschwiderstand Ry
einer Verstdrkerrohre
HB Heizbatterie, K Katode, A Anode, G Gitter

Aus der Verkniipfung zwischen Leistung und Spannung folgt nach (15) fiir die
Rauschspannung des Empfingers

Ur = YprRg = V4kT Af Ry - (16)

Beispiel 30

Der Resonanzwiderstand eines Mittelwellenempfiangers mit Réhrenverstirkung betragt 150 k(Q,
der dquivalente Rauschwiderstand der Rohre R; = 70 k(). Die Bandbreite ist gleich Af = 9 kHz.
Hieraus ergibt sich bei Zimmertemperatur 7' = 288 K

Rp, = (150 + 70) kQ = 220 kO

und daraus nach (16) fir die Rauschspannung

Ugp = V4-1,38.10-23.288.9.10°.220-10°V = 5,6 - 10-8 V..

Das Verhiltnis zwischen der Nutzleistung P und der Rauschleistung p bezeichnet
man als Storabstand o = P/p.
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Allgemein wird zur Kennzeichnung des Rauschverhaltens eines Vierpols insbesondere
bei Transistoren die Rausehzahl F eingefiihrt. Sie gibt das Verhéltnis zwischen dem
Storabstand am Eingang des Vierpols und dem Stérabstand am Ausgang an:

__ Eingangsstérabstand  Pg/ps _ 0g

= = = 17
Ausgangsstérabstand  Pu/pa  oa 1"

Darin bedeuten Py bzw. py die von der Signalquelle am Eingang des Vierpols an-
gebotene Nutz- bzw. Rauschleistung. P, und p, geben die Nutz- bzw. Rausch-
leistung am Vierpolausgang an. Bezeichnet Vi die Leistungsverstdrkung im Emp-
fanger, so besteht zwischen den Nutzleistungen die Beziehung

PA: VLPE‘ (18)

Dagegen hat man fiir den Zusammenhang zwischen den Rauschleistungen am Aus-
gang und am Eingang zu schreiben

Ps = Vips + pz. (19)

Darin bedeutet pz die im Empfénger entstehende Rauschleistung. Setzt man (18)
in (17) ein, so folgt
Py/pe Pa
F = — = . 20
ViPe/pa  Vipe (20)

Durch Umformung entsteht hieraus

| pa —FVips | (21)

Durch den Vierpol mit der Rauschzahl F und der Leistungsverstirkung Vi wird
die Rauschleistung somit nicht nur um den Faktor Vi, sondern um den Faktor FVy,
vergréfert. Der Vierpol wirkt also auf das Eigenrauschen derart, als wiirde nicht
nur die Rauschleistung pg, sondern die um den Faktor F vergroflerte Rauschleistung
Fpg angeboten. Setzt man voraus, daf die von der Umgebung in den Empféanger
gelangende Rauschleistung zu vernachléssigen ist, so kann fiir die im Empfénger
mit angeschlossenem Verstérker auftretende Rauschleistung geschrieben werden:

pp = 4FET Af. (22)
Die Rauschspannung wird nach (22) gleich ‘
Uy = J4FkT Af R, (23)

wobei R den Resonanzwiderstand angibt.
In den Tabellenwerken iiber Transistoren werden die Rauschzahl und die Leistungs-
verstdrkung allgemein in dB angegeben. Dabei definiert man

|ﬁ:101gF, 7L=101g 7y |. (24)

Tabelle 11 qnthéilt die Rauschzahl fiir verschiedene Transistoren.
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Die Forderungen an die Qualitit einer Ubertragung beziehen sich auf den Stor-
abstand o als Verhéltnis zwischen der am Eingang liegenden Nutzleistung Py = Py
und der Rauschleistung pg = pg im Empfinger. Nach (14) und (22) bzw. (23) folgt
hierfir bei einem Empfianger mit der Rauschzahl F und dem Resonanzwiderstand R

Py m**UL,
= o T AFET AR | (25)

Der Stérabstand § = 101g o wird ebenfalls in dB angegeben. Tabelle 12 enthalt
Daten iiber Frequenzen, Bandbreite und Stérabstand bei verschiedenen Uber-
tragungsformen. In den Tabellen 13 und 14 sind Rauschzahlen und Stérabstédnde
zusammengestellt.

Tabelle 11. Rauschzahlen von Transistoren

Transistor Rauschzahl F in dB Bemerkung
SC 111 8 typ.
SC 112 5 max.
SC 207 5,6 typ. f = 1 kHz, Af = 850 kHz
8 max
SF 127 4,5 Af =1 kHz
SF 132 7 f= 1kHz
3,5 /= 10 kHz
2,5 /=100 kHz
6 f= 50 MHz
SS 101 15 max.
6 typ
GC 116 6 typ. f = 1 kHz, 4f = 1 kHz
20 max.
GS 109 25 max.
GS 121 25 max.
P Probleme
5.2.1. Widerstand einer Antenne im Speisepunkt

Eine geerdete Vertikalantenne (vgl. 2.1.7.) der Lange I = 15 cm mit dem Durchmesser 27y = 1 cm
wird am FuBpunkt durch einen Generator der Frequenz f = 108 Hz gespeist. Berechnen Sie den
Widerstand im Speisepunkt. Die ohmschen Verluste seien gegen den Strahlungswiderstand zu
vernachlassigen.



5.2. Ausstrahlung und Empfang elektromagnetischer Wellen

319

Tabelle 12. Frequenzbereich und mittlere Werte fiir Bandbreite und Stérabstand

bei verschiedenen Ubertragungsformen

Bezeichnung Tragerfrequenzbereich Bandbreite Storabstand
Af @

in MHz in kHz in dB
Telegraphie 0,03---300 0,1.--1,5 4...16
Telephonie 0,03---300 0,3---3 13.--33
Rundfunk:
Langwelle 0,15-..0,285 bis 9,0 30
Mittelwelle 0,535---1,605 bis 9,0 40
Kurzwelle 5,95-.-26,1 10 30
UKW 20---500 bis 400 40---50
Fernsehen:
Bild 30---100 ~17,0 42...57
Ton 100---300

300---1000 ~7,0 18...35

Tabelle 13. Rauschzahlen fiir Funkempfianger

Bezeichnung F

in dB
Telephonie-Funkempiénger
im festen Funkdienst 1,6.--30 MHz 4...10

im beweglichen Funkdienst

30---300 MHz 8---11

Telegraphie-Empfinger 5---10
Rundfunkempfanger — Kurz- und Mittelwelle 6..-21

UKW 8---26
Fernsehempfinger — Bild 5-..14

Ton 6---13
Tabelle 14. Stérabstdnde
Qualitdt Leistungs- Spannungs- 0

verhéltnis verhédltnis indB

Grenze der Wahrnehmbarkeit 1 1 0
Grenze der Sprachverstdndlichkeit 10 3,2 10
Ausreichende Musikqualitat 1000 32 30
Ausreichende Fernsehqualitit 10000 100 40
Einwandfreie Qualitét
bei zwei Gesprachen 1000000 1000 60
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Losung

Um moglichst einfache Formeln zu erhalten, wird die Vertikalantenne mit ihrem Spiegelbild in
erster Naherung als Leitungssystem mit konstantem Wellenwiderstand behandelt. Obgleich diese
Auffassung nur eine sehr grobe Naherung darstellt, liefert sie fiir die Praxis brauchbare Er-
gebnisse.

An der Spitze der Vertikalantenne flieBt kein Strom. Es liegt somit ein leerlaufendes Leitungs-
system vor, d.h., die Leitung ist mit einem unendlich groBen Widerstand abgeschlossen. Fur
den Eingangswiderstand am FuBpunkt erhalten wir nach (4.4/14)

Rg = 3 coth yl. (1)
v berechnen wir nach (4.4./4) unter der Voraussetzung, daf die Ableitung G’ verschwindet und

dafB auch der Widerstandsbelag R’, in den der Strahlungswiderstand eingeht, nur kleine Werte
annimmt. Es folgt

y=ia+f=V(R +iol)ieC =ieI'C (1—iR ) @)
2 Lo,
bzw.
VIO 2, g B/ _E 3
r=o e (T, ®)
Darin bedeutet
L
7z = '57 (4)

den Realteil des Wellenwiderstandes 3 der Vertikalantenne. Der imaginére Anteil des Wellen-
widerstandes wird vernachléssigt. Setzen wir (4) und (2) in (1) ein, so folgt fir f < «,

cos ool + 1 fl sin ol

Rg=Zcoth[(ia +p) 1] =2

i sin ol ’
d. h. in Verbindung mit (3)

Rg = —iZ cot ol + E‘)—l (5)

Die GroBe R’ dl kennzeichnet den Strahlungswiderstand eines kleinen Leiterstiicks der Lange dl.
Bei der geerdeten Vertikalantenne ist nach (5.1.2./3) der Strahlungswiderstand gleich

4 A
By = = nZy— (1< Z). 6
ST T (<10) ©)

Daraus ergibt sich fiir die gesuchte Grofe

1
ZE——Z:—TCZO'TZRS. (7)
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Bei Antennen, deren Lénge oberhalb /10 liegt, ist die Stromverteilung zu berticksichtigen.
Man schreibt daher anstelle von (7)
Rl
2

h?
z, (8)

4
=—rZ

g 0
ersetzt also die geometrische Linge nach (5.2./9) durch die effektive Hohe A.

Den Wellenwiderstand Z der Vertikalantenne errechnen wir genéhert aus der Kapazitét.
Nach 2.1.7. ist diese gleich

In

V§1‘0

Die Antenne kann mit ihrem Spiegelbild in erster Ndherung als Leitungssystem aufgefait werden,
wenn man in (9) den Ausdruck In I/ry als langsam verédnderlich gegen ! ansieht. Fiir den Kapazitéts-
belag folgt damit aus (9)

2me,

1

VE’; To

¢ = (10)

In

Hieraus ergibt sich als Wellenwiderstand der geerdeten Vertikalantenne

Veokto Zy l

7 =" =2In . (11)
(04 21 V:?;ro

Fir den Eingangswiderstand am FuBpunkt der geerdeten Vertikalantenne folgt somit in erster
Néherung

Ry = —iZ cot 27”l + Rs, (12)

wobei Z aus (11), Rg aus (8) hervorgeht.
Mit den vorgegebenen Zahlen erhalten wir aus (11) und (12)

0,15 cot 218 36000 — 171 .3,08Q = 5270Q.

¥3.5-10-3 3,00

Die etfektive Antennenhohe ist nach (5.2./9) gleich

Z = 601n

3’—0(—) sin &E . 360° em = 14,8 cm.
2r 3,00

h =

Fiir den Strahlungswiderstand ergibt sich nach (8) Ry = 3,8(). Somit folgt als FuBpunktwider-
stand der Vertikalantenne Ry = (3,8 — i 527)Q.

21 Schilling, Felder
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5.2.2. Verkiirzung und Verldngerung einer Vertikalantenne
durch eingeschaltete Spulen und Kondensatoren

Eine Vertikalantenne der Linge ! = 15 m mit dem Wellenwiderstand Z = 300Q ist iiber eine
Spule der Induktivitdt L = 10 uH an den Empfénger gekoppelt. Zur Abstimmung wird ein Dreh-
kondensator eingeschaltet (vgl. Bild 5.12). Berechnen Sie die erforderliche Kapazitdt des Kon-
densators bei der Resonanzabstimmung auf eine Welle der Linge 4 = 75 m. Welche effektive
Hohe besitzt die Antenne bei Resonanz?

O
[m/éf unger g Bild 5.12. Schaltung zur induktiven
Kopplung der Antenne an den
? Empfinger mit Drehkondensator
I zur Abstimmung

Losung

Nach (5.2.1./12) ist der Eingangswiderstand der Vertikalantenne gleich

2l

EﬁEz—iZcotT—,LRs. (1)

Der Kondensator und die Spule sind zur Antenne in Reihe geschaltet. Fiir den gesamten Wider-
stand erhalten wir somit

‘:R:—iZcot—Z%l—i-iwL—i + Rg. (2)

1
wC
Resonanz liegt vor, wenn der Imaginirteil verschwindet, d. h. fur ® = Rg. Dafar muB die ein-
geschaltete Kapazitit gleich

0= ! (3)

® <wL — Z cot, 2——?)

sein. Mit den vorgegebenen Zahlen folgt

)
C = ! F=2,59.10"1°F.

94108 (4 - 108 - 10 - 10-° — 300 cot % . 360°>

Durch die vorgegebene Spule und den Kondensator mit der berechneten Kapazitéat erfolgt schein-
bar eine Verlingerung der Antenne auf 1/4. Eine im FuBpunkt eingeschaltete Spule wirkt nach (2)
scheinbar als Verlingerung, ein Kondensator als Verkiirzung der Antenne. Diese scheinbare
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Léngenveranderung 4! kann auf Grund der Gleichung

< 97,..
_Zcotz__ﬂl £+ oL — i — —Zcot'—(lﬂ
A wC

(4)
definiert werden.

Im allgemeinen interessiert der Resonanzfall. Fiir diesen verschwindet der Ausdruck (4), d. h.,
die eingeschalteten Spulen und Kondensatoren wirken im Resonanzfall gerade so, als sei die
Lénge der Antenne zusammen mit der Verlingerung gleich A/4:

A
Al+1= =, 5
B (5)

An der Spitze der Vertikalantenne muB sich ein Stromknoten befinden. Diese Stromverteilung
ergibt sich nach (5.2./5), wenn man

A
=Al= — —1]
a=4a4 < (6)

setzt. Bezliglich der Stromverteilung auf der vorgegebenen, auf Resonanz abgestimmten Vertikal-
antenne hat man also so zu rechnen, als befinde sich der FuBpunktin der Hohe @, und die Antenne
erstrecke sich von z = a bis z = /4.

Im vorgegebenen Fall ist nach (6)
a = (18,75 — 15,00) m = 3,75 m.

Daraus folgt nach (5.2./9) die effektive Hohe

. 2m-3,75
75 LT T
h=— m = 8,68 m.
2m 2r - 3,75
cos ——
75
5.2.3. Schwingkreis mit induktiver Kopplung

Eine Vertikalantenne ist tiber einen Transformator an den Schwingkreis des Empfiangers ge-
koppelt (vgl. Bild 5.13). Der Kopplungsfaktor ist ¥ = 0,04. Als Antenne wird ein zylindrischer
Stab der Lange ! = 3,50 m verwendet, dessen Durchmesser 27, = 5 mm betrigt. Der Verlust-
widerstand in der Antenne hat die GréBe 3Q, die Induktivitidt der Spule auf der Antennenseite

R
/ WU Bild 5.13. Empfangskreis mit induktiver
‘:ﬁ o7 Kopplung an die Antenne



324 5. Hochfrequente Wechselfelder

ist gleich L, = 450 pH. Empféangerseitig betrigt die Induktivitdt der Spule L = 250 pH, der
ohmsche Widerstand R = 30Q. Es wird eine Sendung der Frequenz f = 10 Hz empfangen.
Berechnen Sie die Spannungsiiberhéhung.

Losung

Wir fassen die Antenne mit ihrer Kopplungsspule als Primérschwingkreis (L,, Cgpnt, Rapng) auf.
Ryt enthilt sowohl den ohmschen Verlust- als auch den Strahlungswiderstand. Der Resonator-
schwingkreis stellt den Sekundédrschwingkreis (L, C, R) dar. Die Gegeninduktivitit zwischen den
beiden Spulen ist nach (4.3.2./6)

Ly, =k VLL,, 1)

worin k den Kopplungsfaktor bezeichnet.
Entsprechend Bild 5.13 kénnen wir den Kondensator als AbschluBwiderstand

i
Ry =— o
des Sekundirschwingkreises auffassen, wiahrend
R, =iwl + R

den sekundirseitigen Widerstand bezeichnet (vgl. 4.2.5.). Zur abkirzenden Darstellung der
Formeln legen wir fest

. 1 . 1
R=R, + Ry =R+ 1i({ol ——], R, = Rynt + 1 (0Ly — .
wC @C gns
Nach (4.2.5./22) erhalten wir fiir die sekundirseitige Spannung
iowL 1
Uy = — Uppp —L2r ——, 2
v AR R+ w22, 1wl @

wobei U,y die Spannung in der Antenne bezeichnet.
Durch Abstimmung des Sekundirkreises auf die Sendefrequenz ergibt sich

LC = L . (3)

w?

Als Dimpfung des Primér- bzw. des Sekundérkreises werden die Gré8en

ala=M bzw. d:—R—, (4)

wlL, wlL

als Verstimmung des Primarkreises der Ausdruck

1 g2
=1 =1 - 2
@2 L, 0y w?

eingefiihrt.
Unter Verwendung dieser Definitionen folgt im Resonanzfall (3) aus (2)

L k
Uy ,=—U /——_———. 6
o S AT EE @
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Die Primardémpfung kann bei nicht zu groBer Antennenhdhe im allgemeinen gegen die Ver-
stimmung vernachléssigt werden. Ist auBerdem die KopplungsgréBe k? klein gegen das Produkt
aus Sekundéirkreisdimpfung und Verstimmung, so vereinfacht sich (6) in

) L &
Uy,e =1 Upnpy V‘E“ od " (7)
a a

Mit den vorgegebenen Zahlen erhalten wir nach (5.2.1./10) fiir die Antennenkapazitét

. 5. —12 . 3 5
Oy = 27e,l _ 2m - 8,85 - 10 3,50 F — 20,1 pF.
! In 3,50

V37, V32,5102

Die Resonanzfrequenz w, des Primérkreises ist daher

oy — 1 1
* VL,Cpny V450 -10-6.29,1 . 10712

sl = 8,74 - 108571,

Fiir die Verstimmung folgt aus (5)

. 108 \2
X, =1— 8,74 -10° = —0,94.
2 - 108

Die Démpfung des Primérkreises ist

i Rg -+ 3Q)
¥ 2108450 - 10-5Q "

Der Strahlungswiderstand Rg liegt nach (5.1.2./4) unterhalb 1 Q. Fiir die Dimpfung des Primér-
kreises erhilt man daher einen Wert unter 0,002. Dagegen ergibt sich fiir die Dimpfung des
Sekundarkreises

30

d= ————+———— =0,019.
27 - 108 . 250 - 10~¢

Mit diesen GroBen erhdlt man aus (9) fur die Spannungsiiberhéhung

i v, _ 250 004 1,67.
Uans 450 0,94 - 0,019
5.2.4. Modulationsgrad

Zur Amplitudenmodulation wird in einem Stromkreis die hochfrequente Wechselspannung
U = U,sin wt (o = w) (1)

als Tragerschwingung induziert (vgl. Bild 5.14). Die Ubertragung der Modulationsschwingung
erfolgt durch ein in den Stromkreis geschaltetes Mikrofon, das die elektrische Leitfahigkeit G im
Takt der Modulationsfrequenz &ndert:

G = Gy + G, sin oyt 2)
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W

P

(7+msin ayt) sin ¢

Bild 5.14. Uberlagerung der
Modulationsschwingung auf die
Tréagerschwingung bei der
Amplitudenmodulation

Zur Messung des Modulationsgrades wird die Schwingung auf den Leuchtschirm eines Elektronen-
strahloszillographen abgebildet. Dabei wird als Verhdltnis des Amplitudenmaximums zum
Minimum

gemessen. Berechnen Sie daraus den Modulationsgrad.

Losung
Aus (1) und (2) ergibt sich fiir den Strom

I = UG = Uy(Gy + G, sin wyt) sin wqt. (3)
Hierftr kénnen wir in der Bezeichnung nach (5.2./10) mit w = wyp

I = Iy(1 + msin wyt) sin oyt (4)
schreiben. Darin ist

4
I, = UyG,, m= —t. 5
0 %o 4 G, (5)
Der Modulationsgrad kennzeichnet also im vorliegenden Fall die maximale relative Schwankung
des Leitwertes.
Ist die Trégerfrequenz groB gegen die Modulationsirequenz, so kann die modulierte Schwingung (4)
als harmonische Schwingung mit langsam verdnderlicher Amplitude aufgefafit werden. Fir
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sin wyt = 1 folgt als Amplitude die GroBe Iy(1 + m). Dagegen erhalt man far sin wyt = —1
die Amplitude Iy(1 — m). Das Verhéltnis beider GroBen ist gleich

1+m- ()

a—b
atb

m =

5.2.5. Messung der Rauschzahl eines Verstirkers

Zur Messung der Rauschzahl eines Verstirkervierpols wird dieser an einen Priifgenerator mit
regelbarer Rauschleistung {Rauschgenerator) angeschlossen. Der AnschluBl erfolgt derart iiber
eine Leitung, dal Anpassung vorliegt. Bei ausgeschaltetem Nutzsignal mifit man am Ausgang
des Verstarkers die Leistung P,, die durch das thermische Rauschen des Priiffgenerators und des
Transistorverstiarkers im MeBgerét verursacht wird. Durch Verdnderung der Rauschleistung des
Generators wird ein Nutzsignal tibertragen, das zusammen mit dem thermischen Rauschen im
MeBgerit die Ausgangsleistung 2P, anzeigt. Hierfir ist, bezogen auf 1 Hz Bandbreite, im Rausch-
generator die zusitzliche Nutzleistung Py’ = 3,48 - 10-20 W Hz~! aufzubringen. Berechnen Sie
daraus die Rauschzahl des Verstérkers. Die Temperatur betrage 7' = 300 K.

Losung

Es liegt eine Spannungsquelle mit einem AuBenwiderstand R, vor, der an den Innenwiderstand R,

- angepalBt ist. Von der angebotenen Spannung wird daher nach 4.1.2. die Hélfte, von der an-
gebotenen Rauschleistung ein Viertel genutzt. Bei ausgeschaltetem Nutzsignal iibertrigt der
angepaBte Rauschgenerator somit nach (5.2./15) die thermische Rauschleistung

pe = kT Af. ()

Sie wird durch den Verstarker auf Vipg verstiarkt, wobei ¥y die Leistungsverstarkung
V=3 @)

angibt. Py und P, bezeichnen die Nutzleistung am Eingang und am Ausgang des Verstirkers.
Zur verstiarkten Rauschleistung des Generators kommt die Eigenrauschleistung des Verstérkers
hinzu, so dafl das MeBgerit die Leistung

Py = Vipg + 1z (3)

anzeigt.
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Mit dem vom Rauschgenerator aufgenommenen Nutzsignal Py verdoppelt sich die Ausgangs-
leistung. Es gilt also

2Py = Vi Pg + Vipg + pz- (4)
Hieraus erhalten wir

Py = ViPp = Vipg + pz- (5)
Nach (5.2./20) und (5.2./19) ist die Rauschzahl F' durch

F = pA. _ Vipg + pz (6)
Vipg Vipg

bestimmt. Wir setzen (5) ein und erhalten
ViPe _ Pp

F = .
Vipe PE

™)

Die zur Verdoppelung der Ausgangsleistung aufzuwendende Nutzleistung schreiben wir in der
Form

Py = Py’ Af. (8)
(8) und (1) in (7) eingesetzt, ergibt
P
F=22L 9
W 9)

Mit den vorgegebenen Zahlen erhalten wir

. 10-20
F— 3,48 - 10 —84.
1,38 - 10-23 . 300

Daraus folgt, in der Einheit dB gemessen,

F=101gF =101g84 = 9,2dB.

>

5.2.6. Storabstand im Empfinger (Signal-Rauseh-Verhiltnis)

Ein Sender wird mit der Leistung P = 0,1 W auf der Wellenlinge 4 = 3,15 m betrieben. Die
Sendeantenne hat den Gewinn gg = 100. Der Modulationsgrad betrdgt m = 0,65. In der Ent-
fernung » = 30 km befindet sich der Empfinger mit der Rauschzahl F = 9 dB, der Spannungs-
tiberhdhung » = 4,0 und dem Resonanzwiderstand R = 15 k(). Durch die Atmosphére erfolgt
eine Dampfung b = 0,05 dB km~1. Wie grol mul} der Gewinn der Empfangsantenne sein, wenn
ein Stérabstand g = 40 dB gefordert wird? Die Bandbreite betréigt Af = 3 - 105 Hz. Bei der
Rauschleistung ist nur der Empféanger (7' = 288 K) zu berticksichtigen.

Losung

Nach (5.1.4./6a) erzeugt ein Halbwellendipol im freien Raum die Feldstiarke

P 7,
(Cetf)aje = l/?S I (Rg = 73,2Q).
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Hat der Strahler den Gewinn gg, so folgt unter Beriicksichtigung der Dampfung

— /P Zy
Cett = Vo5 ] == e, 1)

Fiir die Spannung in der Empfangsantenne erhilt man bei einem 4/2-Dipol nach (5.2./9b)
A
(Uandyje = Certhaje = Cett —

In der Antenne mit dem Gewinn gg wird also die Spannung

P Zioh
Uant = V9g Cesthaje = Vosge l 7 s )

erzeugt. Unter Beriicksichtigung der Spannungsiiberhéhung v und des Modulationsgrades in
erhalten wir nach (5.2./14) fur die Nutzspannung

Ry 21-27'

Un = Vgsgg vm L/ e, 3)
Die Rauschspannung ist nach (5.2./23)

Up = V4FkT AfR, (4)
wobei R den Resonanzwiderstand angibt. Fiir den Stérabstand folgt

o — Un® _ _9s9v®mPPZN o267 (5)
b Ug®  16n*FkT AfRRgr?

Die GroBe § ist iiber b bekannt. Wir kénnen
e—20r — 1Q-br
verwenden und fir b die vorgegebene Gréfie einsetzen. Damit erhalten wir aus (5)

gsv*mAPZ 212

§=101go=101g —=—— 2= 1 10lggy — F — 100r. 6
¢ ge € T6nikT AjRRg? | | E9E " ©)
Wir I6sen diese Gleichung nach lg gy auf:
7] gsv*m2PZy 232 F
Clggp =2 —1g IEET0 L 7
898 = 16 € Tomtr AfrEE T 10 @

Mit den vorgegebenen Zahlen folgt

S 100 - 4,02 - 0,652 - 0.1 - 12022 - 3,152
898 = 10 " 16nt 1,38 - 107288 .3 - 10°- 15 - 10° - 73,2 - (30 - 10°)2

-+ 0,05-30 + 0,9 = 1,685, gz = 48,56 &~ 50.

Die Empfangsantenne mull den Gewinn fiinfzig besitzen, damit der geforderte Stoérabstand
eingehalten wird.
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A 5.2.6.

AB5.27.

Ab5.28.

A5.29.

A 5.2.10.

A5.2.11.

A5.2.13.

A5.2.14.

Aufgaben

Berechnen Sie die Dimpfung in dB fir eine Mittelwelle (4 = 400 m) und fiir eine
Ultrakurzwelle (4 = 4 m) bei lehmigem Boden (B = 10~* Np m~1/2), wenn die Aus-
breitung iiber » = 20 km erfolgt.

Wie gro8 ist die Spannung in einer Vertikalantenne der Héhe A = 8,50 m? Die
Sendeantenne hat die effektive Héhe £ = 70 m. Der Sendestrom im Maximum
betragt Io;; = 15 A. Als Wellenlédnge ist 4 = 450 m zu setzen. Die Ausbreitung
erfolgt iiber trockenen Boden (B = 8,8 - 10-¢ Np m~/2). Fiir den Abstand zwischen
Sender und Empfinger ist # = 100 km zu setzen. Welche elektrische Feldstarke
besteht am Empfangsort?

Berechnen Sie zur vorangegangenen Aufgabe die Feldstirke unter Vernachldssigung
der Dampfung.

Welche Leerlaufspannung tritt in einer Antenne der Lénge ! = 10 cm auf, wenn
die Empfangsfeldstirke €, = 0,1.10-2V m~ betrigt? Die Wellenlinge ist
A=5m.

Berechnen Sie die an einer Antenne der Lénge ! = 2,50 m liegende Leerlaufspan-
nung, wenn die Feldstirke €¢; = 0,1 - 1073 V.m~! und die Wellenldnge 2 = 10 m
betragt.

Wie groB ist die effektive Hohe einer Vertikalantenne der Lange ! = 6.50 m mit
dem FuBpunkt bei @ = 1,50 m fiir die Wellenlédnge A = 40 m?

Berechnen Sie den Widerstand einer geerdeten Vertikalantenne der Lange ! = 20 cm
mit dem Durchmesser 27, = 1,5 cm. Die Wellenlédnge betrigt A = 3 m, der ohmsche
Widerstand 8 Q.

Wie grofl ist der Wellenwiderstand einer Vertikalantenne der Lénge ! = 60 cm
mit dem Durchmesser 27, = 4,5 cm?

In einer Empfangsantenne betrigt der Resonanzwiderstand R = 50 kQ), der dqui-
valente Rauschwiderstand des Verstirkers Ry = 150 k(). Die Bandbreite ist gleich
9 kHz, die Spannungsiitberhéhung betrigt » = 3,5, der Modulationsgrad m = 0,6.
Gefordert wird ein Stérabstand von 40 dB. Wie gro muf} die Empfangsfeldstiarke
sein, wenn die Empfangshohe 4 m betragt (7 = 300 K)?

Eine Rahmenantenne mit der Empfangsfliche 4 = 30 cm? enthélt n» = 50 Win-
dungen. Die Wellenlange betragt A = 1,50 m. Am Empfangsort wird die magne-
tische Feldstirke $esr = 1,510 Am~' gemessen. Wie grofl ist die induzierte
Spannung?

Berechnen Sie die Dampfung des Primér- und des Sekundirkreises sowie die
Verstimmung des Priméarkreises fur eine Empfangsschaltung nach Bild 5.13
mit folgenden Werten: L = 50 mH, R = 15kQ, L, = 500 pH, C,,, = 80 pF,
R4 = 40Q. Die Frequenz betrdgt f = 10 MHz.

Es wird eine amplitudenmodulierte Schwingung mit dem- Elektronenstrahloszillo-
graphen iberpriaft. Welche Bedingung ergibt sich fiir das Verhéltnis zwischen dem
maximalen und dem minimalen Ausschlag, wenn der Modulationsgrad gréler als 0,3
sein soll?

Zerlegen Sie die amplitudenmodulierte Schwingung (1 + m sin wyt) sin wet in die
Triagerwelle mit der Kreisfrequenz wr und die beiden Seitenbénder mit den Fre-
quenzen ot + wy und wr — wy; (Seitenbandzerlegung).

Wie groB ist die Rauschspannung in einem Kurzwellenempfanger mit dem Ersatz-
widerstand der Rohren Ry = 1,2 kQ) und dem Resonanzwiderstand R = 4,8kQ3,
wenn die Bandbreite Af = 10 kHz betrigt (7' = 288 K)?
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A 5.2.15. Wie groB ist die Rauschspannung in einem Empfinger mit dem Resonanzwider-
stand R = 15 kQ und der Rauschzahl F = 8,5 dB, wenn die Bandbreite 9 kHz
betragt (7 = 288 K)?

A 5.2.16. Welche Rauschzahl hat ein Verstirker der Bandbreite 10% Hz bei Zimmertemperatur
T = 288 K, wenn bei Anpassung eine zusdtzliche Nutzleistung von 5,2 - 1014 W
erforderlich ist, um eine Verdoppelung der empfangenen Nutzleistung gegeniiber
dem thermischen Rauschen zu erzielen?

A5.2.17. Ein Empfangsgerit mit dem Resonanzwiderstand R = 15 k() und der Rauschzahl
F =12 dB soll bei 7' = 288 K hochstens die Rauschspannung 1 uV besitzen.
Welche Grenze ergibt sich daraus fiir die Bandbreite?

A5.2.18. In einer Empfangsanlage betrigt der Resonanzwiderstand des Schwingkreises
R = 15kQ, der Ersatzwiderstand des Verstirkers Ry = 50 k(2. Die Bandbreite
ist Af = 9 kHz, die Spannungsitberhdhung v = 3,5. Berechnen Sie die Rausch-
spannung am Verstiarker. Welche Eingangsfeldstirke ist erforderlich, um bei 609,
Modulation einen Stérabstand von 40 dB zu erhalten? Die effektive Antennenhéhe
betrdgt A = 4 m. Fur die Temperatur ist 77 = 300 K zu setzen.

A 5.2.19. Ein Empfanger mit der Rauschzahl F = 9,5dB, dem Resonanzwiderstand
R = 300Q und der Bandbreite 4f = 100 kHz ist an die Empfangsantenne an-
gepaBt. Der Modulationsgrad ist gleich eins. Gefordert wird ein Stérabstand von
40 dB. Als Empfangsantenne wird eine Rahmenantenne mit der Empfangsfléche
A = 400 cm? verwendet, die Windungszahl betrigt n = 100. Empfangen werden
Schwingungen der Wellenldnge A =-5 m. Wie grof mu8 die Feldstérke fiir einwand-
freien Empfang sein (7' = 288 K)?

A 5.2.20. Um wieviel dB erhcht sich der Stérabstand in einer Empfangsanlage, wenn a) die
Sendefeldstérke, b) der Gewinn verdoppelt werden?

5.3. Elektromagnetische Wellen an leitenden Medien
(Wellenleiter und Resonatoren)

E Einfiihrung

Zur Berechnung des Feldes bei der Ausbreitung elektromagnetischer Wellen an
leitenden Medien, z. B. an Drahten, an metallischen Ebenen sowie in rechteckigen
oder runden Hohlleitern, fithrt man die transversalen auf die longitudinalen Kom-
ponenten zuriick. Dabei ist die elektrische Leitfahigkeit der Medien zu beriicksich-
tigen.

Aus den ersten beiden MaxweLLschen Gleichungen ergeben sich unter Beriicksich-
tigung der linearen Verkniipfungen mit den Materialkonstanten die Beziehungen

o9 ¢ -
1“7*—1"013@’ s—az——i—y(@;rot@. (1)
Es werden periodische Vorgéinge betrachtet, bei denen die zeitliche Abhiingigkeit in
der Form exp (—i wt) gegeben ist. Die zeitliche Ableitung einer Feldgrofle kann daher
durch die Multiplikation mit —i w ersetzt werden:

7 02

ﬁz—iwﬂ W:—wz. (2)
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Aus (1) folgt
—iloud = —rot €, (—iwe+y)E =rot H. (3)

Diese beiden Gleichungen kénnen als System zur Bestimmung der Feldvektoren €
und $ aufgefalit werden. Zur Eliminierung von $ dividiert man die erste Gleichung
(3) durch —i wu und wendet anschliefend die Operation rot an. Durch Vergleich
mit der zweiten Gleichung (3) ergibt sich

rot rot € = (euw? + i yuw) €. 4)

Die Grofie

s'=e—{—il (5)
1)

wird als komplexe Dielektrizititskonstante, die Grol3e

K = YVepor + 1 ppo = Jepor (6)

als komplexe Wellenzahl definiert. Fiir nichtabsorbierende Stoffe ist die Wellenzahl

2
k= Yeun? = —=. (62)
Ao

Mit der komplexen Wellenzahl geht (4) iiber in
rot rot € = k"2€. (7

Anstelle der Operation rot rot kann nach A 1.3.6. auch die Operation grad div —/\
angewandt werden. Beschrinkt man die Untersuchungen auf ladungsireie, homogene
Medien, so gilt div € = 0. Gleichung (7) geht dann in die zeitfreie Wellengleichung

AC + k%€ =0 (8)
iiber.
Die Ausbreitungsrichtung der Welle wird als 2- Achse gewéhlt. Bei periodischen Vor-

gingen ist der Schwingungszustand fiir einen bestimmten Zeitpunkt ¢ daher durch
eine Gleichung der Form

€ = G, et e-tot bzw. G = G, eith=—o) ©)

gegeben.
Ahnlich der zeitlichen Ableitung kann die Ableitung nach der longitudinalen Ko-
ordinate z durch eine Multiplikation ersetzt werden:

0 . o®
—:lh, %2—:——‘}1«2. (10)
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Die transversalen Koordinaten werden zunéichst allgemein mit » und v bezeichnet.
wund v definieren in der Ebene senkrecht zur Ausbreitungsrichtung ein orthogonales
Koordinatensystem. In Cartesischen Koordinaten sind » und » identisch mit = und y,
in Zylinderkoordinaten identisch mit  und ¢. du, dv, dz bilden in dieser Folge ein
Rechtssystem.

In (9) wird die Abhéngigkeit von den transversalen Koordinaten durch €, = Ey(u,v)
erfafit. Die betrachteten Wellen haben also die Form

€ = Cyfu, v) e, (11)
Das Bogenelement einer Raumkurve hat im u,v,z-System die Lénge
du? do?

U und V sind hier

1 _ 1 13

= , 4 —_—,
ox \? A% o \? oy \?
Vw5 ViET - ()
Fiir Cartesische Koordinaten v =2, v =y gilt U =1, V = 1. Bei Verwendung
von Zylinderkoordinaten w = r, v = ¢ erhalt man
1

U=1, V=-—. (13a)

Der Laplace-Operator /\ kann in einen nur von der longitudinalen Komponente z
und in einen nur von den transversalen Komponenten » und v abhingigen Anteil
aufgespalten werden:

82
022

A= + Auo- (14)

In Cartesischen Koordinaten ist
c? 02
Doy =Duw = P + Eek (15)

in Zylinderkoordinaten nach (1.3./29)

o2 1 0 1 &
ey

A\,T,qp =Nup = m + . 57— + (16)

Werden (14) und (10) in die Schwingungsgleichung (8) eingesetzt, so folgt als Diffe-
rentialgleichung des elektrischen Feldes (11)

Nup€ + (B2 — 2% € =0. (17)
Dieselbe Gleichung gilt fiir die magnetische Feldstdrke § = §, e~iwi-r2),
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Kennt man als Lésung der Gleichung (17) und ihrer Randbedingungen die Longi-
tudinalkomponenten €, und §,, so lassen sich daraus die Transversalkomponenten
bestimmen. Die Transversalkomponenten der Rotation sind allgemein durch die
Formeln

acs: 4G, e, o8,

6,6 — -
oz’ rot, & oz Uau

gegeben. Fiir Cartesische Koordinaten erhdlt man daraus (1.3./5), fir Zylinder-

koordinaten (1.3./9) bis (1.3./11).

Mit den beiden Formeln fiir die Rotation ergeben sich aus (3) unter Beachtung von

(5) und (6) fiir die Komponenten im u,,z-Koordinatensystem die Gleichungen
iop9, =rot, € =ihE, — U 2—%,

—iwe'C, =rot, = —ik$H, + V 3@; ;
(18)
iou, =rot, € = —1 1€, + Vﬁ ,
., . 9.
—iwe'€, =rot,  =ihdH, — U—g‘g—.
Die ersten beiden Gleichungen (18) liefern
__ i y 1/ 28
G = (w A ) (19)
i e oG, 89,
= — — kU — —= 2
o k'2 — h2 (]/,u KU ou +aV v )’ (20)
die letzten beiden
N 0. q/K 2%,
€= v —r <hV — kU o — ) (21)
b= — i (V— o & 22 ©2)

Damit sind die Transversal- auf die Longitudinalkomponenten zuriickgefiihrt.

Bei der Losung zylindersymmetrischer Probleme gelangt man aus der Gleichung (8)
bzw. aus (17) zu einer Differentialgleichung der Form

2 1 ) +(1 —32—) Ze) = 0. (23)
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Sie wird als Besselsche Differentialgleichung, ihre Losungen werden als Zylinderfunk-
tionen bezeichnet. Die Zylinderfunktionen sind so normiert, dal die folgenden Re-
kursionsformeln gelten:

2
Zn(0) + Zunle) = = Zile), (24)

dZn(Q)
do

Zin—(0) — Zn+1(@) =2

Im folgenden wird mit ganzzahligen Werten n gerechnet.
Spezielle Losungen der BrsseLschen Differentialgleichung (23) sind die Bessel-
Funktionen n-ter Ordnung

L0 ()
Jalo) = Eoml)—!- (26)
Fiir ganzzahlige negative Werte n = —1, —2, ... sind sie durch die Beziehung
Jn(0) = (—1)" Ju(0) 27)

mit den BesseL-Funktionen fiir positive Parameter »n verkniipft. J,(o) und J_,(¢)
sind also linear abhingig. '
Das Verhalten fiir o = 0 wird durch die Gleichungen

Jo(0) =1, gl
(28)
Ja(0) =0 fiir n >0,
wiedergegeben.
Bei reellen Werten g gilt ferner
lim J,(0) = 0. (29)

0—>00

Die Neumannschen Funktionen sind ebenfalls Losungen der BesskLschen Diffe-
rentialgleichung (23). Sie sind fiir nichtganzzahlige Werte n durch die Gleichung

Ju(0) cos nw — J_4(0)
sin nw

Nalo) = (30)

gegeben.

Im Falle ganzzahliger Parameter n ergeben sich aus (30) fiir die NEUMANNschen
Funktionen Grenzwerte, die nach der r’HospiTarschen Regel berechnet werden
konnen.

Fiir o — 0 wird die NEvMaNxsche Funktion logarithmisch unendlich. N, strebt
ebenso wie J, gegen Null, wenn die reelle Variable g iiber alle Grenzen wéchst.

Bild 5.15 zeigt die Kurven Jy(o) und J, (o) sowie Ny(o) und N,(p).
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Linear unabhiingige Losungen der Busskrschen Differentialgleichung sind die
BesseLschen und die Nreumaxnschen Funktionen. Die allgemeine Losung der
Gleichung (23) lautet daher

Z,(0) = AJ,(0) -+ BN, (0). (31)

Ein weiteres Paar linear unabhingiger Losungen wird durch die Hankrrschen
Funktionen geliefert.
Die Hankelschen Funktionen erster und zweiter Art sind durch die Gleichungen

H,D(e) = Jale) + 1 Nulo), (32)
Hn(Z)(Q) = Jn(Q) —1 Nn(@) (33)
definiert. Nur fiir reelle Argumente ¢ sind H,® und H,® zueinander konjugiert
komplex.
Am Nullpunkt gilt
lim |H,Y(g)| = oo, lim [H,®(g)| = oo. (34)
o—>0 o—>0

Speziell besteht fiir kleine Werte |o| die Entwicklung

2

“~

2i ’
H2 =1 + 2 o2 + ... (35)
T
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mit

yozexp[lim (l—i—l—}—l—{—n-—}—i—lnkﬂ=1,781... (354a)
k—o00 2 3 k

Bei komplexen Werten p sind die HaANkELschen Funktionen in der o-Ebene verzweigt.
Sie werden eindeutig, wenn man g = [p| el®°¢ setzt und arcp auf —w < arco <=
beschriankt.

Das Verhalten der Haxkerschen Funktionen vom Index #n fiir o — 0 ist durch die
asymptotischen Gleichungen

— ! n — !
lim H,M() — lim L= 1! (3) L lim H,®() — lim =D (—Q—)n

0—0 o—0 17 0—>0 o—>0 _1 I 0
(n=1,23...) (36)

bestimmt. Fiir ¢ — co gelten die asymptotischen Glleichungen

lim H,Y(p) = lim % ei[gv(wé)%}, (37)
p—>00 9—>00 %
lim H,? (o) = lim % e“’i[@’(”%)%]. (38)
0—>00 p—>0 (1%

P Probleme

5.3.1. Skineffekt

Ein System aus mehreren metallischen Schichten (vgl. Bild 5.16) enthédlt Kupfer als oberste
Schicht. Die Lange des Schichtsystems betrigt | = 20 cm, die Breite b = 5 mm, die Dicke der
Kupferschicht « = 1 mm. An das Schichtsystem wird uber die gesamte Linge | eine Wechsel-
spannung der Frequenz f = 3 - 10° Hz angelegt. Berechnen Sie fiir die Kupferschicht das elektro-
magnetische Feld, bestimmen Sie die Eindringtiefe d des elektrischen Stromes und berechnen Sie
den Wechselstromwiderstand. Randstérungen sind zu vernachlissigen (y = 57,5 - 108Q-1 m~1).

Losung

Wir betrachten das Feld in einem metallischen Halbraum, der durch die Ebene z = 0 begrenzt
wird. Die z-Achse weise in den leeren Raum. In die Richtung der sich fortpflanzenden Welle
legen wir die z-Achse (vgl. Bild 5.16). Werden Randstérungen vernachldssigt, so besteht nur
eine Abhingigkeit von den Koordinaten z und z. Daher kann allgemein

=0 (1)

Qo

gesetzt werden.

22 Schilling, Felder
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Xr A

S Hypferschicht

Bild 5.16. Mehrschichtsystem mit Kupfer
als oberster Schicht

Die longitudinale Komponente $, nehmen wir gleich Null an. Bei Benutzung Cartesischer Ko-
ordinaten ist in (5.3./19) bis (5.3./22) u = z, v = y zu setzen. Wegen (1) folgt daher fir H, =0
aus (5.3./21) und (5.3./22)

¢, =0, H,=0. @)
Die longitudinale Komponente €, muB der Gleichung (5.3./17) geniigen. Schreiben wir
§, = A(z) eilh-o), 3)

so verbleibt fur A4(x) die Differentialgleichung
d24(xz)

P + (k2 — h2) A(z) = 0. (4)
Thre Loésung lautet
A(@) = A, eVFF=Fz 4, eV —Fx, 5)

Das Wurzelvorzeichen legen wir derart fest, daB der Imaginérteil stets positiv ist.
Wir betrachten zunéchst die Losung fur Luft, d. h. im Halbraum 2 > 0, und nehmen dabei

eine von Null verschiedene Leitfdhigkeit an. Der imaginidre Anteil der GroBe V&2 — i% be-
wirkt, daB fiir 2 — 4 oo A(x) tiber alle Grenzen wichst, wenn nicht
A,=0 fur x>0 (6a)

gilt. Dagegen fuhrt im Halbraum 2 < 0 die Leitfdhigkeit dazu, da3 der erste Summand in (6)
iiber alle Grenzen wéchst. Es muBl daher

4, = fir « <0 (6D)
gelten. Somit folgt

Ax) = A, eVki—iz fair x>0, ()

A@@) = 4, eV —Fs  fir 2 <0. (8)

An der Trennebene z = 0 miissen die Tangentialkomponenten des elektrischen Feldes iiberein-
stimmen. Das bedeutet in (7) und (8)

A, =4,=4. (©)
Die transversalen Komponenten schreiben wir

€, = B(w) elthz=o1), (10)

9, = O(a) ellhz—t), (11)
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Wenden wir (5.3./19) und (5.3./20) an, so folgt

Ba)= — —A _ WETEs g a0, (12)
Vi — h?
B) = — A B Rr  fir 2= 0; (13)
l/kaz _
- ‘// fo _ fod ki fir z>0, (14)
Ho ]/k 2 — h?
8\4’ +i— ,
O@) = @ kM 4 e_ﬂ/’f‘wlz_h2 r  fir x=0. (15)

me Ve — by

Die Normalkomponenten von § miissen fiir @ = O stetig tbergehen. Das erfordert nach (14)
und (15)

2 2
LN  — (16)
o Vieg? — 12 g Vo2 — 12
Wir kénnen iy = yq setzen und nach 1/A2 auflésen. Damit ergibt sich
1 1 1
N S (17)

M k2 ky?

Im Falle eines gut leitenden Mediums uberwiegt die Leitungsstromdichte y€ die Verschiebungs-
stromdichte we€. Daher kénnen wir mit

/ w
by = Vingrw = (t+ ) |/%2= (18)
rechnen. Gleichzeitig gilt [ky| > ko, so daB wir fiir gute Leiter
B = ky'? (19)

setzen konnen.
Aus den Amplituden (12) und (13) entnehmen wir

16,/ <6, fir x>0, |E> 6, fir z<0.

Im Vakuum hat das elektrische Feld die Richtung normal zur Leiteroberflaiche, im Leiter da-
gegen die Richtung der fortschreitenden Welle.
Wir betrachten das Feld im Leiterinneren. Es ist nach (13) und wegen |ky’|> k, durch

V}‘—y—iz 71(mt+l/mz)
G, = A eiky'setiot = el 2 2 (20)

gegeben. Mit zunehmender Eindringtiefe nimmt hiernach die elektrische Feldstédrke und ebenso
die Stromdichte J = y@ rasch ab. Der Wechselstrom nutzt scheinbar nur eine diitnne Schicht aus.
Thre Starke folgt aus (20) gemaf

; 1
j edr = —. (21)
o

— o0

22%
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Man kann demnach bei hinreichender Dicke des Mediums so rechnen, als wire der Strom mit
der an der Leiteroberfliche bestehenden Stromdichte ¥4 auf eine Schicht der Stirke

d = i:]/ 2
o Hoy®

gleichméBig verteilt, der tibrige Leiter dagegen vollig stromfrei. Im vorliegenden Fall folgt als
Eindringtiefe

(22)

/ 2

/ m = 0,12 mm.
/ 47 - 107 - 57,5 - 108 . 2 - 3 . 105

Esgiltalsod = 0,12mm< e = 1 mm.
Als Widerstand der Kupferschicht und des Schichtsystems ergibt sich daher

R=-L _ 020 Q= 57-10Q.
ydb 57,56-10%.1,2.104.5.10°3
5.3.2. Zylindrischer Leiter

Bestimmen Sie das elektromagnetische Feld im Innen- und im AuBenraum eines zylindrischen
Leiters. Welche Phasengeschwindigkeit und welche Démpfungskonstante hat eine Schwingung
der Frequenz f=3-10°Hz, wenn die Wellenausbreitung lings eines Stahldrahtes mit

dem spezifischen Widerstand 1_ 0,2 Q mm2/m erfolgt? Der Durchmesser des Drahtes sei
2R, = 0,02 mm. Y
Losung

a) Die Feldkomponenten
Wir fithren Zylinderkoordinaten 7, ¢, z ein und machen fir die longitudinale Komponente des
Magnetfeldes den Ansatz

@z =0. (1)
Die Zylindersymmetrie bedingt

4
—3717— = 0. (2)
Daraus ergibt sich nach (5.3./21) und (5.3./22)

¢, =0, 9, =0. (3)
Fir die longitudinale Komponente des elektrischen Feldes schreiben wir

€, = A(g) ete=en )

mit
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Zur Bestimmung der Funktion 4(p) erhalten wir nach (5.3./17) die Differentialgleichung

dz24 1 dA4
— — + A4 =0. 6
e +0 do + (6)

Sie ist ein Spezialfall der Besserschen Gleichung (5.3./23) fir n = 0. Ihre allgemeine Losung
fur das Innere des zylindrischen Leiters schreiben wir nach (5.3./31)

A(e) = CJy(e) + DNy(o). (7)

Fir » — 0 bzw. ¢ — 0 wichst N, tber alle Grenzen. Damit wiirde das Feld in der Drahtachse
unendlich groB werden. Das 148t sich mittels

D=0 (8)
verhindern. Man erhélt somit fir das metallische Medium » < R,
G = O, (Ve ® — 2r) eilot  fir  r< R, )

Die transversalen Komponenten werden nach (5.3./19) und (5.3./20)

G, = L OJOI(V]CM/Z — 2 ,.) ei(hz—wt) (10)
oy T

—_— — CJ \VEn'2 — B2 1(hz~—wt). 11

o= == | Ve T =) e (11)

Jo" bedeutet die Ableitung der BesseL-Funktion nach dem Argument

0 = Vhy'® — h2r.

g

Im AuBlenraum r = R, wird das Feld am zweckmé&Bigsten durch die beiden HaxkELschen Funk-
tionen dargestellt:

G, = [AH,® (Vi? — 727) + BH,® (Vke? — #2 7)) eithi=et)  fiir 1= R,. (12)
o ist im allgemeinen komplex. Beachtet man die asymptotischen Gleichungen nach (5.3./37)
5 i o= (n+ 1) 5 | o= (n+ 1)
H, () = 1 2 el[g (n+ 2)2 ] s H,®(g) = 2 e 1[9 (M— 2 ) 2 ]’ (13)
T 0
so ergibt sich wegen der Vorzeichenfestsetzung (Imaginérteil positiv), daB fir » — oo die Funk-
tion H,™ gegen Null, dagegen H,(® gegen Unendlich strebt. Um das Auftreten einer unendlich
groBen Feldstdrke zu verhindern, mufl man in (12) daher
B=0 (14)

setzen. Es verbleibt somit fiir den AuBenraum

G, = AH,O (Vi? — B2 7r) eli=at)  fiir = R,. (15)
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Nach (5.3./19) und (5.3./20) ergeben sich die Transversalkomponenten

G, = V}C:—hhz AH,M (Vg2 — 2 r) eithi=on), (16)
2 —
Dy = / i‘-’— Vklz—kokz AHW (Vg2 — 72 7) eithion), (17)
0 0 —

b) Grenzbedingungen fiir » = R,

Auf der Oberfliche des Drahtes miissen die Tangentialkomponenten €, und §, stetig sein. Das
bedingt nach (9) und (15) die Gleichung

CJy (Viey® =72 By) — AH, (VigF — 12 R,) = 0. (18)

Nach (11) und (17) folgt

c _ﬂ_‘/e_ gy (]/kaz Y Ro) 4 _/I_CO_&__ H,0 (1/]{/.02 2 Ro) =0. (19)
Vhy® — 12 Vko® — 12

Das aus (18) und (19) gebildete Gleichungssystem ist nur losbar, wenn seine Koeffizienten-
determinante verschwindet, d. h., wenn

HyW (Vk02 — K Ro) — ko VkM/Z — 1/1 H,® (W‘?o2 — 1 Ro) (20)

Ty (Ve — B Ry) T Vie? — 72 1 e’ 7y (Ve ® — 72 Ry)
gilt. Hierin ist nur » unbekannt.

Die transzendente Gleichung 148t sich unter Ausnutzung der Eigenschaften von J; und H,(%) ver-
einfachen. Fiir gute Leiter kann die komplexe Wellenzahl k" nach (5.3./6) gleich

by’ = Vippo = (1 + ) 1/”% (21)

die komplexe Dielektrizitidtskonstante nach (5.3./5) gleich
)

gesetzt werden. Geht man davon aus, daB » wie beim ebenen Problem in der GroBenordnung
von k, liegt, so gelten die Ungleichungen

B |>> oy [Rn 1> P (23)

Wir kénnen daher im Argument der BesseL-Funktionen Vky'2 — k2 R, durch ky'R, ersetzen.
Die Besser-Funktion ist nach den Definitionsgleichungen (5.3./32) und (5.3./33) gleich

1
Tulky Bo) = & (Hp® (ky"Ro) + Hy® (ky'Ro)]. (24)
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 und R, werden als so groB vorausgesetzt, daB fir metallische Leiter |ky Ryl > 1 gilt. Auf Grund
der asymptotischen Gleichungen (5.3./37) und (5.3./38) folgt aus (24)

Jn/(]CM//-RO) — 1 (25)
J (k' Ro)
Mittels (5.3./35) ergibt sich wegen kg ~ A
(1) 2 __ p2 .2 _ p2 —
H, Wko R RO) = (—i I i M) Vi — 12 R,. (26)
Hy" (Vh2 — 12 Ry) 2 2

Mit diesen Naherungen erhalten wir aus (20).die Gleichung

ulnwu =v. (27)
Darin haben u und v die Bedeutung
w22 h2) R.2 a2 =
w = Vo (ko 1?) Ry , v = — %0 /_51 kR, (28)
4 2 )¢

mit ¥y = 1,781 nach (5.3./35a).

c) Kettenbruchverfahren zur numerischen Berechnung von h

Wir gehen davon aus, dal In » gegen u langsam verdnderlich ist. Bezeichnet daher u,, die n-te
Néherung, so kann fiir die (n + 1)-te Naherung

Upyq DU, =0 (29)

geschrieben werden. Geht man von u, = v aus, so folgt

0 — 2
Y e’
v v
2 = s
In u, v
Inv (30)
» )
= nu v
% In
In -
Inwv

Mit den vorgegebenen Zahlen folgt nach (5.3./6b)

k= 2% 21—” m-! = 6,28 m-1.

A

Fir v erhalten wir aus (28) in Verbindung mit (22)

- —;— 1,781 Y—i8,85-1012.0,2 - 10-¢ - 2 - 3 - 10° 6,28 - 102 - 103

<
I

\

= (1 + i) 4,07 - 10-°.
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Aus (30) folgt damit
Uy = 3 - 10710 gi086 Uy = 2,6 - 1010 £10,76
Uy = 2,60 - 10710 105 — 2,60 - 1071%(cos 43° +- i sin 43°).

Der letzte Wert kann bereits als ausreichende Naherung angesehen werden. Damit ergibt sich
aus (28)

3= ket %3_2.2 (31)

bzw. mit den vorgegebenen Zahlen und dem errechneten Naherungswert
42,60 - 10710 ei0.75 .

h? = [6,282 + (781 . 10°9)2 } m~2 = (41,84 4 i 2,23) m~2.
Daraus erhalten wir

h = 6,47 €i%0%" = (6,47 41 0,17) m~1.
Fir die Abhingigkeit der Welle von z und ¢ folgt damit nach (12)

@z — @o(,.) 0,017z gi(6,47z~wt) (32)

Um die Phasengeschwindigkeit cpy, der Welle bei der Ausbreitung langs des zylindrischen Leiters
zu erhalten, gehen wir von
b= E 2 Reh— -2 (33)
A Co Cph

aus. Danach kénnen wir schreiben

6,2
Cpp = 647 ¢y = 0,97¢,.

5.3.3. Rechteckiger Hohlleiter

In einem rechteckigen Hohlleiter mit den Abmessungen ¢ = 30 mm, b = 50 mm wird durch
eine Schleife eine elektromagnetische Welle erzeugt. Sie soll durch den Hohlleiter im Wellen-
langenbereich 7,7--9,1 ecm ibertragen werden. Untersuchen Sie, welche Wellentypen durch
den Hohlleiter weitergeleitet werden. Wie groBl ist der Abstand zweier Schwingungsknoten far
A = 8.4 cm bei stehenden Hohlleiterwellen?

Losung

Die Ausbreitungsrichtung wird als z-Achse gewéhlt. z- und y-Achse sind durch zwei zueinander
senkrecht stehende Kanten des Hohlleiters bestimmt (vgl. Bild 5.17).
Wir gehen vom Ansatz :

¢ = (Eo e—i(whhz), ‘@ — @0 e—i(wt~hz) (1)

aus und berechnen die Transversal- aus den Longitudinalkomponenten. Fir €, besteht nach
(5.3./17) die Gleichung
0°C€, 2°€,

o rr (B —r)E, =0 2)
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Bild 5.17. Koordinatensystem zur Darstellung
der Hohlleiterwellen

mit
2 f——
k:koz—f:'yeo,uow. (3)

9, erfiillt dieselbe Differentialgleichung wie €,.
Die Gleichung (2) wird durch den Ansatz

€, = f(x) 9(y) (4)
gelost. Setzen wir diesen in (2) ein, so folgt

dz a2

d—xﬁ gly) + d—;’— fl2) + (k2 — 1) () gly) = 0. ()

Diese Gleichung 188t sich separieren:

af 4z
da? dy?
LI TSR S 6
/(@) 7(9) ©

Links tritt nur z, rechts nur y als unabhiingige Variable auf. Diese beiden Variablen kénnen
willkiirlich gedindert werden. Das kann nur dann mit der bestehenden Gleichung (6) vertréiglich
sein, wenn hier sowohl die linke als auch die rechte Seite konstant sind. Anstelle von (6) ergeben
sich damit die beiden gew6hnlichen Gleichungen

A &g
ﬁ — —%2, iyi == *,U,z. (7)
(=) 9(y)

» und # sind Konstanten. Sie sind mit £2 — A2 durch die Beziehung
@t = ke — e (8)

verkniipft, wie man sich durch Addition beider Gleichungen (7) und Vergleich mit (6) iitberzeugt.
Die Gleichungen (7) sind homogene lineare Differentialgleichungen zweiter Ordnung mit kon-
stanten Koeffizienten. Sie haben die allgemeine Losung

f(x) = A cos xx + B sin xx, g(y) = C cos uy + D sin py. 9)
Wir kénnen somit fur die Longitudinalkomponenten schreiben

€, = (4, cos xx + B, sin xz) (0, cos pux + D, sin uy) eiltz=ot), (10)

9, = (A4, cos xx + B, sin =) (Cy cos uy -+ D, sin uy) el(h—wt)’, (11)
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Man unterscheidet in der Hohlleitertechnik zwischen den TM-Wellen (auch E-Wellen), fir
die H, = 0 ist (transversales Magnetfeld), und den TE-Wellen (auch H-Wellen), firr die €, = 0
gilt (transversales elektrisches Feld).

Es werden zundchst TM-Wellen betrachtet. Am Rand des Hohlleiters miissen die Tangential-
komponenten des elektrischen Feldes stetig sein. Setzen wir voraus, da der Hohlraum von ideal-
leitendem Material umgeben ist, so muf also

(@z)Rand =0 (12)
sein. Das bedeutet: Es ist
G, =0 fir a2=0 und a=a;y=0 und y=>b. (13)

Die Bedingungen (13) werden erfillt fiir

A, =C;=0; (14a)
K = Ny mit n,=1,2,3,...; (14b)
nb = nym mit ny =1,2,3, ... (14¢c)

Das Produkt der Konstanten B, - D, kénnen wir zu einer einheitlichen Konstanten zusammen-
fassen. Wir schreiben diese im Hinblick auf die Transversalkomponenten

L By, (kg — 1),

Damit folgt aus (10)

€, =1y, (k? — 1?) sin ”i”“ sin ﬁ%"ﬂ eilha=ot) (15)

Die Transversalkomponenten ergeben sich auf Grund der Formeln (5.3./19) bis (5.3./23). Man
erhélt

n,h NLRE . MY .
¢, =—F = cos 2= sin __v”‘_?i el(hz—wt),
@ nghy @ P b
n,h . nyma n,TY
(Ey = *E”zny b sin T coS ._L_b Y el(hz—wl)’
a
(16)
Ny . NTX N, TC .
9e = Ep n eyev = sin === cos "y eilhz—at)
T nzny, €o
b a b
N, NGRT . MY
= — n, EoW —— ptatiagyN | .
y Enz y €0 2 cos —£= sin ._Eb_y ei(hz—wt)
a a

Die noch unbestimmte GréBe % folgt aus (8), wenn man darin (14b) und (14c¢) einsetzt. Wir er-
halten

(17)
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Soll die Welle nicht abklingen, so muf} 2 positiv, % also reell sein. Das bedeutet: Es mufl

o2 (18)

A .,
€ 2 2
/ gt
] b2

A

a?

erfiillt sein. 7, wird als Grenzwellenliinge bezeichnet. Die Weiterleitung von elektromagnetischen
Wellen in einem Hohlraum ist somit auf kleine Wellenldngen (GréB8enordnung: Hohlleiterabmes-
sung) beschrinkt. Wir setzen %, in (17) ein und erhalten
—_—
heom /1oL (19)
VR

Die Fortptlanzung lings der z-Achse ist also nicht durch exp (i 2—% z) bestimmt, sondern durch
exp (i 27175 z) , mit der scheinbaren Wellenldnge

A=t (20)

2
1/1_A_
72

Diese Formel ist allgemein giiltig, unabhingig von der Form des Hohlleiters.

Bei den TE- bzw. H-Wellen gilt im gesamten Hohlraum €, = 0.

Die Randbedingungen erfordern, daB die Normalkomponente der magnetischen FluBdichte stetig
itbergeht. An der Oberflache des idealen Leiters gilt daher

By, = uHp =0

Um eine Randbedingung fir §, zu erhalten, gehen wir davon aus, daf diese Longitudinal-
komponente fiur die H-Wellen die Bedeutung eines Potentials besitzt: Die Transversalkompo-
nenten 9, bzw. 9, ergeben sich nach (5.3./20) und (5.3./22) bis auf einen konstanten Faktor
durch partielle Ableitung nach & bzw. y. 9, und H, haben somit die Bedeutung von Feldkompo-
nenten, die aus dem »Potential« §, abgeleitet werden kénnen. Der aus den Komponenten H,
und $, gebildete Vektor steht wegen $, = 0 an der Leiterfliche zu dieser parallel. Andererseits
muB die Aquipotentialfliche $, = const von den Feldlinien des Vektorfeldes §, t -~ 9, i senk-
recht durchsetzt werden. Die Aquipotentialflichen $ = const stehen daher auf der Lelterflache
senkrecht. Es gilt also

(@) = 0. (21)
O JRand

Die Losung der Differentialgleichung und die Erfallung der Randbedingungen geht bei den
TE-Wellen in gleicher Weise wie bei den TM-Wellen vor sich. Es ergibt sich analog (15) aus (11)

2 __ w
9. = ket — 72 Hy n, cos P22 o5 Y. githa-ot), (22)
ko2 a b

Diese Losung erfiillt die aus (21) folgenden Randbedingungen

O—SQ‘Z:O far z=0 und z=a (23)
ox
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und

%, _
%

Die Fortpflanzungskonstante A stimmt mit dem aus (17) hervorgehenden Wert itberein. Man
erhélt also auch fur die Grenzwellenlinge und fiur die scheinbare Wellenldnge A die nach (18)
und (20) sich ergebenden Ausdriicke.

Aus (22) gelangt man zu den Transversalkomponenten

far y=0 und y=>b. (24)

G, = —iZ, 2T H, . cos % sin WY githi-ot)|
z 0 ngny
Fob o b
., MgT . nTmT nTY
€, =iZy —%= Hp,a, sin === cos 2y ei(hz—ot)
koa a b
(25)
. h ngm . My Ty
D= —i X - anny sin == cos b . eilhz=ol),
‘0
ih n,m nmr . N,y
9, = — =2 H, , cos EZ sin MY eilhz-ot)
kg2 b a b

Darin steht Z, tiir den Wellenwiderstand des Vakuums.

Wie man aus (15) und (16) fir die TM-Wellen entnimmt, bedeutet n, = 0 oder n, = 0, daB das
gesamte elektromagnetische Feld verschwindet. Einfachste Welle bei den TM- bzw. E-Wellen
ist daher die B,;-Welle, d. h. die TM-Welle mit n, = 1, n, = 1.

Aus (18) erhdlt man mit den vorgegebenen Abmessungen fur die Grenzwellenlidnge der E,;-Welle

A, = .—_...———2 cm = 5,15 cm.

R

Im vorgegebenen Hohlleiter kann daher keine E;,-Welle im Wellenlangenbereich zwischen 7,7
und 9,1 em tbertragen werden. Da sich mit zunehmender Ordnung die Grenzwellenlédnge ver-
ringert, ist mit dem vorgegebenen Hohlleiter iberhaupt keine Ubertragung von E-Wellen mog-
lich.

Fiir die H,,-Welle ergibt sich aus (18) die Grenzwellenldnge 4, = 2a = 6 cm. Auch diese Welle
kann nicht ibertragen werden, wenn der Wellenldngenbereich zwischen 7,7 und 9,1 cm liegt.
Dagegen folgt fiir die Hy,-Welle 4, = 10 cm, fiir die H,-Welle 4; = 5 cm. Im vorliegenden
Hohlleiter mit rechteckigem Querschnitt kann sich innerhalb des festgelegten Wellenlangen-
bereiches 4 = 7,7---9,1 cm nur die H;,-Welle ausbilden. Sie wird durch keine andere Welle ge-
stort.

Der Abstand zweier Schwingungsknoten bei einem System stehender Wellen ist gleich 4/2,
d. h. nach (20) fir 4 = 8,4 cm:

_/.1_ = ._8_’4 cm = 7,7 cm.

2
YA
10
Er ist also bei der gleichen Frequenz im Hohlleiter groBer als im freien Raum. Fiir die Transversal-

komponenten des Feldes erhalten wir

@, ~ sin ';)—y eilhot) § ~sin ’éﬂ eilhz=ot) (26)
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Die Komponenten €, 9, 9, sind gleich Null. Es ergeben sich damit die in Bild 5.18 dargestellten
Feldlinien.

A a) Elektrische Feldlinien in der z,y-Ebene

b) Elektrische Feldlinien
in der y,z-Ebene

b

1 ::$I (————-Or=-==C
=l e e
gl e VI“ { -

< ; * II ) + L 4 i ]J * | c) Magnetische Feldlinien

L I[H]‘L _J||H‘llL_ in der z,z-Ebene

L - I -
- _JI I L——J I lL L—— Bild 5.18. Feldlinien der H,,-Welle
——o ==z C=—=—c
5.3.4. Kreiszylindrischer Hohlleiter

Ein kreiszylindrischer Hohlleiter hat den Kreisradius R = 4 em. Untersuchen Sie die auftretenden
Hohlleiterwellen. Fiir welche Wellenldngen tritt nur eine Hohlleiterwelle auf?

Losung

Es werden Zylinderkoordinaten eingefiihrt. Unter Beriicksichtigung von (5.3./16) und des Ex-
ponentialansatzes (5.3./11) ergibt sich aus (5.3./17) fur den Hohlraum

AR

72 2

or? r o or 2 og?

)&:0 (1)

Hierin setzen wir analog (5.3.4./19)

——
h = 2n L — ! .
A2 hg?

Die Separation der Gleichung (1) erfolgt durch den Ansatz

€, = f(r) cos mep. (3)
Darin muf3 m ganzzahlig

m=0,1,2,...

sein, um bezliglich ¢ die Periodizitat 27 der Losung zu gewédhrleisten.
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(3) in (1) eingesetzt, fithrt auf die modifizierte BEsseLsche Differentialgleichung

dzf(r) 1 df(») 4n m?
A AV = ) fr) =0, 4
dr? + rdr (/‘»g2 2 fr @
die mit Hilfe der Transformation
2
y=1f o= (5)
/‘g

in die BesseLsche Differentialgleichung
b4 m?
vk ey (1= )y =0 ©)
e e

iibergeht. Der Strich ” bedeutet die Ableitung nach dem Argument g der Zylinderfunktion.
Die allgemeine Losung der Besserschen Differentialgleichung (6) im Falle ganzzahliger Werte m
lautet

¥ = C1J o) + ColNplo)- (7)

Fiir o = 0 bzw. r = 0 wichst die NEvMaNNsche Funktion nach Bild 5.15 iber alle Grenzen.
Um diese Singularitét zu beseitigen, mufl C, = 0 gesetzt werden. Fir die Longitudinalkomponente
der E-Wellen im Hohlzylinder ergibt sich damit

27cr

C,=0J, ( 7 ) cos me. (8)

g

Am Rande des Hohlleiters muf8 die Bedingung

€ =0 fir r=R, dh J, (2:3) =0 9)

erfilllt sein. Das geschieht durch geeignete Wahl von Ag. Tabelle 15 enthilt die Nullstellen der
Besser-Funktionen J, J;, J,. Ferner sind die Ableitungen J,” und J,” tabelliert. Zur Erfilllung
der Randbedingung (9) ist es erforderlich, daBl das Argument der BEsseL-Funktion far » = R
gleich einer Nullstelle ist:

2nR

7 (10)

= Qmn-
g

Omn bedeutet die n-te Nullstelle der BesseL-Funktion m-ter Ordnung. Die Grenzwellenlénge A,
der E-Wellen hidngt also gemdf3

2R
P = Ug®)n, = — (11)

an

von der Nullstelle g,,, ab.
Zur vereinfachten Darstellung der Transversalkomponenten setzen wir

kg — B2
—IT mn-

0, = (12)
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Bei der Ableitung benutzen wir die Kettenregel und schreiben
2mr
dJ,, (—

" <}'mn) _ 2_"7 dJple) _ 2mJy/

d/r Zmn dQ Amn

Fir die Transversalkomponenten der E-Welle erhalten wir aus (5.3./19) bis (5.3./23) mit (8),
(11), (12)

. (13)

h 2w 27r .
C =Epy ——Jp (—) cos mgp eilhi=ot)
T mn ko' Amn m }.mn
27 ;
%, = By 2r J,’ (,27‘_7') cos me eilhz=ot),
Zy Kl A 14)
€, = — E'Z" hmd (z—ni) sin me el(hz—wt),
kO r mn
9, = B m_ I <m) sin mg eilhz=wt),
Zy kyr A

Im Falle der Grundwelle m = 0 sind séamtliche Komponenten von der Winkelvariablen ¢ un-
abhingig und die beiden Transversalkomponenten €, und §, gleich Null. Aus (5.3./24) und
(5.3./25) folgt als Ableitung der BesseL-Funktion nullter Ordnung

T =22 — ). (15)

Die Longitudinalkomponente der H-Wellen lautet
2mr : i(hz
9, = CoJp, — | cosme ei(hz—wt), (16)
‘g

Sie muf wie in 5.3.3. der Randbedingung

%o (17)
an

geniigen. Das bedeutet im vorliegenden Fall

0; =0 far r=R. (18)
or

Wir setzen (16) in (18) ein und erhalten
2nR
T (L> =0 (19)

als Gleichung zur Bestimmung der Grenzwellenlingen A,. Bezeichnet o, die Nullstellen der
Funktion J,,’(g), so ergibt sich fir die Grenzwellenléngen der H-Wellen

, 2rR
Zmn = (Agﬂ)mn = | (20)

Omn
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Fiir die Transversalkomponenten folgt aus (5.3./19) bis (5.3./23)

)
€, = H,,Z, 2 I =) sin my eilhi—et)
kyr AMun

h m 2nr\ . (et
b¢=Hmn']%77Jm (m) smmqnel( ),
21
7 2r g 2mr i(ha—ot) e
€, = HyuZy T T o oS Mmep e ,
h 2w 2mr .
— —_ ] me eilka—ot)
& " ke Aonn " (Mnn) R
H,,, hingt mit der Konstanten C in (16) gemi
2 __ p2
Co=1i ke — B (22)

9 mn
kq

zusammen. Im Falle m = 0 besteht wie bei den E-Wellen keine Abhéngigkeit von der Variablen ¢,
und die Transversalkomponenten €, und §,, verschwinden.

Die Fortpflanzungskonstante 4 und die scheinbare Wellenldnge erhdlt man auf Grund der Be-
ziehungen (5.3.3./19) und (5.3.3./20).

Fir die H,,-Welle ergibt sich aus (20) wegen g{, = 0

2nR

’
Qo1

iy = (23)
Das bedeutet, daf3 das Argument der Funktion J,,” gleich Null ist. Nach (15) folgt

Jy(0) = —J,(0) = 0.
Aus (21) erhalten wir somit, daB sdmtliche Transversalkomponenten verschwinden. Wegen

div € = 0 verschwinden auch die Longitudinalkomponenten. Es liegt also uberhaupt keine
Welle vor.

Tabelle 15. Nullstellen der BeEsseL-Funktionen und ihrer Ableitungen

. I’

R 2 3 2 3

0 2,405 5,520 8,654 0,00 3,832 7,016
1 3,832 7,016 10,177 1,84 5,33 8,54
2 5,135 8,417 11,620 3,064 6,706 9,969

Wie wir aus Tabelle 15 entnehmen, ist die Grenzwellenlédnge am groBten fur die H,;-Welle. Nach
(20) ergibt sich

M= 25 4 om = 13,7 cm.
1,84

i
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Die néchstkleinere Grenzwellenldnge kommt der Ey-Welle mit

foy = —2F— 4 om — 10,45 om
2,405
zu. Zwischen 4 = 10,45 cm und 4 = 13,7 em tritt somit im Hohlzylinder nur eine Hohlleiterwelle,
die H,;-Welle, auf.

5.3.5. Rechteckiger Hohlraumresonator

Ein Hohlraumresonator entsteht aus einer Hohlleitung, indem jedes der beiden Leiterenden
durch eine Metallplatte abgeschlossen wird. Berechnen Sie die lingste Resonanzwellenlédnge fiir
einen rechteckigen Hohlraumresonator. Seine Lange betrage I = 30 cm. Die rechteckige Grund-
fliche habe die Abmessungen ¢ = 3 cm, b = 5 cm.

Losung

Die Reflexion der Wellen an den metallischen Begrenzungsflichen fithrt zu stehenden Wellen.
Am metallischen Abschluf vorn und hinten darf das elektrische Feld nur eine Komponente
orthogonal zur Begrenzungsebene haben. Um diese Randbedingung erfiillen zu kénnen, mufl die
Hohlleiterlénge ! ein ganzzahliges Vielfaches der halben Hohlleiterwellenlinge A sein:
l=nzi(nz=0,1,2,...). (1)
2
Nach (5.3.3./20) ist die Hohlleiterwellenlinge von der Grenzwellenlinge 4, abhingig. Wir setzen
in diese Formel die Verkniipfung (5.3.3./18) mit den Hohlleiterabmessungen ein. Aufgelost nach
der Vakuumwellenlidnge folgt

A = Anatyt: = —2—-———, (ngs gy 1, = 0,1, 2, ...). (2)

Va2 + b2 + 02
Diese Grofle wird als Resonanzwellenlidnge bezeichnet.
Um zu entscheiden, welcher der Parameter 7, ny, 1, Null werden kann, ist es erforderlich, das
elektromagnetische Feld der stehenden Welle zu bestimmen. Dazu machen wir nach (5.3.3./1)

den Ansatz der Uberlagerung einer hin- und einer riicklaufenden Welle. Wir schreiben fir die
Longitudinalkomponenten der beiden TM-Wellen nach (5.3.4./15)

€, = BE(k? — h?)sin % sin zl—{—y ei(fa—ot), (3)
G, = B (k2 — £?) sin 2= sin ﬁﬂbﬂ emi(hzat) (4)
@ .

Die Fortpflanzungskonstante » kann durch die Hohlleiterwellenlinge / ausgedriickt werden.
Beriticksichtigt man (1), so folgt
2 N,

=
A l

(5)

Zur Berechnung der Transversalkomponenten wenden wir die Gleichungen (5.3./19) bis (5.3./23)
an. Sie gelten nach (5.3./11) unter der Voraussetzung einer fortschreitenden Welle der Form
exp [i (hz — wt)], also zundchst nur fir die hinlaufenden Wellen der Form (3). Die riicklaufenden

23 Schilling, Felder
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Wellen (4) kénnen zur Ableitung ihrer Transversalkomponenten auf die Form (5.3./11) zuriick-
gefithrt werden, wenn man in (5.3./11) und damit ebenso in (5.3./19) bis (5.3./23) k durch —7
ersetzt. Im einzelnen ergeben sich aus der Uberlagerung von (3) und (4) fiir die Transversal-
komponenten der stehenden Welle des TM-Feldes

- nyn,m2 nGTT . MM nmz
C, = —2F 2% cos L= sin Y in P ot
@ b
‘n,n,m? N Ty . nmE
€, = —2E le— sin 2272 o8 Y in T e~tot,
(6)
7,z
B, — —4HE—"1" o os WY o, e-iot,
ZObZ"z”y"z a l
2
. nyT R nge
9, = 4 B —=—— cos £ sin 4= MY o5 U2 ot
ZyaAratytz a b l

Wie wir hieraus entnehmen, kann bei den stehenden TM-Wellen die GroBe #, gleich Null werden,
ohne daf} simtliche Feldkomponenten verschwinden. Als gré8te Resonanzwellenldnge ergibt sich
bei den TM-Wellen nach (2) die 1,1,0-Welle:

2110 — ____2____ (7

N2 n,2
2+t
a* b2

Nach (6) sind nur die Amplituden der magnetischen Transversalkomponenten rdumlich ver-
anderlich. Als grofte Wellenlénge der TM-Wellen erhalten wir mit den vorgegebenen Zahlen

1,0 — ___2____ cm = 5,1 cro.

Fir die stehenden Wellen der TE-Wellen folgt mit dem Ansatz

2 __ 52
0,00 = BB pp o PaT% g T gty )
: =
o0 a b

2 __ ]2
@y(”’) = — ].CO_.—}L H cos g7t cos 2= ni/ Y e—ilhz Lwt) (9)
° ko? a b

0

fir die Transversalkomponenten

. 70,70 NGTX . WY . NRE

¢, = 2HZ, = cos === sin Y gin B gmtot,

0

Nyt . Ny NyTY . NI
€, = —2HZ; =% sin ~= cos Y gin 272 ot

ak,

(10)
NG, TTh . NGTX N, n,mz

Hp = —1 H 2= sin L= cos T o B gmtot,

lak, o b
B, = — Hnynz-m o M G MY Ty
- bk, a
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Im Gegensatz zu den TM-Wellen darf nach (10) bei den TE-Wellen », nicht Null werden, wenn
nicht das gesamte Feld verschwinden soll. Dagegen mufl nur entweder n, oder », von Null ver-
schieden sein. Im Falle b > a erhdlt man somit bei TE-Wellen als lingste Grenzwellenldnge des
rechteckigen Hohlraumresonators

2

011 — , (11)
1 1
J=*=
mit den vorgegebenen Zahlen
AL = ———2— cm = 9,9 cm.
i e i 2
5) " \30
5.3.6. Giitefaktor und Verlustfaktor eines Hohlraumresonators

Der Giitefaktor @ gibt das Verhéltnis zwischen dem 2w-fachen des Energieinhaltes W und der
wihrend einer Periode verlorenen Energie

P T
WV == 7‘
an:
Q= 2 W _ oW ) )
Py Py
f

Py bezeichnet die Verlustleistung. Den Kehrwert des Giitefaktors definiert man als Verlust-
faktor.

Bestimmen Sie den Giitefaktor eines Hohlraumresonators aus Kupfer mit den Abmessungen
a=3cm, b=>5cm, ! =230cm fir die E;;,-Resonatorwelle. Es ist mit y = 57,5 . 106Q-1 m~?
zu rechnen.

Losung

Wir nehmen an, das Medium zwischen den Metallwinden sei Vakuum, so da Verluste durch
das dielektrische Zwischenmedium nicht auftreten. Die metallischen Verluste entstehen durch
die endliche Leitfihigkeit der Hohlleiterwinde. Um diese Verluste zu berechnen, bestimmen
wir den Strom in den Winden bei Abstimmung auf Resonanz. Wir setzen voraus, daf der Kriim-
mungsradius an der Leiteroberfliche groB gegen die Eindringtiefe d ist.

Aus der MaxwEeLLschen Gleichung (1.4./1) folgt bei vernachléssigbarem Verschiebungsstrom auf
Grund des StoxEsschen Satzes nach (1.4.3./7)

f=nx9. @)

Darin bezeichnet & (Einheit A m~!) die Oberflachenstromdichte, $ die magnetische Feldstéirke
an der Hohlleiterwand. 1 gibt die in das Vakuum gerichtete Flachennormale an. & hingt mit der
Stromdichte § bzw. mit der Stromdichte J, an der Oberfliche des Leiters gemiB

z

f=[Jde= [ Joe Tdz=23 3)
0

zusammen (vgl. 5.3.1.).

924 Schilling, Felder
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Die Verlustleistung in einem Stromkreis mit der Stromstéirke I und dem Widerstand R errechnet
sich aus
Py = RIgy. 4)

In einem Leiterstiick mit der Eindringtiefe d, der in Stromrichtung gemessenen Lénge ds; und
der senkrecht zur Normalen- und senkrecht zur Stromrichtung gemessenen Breite ds, betrigt die
Verlustleistung nach (5)

dPy = d ds (Joess @ dsy)*. ®)
Hieraus ergibt sich mittels (3)
de _ Réff dSl dSz ) (6)
vd

Die gesamte Verlustleistung des Hohlleiters folgt hieraus durch Integration:

1 >
PV = — ff .@éff dSl d‘Q-Z' (7)
yd

Das Doppelintegral ist {iber die gesamte Oberfliche des Hohlleiters zu erstrecken.
Aus (5.3.5./6) erhalten wir fiir die E;,-Welle

4E n®  mx  my ]
= — —— —— sin — cos — e~iv¢,
9. Z, bA a b I
2 8
-@y:%?z—/cos%sm—;eﬂ“’f ®

€, =0, ¢, =0.
Fur die z-Komponente des elektrischen Feldes folgt nach (5.3.5./3) und (5.3.5./4) durch Addition
©, = 2F (k2 — 1?) sin == sin %y eiot, 9)
a
Die z-Komponente des magnetischen Feldes ist gleich Null.
Als Fortptlanzungskonstante ergibt sich nach (5.3.5./5) far n, = 0:
h=0. (10)
Die Resonatorwellenldnge ist nach (5.3.5./7) gleich

L0 — __1_2__1_ (11)
PR

Aus (8) und (9) erhalten wir nach (7) durch Integration iiber alle sechs rechteckigen Leiterflichen

i l
16 B2 =t [1 f LTy o1 L, T
Pvzy—dZ—oz—ﬁz—l;?fj smzz-dydzj—b—szalrﬁ—a—dxdz (12)
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Die Auswertung der Integrale liefert

T:4E2(a2 -+ 62)

T (20a 1 20b® 1 ab® 4 a®b). (13)

PV:

Um die Gesamtenergie W des Hohlraumresonators zu berechnen, beriicksichtigen wir, daB nach
(8) und (9) € sein Maximum annimmt, wenn § verschwindet. Fir die Gesamtenergie kénnen wir

daher schreiben
RIS o

Hier setzen wir (9) bis (11) ein:

I b a

- 4 2
= 2eqhyE? fffsmz — sin? —= y dedydz = e la? 4 B2 la? + b7 . (15)
2a3b3

Zu dem gleichen Ergebnis gelangt man aus den §-Komponenten nach (8). Wir setzen (15) und (13)
in (1) ein und erhalten

0= oW yZod Va2 4 2°1 (16)
T Py 2[20a® + b3) + (a® + b2) ab]

Anstelle des Giitefaktors wird héufig der Verlustfaktor verwendet:

1,1
1 4 a® b 1
QT 1 L+L+27‘ )
a—2+?2‘7fVZod a2 b2

Die Eindringtiefe ist nach (5.3.1./22) sowie (5.3.5./2) durch

— 2 (18)
1 1
s Va—z t
gegeben.

Mit den vorliegenden Zahlen folgt

d = 2 m = 8,7-10"7 m.

57,5105 120x% /—1—%——1:~102
9 25

Daraus ergibt sich fiir den Giitefaktor

7. 57,5108 . 1207 - 8,7 - 107 J9 - 25° . 10-5 . 0,30

Q= 2[0,60(27 -+ 125) 10-8 + (9 + 25) 3 - 5 - 10-5]

= 1,83 - 10%.

/
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A53.1.%

A5.3.2.

A5.3.3.

A5.34.

A5.3.11.

AB.3.12.%
A 5.3.13.%
A 5.3.14.%
A 5.3.15.%

A 5.3.16.%

Aufgaben

Welche Formel ergibt sich fiir die Fortpflanzungskonstante &, wenn der metallische
Halbraum die Permeabilitdt uy == p, hat?

Berechnen Sie die Eindringtiefe d elektromagnetischer Wellen der Frequenz
f = 1000 Hz in Kupfer (y = 57,5 105Q-1m-1).

Wie gro8 ist der Widerstand fiir Wechselstrom der Frequenz f = 1000 Hz in einer
Kupferplatte der Liange ! = 1,50 m und der Breite 6 = 5 cm? Die Dicke sei grof3
gegen die Eindringtiefe.

Berechnen Sie den Wechselstromwiderstand einer zylindrischen Leitung aus Kupfer
mit der Linge ! = 2 km und dem Durchmesser 2E; = 2 mm, wenn durch die
Leitung Wechselstrom der Frequenz f = 3 - 105 Hz flie(t.

Eine Rechteckhohlleitung hat die Abmessungen ¢ = 5 cm, b = 3 cm. Es soll der
Wellenldangenbereich zwischen 10,1 und 11,4 cm tbertragen werden. Welche Hohl-
leiterwellen sind fiir die Ubertragung moglich?

Berechnen Sie die Grenzwellenldnge der F;-Welle fiir einen Rechteckhohlleiter
mit den Abmessungen « =8 cm, b= 5cm. Welche Wellentypen sind fir
A =179 cm in diesem Hohlleiter auBlerdem maoglich?

Geben Sie zur vorhergehenden Aufgabe den Wellenlangenbereich an, fiir den im
vorgegebenen Rechteckhohlleiter allein die H,y-Welle tibertragen wird.

Geben Sie die Dampfung der E,,-Welle in einem kreiszylindrischen Hohlleiter mit
dem Durchmesser 2R = 8 cm an, wenn die Wellenlidnge A = 12 ecm betragt. Die
durchlaufene Strecke ist gleich 6 cm.

In einem als Grenzwellendimpfer gebauten Hohlleiter mit Mikroschrauben zur
Verstellung von a soll die H,,-Welle nach Durchlaufen der Strecke 10 cm die
Dimpfung 40 dB besitzen. Wie gro8 ist a einzustellen fir 4 = 5,0 cm?

Berechnen Sie die in einem Rechteckhohlleiter mit den Abmessungen ¢ = 3 cm,
b = 5 cm durch die Hy;,-Welle ibertragene Leistung, wenn die Wellenldnge A =8cm
betragt. Die effektive elektrische Feldstdrke hat im Hohlleiter den Maximalwert
1 Vmt

Wie grof sind die langsten Eigenwellen bzw. Resonatorwellen fiir einen kasten-
tormigen Hohlraumresonator mit den Abmessungen ¢ =2cm, b =3cm,
! =10 cm?

Leiten Sie die Formel fir die Eindringtiefe der Hy,;-Resonatorwelle ab.
Bestimmen Sie den Verlustfaktor der H,;,-Resonatorwelle.

Stellen Sie die allgemeine Formel fiir den Verlustfaktor der E-Resonatorwellen in
einem kastenférmigen Resonator auf.

Stellen Sie die allgemeine Formel fiir den Verlustfaktor der H-Resonatorwellen in
einem kastenférmigen Resonator auf.

Der Giitefaktor eines Hohlraumresonators fiir eine spezielle Resonatorwelle betragt
@ = 105. Samtliche Abmessungen sowie die Wellenldnge werden vervierfacht. Wie
verandert sich @7



Lésung der Aufgaben

Al.1d.
Al.1.2.

A1.1.3.

Al.14.

A1.1.5.

Al.1.6.

Al11.7.

Al1.18.
A1.1.9.

A1.1.10.
Al.1.11.
A1l.1.12.
A1.1.13.

Al.2.1.

Al.2.2.

A1.2.3.

Al1.24.
A1.25.
A1.2.6.

D=127TAsm2, E=144.101V m
F=230-10°N = 2,30 - 10~ dyn

D=-313.107"2 Asm2, EF——240.10°V m-
.

E = Spannung U/Abstand ¢ = 22000 V m—1

2
U:’Z—”:z%v

«€
F=16-108N
QU

= 4 nrdog, Q@ =2,3.10"16 As
o 3

0,707 |D| 4 = 983 A

H = 40000 A m—*

R=1495Q, I=147A, H=1,03-106 Am

Uppg =012V

B=1,5Vsm—

Uy = nl = 20 kA im Innenraum, Uy = 0 im AuBenraum

® =@, — (10z + 20y — 152) V m— — (1022 — 5y) V m=2

o=0,=
r

1 nox T
grad — = —— —, grad e” = e —,
7-71 /,a?'H»l r r

grad z el r = zelve, + izelPe, + reife,
U = 0, Spannung ist wegunabhingig
U="176700V

U=200V
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A1.2.7. W =1000eV =1,60-10"1%J, »=19-10"ms1<L¢,
—10-%
A1.28. = 10 = ! ! v
4r 885107 Yo — 12 + 2 + 22 Ve + 1P+ o+ 2

A1.29. ! + 1 _4

Vo —12 4y + 22 Vet 12+ 3
A1.2.10. U=U,+ 220% V., U, Potential gegen Masse
A1.2.11. Wp=—2-10%J, |m,| =10"°Asm, |M|=2.10-87T
A1.212. |me| = 3,14 - 107 Vsm
A1.2.13. M| = 3,14 - 104 T
A1214,  jmpl = Bt 4 16510 Vsm, &= -

2m 27
A 1.2.15. my = 6,01 - 10-% Vsm
A 1.2.16. my = 4,2 - 1075 Vsm
A1.2.17. H = 0,299 Am™?
A1.2.18. H = 0,019 Am—
A1.3.1. rot € =20y — 2,2 —x, 2 — %)
A1.3.2. €,=0, CG3=0, C =f0r)r, rot € =0. Das Feld hat ein Potential.
A1.3.3. Das Feld mu8 die Form €, = C; 4 C, 4+ U32™ haben.
. .t 2 . : :
A1.34. divr =3, div— = —, div z eivr = 2z ei?
r 7

A1.35. AvEXH =7 -EXH=H 10t E — G -rot §
A 1.3.6. Aus y X (VX €)= yy - € — v vE folgt rot rot € = grad div € — AE
A1.3.7. erad - B=A-vB + B-vA+ AXrot B + B xrot A,

rot A X P = Adiv B — Bdiv A
Atss &, B L& AS,) &,

o Oz 0z or or or
A 1.3.9. rot grad ¢ = v Xyp = 0,

diviot A = v -y XA =vXA-v=yXy - A=0
A1.310.  (Upnglest =701V
A1.3.11. (€y)ess = 558 Vm~?
A1.3.12. Rotor in Richtung der Feldspulenachse, Effektivwert 3,16 V m=2




Q
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A1.3.13.

A1.3.14.

A 1.3.15.

A 1.3.16.
A1.3.17.
A 1.3.18.

Al.4.1.
Al14.2.
A14.3.

Al4d.
A1.4.5.

A14.6.

A14.7.

A1.48.

A149.

A 1.4.10.

A14.11.

A1.4.12.

A1.4.13.

Fiir die geschlossene Flache ist ﬁ B - dU = const. Aus der Geschlossenheit der
magnetischen Feldlinien folgt [ [ div % dV = 0 bzw. div % = 0.

Ir .
a) @W=2—TC———Ri2 tir r = R;, 9, ="796Am,
b) @¢=$ fir Ry=r=R, ©,=39Am",

I R,2—1 . -
<) @qp:%i;_—w fir R, <r=<R,, 9,=144Am7,
d) 9, =0
B= -2 _3000Vm

2meyr

a)H,=159Am™?, b)H, =32Am™, ¢)HP=0

a)E, =1130Vm™, b)CE, =2825Vm?, ¢)¢ =1410Vm?
0=153-10"8 Asm—3

@ =1,27-10"* As

Ming = —3,2-107¢m

T=23-10%s

T>15-10"%5g

Aus e = rot § und div e€¢ = ¢ folgt divrot § = ¢, d. h. g = 0
Crtang = Crrtang:  €1Cmorm = enCrimorm;

Citang = €; sin ¢;, Cinorm = €; cos ¢; (¢ = I, II). Daraus folgt

tangr _ er

tan @11 &11

tangr _ pr
tangr  pIr
P =84 kW

%80@2 = 4,4 10718 J m-3, % UoD? = 4,4-10718 T m-3,
| x| =2,65-10"°J m~2
E=125-10V m

D2 2
Druck p = 2 _& d. h.

%~ o Rt 5,73 10 N m~% = 5,85 at
£ 2m%,

W=0,64J, p=0,081at
W=193J
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A21.7.

A2.1.8.

A2.1.9.

A 2.1.10.

A2.1.11.
A2.1.12.

A 2.1.13.

A 2.1.14.

A2.1.15.

Aus p = % &C? und E = ergibt sich als gesamte wirksame Kraft

4, R?

2 .
F = 4rR?p = 9 . Somit folgt als potentielle Energie
8rey k2
oo —Q2
Woot = — }{F dr = Sme B d.h. Wy = —4507J.

0 =509 -10°F
W =398-103J

Coamptofe g @ gy QER-FK
R R dmer ime  RiE,

C = 4neR

R=9.10m

Q:—Q—(—l——-i) o @ [eityit@— =)t aityid 42t
4re Vot 2+ (2 — 22 Va2 + 42+ (2 + 2002 ]

r I T 4me
wenn die Metallplatte als ,y-Ebene, die Verbindungslinie Q’Q als z-Achse gewahlt
wird. ¢, =26Vm?, €, =€, =0

Q (1 1
=— |=— —|. AP =217V
Ae 47‘:80(R 2h)
3 3
a)@:-—oxl—li, b) ® = —Ex 1—}i+ Q
73 . r3 dreyr

m=1,0-10"%Asm, E; =13,6V m?

Cp=—L=—72Vm?, G,=0

TEW
(2% + y% + a?) — 4a%? = C
¢’ = 1,36 - 10~° Asm™!

————————; auf der Oberflidche der zylindrischen Leitung ist
LB

® gleich U, — 4L 1n 2T,
2mey, Ry —d

Uy =91,1V.

R.2\2
, le—ar+y7 [(x + —°) + yz]
D = 4—“1 In ]:2 5
N el [

Dy = —Eyx — LI grad ln—l—
4me, 7
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A221.

A2.24.

A 2.2.5.

— i = Y
e
Anfangspunkt des Koordinatensystems, die die a- bzw. die y-Achse berithren. Das
Feld entspricht dem des Liniendipols (sehr nahe benachbarte entgegengesetzte
Ladungen auf zwei dinnen Dréhten beiderseits der Achse).

; w = const und v = const sind Kreise durch den

Zwei Scharen konfokaler Parabeln als Aquipotentiallinien. Eine Gerade kann durch
eine der langgestreckten Parabeln gendhert und damit das Feldproblem einer
Kante gegeniiber einer Ebene gelost werden.

x=ccoshucosv, y=csinhusinv

% = const wird in Ellipse iiberfiihrt, Brennweite f, » = const wird in Hyperbel
iberfithrt. Spezialfall ergibt Kante gegentiber leitender Ebene.

Einheitskreis wird a) in Strecke zwischen —1 und --1, b) in Strecke zwischen —i
und i abgebildet.

U= (r —{—i) cosp, v= (r -i) sin @
r 7

2 2
a) Fir konstante r folgt v + Y =1, d.h., Kreise werden in

N

konfokale Ellipsen abgebildet, im Falle » = 1 in Strecke —2.--+2.

o

2

2
b) Fir konstantes ¢ folgt A -
4 cos?’p  4singp
konfokale Hyperbeln iiber.

=1, d.h., Geraden gehen in

Im Falle r = const werden die Kreise 22 + y2 =72 in der z-Ebene zu Ellip- .

2 2
sen v ; ! =1, r = ¢ ergibt Strecke —2¢----+2¢. Gerade durch

:
N
r r

den Ursprungspunkt, unter dem Winkel ¢ gegen die reelle Achse geneigt, wird in

2 P2

Hyperbel = 1 transformiert.

4ccos? @ 4c?sine

2= A(e¥ —w) + B

- ¢
Inz— A‘ﬁf V(s — Gy) (s — ag) ds +B,, w= A3f*ds—+‘83
; V(s — ay) (s + 1) s(s — ag) s Vs(s + 1) (s — ay)

¢
w = Aaf ds + Bs
s Vis — ay) (s -+ 1) s(s — ay)

»=259.10"*



Lésung der Aufgaben

A 2.3.7.

A 23.8.

A24.1.
A24.2.
A24.3.
A244.
A24.5.

A24.6.
A24.7.
A24.8.

A249.

A 2.4.10.

A24.11.

A3.1.1.

H=21-10°Am
(e — 1) &€C*

b=
o9
x =1,25.10"3
M= Nmy, N= ﬁﬁ =8,4.108m=3, |my=26-102Vsm
» kg kmol-
mg| = 1,15 - 1072° Vsm), Iml 2,3
[mg]
|mp|

_4H Mgm

w 2,77

Wy =3kT =4,32-10"20J, W, =my - 9; |myl =2,6-102° Vsm,
H =1,66-10° Am~. Derartige Felder existieren nur zwischen den Elementar-
teilchen; sie sind technisch nicht zu realisieren.

N =0,333..., H;=60Am?

H; = 999,66 A m~!

¥ =05

H; = 19998 A m™

Senkrecht zur Plattenebene V = 1, parallel N = 0
H, = 20000 Am-1, H, =19,98 Am-

e=085, N =018 '

H =3,3 Am™? in der Massivkugel, H = 5,0 Am~! im kleinen Innenraum der
Massivkugel

H; = 1, , Hi=15Am1
14+ 2 1 — B\ (L Fu—2
9 R, Hr b
Resultierende Kraft § = m - yH = m, d—fl(x—) H,. Diamagnetische Stoffe werden
x

aus dem Gebiet maximaler Feldstdrke heraus-, paramagnetische Stoffe (m, > 0)
hineinbewegt.

1 C3my et
= —MMy + t),
v dmpgr® ( e )
tani = o = 2tand’, ¥ geographische Breite
s
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A3.1.2. o, = M e

2y

oY, de 4 oL dy =0
ox ay

Die magnetischen Feldlinien fallen mit den Kurven A, = const zusammen. Man
erhilt Kreise.

A3.1.3. —$,dv+ §,dy =0 brw. d¥, =

A31.4. D = Llln R—a, ® =1,99.1071°Vs
2r R;
A 3.1.5. 9 senkrecht zur Stromrichtung, H = %, H=5Am1
A3.1.6. H =2,26.10* Am™?
ALt Hy=—"1 e pas g, dh H =Y
‘lﬁl +a @
Hi
A3.1.8. H, =1,21-10°> Am~!
A3.1.9. H=16 Am™!

A 3.1.10. Mitte: H = 1000 Am~!, Abstand 4 m: H = 1,9 Am™!

A 3.1.11. a) 1. H =3900 Am~!, a)2 H=2320Am1,
b)1. H=2320 Am™, b)2. H=1220 Am™*

A321.  I—24.100A
A322. F=1N
A323. F=02N
A324. M —1,06.10- Nm
A325.  M=—1,6Nm
A326. [=26.100A

: D5l -2 b\
A3.2.7. ¢:—D—[17e 2 (1+2—J)J,
A328. el 4+ a) =001 mit ©=— f—; — 6,64, (—=144s
A329.  $(0) = 0,031 st — 1,8° 51
A3.210. gy =3,0°, fy—26s

ot Qop

As24L g=g0O)te ¥, gu= 75"

tM:]/DZ
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bt -

bt — -

A3.2.12. p= Ly 1—e 2/ {cos J4/D—b ¢+ ___b sin V47D —b i,
D 2J VaID —pe 2J

@ = 0,98640y
A3213. =365, @y=3,1°

A3214. b2 = @,l, q:(t):q—zﬁfldt

MeBausschlag gy = 1,6° wird praktisch sofort angenommen. Beim Riickstellen

kriecht das Gerdt gemiB ¢ = gy e b = @,y e70,00%

A 3.2.15. mi + bt + ka = % ,  Endauslenkung zy = 1/ ’uORIO
xy = 1,7 mm '
A 3.2.16. mi + bi + kx = pglHI, Endauslenkung xy = wHL 6,3 mm
A33.1. Ry = 15,15Q
A3.3.2. I=I,+1,<39A
A 3.3.3. Ry = 90,5 kKQ
A334. R, = 101,1Q
A 3.3.5. R =49,9Q
A3.4.1. q= —6,25.10717 As
A342.  B— 279 _ 93 40V
3 e
A 3.4.3. v; = 1,101 em s, v, = 1,092 cm s
A 3.4.4. v; = 1,106 em s, v, = 1,087 cm s~
A 3.4.5. v, =1586-100ms™1, o =11,0°
A3.4.6. o = &ﬁeﬁ =1,4-10%m
A 3.4.7. y? = Cz mit C =0,0833 m~! bzw. C = 0,088 m~!; Ay = 1,7 mm
A3.5.1. kpy = 0,0932 mg At s71, by = 0,01045 mg A1 71
A 3.5.2. F = 9,648 - 107 As kmol!
A 3.5.3. t=170s /
A 3.5.4. o = 1,30 m2 kmol-! F-1

A 3.5.5. v = 0,51 mm st
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A 3.5.6.

A 3.5.7.

A 3.5.8.
A3.5.9.
A 3.5.10.
A 3.5.11.
A 3.5.12.
A4.1.1.

A4.1.2.

A4.1.3.

A4.14.

A4.1.5.
A4.1.6.
A4.1.7.
A4.1.8.
A4.19.

A4.1.10.
A4.1.11.
A4.1.12,

A4.1.13.

A4.1.14.

A4.1.15.

A 4.1.16.

A4.2.1.

v = 0,33 mm s

Ly bip b4y + 0-)

- .y = 0,01064
6 by (b +0)

v = 0,054 mm s

n=2>59-10%, b=6,5mm/sVm?

Uy =42-10°V

v = 0,38 mm s~!

N =1,8-10%

L=126Q, |R =196Q, I =11,2A, ¢ =40°

a) wL _i —3,1kQ, |R =3,1kQ; b)wLl —L
wC oC

C =101 pF, C = 38,6 pF
A
yZC

fir beide Schaltungen

fo = 1,6 MHz

Wy =

P =189 kW

RLwL, |R| =owl=471kQ, cosg =1,06-10-5,
fo= 1,13 -10¢ Hz, Af = 5500-Hz

T=143s

to,900 = 0,35 s

_E
I=1I,e !

ty,01 = 23 ms

t=RC=2.10"%s

=467Q, |R| = 4780

P=22mW

Mit zunehmender Stirke des Magnetfeldes nimmt die Permeabilitiat ab. Daher ver-
ringert sich die Selbstinduktion der Spule mit Eisenkern, wenn die Stromstérke
ansteigt. Der Schwingkreis stellt ein anharmonisches System dar. Seine Resonanz-

frequenz hiangt von der effektiven Stromstérke ab.

b=2,5-10"%Js
. i V2
Bei Anpassung folgt U = T U,

R, =R, ga=¢; bzw. R, =%

b—10lg Dt —27aB, p— LmD_s1np
P, 2 P,
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A422,
A4.23.
Ad4.24.
Ad4.25.
A4.2.6.

A4.2.7.

A4.28.

A4.209.

A 4.2.10.

A4.2.11.
A4.2.12.

A4.2.13.

A4.2.14.
A4.2.15.

A 4.2.16.

A4.3.1.
A4.3.2.

A4.3.3.

A434.

R, =Fcothg, d.h. R =
b=27dB, f=3,11Np
P,:P,=3,2.10°, U,: U, = 56
Z=219Q, y=8=309
R=220Q, 1/6G=84,7Q

U coshy 3sinh y coshy 3 sinhy U
(%) = (2 1 ()
I, —sinhy coshy | | —sinhy coshy | \ 1>
3 3
cosh 2y 3 sinh 2y
1 Us
g sinh2y cosh2yj\ 1,

fe = 3.2+ 10" Hz

2

DurchlaBbereich o > w, = V%’ 3 _—_'L/% 1/1 _ C:Uoz

— g
Sperrbereich w<wy, J=1 L /‘30— —1
C w?

2 A 2
DurchlaBbereich o < wy = —, 3= L 20
VZc O} o — o

A 2
Sperrbereich o>, 3=1i L /L
C | w?

— we?
fr=1,34-10° Hz < f < 1,65 - 10° Hz = f11
R, =909Q, L,=225mH
_RE, _ R

z R, > z R,
i =1000, Ry =i471Q
Usets = 0,22V, I,q=1,5-105A, P=33.10°W

7,2

R

R = Rpii2 = Ry

ny?
iwL =1155Q
a)n = 892, b)n =28

L =444 mH, oL — iO: —178Q, R =184Q, R = (44,9 —i178)Q,
[9))

@ = —75°50"
L=888uH, R=319mQ, w,=336-107s", f, =534 MHz, A — 56,Lm,
2L

— = 0,557 ms
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A 4.3.5.
A 4.3.6.
A4.3.7.
A 4.3.8.
A 4.3.9.

A 4.3.10.
A4.3.11.
A4.3.12.

A 4.3.13.

A 4.3.14.

Ad.4.1.

Ad4.2.

A4.4.3.

A444.

A 4.4.5.

A4.4.6.

A4.4.7.

A4.4.8.

A4.4.9.

A 4.4.10.

A4.4.11.
A4.4.12.

Ly, =179mH
7Z = 96,6 )
2R; = 3,07 cm

L'=25.10"Hm?, ¢'"=12-10°Fm, Z=46Q

Z=1Zye*, Zy=100, ¢=27Tm™?, z=0:a¢=1,3 mm,
z2=1=0,0m:a=5,3 mm

LI'=48.10°Hm™, Z=144Q
L' =2,59-10-¢ Hm™!
Ly, =275 mH far 1 km, L;; =578 mH fur 2 km

2h 2me,l
L=yt g2l 5610w

2 o

In —

7o

Z=i1/i1n2—h, Z — 497,60
2r | ¢ 7o

d=16cm, d=0,66pm
R’:L(l—jLi), R =210

%:i0,50 fir Ry, =0; tan‘?:—lzo,t'),
z

1=0074A + 0054 (n=0,1,2,...)

—;— = 0,311 + n - 0,5, wenn —E)Z—E = —1i 2,5 sein soll; die Transformation wird durch
I = 0,3854 4 n - 0,54 realisiert.
A A
Rg =0 fir = — —
E ar n +n 3

Spannungsmaximum: [ = n %; Spannungsminimum ! = 2_ +n —/24

Z=200, L_o01, %;—1920Q
. /o

m = 0,67
m = 0,56, L = 0,296
A
l Ry . .
Z =360Q), = = 0,075, 7 =1,2—i0,4, Ry = (430 —1140)Q

Rg = (42 —145)Q
Ry = (49 —i21)Q
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A4.4.13. m = 0,50, J)T = 0,105; (Rg)pin = 30Q fur [ =79 cm,

(RE)max = 120Q fiir /=29 cm

Atdts. L 25, m—040, (g, =280, [= %
m

Ad415. GpZ= M
1+ i®4Z tan ol

i R .
A 4.4.16. ®gZ = itan ol, - — _icotal

A 4.4.17. Der Anpassungskreis m bleibt unverindert. Zum Parameter des Phasenkreises ist
0,25 zu addieren.

m = 0,675, % = 0,06 + 0,25 = 0,31, GgZ = 1,26 —i0,35

Ad418.  m=05; l,=01250, Z, =848Q, I, =025}

A, Wy 4% 2 N _

A4.4.19. —: == = s : =
4 Zy Ry 2 %
A4420.  TFarl—Ofolgtp— 2 — 2a—3
U, Ry + 3

T i (R &
A4421. 3I= ] T [1 - <2L/ — 20/)],

e (£

o \2L/ 2C"
A4.5.1. Emitterschaltung: Ugg = 0.3V, Ugc=4.8V
Kollektorschaltung: Uge = 4,8V, Ugc=4.5V
Ad5.2, o = 99,55%:---99,829,
A4.5.3. R,p = 6520
Ad.54. «=0,928, =13, y=14
A 4.5.5. I—l = 69,5
‘[2
A4.5.6. R, = 4570
A45.7. R, = oyt R

Ah + 71;22%(;

hyy AR )
A4.58. R, =Ry = |/2—, R,=Ry = VA
1o V Trass R PT)

(Eg) _ LRy h31
Pl opt

IR (Vah + Vi)
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A4.5.9. Py = Fase R - Ahe — Pyoe
1+ haje — hyge + 4be 1+ hoye — hyge + dhy
—hgre — 4, ho
h"lb — 21e e h22b — 22¢

) 1+ h2le - hlze + Ake! 1+ h215__ hlze + Ah’e’

hnc = hue: hl?c =1 — hye, hore = —1 — hojes  hoge = hage

A 4.5.10. L = 0,989, L =133
I, /B I, /¢

1 1
A4511. B =100
A4512. Ug=10V
A4513. Iy =60yA, Iy=306mA, Ugp=610mV, Ugp =339V

Ad.5.14. Ug=92V, Ry= w =122,5kQ mit Upzg = 625 mV
B
A4ss.  Lr_ frle 29,4
P, Rylg?

A4516.  Upp =590 mV, R;=201kQ, Ry=59kQ, Uy=32V
A4517. Ry,=165MQ, Ry =5Q

A45.18. Py—=45W, P,—012mW, P.— 150 mW

A4519. O = 0455 uF

A4520. Ug=Ug=<10V

= IBUBE — A Gﬁ * 1)

Ads2e. B Us— Use— Be(c + bp)
By Upg + IpRy + Rg(lg + Ip)

A4521.  Ry=

A 4523 hiy' = hyy + hooR’ QM@_)
hos(1 + hopR)

by = hys +,h22R” o= hgy — hzzR” o= by
1+ hg R’ 1+ hyR’ 1+ hyoR’
A5.1.1. Rg=12,3Q
A5.1.2. Gopp = 0,25 V m1
A 5.1.3. I ;=132A
As5.1.4. P =63%kW
A5.1.5. Die entgegengesetzten Ladungen bewegen sich oben und unten in gleicher Richtung.

Sind sie unmittelbar benachbart, so heben sich ihre Felder auf. Ein Feld ist jedoch
bereits bei sehr kleinen Abstdnden nachzuweisen.
sin (7 sin &)

= Z
A5.1.6. (€s)ett = 5= Lens
0 .

277, sin ¢

25 Schilling, Felder
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7 cos <n2__~r cos 19)
A5.1.7 a)n=1,3,5,... (Cgleyy = F?OT@
7, sin (%r cos 19)
b)n=2,4,6,... (Cgloss = e
A5.1.8. Ry = 36,60
A5.1.9. Rg= 13,20
A 5.1.10. b =042 dB
As5.1.11. & = arccos 27—71’ r=20,1,2,...);
4 = 70,5° und 109,5°; & = 48,2° und 131,8° sowie ¢ = 0° und 180°
Ab5.1.12 b = (0,42 + 0,44) dB = 0,86 dB
A5.1.13 % = 0,071, Guy =8,0-10"4Vm, $y=21-10%Am
As.1.14 Ry = 0,0237Q, P =10,38W
A5.1.15 Vi = 20,8 dB, £ = 120, v =11.0
Py a2
A5.1.16. g =389
A5.2.1. b=1087dB, b=28,7dB
A5.2.2. (Cg)es = 139 - 1078 V.m1
A5.2.3. (Gg)y = 88 - 10-3 V -1
A5.24. o =10 uV
A5.25. U, = 0,16 mV
A5.2.6. h=470m
Ab5.2.7. Rg = (15 —. 368)Q2
A5.28. Z = 164Q)
A5.2.9. Ces; = 6,510 Vm?
A5210. Gep = Zoog = 5,65 - 103V -1, U,,, = %’;3 7:Cotp = 3,5 - 103V
A5211. d, =1,27%, d=4,78%, a, = 0,367
A5212. > 186
A 5.2.13.

. . . mn m
(1 + m sin wyt) sin wpt = sin ot 4 - ©os (wp —wy) t — Y cos (wp + wy) ¢
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A5.2.14.
A 5.2.15.
A 5.2.16.
A 5.2.17.
A 5.2.18.
A5.2.19.
A 5.2.20.

A5.3.1.

Ab5.3.2.
A5.3.3.
A5.34.
A 5.3.5.

A 5.3.6.
A5.3.7.
A5.3.8.

A 5.3.13.

A 5.3.14.

A 5.3.15.

25%*

Ug = 1,0 uV

F=11, Ug=12uV

F =129, F=11,24dB

Af < 260 Hz

Ugp =3,1-108V, G = 37-10-8 Vm-1
Up =2,06-10°V, G = 821076 Vm-?

a) 4p =201g2dB =6,0dB, b) 45 =101g2dB =3,0dB

h — po®ky® — parho
kv[’Z ko’z
Ho® '}C—z‘ — p’ ko
d = 2,1 mm
R=25-101Q
R =457Q
keine

lg = 8,48 cm;  Hyy, Hyy, Hyy, Hyy
10 ecm < 4 < 16 cm
1,77 Np bzw. 154 dB

1

1
i (T
Die Welle klingt gemi8 e ﬂl/"g % ab. Ay = 2a,

2 2
P s (2, p oz e
0

TM : 240 =33 cm, TE: A%L! =57 cm

l/ﬂ:Zo/ Vbz

2 l3+b3*1
T myZyd bl3+lb3 a

Sl

ng |y
_1_ . 22 ad b3 1
@ mzd\nd T

a? b2
ngt ot ot ot
|
1 24 a? b3 3 a?b b%a
I N S S
\ a? b2 2 a? b2,

a = 2,35 cm
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A 5.3.16. @ ist proportional der Gesamtenergie, d. h. dem Volumen, entgegengesetzt pro-
portional der Oberflache und der Eindringtiefe:
vV A2
Qe ~ L —
Pyd  p2 ]/ 7

Vi

Der Gitefaktor veréndert sich also proportional VA_, d.h.Q =210



Tafeln

Tafel 1. Dielektrizitatszahlen

Stoff & = &gy Bemerkung
Hartporzellan 5...6,5 20°C
7.8 90°C
Spezialporzellan 40.--80
Glas 3...12
Quarzglas 4
Glimmer 5..-8
Hartpapier 5...7
Kabel- und Zellulosepapier (6limpréagniert) 4.--43
Gummi 2,5.--3,5
Kolophonium 2,5
Paraffin 2...2,5
Polystyrol (Trolitul) 2,5
Nitrobenzol 36
Wasser (statisch, bei Sattigungsdruck) 87,69 0°C
80,08 20°C
55,15 100°C
9,74 370°C
FluBsand 2,5 trocken
9 159, Wassergehalt
Gartenerde 1,9 trocken
8 199, Wassergehalt
Ferrite 104...108

Tafel 2. Elektrische Leitfahigkeit der Stoffe

Stoff

Y
in Q-1m-!

Aluminium 33...35,5 - 108

Eisen rein 10,4 - 108

weicher Stahl >6,7 - 108
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Tafeln

Fortsetzung Tafel 2

Stoff v
inQ-1tm-!

Kupfer weich >57 - 108

hart >55 - 108
Silber 61,3 - 108
Manganin (869, Cu, 129, Mn, 29, Ni) 2,32 - 108
Konstantan (549, Cu, 459, Ni, 19, Mn) 2,00 - 108
Hartkohle, Graphit 2,5---50 - 108
Glimmer 10-13...10-15
Paraffinol 10-14
Glas bei 15°C 10-9...10-1%
Quarzglas 21078

Tafel 3. Magnetische Eigenschaften der Stofte
Tafel 3B

Tafel 3A

Suszeptibilitdt diamagnetischer Stoffe

Suszeptibilitat paramagnetischer Stoffe

Stoff o=, —1 Stoff v=u —1
10— 10-8
Steinsalz —13.9 Palladium 782
Wismut —156 Platin 264
Wasser —9,0 Aluminium 21
Wasserstoff —0,002 Flissiger Sauerstoff 3620
Gasformiger Sauerstotf 1,8
Tafel 3C. Eigenschaften weichmagnetischer Stoffe
Stoff Curie- Anfangs- Maximal-  FluBdichte bei
temperatur  Permeabilitat 1Amt 102 Am=*  10* Am™
(C] ey Uy in in in
°C 108 108 Vs m—2 Vs m—2 Vs m—2
Hyperm 50 470 5.8 40---60 0,011 0,143
Permalloy C 430---460 10---40 70..-250 0,02---0,03 0,80 0,84
Supermalloy C 400 55---150 100---900 0,4.-.0,62 bis 0,78
Miimetall E I 410 25---35 100 0,08 0,72 0,79
Tafel 3D. Sattigungsinduktion, Remanenz, Koerzitivieldstirke
weich- und hartmagnetischer Werkstoffe sowie von Ferriten und Pulvermagneten
Material Sattigungsinduktion Remanenz Koerzitivfeldstirke
S B R H c
in Vs m~2 in Vs m—2 in Am™!
Eisen 2,1 0,9..-1,4 8.--120

{technisch rein)



Tafeln 377
Fortsetzung Tafel 3D
Material Sattigungsinduktion Remanenz Koerzitivieldstarke
S BR Hc

in Vs m—2 in Vs m~2 inAm™t
Nickel 0,61 bis 0,38 50:.-220
(technisch rein) )
Kobalt 1,67---1,89 0,5---0,9 640---880
(technisch rein)
Hyperm 1,5---1,6 0,6.--1,2 5...8
(509, Ni, Fe)
Permalloy C 0,8:--0,9 0,5 3
(Fe, Ni, Mo)
Supermalloy 0,68---0,8 0,4---0,5 0,2---0,7
(Fe, Ni, Mo)
Chrom —Nickel —Stahl 0,3 30000
Platin —Eisen 0,45...0,63 120000---350000
Magnetit Fe;O, bis 0,6 0,32 170
Siferrit 1100 N 22 0,4 0,14 24
(MnO, ZnO, Fe,0,)
Kobaltferrit 0,16 70000
Mangan — Wismut 0,43-.-0,48 290000
(Bismanol, Pulvermagnet)
Tafel 4. Physikalische Konstanten
Elektrische Feldkonstante £ 8,8542 - 1072 As V-1 m™!
Magnetische Feldkonstante Uo 1,257 - 10-¢ Vs A=t m—?
BorrzymannN-Konstante k 1,3807 - 1028 J K1
Elektrisches Elementarquantum e 1,602 - 10~1° As
Lichtgeschwindigkeit im Vakuum Co 2,99792 - 108 ms™1
Avocaprosche Konstante Ny 6,0220 - 102 kmol?
Ruhmasse des Elektrons Me 9,109 - 10-3t kg
Ruhmasse des Protons My 1,6726 - 10727 kg
Ruhmasse des Neutrons my 1,6749 . 1027 kg
Gaskonstante, allgemeine R 8,3144 . 10® J kmol-* K1
Prancksches Wirkungsquantum h 6,6262 - 1073¢ Js
Farapaysche Konstante I 9,6485 + 107 As kmol—?

Tafel 5. Formelzeichen und Kurzzeichen

A Ampere
A Amplitude
Fldche
A4, relative Atommasse (frither Atomgewicht)
A Flachenvektor

Vektorpotential
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Tafeln

LROTAAHEH® S @S YS <

=5y

ey TER NS

ShaRCES R

Abstand, geometrische Linge, Lagekoordinate
Basis, Basiselektrode

Amplitude

magnetische FluBdichte oder Induktion
Dicke, geometrische Linge, Lagekoordinate
Déampfung in dB

Beweglichkeit

Coulomb

Kollektor, Kollektorelektrode

Amplitude

Kapazitdt

Wegkurve
Fortpflanzungsgeschwindigkeit elektromagnetischer Wellen im Medium
Konzentration
Fortpflanzungsgeschwindigkeit elektromagnetischer Wellen im Vakuum
dielektrische Erregung oder Verschiebungsdichte
Eindringtiefe

Emitter, Emitterelektrode

elektrische Feldstéirke

Elementarladung

Einheitsvektor

Farad

Rauschzahl

Kraft

Frequenz

Ableitung

Leitwert

Gewinn einer Antenne

UbertragungsmaB

HaxngELsche Funktion

magnetische Feldstirke

effektive Hohe, geometrische Abmessung
hybrider Vierpolparameter
Ubertragungsparameter

Stromstérke

imaginédre Einheit

Einheitsvektor

Joule

BrsseL-Funktion

Trigheitsmoment

Stromdichtevektor des gesamten Stromes
Einheitsvektor

Stromdichtevektor einer Ionenart
Oberflachenstromdichte in A m—?
Borrzmany-Konstante
elektrochemisches Aquivalent
Wellenzahl

Einheitsvektor

Induktivitdt

Drehimpuls

geometrische Lénge

molare Masse
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M,
N

n
e

My

P

RO a3 G

5

=21

Ras Ry

SR aaTRe e ns TERE2
< = e

EEAN

relative Molekiilmasse (frither Molekulargewicht)
Drehmoment

Magnetisierung

Anpassung

Dipolzahl

Masse

elektrisches Moment

magnetisches Moment
Entmagnetisierungsfaktor
Nevmannsche Funktion

Teilchenzahl

Brechzahl

Dipolzahl

Teilchenzahl

Windungszahl

Normalenvektor (Einheitsvektor)
Leistung

Polstérke

Punkt

elektrische Polarisation

Druck

Rauschleistung

Ladung

Ladung

Linienladungsdichte

elektrischer Widerstand

Radius eines Spulenquerschnitts, Zylinderradius
Impedanz

AbschluB-, Last- bzw. Nutzwiderstand
Eingangswiderstand einer Leitung oder eines Vierpols
Innenwiderstand

Eingangswiderstand eines Transistors
Ausgangswiderstand eines Transistors
Radius, Zylinder- bzw. Kugelkoordinate
Radius- bzw. Abstandsvektor
Verzweigungsschnitt

Pov~ntiNg-Vektor

Spin

Leiterelement

thermodynamische Temperatur

Zeit,

Spannung

magnetische Spannung

Koordinaten bei konformer Abbildung
Volt

Volumen

Leistungsverstarkung
Driftgeschwindigkeit, Teilchengeschwindigkeit
Watt

Energie

Energiedichte

komplexe Variable bei konformer Abbildung
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Tafeln

™

e
-

SAR DY D

Abmessungen, Koordinaten, Variable

Ladungszahl

Wellenwiderstand

Zylinderfunktion

Wellenwiderstand des Vakuums

Herrzscher Vektor

komplexer Wellenwiderstand

Abmessung, komplexe Variable, Zylinderkoordinate

Dissoziationsgrad

KurzschluBstromverstiarkung in Basisschaltung
Phasenmaf

Winkel

Diampfung in Np

KurzschluBstromverstarkung in Emitterschaltung
Winkel

elektrische Leitfahigkeit

Fortpflanzungskonstante
KurzschluBstromverstiarkung in Kollektorschaltung
Dielektrizitdtskonstante (absolute) oder Permittivitat
numerische Exzentrizitat

Dielektrizitédtszahl (relative Dielektrizitatskonstante)
elektrische Feldkonstante

komplexe Variable bei konformer Abbildung, Lagekoordinate
Koordinate

Zahigkeit

Curig-Temperatur

Kugelkoordinate

Suszeptibilitat

Wellenlédnge im Hohlleiter

Wellenldnge

Permeabilitat (absolute)

Permeabilitiatszahl (relative Permeabilitit)
magnetische Feldkonstante

Laufzahl

Koordinaten

Raumladungsdichte

Massendichte

Stérabstand

Fléache

Flachenladungsdichte

Zeitkoordinate

Potential

Phasenverschiebung

Winkel, Zylinder- bzw. Kugelkoordinate
magnetisches Potential

Potentialfunktion

Ohm

Kreisfrequenz



Literaturverzeichnis

[1] BrDICKA, R.: Grundlagen der Physikalischen Chemie. Berlin: VEB Deutscher Verlag der
Wissenschaften 1970
[2] Brow~sTEIN, I. N., u. K. A. SEMENDJAJEW: Taschenbuch der Mathematik. Leipzig: BSB
B. G. Teubner Verlagsgesellschaft 1969
[3] CravussyiTzER, H.: Einfihrung in die Elektrotechnik. Berlin: VEB Verlag Technik 1966
[4] FEyNxMAN, R. P., R. P. LErcHTON u. M. SaANDS: The Feynman Lectures on Physics. Reading,
Massachusetts: Addison-Wesley 1964
[5] FiscEER, H.-J.: Transistortechnik. Berlin: Deutscher Militérverlag 1967
[6] FrimaUF, H., u. E. TrRzEBA: Synthese und Analyse linearer Hochfrequenzschaltungen.
Basel: Pfalz-Verlag 1966
[7] GriMsEHL, E.: Lehrbuch der Physik. Bd. 2: Elektromagnetisches Feld. Leipzig: B.G. Teub-
ner Verlagsgesellschaft 1967
[8] HaBErDITZL, W.: Magnetochemie. Berlin: Akademie-Verlag, Oxford: Pergamon Press.
Braunschweig: Friedr. Vieweg + Sohn 1968
[9] Halbleiterwerk Frankfurt/Oder: Transistoren-Kataloge Silizium-Transistoren, Germanium-
Transistoren. Frankfurt/Oder: REFT electronic 1969
[10] HEBER, G., u. B. Kozik: Physik. Leipzig: BSB B. G. Teubner Verlagsgesellschaft 1970
[11] HorzmUrLLER, W.: Technische Physik. Bd. 2/2: Elektrotechnik. Leipzig: B. G. Teubner
Verlagsgesellschaft 1966
[12] Hiitte: Des Ingenieurs Taschenbuch. Bd.IV: Elektrotechnik, Teil B: Fernmeldetechnik.
Berlin, Miinchen: Wilhelm Ernst & Sohn 1962
[13] Joos, G.: Lehrbuch der Theoretischen Physik. Leipzig: Akademische Verlagsgesellschaft
Geest & Portig 1964
[14] Laxpav, L. D., u. E. M. LirscHITz: Lehrbuch der Theoretischen Physik. Bd. IT: Klassische
Feldtheorie. Bd. VIII: Elektrodynamik der Kontinua. Berlin: Akademie-Verlag 1967
[15] La~ae, F. H.: Signale und Systeme. Berlin: VEB Verlag Technik 1968
[16] MicHLIN, S. G.: Lehrgang der mathematischen Physik. Berlin: Akademie-Verlag 1972
[17] M1ErDEL, G.: Elektrophysik. Berlin: VEB Verlag Technik 1970
[18] OREAR, J.: Grundlagen der modernen Physik. Miinchen: Carl Hanser Verlag 1971
[19] Pavr, R.: TransistormeBtechnik. Berlin: VEB Verlag Technik 1966
[20] Ponr, R. W.: Einfithrung in die Physik. 3 Bénde. Berlin, Gottingen, Heidelberg: Springer-
Verlag 1967 u. 1969
[21] PriLipPOwW, E.: Taschenbuch Elektrotechnik. Berlin: VEB Verlag Technik 1969
[22] Prrsch, H.: Lehrbuch der Funkempfangstechnik. Leipzig: Akademische Verlagsgesellschaft
Geest & Portig 1960



382 Literaturverzeichnis

[23] RinT, C.: Handbuch fir Hochfrequenz- und Elektro-Techniker. Berlin: Verlag fiir Radio—
Foto—Kinotechnik 1969

[24] Ruwmer, K.-H., u. M. PuLvERs: Transistor-Elektronik. Berlin: VEB Verlag Technik 1970

[25] ScHILLING, H.: Statistische Physik in Beispielen. Leipzig: VEB Fachbuchverlag 1972

[26] ScEOLZ, C.: Magnetbandspeichertechnik. Berlin: VEB Verlag Technik 1968

[27] ScERODER, H.: Elektrische Nachrichtentechnik. 3 Béande. Berlin: Verlag fiir Radio—Foto—
Kinotechnik 1959 bis 1972

[28] SCHWERTFEGER, H.-J.: Grundlagen der elektronischen digitalen Schaltungstechnik. Berlin:
transpress VEB Verlag fiir Verkehrswesen 1971

[29] Smmoxvyr, K.: Theoretische Elektrotechnik. Berlin: VEB Deutscher Verlag der Wissenschaften
1971

[30] SoMMERFELD, A.: Vorlesungen iiber Theoretische Physik. Bd. III: Elektrodynamik. Leipzig:
Akademische Verlagsgesellschaft Geest & Portig 1967

[31] SternBUcH, K.: Taschenbuch der Nachrichtenverarbeitung. Berlin, Gottingen, Heidelberg:
Springer-Verlag 1962

[32] Boncoscruit, C. B. (Wonsowski, S.W.): Maruerusm murpouactny (Magnetismus der
Mikroteilchen). Moskau: Nauka 1973

[33] WuxnscH, G.: Feldtheorie. Berlin: VEB Verlag Technik 1973

[34] WunscH, G.: Systemtheorie der Informationstechnik. Leipzig: Akademische Verlagsgesell-
schaft Geest & Portig 1971



Sachwortverzeichnis

Abschluwiderstand 206, 245
Absorption 310

aktiver Vierpol 203, 257
AmpEREsches Gesetz 59
Amperesekunde 13
Amplitudenmodulation 326
Anpassung 197, 207, 237, 247
Anpassungskreis 240
Antenne 293, 312ff., 318, 321
Antennenhohe, effektive 313
Antiferromagnetismus 118
Anziehungskraft 71
aperiodischer Grenzfall 152
Aquipotentialfliche 28, 34
Arbeit 20

Arbeits-gerade 283

— -punkt 260 .

— — -einstellung 273, 287
atomistische Theorie 162
AvocaDrosche Zahl 170, 377
Ausgangskennlinie 262, 264
A-Verstarker 282

ballistisches Galvanometer 152
Bandleitung 225, 240
Basis, Basisschaltung 257
beschwerte Antenne 312
BesseL-Funktion 335, 352
Besseusche Differential-
gleichung 335
Beweglichkeit 172, 173, 176,
183
Bror-SavarTsches Gesetz 135
Blindwiderstand 195
Bodenwelle 310
Bogenelement einer Raum-
kurve 333

Borrzmanx-Konstante 377
Braunsche Rohre 165
Brechzahl 19, 332
B-Verstarker 282

CavcHY-RIEMANNsche
Differentialgleichung 96

CHRISTOFFEL-SCHWARZ-
Integral 98

Coulomb 13

Curie-Punkt 118

CuriEksches Gesetz 117

Curie-WEisssches Gesetz 118

Dampfung einer Welle 311

— eines Galvanometers 200

— — Stromkreises 324

Dampfungsglied 208

Defektelektron 255, 258

Dezibel 207

Diamagnetismus 116

Diamantstruktur 254

dielektrische Kugel 86

Dielektrizitdtskonstante 16,
375

—, komplexe 332

differentielle Permeabilitiat 118

Dipol 35, 37, 87, 288

— -ebene 305

— -gruppe 304

— -zeile 302

Dissoziationsgrad 169

Divergenz 44, 54

Doppelsieb 211

Draht, stromdurchflossen 146

— ({iber leitender Ebene 240

— -ring 140

Drehmoment 145, 201
Driftgeschwindigkeit 171, 177
Drosselkette 209

Druck 70

DurchlaB-bereich 257

— -polung 257

— -widerstand 276

effektive Antennenhshe 313

— TFeldstidrke 301

— Hohe 321

Effektivwert 19

Eigenhalbleiter 255

Eindringtiefe 233

Eingangs-kennlinie 262, 264

— -widerstand 206, 236, 269

Einschaltvorgang 199

eisenloser Transformator 215

elektrische Feldkonstante 377

elektrochemisches Aquivalent
175 V

Elektrolyse 174

Elementar-dipol 297

— —, HerTzscher 293 ff.

— -ladung 13; 163

Emitter, Emitterkreis 257

— -schaltung 259

Empfangsanlage 315£f.

Energie-gleichung 220

— -satz 65

— -stromdichte 65

Entladungsvorgang 57

Entmagnetisierungsfaktor 124

Erregung, elektrische 14, 20,
22

erzwungene Schwingung 194

E-Welle 346, 354
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Farapavsche Gesetze der
Elektrolyse 174

— Konstante 170, 377

Farapavsches Induktions-
gesetz 17, 59

Feld-konstante, elektrische 16,
20, 377

— —, magnetische 18, 377

— -stirke, elektrische 13

— —, magnetische 16, 24

Ferrimagnetismus 117

Ferromagnetismus 117

Flichen-ladungsdichte 22

— -transistor 257

FluB-dichte, magnetische 17,
24

— -messer 155

Fortpflanzungskonstante 235

fortschreitende Welle 238

freie elektrische Schwingung
198

Fremdhalbleiter 255

Galvanometer 200
Gaskonstante 377

GauBl 19

Gaussscher Integralsatz 47
geerdeter Dipol 297
Gegeninduktion 186

— gekoppelter Spulen 223
Gegentaktverstiarker 282
geneigte Platten 101
Gewinn 305

gleichméaBig geladene Kugel 54
— magnetisierte Kugel 131
Gleichstrommelgerite 144 1f.
Gradient 27

GrEeENscher Satz 78
Grenz-bedingung 61, 342; 347
— -schicht, wandernde 183
— -wellen-ddmpfer 358

— — -lange 350

Giutefaktor 355
gyromagnetischer Effekt 121

Halb-leiter 256
. — -raumwiderstand 161

— -wellendipol 3001f., 313
Harv-Effekt 1801f.
HaxxrLsche Funktion 336
Herrzscher Dipol 293

— Vektor 291

— —, magnetischer 308

Hohe, effektive 321
Hohl-leiter, rechteckig 344, 353
— —, kreiszylindrisch 349
— -raum, Feld im 129

— — -resonator 353 ff.
homogene Kugel 126
homogenes Feld 86, 124, 126
Horizontal-antenne 309

— -charakteristik 296
H-Welle 347, 354

hybride Darstellung 266
Hysteresisschleife 117

Impedanz 194

Induktion, magnetische 17, 24

Induktions-gesetz 17, 50

— -koeffizient 192, 220

induktive Kopplung 323

Induktivitat 214

Informationsspeicher 116

Inklination der Magnetnadel
131

Joule 13
JouLEesche Wiarme 65

Kapazitét 78
KapazitatsmeBbriicke 219
Katodenstrahlrohr 165
Kennlinie eines Transistors 262
Kettenbruchverfahren 343
KircHHOFFsche Gesetze der
Stromverzweigung 156
Kniespannung 266
Koaxialleitung 97, 136, 221,
224, 240
— mit geschlitztem AuBen-
leiter 110, 227, 248
Koerzitivfeldstirke 117, 376
Kollektor, Kollektorkreis 257
— -reststrom 266
— -schaltung 259
komplexe Dielektrizitiatszahl
332
— Variable 96
— Wellenzahl 332
Kondensatorkette 219
konforme Abbildung 951f., 113
Kontinuitétsgleichung 55
Konzentration 160
konzentrische Kreise 115
Kopplung 322ff.
Kopplungsfaktor 224, 324

Krifte 144

Kreis-diagramm 242

— -flache, konforme
Abbildung der 106

— -zylinder 129

kreiszylindrischer Hohlleiter
349

Kriechgalvanometer 155

Kugelkoordinaten 29

kugelsymmetrisches Feld 34

KurzschluBstromiibersetzung
217, 261, 268

Ladung, elektrische 13

Laprace-Gleichung 76

— -Operator 48

Leerlauf 217

— -spannungsiibersetzung 262

Leistungs-anpassung 197

— -libersetzung 209

leitende Erde 297

Leiter-element 290

— -stiick, gerades 134

Leitfahigkeit, spezifische
elektrische 16, 183, 375

Leitung, elektrische 232

Leitungsdifferential 232

LEenzsche Regel 60, 65

Lichtgeschwindigkeit 19, 375

linienférmige Leiter 135

Linienladung 91

longitudinale Koordinate 332

LoreNTz-Gleichung 144

Magnet, permanenter 39
magnetische Energie 189
— Feldkonstante 18, 377
magnetischer HErrzscher
Vektor 308
magnetisches Moment 116, 145
— Potential 189
Magnetisierungsenergie 120
Mangelhalbleiter 255
MaxweLLsche Gleichungen 59
MizrigaN-Versuch 163
Modulationsgrad 325
Moment, elektrisches 27, 31, 35
—, magnetisches 27, 31, 391.

Nabla-Operator 48

Neper 207

Nevman~sche Funktion 335
Newton 14
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n-Halbleiter 255

Nichtleiter 756

normierter Eingangswider-
stand 236

npn-Transistor 257

numerische Exzentrizitat 125

Nyquistscher Rauschwider-
stand 316

Oberfliachen-erder 161

— -integral 54

— -stromdichte 68, 137
Oerstedt 19

Onnmsches Gesetz 16, 178

— — fir Wechselstrom 194

parallele Drahte 89

Paramagnetismus 116

passiver Vierpol 203

permanenter Magnet 72

Permeabilitdtszahl 18

p-Halbleiter 255

Phasen-geschwindigkeit 238

— -kreis 240

— -verschiebung 195

— -winkel 195

II-Glied 204

Praxcgsches Wirkungsquan-
tum 377

Platte tiber unendlicher Ebene
115

Plattenkondensator 80

pn-Diode 256

pnp-Transistor 257

Porssoxsche Gleichung 76

Polstiarke 31

Potential, skalares 27, 33, 132,
289

— -gleichung 76

Poy~NTiNGscher Satz 69, 193

— Vektor 69

quasistationdrer Stromkreis
185

Rahmenantenne 306, 314

Randbedingungen 61, 123, 342,
347

Raumladungsteld 57

Rausch-generator 327

— -spannung 316

— -widerstand 316

— -zahl 316, 319, 327

RC-Kopplung 277

Rechteck, konforme Abbildung
99

rechteckiger Hohlleiter 344

Reflektor 305

— -dipol 298

Relaisschaltung 274

relative Uberfithrungszahl 172

Relaxationszeit 67

Remanenz 117, 376

Resonanz 322

— -wellenldnge 353

— -widerstand 194

Resonator 331

Restspannung 266

retardiertes Potential 289,
294

reziproke Radien 86

Reziprozitatstheorem 310

Ri1cHARDSON-EINSTEIN-DE-
Haas-Effekt 121

Ring-magnet 72

— -spule 137

— — mit Luftspalt 138

Rotation 44 }

Rotationsellipsoid 126

rotierende Vektoren 195

RUpENBERGsche Strahlungs-
formel 298

Ruhmasse 377

Saitengalvanometer 155

Sattigungsmagnetisierung 116,
376

Scheinwiderstand, 195

ScEOTTKYSche Sperrschicht
256

Schwingungs-gleichung 193

— -sieb 209

Selbstinduktion 186

— einer Spule 222

Skineffekt 233, 337

Signalspannung 272

Solenoid 142

Spannung, elektrische 30

—, magnetische 18

Spannungs-messer 159

— -quelle 195

— -steuerung 262, 264

— -teilerwiderstdnde 273

— -teilung 274

— -ttberh6éhung 315, 325

— -iibersetzung 206, 209

Spatprodukt 49

Sperr-bereich 211

— -schicht 256

— — -transistor 257

— -widerstand 276

spezifische Elektronenladung
165

— Ionenladung 167

Spiegelgalvanometer 150

Spiegelung an der Ebene 77, 83

— — — Kugel 85

Spitzenwirkung, spitze Kante
107

Spule, endlich lang 142

—, kurz 140

—, Selbstinduktion einer 222

— im Magnetfeld 148

statische Felder 75ff.

Steigh6henmethode 119

StoxEsscher Satz 46, 50

Storabstand 317, 328

Strahlungswiderstand 297, 302

stromdurchflossener Leiter 147

Strom-element 135

— -liniendichte 188

— -meBgerat 150

— -Spannungs-Kennlinie 256

— -steuerung 262, 264

— -libersetzung 206, 261

— -verzweigung 156

Suszeptibilitidt, magnetische
18, 116, 376

TE-Welle 346

T-Glied 204

thermisches Rauschen 316, 327
TrOMsONsche Formel 194

— Parabelmethode 167
TM-Welle 346

Toroid 137

Tréagerschwingung 326
Transformator 215

Transistor 254ff., 317
transversale Koordinate 333ff.

Uberfiithrungszahl, relative 172,
176

UberschuBhalbleiter 255

Ubertragungs-kennlinie 262,
264

— -maf 205, 207

— -system 310

Vektorpotential 132, 288
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Verkiirzung einer Antenne 322 Vierpoltheorie 203 {f.

Verldngerung einer Antenne
322

Verlustfaktor 355

Verschiebung, dielektrische 14,
20, 22

Verstimmung 324

Vertikal-antenne 91, 297, 309

— -charakteristik 296

Verzweigungs-schnitt 190

— -strom 158

Vieleck, konforme Abbildung
98

Vierpolgleichung des Tran-
sistors 270

Volt 14
Vorschaltwiderstand 159
Vorverstarker 277
Vorwiderstand zur Arbeits-
punkteinstellung 287

Wirme-verluste 69
— -wirkung 196
Welle, fortschreitende 238

-Wellen-gleichung 291

— -widerstand 205, 220, 236,
239, 246, 348

— -zahl 238, 239

— —, komplexe 332

WaEATSTONESche Briicke
160
Widerstands-anpassung 237
— -transformation 242
WiEN-MAXWELL-Briicke 214
Wirkwiderstand 195

Zweidrahtleitung 228, 240

Zylinder-halbschalen 105, 109,
227, 248

— -kondensator 82, 136

— -koordinate 29

zylindersymmetrisches
Problem 334

zylindrischer Leiter 52, 340



Welches magnetische Moment hat ein Elektron, des den Atomkorn
umkreist? — Wie werden a-Strahlen durch ein Magnetfeld abgelenkt?
— Welche Beweglichkeit haben Natriumionen in Losung? — Wie ist
eine Bandleitung zu dimensionieren, welchen Wellenwiderstand hat
sie, wie ist der Nutzwiderstand anzupassen? — Welche Leistung
strahlt eine Vertikalantenne ab, wie grofi ist ihr Gewinn, welche
Dampfung tritt auf, wie grofl mul die Verstiirkung sein? — Wie wird
die Rauschzahl eines Transistors gemessen?

Die Lasung dieser Fragen erfordert die Beherrschung der Gesetze
elektrischer und magnetischer Felder, Sie sind fiir den in der Grund-
lagenforschung titigen Wissenschaftler ebenso von Bedeutung wie
fiir den in der Industrie beschiftigten Ingenieur.

Wahrend der Studierende haufig nicht in der Lage ist, die abstrakten
mathematischen Geselze zu veranschaulichen und anzuwenden, be-
reiten dem Praktiker vielfach die umfangreichen allgemeingiiltigen
Theorien Schwierigkeiten.

Der Verfasser kennt ans seiner Arbeit in der Industrie, an Hoch-
schulen und in der Grundlagenforschung die Probleme des Studieren-
den ebenso wie die des Praktikers. Sein Buch soll beiden eine Hilfe
geben. Es setzt die mit ,,Hajko: Physik in Beispielen* und ,,Schilling:
Statistische Physik in Beispielen* begonnene Reihe fort.

Jeder der 21 Abschnitte des Buches ist dreigeteilt: Der Lehrtext falt
die wichtigsten Gesetze zusammen und zeigt ihre Verkniipfung auf.
In den systematisch ausgewihlten Beispielen werden Einzelheiten
herausgearbeitet und die aufgeworfenen Probleme bis zur numerischen
Durchrechnung abgehandelt, Mit den abschlieBenden Aufgaben erhilt
der Leser die Moglichkeit, das erworbene Wissen an Hand der ange-
gobenen Lisungen zu iiberpriifen.

Die Darbietung wichtiger physikalischer Gesetze in Form von Bei-
spielen aus der Elektrotechnik lieD es als zweckmiBig erscheinen, den
iiblichen Rahmen der klassischen Physik elektromagnetischer Felder
zu erweitern und auch die Grundlagen der Vierpoltheorie, der Lei-
tungstheorie, der Sende- und Empfangstechnik sowie der Transistor-
verstirker zu behandeln,

Leserkreis:

Physiker; Ingenieure fiir Elektrotechnik, Regelungstechnik, Elektro-
nik, Automatisierungstechnik, Nachrichten- und Informationstech-
nik; Elektrochemiker; Mathematiker; Studierende, Dozenten, Lehrer
mathematisch-naturwissenschaftlicher und technischer Fachrich-

tungen.

VEB FACHBUCHVERLAG LEIPZIG




