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Vorwort

Das Buch »Elektromagnetische Felder und Wellen« setzt die mit den Titeln »Physik
in Beispielen« von Hajko und »Statistische Physik in Beispielen« von Schilling be-
gonnene Reihe »Physik in Beispielen« mit der Behandlung elektrischer und magne-
tischer Vorgänge fort. Die Darstellung physikalischer Effekte an Hand technischer
Beispiele macht es besonders bei den elektrischen Erscheinungen erforderlich, Grund-
begriffe aus der Elektrotechnik einzuführen. Neben den rein physikalischen Be-
trachtungen über Elektronen und Ionen und über elektrische und magnetische
Größen in statischen, stationären, nieder- und hochfrequenten Feldern werden daher
auch die Elemente der Vierpoltheorie, der Vorgänge in Kabeln und Leitungen und
der Sende-, Empfangs- und Transistortechnik behandelt.
Wie in den vorangegangenen Bänden ist jeder Abschnitt in drei Teile untergliedert:
einen kurzgehaltenen Lehrtext über die theoretischen Grundlagen, die ausführliche
Lösung systematisch ausgewählter Probleme bis zum numerischen Ergebnis und
eine große Zahl von Aufgaben mit Angabe der Lösungen am Schluß des Buches.
Für ihren Rat bei der Gestaltung des Buches danke ich besonders Herrn Prof.
Dr. habil. Schultz -Piszachich, Ingenieurhochschule Köthen, und Herrn Prof. Dr.
habil. Gerdes, Universität Rostock. Herr Ing. Ring, Zentralinstitut für Kybernetik
und Informationsprozesse der AdW, Berlin, Herr Dr. sc. Prinzler und Herr Ing.
Hoffmann, Zentralinstitut für Elektronenphysik der AdW, Berlin, unterstützten
mich mit speziellen Hinweisen zur Empfangs- und zur Transistortechnik. Meine
Gattin, Frau Ing. R.  Schilling, entwarf das Bildmaterial und die technischen
Zeichnungen. Dem Verlag danke ich für die vielfältigen Beratungen und für die
Unterstützung in jeder Phase der Entstehung des vorliegenden Werkes.
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< Grundgesetze des elektromagnetischen
Feldes

Elektrische und magnetische Grundgrößen1.1.

e Einführung

Zur Beschreibung der elektrischen und magnetischen Erscheinungen unterscheidet
man zwischen den Größen zur Darstellung des Feldes und den Größen zur Kenn-
zeichnung des Mediums. Das elektromagnetische Feld wird durch die elektrische
Feldstärke @ und die magnetische Feldstärke § charakterisiert. Dagegen werden die
elektrischen und magnetischen Eigenschaften des Mediums durch die elektrische Er-
regung oder Verschiebungsdichte die magnetische Induktion oder Flußdichte SS,
die elektrische Stromdichte 3 und die elektrische Ladung Q zum Ausdruck gebracht.
Quellen des elektrischen Feldes sind die elektrischen Ladungen Q. Ihre Messung er-
folgt in der Einheit Coulomb (C) :

1 Coulomb (C) = 1 Amperesekunde (As) .

Zwischen der elektrischen Elementarladung e und der Ladungseinheit 1 As besteht
der Zusammenhang

e = 1,602 • 10- 19 As. (1)

Zur Definition der elektrischen Feldstärke betrachtet man eine Probeladung Qp . Sie
sei so klein, daß sie die vorhandene LadungsVerteilung nicht stört. Auf Qp wirkt im
elektrischen Feld eine Kraft Der Vektor ist im allgemeinen in jedem Raum-
punkt nach Größe und Richtung verschieden. Als elektrische Feldstärke definiert
man den Vektor

(2)
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Er hat nach (2) die Einheit

Krafteinheit Newton N kg ms -2

Ladungseinheit Coulomb C As

Ein Newton (N) gibt die Kraft an, die auf eine Masse 1 kg wirkt, wenn sie die Be-
schleunigung 1 m s“2 erhält.
Die Arbeit bei der Bewegung längs einer vorgegebenen Kurve C ist nach (2) durch
das Linienintegral

W = f 8 • ds = Qp f @ • d§ (3)
c c

bestimmt. Als Spannung U bezeichnet man die skalare Größe

U = (4)
c

Sie wird in Volt (V) gemessen und ist ebenfalls von der speziellen Form der Kurve C
abhängig. Für die Maßeinheit der elektrischen Feldstärke erhält man aus (4) den
in der Elektrik gebräuchlichen Ausdruck

[ |@ | ]=Vm- i .  (5)

Die elektrische Verschiebungsdichte ® kennzeichnet die Elektrisierung des Mediums
infolge der vorhandenen Ladungen. Von diesen geht eine Fernwirkung oder Er-
regung des ladungsfreien Raumes aus. Ein Beispiel für diese Fernwirkung ist die
Kraftwirkung auf eine Probeladung. Zur Definition der elektrischen Erregung wird
festgelegt, daß das Oberflächenintegral der elektrischen Erregung, erstreckt über
eine beliebige, eine vorgegebene Ladung Q einschließende Fläche A,  gleich der ein-
geschlossenen Ladung ist :

ff ® • da = Q.  (6)
A

Die positiven elektrischen Ladungen können hiernach als Ausgangspunkt elektrischer
Feldlinien angesehen werden. In den negativen Ladungen enden diese Feldlinien.
Zur expliziten Darstellung des Erregungsfeldes ® betrachtet man die Wirkung einer
punktförmigen Ladung Q. Sie befinde sich im Mittelpunkt einer Kugel K vom
Radius r. Jeder Punkt der Kugeloberfläche ist gleichberechtigt; die elektrische Er-
regung hat überall auf der Kugeloberfläche den gleichen Betrag. Daher kann man
schreiben

Q = ff ® 0 • da = • ff da = 4nr z . (7)

Die Richtung des Verschiebungsvektors wird im vorliegenden Falle durch den
Radiusvektor r bestimmt, gezogen vom Ort der Ladung Q zum Aufpunkt P (vgl.
Bild 1.1). Als Vektor der elektrischen Erregung im Falle einer punktförmigen La-
dung Q folgt nach (7)

(8)— "j -------2 ~~
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Bei mehreren im Raum verteilten Ladungen Qi erhält man © nach dem Super-
positionsprinzip

® = Z®« .=  SÄ- -  (9)i i 4tü 2 Ti

Als Einheit der elektrischen Erregung ist nach (6)

A q
[|®|] = (10)

zu schreiben. Für die zeitliche Ableitung der elektrischen Verschiebungsdichte erhält
man aus (10) die Einheit einer Stromdichte:

[|®|] = Am-2. (10a)

Im Falle hochfrequenter Wechselfelder kann die Dichte ® des Verschiebungsstromes
maßgebliche Werte annehmen und die Größenordnung der Dichte 3 des elektrischen
Leitungsstromes erreichen. Bei der Messung hochfrequenter Ströme ist daher ® stets
in Rechnung zu stellen.
Die Einheit (10) der elektrischen Verschiebungsdichte ® deutet auf ein Verfahren
zu ihrer experimentellen Messung, dessen exakte theoretische Grundlagen aus der
MAXWELLschen Theorie (vgl. 1.4.) abgeleitet werden:
In einem idealen Leiter kann sich kein elektrisches Feld ausbilden, da sich Span-
nungsunterschiede hier sofort ausgleichen. Im idealen Leiter gilt also © = 0 . Bringt
man ein kleines, das vorhandene Feld nicht störendes Metallplättchen in das elek-

XA --------

/ \

\ / Bild 1.1. Zur Definition der elektrischen Erregung
bzw. Verschiebungsdichte

trische Feld, so muß an seiner Oberfläche das elektrische Feld enden. Die Metall-
oberfläche wird zum Ausgangs- oder Endpunkt der elektrischen Feldlinien. Elek-
trische Feldlinien gehen von positiven Ladungen aus und enden in negativer Ladung.
Die auf der Oberfläche gemessene Ladungsdichte a gibt daher die Größe der elek-
trischen Erregung ® an dieser Stelle des Feldes an :

Leiter — ~T~7 = D ,  (11)
ZJZL

Zwischen der elektrischen Feldstärke ® und der Dichte 3 des elektrischen Leitungs-
stromes besteht eine lineare Beziehung, die aus dem Ohmschen Gesetz

(12)U = RI
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abgeleitet werden kann. Es bedeutet

y AA (13)

den ohmschen Widerstand, Al die Länge der Leitung, AA die Querschnittfläche.
Der spezifische Widerstand ist mit 1/y bezeichnet, y definiert die Leitfähigkeit des
Materials (siehe Tafel 2). Ist dieses homogen, so gilt nach (4) beil einem konstanten
Feld ® die Beziehung ü = JE Al. Ferner ist I = J AA .  Diese letzten beiden Be-
ziehungen zusammen mit (13) in (12) eingesetzt, ergibt für das OHMsche Gesetz die
Form

3=7® (14)

Stromdichte und Feldstärke sind also über die Leitfähigkeit y des Materials linear
miteinander verknüpft.
Eine weitere Materialbeziehung besteht zwischen ® und Sie wird in der Form

® = a® (15)

geschrieben, s bezeichnet die Dielektrizitätskonstante. Ihre Einheit ist nach (11)
und (5)

M = AsV-1 ixr1 . (16)

Im allgemeinen schreibt man

s = s t 8q (16 a)

und bezeichnet er als Dielektrizitätszahl (relative Dielektrizitätskonstante) des Me-
diums (vgl. Tafel 1). e0 = 8,854 • IO-12 As V-1 m-1 gibt die elektrische Feldkonstante
(absolute Dielektrizitätskonstante des Vakuums) an.
Die elektrische Polarisation ist durch

® = 8® = 80 ® + $ (17)

definiert, woraus

$ = (£ -8 0 )®  (17a)
folgt.
Bei den Eigenschaften des magnetischen Feldes hat man zu berücksichtigen, daß die
Pole der Magneten, im Gegensatz zu elektrischen Ladungen, stets paarweise auf-
treten und nicht getrennt werden können. Daher ist es unzweckmäßig, die magne-
tischen Feldgrößen § und 33 durch Analogien zu den elektrischen Feldgrößen ab-
zuleiten oder aus der Wirkung auf einen Magnetpol zu definieren.



171.1. Elektrische und magnetische Grundgrößen

Die magnetische Feldstärke § läßt sich aus der Ablenkung einer Magnetnadel be-
stimmen. Diese eicht man als Meßinstrument, indem man sie in eine zylindrische
Spule bringt. Der Öffnungsquerschnitt der Spule sei ein Kreis, dessen Radius klein
ist gegen die Spulenlänge l. Unter dieser Voraussetzung hängt die magnetische Feld-
stärke im Spuleninnern nur noch von der Stromstärke I und von der spezifischen
Windungszahl n/l ab (vgl. 3.1.):

Magnetische Feldstärke H = Stromstärke I • Windungszahl n/Länge l (18)

Die Magnetnadel zeigt daher überall in der Spule die gleiche Auslenkung. Das
Magnetfeld hat die Richtung der Spulenachse (vgl. Bild 1.2). Durch Änderung der

Bild 1.2. Die magnetischen Feldlinien einer kreiszylindrischen Spule

Stromstärke I wird der Magnet zum Meßinstrument geeicht. Mit diesem kann man
die Stärke vorgegebener Felder bestimmen.
Nach (18) hat § die Einheit

[ | § | ]=Am~ 1 . (19)

Die Messung und Definition der magnetischen Flußdichte oder Induktion 33 erfolgt
am einfachsten mit Hilfe des Farad AYschen Induktionsgesetzes.
Beim Aufbau des magnetischen Feldes 93 in einer Zylinderspule aus n Windungen
mit dem Querschnitt AA wird ein Spannungsstoß

J C7lnd  dl = - ff ■ d2l (20)
AA

induziert. Diese Beziehung zwischen dem aufgebauten Magnetfeld und dem in-
duzierten Spannungsstoß kann als Definitionsgleichung der magnetischen Fluß-
dichte 93 aufgefaßt werden.
Setzt man den Querschnitt AA als derart klein voraus, daß die Flußdichte in jedem
Punkt der Querschnittsfläche AA den gleichen Wert hat, so folgt aus (20)

B = ■ (21)nAA

2 Schilling, Felder
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Die Einheit der magnetischen Flußdichte ist hiernach

[B] = Vs m~2 = Wb m~2 = T (Tesla) (21 a)

mit Vs = Wb (Weber).

Beispiel 1
In einer Spule aus 25000 Windungen mit der Querschnittsfläche AA = 4 cm2 wird während eines
Einschaltvorganges von 10 s Dauer die konstante Spannung I7i nd  = 1,5 V gemessen. Hieraus
folgt als Betrag der magnetischen Flußdichte

l$8| = -----— —— ----- Vs m~2 = 1,5 Vsm-2 .1 1 0,0004 • 25000

Zwischen der magnetischen Flußdichte und der magnetischen Feldstärke besteht der
lineare Zusammenhang

33 = • (22)

/z0 = 1,257 • 10-6 Vs A-1 m-1 = 4k • 10~7 Vs A-1 m-1 bedeutet die magnetische Feld-
konstante (absolute Permeabilität des Vakuums), /z r die Permeabilitätszahl (relative
Permeabilität) des Mediums (vgl. Tafel 3). Bei fehlender Magnetisierung, d. h., wenn
sich das betreffende Material wie das Vakuum verhält, ist // = /z0 , /z r = 1 .
Die Magnetisierung 9JI kennzeichnet die Bildung elementarer Magnete im Medium.
Sie ist auf Grund der Zerlegung der magnetischen Induktion in

93 = + W (23)

definiert. Der Vergleich von (22) und (23) ergibt

= o( r — 1) & = • (23 a)
Die Größe

— Z r — 1
wird als magnetische Suszeptibilität des Mediums bezeichnet.
In Analogie zur elektrischen Spannung U definiert man als magnetische Spannung
die Größe

(24)
c

Sie hat die Einheit A. Ebenso wie die elektrische Spannung ist sie im allgemeinen
von der Wegkurve C abhängig.
Die magnetische UmlaufSpannung steht mit den fließenden Strömen durch das
AMPEREsche Verkettungsgesetz im Zusammenhang: Umfährt man eine Fläche AA
einmal auf der geschlossenen Kurve C, so ist die magnetische Spannung gleich dem
Strom I, der die umfahrene Fläche senkrecht durchsetzt. Es gilt also

(f>$ ■ d§ = I .  (25)
c
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Der Strom I enthält sowohl den Leitungsstrom

1 = = // 3 • d9I (25a)
AA

als auch den Verschiebungsstrom

I v = f f  ® . d9l, (25b)
AA

d. h., man erhält I gemäß

Z=Z L + Zv = / J (3  + ©)-dSl .  (26)
AA

Darin bedeutet AA die von G eingeschlossene Fläche. Bei räumlich konstanter
Stromdichte ist

I = (3 + ®) . J9 I . (26 a)

Zwischen den vielfach noch verwendeten Einheiten des CGS-Systems und den in
diesem Buch benutzten Einheiten des Internationalen Systems (SI) bestehen die
folgenden Umrechnungsformeln :

1 Gauß = 1 G = IO-4 Vsm~2 ,

1 Oersted = 1 Oe = —y— A nr 1 = 79,6 Anr 1 .
4k

Die Dielektrizitätskonstante e und die Permeabilität /z sind mit der Lichtgeschwindig-
keit c im Medium durch die Beziehung

(27)

verknüpft. Darin bedeutet n die Brechzahl des Mediums. Für das Vakuum erhält
man

cQ = —1— = - - -  m s-1 = 2,998 • 10 8 m s-1 .
]/Vo j/8,854 • IO-12 • 1,257 • 10~6

Bei physikalischen Größen

L = Lq bzw. L = Lq cos cot ,

die sich harmonisch mit der Zeit verändern, ist der Effektivwert von Interesse.
Diesen definiert man

0

(28)
Let t  =

2*



20 1 . Grundgesetze des elektromagnetischen Feldes

In (28) bedeutet t — 2k/co die Dauer einer Periode.
Für Vektoren gilt genauso

ßef f =l /  - (29)

Dieser Effektivwert ist eine skalare Größe.

■ Probleme

1.1.1. Elektrische Feldstärke 6 und dielektrische Verschiebung ©

Ein Prüffeld enthält zwei Kugeln im Abstand 10 m. Ihre räumliche Ausdehnung bleibe un-
berücksichtigt. Die Koordinaten der Kugelmittelpunkte seien (—5, 0, 0) und (+5 ,  0, 0). Auf die
erste Kugel wird eine positive elektrische Ladung von IO-8 C gebracht, auf die zweite eine gleich
große negative Ladung. Berechnen Sie die elektrische Erregung (dielektrische Verschiebung)
im Punkt (0, 0, 0). Wie groß ist dort die elektrische Feldstärke Welche Kraft wirkt auf eine
Probeladung Qp = 10“10 C? Die Rechnung ist für Vakuum als Zwischenmedium und für Wasser
er = 81,1 durchzuführen.

Lösung

Das Erregungsfeld baut sich nach (1.1./9) aus den Ladungen gemäß

auf. Hieraus erhält man auf Grund der Beziehung

$£ = = £0£ r ® bzw. ß (2)
e0 er

die elektrische Feldstärke (£. Diese ist nach (1.1. /2) als das Verhältnis (S = S/Qp der Kraft §
zur Probeladung Qp definiert. Es folgt damit aus (1) und (2)

Qi

S =0 P ® = QP i r i2 r i . (3)
4K£ r £0

Im vorliegenden Fall gilt für den Aufpunkt P(0, 0, 0)

*= i ,  = - i .

Als elektrische Erregung des Punktes (0, 0, 0) ergibt sich damit

1 /10~8 10~8 \= — —- i  + — i Asm-2 = 6,37 -IO"11 i Asm-2 ,
4k \ 25 25 /
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d. h. ein Vektor in Richtung i von der Größe 6,37 • 10-11 , gemessen in Cm-2 . Für die elektrische
Feldstärke erhält man aus (2), wenn das Zwischenmedium Vakuum ist,

dagegen für Wasser

7 20(Sw = — i Vm-1 = 8,88 • IO-2 i Vnr 1 .
81,1

Die Kraft auf eine Probeladung von 10“10 C wird nach (3) gleich

g = 7,20 • IO-10 i N = 7,34 • 10-11 i kp = 7,20 • IO"5 i dyn

bzw. mit Wasser als Zwischenmedium

5 W = 8,88 i • IO"12 N.

1.1.2. Arbeit und Spannung im elektrischen Feld

Zur Messung der Geschwindigkeit von a-Teilchen läßt man diese in einem evakuierten Platten -
kondensator gegen ein konstantes elektrisches Feld anlaufen. Die Kondensatorspannung beträgt
U = 10000 V,  der Plattenabstand l = 10 cm. Als Reichweite der Strahlen wird ein mittlerer
Wert r0 = 6,5 cm gemessen. Berechnen Sie daraus die Anfangsgeschwindigkeit der a-Teilchen
beim Eintritt in das elektrische Feld. a-Teilchen sind identisch mit Heliumkernen. Der Helium-
kern enthält zwei positive Elementarladungen. Die relative Atommasse des Heliums beträgt
A He = 4,00.

Lösung
Im Plattenkondensator ist mit Ausnahme der Randzonen die elektrische Feldstärke konstant
(vgl. 2.1.1.). Als Beziehung zwischen Spannung U und Feldstärke (5 erhält man daher

1 UU= f@.d r  = |®U bzw. = (1)
0 1

Mit den vorgegebenen Zahlen folgt

|@| = 10000 V = 100000 Vm-i.
0,1 m

Die Arbeit im elektrischen Feld ist durch (1.1. /3) bestimmt. Im vorliegenden Fall ergibt sich

pot = <2p f ® • dr = QP • dr = Q P |Cr| r0 . (2)
c o

Qp bezeichnet die Ladung.
Beim Eintritt in das Feld haben die. Teilchen die kinetische Energie

w — — v 2 _ 2 /Q\k in  - 2 
v o - 2Ä r Ä 

V° ■
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(m Masse, Jf r relative Molekülmasse, v0 Anfangsgeschwindigkeit, jV a = 6,022 • 1026 kmol-1

AvoGADROsche Konstante). Wir setzen (2) und (3) gleich und berücksichtigen (1). Das liefert

= W bzw-
l 2N A

'2N AQvr<) U
M v l

(4)

Mit den vorgegebenen Zahlen folgt

-l /2 • 6,02 • 1026 • 2 • 1,6 • IO“ 19 • 0,065 • 104 
n n= 1/ ------------------- ------------------- m s"1 = 7,9 • 105 m s-1

4,00 • 0,1

d. h. knapp 800 km s-1 .

1.1.3. Flächenladungsdichte und elektrische Erregung an der Erdoberfläche

Die Erdoberfläche trägt eine negative elektrische Ladung, die durch positive Ladungen in der
Luft kompensiert wird. Zur Messung des elektrischen Feldes der Erdoberfläche wird ein um die
horizontale Achse drehbarer Plattenkondensator aufgestellt. Seine Platten haben die Größe
A k = 2500 cm2 . Sie werden abwechselnd vertikal und horizontal, d. h. parallel und orthogonal

Bild 1.3. Messung der elektrischen
Erregung mit einem drehbaren Plat-
tenkondensator

zu den Feldlinien gestellt (vgl. Bild 1.3). Die Platten sind mit einem Galvanometer verbunden.
Durch dieses fließt bei jedem Wechsel im Mittel die Ladung I At = 2,95 • 10-10 As . Die Messungen
werden in 100 m Höhe wiederholt, wobei sich nur noch ein mittlerer Stromstoß von 2,81 • 10-10 As
ergibt. Berechnen Sie daraus die Ladung im Luftraum von 1 km2 Grundfläche und 100 m Höhe.

Lösung

Wir berechnen die elektrische Verschiebungsdichte oder Erregung aus der Beziehung nach (1 .1 ./6)

= (1)
A

wobei Q die eingeschlossene Ladung bezeichnet.
Auf der Kondensatorplatte in Bild 1.3 grenzen wir ein flaches Raumgebiet AV ab. Es habe die
Grundfläche AA und die Höhe Ah. Im metallischen Medium der Kondensatorplatten ist ® =0 .
Um die Raumladung im Luftraum auszuschließen, lassen wir Ah -> 0 gehen und erfassen dem-
zufolge nur noch die Ladung AQ auf dem Oberflächenstück AA des Kondensators. Damit erhalten
wir aus (1)

(2)2) . zW  = ® n AA =AQ.
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AQ gibt die Ladung in A V an. Aus (2) ergibt sich für die Normalkomponente von

® n = = <7 bzw. ®n=  - (3)A A A

a wird als Oberflächenladungsdichte bezeichnet. Die Feldlinien stehen senkrecht zur Erdober-
fläche und sind in Richtung zur Erde orientiert. Aus der Messung von $ folgt gemäß

e=»~LAL.  (4)
£o £ o-Ä k

Mit den vorgegebenen Zahlen erhalten wir

_ o qk . in-io
D = ? — As m- 2 = -1,180 • IO"3 As m-2 ,

0,25

E = 1,10 Vm -1 = _ 133  Vm -1
8,85 • IO"12

Das Minuszeichen kennzeichnet den Richtungssinn des Feldes zur Erdoberfläche.
In h = 100 m Höhe folgt

D = -1,124 • IO-9 As m-2 , E = -127 Vnr 1 .

Zur Bestimmung der im Luftraum über der Erdoberfläche schwebenden Ladungen gehen wir
aus von (1). Eine Luftschicht der Dicke dx besitze oben die Verschiebungsdichte + d®,

AA
ö+d# /

AQ AV=AAdx Bild 1.4. Zur Berechnung der Ladungsdichte p und der
Raumladung Q

unten (vgl. Bild 1.4). Dann ergibt sich aus (1)

(D + dD)AA —DAA =AQ.  (5)

Hieraus folgt die Raumladungsdichte q
v AQ AA dD dDQ = hm ----: = -------- = — .

>0 AV AA dx dx

Im vorliegenden Fall ändert sich £), gemessen in vertikaler Richtung, um 0,056 • 10-9 Asm-2 .
Daraus folgt

= 0,056 ■ 10~9 
Ag m _3 = 1() _12 m _3 .

* 100

Im vorgegebenen Raum befindet sich somit die Ladung

Q = 106 • 102 • 0,56 • IO-12 As = 56 • IO-6 C.
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1.1.4. Magnetische Feldstärke $

Eine Zylinderspule der Länge l = 20 cm enthalte n = 500 Windungen. Der Radius des kreis-
förmigen Wicklungsquerschnitts sei r = 1 cm. Die Länge kann daher als groß gegen die Quer-
schnittsabmessungen angesehen werden.
Es soll die Horizontalkomponente des magnetischen Feldes der Erde bestimmt werden. Hierzu
wird eine kleine Magnetnadel in die Spule gebracht und ihre Ablenkung aus der Nord-Süd-
Richtung in Abhängigkeit vom fließenden Strom I festgestellt. Dabei ergeben sich die Meßwerte
nach Tabelle 1.

Tabelle 1. Ablenkung einer Magnetnadel

Strom I in mA 4 8 12

Ablenkwinkel 92 in ° 5 10 15

Die hiernach geeichte Magnetnadel zeigt im magnetischen Feld der Erde eine Abweichung von
g? E = 7,5° . Berechnen Sie daraus die Horizontalkomponente des Erdfeldes für den betreffenden
Ort.

Lösung

Das Feld im Innern der Spule kann als räumlich konstant angesehen werden. Es hängt nur vom
fließenden Strom I und von der spezifischen Windungszahl n/l ab :

l§l = t
V

Im vorliegenden Fall ergibt der Strom I = 0,004 A die magnetische Feldstärke

. . .  0 ,004-500.  1 i A A 1Ho = ------------- A m-1 = 10 A m-1 .
0,20

Die Auslenkung 9? E = 7,5° bedeutet daher, daß die Horizontalkomponente des Erdfeldes

I©eI = — <?e = “ * 7 ’ 5 A m-1 = 15 A m-1
q) 5

beträgt.

1.1.5. Messung der magnetischen Flußdichte 8

Im Innern einer Feldspule befindet sich eine Induktionsspule aus n; = 1 000 Windungen mit der
Querschnittfläche AAj  = 3 cm2 . Durch einen variablen Widerstand wird der Strom in der Feld-
spule im Verlauf der Zeit At = 8 s gleichmäßig bis zu seinem Endwert gesteigert. Während dieses
Prozesses wird in der Induktionsspule eine induzierte Spannung von Di nd  = 160 p.V gemessen.
Berechnen Sie daraus die magnetische Flußdichte im Innern der Feldspule. Wie groß ist die
magnetische Feldstärke wenn sich in der Spule Luft befindet?
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Lösung
Nach dem Induktionsgesetz (1.1./20) erzeugt die Änderung des magnetischen Flusses ff % - d2I
durch eine Fläche A in der Umrandung die Spannung

tfind = - - J SB-dSl.öt
A

(1)

Wir setzen eine so kleine Querschnittfläche AAT voraus, daß wir in jedem ihrer Punkte mit dem
gleichen Wert der magnetischen Flußdichte rechnen können. Insgesamt hat die Induktionsspule
nT Windungen. In jeder Windung wird beim Aufbau des magnetischen Feldes die gleiche Span-
nung induziert. Diese Spannungen summieren sich. Man erhält damit für den über die Zeit At
erstreckten gleichmäßigen Prozeß als induzierte Spannung

B
ind = ~ n I AAj  —öt

bzw. für die Flußdichte

At
-/ tfindCU

B = — - ----------
AAj

ind At (2)njAAj

Durch Einsetzen der Zahlenwerte ergibt sich

B = 160 ' 10 6 ' 8 Vsm-2 = — 4,3 • IO-3 Vs in-2 .
1000- 3 IO' 4

Für die magnetische Feldstärke folgt

§=  —

mit speziellen Werten

_ 4 q . in-3
H = ■ Am-1 = -3,4 • 103 Am" 1 .

4k • IO"7

Das entspricht dem Feld im Innern einer 10 cm langen Spule aus 100 Windungen bei 3,4 A Strom-
stärke.

A Aufgaben

A 1.1.1. Berechnen Sie die elektrische Erregung und die elektrische Feldstärke (S
im Abstand r = 10-10 m von einer Elementarladung e = 1,6 • IO-19 As (e = s0
= 8,85 • IO-12 AsV-1 m-1 ).

A 1.1.2. Wie groß ist die Kraft, mit der zwei entgegengesetzt geladene Elementarteil-
chen im Abstand r = IO-10 m einander anziehen?
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A 1.1.3.

A 1.1.4.

A 1.1.5.

A 1.1.6.

A 1.1.7.

A 1.1.8.

A 1.1.9.

A 1.1.10.

A 1.1.11.

A 1.1.12.

A 1.1.13.

Im Mittelpunkt einer Kugel von einem Meter Durchmesser befindet sich eine
negative Ladung von 10~6 C. Berechnen Sie die dielektrische Verschiebung und die
elektrische Feldstärke auf der Kugel. Die Kugel ist aus einem Material mit e T = 1,5.
Zwischen zwei Kondensatorplatten beträgt die Spannung 220 V. Wie groß ist im
Kondensator die elektrische Feldstärke? Der Plattenabstand beträgt 1 cm.
Welche Spannung ist erforderlich, um ein Elektron der Anfangsgeschwindigkeit
v0 = 107 ms-1 auf die Geschwindigkeit Null abzubremsen? Elektronenmasse
m = 9,1 • 10-31 kg.
Welche Kraft wirkt auf ein Schwebetröpfchen, das eine Elementarladung trägt,
im homogenen Feld eines Kondensators mit der Spannung U = 104 V und dem
Abstand l = 1 cm der Kondensatorplatten?
Ein kugelförmiges Schwebeteilchen der Dichte @ = 1 g cm-3 mit dem Durchmesser
2r = 1,0 pim befindet sich zwischen den Platten eines Kondensators. Die Spannung
beträgt U = 220 V, der Plattenabstand l = 1 cm. Wie groß muß die Ladung Q
sein, wenn die elektrischen Kräfte der Erdanziehung das Gleichgewicht halten
sollen?
Wie groß ist der effektive Verschiebungsstrom durch eine Fläche von 5 • 105 m2 ,
wenn in der Nähe eines UKW-Senders die Frequenz / = 100 MHz = 108 Hz und
die Feldstärke 0,5 Vm-1 betragen?
Wie groß ist die magnetische Feldstärke § im Innern einer 20 cm langen Zylinder-
spule aus 16000 Windungen bei einem Strom von 0,5 A? Der Querschnitt ist kreis-
förmig.
Eine 10 cm lange Spule enthält 7000 Windungen. Der Radius des kreisförmigen
Spulenquerschnittes beträgt 0,5 cm. Die Querschnittsfläche des Kupferdrahtes
(spezifischer Widerstand 1/y = 0,017 £1 mm2 m-1 ) sei gleich 0,25 mm2 . Wie groß
ist die magnetische Feldstärke im Innern der Spule, wenn eine Gleichspannung von
220 V anliegt?
Berechnen Sie zur vorangegangenen Aufgabe die induzierte Gegenspannung in der
Spule, wenn der Strom in einer Zeit von At = 0,001 s abgeschaltet wird.
Um eine Feldspule ist eine Induktionsspule aus 4000 Windungen gewickelt. Die
Induktionsspule sitzt unmittelbar auf der Feldspule, so daß die rückläufigen Feld-
linien außerhalb der Feldspule die Messung nicht stören. Als Querschnittsfläche ist
für beide Spulen AA = 5 cm2 zu setzen. Der in der Feldspule fließende Strom wird
in der Zeit At = 0,1 s abgebaut. Dabei wird in der Induktionsspule eine mittlere
Spannung von 30 V gemessen. Wie groß war die magnetische Flußdichte?
Berechnen Sie die magnetische Spannung bei der Bewegung zwischen dem Anfang
und dem Ende im Innern einer Zylinderspule, bestehend aus 10000 Windungen,
wenn in der Spule der Strom I = 2 A fließt. Störungen des homogenen Feldes an
den Spulenrändern sind zu vernachlässigen. Wie groß ist die magnetische Spannung
zwischen dem Anfangs- und dem Endpunkt, wenn man sich im Außenraum bewegt?
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1.2. Potential und Gradient — elektrisches und magnetisches Moment

E Einführung

Ist eine skalare Größe 0 oder eine vektorielle Größe 6 eine Funktion des Ortes, so
spricht man von einem skalaren oder vektoriellen Feld. Um die vorzeitige Festlegung
auf ein spezielles Koordinatensystem zu vermeiden, ist es zweckmäßig, die Ab-
hängigkeit einer Feldgröße von den Raumkoordinaten als Funktion des Orts-
vektors r darzustellen. Skalare und vektorielle Felder sind also allgemein in der Form

0 = 0(r) ,  S=S( r )  (1)

gegeben. In Cartesischen Koordinaten x, y, z sind der Ortsvektor und sein Diffe-
rential durch

r = xx + y\ •+ zl bzw. dr = dx t + dy j + dz f (2)

bestimmt.
Für die Änderung einer skalaren Größe 0 beim Fortschreiten im Raum erhält man
in Cartesischen Koordinaten nach dem Satz vom totalen Differential

50 50 50
d 0 = dz+— dy + — dz .  (3)

dx dy dz

Hierin läßt sich die rechtsstehende Summe als skalares Produkt zweier Vektoren

/ 50 50 50 \
dtf= — i + — j + — t .(cLH + dy j  + cM)\ dx dy dz /

auffassen. Der erste Vektor rechts

, 50 50 50grad 0 = — t + — j + — fdx dy dz • (4)

definiert in Cartesischen Koordinaten den Gradienten. Durch Anwendung des
Vektoroperators grad auf ein skalares Feld wird dieses in ein Vektorfeld umge-
wandelt.
Mittels (4) kann die räumliche Änderung der skalaren Größe 0 in der Form

d0 = grad 0 • dr (5)

dargestellt werden. Man schreibt den Gradienten (4) daher formal auch als Ableitung
der skalaren Ortsfunktion 0(r) nach dem Ortsvektor r :

grad <5 = + j + t /-)&■ (5a)
dr \ dx dy dz]
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Um zu einer vom speziellen Koordinatensystem unabhängigen Definition des Gra-
dienten zu gelangen und seine Eigenschaften zu erkennen, betrachtet man die
Niveau- oder Äquipotentialflächen der als differenzierbar vorausgesetzten skalaren
Ortsfunktion 0(r). Bei der Bewegung auf einer Niveaufläche 0 = 0 O gilt d0 = 0.
Bezeichnet daher dr 0 das Differential eines der Tangentenvektoren im Punkt P auf
der Niveaufläche, so ergibt sich aus (5) als Beziehung zu dem im Punkt P errichteten
Gradienten

(d0) dro = grad 0 • dr 0 = 0 .

Da weder grad 0 noch dr 0 gleich Null sind, müssen grad 0 und dr 0 aufeinander
senkrecht stehen. Das bedeutet, daß der Gradient auf der Niveaufläche senkrecht
steht (vgl. Bild 1.5).
Wie man aus der Beziehung (5) entnimmt, ist die Änderung der skalaren Orts-
funktion 0 bei vorgegebenem dr dem Betrage nach am größten, wenn grad 0 und dr

Bild 1.5. Gradient und Äquipotentialflächen
Äquipotentialfläche y, z) — const, dr0 Differential eines
Tangentenvektors an die Äquipotentialfläche im Punkte P

gleichgerichtet sind ; der Gradient gibt somit die Richtung stärkster Änderung der
skalaren Ortsfunktion an. Sein Betrag ist gleich dem Differentialquotienten in Rich-
tung stärkster Änderung von 0, also orthogonal zur Niveaufläche.
Für die Lösung vieler Probleme ist es zweckmäßig, Zylinder- oder Kugelkoordinaten
einzuführen.
Der Zusammenhang zwischen Cartesischen und Zylinderkoordinaten ist durch

x = r cos (p , y = r sing), z = z (6)
festgelegt.
Die Vektorgröße S wird in Zylinderkoordinaten mittels

© = S r e r + + &z ez (7)

dargestellt. Hierbei stehen die drei Einheitsvektoren e r , e?, t z aufeinander senkrecht.
e r gibt die Richtung wachsender Werte r an, wenn die übrigen beiden Koordinaten
<p und z festgehalten werden. Analog sind e? und ez definiert. e r , e , ez bilden ein Rechts-
system.
Die Vektorkomponenten ®r , hängen mit den Cartesischen Komponenten
gemäß

ß ?. = cos (p + sin (p ,
sin <p + &y cos 99, (8)
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zusammen. Der Gradient schreibt sich in Zylinderkoordinaten

30 i 30 30
H--------- e«? H— — •or rd (p  cz

Kugelkoordinaten sind mit Cartesischen Koordinaten durch

x = r sin cos (p, y = r sin # sin <p, z = r cos $

verknüpft. Die Vektorgröße ® wird in Kugelkoordinaten gemäß

(9)

(10)

(11)

(12)

(13)

e = (Mr + + (M*

dargestellt mit

sin & cos <p + sin $ sin (p + cos $ ,
cos & cos (p + &y cos & sin <p — sin # ,

&<p = —&x sin cp + cos cp .
Für den Gradienten ergibt sich in Kugelkoordinaten

. 30 1 30 ' 1 30grad 0 = — er -| -----: H----- —dr r sm dcp r

Der Gradient ist für die Berechnung des Integrals über ein Vektorfeld bei vor-
gegebenem Weg g von Bedeutung. In Cartesischen Koordinaten kann man das
Kurvenintegral schreiben

J (£ -d r  = / (  daJ + dy + dz). (14)
c c

Im allgemeinen ist (14) von der Wegkurve G abhängig, d. h., die Integration über
eine geschlossene Kurve hat ein von Null verschiedenes Ergebnis :

( ßg -d r  + O. (15)

Läßt sich dagegen das Vektorfeld g(r) als Gradient einer skalaren Ortsfunktion bzw.
eines Potentials — 0(r) ausdrücken, gilt also

d0
®(r) = — grad 0(r) = — (16)

so folgt, (16) in (14) eingesetzt und (5) berücksichtigt,
p 2

f &-dr  = - j ' ~dr  = -j'd<i> = $(?!) -WPJ .  (17)
C C Pi
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P x und P 2 geben dabei Anfangs- und Endpunkt der Integration an. In einem Vektor-
feld ®(r), das sich als Gradient des Potentials — 0(r) ausdrücken läßt, ist somit das
Linienintegral (14) nicht vom Weg C, sondern nur von Anfangs- und Endpunkt der
Integration abhängig. Für das Integral über einen geschlossenen Weg C in einem
derartigen Vektorfeld (16) erhält man (wenn 0(r) in dem von C eingeschlossenen
Gebiet überall stetig ist)

(ß (£(r) • dr = — (ß grad 0(r) • dr = 0(P) — 0(P) = 0 .  (15a)

Die nach (1.1./4) definierte Spannung

U = f ® • dr
c

in einem elektrischen Feld g ist im allgemeinen von der speziellen Form der Weg-
kurve C und nicht nur von den Endpunkten P x und P 2 abhängig. Nur wenn sich das
elektrische Feld 6 als Gradient einer skalaren Ortsfunktion — 0(r) ausdrücken läßt,
ist die Spannung vom Weg unabhängig. In diesem Falle folgt analog (17)

p p

U = f - d t  = - f  grad -d t  =<P(P1 ) - (P z ) ,  (18)
Pi Pl

d. h., die Spannung ergibt sich als Differenz der Potentiale in den beiden Punkten P,
und P 2 .
Das Potential ist bis auf eine willkürliche additive Konstante bestimmt, über die
man so verfügen kann, daß 0(oo) = 0 ist. Identifiziert man daher in (18) den Punkt
mit einem vorgegebenen Punkt P o des Feldes und läßt P 2 ins Unendliche rücken,
so folgt aus (18)

oo

ü = Je -d r  = 0(P O ) .  (19)
Po

Das Potential 0(P O ) eines Punktes P o im elektrischen Feld @ gibt also die Spannung U
zwischen diesem Punkt und dem Unendlichen an. Die Ladung Q hat im elektrischen
Feld (£ die potentielle Energie

IFpot=Q0(Po). (20)

Sie gibt die Arbeit an, die aufzuwenden ist, um die Ladung in das Unendliche zu
transportieren.
Ein elektrischer Dipol wird von zwei gleich großen, entgegengesetzten elektrischen
Ladungen gebildet, die im allgemeinen nahe benachbart sind. Gibt QD die positive
elektrische Ladung des Dipols an und bezeichnet Ar den Vektor, gezogen von der
negativen zur positiven Ladung, so definiert man den Vektor

nie = Qd A [|me |] = Am s (21)
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als elektrisches Moment des Dipols. Die potentielle Energie eines Dipols mit dem
elektrischen Moment me in einem äußeren elektrischen Feld ® errechnet man aus den
Potentialen der beiden entgegengesetzten Ladungen (vgl. 1.2.4.). Bezeichnet
0(r) = 0 das Potential am Ort der negativen Ladung, 0(r + dr)  = 0 + d0  das
am Ort der positiven Ladung, so folgt nach (20)

/ d0 \JPD = _qd 0 + QD 0 + — . dr = - me • (22)
\ dr /

Die potentielle Energie eines Dipols ist also von der Stellung des Dipols im elek-
trischen Feld abhängig.
Für das Drehmoment äft eines elektrischen Dipols me im elektrischen Feld (£ erhält
man das vektorielle Produkt

9ft = me X®. (23)

Sein Betrag ist am größten, wenn m und ® zueinander senkrecht stehen. Die Gleich-
gewichtslage = 0 ergibt sich somit, wenn me und @ parallel gerichtet sind.
Bei magnetischen Substanzen treten die entgegengesetzt wirkenden Pole stets paar-
weise auf und sind nicht voneinander zu trennen. Magnetische Körper sind also
stets Dipole. Ihr magnetisches Moment mm ist durch das im homogenen Magnet-
feld § auf den Magneten wirksame Drehmoment

- mm x § (24)

definiert. Das magnetische Moment hat die Einheit

[|mm | ]=Vrns.  (25)

Die Polstärke P wird durch die zu (21) analoge Formel

mm = P dr (26)
definiert, dr  ist vom magnetischen Südpol zum Nordpol gerichtet. Als Einheit der
magnetischen Polstärke folgt aus (26)

[P] = = Vs== Wb - ' (27)

Für einen Elektromagneten, der aus einer vom Strom I durchflossenen Windung
der Fläche AA besteht, beträgt das magnetische Moment

mm =/z /d2 l .  (28)
Der Flächenvektor d2I steht auf der vom Strom I umfahrenen Fläche senkrecht.
Er ist so orientiert, daß in seiner Blickrichtung die Fläche vom Strom I im mathe-
matisch positiven Drehsinn durchflossen wird. Bei einer Spule aus n Windungen
beträgt das magnetische Moment

mm = pnl d 21 (29)
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Probleme

1.2.1. Arbeit im inhomogenen elektrischen Feld

Im Punkt P-l mit den Koordinaten x1 = —5,y1 = 0 , z 1 = 0 befindet sich eine positive elektrische
Ladung Q1 = Q = IO-8 C. Eine gleich große negative Ladung Q 2 = — Q ist im Punkt P 2 mit
den Koordinaten x2 = +5 ,  y2 = 0 ,  z2 = 0 konzentriert. Vom Punkt A mit den Koordinaten
xA = 0 ,  = 1 ,  = 0 wird eine Ladung QP = — 10-10 C auf der verbindenden Geraden zum
Punkt B mit den Koordinaten xB = 1 , yB = 0 ,  zB = 0 gebracht. Berechnen Sie die hierfür er-
forderliche Arbeit. Wie groß ist diese, wenn der Ladungstransport auf der «/-Achse von A nach
dem Koordinatenanfangspunkt 0(0, 0, 0) und von dort nach B erfolgt? Wie groß ist die Spannung
zwischen den genannten Punkten über die vorgeschriebenen Wegstrecken?

Lösung
Jede der beiden Ladungen erzeugt ein kugelsymmetrisches Feld. Das resultierende elektrische
Feld ergibt sich daraus durch Überlagerung :

= i 3. = i 2 ~ 1 ~ i + (g - e]
4™0 i r l i ]/(a; _ a;.)2 + (y — + (z -

Das Linienelement des vorgegebenen Weges C schreiben wir als Vektor

dr = dz i + dy j + dz f .  (2)

Hieraus folgt für die Arbeit bei der Bewegung der Ladung QP

T7 = <2P f @ • dr = -&- f 2 Qi - ,  + ( y - y i )dy + ( z - z i )dz . (g)
J J i V(a? — x{ ) 2 + («/ — yi) 2 + (z — Zj) 23

c c

Den vorgegebenen Weg C stellen wir gemäß

x = x(t) , y = y(t) , z = z(t) (4)

dar. Der Parameter t läuft von tA = 0 bis tB = 1 . Im Fall der geraden Verbindung zwischen
den Punkten P t und P2 ist

x(t) = t ,  y(t) = — t + 1 ,  z(t) = 0;  tA = 0,  tB = 1 .

Durch Einsetzen von (4) in (3) erhalten wir

C [ (x(t) - Xi) + (y(t) - yi) + (z(i) - 1
w = , - 3 d *- ( 5 )4K80 J i y[a .(0 _ x p + [2/W _ y p + [z( t )  _ z -f

IA

Dieser Ausdruck ist nur von den Endpunkten und nicht mehr von der Wegkurve C abhängig.
Unsere Lösung ist daher für beide vorgegebenen Wegkurven identisch. Die Integration ergibt,
wie man sich durch Differenzieren überzeugt, 0

w = S Qi [ . - 1 . (6)
4K80 i [y [a .(0 _ x .p + i f) _ y. }2 + [2(j ) _ z .pJ (x
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Zahlen eingesetzt, folgt ,

—IQ-10 - 10~8

4k • 8,85 • IO“12W =

Die Spannung zwischen den beiden Punkten beträgt somit

7,5 • IQ-10

10-1° V = 7,5 V .U =

1.2.2. Potential des elektrischen Feldes

In den Punkten P± und P2 befinden sich die Ladungen = 10-7 C und Q 2 = 2 • 10-7 C . Die
Ortsvektoren der Punkte P x und P2 seien rx = 2i — j + 4f und r 2 = — 2i + j — 4f . Bestimmen
Sie das Potential des elektrischen Feldes, und berechnen Sie die Potentialdifferenz zwischen
den Punkten .4(2, 1, 0) und B(— 2, — 1, 0). Welche Gleichung hat die durch den Koordinaten-
anfangspunkt hindurchgehende Potentialf lache ?

Lösung

Das elektrische Feld können wir in der Form

e i ( l )
i _ r .)23

schreiben. Für das Potential 0 gilt die Beziehung (vgl. 1.2./13)

d0© = — grad 0 = (2)

Daraus folgt

0 = _ r@.  dr = __L f s (3)

Wir führen die Integration aus und erhalten

0 = S — + C .  (4)
4k£0 i ] / ( r -  ) 2

Die Konstante C legen wir so fest, daß 0 die Arbeit angibt, um eine Ladung der Stärke Q = 1 As
aus dem Unendlichen zum Punkt mit dem Ortsvektor r zu bringen. Das bedeutet 0(r) ->0 ,
wenn |r |  unbeschränkt wächst, also

lim 0 = 0 .
|r|->oo

Diese Bedingung ist nur erfüllt, wenn C den WTert Null hat. Somit gibt

0 = * S -- —
4ke0 i ]/( r - r i  )2

(5)

(6)

3 Schilling, Felder
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bzw.
’ _________ 10~7 ___________ __________2 • 10~7 __________1 y

_ 2)2 + (3/ + 1)2 + (z - 4)2 + ft® + 2)2 + (y -  1)2 + (8 + 4)2]
(7)

das gesuchte Potential an.
Für die Äquipotentialflächen erhält man die Gleichung

2 ----- = const. (8)
* VCr - r J  2

Im vorliegenden Fall gilt, den Faktor 10-7 ausgeklammert,

* — + ------------------- - ------------------- = const. (9)
l/(x - 2)2 + (y + 1)2 + (z - 4)2 ]/( + 2)2 + (2/ - 1)2 + (z + 4)2

Die durch den Koordinatenanfangspunkt gehende Fläche ergibt sich, indem man die Konstante
für x = 0 ,  y = 0 ,2  = 0 bestimmt:

4tt • 8,85 • IO"12

1 2 1 /—---------------- -|- -------- ■ ■ — = — ]/21 = const.
]/4 + 1 + 16-----]/4 + 1 + 16------7

Schließlich folgt aus (7) als Potentialdiff erenz zwischen den Punkten A(2, 1, 0) und B(— 2, —1,0)

1.2.3. Potential des kugelsymmetrischen Feldes

Berechnen Sie das Potential des elektrischen Feldes

mit Q = 10-8  C. Wie groß ist das Potential im Abstand r -10m von der Ladung Q? Welche
potentielle Energie hat dort die Ladung Qp = 10-6 C?

Lösung

Das elektrische Feld (£ ergibt sich aus dem Potential 0 gemäß

(£ = — grad0 .  (2)

(g hat die Richtung des Radiusvektors r. Es besteht in (1) nur eine Abhängigkeit von der Ko-
ordinate r. Wir verwenden daher Kugelkoordinaten. In diesen schreibt sich der Gradient nach
(1.2./13)

, _ Ö0> , 1 d<P , 1 8$grad <D=—e r -\ -----— — e ----- — e ä . (3)
er r sm v ap r
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$
Die elektrische Feldstärke besitzt nur eine Komponente in Richtung er = — . Daher muß das
Potential sowohl von 9? als auch von # unabhängig sein : r

=0 .
d(p

Für die Abhängigkeit von r ergibt sich aus (1), (2) und (3)

Q =

4tvz2 dr ’

(4)

woraus durch Integration folgt

0 =  _p_ dr=  J3_.
J 47T£0r2 47V£0r (5)

Die Integrationskonstante ist gleich Null. Sie ist damit so festgelegt, daß das Potential für r -> 00
verschwindet.
Auf einer Kugel im Abstand r = 1 m folgt als Potential

10~8

4k • 8,85 • 10- 12 • 10
U = V = 8,99 V .

Die potentielle Energie der Ladung Qp = IO-6 C ist im Abstand r = 1 m somit gleich

J7pot = IO"6 • 8,99 J = 8,99 pJ.

1.2.4. Elektrisches Moment eines Dipols

Im homogenen elektrischen Feld, dessen Potential in Abhängigkeit von den Raumkoordinaten
durch

0 = 0 o + 0 1 ' a; , 0 O = 20000 V ,  0/ = 10000 V m- 1 (1)

gegeben ist, befindet sich ein elektrischer Dipol. Er trägt die Ladungen ±Qd = ±10~ 8 C, deren
Abstand voneinander l = |dr |  = 1 cm beträgt. Berechnen Sie das auf diesen Dipol wirkende
Drehmoment -äR, wenn der Dipol quer zu den elektrischen Feldlinien gestellt ist (vgl. Bild 1.6).

Bild 1.6. Das elektrische Moment m e eines
Dipols. Das Drehmoment = m e X @
weist in die Zeichenebene, (5 kennzeichnet
ein homogenes Feld

3*
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Wie stark ist die Auslenkung, wenn der Dipol sich an einer drehbaren Aufhängung mit der Winkel-
richtgröße D* = 10-4 Nm rad-1 befindet?

Lösung

Die potentielle Energie der Ladung — $ D an einem Punkt mit dem Potential 0 beträgt nach
(1.2./20)

P o t= -QD< (2)

Wir berücksichtigen, daß sich das Potential bei Fortschreiten zum Ort der positiven Ladung QD
verändert. Es hat dort den Wert

0 4- d0 = 0 + grad 0 • J r ,  (3)

wobei Ar die Änderung des Ortsvektors bezeichnet. Für die potentielle Energie des Dipols folgt
somit, (£ = —grad 0 beachtet,

IFj) = — $ D 0 + $ D ( H“ grad 0 • Ar) = — $p Ar • @ . (4)

Den Ausdruck

Qr> Ar = m e (5)

definieren wir als elektrisches Moment des Dipols. Es stellt einen Vektor dar, der von der nega-
tiven zur positiven Ladung gerichtet ist. Sein Betrag ist im vorliegenden Fall

|me | = 10-8 • IO-2 Asm = IO-10 Asm.

Wir bezeichnen die auf die negative elektrische Ladung wirkende Kraft durch

3 r_=—  Qd (£. (6)

Die auf die positive Ladung wirkende Kraft ist gleich

S + = $d®. (7)

Beide Kräfte sind nur im homogenen elektrischen Feld dem Betrage nach gleich. Sie bewirken
das Drehmoment

9K= S t<xg<= —i- r xg_+  4- x8+ = <?D t x®
i 4 *

bzw. nach Definition (5)

= me X @ . (8)

Das Drehmoment ist gleich dem Vektorprodukt aus elektrischem Moment und elektrischer
Feldstärke.
Im vorliegenden Fall ist nach (1)

(S = — grad 0 = — 0/ i .
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Das elektrische Feld hat also die Richtung der negativen x-Achse. Steht der elektrische Dipol
quer zu den Feldlinien, hat er also die Richtung der ?/-Achse, so folgt nach (8) als Drehmoment

i i
0 o
-0/ 0

l

0
= WiQdI -W = me x ® =

Einsetzen der Zahl enwerte liefert für das in Richtung der z- Achse orientierte Drehmoment

= 10000 • io- 8 • IO' 2 J = IO“6 J .

Die Auslenkung (p wird durch die Beziehung

= Dtp

bestimmt. Hieraus folgt für den Auslenkwinkel

M 10-6 n(p = 1 1 = ----- rad = 0,57° .
D IO-4

Das relativ starke elektrische Feld bewirkt eine nur geringe Auslenkung des hochgeladenen
Dipols.

1.2.5. Potential und Feld des elektrischen Dipols

Ein elektrischer Dipol trägt die Ladungen = i lO -8 C. Der Abstand beider Ladungen ist
gleich l = |dr |  = 1 cm. Bestimmen Sie das vom Dipol ausgehende elektrische Feld im Abstand
r = 2 m.

Lösung

Nach (1.1. /8) und (1.1. /15) erzeugt die Ladung das kugelsymmetrische Feld

@ = _®2_ — .
4TCS0r2 r

Das Potential dieses Feldes ist gemäß 1.2.3. durch

(1)

0 = (2)
4r:s0r

gegeben. Zwei entgegengesetzte Ladungen ergeben nach (1.1. /9) und (1.1. /15) das Feld

4tce0 \r+
2 r+ r2 r_)

Es läßt sich aus dem Potential

0 + _=2e - ( - - - )  (4)4tt£0 \ r + r_/
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ableiten. In (3) und (4) bedeuten r + und r_ die von den Ladungen ±Q D und — öp zum Aufpunkt P
gezogenen Vektoren.
Für nahe benachbarte Ladungen schreiben wir

d r
r+ r 2 ’

d r
2 (5)

Nach dem Cosinussatz gilt für |dr |  | r |

a r • zlr— r • d r  =■ r ---------- ,
2r (6)r+ —

. a , r - d r
± r - d r  = r 4- — — .2r (7)

Damit folgt aus (3) für das elektrische Feld des Dipols

re Cd / A , 3r ■ /,x '®D — ~A----3 I — "I-----2--  r47V£0rd \ r 2 
)

3m e • r (8)

aus (4) für das Potential

0 _ Qi> t ■ A _ m e ■ r
D 4k e0 r 3 4k£0z3 (9)

Für Aufpunkte P r und P 2 
au der verlängerten Dipolachse gilt

(10)m e • r = ±m e r

(oberes Vorzeichen für gleiche, unteres für entgegengesetzte Orientierung von m undr) .  Daraus
folgt

met Qpl

Das Potential wird gleich

me QD l
P1,P2 4Treor 2 47te0r 2

(11)

(12)

Die Feldstärke ist im Punkt P ± dem Radiusvektor gleich-, im Punkt P 2 entgegengerichtet. Für
die Größe der Feldstärke ergibt sich

= ------10 8 ' 10  .2 ----- Vm- 1 = 0,225 Vnr 1 .
2k£(/ 3 2k • 8,85 • 10~12 ■ 23

Das Potential erhält man aus (12) :

10~8 • 10~2

— -----— -------- V - ±0,225 V .Pi,P 2 — i 4- • 8,85 • IO"12 • 2 2
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Für Aufpunkte P 3 und P 4 oberhalb und unterhalb des Dipols folgt wegen m e • X = 0 aus (8)
die Feldstärke

@
47TE0r 3 ’

d. h. ein Feld entgegen dem Richtungssinne des elektrischen Moments der Größe

_QoL = ----10 8 ' 10 2 
-----  Vm -i = o,U2 Vm- 1 .

4rce0r3 ■ 8,85 • IO“12 • 23

In den Punkten P 3 und P 4 wird das Potential gleich Null.

1.2.6. Magnetisches Moment eines permanenten Magneten

Ein permanenter Magnet befindet sich in einer Aufhängung mit der Winkelrichtgröße
D = 5,5 • IO-2 N m rad-1 . Es wird ein Magnetfeld der Stärke 2,5 • 104 A m-1 eingeschaltet, das
senkrecht zur Ruhelage des aufgehängten Magneten gerichtet ist (vgl. Bild 1.7). Dieses Magnet-
feld bewirkt eine Auslenkung aus der Ruhelage von <p = 8,5° . Berechnen Sie daraus das magne-

Bild 1.7. Permanenter Magnet SN im homogenen Magnetfeld A Aufhängepunkt
(Schwerpunkt des Magneten)

tische Moment des permanenten Magneten. Welche Windungszahl muß eine Spule mit dem
Öffnungsquerschnitt AA = 10 cm2 haben, die vom Strom 1 A durchflossen wird, wenn sie das
gleiche magnetische Moment wie der permanente Magnet aufweisen soll ?

Lösung

In Analogie zum elektrischen Moment definiert man nach (1.2./26) als magnetisches Moment
den Ausdruck

mm = Pz l t .  (1)

Dabei ist Ax, im Magneten entgegen dem Feld SB vom Südpol zum Nordpol gerichtet. P bezeichnet
die Polstärke eines Magneten. Das Drehmoment im Magnetfeld der Stärke § wird gemäß (1.2./24)
gleich

X © • (2)
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Die Auslenkung 92 hängt vom rücktreibenden Drehmoment ab, das durch die Winkelrichtgröße D
bestimmt ist. Für nicht zu große Auslenkungen gilt die Beziehung

= (3)

92 hat die Richtung des Drehmomentes und den Betrag des Winkels 99. Wir setzen für den
Zusammenhang (2) zwischen dem magnetischen Moment und der magnetischen Feldstärke ein.
Daraus folgt als Auslenkwinkel

? = D ' (4)

Steht § senkrecht zur Ruhelage des aufgehängten Magneten, so ergibt sich

|m| H Dtp
<P = —7 — bzw - m m = , (5)U H

mit Zahlenwerten

= 5,5 • 10- 2 ■ 8,5 ■ tc = _
m 180 • 2,5 -IO4

Für einen Elektromagneten ist nach (1.2./28) sowie nach 3.2. das magnetische Moment durch

= H<>nl (7)

bestimmt. Soll der Elektromagnet das magnetische Moment (6) besitzen, so muß die Windungs-
zahl gleich

n = 
mm = ---3 > 26 ~ 10 7

----- = 259
/ lAA  4tt • 10-’ • 1 • 10- 3

sein. Wenn also die Spulenfläche 10 cm2 beträgt, sind bei 1 A Stromstärke n = 259 Windungen
erforderlich, um elektromagnetisch die gleiche Wirkung wie mit dem permanenten Magneten zu
erzielen.

1.2.7. Gaußsches Verfahren zur Messung der magnetischen Feldstärke
und des magnetischen Moments

Es sollen die magnetische Feldstärke eines äußeren Feldes und das magnetische Moment mm
eines vorgegebenen Magneten bestimmt werden. Hierzu läßt man den Magneten mm im Feld
um seine stabile Gleichgewichtslage kleine Schwingungen ausführen und mißt die Periodendauer t.
Danach wird der Magnet mm derart angeordnet, daß seine Achse senkrecht zum Feld gerichtet
ist und genau auf den Schwerpunkt 0' eines Hilfsmagneten m' weist. Infolge des von mm aus-
gehenden Feldes § erfährt der Hilfsmagnet m' eine Auslenkung aus der § 0 -Richtung um den
Winkel 99. Bestimmen Sie die Feldstärke § 0 und das magnetische Moment wenn für die Peri-
odendauer t = 1,25 s und für den Auslenkwinkel 99 = 2,15° gemessen werden. Das Trägheits-
moment des Magneten THm beträgt J = 2,4 • 10-3  kgm2 . Der Abstand zwischen den Schwer-
punkten beider Magneten bei der Messung der Auslenkung des Hilfsmagneten ist gleich r = 1,60 m .
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Lösung

Nach (1.2./24) wirkt im Magnetfeld auf einen Magneten mit dem magnetischen Moment mm
das Drehmoment

9Jl = mm x$ 0 . (1)

Ein freischwingender Magnet stellt sich daher so ein, daß das Drehmoment verschwindet, daß also
rrtm und gleichgerichtet sind. Dreht man den Magneten um den Winkel tp k aus der Gleich-
gewichtslage, so wirkt auf ihn ein rücktreibendes Richtmoment D, das durch

ÜR = Dtp (2)

bestimmt ist. Für kleine Auslenkungen aus der Gleichgewichtslage kann man den Betrag des
Drehmomentes in der Form

|9ft| = |rnm x£ol  = l$ol |sin?j| m m |$ 0 | |g?| (3)

(4)

(5)

schreiben. Hieraus folgt

D = m m |$ 0 | .

Die Periodendauer t einer Drehschwingung ist durch

-./ J
y l©ol

T = 27V

festgelegt, wobei J das Trägheitsmoment des Magneten bedeutet. Aus der Messung der Größe t
läßt sich somit bei bekanntem J das Produkt aus der Feldstärke und dem magnetischen
Moment Trtm ermitteln.
Zur Bestimmung des vom Magneten mm ausgehenden Feldes § wenden wir die Formel (1.2.5./8)
an und führen einen Analogieschluß von den in 1.2.5. betrachteten elektrischen auf magnetische

Bild 1.8. Auslenkung tp des Hilfsmagneten m' im äußeren Feld
und im Feld des untersuchten Magneten rn m

Felder. Anstelle der elektrischen Feldstärke (£ haben wir die magnetische Feldstärke anstelle
der Dielektrizität e die Permeabilität pL, anstelle des elektrischen Momentes tne das magnetische
Moment mm zu setzen. Damit folgt

~ 1

£ = 4------5 1 (6)
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Liegt der Aufpunkt im Abstand r >|Jr |  auf der verlängerten Magnetachse, so ergibt sich (vgl.
1.2.5./11)

Wir messen die vom Dipol erzeugte Feldstärke § aus ihrer Wirkung auf den Hilfsmagneten m'.
Dieser stellt sich in Richtung des resultierenden Feldes § + e in (vgl. Bild 1.8).
Der Auslenkwinkel aus der Richtung § 0 ist somit durch

= ± (8 )
l$ol 2tw 3 1§0 |

bestimmt. Mit den vorgegebenen Werten folgt aus (5)
T 9 4,1 0-3

l$ol = J = 0,0606 J
T“ 1,25

und aus (8)

= 2tw 3 tan cp = 2k • 4k • 10-7  • 1,6 3 • 0,0375 Vm2s A-1 = 1,21 • 10~6 Vm2s A-1 .
ISol

Daraus ergibt sich

m m = 2,71 • IO"4 V m s ,  |§ 0 | = 224 A m" 1 .

A Aufgaben

A 1.2.1. Wie lautet das Potential des elektrischen Feldes
@ = (10 Vm-1 + 20 Vm-2 x) i + (20 Vm"1 - 10 Vnr 2 y) j - 15 Vm"1 f?

A 1.2.2. Bestimmen Sie das Potential des elektrischen Feldes (in Zylinderkoordinaten)

& = c 1 (4 - e l\ r 2 r /

A 1.2.3. Berechnen Sie grad , grad e r , grad (z ei(?r) .

A 1.2.4. In den Punkten (1,0,0) und ( — 1,0,0)  befinden sich elektrische Ladungen der
Stärke IO-6 C. Wie groß ist die Spannung zwischen den Punkten (—0,9, 0, 0) und
(4-0,9, 0,0)?

A 1.2.5. Wie groß ist in der vorangegangenen Aufgabe die Spannung zwischen den Punkten
(-0,9 ,  0, 0) und (0, 0, 0)?

A 1.2.6. In einem Plattenkondensator mit dem Plattenabstand 20 cm wird die Feldstärke
|@| = 1000 V m-1 gemessen. Wie groß ist die Spannung?

A 1.2.7. Ein Elektron läuft in einem Plattenkondensator gegen eine Spannung von 1 000 V
. an. Wie groß muß die Anfangsenergie des Elektrons sein, wenn es den Kondensator

durchlaufen soll? Welcher Anfangsgeschwindigkeit entspricht das?
A 1.2.8.
A 1.2.9.

Bestimmen Sie zu Aufgabe A 1.2.4. das Potential.
Wie lautet zu Aufgabe A 1.2.4. die Gleichung der Potentialfläche durch den Punkt
(2, 0, 0)?
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Bestimmen Sie das Potential eines Plattenkondensators, dessen Platten senkrecht
zur x- Achse stehen. Plattenabstand 10 cm, Spannung 220 V. Die positiv geladene
Platte enthalte den Koordinatenanfangspunkt.
Wie groß ist die potentielle Energie eines elektrischen Dipols der Ladung i 10“8 C
mit dem Abstand der Ladungen l = 10 cm, wenn der Dipol quer zum Feld der
Stärke |@| = 20 V m-1 steht. Berechnen Sie das elektrische Moment m e des Dipols
und das Drehmoment.
Wie groß ist das magnetische Moment einer Spule mit n = 5000 Windungen, die
von einem Strom der Stärke 0,1 A durchflossen wird, wenn der Spulenquerschnitt
5 cm2 beträgt?
Berechnen Sie zur vorangegangenen Aufgabe das Drehmoment in einem Magnet-
feld der Stärke 1000 A m-1 , wenn die Spule quer zum Feld steht.
Wie groß ist das magnetische Moment eines Elektrons, das auf der innersten
BoHRschen Bahn mit dem Radius

47t£0 Ä2

'’i -f-e2m

den Wasserstoffkern mit der Kreisfrequenz

ei m
= --------------

16k2£0
2 Ä 3

umläuft? (h = 6,626 • 10-34 J s ,  Ä = ä/2k) .
Im magnetischen Feld der Erde wird die Periodendauer einer horizontal auf-
gehängten Magnetnadel gemessen. Hierfür ergibt sich t = 1,45 s .  Das Trägheits-
moment der Magnetnadel beträgt J = 4,8 • 10-5 kg m2 . Für die Horizontal-
komponente des erdmagnetischen Feldes ist |<p e | = 15 A m-1 zu setzen. Berechnen
Sie daraus das magnetische Moment der Magnetnadel.
Ein Magnet bewirkt im Abstand r = 1,50 m von einer Magnetnadel die Auslenkung
cp = 6° . Die Magnetnadel befindet sich auf der verlängerten Achse des Magneten,
der in Richtung Ost— West weist. Berechnen Sie das magnetische Moment des
Magneten. Für die Horizontalkomponente des erdmagnetischen Feldes ist
|§ e | = 15 A m-1 zu setzen. Die Mißweisung sei gleich Null.
Eine Spule aus 15000 Windungen mit der Querschnittfläche 10 cm2 wird vom
Strom I = 1 A durchflossen. Berechnen Sie das Magnetfeld im Abstand r = 2 m
auf der verlängerten Spulenachse.
Wie groß ist in der vorangegangenen Aufgabe das Magnetfeld im Abstand r = 4 m
senkrecht zur Magnetachse?

A 1.2.10.

A 1.2.11.

A 1.2.12.

A 1.2.13.

A 1.2.14.

A 1.2.15.

A 1.2.16.

A 1.2.17.

A 1.2.18.
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1.3. Rotation und Divergenz elektromagnetischer Felder

E Einführung

Das Umlaufintegral über ein Vektorfeld (£(r) ist nach (1.2./15) im allgemeinen von
Null verschieden. Im folgenden wird vorausgesetzt, daß die geschlossene Weg-
kurve C in einer Ebene liegt.
Die von (£ umfahrene Fläche wird durch den Flächenvektor J91 dargestellt. Der
Betrag des Vektors A 91 ist gleich dem Flächeninhalt AA.  Seine Richtung steht normal
zur umfahrenen Fläche. Den Vektor d9l orientiert man derart, daß in Richtung Zf 91

blickend die Randkurve bei der Integration im mathematisch positiven Drehsinn
umfahren wird.
Der Einheitsvektor in Richtung d 91 wird mit e bezeichnet. Es gilt also

Z l9 I=dAe .  (1)

Das Umlaufintegral über die Vektorfunktion (£(r) ist von der Randkurve C und der
Größe der umfahrenen Fläche AA abhängig. Um vergleichbare Verhältnisse zu
schaffen, betrachtet man daher den Ausdruck

1
ÄA ® -dr.

Zieht man die Umlaufkurve C auf einen Punkt zusammen, so ist der Grenzwert

lim —!—■ (f) 6 • dr = rot e S = e • rot (£ (2)

nur noch eine Funktion der vorgegebenen Vektorfunktion ß = ß(r) und der Nor-
malenrichtung e des umfahrenen Flächenstücks. Dagegen hat die spezielle Form der
Begrenzung C im Falle AA -> 0 keinen Einfluß mehr auf den Ausdruck (2).
Durch (2) wird die Rotation des Vektorfeldes ß in einem Punkt P für eine beliebig
vorgegebene Richtung e, d. h. in voller Allgemeingültigkeit definiert. Der Rotor ist
ein Vektor, die Vektor Operation rot wird auf ein Vektorfeld angewandt.
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Läßt sich, das Vektorfeld © = ®(r) als Gradient eines skalaren Feldes 0 = 0(r) dar-
stellen, so gilt nach 1.2. für sämtliche Umlauf kurven C (die keine Singularitäten ein-
schließen)

(ß®(r)dr = O. (3)

Nach (2) folgt, daß für ein Vektorfeld S = — grad 0 die Rotation verschwindet.
Es gilt also

rot grad 0=0 (4)

Um festzustellen, ob ein Vektorfeld 6 ein Potential besitzt, d. h., ob 6 als Gradient
einer skalaren Ortsfunktion 0 dargestellt werden kann, hat man lediglich den Rotor
dieses Feldes zu bestimmen. Nur wenn in allen Raumpunkten

rot S = 0 (5)

gilt, ist eine Darstellung

6 = —grad 0 (6)

möglich.
In Cartesischen Koordinaten schreibt sich der Rotor, wie aus (2) nach längerer Ab-
leitung folgt,

i i t

Bei Verwendung Cartesischer Koordinaten müssen also die Beziehungen

d = d =
dx dy 9 dy dz 9 dz dx

in jedem Punkt erfüllt sein, wenn K in der Form (6) darstellbar sein soll.
In Zylinderkoordinaten lautet die Darstellung des Rotors

d&A /ag r _ flSA £ p[< y] _ d(Er \
dz ] r \ dz dr r \ dr dr /r d(prot (£ = (7 a)

in Kugelkoordinaten

r sin & (ö# (Sm dtp /] Er + r [ orrot 6 =
(7 b)

J_ F 1

r sin & dtp s (rM e -
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Das Integral über eine geschlossene Kurve C, die nicht eben zu sein braucht, kann
nach Bild 1.9 in Umlauf integrale über kleine Flächenstücke AA unterteilt werden.
Für jedes derartige Flächenstück gilt nach (2) im Grenzfall AAi -> dA

rot®-d?Ii  = ®-d r .  (9)
Ci

Ci bezeichnet die Begrenzung des Flächendifferentials d2I . Addiert man sämtliche
Gleichungen (9), so hebt sich nach Bild 1.9 der Beitrag der Kurvenintegrale im
Innern heraus, da über jede Strecke zweimal, jedoch in einander entgegengesetzten

Bild 1.9. Zur Ableitung des ÖTOKESschen Satzes

Richtungen integriert wird. Rechts verbleibt daher nur das Integral über die äußere
Umlaufkurve C. Man erhält damit den Stokesschen Satz

JJ rot(£-d2l = (ßg -d r
AA C

(10)

Das Umlaufintegral des Vektorfeldes erstreckt über die Kurve C, ist gleich dem
Flächenintegral von rot erstreckt über eine beliebige, von C eingeschlossene
Fläche AA.
Zur Definition der Divergenz eines Vektorfeldes betrachtet man den Strom durch
eine differentielle Fläche d2l.
Es bezeichne

S=e»  ( i i )

den Vektor der Stromdichte, q gibt in (11) die Dichte der strömenden Substanz an,
b ihre Strömungsgeschwindigkeit. Für den Strom dZ durch die Fläche d§l erhält
man (vgl. Bild 1.10)

d l=3 .d9 l .  (12)

Der Strom dl ist am größten, wenn $ und d2l parallel zueinander stehen. Er ver-
schwindet bei orthogonaler Stellung von 3 und d2I. Für den Strom AI durch die ge-
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schlossen© Fläche AA folgt durch Integration

AA
(13)

Orientiert man die Flächenvektoren dSI derart, daß diese aus dem von AA ein-
geschlossenen Raumgebiet AV herausweisen, so ist AJ positiv, wenn aus dem Vo-
lumen AV insgesamt Strom ausfließt. Die Größe AI kennzeichnet die Ergiebigkeit

Bild 1.10. Der Strom dl = 3 • d$I durch ein
Flächenelement d2l = e dA

des Volumens A V. Sie hängt bei vorgegebenem Feld 3 sowohl von der Größe als auch
von der Begrenzung des Volumens AV ab. Schrumpft AV im Grenzfall auf einen
Punkt P zusammen, so wird die spezifische Ergiebigkeit

lim - = lim -k (ff) Q • d?l = div 3
JV->0 A y A v JJ

(14)

von der speziellen Form der Begrenzung unabhängig. (14) definiert die Divergenz
des Vektorfeldes g.  Sie gibt, bezogen auf das Volumen AV = 1 m3 , die Ergiebigkeit
des Vektorfeldes 3 im Punkte P an. Durch den Vektoroperator div wird ein Vektor-
feld in das Feld einer skalaren Ortsfunktion umgewandelt.
Die Ergiebigkeit eines Raumgebietes V läßt sich einmal als Summe der Ergiebigkeiten
über sämtliche Punkte des Raumes V berechnen :

I = JJJ div dV .  (15)
v

Andererseits muß die aus V in der Zeiteinheit austretende Substanz durch Integration
über die Oberfläche A dieses Raumes folgen :

1 = ff s • dSL ( l ß  )
A

Es besteht daher für jedes Raumgebiet V die Beziehung

fff div 3 dF  = 3 • d9l (Gaußscher Integralsatz)
V A

(17)

Der GAUSSsche Integralsatz wandelt ein dreidimensionales Volumenintegral in ein
zweidimensionales Oberflächenintegral um.
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In Cartesischen Koordinaten ergibt sich die Divergenz eines Vektorfeldes 3 nach der
Formel

«1,3 = + + . (18)dx dy dz

Bei Verwendung von Zylinderkoordinaten gilt

div = 7 (r&) + 1 <%sz
T d(p dz (19)

In Kugelkoordinaten ist

1 5& 1
r sin $ d(p r sin #

div S= — (sin 0&) (20)

Betrachtet man die drei Operatoren grad, div und rot in ihren Komponentendarstel-
lungen, so erkennt man, daß sie durch einen symbolischen Vektor, den Nabla-Operator

v =4 (21)

zum Ausdruck gebracht werden können. In Cartesischen Koordinaten ist für V zu
schreiben

(22)

Damit erhält man

d&V0 = i — +
dx

. 50  , , 50 n ~— = grad0,8z (23)

V . CV _ !V 8x 1 fj + _d iv  3 ,dy dz (24)

i i «

Vx® = dx
8 8

dy dz = rot © . (25)

Das skalare Produkt des Nabla-Operators mit sich selbst ergibt den Laplace-Operator

„ „ a 2 a 2 a 2
Ä = V2 = V .V  = — + — + — . (26)

dx2 dy 2 dz2

Der Laplace- Operator, auf ein skalares Feld 0 angewandt, liefert

a2 0 a2 a2

A 0 = V .V0  = divgrad0 = — + — + — . (27)8x2 dy2 öz2
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Auf ein Vektorfeld 6 angewandt, ergibt der LAPLACE-Operator A in Cartesischen
Koordinaten

Aß- = & + 4- & + i n.
\ dx2 dy2 dz 2 / \ dx2 dy 2 dz 2 I \ dx2 dy2 dz2 /

(28)
In Zylinderkoordinaten ist

£ £ ( < £ a20 ££
r dr \ dr / r2 dy2 dz2 9 (29)

in Kugelkoordinaten

A 520 , 2 50 , 1 520 , 1 ö20 , 1 , 50
A — “Ty H----------7------ 1----- 2 Q "ä~2 “I-----2 Tq2  -----2 C °t "Tq ‘ (30)ÖT2 

r ßr r 2 sm 2 $ 2 r 2 #2 r 2

Bei physikalischen Berechnungen tritt gelegentlich der Operator a • V auf. In Car-
tesischen Komponenten ist

a • Vß — (axi + a y \ + azl) • (i  ----1- j ----1- f — j (S i +
\ ex oy dz)

(
ö ö ö \a x 7----F a y 7----F 7“) (®<ri + + GW) • (31)ox oy ■ OZ)

Es lautet also z. B. die i-Komponente dieses Vektors

(a • V®) ■ i = a x + a y + az = (a • V®) . (32)ox oy oz

Als Spatprodukt der drei Vektoren 91, 35, © bezeichnet man den Ausdruck

(91 x 95) • (£ = (S x 91) • 33 = (33 x (£) • 21 = 91 • (53 x 6 ) .  (33)

In Cartesischen Komponenten ist

93
91,
33,(91 x 93) = S32 (34)

woraus die in (33) aufgeführten Vertauschungsregeln folgen.

4 Schilling, Felder
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Jt Probleme

1.3.1. Induktionsgesetz und Stokesscher Satz

Eine kreiszylindrische Feldspule mit n = 15000 Windungen hat die Länge l = 30 cm. Sie wird
von einem Wechselstrom I o e~iü>< durchflossen, dessen Amplitude die Größe 70 = 0,06 A hat.
Für die Kreisfrequenz ist a> = 2tü • 1 000 s-1 zu setzen.
Unter einem Winkel von (p = 30° gegen die Feldspule geneigt (vgl. Bild 1.11) befindet sich eine
kreiszylindrische Induktionsspule mit = 100 Windungen, deren Radius = 1 cm beträgt.

Berechnen Sie die induzierte Spannung in der Induktionsspule. Welcher Wert ergibt sich für die
99-Komponente des elektrischen Feldes an der Peripherie der Spule? Wie groß ist die Rotation
des elektrischen Feldes?

Lösung

In der Feldspule wird die magnetische Flußdichte

<»

erzeugt. Für ihre zeitliche Ableitung erhält man

Das in der Feldspule erzeugte magnetische Feld trifft unter dem Winkel 92 = 30° auf den kreis-
förmigen Öffnungsquerschnitt der Induktionsspule. Sie sei ebenso wie die Feldspule mit Luft
gefüllt, d. h., für beide Spulen beträgt die Permeabilität /z0 = 1,257 • 10-6 V s A-1 m-1 . Wir er-
halten damit für die Änderung der Durchflutung in der Induktionsspule

79 T icof
JJ S6 • d2l = — i 0co —— ---- cos (pA 1 . (3)
Ai  *

Hierdurch wird in jeder Windung der Induktionsspule die Umlaufspannung

lind = (f) ® = - ff SB • dSl (4)
Ai
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induziert (vgl. 1.1. /20). Insgesamt enthält die Induktionsspule Windungen. Die induzierte
Spannung wird somit gleich

ind = i lind = 2 ------ • (5)

Der Faktor i kennzeichnet die Phasenverschiebung tv/2 zwischen dem Strom in der Feldspule und
der induzierten Spannung in der Induktionsspule. Dabei wird vorausgesetzt, daß die ohmschen
Verluste vernachlässigbar seien.
Mit Zahlenwerten folgt aus (5)

Tr . 100 • 15000 • 4tv • 10-7 • 2tv • 103 • 0,866 • 10-4 7v • 0,06 e~i27rl °3*Ui nd  == i ------------------------------------------ ----------------- ------------- V = i 0,615 e" 12 10 3 t V.
0,30

Als effektive Spannung erhält man

Uett = — yä" ?70 = 0,707 1 • 0,615 V = 0,435 V .
2

Für die in einer Windung induzierte Spannung ergibt sich

TJ. . i 0 615 e-i27r l03f
tf l i nd  = — = --------- = i 0,00615 e-’2K-M>»tv.

n r 100

Diese Spannung ist nach (4) mit der elektrischen Feldstärke (£ durch die Beziehung

2k
tflind = (ß<£-d§ = f (6)

0

verknüpft. Wir berücksichtigen, daß aus Symmetriegründen die Komponente von 99 un-
abhängig ist. Damit folgt aus (6)

tflind = bzw - (7 )

Zahlen eingesetzt, liefert

0 00615 • e- i2TT - 103  f= . u,vuoio _e --------- v m- 1 = i 0,0979 e- io 3 * V m" 1 .
* 27V . 0,01

Nach dem STOKESschen Integralsatz (1.3./10) läßt sich das in (4) stehende Umlaufintegral in ein
zweidimensionales Integral umwandeln:

(ß ® • ds = JJ* rot @ • d9I = — J*y $8 d9l. (8)
c Ai

Diese Beziehung besteht für sämtliche Flächen A ± und ihre Begrenzungskurven C. Daraus folgt
die MAXWELLsche Beziehung

rot (£=-$ .  (9)

4*
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Durch (9) ist auch der Rotor des induzierten elektrischen Feldes bestimmt. Er ist dem zeit-
lichen Differentialquotienten der magnetischen Flußdichte entgegengerichtet, hat also im vor-
liegenden Fall die Richtung der Feldspulenachse n. Seine Größe ist durch (2) bestimmt. Bezieht
man sich bei der Lösung auf den Realteil, so folgt durch Einsetzen von (2) in (9)

rot n = — — Iq sm a)t
l

bzw. in Zahlen

rot n ® ' 2k ' 10 — 5-— 0,06 sin 2k • 103i Vnr 2 = 23,7 • sin 2k • 103t Vm' 2 .
0,30

1.3.2. Magnetfeld eines zylindrischen Drahtes

Ein sehr langer zylindrischer Draht vom Radius R = 5 mm wird von Gleichstrom der Stärke
I = 10 A durchflossen. Berechnen Sie das Magnetfeld im Innern des Leiters für den Achsen-
abstand r = 2mm und im Außenraum für r = 20 cm . Bestimmen Sie den Rotor des Magnet-
feldes.

Lösung

Wir legen unserer Betrachtung Zylinderkoordinaten r, (p, z zugrunde. Aus Symmetriegründen
kann eine Abhängigkeit von der Winkelvariablen <p nicht bestehen. Die magnetischen Feldlinien
sind daher Kreise, die von der Zylinderachse im Mittelpunkt senkrecht durchsetzt werden. Di-
elektrische Verschiebungsströme brauchen nicht berücksichtigt zu werden, da der Draht von
Gleichstrom durchflossen wird. Dieser ist über den gesamten Zylinder Querschnitt verteilt. Wir
erhalten daher für die Stromdichte

Nach dem AMPEREschen Gesetz (1.1./25) und (1.1. /26) über die Verkettung von elektrischem
Strom und Magnetfeld gilt die Beziehung

(jj § • d§ = f f 3 • d«, (2)
C JA

wobei AA die von der Randkurve C umschlossene Fläche angibt. Wählt man für C einen Kreis
mit dem Radius r, so folgt aus (2)

27t

§ • dg = J = JJ 3 • dSl . (3)
C0 AA

•Im Falle r R wird das rechts stehende Integral (vgl. Bild 1.12)

ff 3 • dSt = r2K 131 = —
JA &

(4)
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Damit erhält man aus (3) und (4) für den Innenraum

(5)2-mR2

Bild 1.12. Zur Berechnung des Magnet-
feldes im Innen- und im Außenraum
eines sehr langen stromdurchflossenen
geraden Drahtes

Dagegen ergibt sich im Falle r R

f f3 ‘d% = I (6)
AA

und damit in Verbindung mit (3)

(7)
27tr

Mit Zahlenwerten folgt aus (5)

aus (7)

£>„ = — —— Am- 1 = 7,96 Am-1.v 2tv • 0,20

Zur Bestimmung der Rotation des Magnetfeldes wenden wir den STOKESschen Satz (1.3./10)

. d3 = J J* rot § • d5l (8)
c AA

an. Durch Vergleich mit (2) erhalten wir

J J ro t§ .d»  = / / g .d9 l .  (9)
AA AA

Diese Beziehung besteht für sämtliche Flächen AA.  Es müssen daher die Integranden überein-
stimmen. Hieraus erhält man im vorliegenden Fall fehlender dielektrischer Verschiebungsströme

rot$  = 3 . (10)
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Im Innern des Drahtes ist der Rotor des Magnetfeldes daher gleich der Stromdichte 3- In Zahlen
folgt

|rot e i  = 131 = -L = ~~ Am-* = 637 Am-*.
-E 2 5 • 10-3k

Dagegen ist im Außenraum die Rotation des Magnetfeldes gleich Null.

1.3.3. Gleichmäßig geladene Kugel — Oberflächenintegral und Divergenz

Eine Kugel vom Radius R = 10 cm ist gleichmäßig elektrisch geladen, d. h., jeder Punkt hat die
gleiche Ladungsdichte

r 4Qq = hm ----  .
e AV V

Im Abstand r = 1 m vom Kugelmittelpunkt wird eine von der Kugel weg gerichtete elektrische
Feldstärke der Größe 1 V m-1 gemessen. Berechnen Sie daraus die elektrische Ladungsdichte q
in der Kugel und das elektrische Feld a) im Abstand r = 5 cm , b) im Abstand r = 2 m vom Kugel-
mittelpunkt. Die Dielektrizitätskonstante ist überall gleich e0 . Wie groß ist an den genannten
Stellen die Divergenz des elektrischen Feldes?

Lösung

Nach der Definitionsgleichung (1.1./6) für die elektrische Erregung und auf Grund des Zusammen-
hanges (1.1./15) zwischen elektrischer Erregung und elektrischer Feldstärke gilt die Beziehung

eo ff @.d9I = ( ?=  y7tÄ 3
e . (1)

Das Integral (1), über die Kugeloberfläche mit einem Radius r > R erstreckt, ergibt

£o47rr2 © r = Q. (2)

Hieraus erhalten wir für die Ladungsdichte

= 3 r . (3 )

Im Abstand r = 1 m ist (£ r bekannt. Damit können wir q aus (3) berechnen. Gleichung (2) gilt
für den Außenraum der Kugel, d. h. für r > R . Als Feldstärke im Außenraum folgt aus (2)

(®r)r>R = 7 - 2 = (4)4Tcc0r2 3e0r2

Ist die Feldstärke für einen speziellen Radius r0 des Außengebietes bekannt, so berechnet man
diese für den Radius r am zweckmäßigsten gemäß

@,(r) = W r2 (5)
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Das Feld im Innern der Kugel erhalten wir auf Grund der Beziehung

ff e,® • d9l = 4n £o g rr 2 = fff q dF  = 4 (6)
AA AV 3

wobei r < R ist. AA bezeichnet die Oberfläche, A V das Volumen der Kugel vom Radius r. Aus (6)
folgt als Feldstärke im Innern der Kugel

(®r)r<ß =
3e 0

Einsetzen der Zahlenwerte ergibt nach (3) für die Ladungsdichte

3 • 8,85 • 10~12 . . .  ,
p = ----------- As m -3 = 2,655 • 10~3 C m~3 .e 10 -3

(7)

Nach (7) erhält man für das Eeld im Abstand r = 5 cm vom Kugelzentrum

5 • IO"2 • 2,655 • IO-8

T = Vm -1 = 50 Vm” 1 .
3 • 8,85 • IO"12

Für das Feld im Abstand r = 2 m folgt nach (5)

®r = 1,0 • — Vm -1 = 0,25 Vm-‘.
4

Die Divergenz des elektrischen Feldes berechnen wir in Kugelkoordinaten nach (1.3./20). Im vor-
liegenden Fall existiert nur die Komponente Damit ergibt sich

div@ = 44  (8)r 2 or

Für das Kugelinnere erhalten wir aus (7)

d iv@=44(? )  = - wr 2 8r \3e0 / e0

Dagegen folgt aus (4) für das Außengebiet

div ®=4r (A)  =0  ( r>R) .  (10)r 2 dr \4ke 0 /

Die Divergenz der elektrischen Erregung ® = e(5 ist also gerade gleich der elektrischen Ladungs-
dichte.

1.3.4. Kontinuitätsgleichung

Bei einer nichtstationären Höchststromentladung (Pinchentladung) fließe im Plasmastrahl ein
Strom, dessen Dichte durch

& = 3 0 ( z ) J0 (2,405 4' (1)
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gegeben ist. Darin bedeutet J o die BESSEL-Funktion nullter Ordnung, R = 2,5 cm gibt den Ra-
dius der zylinderförmigen Entladungssäule an. Für die Stromdichte in der Zylinderachse werden
zur Zeit t — tQ die Werte

J(z0 ) = —2,1 • 10 3 A cm-2 ,

J(z0 + dz)  = —1,7 • 10 3 A cm-2 , Zlz = 5 cm

gemessen. Berechnen Sie daraus die Änderung der Ladungsdichte im Entladungsraum zwischen
z = z0 und z = z0 4- Az .  Welche numerischen Werte ergeben sich auf der Zylinderachse und für
r = O,5R2

Lösung

Nach dem AMPEREschen Gesetz (1.1./25) und (1.1./26) über die Verkettung von Strom und Magnet-
feld gilt für jede beliebig gekrümmte Fläche Ä V9 die von einer Randkurve C begrenzt wird, die
Beziehung

(S + ®)d9I , .
C Av

Wir betrachten zwei verschiedene Flächen A ± und A 2 , die von derselben Kurve C begrenzt werden.
Da für diese das Integral links identisch ist, müssen die auf der rechten Seite stehenden Integrale
über die Flächen A r u;nd A 2 übereinstimmen:

/ / (3  +®) -d9 i 1 = / / ( 3  + ®) .dS(2 . (2)
Ai A 2

da da

Bild 1.13. Kontinuitätsgleichung div 3 4— - = 0
dt

Bilden wir aus den beiden gekrümmten Flächen und A 2 die geschlossene Fläche A und orien-
tieren die Flächennormalen dSI so, daß diese in allen Punkten nach außen weisen (vgl. Bild 1.13),
so folgt aus (2)

ff (3 + ®) • d2I = 0 .  (3)
A

Nach dem GAirssschen Satz (1.3./17) können wir schreiben

= j ’JJd ivgdr .  (4)
A V
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Ferner gilt nach (1.1./6)

(5 >A A V

wobei q die Ladungsdichte, Q die gesamte Ladung im Volumen 7 angibt. (4) und (5) eingesetzt
in (3) liefert

J f / d iv3dF+  A/ / /  e d7 = 0
y Öt y

bzw.

div 3 + “~ = 0 . (6)

Gleichung (6) wird als Kontinuitätsgleichung bezeichnet.
In Zylinderkoordinaten folgt, wenn gemäß (1) nur eine Komponente in Richtung der Zylinder-
achse vorhanden ist,

div 3 = = J o (2,4O5 -£-) . (7)dz \ B / dz

Wir setzen entsprechend dem Meßergebnis

_ ySz&ü 4~ Äz) — S( go) _ ~1,7 4~ 2,1 Am-3 = 8 • 107 Am-3

dz Az 5 -IO" 2

Damit erhalten wir aus der Kontinuitätsgleichung (6)

= -8  • 10’J 0 (2,405 -£-) Am" 3 . (8)

Aus Tafeln über Zylinderfunktionen entnehmen wir

J o (O) = 1,000, J o (l,2O25) = 0,6698.

Hieraus ergibt sich nach (8) für die Änderung der Ladungsdichte in der Zylinderachse

= -8  • 10’ Am- 3 .
8t

Im Abstand r = 0,5R = 1,25 cm ergibt sich

= -8  • 10’ • 0,6698 Am-ä= -5,2 • 10’ Am- 3 .
8t

Der nichtstationäre Entladungsvorgang ist mit dem Aufbau eines negativen Raumladungsfeldes
verknüpft.
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Aufgaben

Berechnen Sie die Rotation des Feldes

= C(y2 + * 2 ) , &y = C(x* + Z2 ) ? = C{X 2 + 2) .

Welche Rotation hat das elektrische Feld (£ = /(r) r ,  wenn r den Ortsvektor be-
zeichnet ? Besitzt dieses Feld ein Potential ?
Untersuchen Sie, unter welchen Bedingungen das Feld

2 = l rn i  + 2(P nz  + & r = 0 ,  &<p = 0

ein Potential hat.
rBerechnen Sie div r, div — , div (z e r) .
r

Drücken Sie div (@ x§ )  durch die Rotation der Größen © und § aus.
Beweisen Sie aus dem Entwicklungssatz '51 X (53 X (£) = (51 • (£) 93 — (51 • 53) © die
Beziehung A® = grad div @ — rot rot © .
Berechnen Sie aus dem Entwicklungssatz grad (51-53) und rot (51 X 53) .
Stellen Sie die Bedingungsgleichungen in Zylinderkoordinaten dafür auf, daß das
Vektorfeld (£(r) ein Potential hat.
Beweisen Sie mittels V X V = 0 die Beziehungen rot grad tp = 0 und div rot 51 = 0 .
Eine Feldspule aus 20000 Windungen mit der Länge 40 cm und kreisförmigem
Querschnitt wird von einem Wechselstrom der effektiven Stromstärke 0,08 A durch-
flossen. Die Frequenz des Wechselstromes beträgt 100 Hz. In der Feldspule befindet
sich eine Induktionsspule aus 25000 Windungen. Sie ist unter dem Winkel (p = 45°
gegen die Feldspulenachse geneigt. Die Induktionsspule hat einen kreisförmigen
Querschnitt mit dem Durchmesser 4 cm. Auch die Querschnittsfläche der Feldspule
ist kreisförmig. Berechnen Sie die effektive induzierte Spannung (pc = .
Berechnen Sie zur vorangegangenen Aufgabe die 99-Komponente des elektrischen
Feldes an der Peripherie der Induktionsspule.
Bestimmen Sie zu den beiden vorhergehenden Aufgaben den Rotor des elektrischen
Feldes.
Bestimmen Sie unter Verwendung des Induktionsgesetzes und aus der Geschlossen-
heit der Feldlinien den Ausdruck div 53.
Ein kreisförmiger Hohlzylinder mit dem Innenradius _Ra = 5 cm enthalte koaxial
einen massiven Kreiszylinder mit dem Außenradius = 1 cm (koaxiale Zylinder-
anordnung vgl. Bild 2.3). Im Innenzylinder fließe Gleichstrom der Stärke I = 1 A ,
dessen Richtung die z-Achse kennzeichne. Ein Strom gleicher Stärke fließe in ent-
gegengesetzter Richtung im Außenzylinder. Der Außenradius des Außenzylinders
sei _Raa = 7 cm . Geben Sie das Magnetfeld in den verschiedenen Räumen an.
Welche Feldstärken § erhält man für die folgenden Abstände von der Achse des
Innenzylinders: a) r = 0,5 cm,  b) r = 4 cm,  c) r = 6 cm, d) r = 8 cm?
In der vorangegangenen Aufgabe trage der Innenzylinder, bezogen auf die Länge
l = 1 m ,  die Ladung Q = 10 -8 As. Berechnen Sie die elektrische Feldstärke für
r = 6 cm.
Ein idealer zylindrischer Leiter wird von Wechselstrom der effektiven Stromstärke
1 A durchflossen. Dieser ist vollständig auf die Oberfläche des Leiters konzentriert.
Der Radius des Leiters ist r = 1 cm,  die Länge kann als unendlich angenommen

A 1.3.1.

A 1.3.2.

A 1.3.3.

A 1.3.4.

A 1.3.5.
A 1.3.6.

A 1.3.7.
A 1.3.8.

A 1.3.9.
A 1.3.10.

A 1.3.11.

A 1.3.12.

A 1.3.13.

A 1.3.14.

A 1.3.15.

A 1.3.16.
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werden. Wie groß ist die magnetische Feldstärke a) an der Oberfläche, b) im Ab-
stand 5 cm von der Achse, c) im Abstand 0,5 cm von der Achse ?

A 1.3.17. Eine zylindrische Plasmasäule mit dem Radius R = 5 cm besitzt die konstante
Raumladungsdichte q = 10-6 As m-3 . Wie groß ist die elektrische Feldstärke für
die Achsenabstände a) r = 2 cm, b) r = 5 cm, c) r = 10 cm?

A 1.3.18. Bei einer Gasentladung fällt in der Plasmasäule die elektrische Feldstärke @ bei
axialem Fortschreiten um 5 cm von 45 V cm-1 auf 42 V cm-1 . Berechnen Sie daraus
die Ladungsdichte in der Achse.

1.4. Maxwellsche Gleichungen

.KJ Einführung

Die MAXWELLSche Kontinuumstheorie faßt die elektrischen und magnetischen Er-
scheinungen in idealisierender Form zusammen. Aus den experimentellen Meß-
ergebnissen werden zwischen den Größen des Feldes und den Größen des Mediums
allgemeingültige Beziehungen abgeleitet. Sie lassen sich auf ein System von vier
Differentialgleichungen, die MAXWELLschen Gleichungen, reduzieren, in denen die
Gesamtheit unserer Erfahrungen über elektromagnetische Felder und Wellen ent-
halten ist. Der technisch interessierende Einzelfall ergibt sich durch Integration des
MAXWELLschen Systems unter Berücksichtigung der Rand- und Anfangsbedin-
gungen.
Die MAXWELLschen Gleichungen stellen für die elektromagnetischen Erscheinungen
das Analogon zu den Newtonschen Axiomen der Mechanik dar. Wie diese erfassen
sie nur die klassische Physik. Dagegen erfordert die Behandlung quantenhafter und
relativistischer Effekte die Einführung zusätzlicher Axiome, die sich auf Grund der
Quanten- und der Relativitätstheorie unter Berücksichtigung elektrischer und
optischer Fundamentalkonstanten ergeben.
Die einzelnen Gleichungen der MAXWELLschen Theorie wurden bereits in den Ab-
schnitten 1.1. bis 1.3. bei der Definition der elektromagnetischen Grundgrößen und
bei der Behandlung der Vektoroperatoren abgeleitet. Im folgenden wird das System
der MAXWELLschen Gleichungen noch einmal zusammengefaßt und verallgemeinert
dargestellt. Aus der Theorie werden der Energiesatz und die Randbedingungen über
das Verhalten der elektromagnetischen Größen an der Trennfläche zweier Medien
abgeleitet.
Nach dem Ampereschen Gesetz (1.1./25) und (1.1./26) besteht zwischen dem Strom
durch eine Fläche AA und der magnetischen UmlaufSpannung in ihrer Berandung
die Verkettung

J / (®  +S) .d9 l=  § .d§ .  ( la )
AA C

Das Faradaysche Induktionsgesetz (vgl. 1.1. /20) besagt: Die Änderung des magne-
tischen Flusses durch eine Fläche AA ist mit einer elektrischen Umlauf Spannung in
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ihrer Berandung verknüpft:

f f  23 -dSl = -$ (£ •  d§. (2a)
8t aa c

Mit dem negativen Vorzeichen auf der rechten Seite in Gleichung (2 a) wird die
Lenzsche Regel zum Ausdruck gebracht (vgl. Problem 1.4.1.).
Quellen der elektrischen Erregung © sind nach (1.1. /7) die elektrischen Ladungen.
Daraus folgt

f f® .d% = fff e dV=Q.  ' (3a)
A V

o bezeichnet die Dichte der elektrischen Ladung (Einheit: C m~3). A gibt die Ober-
fläche des Volumens V an.
Das Magnetfeld 93 ist im Gegensatz zum elektrischen Feld quellenfrei. Daher gilt

j 23 -d2 l=O.  (4a)

Die Gleichungen ( la)  bis (4a) stellen die Maxwellschen Gleichungen in Integralform
dar.
Wendet man in ( la)  und (2 a) rechts auf die Ausdrücke für die Umlauf Spannungen
den STOKESschen Satz (1.3./10) an, so folgt

(ß £ • = jy rot § • d9I , y @ • d§ = J J rot @ • dSl .
c aa c AA

Damit ergeben sich anstelle von ( la)  und (2a) die Beziehungen

Jf (© + S ) -d2 t  = Jf rot . d« ,  ( lb)
AA AA

J /« .d2 l  = - J / ro t®-d2I .  (2b)
AA AA

Auf die linken Seiten der Gleichungen (3 a) und (4 a) kann man den GAtrssschen
Satz (1.3./17) anwenden:

$®-d9 l  = fffdivftdV, $%-d%=f f fd i v%dV.
A V A V

Daraus erhält man anstelle von (3 a) und (4 a)

/// div © dV = fff  o dV ,  (3b)
V V

J J Jd iv23d7  = 0 .  (4b)
V
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Die Gleichungen (1 b) und (2b) gelten für sämtliche Flächen AA, die Gleichungen (3 b)
und (4 b) für sämtliche Räume F. Daher müssen die Integranden übereinstimmen.
Hieraus folgen die MAXWELLschen Gleichungen

® + 3 = rot § ,
® = —rot ® ,

div ® = Q ,
div 33 = 0 .

(1)
(2)
(3)
(4)

Bei ihrer Lösung sind die nach (1.1./ 14), (1.1. /15) und (1.1./23) bestehenden linearen
Beziehungen

3 =7®,

33

(5)
(6)
(7)

zu berücksichtigen.
Für die mathematische Berechnung spezieller elektromagnetischer Felder sind außer
den MAXWELLschen Gleichungen als den Differentialgleichungen des Problems die
Randbedingungen über das Verhalten der elektromagnetischen Größen an der
Grenze zweier Medien I und II zu berücksichtigen.
Die Eigenschaften der elektrischen Feldstärke beim Übergang zwischen zwei Medien
ergeben sich aus der MAXWELLschen Gleichung (2). Sie wird für die folgende Ab-
leitung am zweckmäßigsten in Form der Integralbeziehung (2 a) angewandt. Als

Bild 1.14. Randkurve C zwischen zwei Medien

Integrationsgebiet AA wird ein langgestrecktes Rechteck zwischen den beiden
Medien I und II gemäß Bild 1.14 betrachtet. Seine Grundlinie As sei groß gegen
die Höhe Ah. Für die magnetische Durchflutung der Fläche AA erhält man im
Grenzfall Ah -> 0,  wenn die Rechteckfläche AA = As Ah in eine Strecke entartet,

lim / /S3 -d2 l  = 0 .
As Ah

(8)
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Das in (2 a) rechts stehende Umlauf integral über die Berandungskurve C der Fläche
AA muß daher verschwinden:

lim (ß& - dg = 0 .  (8a)

Die Länge As der Rechteckgrundlinie kann andererseits als so klein vorausgesetzt
werden, daß sich die elektrische Feldstärke auf ihr innerhalb eines Mediums prak-
tisch nicht verändert und mit ihrem Mittelwert eingesetzt werden kann. Aus (2)
bzw. (2 a) folgt damit in Verbindung mit (8)

@.d§  = ®I . d§ I + @I I  .zl§n + . . .  =0 .  (9)
c

Die Beiträge längs der Höhen Afi und Ah 2 sind zu vernachlässigen, da nach Voraus-
setzung Ah< As gilt. Wie man sieht (vgl. Bild 1.14), besteht auf der Randkurve C
die Beziehung

A = — A$n = A$. (10)

Im Grenzfall kennzeichnet As das tangentiale Linienelement im betrachteten Rand-
punkt. Damit folgt aus (9)

(®I — @ij) • A§> = ((Stangl — ©tangll) As = 0

bzw. wegen As 4= 0

Stangl — ©tangl l*

Es bezeichne n den Einheitsvektor der Flächennormalen. Im folgenden wird n so
orientiert, daß es in das Medium I hinein weist.
Man kann die abgeleiteten Beziehungen in der Form

(®i -®n)xn  = 0 (11)

schreiben. Das bedeutet: Die Tangentialkomponenten des elektrischen Feldes sind
beim Übergang zwischen zwei Medien stetig.
In gleicher Weise folgt aus der MAXWELLSchen Gleichung (1) bei endlicher Strom-
dichte $ 4- ® für die magnetische Feldstärke

(®i - $11) x n = 0 . (12)

Auch die Tangentialkomponenten des magnetischen Feldes sind an der Trennfläche
zwischen zwei verschiedenen Medien stetig, wenn die Stromdichte nicht über alle
Grenzen ansteigt.
Das Verhalten der magnetischen Feldstärke bei Wechselströmen im Grenzfall ver-
schwindenden elektrischen Widerstandes wird im Problem 1.4.3. dargestellt.
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Die Eigenschaften der elektrischen Erregung © gehen aus der MAXWELLschen Glei-
chung (3) in der Integralform (3 a) hervor. Als Integrationsvolumen V wird ein
Zylinder im Grenzgebiet zwischen beiden Medien gewählt, dessen Höhe Ah klein ist
gegen die Abmessungen der Grundfläche AA (vgl. Bild 1.15). Bei der Integration

Bild 1.15. Integrationsvolumen V an der Grenze zweier Medien. Die Orientierung
der Flächennormalen n (statt bzw. A jj lies JSIj bzw. d$jj)

über die Oberfläche dieses Volumens brauchen nur die Beiträge der Zylindergrund-
und -deckfläche berücksichtigt zu werden. Im Grenzfall AA 0 gehen diese beiden
parallelen Flächen in die Tangentialebene über. Für die betrachteten Flächen gilt
die Beziehung

-AW n = A%1 =AAn .

Damit erhält man

® • d5l = ©j • -f- ©u • A 31ij = (©j — ©u) • 11 AA . (1 3)

Das links stehende Oberflächenintegral zur Bestimmung der Ladung im Volumen
AA Ah wird im Grenzfall Ah 0 gleich

J f J& dV = ff AA , (14)
AAAh

wobei ff die Dichte der Oberflächenladung, gemessen in As m~2 , angibt. Aus (13)
und (14) ergibt sich damit

(©i — ®n) • n = ff (15)

Gleichung (15) besagt: Die Normalkomponente der elektrischen Erregung verhält
sich beim Übergang zwischen zwei Medien unstetig. Der Unstetigkeitssprung ist
gleich der Oberflächenladungsdichte ff.
Ist das Medium II ein idealer Leiter, d. h. ein Metall, so gilt ®n = 0 . Man kann
dann anstelle von (15)

• n = ® n = ff (15 a)

schreiben.
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Über die Eigenschaften der magnetischen Flußdichte 33 beim Übergang zwischen
zwei Medien folgt aus der MAXWELLschen Gleichung (4 a)

(83i - 93n ) • n = 0 (16)

Die Normalkomponenten der magnetischen Flußdichte verhalten sich an der Trenn-
fläche zwischen zwei Medien stetig.
Aus den MAXWELLschen Gleichungen läßt sich der Energiesatz für elektromagne-
tische Felder ableiten. Hierzu multipliziert man die MAXWELLsche Gleichung (1)
skalar mit die MAXWELLsche Gleichung (2) skalar mit Die beiden sich ergeben-
den Beziehungen werden addiert :

® ® + © • S + © • » = ® • rot $ - § • rot ® . (17)

Anstelle der rechten Seite kann

— div (® X §) = 8*  rot § — § • rot @ (18)

geschrieben werden (vgl. Aufgabe A 1.3.5.).
Definiert man den Poyntingschen Vektor

(S = ® X § , (19)

so ergibt sich aus (17) und (18) der Poyntingsche Satz

@-® + ®- 3 + ©-  <e + d iv(s  = o (20)

Die einzelnen Summanden haben die Einheit

[® . ] = [g . g] = [§ . SB] = [div <S] = J s- 1 m-s.

Sie kennzeichnen Energiegrößen, bezogen auf die Raum- und Zeiteinheit. (20) läßt
sich unter Verwendung der linearen Beziehungen (6) und (7) integrieren. Aus dem
ersten Summanden der Gleichung (20) folgt

@ • d® = f @ • ® di = f@2 di = 4- @ ® •
/ Z ot / 2 (21)

Der dritte Summand liefert

JVd$  = J'jp-SBcU = (21a)

Diese Größen haben die Maßeinheit J m~3 . Sie geben die elektrische bzw. magne-
tische Energiedichte des Feldes an. Der zweite Summand in (20) kommt durch die
Leitungsverluste zustande. Bei verschwindendem Widerstand ist wegen @ = 0 dieser
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Summand nicht vorhanden. @ • 3 charakterisiert die Wärmeentwicklung (Joulesche
Wärme) des elektromagnetischen Feldes.
Die Einheit des Vektors S ist nach (19)

[|®|] = J s - im-2 .

Der PoYNTiNGsche Vektor kennzeichnet die Energiestromdichte, d. h. die infolge
Ausstrahlung fließende Energie, bezogen auf die Flächen- und Zeiteinheit.
Räumliche Integration der Gleichung (20) ergibt, wenn man auf den letzten Sum-
manden den GAUSSschen Satz anwendet,

f f f n - id r  + + + (22)
V V V A

Hierin hat jeder Summand die Dimension einer zeitlichen Energiedichte bzw. Lei-
stung. (22) enthält den Energiesatz für elektromagnetische Felder, bezogen auf ein
Volumen V. Er besagt, von rechts nach links gelesen, daß Energie Verluste infolge
Ausstrahlung und WärmeWirkung durch die Veränderung der magnetischen und
elektrischen Feldenergie kompensiert werden.
Es bezeichnen somit nach (21) und (22)

v
die elektrische,

V

die magnetische Energie des Feldes.

TFw = J/J
V

gibt die Wärmeleistung des Feldes an,

JF S = ff ® x § • d2I

bezeichnet die Verluste durch Wärmestrahlung.

(23)

(24)

(25)

(26)

1.4.1. Lenzsche Regel

Eine kreiszylindrische Feldspule enthält n = 15000 Windungen (Querschnitt A = 4 cm2 ). Sie
wird, von rechts nach links gesehen, vom elektrischen Strom im mathematisch positiven Dreh-
sinn durchflossen (vgl. Bild 1.16). Die Stromstärke steigert sich in der Zeit tQ = 10 s von Null

5 Schilling, Felder
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auf I = 10 A .  Links gegenüber der Feldspule, im Abstand r = 1 m auf der Zylinderachse, be-
findet sich eine Induktionsspule aus = 1200 Windungen mit der Länge Zj = 10 cm, dem Quer-
schnitt = 1,5 cm2 und dem ohmschen Widerstand R = 1Q.  Berechnen Sie den in der In-

Bild 1.16. LENZsche Regel — F Feldspule, Sp Induktionsspule

duktionsspule induzierten Strom und sein Magnetfeld. Der induktive Widerstand der Induk-
tionsspule kann vernachlässigt werden.

Lösung

Die Feldspule stellt, nachdem der Strom die volle Stärke I erreicht hat, einen Magneten mit dem
magnetischen Moment

Hl = (1)

dar. Nach (1.2.7./6) bzw. (1.2. 7. /7) wird im Abstand r links vom Feldmagneten ein Feld der Stärke

_ mr, _ nl%
27vJu0r4 2rur3 (2)

aufgebaut. Es induziert nach (1.4./2) in der Induktionsspule die elektrische Umlaufspannung

Ai

orientieren wir in Richtung der z-Achse, also wie 51.
In der Zeit At steigt nach (2) die magnetische Flußdichte um

Wir setzen diese Größe in (3) ein und erhalten für die induzierte Spannung

n n IAA
i nd  27vr3£0 2tw 3 Z0

Sie ist, wie das Vorzeichen zeigt, im mathematisch negativen Drehsinn orientiert. In den Win-
dungen der Induktionsspule wird dadurch ein Strom der Stärke

i nd  ~ 27tBr3i0

(4)

(5)

(6)

•d$ .ind = 
nT • d3 = — (3)
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hervorgerufen. Er fließt im Uhrzeigersinn und erzeugt dabei das Magnetfeld

-n  nfioIA lAnd
§ind = ’ * nd "

Es ist dem verursachenden Magnetfeld (4) entgegengerichtet (vgl. Bild 1.16). Desgleichen ist
das magnetische Moment des induzierten Feldes gegen das induzierende Moment orientiert
Mit den gegebenen Zahlenwerten folgt für den induzierten Strom

T 1200 • 15000 • 4k • 10- 7 • 10 • 4 • IO"4 • 1,5 • 10~4 . A .l i nd  = -------------------------------------------------------------- A = —0,216 uA,i nd  2k • 1,0- 1 -10

für das induzierte Magnetfeld

#ind = -1200  • 2,16 • 10- 6 Am-1 = -2,59 • IO-3 Am" 1 .

Die Minuszeichen in den numerischen Ergebnissen bringen zum Ausdruck, daß die induzierten
Effekte der induzierenden Ursache entgegenwirken.

1.4.2. Relaxationszeit

An der Oberfläche von Gummi wird die Raumladungsdichte q = 10“12 As m-3 erzeugt. Unter-
suchen Sie die Abnahme der Ladung an der Oberfläche mit der Zeit t. Welcher Wert ist nach einer
Stunde zu erwarten? Bestimmen Sie die Relaxationszeit des Materials. Für die Leitfähigkeit des
Gummis ist der Wert y = 10“14 Q -1 m“1 , für die Dielektrizitätszahl £r = 2,5 einzusetzen.

Lösung
Wir benutzen die MAXWELLschen Gleichungen (1.4./1) und (1.4./3), in denen wir = e@, Q =
einsetzen:

rot § = + y(g (1), div£@ = g.  (2)

Auf (1) wenden wir die Operation div an. Damit folgt

div £@ + div y (£ = 0 . (3)

In Verbindung mit (2) ergibt sich daraus die Differentialgleichung der Ladungsdichte

£g4-ye = 0 .  (4)

Sie hat die Lösung

£ = £o e £ . (5)
Der Ausdruck

£t = —
7

hat die Maßeinheit s. Er wird als Relaxationszeit des Materials definiert. Im Verlauf dieser Zeit
sinkt die Ladung auf 1/e ihres. Anfangswertes.

5*



68 1. Grundgesetze des elektromagnetischen Feldes

Für Gummi erhält man als Relaxationszeit

2,5 • 8,85 • 10 -12

io- 14 s = 2,2 • 103 s = 37 min.

Nach einer Stunde ist daher die Raumladungsdichte auf

(
Q ft . 1O3 \_ --------v_ x As  m _ 3 = . 3 m

2,2 . IO3 /

d. h. auf 19% des Anfangswertes abgesunken.

1.4.3. Oberflächenstromdichte — Unstetigkeit der magnetischen Feldstärke
bei Wechselströmen in idealen Leitern

Ein kreiszylindrischer idealer Leiter mit dem Radius R = 5 mm wird von Wechselstrom der
effektiven Stromstärke 7ef{ = 2 A durchflossen. Die Zahl der Perioden beträgt 50 s-1 . Unter-
suchen Sie das Verhalten der magnetischen Feldstärke an der Trennfläche zwischen beiden
Medien. Wie groß ist die Oberflächenstromdichte?

Lösung

Infolge des Skineffektes (vgl. 5.3.1.) konzentriert sich bei einem von Wechselstrom durchflossenen
idealen Leiter der gesamte Strom auf der Oberfläche. Im Innern des idealen Leiters ist daher die
Stromdichte gleich Null, auf der Oberfläche dagegen unendlich groß. Es gilt somit

§ = 0 für r<R.  (1)

Im Außenraum an der Grenze zum Leiter, d. h. für r = R, besteht nach dem AMPEREschen Ver-
kettungsgesetz (1.1./25) die Beziehung

& ■ d§ = I bzw. = —l—. (2)

Die Tangentialkomponente des magnetischen Feldes verhält sich also im Gegensatz zu (1.4./12)
unstetig. Wir leiten dieses Verhalten aus der MAXWELLschen Gleichung (1.4./3a)

JJ(3 + ®)d8 l=  (3)
AA C

ab. Dazu betrachten wir im Grenzgebiet zwischen beiden Medien ein Rechteck As Ah gemäß
Bild 1.14. Bei unendlicher Stromdichte 3 bleibt das Flächenintegral auch für Ah -> 0 endlich.
Infolgedessen verhalten sich die Tangentialkomponenten der magnetischen Feldstärke un-
stetig.
Da sich der Strom auf die Oberfläche konzentriert, ist es zweckmäßig, anstelle der Stromdichte
(Maßeinheit A m-2 ) eine neue Größe, die Oberflächenstromdichte zu definieren. Sie hat die
Einheit A m-1 . Unter Verwendung dieser Größe erhält man auf der linken Seite (3)

lim' // (3 + i>) • d9l = 9 . (45xn) .  (4)
ZlA—>0 AA
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Die rechte Seite (3) wird gemäß (1.4./11) bzw. (1.4./12) behandelt. Hieraus folgt (vgl. 1.3./43)

$ • (zU x n) = (§! - ©n ) • zU bzw. (n x ft) • ZU = ($ x - § n ) • Aß , (5)

Die Tangentialkomponente des magnetischen Feldes § verhält sich an der Übergangsstelle zu
einem idealleitenden, von Wechselstrom durchflossenen Medium unstetig. Nur wenn der Tan-
gentenvektor Aß die Richtung des Oberflächenstromes ft besitzt, ergibt sich aus (5)

= (6)

Im idealen Leiter gilt = 0 . Das Magnetfeld ist daher an der Oberfläche normal zum Ober-
flächenstrom $ gerichtet.
Im vorliegenden Fall beträgt die effektive Oberflächenstromdichte

I 2
|ft eff  | = ----- = -------------:— Am-1 = 63,7 Am-1 .1 effl 2kR 2k -5 -  IO"3

Der Momentanwert der Oberflächenstromdichte ist durch

X ett = ]/2 — e iw( = 90,0 e1100rt< Anr 1

gegeben. Das magnetische Feld § hat für r = R nur eine Komponente Sie ist gleich dem
Betrag der Oberflächenstromdichte |ft|.

1.4.4. Wärmeverluste und Poyntingscher Vektor

Ein zylindrischer Kupferdraht (y Cu = 5,9 • 10 7 Q -1 m -1 ) mit dem Radius R = 5 mm wird von
Gleichstrom der Stärke I = 15 A durchflossen. Berechnen Sie die Wärmeleistung, bezogen auf
die Länge l = 1 m ,  und untersuchen Sie die Strahlung.

Lösung

Die Stromdichte beträgt

131 = 4? (1)

Für die elektrische Feldstärke folgt

1 1 I
l®l = = (2)

( y nR 2y

Sie hat die Richtung des elektrischen Stromes, die als z-Achse gewählt wird.
Das magnetische Feld hat nur eine Komponente in Richtung der polaren Koordinate 99. Ihre
Größe beträgt an der Peripherie (r = R)

I
2kR* (3)
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Die Wärmeleistung wird nach (1) und (2) gleich

141

Als PoYNTiNGschen Vektor erhält man (vgl. 1.2./7)

© = (£ x § = & z e z x = - @ 2§<pe r , (5)

d.  h., dieser hat nur eine in Richtung — er weisende Komponente. Es gilt also

Hieraus ergibt sich durch Integration über die Mantelfläche

f f s -dSU = ------ —2r:R l=- -  - .  (7)
J J 2rfyR» nyR?
A

Wegen ® = 0 ,  SB = 0 sind die elektrische und die magnetische Energie konstant. Auf Grund
des PoYNTiNGschen Satzes (1.4./20) kann daher die in Form von Wärme dem elektromagnetischen
Feld entzogene Energie nur durch eine einlaufende Strahlung kompensiert werden. Diese Energie-
strahlung erfolgt gemäß (6) radial in den zylinderförmigen Kupferstab hinein.
Der metallische Leiter ist hiernach lediglich in bezug auf den elektrischen Strom als Leiter an-
zusehen. Für die Energie ist der Kupferstab dagegen ein nichtleitendes Medium. Diese wird über
das den Zylinder umgebende Vakuum in Form von Strahlung zugeführt. Das Vakuum stellt
bezüglich der Energie einen Leiter, bezüglich des elektrischen Stromes dagegen einen Nichtleiter
dar. Für die Wärmeleistung folgt aus (4) für l = 1 m

. 1 5 2
= -----------— ------------ W = 49 mW = 1,2 • 10~5 kcal s“1 .w k • 5,9 • 107 • 52 • IO“6

1.4.5. Energie, Ladungsdichte und Druck im elektrischen Feld

Ein Plattenkondensator mit der Plattenfläche A = 400 cm2 und dem Plattenabstand l = 2 mm
stehe unter der Spannung U = 220 V.  Berechnen Sie die gespeicherte elektrische Energie. Wie
groß ist die Kraft, mit der sich die beiden Platten anziehen? Welcher Druck wirkt im homogenen
elektrischen Feld des Plattenkondensators? Wie groß ist die Ladung? (s = c0 .)

Lösung
Nach (1.4./21) und (1.4./22) ist die Energie des elektrischen Feldes im Volumen V = A • l zwischen
den beiden Platten durch

w e = i @ • ©7  = 4- «o®2 (1)

gegeben. Verschiebt man eine der Platten gegen die elektrischen Kräfte um die Strecke dl (vgl.
Bild 1.17), so vergrößert sich damit die gespeicherte Energie um

dF e = — -i- «o®2 21 • dl = -ft - d l .  (2)
2
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Für die Kraft, mit der sich die beiden entgegengesetzt geladenen Platten anziehen, erhält man
daraus

5 = V So®2»-  (3)
Zi

Sie ist vom Plattenabstand unabhängig.

Bild 1.17. Die Anziehungskraft zwischen zwei
entgegengesetzt geladenen Platten

Der Druck p gibt das Verhältnis der senkrecht auf die Fläche wirkenden Kraft zur Flächengröße
an. Aus (3) folgt

(4)

Die elektrische Feldstärke im homogenen Feld des Plattenkondensators ist gleich

77 220
= -----— Vnr 1 = 11000 Vm" 1 .1 l 2 • 10“ 2

Als Energie ergibt sich damit aus (1)

W e = — • 8,85 • IO“12 • (1,1 • 10 4) 2 • 400 • 10~4 • 2 • IO“3 J = 4,28 • 10" 8 J ,
2

also nur ein sehr kleiner Wert. Die Anziehungskraft wird nach (3)

F = • 8,85 • 10~12 • (1,1 • 10 4) 2 • 400 • 10 -4 N = 2,14 • IO“5 N.

Für den Druck erhält man aus (4)

p = 1,07 • IO"3 Nur 2 = 1,07 • IO-5 mbar.

Die Ladungsdichte wird gleich

a = e®! . n = £ l l = 8,85 • 10“ 12 • 1,1 • 10 4 As m~2 = 9,73 • IO"8 C m~2 .

Eine Platte trägt also die Ladung 3,89 • 10~9 As.
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1.4.6. Feldenergie eines permanenten Magneten

Ein permanenter Ringmagnet aus Gußstahl habe den mittleren Durchmesser 2J? = 30 cm
(s. Bild 1.18). Die Breite des Luftspaltes betrage b = 1 cm, die Schnittfläche A = 25 cm2 . Be-
rechnen Sie die magnetische Energie und den Druck infolge der magnetischen Kräfte. Die Sätti-

Bild 1.18. Ringmagnet mit Luftspalt

gungsfeldstärke betrage B = 1,25 Vs m~2 . Beweisen Sie, daß die magnetische Energie des Luft-
spaltes mit der Energie des Ringmagneten übereinstimmt. Wie groß ist die magnetische Feld-
stärke im Luftspalt und im Innern des Magneten?

Lösung

Die magnetische Energie im Luftspalt ist (vgl. 1.4./21)

JFm = —
2 V 2 (1)

Für den Druck erhält man analog der Gleichung (1.4.5./4) für das elektrische Feld

1 . „ 5B 2 (2)

Zur Rückführung der magnetischen Energie des Luftspaltes auf die Feldgrößen im Innern des
Magneten gehen wir von der magnetischen Spannung aus. Umfährt man einmal die gestrichelte
Kurve C im Bild 1.18, so ergibt sich wegen des Fehlens elektrischer Ströme aus der Maxwell-
schen Gleichung (1.4./la) für die magnetische Umlaufspannung

(ß £ • dt = 0 .
c

Wir setzen im Ringmagneten eine homogene Magnetisierung voraus. Das Feld im Innern des
Magneten bezeichnen wir mit das im Luftspalt mit § a . Damit folgt aus (3)

(27vI?-&)§  i + &§ a = 0 .  (4)

Ist die Feldstärke im Außenraum bekannt, so erhält man aus (2) für die Feldstärke im Magneten

= ------ ---  ©a-2tj:R -b

(3)

(5)
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Mit dem Aufbau des im Umlaufsinn gerichteten Feldes im Luftspalt bildet sich also im Magneten
ein dem Umlaufsinn entgegengerichtetes Feld aus.
Aus der MAXWELLschen Gleichung (1.4./4) ergibt sich

3Si = S8 a = S8. (6)

Die magnetische Energie des Luftspaltes wird daher gleich

m = ®(2kÄ-6)A .  (7)

Sie stimmt bis auf das Vorzeichen mit der magnetischen Energie des Ringmagneten überein.
Dieses Ergebnis ist eine Folge der verschwindenden UmlaufSpannung nach (3).
Zahlen eingesetzt, folgt aus (1)

w 1,25 2 • 25 • 10 -4 ■ 10- 2

= ------------------------------ J = 15,5 J ,m 2 ♦ 4k • 10 -7

aus (2)
1.25 2

p = - - -  ---------- Nm- 2 = 6,22 • 10 5 N m" 2 = 6,34 a t .
2 • 4k • 10 -7

Magnetische Feldenergie und Druck liegen also um Größenordnungen über den entsprechenden
Werten des elektrischen Feldes.
Im Luftspalt ist die Feldstärke

= 1 ,25  A m- 1 = 9,95 • 10 5 A m- 1 ,a 4k • IO"7

im Innenraum
TT 10- 2 • 9,95 • 10 5 , nH, = ----------- A m -1 = —1,07 • 10 4 A m -1 .1 30k • 10 -2 - IO-2

2Ä. Aufgaben

A 1.4.1. Ein gerader Magnet mit dem magnetischen Moment = 10 -4 V m s wird einer
/ Spule aus 1 000 Windungen mit dem kreisförmigen Querschnitt A = 2 cm2 auf

50 cm genähert. Der ohmsche Widerstand beträgt 0,2 Q ;  der induktive Wider-
stand ist dagegen zu vernachlässigen. Berechnen Sie den induzierten Stromstoß
jZdL

A 1.4.2. Berechnen Sie zur vorhergehenden Aufgabe das induzierte magnetische Moment im
Verhältnis zum induzierenden Moment, wenn das induzierende Feld gleichmäßig
in der Zeit t s = 0,1 s aufgebaut wird.

A 1.4.3. Berechnen Sie die Relaxationszeit von Polystyrol (y = 10 -16 Q -1 m -1 , e r = 2,6).
A 1.4.4. Für Kupfer wird, wie allgemein für Metalle, mit einer Dielektrizitätszahl er > 1000

gerechnet. Die Leitfähigkeit des Kupfers beträgt y = 5,9 • 10 7 Q -1 m -1 . Welche
Größenordnung ergibt sich daraus für die Relaxationszeit ?

A 1.4.5. Beweisen Sie aus den MAXWELLschen Gleichungen, daß im Nichtleiter die Ladungs-
dichte konstant ist.

A 1.4.6.* Leiten Sie aus den Übergangsbedingungen das Brechungsgesetz der elektrischen
Feldlinien in Isolatoren (y = 0) ab.
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A 1.4.7.*
A 1.4.8.

Wie lautet das Brechungsgesetz der magnetischen Feldlinien?
Wie groß ist stündlich die Wärmeentwicklung eines Aluminiumdrahtes der Länge
l — 100 km, des Querschnittes A = 2 mm 2 und der Leitfähigkeit y — 4,2 • 10 7Q -1 m -1 ,
wenn an diesem eine Spannung von 10000 V anliegt?

A 1.4.9. . Für eine elektromagnetische Welle werden in Luft die elektrische Feldstärke
IO-3 V m -1 und orthogonal dazu gerichtet die magnetische Feldstärke 2,65 • 10~6 Am-1

gemessen. Berechnen Sie die elektrische und die magnetische Energiedichte sowie
den PoYNTiNGschen Vektor.

A 1.4.10. In ein elektrisches Feld wird eine Platte von 50 cm 2 Fläche gebracht und ihre Ober-
flächenladung gemessen. Variiert man die Stellung der Platte im Raum, so wird als
Maximum eine Ladung von 5,53 • 10 -10 As (auf einer Seite) gemessen. Berechnen
Sie daraus die elektrische Feldstärke.

A 1.4.11. Eine Kugel vom Durchmesser 2R = 10 cm trage die elektrische Ladung Q = IO-4 As .
Welcher Druck muß auf die Oberfläche der Kugel wirken, um ihre Expansion zu
verhindern?

A 1.4.12. Berechnen Sie die magnetische Energie einer Feldspule der Länge l = 40 cm mit
dem Querschnitt A = 2 cm2, deren n = 15000 Windungen vom Strom Z = 3 A
durchflossen werden. Wie groß ist der Druck?

A 1.4.13. Die größten in Eisenkernen erzielbaren magnetischen Flußdichten liegen bei
2,2 V s m -2 . Wie groß ist die hierdurch gespeicherte magnetische Energie, bezogen
auf das Volumen V = Im 3 ?

A 1.4.14* Eine Kugel vom Radius R = 10 cm trägt die Ladung Q = 10 -4 As . Wie groß ist
die potentielle Energie J7 pot , d .  h., welche Energie ist aufzuw’enden, um die Kugel
aufzuladen?
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2.1. Elektrostatik

Einführung

Bei statischen Feldern erfolgen keine zeitlichen Feld- und Dichteänderungen. Auch
Strömungen von elektrischer Ladung oder Energie finden nicht statt. Es gilt allgemein

— =0 ,  d. h. S = 0 ,  ©=0 ,  £=0 ,  3=0 ,  ®=0 .ot

Ferner muß in Leitern

@ =0

erfüllt sein.
Für Nichtleiter erhält man aus den MAXWELLschen Gleichungen (1.4./1) bis (1.4./4)

rot = 0 , rot ® = 0 , 1
div 33 = 0 ;  d iv®= e . J

In diesen Gleichungen können die magnetischen Größen Sq und 33 unabhängig von
den elektrischen Größen @ und ® behandelt werden. Für @ und © bestehen somit
die beiden Grundgleichungen des elektrostatischen Feldes

rot ® = 0 ,
div © = q .

(2)

(3)

Zwischen ihnen ist die Verknüpfung durch die Dielektrizitätskonstante s zu berück-
sichtigen :

(4)
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Damit erhält man anstelle von (3) bei homogenen Medien

div ® = —
8

(3 a)

Nach (2) kann @ im elektrostatischen Feld stets als Gradient eines skalaren Po-
tentials

@ = — grad 0 (5)

dargestellt werden. (5) in (3) bzw. (3a) eingesetzt, ergibt die Poissonsche Gleichung

A0 = --
8

(6)

Die Bedeutung des Laplace -Operators A in verschiedenen Koordinatensystemen
wurde in 1.3. angegeben.
Kennt man die Verteilung der Ladungen im Raum, so kann entsprechend (1.1. /8)
und (1.1./9) das Feld aus diesen berechnet werden:

(7)

Darin ist P der Punkt, in dem das Feld bestimmt wird, Q ein Punkt des Integrations-
bereiches mit der Ladungsdichte q.
Ist die Ladung über eine Oberfläche verteilt und bezeichnet die Flächenladungs-
dichte, so erhält man anstelle von (7) das Potential aus

0(F) = A f [ — d4 .rPQ (8)

Im ladungsfreien Raum genügt der LAPLACESchen bzw. Potentialgleichung

A0 = o (9)

Bei der Berechnung spezieller Felder hat man die Randbedingungen zu berücksich-
tigen, die aus den Übergangsbedingungen (1.4./11) und (1.4./12) sowie (1.4. /15) und
(1.4./ 16) hervorgehen. Im folgenden werden die aneinandergrenzenden Medien durch
die Indizes I und II gekennzeichnet.
Für elektrostatische Felder müssen nach (1.4./11) die Tangentialkomponenten der
elektrischen Feldstärke @ und bei nichtleitenden ladungsfreien Medien nach (1.4./15)
die Normalkomponenten der Verschiebungsdichte © übereinstimmen. Diese beiden
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Forderungen werden erfüllt, wenn in jedem Punkt der Grenzfläche die Bedingungs-
gleichungen

(10)

(11)

( l )Rand — ( I l )Rand ,

/50A /50n \£ i I "ä— I — £n I — I
\ /Rand  \ dn / Rand

befriedigt werden, n bezeichnet dabei die Variable in Richtung der Flächennormalen.
Es müssen also sowohl die Potentiale selbst als auch ihre Ableitungen in Richtung
der Flächennormalen übereinstimmen. Die Gleichung (10) gewährleistet die Über-
einstimmung der Ableitungen in Richtung einer beliebigen Flächentangente und da-
mit die Gleichheit der Tangentialkomponenten des elektrischen Feldes. Aus (11) folgt
die Gleichheit der Normalkomponenten von ©.
Eine anschauliche Methode zur Lösung der Potentialgleichung (9) mit den vor-
gegebenen Randbedingungen ist das Spiegelungsverfahren. Man führt dabei virtuelle
Ladungen derart ein, daß diese zusammen mit den realen Ladungen ein Feld auf-
bauen, das die vorgegebenen Randbedingungen befriedigt.

Beispiel 2

Eine Punktladung der Stärke Q = 10-12 As befindet sich in 2 m Höhe über einer idealleitenden
Ebene. Welches elektrische Feld wird dadurch aufgebaut?
Zur Lösung geht man von der LAPLAGEschen Gleichung (9) aus, die für den gesamten ladungs-
freien Raum gilt. Der Raum oberhalb der Metallebene wird durch z > 0 gekennzeichnet (vgl.
Bild 2.1). Auf der Ebene z = 0 und im Raum z < 0 des metallischen Körpers muß das Potential

Bild 2.1. Spiegelung an einer Ebene

0 = y, z) konstant sein. Man kann daher als Randbedingung 0(rr, y, 0) = 0 ansetzen.
Ebenso gilt 0 = 0 für z < 0 . Nun soll die Lösung für den Raum z > 0 ermittelt werden.
Die Potentialgleichung (9) lautet nach (1.3./40) in Kugelkoordinaten, wenn man eine Abhängig-
keit nur von der radialen Koordinate r voraussetzt,

a20 2_ 50
dr2 r dr (12)
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Diese Gleichung hat als Lösung das Potential der Punktladung

_0_

47T£P
0 = 0 (13)

wie man sich durch Einsetzen überzeugt. Die Lösung (13) befriedigt jedoch nicht die Rand-
bedingungen an der Grenzfläche x = 0 . Um auch die Randbedingungen zu erfüllen, nimmt man
im Medium x < 0 eine Ladung Q' = — Q spiegelbildlich zur Ladung Q an. Die von ihr im Raum
x > 0 ausgeübte Feldwirkung wird ebenfalls durch ein Potential der Form (13) dargestellt:

t' gibt die Entfernung des Aufpunktes P vom Ort der virtuellen Ladung Q' an. Bedeutet h die
Höhe der Ladung Q über der Ebene, so folgt damit aus (13) und (14) für das Potential der Punkt-
ladung über der leitenden Ebene

0 = 0 + 0 , = A /2_ _ = 2L / 1 ........ . - ) • (15)
\ r r ) 4to 2 + y z + ( z _ h)* Vx2 + + (2 + ä) 2 /

Daraus lassen sich mittels (5), (4) und (3 a) sämtliche Größen des Feldes sowie sämtliche Ladungs-
verteilungen berechnen.
In gleicher Weise wie bei der Punktladung kann man nach dem Spiegelungsverfahren
in geeigneten Spezialfällen oder durch zweckentsprechende Vernachlässigungen und
Idealisierungen die Potentiale für lineare, flächenhafte oder räumliche Ladungs-
verteilungen gegenüber Ebenen, Kanten und Ecken, Kugel- und Zylinderflächen
bestimmen.
Zur Definition der Kapazität betrachtet man zwei Leiter L+ und L_, auf denen sich
die Ladungen +Q und — Q befinden. Infolge der unterschiedlichen Ladungen be-
steht zwischen den Leitern einer Potentialdiff erenz U = 0 + — 0_. Als Kapazität
des aus den beiden Leitern L + und L_ bestehenden Kondensators definiert man den
Ausdruck

„Q Q
U V

J®-dr
L+

C wird in Farad (F) gemessen :

1 F = 1 AsV- 1 .

(16)

Die von einem Kondensator gespeicherte elektrische Energie kann man allgemein
durch Anwendung des GREENschen Satzes der Potentialtheorie berechnen.
Der GREENsche Satz folgt aus dem GAUSSschen Satz (1.3./17), wenn man in diesem

— V7 grad 0 (17)
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setzt. Es ergibt sich zunächst

yjjdiv (0  grad 0) dP  = j j 0 grad 0 -  dSl. (18)
Wird

div (!F grad 0) = *P div grad 0 4- grad 0 • grad V7 (19)

berücksichtigt, so folgt damit der Greensche Satz in der Form

/// ( Z\0 + grad # • grad ¥9 dP  = grad 0 -d9 l .  (20)

Hier kann man V7 = 0 setzen. Wird die Betrachtung auf Potentialfunktionen be-
schränkt, für die /\0 = 0 gilt, so ergibt sich

JJJ grad2 0 dP  = 0 grad 0 • d2L (21)

Die Integration links erfolgt über den gesamten Raum mit Ausnahme der beiden
Leiter. Das Oberflächenintegral rechts ist über die unendlich ferne Kugel und über
die Leiterflächen zu erstrecken.
Bei der Integration über die unendlich ferne Oberfläche einer Kugel ergibt sich der
Wert Null. Somit verbleibt rechts allein das Integral über die Leiterflächen. Im
linken Integral kann @ = —grad 0 gesetzt werden. Ferner können beide Seiten der
Gleichung mit e multipliziert werden. Das liefert als elektrische Energie W e des über
den gesamten Raum erstreckten Feldes

2We = fff ® ® dP  = -ff e0@ • d9l. (22)

Längs der Leiterfläche ist 0 entweder gleich 0 + oder gleich 0_. Ferner gilt für die
in den Leiter hineinweisenden Flächenelemente (vgl. Bild 1.15 sowie 1.3.)

d2I = — ne id .  (23)

Man erhält daher

2W e = $ + ($ • n dA + 0_ (ß) £& • n dA . (24)
L+ L_

Die Integrale über die Leiteroberflächen geben die Ladungen auf diesen an. Daher
folgt allgemein für jeden beliebigen Kondensator

2W e = (25)

bzw. wegen (16)

JPe = =i  GÜ2 (26)



80 2. Statische elektrische und. magnetische Felder

Probleme

2.1.1. Plattenkondensator

Ein Plattenkondensator hat die Plattenfläche A = 400 cm2 . Der Abstand beider Platten beträgt
d = 1 mm. Das Zwischenmedium ist Luft, die unter dem Druck 0,5 Torr steht. Unter diesen
Verhältnissen beträgt die Durchbruchspannung 35 V (vgl. Tabelle 2).
Berechnen Sie, wie groß die Ladung ist, bei der die Entladung durch Funkenüberschlag erfolgt.
Wie groß ist die Energie dieser Entladung?

Tabelle 2. Durchbruchspannung in Luft, bezogen auf 1 mm

p
in Torr

u
in Volt

P
in Torr

U
in Volt

0,1 180 20 200
0,2 60 50 400
0,5 35 100 600
1,0 40 300 2000
2,0 50 760 3000

10 130

Lösung

Die Potentialgleichung lautet in Cartesischen Koordinaten

0 a2# , a2# _
A0  = ---- I ---- I ---- = 0 .

dz2 dy2 8z 2

Wir betrachten das Innere des Kondensators und sehen von Randstörungen ab. Das ist nur ge-
stattet, wenn die Abmessungen der Platten groß sind gegen den Plattenabstand d.
Eine Abhängigkeit des Potentials kann nur in Richtung z des Plattenabstandes bestehen. In den
parallel zur Plattenfläche weisenden Richtungen x und y ist jeder Punkt gleichberechtigt, da
Randstörungen vernachlässigt werden können. (1) vereinfacht sich daher zu

mit der Lösung

0 = — az + b .  (3)

Für das elektrische Feld erhält man daraus gemäß © = — grad 0

( =•0 ,  = 0 ,  & z = a .  (4)

Es hat im Kondensator überall die gleiche Stärke und die gleiche Richtung. (Wäre in (3) das posi-
tive Vorzeichen gewählt worden, so stände in (4) — a statt a.)
Im Innern der Metallplatten, die als ideale Leiter vorausgesetzt werden, kann ein elektrisches
Feld nicht existieren. Aus der konstanten elektrischen Erregung folgt daher nach (1.4./15)
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für die Oberflächenladungsdichte

t; = <£) • n . (5)

Die entgegengesetzten Ladungen an der oberen und an der unteren Platte ergeben sich, wenn
man berücksichtigt, daß die Flächennormalen n in den Kondensatorraum hinein weisen, also

Bild 2.2. Plattenkondensator

oben und unten in Bild 2.2 einander entgegengerichtet sind. An der unteren Platte erhält man
aus (5) und (4)

Q
(6 )

Die Ladung auf der unteren Platte ist also gleich

Q = eaA. (7)

Für die Spannung U folgt aus (4)

d
U=(  z = ad. (8)

Aus (7) und (8) ergibt sich als Kapazität des Plattenkondensators

c = 4 = T- (9)

Die gespeicherte elektrische Energie wird nach (1.4./21), (4), (6) und (9)

W e = L ® (M. (10)
Z Z Z

Im vorliegenden Fall beträgt die Kapazität

C = 8,85 -10- .400 -10-« = . F =io- s

Daraus ergibt sich bei der Spannung Ü = 35 V die Ladung'

Q = CU = 3,54 • 10" 10 • 35 As = 1,24 • 10- s C.

Für die Energie folgt

W e = — • 3,54 • 10-10 • 352 = 2,17 • 10“’ J .e 2

6 Schilling, Felder
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2.1.2. Kapazität des Zylinderkondensators

Ein metallischer Kreiszylinder mit dem Grundflächenradius Ra = 30 cm enthält in seinem
Innern koaxial einen zweiten Zylinder mit dem Radius = 25 cm (vgl. Bild 2.3). Die Länge

Bild 2.3. Zylinderkondensator (Koaxialleitung)

beider Zylinder ist gleich l = 2 m.  Der Zwischenraum ist mit Kautschuk £ r = 2,5 gefüllt. Wie
groß ist die Kapazität des Kondensators? Randstörungen sind zu vernachlässigen.

Lösung

Wir führen Zylinderkoordinaten ein. Es kann lediglich eine Abhängigkeit von der Variablen r
bestehen. Nach (1.3./39) lautet daher die Potentialgleichung im ladungsfreien Raum

= 0 . (1)

Daraus folgt

d0r — = a ,
dr (2)

wobei a eine Konstante bezeichnet. Hieraus erhält man weiter

0 = a In r + b . (3)

Nach (1.2./9) ergibt sich wegen & = — grad 0

dr r (4)

Die Flächenladung beträgt nach (4) auf der Innenseite des Außenzylinders

Q = • 2iuRa • l = 2nEal . (5)

Der gleiche Wert mit entgegengesetztem Vorzeichen folgt für die Außenseite des Innenzylinders.
Die Spannung zwischen Innen- und Außenzylinder ist gleich

ÄaRa.

= a ln  — .
Ri (6)

Ri Ri
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Hieraus folgt für die Kapazität

n Q 2nel
= — = ---- . (?)

Einsetzen der Zahlenwerte ergibt

c=  2K.2. 8 ,8 5.10- . 2p=1>23  10 _9g

! 30In —
25

2.1.3. Potentialberechnung durch Spiegelung an einer Ebene

Ein durch eine Kugel vom Radius R — 10 cm idealisierter Körper befindet sich in der Höhe
h = 2,50 m über der Wasseroberfläche (e r = 88) . Der Zwischenraum ist Luft. Wie groß ist die
Spannung gegen den direkt unter dem Schwerpunkt des Körpers befindlichen Punkt der Wasser-
oberfläche, wenn sich auf dem Körper die elektrische Ladung Q = 10-8 As befindet?

Lösung

Wir bezeichnen das Potential in Luft (z > 0) mit das Potential in Wasser (z < 0) mit 0 n .
Nach (1.4./11) müssen an der Grenzfläche die Tangentialkomponenten des elektrischen Feldes
übereinstimmen. Das erfordert für z = Q

0I = 0 n . (1)

Bei einem ursprünglich ungeladenen, nichtleitenden Medium müssen außerdem die Normal -
komponenten der dielektrischen Verschiebung übereinstimmen. Daraus folgt für z = 0

00T Ö0TT
«I — = £ll -T—dn dn

d$r
«I — = £ll -T— •dz dz

bzw. (2)

Wir idealisieren den Kprper vom Radius R durch seinen Schwerpunkt. In diesem können wir uns
die gesamte Ladung Q vereinigt denken (vgl. 1.3.3./4). Als Lösung des zugrunde liegenden Po-
tentialproblems nehmen wir im Medium I eine Potentialfunktion

0i = _L
4k£ I \ r (3)

im Medium II

0 n = 7 -4K£n r (4)

an. r bezeichnet die Länge der Strecke QP, r' die Länge Q'P. Q' und Q" befinden sich im Medium II
spiegelbildlich zu Q (vgl. Bild 2.4).
An der Grenzebene z = 0 ist

?pq =- r PQ' = r .

6*
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Ferner gilt dort

dz r r 2 ’ dz r' r2

Damit ergibt sich aus (1) und (2) das Gleichungssystem

Q Q f _ Q"
£ I e I I

(5)Q - Q' = Q"

mit der Lösung

£ I + £n

2«nQ

«I + «n ’
(6)

Als Potential auf der Kugeloberfläche erhält man aus (3)

_L /J_ , e i ~ £ n J_\ q
47 \_E «I + «II r ' /

(7)01

Die Größe r' ist für jeden Punkt der Kugeloberfläche etwas unterschiedlich. (7) gilt näherungs-
weise unter der Voraussetzung, daß der Kugelradius klein ist, d. h.  R r' gilt. In diesem Falle

Bild 2.4. Zur Potentialberechnung durch
Spiegelung

kann man für alle Kugelpunkte r' — 2h setzen. Im Punkt P w direkt unter dem Schwerpunkt des ®
geladenen Körpers beträgt nach (4) das Potential

(8)W 4to h ä 2tc(£I + «n) h

Als Potentialdiff erenz folgt somit aus (7) und (8)

Q T2
8tt£i [ R

3si 4~ «ii

(«i + «n)
J0  = (9)

Mit den vorgegebenen Zahlen erhält man

3 + 88 1
(1 + 88) 2,50 J

V = 889 V .
10-8 r 2

J0  = ---------------------- ----
87t • 8,85 • IO“12 [0,1

Ist das Medium II ein Metall, so liegt der Grenzfall -> oo vor.
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2.1.4. Spiegelung an einer Kugel

Eine punktförmige Ladung Q = 10-7 As befindet sich in der Entfernung r = a = 25 cm vom
Mittelpunkt einer leitenden Kugel mit dem Radius R = 15 cm. Bestimmen Sie die Potential-
funktion.

Lösung

Wir definieren die einzelnen Punkte durch Kugelkoordinaten. Koordinatenanfangspunkt ist der
Kugelmittelpunkt, r = a ,  # = 0 bezeichnet den Ort der Ladung Q. Die Winkelkoordinate tp ist
beliebig wählbar. Die Wirkung der Kugel kann durch eine virtuelle Ladung Q' im Innern der Kugel

Bild 2.5. Spiegelung an einer Kugel

ersetzt werden. Sie liegt auf der Verbindungsgeraden von Kugelmittelpunkt und Ladung Q. Ihre
r-Koordinate sei b ; # ist ebenfalls Null.
Bezeichnet man die Radiusvektoren von den Ladungen Q und Q' nach dem Aufpunkt P mit r
und r' (vgl. Bild 2.5), so ergibt sich für das Potential

Auf der Kugeloberfläche muß 0 konstant sein. Wir setzen diesen konstanten Wert gleich Null
und erhalten damit

|rK l Ixk'I ’

wobei der Index K auf die Kugeloberfläche hinweist. Die Beziehung (2), für einen beliebigen
Punkt P(R, tp) auf der Kugeloberfläche aufgestellt, ergibt nach dem Cosinussatz

Q Q (3)
]/&2 + R 2 — 2bR cos & ya2 + R 2 — 2aR cos

Darin bezeichnet b die radiale Koordinate der virtuellen Ladung Q'. Aus (3) erhält man

R 2

a
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Wie aus den mittleren Summanden in Zähler und Nenner zu erkennen ist, besteht diese Be-
ziehung für alle Winkel #, wenn

7?2

R 2 = a • b bzw. b=— (5)
a

gilt. Die radiale Koordinate b der virtuellen Ladung Q' ist also reziprok proportional der radialen
Koordinate a (Gesetz der reziproken Radien). (5) eingesetzt in (4) liefert

V 2 = Q2 — bzw. Q' = -Q  ]/— . (6)a |/ a

Im vorgegebenen Fall ist

, (15 • IO“2 ) 2 
Qb = ----------- - m = 9 cm,

25 • IO"2

Q' = 10-’ ] /— As = 6 • IO-8 As.
25

Damit folgt aus (1) für das Potential des Punktes P, wenn man mit r, #, <p dessen Kugelkoordinaten
bezeichnet,

/ 1 P 2 \
\Vr2 — 2ar cos & + a2 a a2r2 — 2arR2 cos # + P 4 /

2.1.5. Dielektrische Kugel im homogenen Feld

In Luft bestehe ein homogenes elektrisches Feld der Stärke E = 10 V m-1 . Dieses wird durch
eine Kugel aus Harz vom Durchmesser 2P = 20 cm gestört. Berechnen Sie das Feld im Innern
der Kugel, wenn das Harz die Dielektrizitätszahl er = 6 hat.

Lösung

Das homogene elektrische Feld bei Abwesenheit der Kugel ist durch sein Potential

0 = —E x

bestimmt. Die Feldrichtung wird als Achse gewählt.
Man kann sich das Feld (1) entstanden denken aus der Überlagerung zweier Felder, die von
zwei Ladungen Q und Q = — Q im Unendlichen ausgehen. Wir betrachten dazu das Feld zweier
Ladungen ±6» deren Cartesische Koordinaten x = - xQ , y = 0,  z = 0 lauten. Nach (1.1./8) hat
das durch diese Ladungen hervorgerufene Feld das Potential

0l = _LpL_
\r PCj rpQ/ (2)
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Bezeichnet man die Koordinaten des Punktes P nnlx,y 9 z,so erhält man aus (2) für das Potential 0
in diesem Punkt

4ne — a:0 ) 2 + y2 + z2 + z0 )2 + y2 + z2/

r 1 ü + 
x <>x 

+ — i + zp . . .
4k£ [ ]% 2 4- x2 + y2 + z 2 \ x0

2 H - - - -  x0
2 4- • • •

Im Grenzfall xQ -> oo folgt daraus

Rückt man also die beiden Ladungen Q und Q = — Q in das positive und negative Unendliche
und läßt sie gleichzeitig derart wachsen, daß

Q
2tzex0

2 = -Et (4)

konstant bleibt, so entsteht damit das homogene Feld (1). Die Ladung Q im positiv Unendlichen
muß negativ sein, da das elektrische Feld von den Orten positiver zu Orten negativer Ladung
weist.
In das Feld (1) bringen wir die dielektrische Kugel vom Radius R, deren Mittelpunkt wir als
Koordinatenanfangspunkt wählen. Jede der beiden Ladungen Q und Q erzeugt in der Kugel
eine spiegelbildliche Ladung. Nach dem Gesetz der reziproken Radien (2.1.4./5) ist der Ort der
spiegelbildlichen Ladungen durch

R 2

dz — (5)

bestimmt. Im Grenzfall x0 -> oo ergeben die Spiegelbilder einen Dipol, dessen Moment m die
Richtung der x-Achse hat. Sein Potential erhält man aus (1.2.5./9).
Bei der dielektrischen Kugel bleibt die Größe der gespiegelten Ladung unbestimmt. Daher ist
uns der Betrag m des Dipolmomentes zunächst unbekannt.
Das Potential außerhalb der Kugel setzt sich aus dem Potential (1) des homogenen Feldes und
dem Störpotential des virtuellen Dipols zusammen :

0 a = -E &x 4- = -E x 4-I £ Q O» I j Q47t£a r3 47T£a r3 (6)

Diese Beziehung kann man allgemeiner auch

0 a = — E&x --------- grad —
4ra a r

formulieren.
Schreibt man das Potential (6) in Kugelkoordinaten gemäß (1.2./10), so erhält man

0 a = ( —E*r 4 - - - -—— 1 cos 'd' sin <p .
\ 47t£a r2 /

(6a)

(6b)
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Für das Innere der Kugel gehen wir vom Ansatz eines homogenen Feldes

= — E-r x = —E r cos & sin (p (7)

aus. An der Grenze zwischen den beiden Medien, d. h. für r = R ,  müssen nach (2.1./10) und
(2.1./11) die Bedingungsgleichungen

( a ) r=K = (&i ) r=R
und (8)

I = £ ir=R

erfüllt werden. Damit ergibt sich

E* = E{ H -----—
47t£a _R3 (9)

„ ea mE~= Ei — ------------
sa 27Tga jR3 (10)

Hieraus erhält man für m und E±

± = !rel -------1 £3 ,
£i 2ca 

1
£ rel + 2

m
47T€a -EJ

a
(11)

3Sa TI------ ---  E,
£i 4- 2sa

- ----  E A . (12)

Das homogene elektrische Feld im Innern der Kugel ist somit für

e _ £ i 1e rel  — > 1
£a

schwächer als das ungestörte homogene Feld außerhalb der Kugel. Im vorliegenden Fall erhält
man

o o
E. = E 3i =-  - 10 Vm-1 = 3,75 Vm-1 .1 6 + 2 8

Dagegen ergibt sich für das Feld der elektrischen Verschiebungsdichte

D-. = e,E. = = ferel D
£ i + 2e a £ rel  2

(13)

mit den vorgegebenen Zahlenwerten

— = - — -=2 ,25 .
D a 6 4~2

Die Erregungslinien im Innern der Kugel sind somit für erel  > 1 gegenüber dem äußeren Feld
stärker konzentriert (vgl. Bild 2.6).



892.1. Elektrostatik

Im Grenzfall c rel  -> oo (Metall) folgt aus (13) = 3Da , dagegen E{ = 0 . Die elektrische Erregung
wird also auf das Dreifache gesteigert. Der entgegengesetzte Grenzfall e re l  -> 0 (Hohlkugel in
metallischem Medium, genähert auch Luftblase in Wasser) führt auf E{ = 1,5E%, = 0 .

Bild 2.6. Kugel im homogenen Feld.
Elektrische Feldlinien für er e l  < 1 bzw.
Erregungslinien für e re l  > 1

2.1.6. Potential paralleler Drähte

Zwei parallele Drähte, deren radiale Ausdehnung zu vernachlässigen sei, haben voneinander den
Abstand 2a = 50 cm (vgl. Bild 2.7). Der erste Draht trägt, bezogen auf die Längeneinheit, die
Ladung q± = 10-7 As m-1 . Auf dem zweiten Draht befindet sich eine Ladung der linearen Dichte
q2' = — 10-7 As m-1 . Bestimmen Sie das Potential und die Äquipotentiallinien. Der Zwischen-
raum sei Luft.

Bild 2.7. Parallele Drähte mit entgegengesetzten Ladungen. Äquipotentialflächen
und Feldlinien

Lösung
Wir betrachten zunächst nur das Feld eines Drahtes. Im Abstand r von der Achse gilt nach (1.1. /6)
ür die Radialkomponente der elektrischen Erregung

— q' • (1)
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Die übrigen Komponenten verschwinden. Mit $ ist auch die elektrische Feldstärke bestimmt.
Aus dieser erhält man gemäß

B B

J 2™0r 2ne0 rA
A

(2)

die Potentialdifferenz zwischen zwei Punkten A und B.
Werden sämtliche Potentialwerte eines axialsymmetrischen Feldes auf das Potential für rB = Im
bezogen, so kann man das Potential eines Punktes A mit dem Abstand rA = r von der zylin-
drischen Achse auch schreiben

<P(r) = - In
2tce 0 r (3)

Befinden sich zwei elektrisch geladene, unendlich lange, parallele Geraden im Raum und hat ein
Raumpunkt P von diesen die Abstände und r2 , so erhält man für sein Potential aus (3)

M 9i i , 9z 1<P = ----- In — -4- ----- In — .
2k£ 0 rx 2k£ 0 r2

(4)

Im Falle qt ' = — q2' = q' folgt aus (4)

2tt£ 0 r-. (5)

Wir legen den Koordinatenanfangspunkt in die Mitte zwischen den beiden Geraden. Die Gerade-
selbst bezeichnen die z-Richtung. Senkrecht dazu, in Richtung der Verbindungslinie beider Ge
raden, verläuft die x-Achse. Beide Drähte schneiden also die x-Achse, und zwar in den Punkten
x = -$-a, y = z = 0 .  Kennzeichnen wir einen Punkt P durch seine Cartesischen Koordinaten
x, y, z, so ergibt sich für seine Abstände von den beiden Geraden

r2 = ]/(a? + a) 2 + y2 .>1 = /(a: — u) 2 + y2 ,

„ Damit folgt für sein Potential nach (5)

0 =
4to 0 (x — ®) 2 + y*

Mit den vorgegebenen Zahlen ergibt sich

* = ____- ______ In fr + W + y2 V = 21701g <* + 0 > 25)2 + V .
4k • 8,85 • IO“12 (x — 0,25)2 + y2 (x — 0,25) 2 4- y2

IO-7

Im Koordinatenanfangspunkt ist das Potential gleich Null, auf den beiden Drähten unendlich
groß.
Die Äquipotentiallinien sind nach (5) durch

?22 
= & + a) 2 + y2 

= c
r±

2 (x — a) 2 4- y20 = const,
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bestimmt. (7) kann in der Form

(8){x - x0 ) 2 + y2 = R2

geschrieben werden mit

C + l
C - 1 ’

ä2== 4
(C - 1)2 (9)x0 = a

Als Äquipotentiallinien in der Ebene senkrecht zu den beiden Drähten ergeben sich also Kreise.
Ihre Mittelpunkte liegen auf der x-Achse. Soll xQ = a sein, so muß C = ±00 gewählt werden.
x0 = — a wird für C = 0 angenommen. In beiden Fällen ist nach (9) der Kreisradius gleich Null.
Die Äquipotentialflächen entarten hier in die beiden ladungtragenden Geraden.

2.1.7. Kapazität einer Vertikalantenne (Linienladung)

Ein zylindrischer Stab hat den Durchmesser 2r0 = 5 mm und die Länge l = 3,50 m . Er ist als
Vertikalantenne senkrecht in die Höhe geführt und befindet sich mit seinem unteren Ende im

l l
I I
I I
L l

Bild 2.8. Vertikalantenne mit ihren Äquipotentialflächen und Feldlinien

Abstand a = 10 cm vom Erdboden entfernt. Berechnen Sie seine Kapazität gegen die als ideal-
leitend vorausgesetzte Erde (vgl. Bild 2.8).

Lösung

Wir berechnen zunächst das Potential einer gleichmäßig mit elektrischer Ladung versehenen
Linie gegen die idealleitende Erde und schließen daraus auf das vorgegebene Problem. Die Stab-
achse wählen wir als z-Achse, ihren Mittelpunkt als Anfangspunkt des Koordinatensystems.
Bezeichnet
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die lineare Ladungsdichte, so ergibt sich in Analogie zu (2.1./7) und (2.1./8) für das Potential
der Linienladung im Punkt P o

2
, ? r &

= A------ I --------4to 0 J r P p 0

2

(2 )

Die Entfernung vom Aufpunkt P0 (x0 , yQ, zQ ) zum Punkt P(0, 0, z) des Integrationsgebietes ist
gleich

»FPo = V®02 + y»2 + (20 - 2 ) 2 - (3)

Damit folgt
_____________• + _L

[in IV O2 + y 2 + (2o — z) 2 + 2 — Zo | ]  2 (4a)
4tC£q _

2

_ j_ ln  ]/•■■+«•■ + (  1 ) '  +4 -* -  . (4 )

4to ° l/ o2 + y 2 + k + y) 2 - y - z o

Die Linienladung influenziert auf der Erde eine Ladung, deren Potential 0 S sich durch Spiegelung
ergibt. Im Aufpunkt PQ ist dieses gleich

0s=  _ _ f  = — (5)
4to 0 J r PsPQ 4to 0 / j/ 2 + y2  + ( 2o _ Z )2

3 3
- T «-2a  - -2  l ~ 2a

Durch Auswerten nach (4 a) erhält man

Das Potential der Linienladung bei Anwesenheit der Erde ergibt sich aus der Überlagerung
von (4) und (6):

0 = 0 L + 0 S - (7)

Ist die Länge des Kreiszylinders groß gegen den Radius r0 seiner Grundfläche, so läßt sich das
Potential wie folgt genähert berechnen: Die Äquipotentialflächen des von der Linienladung aus-
gehenden Feldes können für l ]/a;02 + yQ

2 durch Zylindermantelflächen genähert werden.
Wir ersetzen den vorgegebenen Zylinder durch eine Äquipotentialfläche, deren Schnittflächen-
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radius ]Ar0
2 + y0

2 im Punkt z0 = 0 identisch mit dem Radius r0 des vorgegebenen Stabes ist.
Das Potential hat auf dieser Äquipotentialfläche nach (4), (6) und (7) die Größe

0 = _Q_ ln W + Z2 + Z w + (31 + 4a) 2 - (3Z + 4q)
4to 0Z 2 + p i 2 + (Z + 4a) 2 - (Z + 4a)

Q V4r0
2 + Z2 + l Ur» 2 + (Z + 4a) 2 + (Z + 4a)

' 1XX • yöy
4to 0« ]/4r 0

2 + Z2 - Z ]/4r 0
2 + (31 + 4a) 2 + (31 + 4a)

Berücksichtigt man hierin r 0 < l ,  so folgt

Q Z2(Z + 4a)
— ixi ■ 1 

e

0 Z r 0
2 (3Z + 4a)

Als Kapazität der Vertikalantenne gegen die idealleitende Erde erhält man somit

4tt£0Z
ln Z 2 (? + 4a) ‘

r 0
2 (3Z + 4a)

(10)

Mit den vorgegebenen Werten ergibt sich

477 - 8,85 - 10~ 12 • 3,50
. 3,50 2 • 3,90In -------------------

0,002 5 2 • 10,90

C = F = 28,9 pF.

Im allgemeinen ist der Abstand a von der Erdoberfläche klein gegen die Länge Z. Unter dieser
Voraussetzung folgt

27T£0Z

V3 r0

(11)

A Aufgaben

A 2.1.1. Berechnen Sie die Kapazität eines Plattenkondensators mit der Plattenfläche
A = 25 cm 2 , dessen Platten einen Abstand von 0,1 mm haben. Der Zwischenraum
ist mit Paraffin (er = 2,3) gefüllt.

A 2.1.2. In atmosphärischer Luft (e = e0 ) beträgt die Überschlagsspannung bei 1 mm Ab-
stand U = 3000 V .  Sie wächst proportional dem Abstand. Wie groß ist die Energie,
die ein Plattenkondensator der Plattenfläche A = 100 cm 2 speichern kann, wenn
der Plattenabstand 1 cm beträgt?

A 2.1.3. Stellen Sie die Formel für die Kapazität zweier konzentrischer Kugeln auf. Wie groß
sind die elektrische Feldstärke und die Spannung?
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A 2.1.4.

A 2.1.5.

A 2.1.6.

A 2.1.7.

A 2.1.8.

A 2.1.9.

A 2.1.10.

A 2.1.11.

A 2.1.12.

A 2.1.13.*

Wie groß ist die Kapazität einer Kugel gegen den unendlich fernen Raum (eine
konzentrische Kugel vom Radius Ä —> oo) ?
Welchen Radius muß eine Kugel besitzen, wenn ihre Kapazität gegen den un-
endlich fernen Raum 1 F betragen soll ?
Eine Punktladung der Stärke Q = 10-10 As befindet sich gegenüber einer Metall-
platte im Abstand z0 = 50 cm . Berechnen Sie das elektrische Feld. Welche Feld-
stärke ergibt sich auf der Geraden, die von der Metallplatte zur Ladung gerichtet
ist, in der Entfernung l = 2 m von der Metallplatte?
Eine Kugel vom Radius R = 20 cm befindet sich in Luft gegenüber einer Metall-
platte. Der Abstand des Kugelmittelpunktes beträgt h = 3 m . Berechnen Sie ge-
nähert die Potentialdifferenz, wenn die Kugel eine Ladung von 5 • IO-9  As trägt.
In ein homogenes elektrisches Feld der Stärke EQ wird eine Metallkugel vom
Radius R gebracht. Geben Sie das Potential an, a) wenn die Kugel ungeladen ist,
b) wenn sie die Ladung Q trägt.
In das homogene Feld der Stärke 100 Vnr 1 in Luft wird eine Kugel aus Harz
(e r = 20) gebracht. Der Radius der Kugel beträgt R = 1 cm. Berechnen Sie das
elektrische Moment der virtuellen Ladungen. Wie groß ist die elektrische Feld-
stärke in der Kugel ?
Eine Gerade hat die elektrische Ladungsdichte q' = 10-10 As m-1 . Parallel dazu im
Abstand 2a=lm verläuft eine Gerade mit der Ladungsdichte q% = — 10-10 Asm-1 .
Berechnen Sie die elektrische Feldstärke in der Mitte zwischen den beiden Ge-
raden.
Bestimmen Sie die Äquipotentialflächen zweier paralleler Geraden, die gleiche
elektrische Ladungsdichten aufweisen.
Parallel zu einem Kreiszylinder mit dem Durchmesser 2_R0 = 5 cm verläuft ein
Draht im Abstand a = 1,50 m von der Zylinderachse. Wie groß darf die Ladungs-
dichte auf dem Draht sein, wenn das Zylinderpotential nicht um mehr als 100 V
über dem Erdpotential liegen soll?
Eine zylindrische Leitung mit dem Durchmesser 2R0 = 3 cm wird von einem dazu
parallel verlaufenden Draht influenziert. Der Durchmesser des Drahtes sei zu ver-
nachlässigen. Sein Abstand von der Achse des zylindrischen Leiters betrage
a<== 2,5 cm. Die Ladung des Drahtes, bezogen auf die Längeneinheit, sei
q' = IO-8 As m-1 . Führen Sie eine Spiegelung am Kreiszylinder durch, indem Sie
vom Feld zweier Drähte ausgehen und parallel zum influenzierenden Draht virtuelle
Ladungen anbringen. Bestimmen Sie das Potential. WTie groß ist dieses auf der
Oberfläche des Zylinders?
Ein Kreiszylinder mit deni Radius R Q befindet sich in der Mitte zwischen zwei
Drähten, die voneinander den Abstand 2a haben. Die spezifischen Ladungen der
Drähte seien q' und — q'; der Zylinder sei ungeladen. Berechnen Sie durch Spiege-
lung das Potential.
In das homogene elektrische Feld der Stärke Eo wird ein ungeladener Metallzylinder
gebracht, so daß seine Achse senkrecht zur Feldrichtung steht. Bestimmen Sie das
Potential des entstehenden Feldes.

A 2.1.14.*

A 2.1.15.
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2.2. Berechnung ebener statischer Felder durch konforme Abbildung

E Einführung

Die Lösung der Potentialgleichung zur Berechnung ebener elektrostatischer Felder
kann in vielen Fällen mit Hilfe einer konformen (winkeltreuen) Abbildung durch -
geführt werden. Dazu seien die Cartesischen Koordinaten x und y eingeführt. Man
faßt sie in der komplexen Variablen

z = x + i y  (1)
zusammen.
Es bezeichne

w = w(z) = u(x, y) + i v(x, y) (2)

eine komplexe Funktion der Variablen z. Diese Funktion w = w(z) vermittelt die
Transformation der komplexen z-Ebene auf die komplexe w-Ebene.
Ist der Grenzwert

w(z + dz) — w(z) dwnm ---------------------- — —■— (o)
dz->o Az dz

unabhängig davon, wie Az = Ax i Ay gegen Null strebt, d. h., ist der Differential-
quotient (3) in der a;,i/-Ebene richtungsunabhängig, so definiert man diesen als Ab-
leitung w'(z) der Funktion w(z).
Im Falle w'(z) 4= 0 vermittelt w = w(z) eine konforme Abbildung der w-Ebene auf
die z-Ebene. Infinitesimal kleine Dreiecke werden winkelgetreu von der w-Ebene
auf die z-Ebene abgebildet. Zwei Kurven, die sich in der w-Ebene unter einem be-
stimmten Winkel schneiden, schneiden sich auch nach ihrer Abbildung auf die
z-Ebene unter diesem Winkel. Insbesondere behalten zwei zueinander orthogonale
Kurvenscharen, also z. B. Äquipotential- und Feldlinien, diese Eigenschaft auch nach
der Transformation w = w(z) ,
Setzt man im Differenzenquotienten (3) Ay = 0 und berechnet den Differential-
quotienten längs der reellen Achse, d. h. für Az = Ax ,  so folgt

wj(2) = iim + i lim - v y)
Ax—*0 Ax—*0 zlx

du . dv
t - -F 1 7“dx dx (4)

Andererseits kann man Ax = 0 setzen und mit Az = i Ay rechnen, den Differential-
quotienten also längs der imaginären Achse bestimmen. Dann ergibt sich

wa«) = iim + ~ -|- hm !(*<+ J y) - y&y)
i Ay-*O

1 du dv
i dy + dy'

Jt/

(5)
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Der Vergleich von (4) und (5) führt auf die Cauchy- Riemannschen Differential-
gleichungen

du dv dv du
0“=*“»  ä” = — V ( 6dx dy dx dy

Sie müssen erfüllt sein, wenn eine komplexe Funktion in einem bestimmten Punkt
differenzierbar sein soll. Dieser Satz ist umkehrbar, was hier nicht bewiesen wird.
Aus (6) folgt, wenn man die erste Gleichung nach x, die zweite nach y ableitet,

d2u d2v d2v d2u
dx2 dy dx ’ dx dy dy2

Reguläre komplexe Funktionen sind von der Reihenfolge der Differentiation un-
abhängig. Daher erhält man aus (7)

d2u _i_ d2u

dx2 dy2 (8)

Ebenso ergibt sich, wenn man in (6) die erste Gleichung partiell nach y, die zweite
partiell nach x differenziert,

d 2v d2v
dx2 dy2 (9)

Sowohl der reelle als auch der imaginäre Anteil einer regulären Funktion w = w(z)
erfüllen also die zweidimensionale LAPLACESche Gleichung = 0 . Die reellen und
die imaginären Anteile der regulären komplexen Funktionen sind Potentialfunk-
tionen. Hierin liegt die Bedeutung der Theorie für die Berechnung zweidimensionaler
statischer Felder. Dagegen ist eine Übertragung auf Felder, die von drei Raumkoor-
dinaten abhängen, nicht möglich.
Bei der Anwendung der Theorie konformer Abbildungen auf die Lösung der Laplace-
Gleichung sucht man ein für die z-Ebene vorgelegtes Randwertproblem auf ein
bereits gelöstes Problem in der w-Ebene zu transformieren. Die Äquipotentiallinien
und die Feldlinien in der w-Ebene behalten ihre Eigenschaft auch nach der konformen
Abbildung in die z-Ebene. Bezeichnen also die Geraden u = u Q die Äquipotential-
linien, die Geraden v = vQ die Feldlinien in der w-Ebene, so ergeben sich nach der
konformen Abbildung (2) die Äquipotential- und die Feldlinien des Problems in der
z-Ebene gemäß

u(x,y) = u 0 und v(x,y) = v0 .

Beispiel 3

Es soll das Feld in einer unendlich langen, zylindrischen Koaxialleitung bestimmt werden. Dieses
ist nicht von der Koordinate in Richtung der Zylinderachse abhängig. Es kann also durch die
beiden Cartesischen Koordinaten x und y oder durch die Polarkoordinaten r und ausgedrückt
werden. Somit liegt ein ebenes Problem vor; man hat das Potential zwischen zwei konzentrischen
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Kreisen zu bestimmen. Diese sind als Äquipotentiallinien vorgegeben. Daher ist zu vermuten,
daß sämtliche Äquipotentiallinien in der z-Ebene konzentrische Kreise sind.
In der komplexen w-Ebene betrachtet man das Feld des unendlich ausgedehnten Plattenkonden-
sators ohne Randstörungen. Bei diesem kennzeichnen die Geraden u = uQ die Äquipotentiallinien,
die Geraden v = vQ die Feldlinien (s. Bild 2.9).
Wenn die Vermutung über die Äquipotentiallinien in der z-Ebene richtig ist, müssen sich die

Bild 2.9. Konforme Abbildung w = In z zur Berechnung des Feldes
in der zylindrischen Koaxialleitung

Geraden u = u0 durch eine konforme Abbildung w = w(z) in die konzentrischen Kreise in der
z-Ebene überführen lassen.
Als Koordinatenanfangspunkt in der z-Ebene wird der Mittelpunkt der beiden vorgegebenen
konzentrischen Kreise gewählt. Ferner ist es zweckmäßig, z in Polarkoordinaten darzustellen:
z = x + iy = r e . Durch die konforme Abbildung

w = u + w = In z = In r -f- i(p (10)

wird die w-Ebene auf die z-Ebene abgebildet. Dabei bleiben die Schnittwinkel zwischen den
Geraden, also auch die Orthogonalität der Äquipotential- und der Feldlinien unverändert.
Durch Trennung des Realteiles vom Imaginärteil folgt aus (10)

u = In r = In x2 -J- y2 , (11)

v — arctan — . (12)
x

Aus den Geraden u = uQ als den Äquipotentiallinien in der w-Ebene werden also die konzen-
trischen Kreise x2 + y2 = r2 . Sie charakterisieren die Äquipotentiallinien in der z-Ebene.
Für das Potential in der z-Ebene erhält man

0 = const u = const In x2 + y2 = const In r . (13)

u, v, r, (p geben die Zahlen werte in m an, sind jedoch dimensionslos, da z. B. In r nur von einer
reinen Zahl gebildet werden kann, const hat im vorliegenden Fall die Einheit V.

7 Schilling, Felder
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Als Feldlinien ergeben sich gemäß (12) aus den Geraden v — die Geraden y = const x. Für die
Feldstärke errechnet man aus (13) in Zylinderkoordinaten

30 const■= ------- m-1 = --------- m_]
r dr

Der Wert der Konstanten kann aus der Ladung auf den koaxialen Zylindern über die elektrische
Erregung 55) berechnet werden. Damit ist das elektrische Feld zwischen den Zylindern in Ab-
hängigkeit von der elektrischen Ladung bestimmt.
Anstelle der Geraden u = u0 können auch die Geraden v = v0 gewählt werden, und man kann
untersuchen, welches elektrostatische Problem dadurch gelöst wird. Das mit dieser konformen
Abbildung verknüpfte Feldproblem wird in 2.2.1. behandelt.

In zahlreichen Fällen der Elektrotechnik sind die Äquipotentiallinien als Strecken
vorgegeben, die durch einen Knick unterbrochen sind. Es tritt dann das Problem
auf, das innerhalb eines Vielecks bestehende Feld durch konforme Abbildung auf
ein bekanntes Feld zu transformieren. Hierzu wendet man den Satz von Christoffel-
Schwarz an. Dieser bildet das Innere eines Vielecks in der z-Ebene auf die obere

Ebene
Q = + lTl

Bild 2.10. Konforme Abbildung eines Vielecks nach Christoffel-Schwarz

C-Halbebene, das Vieleck selbst auf die reelle Achse in der f -Ebene ab. In der w-
Ebene sei das Feld bekannt. Durch konforme Abbildung der w-Ebene auf die f -Ebene
entsteht £(w), woraus man z = z(£) = z[C(w)] bilden kann.
Es seien die Winkel des Vielecks in der z-Ebene mit

ßi = ociTc (i = 1, 2, . . . ,  n) (14)
bezeichnet (vgl. Bild 2.10). ßi liegt innerhalb des Wertebereiches von Nulljbis 2k,
(Xi somit zwischen Null und zwei. Die Eckpunkte des Vielecks erhalten bei ihrer Ab-
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Bildung auf die £-Ebene die Koordinaten Nach dem Satz von Christoffel-
Schwabz wird die konforme Abbildung des Innengebietes eines Vielecks in der
z-Ebene auf die obere £-Halbebene durch die Transformation

c
z = z(£) = A J (s — «i)"1“1 (5 — a 2 ) a2-1 • • • (5 — a w ) Än<L d<s + B (15)

0
bewirkt.

Beispiel 4
Es soll ein Rechteck in der z-Ebene auf die obere Halbebene in der f-Ebene konform abgebildet
werden (vgl. Bild 2.10a). Dabei kann man aus Gründen der Symmetrie annehmen, daß die
Punkte A r und A 2 in der £-Ebene auf a± = — 1 ,  a 2 = +1  fallen, die Punkte A 4 und A 3 dagegen

Ai G Az
z-Ebene

/4; A/ A'3 Az Bild 2.10a. Konforme Abbildung eines
£ V ierecks-j 1 _____ _____1 L

-7 -C C 1
Q-Ebene

auf a 4 = —c,a3 = -|-c. Die Winkel sind alle gleich k/2, der Exponent im Christoffel-Schwarz-
Integral ist daher überall gleich —— - 1 = — — . Aus (15) folgt als Transformation, die das

2 2
Innere des Rechtecks in der z-Ebene auf die obere f-Halbebene abbildet,

* = A f — — — = + B = A f - d * + B .  (16)
J ]/s + 1 - 1 ]/$ - +c  J ]/(s2 - 1) (s2 - c2 )
0 0

Das auftretende Integral ist nicht elementar auswertbar. Es wird durch das elliptische Integral
erster Gattung

F&, 0=  f .. .. .. d 'S . (17)
J V(1 - ) (1  -W)
0

gelöst. Die konforme Abbildung (16) schreibt sich somit

0

(18)

7*
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Hat man die konforme Abbildung z = z(w) bestimmt, die das vorgegebene Problem
in der z-Ebene in eine bereits bekannte Lösung für ein Feldproblem in der w-Ebene
überführt, so kann die Feldstärke in der z-Ebene nach einem einfachen Differen-
tiationsgesetz sofort angegeben werden. Definiert man die w-Ebene so, daß die Va-
riable u bis auf einen konstanten Faktor den Wert des Potentials in der w-Ebene
angibt, so gilt für die elektrische Feldstärke

d<2> du du= — const — , = — const —
dx dx y dy

(19)

Für den Betrag der Feldstärke folgt

i®i = M 2 + = const y (gy + (gy .

woraus sich wegen der CAUCHY-RiEMANNSchen Differentialgleichung (7)

(20)

(21)

ergibt. Der Betrag der Feldstärke ist proportional dem Absolutbetrag des Differential-
quotienten w'.
x, y, u, v haben nach (19) die Einheit m, const hat die Einheit V m -1 . Man kann
jedoch auch mit dimensionslosen Größen w = u + i v und z = x + iy arbeiten.

Beispiel 5

Nach Beispiel 3 bildet die Transformation

w = In z

das homogene Feld eines Plattenkondensators in der w-Ebene auf das Feld zwischen zwei ko-
axialen Zylindern (z-Ebene) ab. Das Potential in der w-Ebene ist durch 0 = const u bestimmt.
Für den Betrag der Feldstärke in der w-Ebene erhält man z. B. mit const = 10 V, wenn sämt-
liche geometrischen Größen Zahlenwerte in m angeben,

I Ö0 I
l®(W)l = l®«l = -— m-1 = 10Vm- i .| du |

Der Betrag der Feldstärke in der z-Ebene wird gleich

l (z)l = const | m-1 = 10 | — | V m-1 .

Schreibt man entsprechend dem vorliegenden Problem z = r ei(?, so folgt also
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Das Feld läßt sich hiernach um so stärker konzentrieren, je kleiner der Radius des Innenleiters
gewählt wird.

Erfolgt die konforme Abbildung z. B. nach Christoffel-Schwarz in mehreren
Stufen

w=w(ß) ,  ß = ß( ) ,  . . . .  = (22)

so erhält man den Betrag der Feldstärke nach der Kettenregel

dw dQ
cLQ d ’ dz= const (23)

JT Probleme

2.2.1. Das Feld zwischen geneigten Platten

Zwei metallische Platten sind gegeneinander unter dem Winkel = 2° geneigt. Der Abstand
am unteren Ende beträgt d = 0,1 mm, die Breite einer Platte b = 25 cm, die Länge l = 40 cm.
Randstörungen werden in erster Näherung vernachlässigt. Berechnen Sie die Kapazität dieses
Kondensators und bestimmen Sie den Feldverlauf.

Lösung

Wir schreiben die komplexe Variable z in Polarkoordinaten

z = x + iy — r e (1)

und betrachten die konforme Abbildung

w = u + iv = In z = In r + i<p. (2)

Durch Trennung von Real- und Imaginärteil ergibt sich

u = In r = In x2 + y2 , v = tp = arctan — . (3)
x

Die für den ganzen Raum formulierte Lösung gilt nur zwischen den geneigten Platten.
Wir wählen in der w-Ebene die Geraden v = v0 = <p = const als Äquipotentiallinien, die Ge-
raden u = Uq = In r0 = const als Feldlinien (vgl. Bild 2.11). Für die z-Ebene ergeben sich damit
aus (3) als Äquipotentiallinien die Geraden

y = x tan g20 , (4)

als Feldlinien die Kreise

«2 + y2 = (5)
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Da (p = (f)Q die Äquipotentiallinien angibt, können wir nach (3) das Potential in der Form

V0 = const • arctan — = const (p (6)
x

schreiben. Für die elektrische Feldstärke erhalten wir gemäß (£ = — grad0 aus (1.2./9)

(S r = 0 ,  (&> = —const — . (7)
r

Die Ladungsdichte auf der rechten Platte wird gleich

const
= -*0 -----  ;r

daraus folgt für die gesamte Ladung auf der linken Platte

Ti
— = — £0 const • l • In — . (8)

w-  Ebene

— — Äquipotentiallinien
------------- Feldlinienz~Ebene

Bild 2.11. Konforme Abbildung w = In z zur Berechnung des Feldes
zwischen zwei geneigten Platten

Aus Bild 2.11 entnimmt man für 1

d = r1 «a,  b = ------- b .
a

(9)

Demzufolge ergibt sich aus (8)

Q = —£0 const • l • In
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und weiter
Qconst = ------------------------ .

e -Mn  (1+  j

Die Spannung zwischen den beiden Platten beträgt

ir/2 + a

U = r dg? = —const oc = --------— -------- .

J s ° nn  ( 1 + 7)
tc/2

Für die Kapazität des Kondensators folgt damit die Formel

e0Hn (1 + 6-2-)
q _ Q_ \ d /

U a

Im Falle r± r2 erhält man den Plattenkondensator. Es gilt dann

d

(12) liefert in diesem Falle

q _ Sgbl _
~ d ~ d 9

in Übereinstimmung mit (2.1.1./9).
Mit den vorgegebenen Zahlen ergibt sich aus (12)

(10)

(11)

(12)

(13)

8,85 • IO"12 • 0,40 In ( 1 + 0,25 -----—-----
G = -------------------------( ------------W_10J7 p = 4 5 . l o -io p = 45Q P p

2k/180 r

2.2.2. Elektrisches Feld zwischen den Schenkeln einer metallischen Ecke

Bestimmen Sie das elektrische Feld zwischen den Schenkeln einer Ecke (vgl. Bild 2.12). Der
Öffnungswinkel beträgt 90°, die Länge jedes Schenkels l = 20 cm, die Breite b = 10 cm. Durch
eine äußere Ladung, die man sich in unendlich großer Entfernung konzentriert denken kann,

Bild 2.12. Metallische Ecke
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wird auf der Oberfläche im Innenraum der Ecke eine Ladung der Stärke Q = IO-9 As influenziert.
Das elektrische Feld ist mittels konformer Abbildung zu berechnen, d. h., die Veränderlichkeit
des Feldes mit der Raumkoordinate z ist unberücksichtigt zu lassen.

Lösung

Das Feld einer Ecke kann durch die konforme Abbildung

w = z 2 bzw. u + iv = (x + h/) 2 (1)

berechnet werden. Die Auflösung dieser Gleichung nach Real- und Imaginärteil liefert

u = x2 — y2 , v = 2xy.  (2)

Wir wählen die Kurven v = const als Äquipotentiallinien. (1) transformiert diese in die Hy-
perbeln 2xy = const . Im Grenzfall v = 0 entarten diese Hyperbeln in die aus den positiven Teilen
der x- und der ?/-Achse gebildeten Ecke. Die orthogonal zu den Äquipotentiallinien verlaufenden
Feldlinien sind in der w-Ebene durch die Geraden u = const, in der z-Ebene durch die Hyperbeln
x2 — y2 = const bestimmt.
Das Potential ist durch

(3)0 = const v = const • 2xy

gegeben. Daraus erhält man die Feldstärke

= —2 const y ,  &y = —2 const x .

Die elektrische Feldstärke ist somit am kleinsten in der Umgebung der (inneren) Ecke. Das geht
auch aus

hervor.
Als Dichte der Oberflächenladung erhält man auf dem vertikalen Schenkel

n(2/) = - 2e0 const i/, (6)

auf dem horizontalen

— — 2e0 const x .

Hieraus ergibt sich für die gesamte Ladung Q

—2ejb const ( f y dy f x d = —£ob const l2 = Q,
\o o /

woraus

const = -----—
eQbl2

(7)

(8)

folgt. Im vorliegenden Fall erhält man

10~9 V m~2

8,85 • IO"12 • 0,1 • 0,04
= — 2,825 • 10 4 V m -2 .const =
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Für die Feldstärke ergibt sich damit in der Mitte auf dem horizontalen Schenkel

= 0 ,  &y = 5,65 • 103 V m-1 ,

dagegen in der Mitte auf dem vertikalen Schenkel

= 5,65 • 103 V m- 1 , = 0 .

2.2.3. Abbildung einer Kreisfläche auf einen Streifen — Elektrisches Feld
zwischen zwei Zylinderhalbschalen

Zwei durch einen schmalen Spalt unterbrochene Zylinderhalbschalen tragen entgegengesetzte
Ladungen. Bestimmen Sie das elektrische Feld und die Äquipotentiallinien.

Lösung
Wir bilden das Innere des Kreises vom Radius R in der z-Ebene auf die obere Halbebene der
C-Ebene ab. Das geschieht durch die konforme Abbildung

. z R £ — iQ = — i -------- bzw. z = R ------ . (1)
z -  R f 4 - i  v 7

Zum Beweis setzt man

C = Ifl eiv' (2)
und berechnet

IC — i| = V(|CI eiv - i) (ICI e-iv + i) = ]/|CP + 1 - 2|C|sinv>, (3)

IC + i| = V(|C| e* + i) (|CI e-iv + i) = ]/|C| 2 + 1 + 2 |C| s iny.  (4)
Die Forderung |z| < R führt auf

R l £~  *1 = R VlCI 2 + l -2 |C | smy  < R
ic + i| • 1/|C|2 H- 1 4- 2 ICI siny

Diese Bedingung ist für den Wertebereich 0 < ip < +k ,  also für die obere Halbebene der kom-
plexen Variablen £ erfüllt. Durch (1) wird der Kreis vom Radius R in der z-Ebene auf die
reelle Achse der C-Ebene abgebildet.
Wie man aus (1) erkennt, wird der Punkt z = R in den unendlich fernen Punkt der f -Ebene,
der Punkt z = — R in den Nullpunkt der f-Ebene transformiert, z = iR entspricht £ = — 1 ,
z = —iR dagegen £ = +1 .  Die untere Hälfte des Kreises in der z-Ebene wird daher auf den
positiven Teil der reellen Achse in der £-Ebene, der obere Halbkreis auf den negativen Teil der
reellen Achse abgebildet.
In der w-Ebene liege ein homogenes Feld vor. Die Transformation

w = In £ (5)
mit

w = u + iv,  £ = |£| eiv> (5a)

vermittelt eine Abbildung des Streifens

0 < V < K
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auf die obere £-Halbebene. Dem linken Teil der reellen Geraden in der komplexen £-Ebene, d.  h.
dem Wert ip = entspricht in der w-Ebene die obere Gerade v = k (mod 2k) , dem rechten Teil,
d. h. ip = 0, die untere Gerade v = 0 (vgl. Bild 2.13).

-1 0 +?
Ebene

w-Ebene

Bild 2.13. Konforme Abbildung zur Berechnung des Feldes
zwischen zwei zylindrischen Halbschalen

(5) und (1) zusammengefaßt, ergibt als Gleichung zur Transformation der Kreis- auf die Streifen -
fläche

z Rw — In ----------
i(z - R) (6)

Setzt man hierin z = x iy , w = u + iv und trennt den Real- vom Imaginärteil, so folgt nach
den Gesetzen über das Logarithmieren komplexer Größen

u = J_ Jn (x2 + y2 -R 2 ) 2 + ±y2R 2 
(7 )

2 [(x - R) 2 + y2 ] 2 9

x2 4- y2 — R 2 . . .v = arctan ------- --------- . (8)
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Wir legen die Äquipotentiallinien durch v = vQ fest. Für diese ergibt sich aus (8), wenn man dort
das Argument gleich einer Konstanten C setzt,

x2 + (y - CT?) 2 = jR2 (1 + C2 ) . (9)

Für y = 0 erhält man aus (9) x = d: -R • Als Äquipotentiallinien ergeben sich somit Kreise, deren
Mittelpunkte auf der /-Achse liegen. Sie gehen alle durch die beiden Punkte (4-jR; 0) und (— R;  0),
die die positive von der negativen Ladung trennen (vgl. Bild 2.13) und von der Betrachtung
auszuschließen sind. Die konforme Abbildung (6) ergibt also Äquipotentiallinien, die gerade dem
vorgegebenen Problem entsprechen.
Als Feldlinien erhalten wir aus (7) die durch

(x + R)2 + y2 = C'[(sc — R) 2 + y2 ] (10)

bestimmten Kurven. Umgeformt folgt

(x + R + y2 = 4Ä 2 ------—
i - c/ a ( i - cy ( i i )

Die Feldlinien sind Kreise, deren Mittelpunkte auf der x- Achse liegen. Der Spezialfall C = 1
ergibt eine Gerade durch den Schwerpunkt der Halbkreise. Für x = R ,  y = 0 entarten die Feld-
linienkreise in einen Punkt.

2.2.4. Das Feld einer aus der Ebene herausspringenden Kante

Aus einer Ebene ragt eine spitze Kante der Länge l heraus, die eine elektrische Ladung trägt.
Berechnen Sie das Feld in der Umgebung dieser Kante.

Lösung

Wir charakterisieren die Ebene mit der herausragenden Kante durch die reelle Gerade in der
z-Ebene, aus der im Koordinatenanfangspunkt eine Spitze der Länge l herausragt (s. Bild 2.14).
Die z-Ebene bilden wir mit Hilfe des CHRiSTOFFEL-ScHWARZ-Integrals auf die J-Ebene ab, wobei
die Gerade mit der herausragenden Spitze in die reelle Achse der J-Ebene überführt wird. Dabei

B D

z- Ebene

71

Bild 2.14. Konforme Abbildung zur Berech-
nung des Feldes einer aus der Ebene heraus-
ragenden spitzen KanteB' c > D'

-1 *7
J- Ebene



108 2. Statische elektrische und magnetische Felder

lassen wir die Punkte B und D in der z-Ebene zusammenfallen, rechnen also mit einer unendlich
dünnen Spitze. Es ergeben sich daher die Winkel

n K 1 1 \
ßß = V (ExponentZ \ £ Zi f
ßc = 2tv (Exponent 2 — 1 = 1),

o . 1 1 \
ßß= — Exponent — - 1 = .Zi \ Z* ZI

Den Punkt C legen wir in der J- Ebene auf den Koordinatenanfangspunkt. Die Punkte B und D
können auch in der J-Ebene zueinander symmetrisch gelegt werden ; sie erhalten hier die reelen
Koordinaten —1 und +1. Nach dem Satz von Christoffel-Schwarz (2.2./15) erhält man damit
folgende Beziehung für die Abbildung der z-Ebene auf die J-Ebene

C

z = z( = a /  ds + B (1)
0

bzw.
c

z=  A f * ds + B = A m + B .  (2)
J V«2 - 1
0

Dem Wert z = il entspricht der Wert J = 0 .  Wir setzen diese Beziehung in (2) ein und erhalten
B = iZ. Ferner soll z = 0 auf J = ±1  führen. Daraus ergibt sich Ä = Z. Somit erhalten wir
endgültig für die konforme Abbildung der z-Ebene auf die J-Ebene

_____ /T2
z = l VC2 — 1 bzw. C = 1 /— + 1 • (3)

|/ Z 2

Schreiben wir J = J 4- w] , so können wir die Äquipotentiallinien durch festlegen und
damit die gestellte Aufgabe auf den Plattenkondensator ohne Randstörungen zurückführen.
Für das Potential erhält man daraus

* - c ’ - ¥ • «1

Die Komponenten der Feldstärke werden gleich

C 1/2 x l 2 4- x2 4- y2 — V(Z2 4- z 2 4- y2 ) 2 — 4l2y2 
fK \

- -  -------------- - -  i
21 ic2 4- y2 ) 2 — 4Z2y2 — (Z2 4- a;2 — 1/2 )] [(Z2 4- re2 4- y2 ) 2 — 4Z2?/2]

g y ___________l 2 — x2 — y2 — ]/(l2 4- ff2 + y2 ) 2 — M2y2 ___________
V 21 ]/[l/(Z2 -Px2 + y2 ) 2 - 4l2y2 - (l2 + x2 - y2 )] [(Z 2 4- 2 + y2 ) 2 - 4Z2?/2

Im Grenzfall y Z , d. h. weit entfernt von der herausragenden Kante, ergibt sich aus (4) das
Potential des ungestörten homogenen Feldes

= TV '  (7 )



2.2. Berechnung ebener statischer Felder durch konforme Abbildung 109

Für die Komponenten der Feldstärke folgt aus (5) und (6) ebenso wie aus (7)

C
x)y>l = 0 ,  (&y)y>l = = const, (8)

wie beim ungestörten homogenen Feld.
Um das Feld in der Umgebung der Spitze zu untersuchen, setzt man x = Ax ,  y = 1 Ay und
nimmt Ax< l ,  Ay l an. Damit ergibt sich aus (4)

(0)w, x~o = ■£ Uy + , (9)

aus (5) und (6) ebenso wie aus (9)

= ----- (10)
2 yl(Ax2 + Ay2 ) ( (Ax2 + Ay2 + Ay)

= ------ C( ±Ay* + 4y) (11)
2 yl(Ax2 4- Ay2 ) ( Ax2 + Ay2 + Ay)

Das Feld nimmt hiernach in der Umgebung der Spitze sehr große Werte an; unmittelbar an der
Spitze wächst es über alle Grenzen (Feldkonzentration durch Spitzenwirkung).

2.2.5.* Kapazität zweier Zylinderschalen

Eine Koaxialleitung besitzt einen zylindrischen Außenleiter mit dem Innendurchmesser
21? = 20 mm . Der Durchmesser des Innenleiters werde mit 27?j bezeichnet. Es sei R Y R .
Durch zwei zueinander symmetrisch angeordnete Schlitze mit dem Öffnungswinkel 2g?0 = 2°
(vgl. Bild 2.15) wird die Wandung des Außenzylinders in zwei Zylinderschalen geteilt, die auf
entgegengesetztes Potential +0 O und — 0 O gebracht werden, während der Innenzylinder das
Potential Null besitzt. Berechnen Sie die Kapazität des aus den beiden Schalen gebildeten
Kondensators für die Zylinderlänge l = 1 m .  Die Wandstärke der Zylinderschalen sei zu ver-
nachlässigen. Welche Feldstärke ergibt sich an den äußersten Schlitzkanten?

Lösung

Das elektrostatische Problem wird durch eine Folge konformer Abbildungen gelöst.
Durch die erste Transformation

Q = In z (1)

wird jeder der beiden Halbkreise auf ein Vieleck abgebildet (vgl. Bild 2.15a und Bild 2.15b).
Die zweite Transformation

o - A f = + B, (2)
J y( s - a i ) («  + l ) s ( s - a 3 )o
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z -Ebene

Bild 2.15 a

Q-  Ebene

Bild 2.15 b

g-Ebene

0302

0=0 W_=n W n
dn u dn u Bild 2.15 c

w- Ebene

Bild 2.15 d

Bild 2.15. Konforme Abbildung zur Berechnung des Feldes in der Koaxialleitung
mit geschlitztem Außenleiter
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bildet das Innere des von der rechten Halbschale erzeugten Vielecks in der ß-Ebene auf die
obere Halbebene der komplexen Variablen £ ab (vgl. Bild 2.15c). Die dritte Transformation

C

w = Ä 3 ■ ---- + B3
J + 1 )  «(* - a 3 )

0

ds
(3)

bildet die obere Halbebene der Variablen £ auf das Innere eines Rechtecks in der w-Ebene ab
und führt damit das vorgelegte Problem auf das homogene Feld des Plattenkondensators zurück
(Bild 2.15 d). Dabei ist wesentlich, daß ausgezeichnete Äquipotentiallinien (0 = 0 ,  0 = 0 O )

/d0 \und ausgezeichnete Feldlinien I — = 0 ) in der z-Ebene diese Eigenschaft auch in der w-Ebene
\ 8n /

besitzen. Aus (1) und (2) ergeben sich die folgenden Beziehungen:

ai

i t» . . a C (<$ — a 2 ) . -r»In + i — — Ä 2 I + B 2 , (4)
2 J V(« — a i) (« + 1 )  «(« - a3 )

0

In = Ä 2 C (S ~ d * + B t , (5)
J V(<8 - «1) (S + 1 )  5(5 - a 3 )

0

l nR  = B 2 , (6)

In S + i (2L _ ,,0 \ = a 2 f (s — a3)ds + (7)
\ 2 / J /(« — (« + 1) s(s — a 3)

o
a3

in Ä = A f ( s -a 3 )dS ------- + (8)
J V(« - «1) (« + 1) «(s - ®ä)

0

Wir setzen (6) in die übrigen Gleichungen ein und formen auf reelle Ausdrücke um. Dabei ist

cq 1 0 (Z,
2 a>3

zu berücksichtigen. Es folgt zunächst aus (5)

0
________(q2 — s) ds ________

]/(s — « ! ) («+  1) (-«) (a3 - s)
-1

damit aus (4)

-1
(a2 — 5) ds

]/(s — aj ( -«  — 1) (-s) (a3 — s)

(9)

(10)
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(7) und (8) ergeben
0,2

7C A— ~(pQ =A 2
r ------- (q )da---------- . (n )

J /(« - ®i) (« + 1 )  «(« 3 - «)
0

O3
7V A

T’o — 2

z a

r (s - a 2 ) da __ (12 )

J V(s - <h) (s + 1 )  «(“ 3 - s)
■2

Zur Bestimmung der vier Unbekannten Ä 2 , a 2 , a 3 liegen somit vier Gleichungen vor. Ihre
Auswertung führt auf vollständige elliptische Integrale erster und zweiter Gattung.
Im Grenzfall R { 0 entnimmt man aus Bild 2.15a, daß die Punkte B und C zusammenfallen.
Der Parameter a± wird dann gleich —1. Damit wächst der Ausdruck (9) über alle Grenzen, wie
es für Bt -> 0 sein muß. Setzt man wegen der Beschränkung auf kleine Schlitzwinkel das Be-
stehen der Ungleichungen

3 1 11 (13)

voraus, so lassen sich die Integrale (10) bis (12) genähert elementar auswerten. (10) ergibt für
= —1 — A mit A 1

-1

f ------ -2* ------------ As =
J V(* - «1) ( -5  - 1 )  »3

di

(11) und (12) liefern

dz
1 C «2 - « 2 / _  ____4 .„_  ,/- , / -  \ ”«2 — 4 Va 2—— 1 ----- ——— d.<$ — —— (ct2 arctan yct,2 — yct2 ) — " ~ - ,

(«+1)Z«  V« 3 V« 3
0

03 _
C (a - <za ) da = 4 i / « s

J ]/s3 (a3 — s) y a s
O2

Daraus erhält man das Gleichungssystem

(10a)

(Ha)

(12a)

2 a 2 2 _ | (p =
]/a 3 ]/a 3

(14)

Seine Lösung unter der Voraussetzung (13) lautet

4
a 2 — ö

<?o2

16
do — ’ ’

?0 4

___1_
2 “ 2

(15)

Bezeichnet man in der w-Ebene den Abstand zwischen den beiden Äquipotentiallinien 0 = 0
und 0 = 0 O mit a, dagegen die Länge einer Äquipotentiallinie mit b (vgl. Bild 2.15d), so folgen
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aus (2) und (3) die Beziehungen

Ä 3 f , dg : + B 3 = i&, (16)
J V( 5 + 1) S (S a 3)

0
-1

Ä 3 f , + b 3 = 0, (17)

o

B 3 = a (18), A, f d * — +B 3 = i6. (19)
J ]/(s + 1) s(s - a 3)
0

Durch Umrechnung auf die elliptischen Normalintegrale ergibt sieh1 )

. -------------. = - - . K(k) . (20)
]/(s + 1) «(« — a3 ) y«3 + 1

Weiter erhält man

f . -5- __= = — - - - -  K(k'). (21)
J V-(s + 1) s(s - a3 ) l/a3 + l

Hierin bedeutet K das vollständige elliptische Integral erster Gattung. Der Modul des ellip-
tischen Integrals ist gleich

(22)

ferner ist

*' = yi _ *2 = i / _  — (23)
|/ a3 1

Wir setzen (20) und (21) zusammen mit (18) in die Gleichungen (16) und (17) ein und erhalten
daraus das Gleichungssystem

o a o A3 • K(k) = a (24) , ■ 3 K(k') = b . (25)
]/u 3 1 ]/a3 4- 1

Die Auswertung der Gleichung (19) führt zu keiner neuen Gleichung für die drei Unbekannten
a, b und A 3 . Man kann daher eine dieser Größen, z. B. a, frei wählen, womit die anderen beiden
durch (24) und (25) bestimmt sind.

x ) vgl. [3]

8 Schilling, Felder
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Für die Lösung des Problems, die Kapazität des aus den beiden Schalen gebildeten Kondensators
zu bestimmen, ist es jedoch nur erforderlich, das Verhältnis 5/a zu kennen. Die Folge der kon-
formen Abbildungen (1) bis (3) überführt das Feld zwischen den Halbschalen in das Feld des
Plattenkondensators mit den Abmessungen bl und dem Abstand a. Nach (2.1.1./9) folgt für die
Kapazität des Plattenkondensators

c = — = (26)
d a

Hierin (24) und (25) eingesetzt, ergibt unter Annahme von £ = £0 für die Kapazität der entgegen-
gesetzt geladenen Zylinderhalbschalen

#3
3 1

1
«3 4~ 1

Im vorliegenden Fall ist nach (15)

Damit folgt nach (22) und (23)

fc=l/ --------------- =7 ,6  -IO-5 , = yi - jfc2 = 1 - 2,9 • IO“9 .
1,7 • 108 + 1

Zur Berechnung der vollständigen elliptischen Integrale wendet man im vorliegenden Fall am
zweckmäßigsten die Formeln

K(fc)=2S (l + -+ . . . j  (28)

und

K(k') = In — (29)
k

für kleine Werte k an. Es ergibt sich mit hinreichender Genauigkeit

TT 4:
A(7,6 • IO-5 ) = — , A(1 - 2,9 • IO-5 ) = In ----------- = 10,87.K 7 2 7,6 • IO"9

Somit folgt für die gesuchte Kapazität der gesamten Anordnung

8,85 • 10- 12 • 10,87 -2 -1
3,14

C = F = 6,12 • IO“11 F .

Die Feldstärke in der z-Ebene ergibt sich durch Berechnung des Differentialquotienten

dw | I dw d£ dß
dz df dß dz

a 3 ]/(c - aj + 1) cc - q3 ) j_ = 3 Vc - «i 1
)/(£ + 1) J(£ — a s ) r .2 (C r



1152.2. Berechnung ebener statischer Felder durch konforme Abbildung

An der äußersten Schlitzkante 72 ist £ = a 2 • Die Feldstärke wächst also an der scharfen Kante
über alle Grenzen (Spitzenwirkung).

A Aufgaben

A 2.2.1. Welchem elektrostatischen Problem entspricht die konforme Abbildung

w — — ?

A 2.2.2.
z

Untersuchen Sie die konforme Abbildung
w —

A 2.2.3. Untersuchen Sie die konforme Abbildung
z = c cosh w .

A 2.2.4. Welche geometrischen Transformationen werden durch die konformen Abbildungen

a )w  = ±

auf den Einheitskreis in der z-Ebene bewirkt; d. h., welches Bild liefert der Einheits-
kreis in der z-Ebene bei der Abbildung auf die w-Ebene ?

A 2.2.5. Welche geometrische Transformation wird durch die konforme Abbildung

w — z -|— —
z

a) auf zum Einheitskreis konzentrische Kreise,
b) auf Gerade durch den Koordinatenanfangspunkt in der z-Ebene bewirkt?

A 2.2.6. Untersuchen Sie die Eigenschaften der konformen Abbildung
c2

w = z H -----  .
z

0 --------------{

_______________ ß Bild 2.16. Platte über unbegrenzter Ebene

Welche Transformationen ergeben sich für Kreise um den Koordinatenanfangs-
punkt sowie für Gerade durch den Ursprungspunkt?

A 2.2.7. Geben Sie die konforme Abbildung an, um nach Bild 2.16 das Feld einer Kon-
densatorplatte zu berechnen, die sich über gjjner unbegrenzten Ebene befindet (Ver-
fahren zur Berechnung der Randstörungeh eines Plattenkondensators).

A 2.2.8.* Welche konformen Abbildungen sind durchzuführen, um das elektrische Feld
zwischen den Schalen eines geschlitzten zylindrischen Leiters mit endlicher Wand-
stärke zu berechnen? Die beiden Halbschalen befinden sich auf entgegengesetztem
Potential. Der Innenleiter hat das Potential Null. Stellen Sie die Gleichungen zur
Bestimmung der Parameter auf.

A 2.2.9.* In der zylindrischen Koaxialleitung mit geschlitztem Außenleiter befinden sich
die beiden Halbschalen des Außenleiters auf dem Potential +0 O , der Innenleiter
auf dem Potential — 0 O . Welche konformen Abbildungen sind zur Berechnung
der Kapazität durchzuführen?

8*
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2.3. Magnetische Eigenschaften der Stoffe

E Einführung

Die Magnetisierung 501 eines Stoffes ist nach (1.1. /23) durch die Beziehung

33 = + 9K (1)

definiert. Zwischen der Magnetisierung und der magnetischen Feldstärke § be-
steht nach (1) der Zusammenhang

— 0 ) § = • (2)

Darin bezeichnet

die magnetische Suszeptibilität.
Als Suszeptibilität je Kilomol definiert man die Größe

die sich aus den atomaren Eigenschaften ableiten läßt. M gibt darin die Masse eines
Kilomols, q die Massendichte an.
Ein kleiner Körper vom Volumen Z1 V mit der Magnetisierung 2JI in jedem Punkte
stellt einen Magneten mit dem magnetischen Moment

Am m =M4V (3)
dar.

Beispiel 6
Die Zelle eines magnetischen Informationsspeichers habe das Volumen AV = 10~16 m3 . Der
binäre Grundzustand 0 sei durch Sättigungsmagnetisierung in Richtung der z-Achse gekenn-
zeichnet. Die Sättigungsmagnetisierung sei gleich Jf s = 1,2 V sm -2 . Bei Speicherung der In-
formation 0 stellt die Zelle daher einep Magneten mit dem Moment

= 1,2 • 10- 16 V s m

dar, das die Richtung der z-Achse hat.
Für diamagnetische Stoffe ist % < 0.  Diese haben ursprünglich kein magnetisches
Moment. Es wird erst durch das äußere Feld induziert, wobei die LENZsche Regel
gilt (vgl. 1.4.1.). Der induzierte elektrische Strom, dessen Träger die Elektronen
sind, ist daher dem Strom der Feldspule entgegengerichtet. Ebenso ist das magne-
tische Moment der Elementarmagnete dem Moment der Feldspule entgegengerichtet.
In paramagnetischen Stoffen haben die Moleküle auch ohne das äußere Feld magne-
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tische Momente. Die magnetischen Momente sind statistisch über den gesamten
Körper verteilt, so daß dieser als Ganzes kein magnetisches Moment zeigt.
Im Magnetfeld erhalten die Achsen der molekularen Momente eine Vorzugsrichtung.
Nur ein schwach überwiegender Teil der Moleküle besitzt eine magnetische Kom-
ponente in der Vorzugsrichtung, während bei einem nur wenig kleineren Teil diese
Komponente in die entgegengesetzte Richtung weist. Infolgedessen ist die Suszep-
tibilität bei paramagnetischen Stoffen nur wenig größer als Null (vgl. Tafel 3).
Als Ursache dafür, daß ein äußeres Feld die vollständige Gleichrichtung der Elemen-
tarmagnete nicht erzwingt, hat man die Wärmebewegung der Moleküle anzusehen.
Infolgedessen ist die magnetische Suszeptibilität k temperaturabhängig. Für nicht
zu tiefe Temperaturen gilt das Curiesche Gesetz

Bei den ferromagnetischen Stoffen sind Permeabilität und Suszeptibilität auch in
grober Näherung nicht mehr als Materialkonstanten aufzufassen. Schreibt man den
Zusammenhang zwischen den Feldgrößen in den Formen (1) und (2), so sind /jl und h
nicht nur von der Stärke des äußeren Feldes, sondern auch von der Vorgeschichte
der Magnetisierung abhängig.

Bild 2.17. Hysteresisschleife. Hc Koerzitivfeld-
stärke, Remanenz

Das Verhalten ferromagnetischer Stoffe wird durch die Hysteresisschleife 33 = 33(§)
oder auch = 90£(§) dargestellt (vgl. Bild 2.17). Steigert man, ausgehend vom
unmagnetischen Zustand, die Feldstärke <p, so nimmt die Magnetisierung W bzw.
die magnetische Flußdichte 33 zunächst stärker, dann schwächer zu, bis die Sätti-
gungsmagnetisierung erreicht ist. Fällt § danach wieder, so nimmt die Magnetisie-
rung langsamer ab, als sie aufgebaut wurde. Für § = 0 ist noch immer eine be-
stimmte Magnetisierung 90?r = 33r vorhanden, die als Remanenz bezeichnet wird.
Der ferromagnetische Stoff ist also dann auch ohne äußeres Feld magnetisch. Wird
jetzt ein magnetisches Feld in der entgegengesetzten Richtung aufgebaut, so nimmt
die Magnetisierung weiter ab, bis sie den Wert Null erreicht. Die hierzu gehörige
Größe der Feldstärke H bezeichnet man als Koerzitivfeldstärke Hc . Mit der weiteren
Vergrößerung der Feldstärke in der entgegengesetzten Richtung wird auch die
Magnetisierung des Körpers in der entgegengesetzten Richtung aufgebaut und er-
reicht schließlich symmetrisch zur ursprünglichen Sättigungsmagnetisierung ihren
Endwert. Durchläuft § nun eine Folge von entgegengesetzt gleich großen Endwerten,
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so stellt sich auch für die Magnetisierung eine zyklische Wertefolge ein. Die gra-
phische Darstellung dieses Verhaltens wird als äußerste Hysteresisschleife be-
zeichnet.
Während die Sättigungsmagnetisierung eine Materialkonstante ist, sind die Koerzitiv-
feldstärke und die Remanenz innerhalb gewisser Grenzen auch noch von anderen
Größen, z. B. der inneren Spannung, der Schichtstärke, der geometrischen Form,
abhängig.
Die Größe

B .
# ( la)

ist bei ferromagnetischen Stoffen nicht konstant. Sie ist eine mehrdeutige Funktion
der magnetischen Feldstärke bzw. der magnetischen Flußdichte. Betrachtet man
nur die äußerste Hysteresisschleife aller möglichen Kurven, so gehören zu jedem
Wert H zwei Werte B und damit zwei Werte //.
Neben der gemäß (1) bzw. ( la)  definierten gewöhnlichen Permeabilität bezeichnet
man die Größe

dB
= dH (5)

als differentielle Permeabilität. Sie ist für alle Wechselvorgänge von Interesse.
Die ferromagnetischen Eigenschaften treten nur unterhalb einer bestimmten Tem-
peratur, dem Curie-Punkt (9, auf. Oberhalb ihres CuRiE-Punktes verhalten sich ferro-
magnetische Stoffe paramagnetisch. Ihre Suszeptibilität wird dann durch das Curie-
Weißsche Gesetz

C
~ t - e (6)

bestimmt. Paramagnetische Substanzen unterscheiden sich hiernach von den ferro-
magnetischen lediglich dadurch, daß ihr Curie -Punkt am absoluten Nullpunkt liegt.
Der Curie -Punkt kennzeichnet dabei die Temperatur, oberhalb der das äußere Feld
nur ein geringfügiges Ausrichten der Elementarmagnete gegen die Wärmebewegung
erzwingen kann.
Das starke Anwachsen der magnetischen Suszeptibilität nach Unterschreiten der
CuRiE-Temperatur zeigt, daß bei der Magnetisierung nicht einzelne freibewegliche
Magnete ausgerichtet werden, sondern daß es sich um eine Gruppenerscheinung
handelt. Jede dieser Gruppen, die als WEisssche Bezirke oder auch als Domänen
bezeichnet werden, besteht aus in sich gleichgerichteten Elementarmagneten. In
einem WEissschen Bezirk ist das ferromagnetische Material auch bei Abwesenheit
äußerer Felder bis zur Sättigung magnetisiert, d. h., sämtliche Elementarmagnete
des Bezirks sind gleichgerichtet.
Antiferromagnetische Stoffe, wie MnO, MnF2 , (%-Fe2 O 3 , bestehen aus Ionen. Sie sind
derart angeordnet, daß benachbarte lonenpaare antiparallele Spinrichtungen haben.
Man kann sich daher das Kristallgitter aus zwei ferromagnetischen Untergittern
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zusammengesetzt denken, die entgegengesetzte Spins aufweisen. Diese Stoffe sind
nach außen hin diamagnetisch. Nach Überschreiten einer der Curie -Temperatur
entsprechenden Temperatur zeigen sie wie ferromagnetische Substanzen oberhalb
des Curie -Punktes paramagnetisches Verhalten.
Bei ferrimagneti sehen Substanzen oder Ferriten sind die Untergitter nicht gleich
besetzt. Daher überwiegt eine Magnetisierungsrichtung. Derartige Stoffe, z. B.
Eisen-Nickel-, Manganoxid, zeigen daher ferromagnetische Eigenschaften, jedoch
ist ihre Sättigungsmagnetisierung kleiner, als es dem Gesamtmoment ihrer Ionen
entspricht.

p Probleme

2.3.1. Steighöhenmethode zur Bestimmung der Suszeptibilität
Zwischen die Polschuhe eines Elektromagneten wird ein Schenkel eines mit flüssigem Sauerstoff
gefüllten Rohres gebracht (vgl. Bild 2.18). Die Steighöhe in diesem Schenkel beträgt h = 2,0 mm.

Bild 2.18. Steighöhenmethode

Das Magnetfeld zwischen den Polschuhen hat die Stärke H = 105 A m-1 . Berechnen Sie daraus
die magnetische Suszeptibilität u des flüssigen Sauerstoffes (Dichte q = 1,118 g cm-3 ).
Lösung
Die Energiedichte des Magnetfeldes im leeren Raum ist gleich

im Raum der Permeabilität dagegen

«’M = Y

Steigt die Flüssigkeit um dh, so ist demzufolge die Energie

dJFm = V (i“ — ft>) (1)

aufzuwenden. Steht die Flüssigkeit bereits auf der Höhe h und soll um dA weiter angehoben
werden, so ist dazu die potentielle Energie

d TTpot = mg äh = r hgg äh (2)
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erforderlich. Das Gleichsetzen dieser beiden Ausdrücke liefert

V G“ - .“o) (3)

bzw. als Steighöhe

A = (iU - ) $ 2 
= * 2. (4)

Für die Suszeptibilität folgt damit die Gleichung

(5)

Mit den vorgegebenen Zahlen erhalten wir

2 • 1,118 • 103 • 9,81 • 2 • IO"3

k = ------------------ = 0,0035.
4k • IO-7 • 1010

2.3.2. Magnetisierungsenergie
Eine Speicherzelle mit dem Volumen F = 10-16 m3 wird durch ein äußeres Feld ummagnetisiert
und anschließend durch einen entgegengerichteten Impuls wieder in den Ausgangszustand ge-
bracht. Dabei wird die äußerste Hysteresisschleife einmal durchlaufen (vgl. Bild 2.17). Berechnen
Sie die Energie, die hierbei irreversibel aufzuwenden ist. Die Hysteresisschleife ist durch ein
Rechteck zu nähern, dessen Ausdehnung durch die Koerzitivfeldstärke und die Sättigungs-
magnetisierung bestimmt wird. Als Sättigungsmagnetisierung ist Jf s = 2,0 Vs m~2 , als Koerzitiv-
feldstärke Hc = 5 • 104 A m-1 einzusetzen.

Lösung
Nach (1.4./21) ändert sich die Energiedichte bei der Magnetisierung um

dwm = § -d£ .  (1)

Bei einmaligem Durchlaufen der Hysteresisschleife erhält man daraus für die aufzuwendende
Energie

m = F § -dS3 .  (la)

Gemäß (2.3./1) schreiben wir

d 8 = ju0 d§ + d . (2)

Damit folgt aus (1)

•dSB= /A) £ .d$  + (3)

Das erste Umlaufintegral verschwindet. Das zweite ist gleich der von der Hysteresisschleife ein-
geschlossenen Fläche :

0 dSR = (ß § dSS = (4)
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Bei Annäherung durch das Rechteck aus Sättigungsmagnetisierung und Koerzitivfeldstärke er-
gibt sich aus (3)

7 (ß§ .d23=P(ß§-d3J l  = IO“16 • 2 • 2,0 • 2 • 5 • 104 J = 4 • IO-11 J .

2.3.3. Richardson— Einstein— de-Haas-Effekt (Gyromagnetischer Effekt)
Nach dem Modell der klassischen Physik ist der Magnetismus auf Elementarströme, d. h. auf
kreisende Elektronen, zurückzuführen. Bei der Magnetisierung werden diese gleichgerichtet. Die
Magnetisierung oder Entmagnetisierung eines Stoffes muß demzufolge mit einem mechanischen
Drehimpuls verknüpft sein. Berechnen Sie diesen nach der klassischen Atomtheorie.

Lösung
Ein Elektron e~ umfahre mit der Geschwindigkeit v eine Kreisbahn vom Radius r. Das entspricht
dem Strom

(vgl. Bild 2.19). Das magnetische Moment dieses Kreisstroms ist gleich

m = ~ öx r ,  (2)Zl

wobei den Kreisflächenvektor angibt. Durch das kreisende Elektron (Masse m e ) entsteht der
Drehimpuls

l = m e r x ö .  (3)

Das magnetische Moment und der erzeugte Drehimpuls sind somit durch die Formel

m l (4)2we

miteinander verknüpft.
Zur experimentellen Messung (vgl. Bild 2.20) hängt man einen Eisenstab in eine Spule und
schickt durch diese den aperiodischen Entladungsstrom eines Kondensators. Nach der Entladung
geht die Magnetisierung 9JR nicht wieder auf Null zurück. Infolge der Remanenz bleiben im
Mittel N Bahnvektoren der Elektronenbahnen in der Magnetisierungsrichtung. Der Stab behält
somit die Magnetisierung

= Nm. (5)
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Die Änderung des Drehimpulses ist gleich

dß  = NI .

Bild 2.20. Nachweis des gyromagnetischen Effektes

Sie kann aus der erzeugten Drehschwingung des Eisenstabes, in die die mechanischen Größen
der Anordnung eingehen, gemessen werden. Andererseits kann die remanente Magnetisierung
experimentell bestimmt werden. Aus dem Verhältnis beider Meßwerte folgt nach (5) und (6),
wenn man (3) und (4) berücksichtigt,

I rI = 2V|m| =
|dl| N |l| 2m' ' ’

Einsetzen der Zahlenwerte ergibt

| R | 1,257 • 10- 6 • 1,60 • 1019 * -i , < A ,J— — = ---- ----------------- ---------- A“1 m s—1 = —1,105 • 105 A“1 ms“1 .
|dl| 2 • 9,1 • 10- 31

Experimentell erhält man dagegen

= = _2,21 • 105 A- 1 m s- 1 .
|dl |  m

Aus der größenordnungsmäßigen und qualitativen Übereinstimmung beider Ergebnisse folgt,
daß die Elementarmagnete an Drehimpülse gebunden sind und nicht auf elementare Magnet-
stäbchen im Atom zurückgehen. Andererseits zeigt die Abweichung von der klassischen Theorie,
daß weder das elementare magnetische Moment noch der Drehimpuls auf umlaufende Bahn-
elektronen zurückzuführen sind.
Wie in der Quantentheorie aus optischen Untersuchungen geschlossen wird, haben die Elektronen
einen Spin. Sie vollführen eine Kreiselbewegung um die eigene Achse. Hierdurch wird ihnen ein
bestimmtes magnetisches Moment und ein bestimmter Drehimpuls erteilt. Das Verhältnis dieser
quantentheoretisch zu ermittelnden Größen wird durch die experimentellen Messungen bestätigt.

A Aufgaben

Wie groß ist die Suszeptibilität einer Flüssigkeit, wenn ein Magnetfeld der Stärke
H = 4 • 105 A m-1 einen Höhenunterschied im U-Rohr von h = 5,5 mm erzeugt?
Die Dichte der Substanz ist q = 1,1 g cm-3 .

A 2.3.1.
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A 2.3.2. Eine diamagnetische Flüssigkeit der Suszeptibilität k = — 5 • 10-6 wird in ein
U-Rohr gebracht. Welche Feldstärke ist erforderlich, um einen Höhenunterschied
von h = 1,0 mm zu erzielen, wenn die Dichte der Flüssigkeit q = 1,4 g cm-3 be-
trägt?

A 2.3.3. Stellen Sie die Formel für die Steighöhe in einem U-Rohr bei Anwesenheit eines
elektrischen Feldes auf.

A 2.3.4. Eine Legierung hat bei 18 °C die magnetische Suszeptibilität k = 3,3 • 10-4 . Be-
rechnen Sie nach dem CuRiEschen Gesetz die Suszeptibilität für — 196 °C (Curie-
Temperatur 0 = OK).

A 2.3.5. Berechnen Sie aus der Sättigungsmagnetisierung des Eisens das magnetische
Moment eines Atoms. Die Sättigungsmagnetisierung beträgt ATS — 2,18 Vs m-2 ,
die Dichte q = 7,8 g cm-3 , die relative Atommasse A r = 55,8.

A 2.3.6. Vergleichen Sie das magnetische Moment eines Eisenatoms mit dem BoHRschen
Magneton

4nm e

A 2.3.7. Die Hysteresisschleife für Schmiedeeisen werde durch ein Rechteck genähert, dessen
* eine Seite durch die doppelte Koerzitivfeldstärke, dessen andere Seite durch die
doppelte Sättigungsmagnetisierung bestimmt ist. Welche Energie ist für einen
Umlauf erforderlich? (Masse m = 1 kg, Dichte p = 7,8 g cm-3 , Sättigungsmagne-
tisierung = 2,1 Vs m-2 , Koerzitivfeldstärke Hc = 2,5 • 103 A m-1 .)

A 2.3.8. Der CuRiE-Punkt des Eisens liegt bei 1 043 K. Berechnen Sie die mittlere Wärme-
energie eines Teilchens nach der klassischen Statistik und bestimmen Sie die magne-
tische Feldstärke H, die zu einer so großen Energie führt, daß sie die Wärme-
energie kompensiert.

2.4. Randwertaufgaben der Magnetostatik

E Einführung

Das Verhalten der elektromagnetischen Größen im Falle des statischen Feldes wird
durch die MAXWELLschen Gleichungen (2.1. /I)

rot £ = 0 (1), rot @ = 0 (la),
div 93 = 0 (2), div © = p (2a)

und die Randbedingungen (1.4./ 12) und (1.4./ 11)

(§i — £>n) X n = 0 (3) , (®! — @n ) x n = 0 (3a)

sowie (1.4./16) und (1.4. /15)

(33 i -®n) -n  = O (4), (4a)

bestimmt. Für p = 0 , er = 0 entsprechen sich somit die Größen @ und § zur Be-
schreibung des Feldes einerseits und die Größen © und 93 zur Charakterisierung des
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Mediums andererseits. Man kann daher wegen (1) das skalare magnetische Potential W
mittels

§ = — grad ¥ (5)

einführen. Durch Übertragung der Formeln (1.2./9) ergibt sich für P die Differential-
glei chung

AV/ = 0 . (6)

Die Übertragung der Formeln (1.2./ 10) und (1.2./ 11) führt für das magnetische
Potential auf die Randbedingungen

( l )Rand — ( WRand ,

\ /Rand \ dn /Rand

(7)

(8)

Infolge der Analogie zwischen de'n elektrischen und den magnetischen Größen
können die in den Abschnitten 2.1. und 2.2. dargelegten Methoden auf die Magneto-
statik übertragen werden.
Für die magnetostatische Betrachtung sind auf Grund der technischen Anwendung
besonders homogene Felder von Interesse. Bei homogenen Feldern laufen die Feld-
linien parallel. Wird ein Ellipsoid (Grenzfälle: Kugel, Zylinder bzw. zylindrischer
Stab, Scheibe) in ein homogenes Feld gebracht, so bildet sich auch in diesem Körper
ein homogenes Feld aus. Es hat die Stärke die im allgemeinen von der Stärke
des äußeren Feldes abweicht. Der Zusammenhang zwischen den beiden Feldgrößen
wird bei homogenen Feldern in der Form

<9)

dargestellt. N wird als Entmagnetisierungsfaktor bezeichnet. Er ist von der Geo-
metrie des eingeschlossenen Ellipsoids und von der Richtung des äußeren Feldes
abhängig (vgl. 2.4.2. /18). Die Größe

Zbel = - (10)
yWa

gibt die Permeabilität des eingeschlossenen Mediums relativ zur Permeabilität des
umgebenden Mediums an.
Ist das umgebende Medium Vakuum, so kann man

/hei = /hi = “ (H)
/l 0
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* Probleme

2.4.1. Entmagnetisierungsfaktor einer homogenen Kugel
Berechnen Sie den Entmagnetisierungsfaktor N einer Kugel unter der Voraussetzung, daß die
Kugel völlig homogen ist. Wie groß ist die Feldstärke in der Kugel, wenn diese die relative
Permeabilität /z r = 75000 (Sättigungsmagnetisierung für Mo-Permalloy) besitzt. Die Außenfeld-
stärke ohne Kugel beträgt = 104 A m-1 . Das Außenmedium sei Vakuum.

Lösung
Wir übertragen die Formeln aus 2.1.5. auf das Magnetfeld und erhalten nach Formel (2.1.5./12)
für das homogene Feld in der Kugel

Ah + Ahel + 2

Dabei ist

ZW = “ (2)

die relative Permeabilität des Innenmediums gegen das Außenmedium. Zur Bestimmung des
Entmagnetisierungsfaktors N schreiben wir nach (2.4./9)

ß. = --------— -------- • (3)
1 + - ( rel — 1)

(1) umgeformt liefert

& = ------- . (4)
1 + V (/hei “ 1)ö *

Aus dem Vergleich von (3) und (4) ergibt sich

= 2..
3

Mit den vorgegebenen Zahlen erhalten wir aus (3)

. 10000 • Am-1 _ . -
|§il = ------------------------- = 0,40 Am“1 .

1 + 2- (75000 - 1)

Innerhalb der Kugel ist also nur ein schwaches Feld festzustellen.

2.4.2. Magnetfeld in einem Rotationsellipsoid

Berechnen Sie das Magnetfeld in einem Rotationsellipsoid mit den Halbachsen a0 = 60 = 4 cm ,
c0 = 10 cm. Die relative Permeabilität des Mediums gegen das Außenmedium beträgt = 125.
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Das Außenfeld verläuft parallel zur großen Achse und hat die Stärke # a = 10 A m-1 .
Lösung
Wir führen rotationselliptische Koordinaten u, v, (p ein. Sie sind mit den Cartesischen Koordinaten
x, y, z gemäß

x = c sinh u sin v cos 99 ,
y = c sinh u sin v sin 99 ,
z = c cosh u cos v

(1)

verknüpft. Die elliptische Koordinate u ist mit x, y, z durch die Gleichung

x2 + y2 | z2

c2 sinh2 u c2 cosh u 2 (la)

verbunden, u = uQ stellt nach (la) ein Rotationsellipsoid dar, für das aQ = bQ = c sinh u0 ,
c0 = c cosh uQ , c = ~]/cQ

2 — a,Q2 gilt.
Wir rechnen die Potentialgleichung 2\0 = 0 in u, v, 99 -Koordinaten um, wobei wir Beziehungen
der Form

d_
dx

d du | d dv d dcp
du dx dv dx dtp dx

benutzen. Es folgt bei Unabhängigkeit von der zyklischen Koordinate 99

— I smh u sm v — d ----- I sinh u sm v — 1=0 .  (2)
du \ du) dv \  dv /

Als Lösung dieser Gleichung für den Innenraum schreiben wir

0j = (\z = cosh u cos v . (3)
Im Außenraum gehen wir von dem Ansatz

0 a = Ca cosh u cos v + f(u) cos v (4)
aus. Das Feld im Außenraum setzt sich also aus der Überlagerung eines homogenen Feldes und
eines durch das Ellipsoid verursachten Störfeldes zusammen.
Wir setzen (4) in (2) ein und erhalten für j{u) die Differentialgleichung

— [sinh u 2 — 2 sinh u f(u) \ =0 .  (5)
du [ du J

Mit dem Ansatz
f(u) = cosh u g(u) (6)

ergibt sich aus (5)
3 sinh2 u + 1 dgr = 0

d-w2 sinh u cosh u du
Diese Gleichung hat die Lösung

A / cosh u — 1 , 2 \ , / o  .— — (ln — - - - - -—7 H -------— I + B- (8)2 \ coshw-f-1 coshw/
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Hierin kann man B = 0 setzen. Für das Potential des Außenraumes folgt

, . / .  , coshu coshu — 1 \  n0 a = A 1 1 d---------- In ------------- | cos v + cosh u cos v . (9)
\ 2 cosh u + 1 /

Ca ist als vorgegeben zu betrachten.
An der Oberfläche des Ellipsoids bestehen die Randbedingungen

0 i=0 a , = mit pt = . (10)
ön on

Die Ableitung in Richtung der Oberflächennormalen n ist identisch mit der Ableitung in Richtung
des Linienelementes ds n . Das allgemeine Linienelement ds im u, v, 99-Raum ist durch

ds 2 = die2 4- di/2 + dz 2 = (cosh2 u — cos2 v) (du2 + dv2 ) + sinh2 u sin2 v dg?2 (11)

bestimmt. Für festes v und festes 9? erhält man aus (11) als Linienelement der u-Linien

ds tt = ycosh2 u — cos2 v du. (12)

Die Übergangsbedingungen (10) ergeben damit für u = u0 das Gleichungssystem

A P— + ± In = - <7,
\cosh u0 2 cosh u0 + 1 / (13)

(14)'cosh u0

sinh2 u0

1 cosh u0 — 1 5

— In -------- ------
2 cosh u0 + 1 ?

Seine Lösung lautet

------------------------------
1 — (iUr — 1) sinh2 

jUq (1 + — cosh w0 In <30s 1 Uq-----1
\ 2 coshu0 + 1

(15)

A = cosh u0 sinh2 u0 (/z r — 1) .

Führt man die numerische Exzentrizität

CG 1£ = --- = --------— = --------
c0 c cosh u0 cosh u0

ein, (c und c0 wie in (la)), so folgt aus (15),

:1 — 8‘
1 + (Ah - 1) — T-

(17)

(18)

Wie aus (3) und (4) zu entnehmen ist, gibt das Verhältnis zwischen dem homogenen Feld
innerhalb und dem homogenen Feldanteil außerhalb des Ellipsoids an. Dafür ergibt sich nach



1292.4. Randwertaufgaben der Magnetostatik

(17) und (18)

10

Ci __________________1
c -~ i  + 124  « tp  ,„a iz

0,917 \2  0,083

= 0,066.

Dem homogenen Feld im Außenraum von 10 A m-1 entspricht im Innern des Ellipsoids ein Feld
der Stärke 0,66 A m-1 .

2.4.3. Magnetfeld in einem Kreiszylinder

Berechnen Sie das Magnetfeld in einem dünnen Kreiszylinder. Das Feld im umgebenden Medium
ist parallel zur Zylinderachse gerichtet. Welchen Wert hat der Entmagnetisierungsfaktor N 1
Lösung
Wir gehen von (2.4.2./15) und (2.4.2./16) aus. Das durch (2.4.2./1 a) für u = u0 festgelegte Ellipsoid
entartet in einen Kreiszylinder, wenn der Grenzübergang £ -> 1 bzw. u0 -> 0 durchgeführt wird.
Aus (2.4.2./18) erhält man für

Ö = 1 - e -> 0

das Verhältnis der Feldstärken außerhalb und innerhalb des Zylinders

a -  1+rf ( l „A-  2 ) .  (1>

Der natürliche Logarithmus In <5 strebt schwächer einem Grenzwert zu als jede Potenz d n . Es
folgt daher

l im£a= l .  (2)<5—>0 C-

In einem dünnen Stab gilt somit

Hi = H& . (3)

Das Innenfeld ist unabhängig vom Medium gleich dem homogenen Außenfeld. Auf Grund der 1
Gleichung (2.4./9) folgt hieraus für den Entmagnetisierungsfaktor

N = 0 .  (4)

2.4.4. Homogenes Magnetfeld in einem Hohlraum

In Texturisoperm, das die relative Permeabilität = 125 besitzt, befindet sich ein kugelförmiger
Hohlraum mit der relativen Permeabilität = 1 . Das homogene Magnetfeld im Isoperm hat die
Stärke H a = 1000 A m-1 . Wie groß ist die Feldstärke im Hohlraum?

Lösung
Nach (2.4./9) ist das homogene Magnetfeld in der Kugel durch

Hi = --------— --------- (1)
1 + M rel ~ 1)

9 Schilling, Felder
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bestimmt. Im vorliegenden Fall ist

Der Entmagnetisierungsfaktor N hat nach (2.4.1. /5) für die Kugel den Wert 1/3. Somit erhalten
wir

= -----1000 ----- A m _x = 997 4 A m-1 .

1 + — • —
3 125

Das homogene Feld des Innenraumes hat praktisch die gleiche Intensität wie das ungestörte
homogene Feld des Außenraumes.

Aufgaben

A 2.4.1. Eine Kugel der relativen Permeabilität /z r = 10000 (Sättigungsmagnetisierung von
Hyperm 20) wird in ein homogenes Feld der Stärke = 20000 A m-1 gebracht.
Wie groß ist das Feld in der Kugel?

A 2.4.2. Im Außenfeld liege die Feldstärke H& = 1000 Am -1 vor. Das Außenmedium sei
Luft. Wie groß ist das Feld in einer homogenen Kugel mit der Suszeptibilität
x = 10- 3 ?

A 2.4.3. Bestimmen Sie aus dem Feld eines Rotationsellipsoids durch Grenzübergang den
Entmagnetisierungsfaktor eines homogenen Vollzylinders, wenn die Magnetisierung
senkrecht zur Zylinderachse erfolgt.

A 2.4.4. Wie groß ist das Magnetfeld in einem langgestreckten zylindrischen Hohlraum
(Vakuum), wenn das homogene Feld im umgebenden Medium senkrecht zur Zy-
linderachse gerichtet ist und die Stärke = 10000 A m-1 hat? Die relative
Permeabilität des umgebenden Mediums sei gleich /zar  = 10000.

A 2.4.5. Berechnen Sie durch Grenzübergang aus einem Ellipsoid den Entmagnetisierungs-
faktor einer flachen Scheibe bei Magnetisierung senkrecht und parallel zur Platten-
ebene.

A 2.4.6. Eine flache Scheibe der relativen Permeabilität ju r i  = 1000 befindet sich in einem
homogenen Magnetfeld der Stärke = 20000 Am -1 . Wie groß ist das Feld in
der Scheibe, wenn diese so gedreht wird, daß
a) die Feldlinien parallel zur Scheibe verlaufen, b) die Feldlinien senkrecht zur
Scheibenebene stehen?

A 2.4.7. Berechnen Sie den Entmagnetisierungsfaktor eines Rotationsellipsoids mit den
folgenden Halbachsen: a0 = bQ = 8 cm, c0 = 15 cm. Das homogene Außenfeld ver-
läuft parallel zur Rotationsachse.

A 2.4.8. Im Zentrum einer großen Kugel aus Supermalloy (/z r = 900000) befindet sich
ein kleinerer kugelförmiger Hohlraum. Außerhalb der massiven Kugel beträgt die
Feldstärke H = 106 A m-1 . Wie groß ist die Feldstärke in der kleinen Hohlkugel,
wenn man annimmt, daß diese den Übergang der Feldlinien aus dem Außenraum
in die massive Kugel nicht stört?

A 2.4.9.** Stellen Sie die Formel für das homogene Feld im Innern einer Kugelschale auf,
die in ein äußeres homogenes Feld der Stärke gebracht wird. Berechnen Sie
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das Feld H-. für H* = 1000 Am -1 , R-. = 9,9 cm, = 10,0 cm, u r = 100000
(Permalloy).

d/(#)In einem inhomogenen Magnetfeld der Form § = Ho f(x)i mit ------ > 0 be-
dx

finden sich para- und diamagnetische Stoffe kleiner Ausdehnung. Berechnen Sie
die resultierende Kraft auf diese und leiten Sie daraus ihr Verhalten im inhomogenen
Feld her.
Berechnen Sie die Inklination der Magnetnadel als Funktion der geographischen
Breite, wenn die Erde als gleichmäßig magnetisierte Kugel aufgefaßt und die
Mißweisung der Magnetnadel vernachlässigt wird.

A 2.4.10.*

A 2.4.11.
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Das Magnetfeld homogener Leiter, in Stromschleifen und Spulen3.1.

E Einführung

Die MAXWELLsche Theorie stationärer Felder untersucht Vorgänge, bei denen sich
das  Feld zeitlich nicht ändert. Sämtliche Ableitungen nach der Zeit sind gleich Null:

Im Gegensatz zur Elektrostatik werden Gleichströme zugelassen. Die Stromdichte
ist konstant, jedoch nicht gleich Null. Aus 1.4. erhält man bei stationären Feldern
das folgende System der MAXWELLSchen Gleichungen

rot ® = 0 ,
rot $ = 3 ,
div ® = @ ,
div $8=0 .

(1)
(2)
(3)
(4)

Zu seiner Lösung werden das skalare Potential 0 und das Vektorpotential 91 ein-
geführt. Aus Gleichung (1) folgt wie im statischen Falle die Existenz eines skalaren
Potentials 0 zur Darstellung der elektrischen Feldstärke :

® = — grad 0 (5)

Gleichung (4) gestattet es, die magnetische Flußdichte $8 aus einem Vektorpotential
91 abzuleiten:

$8 = rot 91 (6)
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Zwischen 33 und § besteht die Verknüpfung

33 =

Man kann daher die magnetische Feldstärke § mittels

§ = - rot 21 (7)

durch das Vektorpotential 91 ausdrücken.
Für ein einheitliches Medium ergibt sich aus (2) in Verbindung mit dem Ansatz (7)

/z rot $ = rot rot 91 = . (8)

Wendet man die Operatorenbeziehung A = grad div — rot rot an (vgl. A 1.3.6.),
so folgt aus (8)

rot rot 91 = grad div 91 — = /$• (9)

Bei vorgegebener magnetischer Flußdichte 33 ist das Vektorpotential 91 nur bis auf
den Gradienten einer beliebigen Ortsfunktion / = /(r) bestimmt : Wird die Be-
ziehung (6) von einer Vektorfunktion 9l0 (t) erfüllt, so wird sie auch von der Vektor-
funktion

9I(r) = 9lo(r ) + grad /(r) (10)

erfüllt. Das folgt aus der allgemeingültigen Gleichung

rot grad /(r) = 0 .
Mit

33 = rot 9I0 (r)

wird daher auch die Beziehung

33 = rot [9l0 (r ) + grad /(r)]

befriedigt. Ist demzufolge eine beliebige Lösung 9t0 (r ) der Gleichung (6) bekannt, so
kann die Ortsfunktion / = /(r) derart festgelegt werden, daß sie die Bedingungs-
gleichung

div grad /(r) = —div 9t0 (r) (11)

erfüllt. Für das Vektorpotential 91 = 91 (r) nach (10) ergibt sich damit

div 91 = div (9I0 + grad /) = 0 .  (12)

Hat man eine Funktion /(r) mit der geforderten Eigenschaft (11) bestimmt, so erhält
man anstelle der komplizierten Gleichung (9)

A9l = -/z3 (13)
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als Differentialgleichung des Vektorpotentials 21. Diese stimmt mit der Poissonschen
Gleichung (2.1./6) überein.
Als Lösung der Gleichung (13) im Punkte P o erhält man analog (2.1./8)

J J J r PPQV
(14)

P durchläuft bei der Integration alle Punkte des Volumens V.

Beispiel 7
Es ist das Magnetfeld eines stromdurchflossenen geraden Leiters aus seinem Vektorpotential
zu bestimmen. Die Stromstärke sei I,

Bild 3.1. Zum Magnetfeld eines geraden Leiterstücks der Länge l

Zur Lösung dieser Aufgabe wird die Richtung des elektrischen Stromes als z- Achse gewählt. Es
gilt somit 3 = Ferner ist J dF  = I dz .  Für ein endlich langes Leiterstück der Länge l
kann man den Koordinatenanfangspunkt in die Mitte des Leiters legen (vgl. Bild 3.1). Es seien
r0 , 2o die Zylinderkoordinaten des Punktes P o , in dem das Feld bestimmt werden soll. Die
Punkte P des Integrationsgebietes werden durch die Zylinderkoordinaten r, (p, z dargestellt.
Nach (14) erhält man damit als einzige Komponente des Vektorpotentials

V( Ä - 2o )2 + ro 2

_l_
2

(15)

Dieses Integral wird mit Hilfe der Substitution £ = z — z0 umgeformt :

2

= f dC •
y? 2 + r 0

2

l
~T~  Z °

(16)
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Zur Berechnung des Magnetfeldes ist es nicht erforderlich, dieses Integral auszuwerten. Nach (7)
und (1.3./7a) erhält man durch Differentiation

2
= Ir. r dC

H 8r0 J Zo23 ’ (17)

Die anderen beiden Zylinderkomponenten sind gleich Null. Aus (17) folgt, wenn man nunmehr
integriert,

(18)

Im Grenzfall eines unendlich langen Leiters ergibt sich für das Vektorpotential nach (16)
ein unbestimmter Ausdruck. Dagegen erhält man aus (18) durch Grenzübergang l -> oo für die
magnetische Feldstärke in der Umgebung eines unendlich langen stromdurchflossenen Drahtes

limfc,= -L. (19)
oo 27vr0

Wie man aus dieser Ableitung entnimmt, ist es nicht immer zweckmäßig, das Vektorpotential 31
direkt zu berechnen. In zahlreichen Fällen ergeben sich die magnetischen Feldkomponenten
auch, wenn das Vektorpotential selbst in einen unbestimmten Ausdruck übergeht.

Aus der Lösung (14) für die Poissonsche Gleichung (13) läßt sich das Biot-Savartsche
Gesetz ableiten (vgl. Bild 3.2). Es gilt für linienförmige Leiter und Strombahnen.

Bild 3.2. Zum magnetischen Feld eines Strom -
p elements I d§(P) im Punkt P o

Aus dem Leiter wird ein Linienelement d3 = d3(P) herausgegriffen. Sein Beitrag
zum Vektorpotential ist durch $ dV = I bestimmt, wobei I die Stromstärke im
Leiterelement bezeichnet. Für den Beitrag des herausgegriffenen Stromelementes
I zum Vektorpotential folgt damit nach (14)

d9l = -— . (20)
4k r

Der Beitrag zur magnetischen Flußdichte 33 ergibt sich aus (20) :

ul dg> ul d3
d® = — rot Po — = — V PQ X — . (21)

4k r 4k r
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Bei der Rotorbildung ist nur die Größe r = r PPQ des Abstandes zwischen P und P o
zu differenzieren, da das Leiterelement d3(P) nicht vom Aufpunkt P o abhängt.
Daher erhält man (vgl. 1.2. A 3.)

V7 ds _1  _ d3x r  d3xe  rVP0 X —  = VP0 — x d§ = — — = ----i, (22

wobei e r den Einheitsvektor in Richtung r angibt.
Setzt man (22) in (21) ein, so folgt das BiOT-SAVARTsche Gesetz in der Form

4k r 2 bzw. dfi = -— — d3 x 6]4?i:r2

Das BiOT-SAVARTsche Gesetz in der differentiellen Schreibweise (23) kann anschau-
lich so aufgefaßt werden, daß der gesamte Stromkreis mit Ausnahme des betrach-
teten Leiterelementes gegen Strahlung nach außen abgeschirmt ist. Die Feld-
stärke 33 im Punkte P o folgt durch Summierung über die von sämtlichen Strom-
elementen erzeugten differentiellen Felder.

Probleme

3.1.1. Das Magnetfeld der Koaxialleitung (Zylinderkondensator)

In einer Koaxialleitung (Zylinderkondensator unendlicher Länge, vgl. Bild 2.3) beträgt der
Radius des kompakten Innenleiters Pj = 3 mm , der Innenradius des Außenleiters _Ra = 8 mm .
Berechnen Sie das Magnetfeld, wenn die Stromstärke I = 0,1 A beträgt. Wie groß ist die Feld-
stärke a) an der Innenleiter-, b) an der Außenleiterwandung?

Lösung

Wegen der MAXWELLschen Gleichung (3.1./2) besteht zwischen der Stromdichte 3 und der magne-
tischen Feldstärke $ die Beziehung

rot $ = (1)

Nach dem STOKESschen Satz (1.3./10) gilt

ff rot jp • d9l = (ß§ -d§ .  (2)

Beim Umlauf auf einer Kreisbahn mit dem Radius r folgt

(ß § • dS = 2nrfe r . (3)

Andererseits erhält man für P, < r < P a

f f $ -< i% = I ,  (4)
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wobei 1 die Stromstärke im Innenleiter bezeichnet. Daraus ergibt sich

J&r = • (5)
27tr

Die übrigen Komponenten verschwinden, wenn man Randstörungen an den beiden Leiterenden
vernachlässigen, d. h. wie mit einem Zylinderkondensator unendlicher Länge rechnen kann.
An der Innenleiterwandung folgt mit den vorgegebenen Zahlen

(ft r ). = -----— ------ A m“ 1 = 5,31 A m-\1 2k • 3 • 10~3

an der Außenleiterwandung

(Ör ). = ------— ------ A m- 1 = 1,99 A m- 1 .a 2k • 8 • IO-3

Diese Werte sind identisch mit der Oberflächenstromdichte.

3.1.2. Ringspule (Toroid)

Eine Spule aus n = 1 000 Windungen ist gleichmäßig auf einen Ring mit kreisförmigem Quer-
schnitt gewickelt. Der Außendurchmesser 2R a und der Innendurchmesser 2-Rj des Ringes seien
groß gegen den Querschnittdurchmesser 2(.Ra — Rj) (vgl. Bild 3.3). Berechnen Sie das Magnetfeld
in der Ringspule, wenn durch diese der Strom I = 0,1 A fließt = 10 cm,  7 = 9,5 cm).

Bild 3.3. Ringspule

Lösung
Wir gehen von der MAXWELLschen Gleichung (3.1./2)

rot § = g (1)

aus. Integration liefert nach dem STOKESschen Satz (1.3./10)

= = ff 3 • aal = i . (2)

Als Integrationsweg C wählen wir eine innerhalb des Ringes verlaufende Kreislinie, und zwar
den Mittelwert

+ -Rj
2

(3)
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Die Kreislinie umschlingt den fließenden Strom n-mal. Es folgt damit aus (2)

(ß § • d£ = = nl . (4)

Wir können die Länge 2ttR der Umlaufkurve gleich l setzen und erhalten damit aus (4)

l 4" - i )

nl
(5)

Diese Formel stimmt mit Gl. (1.1. /1 8) für die Feldstärke in einer Zylinderspule überein. Die
Zylinderspule ergibt sich aus der Ringspule, wenn diese auseinandergebogen wird.
Zahlen eingesetzt, folgt aus (5)

H _ 1000-0,1
“ 3,14 - 19,5 • IO-2 Am-1 = 163 Am"1 .

3.1.3. Ringspule mit Luftspalt

Ein mit einem Schlitz der Breite b = 2,5 mm versehener Ringmagnet ist mit einer Spule aus
n = 10Ö00 Windungen umwickelt (vgl. Bild 1.18 und Bild 3.3); durch die Spule fließt der Strom
I = 0,02 A.  Die gesamte mittlere Länge einer Feldlinie im Ringmagneten beträgt einschließlich
des Luftspaltes l = 25 cm. Der Querschnitt des Ringmagneten ist gleich 2 cm2 . Wie durch
Induktionsmessungen festgestellt wird, entspricht dem durch die Spulenwindungen erzeugten
Magnetfeld

T
Hw = — = 800 A m- 1

l

im Ringmagneten die magnetische Flußdichte

Bt = 0,060 V s m~2 .

Die Permeabilität im Spalt ist gleich = /ll0 .
Berechnen Sie das Magnetfeld im Ringmagneten und im Spalt unter der Voraussetzung, daß
durch den Luftspalt keine Streuung des Magnetfeldes erfolgt und daß man das Feld im Ring-
magneten als homogen auffassen kann. Wie groß ist die Magnetisierung?

Lösung
Nach (1.1./25) gilt

(ft § • d§ = nl. (1)

Daraus folgt

- b) + = nl = HJ,  (2)

Darin bedeutet die Stärke des Feldes im Ringmagneten, im Luftspalt. Hw wird als sym-
bolische Größe eingeführt und gibt das Feld einer Spule der Länge l aus n Windungen gemäß
(1.1./18) an. Die Quellenfreiheit div 53 = 0 der magnetischen Flußdichte bedingt die Beziehung

BiAi = B a A a , (3)



3.1. Das Magnetfeld homogener Leiter, in Stromschleifen und Spulen 139

wobei A a den Querschnitt des Luftspaltes angibt. Dieser ist bei einem homogenen Feld, wenn
keine Streuung der Feldlinien stattfindet, gleich dem Querschnitt des Ringmagneten.
Ferner gilt im Luftspalt

•®a = (4)

dagegen im Ringmagneten

+ (5)

(4) und (5) in (3) eingesetzt, ergibt wegen

(■Hl + -) A = HaA a . (6)
\ AW

(2) und (6) bilden ein Gleichungssystem zur Bestimmung der beiden Unbekannten und H&.
Es folgt

H K l + b)

- — MbAt
H, = ------------- . (8)+ A a (Z — b)

Aus (5) und (8) erhält man für die Magnetisierung des Ringmagneten die Gleichung

„ H AA — MA-, , nxAf = 2 — = Bi — . j , 7 77’ WAfi + u4 a (£ — b)

woraus

M = B Afi + A l 6)] ' (10)
- 6)

folgt. (10) eingesetzt in (7) und (8), gibt die gesuchten Feldstärken. Kann man A { = A = A
setzen, so führen (7) und (8) auf

H.d = J?w + = (11 )
tW iw

während man aus (10)

M = Bi - pg w z (12)
l — b

erhält.
Die Feldstärke im Luftspalt übersteigt die im Magneten um

ff a - Hi = , (13)
Z*o 1
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Man kann das homogene Feld im Magneten in der Form (2.4./12)

NMHt =! !„ -— (14)

schreiben. Hieraus ergibt sich der Entmagnetisierungsfaktor N des Ringmagneten, wenn (14)
mit der zweiten Gleichung (11) verglichen wird:

Im vorliegenden Fall ist der Entmagnetisierungsfaktor gleich

jy = ®=0 ,01 .  (15)
25

Wir setzen M aus (12) in (11) ein, womit folgt

r rs a = £* = £l, ------------- b .  (16)
Z a Z a

Mit den vorgegebenen Zahlen erhalten wir

= 0,060---- A = . 1()4 A
a 1,257-10-«

H- = (ß00 - 
4,7 8 '■ .-°t. T_800 

0,002 5)  A m“1 = 325 A m" 1 .1 \ 0,25 - 0,0025 /

Gemäß = mHi ergibt sich hieraus für die relative Permeabilität

4 78 • 104

= 1900.

Die Magnetisierung wird nach (13) gleich

M = 4k • IO-7 • (4,78 - 0,32) • 104 V s m~2 = 3,54 • IO"2 Vsm’ 2 .

3.1.4. Magnetfeld eines Drahtringes und einer kurzen Spule

Ein Drahtring mit dem Durchmesser 2R = 8 cm wird von einem Strom der Stärke I = 4 A
durchflossen. Wie groß ist das Magnetfeld auf der durch den Mittelpunkt gehenden Achse? Be-
rechnen Sie speziell die Stärke des Feldes im Mittelpunkt und auf der Achse im Abstand
zQ = 50 cm.
Wie groß ist das Feld, wenn anstelle des Drahtringes eine sehr kurze Spule aus n = 80 eng-
gewickelten Windungen benutzt wird? Dabei ist vorauszusetzen, daß die Spulenlänge l klein ist
gegen den Querschnittsradius der Spule.
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Lösung
Nach dem BiOT-SAVARTschen Gesetz (3.1./23) gibt

d58 = — 2 d§XI  (1)
4k r3

die durch ein Stromelement I d3 im Punkt P o erzeugte magnetische Feldstärke an.
Wir legen den Koordinatenanfangspunkt in die Mitte des kreisförmigen Leiters und wählen die
Leiterebene als a;,i/-Ebene (vgl. Bild 3.4). Es gilt dann für die Punkte des stromführenden Drahtes

£ = -Rcosg9, ?/ = .Rsing9. (2)

Bild 3.4. Ringförmiger Draht

Daraus erhält man für den Vektor dg> des Leiterelementes

d§ = R( — sin 99, cos 99, 0) d<p. (3)

Der vom Leiterelement dg> zum Punkt 0, zQ ) auf der Achse gezogene Vektor r ist gleich

r = (— R cos (p9 —R sin 99, zQ ) . (4)

Daraus ergibt sich

d3 x r = R(z0 cos 99, z0 sin 99, R) dtp . (5)

Die vom Stromkreis hervorgerufene magnetische Feldstärke folgt durch Integration:

2k 2k
- = f d jx t  

= _L 2? f (2o cos z » sin y, R) dy , 6 >
4n J | t |  3 j + 2o2

3

0 <5

Für die Umlaufintegrale über die ersten beiden Komponenten erhält man den Wert Null. Es
bleibt

. I R 2

2

In der Mitte der kreisförmigen Windung erhalten wir, wenn wir z0 = 0 setzen,

%R (8)



142 3. Der stationäre Strom und sein Magnetfeld

Mit den vorgegebenen Zahlen ergibt sich

4= -------- A m-1 = 50 A m-1 .z 2 • 0,04

Dagegen folgt für das Feld im Abstand z0 = 0,5 m auf der Achse

4 • 0 042

fr = — ----- . = 2,54 • IO"2 A m- 1 .
* z 2 0,042 4- 0,5 2

Für eine sehr kurze Spule aus 80 Windungen erhöht sich die Feldstärke um den Faktor 80. Man
erhält damit im Zentrum

= 4000 A m-\
dagegen im Abstand 50 cm

£ 2 = 2 ,03Am-1 .

Diese Multiplikation mit der Windungszahl ist nur gestattet, wenn die Länge der Spule sehr klein
gegen den Querschnittsradius der Spule ist.

3.1.5. Magnetfeld auf der Achse einer endlich langen Spule (Solenoid)

Eine Zylinderspule mit kreisförmigem Querschnitt hat die Länge l = 5 cm . Der Radius des
Querschnitts beträgt R = 2 cm, liegt also in der gleichen Größenordnung wie die Spulenlänge.
Die Zahl der Windungen sei n = 800, der Strom I = 0,04 A.  Berechnen Sie das Feld auf der
Spulenachse, in der Mitte und am äußeren Ende der Spule.

Lösung
Wir gehen von der Formel (3.1.4./7) für die Feldstärke auf der Achse eines Drahtringes mit dem
Radius R aus. Befindet sich der Mittelpunkt des Drahtringes an der Stelle z, so wird auf der Achse
an der Stelle z0 das Feld

1 R 2
. .......... 3 (1)2 + {z _ Zo) 23

erzeugt.
Ein herausgeschnittenes Spulenstück der Länge dz können wir durch eine Kreisschleife ersetzen,
in der der Strom — I dz fließt, n bezeichnet dabei die Windungszahl der gesamten Spule. Im

l
Punkt P 0 (0, 0, z0 ) auf der Achse erzeugt das Spulenelement die Feldstärke

_ ~ nIR 2 dzd<Qz = -----■
l R 2 + (z0 -

(2)

Hieraus erhält man durch Integration
_z_
2

dz

V-R2 + (Zo - z) 2 '1 '
(3)
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Durch die Substitution

zQ — z = R tan 9? (4)

ergibt sich

, 2z0 + larctan — —-2R
nl C n nl= — 1 cos qp d® = —
21 J * * 21

arctan 2* 0 1

2R

2
l

(5)

Wie Gl. (5) zeigt, ist das Feld auf der Achse in der Spulenmitte um so weniger veränderlich, je
länger die Spule ist, d. h., je besser l >R erfüllt ist. Im Grenzfall l -> 00 erhält man in Überein-
stimmung mit (1.1. /18)

( ) / ->oo=y .  (6)

Für die Spulenmitte z0 = 0 folgt bei der endlich langen Spule

. „ . Tbl 1 .
(§ 2 )m = -----— _--7— , (7)2 / 72

1/Ä2 + —

dagegen für das Spulenende zQ = ±0,5Z

2 kr2 + 12 '

Mit den vorgegebenen Zahlen ergibt sich in der Mitte

800 • 0,04 100 a n 1 n= ---------- ----- A m-1 = 500 A m-1 ,
2 yi + 2,52

dagegen am Ende

r 800 • 0,04 100 . . onr7 .= -------------------— A m-1 = 297 A m-1 .2 vi+25

A Aufgaben

A 3.1.1. Zwei parallele Leiter der Länge l werden vom Strom I in einander entgegen-
gesetzten Richtungen durchflossen. Bestimmen Sie das Vektorpotential.

A 3.1.2. Berechnen Sie das Vektorpotential zweier unendlich langer Leiter, die von einander
entgegengerichteten Strömen durchflossen werden.

. A 3.1.3. Zwei unendlich lange parallele Leiter werden von gleichen Strömen in entgegen-
gesetzten Richtungen durchflossen. Bestimmen Sie aus dem Vektorpotential die
magnetischen Feldlinien.
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A 3.1.4. Berechnen Sie den magnetischen Fluß in einer Koaxialleitung, bezogen auf die
Längeneinheit. Der Innendurchmesser des Außenleiters betrage 2ß a = 16mm,
der Durchmesser des Innenleiters 2R { = 6 mm . Das Zwischenmedium sei Luft.
Die Stromstärke betrage 1 mA.

A 3.1.5. Berechnen Sie das Magnetfeld zwischen den beiden Bändern einer Bandleitung.
Die Breite eines Bandes betrage b = 2 cm; der Strom habe die Stärke 1 = 0,1 A.

A 3.1.6. Berechnen Sie das Magnetfeld in einer Ringspule aus n = 18000 Windungen, durch
die der Strom I = 1,5 A fließt (Außenradius R & = 20 cm, Innenradius R { = 18 cm) .

A 3.1.7.* Weisen Sie nach, daß bei einem Ringmagneten mit Luftspalt im Falle
das Feld im Spalt näherungsweise so groß ist, als wäre die gesamte Spule auf den
engen Raum des Luftspalts gewickelt.

A 3.1.8. Ein Ringmagnet der Länge l = 20 cm enthält n = 5000 Windungen, die vom
Strom I = 0,1 A durchflossen werden. Wie groß ist das Magnetfeld im Luftspalt
für ri = 1500, wenn die Breite des Spaltes a = 4 mm beträgt?

A 3.1.9. Berechnen Sie das Feld in der Mitte eines ringförmigen Leiters (eine Windung)
vom Radius R = 25 cm , wenn die Stromstärke I = 8 A beträgt.

A 3.1.10. Wie groß ist das Magnetfeld auf der Achse einer aus fünf engen Windungen be-
stehenden kreisförmigen Spule vom Radius R = 0,50 m ,  wenn die Stromstärke
I = 200 A beträgt. Berechnen Sie das Feld in der Mitte der Spule und auf der Achse
im Abstand z0 = 4 m von der Spulenmitte für 1< R .

A 3.1.11. Zwei Spulen mit den Längen a) h = 10 cm und b) l2 = 20 cm haben je n = 5000
Windungen und werden vom Strom I = 0,1 A durchflossen. Der Durchmesser sei
für beide Spulen gleich 2R = 8 cm . Berechnen Sie die magnetische Feldstärke auf
den Achsen beider Spulen, und zwar 1. in der Mitte, 2. am Rand jeder Spule.

3.2. Kräfte auf stromdurchflossene Leiter — Gleichstrommeßgeräte

Einführung

Die auf elektrische Ströme wirkenden Kräfte ergeben sich aus der Gleichung von
Lorentz

dg  = ZlQ(® + t)X®) (1)

Darin bezeichnet AQ die bewegte elektrische Ladung und b ihren Geschwindigkeits-
vektor. @ und 53 geben die elektrische Feldstärke und die magnetische Flußdichte
des äußeren elektromagnetischen Feldes an.
Von Interesse sind insbesondere die im magnetischen Feld auf tretenden Kräfte

Jg  m =ZlQbX53.  (2)

Die auf eine bewegte Ladung infolge eines aufgeprägten Feldes 53 ausgeübte Kraft
steht sowohl zur Bewegungsrichtung als auch zum äußeren Magnetfeld senkrecht.
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Um die bewegte Ladung AQ auf die Dichte des Stromes zurückzuführen, betrachtet
man ein Leiterelement mit dem Querschnitt AA und der Länge As. Die Ladung AQ
sei gleichmäßig über dieses Leiterelement verteilt. Für die Ladungsdichte erhält man
somit

AQ
Q AA As* (3)

Zwischen Ladungsdichte q, Geschwindigkeit b und Stromdichte 3 besteht nach
(1.3./ 11) die Beziehung

t>.
AA Ass = = (4)

Sie kann nach der Geschwindigkeit b aufgelöst werden. Wird der sich dabei ergebende
Ausdruck in (2) eingesetzt, so erhält man für die Kraft, die ein Feld auf den Strom
der Dichte 3 in einem Leiter mit dem Querschnitt A A längs eines geraden Leitungs-
stückes As ausübt,

= AA x 93. (5)

Der Vektor des Leiterelementes As und die Stromdichte $ sind gleichgerichtet. Man
kann daher anstelle von (5) die Kraft auch in der Form

A% m =IAsxK  (6)

schreiben, wobei I die Stromstärke angibt.
Wenn die magnetische Feldstärke räumlich variabel ist oder wenn gekrümmte Leiter
vorliegen, unterteilt man diese in differentielle Stromelemente I ds. Die auf ein der-
artiges Element durch das äußere Magnetfeld ausgeübte Kraft ist nach (6) gleich

dg m =7d5X®.  (7)

Hieraus erhält man die auf den gesamten Stromkreis wirkende Kraft durch Inte-
gration.
Im homogenen Magnetfeld entsteht infolge der LoRENTZ-Kraft auf einen Stromkreis
ein Drehmoment, das diesen senkrecht zum äußeren Feld zu stellen sucht. Es ist
gleich

9Jt = m X § . (8)

m gibt das magnetische Moment des ebenen Stromkreises an. Hierfür erhält man

m = pTR . (9)

1 o Schilling, Felder
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Dabei ist Ä die Größe der eingeschlossenen Fläche, /z die Permeabilität des den
Stromkreis umgebenden Mediums. Bei einer Spule aus n enggewickelten Windungen
vergrößert sich das magnetische Moment m und damit das Drehmoment 9)2 um den
Faktor n.
Beispiel 8
Eine Spule aus n = 1 000 Windungen mit der Querschnittfläche A = 10 cm2 wird vom Strom
I = 2 A durchflossen. Das Zwischenmedium ist Luft mit der Permeabilität /z = /z0 . Unter dem
Winkel a = 45° gegen die Spulenachse geneigt, wirkt auf die Spule ein Magnetfeld der Stärke
H = 1 500 A m-1 . Es führt nach (8) zu einem Drehmoment der Größe

M = |mn X$ |  = |mn | |£>| sin 45°.

Setzt man hierin
|m n | = np IA = 1000 • 1,257 • 10-6 • 2 • 10 • 10-4 V s m = 2,514 • 10-3 V s m

ein, so folgt

= 2,514 • IO" 6 V s m • 1500 A m- 1 • 0,707 = 2,66 • IO"3 Nm.

Probleme

3.2.1. Kraft auf einen stromdurchflossenen Draht im Magnetfeld
Im magnetischen Feld der Stärke H = 105 A m-1 befindet sich ein gerades Drahtstück der Länge
l = 15 cm. Durch dieses fließt Strom der Stärke I = 100 A .  Wie groß ist die Kraft auf dieses
Drahtstück, wenn a) der Leiter senkrecht zum Magnetfeld gerichtet ist, b) unter dem Winkel
<p = 30° gegen das Magnetfeld geneigt ist?

Lösung
Nach der LoRENTZ-Gleichung (3.2./6) wirkt auf einen Strom I längs des geraden Leiterstückes l
im Magnetfeld die Kraft

S m = Jlx<8 =I/z 0 Ix§ .  (1)
Sie steht senkrecht zu der vom Stromdichte vektor 3 und vom Magnetfeld § gebildeten Ebene.
Für den Betrag der Kraft erhalten wir

F m = Z/z0L# sin 99. (2)
Im Falle cp = 90°, d. h., wenn 3 und § senkrecht zueinander stehen, ergibt sich mit den vor-
gegebenen Zahlen

F = 0,15 • 1,257 • IO-6 • 100 • 105 N = 1,88 N = 192 p .

Sind die beiden Vektoren dagegen unter = 30° gegeneinander geneigt, so folgt

F = 1,88 • 0,50 N = 0,94 N .

3.2.2. Kräfte zwischen stromdurchflossenen Leitern
Zwei parallele Drähte haben voneinander den Abstand r = 0,5 cm . Ihre Länge beträgt l = 2,50 m .
Der erste Draht wird vom Strom Zo = 5 A,  der zweite in entgegengesetzter Richtung vom Strom
I = 10 A durchflossen. Berechnen Sie die zwischen diesen beiden Stromleitern wirksamen
Kräfte.
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Lösung

Nach (3.2./6) wirkt auf ein gerades Leiterstück das vom Strom I durchflossen wird, im Feld 33
die Kraft

= (1)

Ein gerader Leiter, der vom Strom Zo durchflossen wird, erzeugt in seiner Umgebung nach
(3.1./19) ein Magnetfeld £, das in Zylinderkoordinaten nur die Komponente

besitzt. Für die magnetische Flußdichte erhält man, wenn das umgebende Medium Luft oder
Vakuum ist,

(3)

Das Feld 33 und die Richtung des Stromes I stehen zueinander senkrecht. Die Kraft steht
nach (1) senkrecht zum stromdurchflossenen Leiter.
Wir führen Cartesische Koordinaten ein und wählen die Richtung des Stromes Zo als z-Achse.
Dann können wir schreiben (vgl. 1.2./8)

33 = (—sin 99, cos 09, 0), (4)2nr
= 1(0, 0, — Z). (5)

§ weist in Richtung des Stromes Z, der entgegen dem Strom Zo fließt. Der Betrag von % ist gleich
der Leiterlänge Z. (4) und (5) in (1) eingesetzt, ergibt

i i *
0 0 - z
—sin cp cos (p 0

_ ,oZoZl (cog q) .
2nr27TTSm (6)

Es befinde sich die Leitung mit dem Strom Z rechts vom Strom Zo . An der Stelle des Stromes Z
hat die Winkelkoordinate den Wert 99 = 0 . Somit folgt im vorliegenden Fall entgegengerichteter
Ströme aus (6)

(1,0,0).
2?rr

(7)

Man erhält eine von Zo weg in Richtung der positiven x- Achse weisende Kraft. Die beiden ent-
gegengerichteten Ströme stoßen einander ab. Für den Betrag dieser Kraft folgt

/z0Z0ZZ 1,257 • IO-6 • 5 • 10 • 2,50
Ivml — o — oK- ina2ivr 2tt ♦ 5 • 10-3

= 0,0050 N = 0,51p.

Stärkere Kräfte treten erst für sehr hohe Ströme oder bei wesentlich geringeren Abständen auf..

10*
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3.2.3. Drehmoment auf eine Spule im Magnetfeld

In einem Magnetfeld der Stärke H = 5 • 105 A m-1 befindet sich eine Spule aus n = 5000 Win-
dungen, die vom Strom der Stärke I = 0,1 A durchflossen wird. Die Spule besitzt einen kreis-
förmigen Querschnitt vom Radius R = 1,5 cm. Ihre Achse ist gegen das Magnetfeld unter dem
Winkel ex = 30° geneigt. Berechnen Sie unter Anwendung der LoRENTZ-Gleichung das Dreh-
moment, das auf die Spule ausgeübt wird.

Lösung

Wir wählen die Querschnittebene der Spule als ru,i/-Ebene. Die x- Achse legen wir in die Richtung
der Projektion des Feldes 53 auf die Querschnittebene (vgl. Bild 3.5). Der Strom fließe im mathe-
matisch positiven Drehsinn.

Bild 3.5. Spule im Magnetfeld der Fluß-
dichte 53

Das vektorielle Linienelement des Kreises r = R ist

d£ = dxi -|- dyj = jR(— sin <pi -f- cos 99}) dqp. (1)

Die magnetische Flußdichte 55 ist auf Grund der Festlegung des Koordinatensystems durch

53 = 53*1 + 33,f (2)

bestimmt. Für die Komponenten von 53 gelten die Gleichungen

53 z = B cos <x , 53* = B sin a . (3)

Die auf das Stromelement I d3 wirkende Kraft dg wird gleich

dS = I dg x 53 = IBR d99,—sin 99 cos 99 0 (4)
sin <x cos (X
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d .  h .  ausgerechnet

d§ = LBjR(cos a cos (p\ + cos <x sin <p\ — sin a cos (pl) d<p . (5)

Durch die Komponente 2% des magnetischen Feldes wird auf den Stromkreis eine Kraft aus-
geübt, die in jedem Punkt radial nach außen gerichtet ist und den Spulenquerschnitt zu ver-
größern sucht. Sie ist nicht mit einem Drehmoment zu verknüpfen. Dagegen bewirkt die parallel
zur Querschnittebene in Richtung der jr-Achse weisende Komponente in jedem Punkt des
Stromleiters eine Kraft, die für x < 0 parallel, für x > 0 antiparallel zur z- Achse steht. Die
Gerade x = 0 , z = 0 , d.  h. die y- Achse, gibt somit die Achse des entstehenden Drehmomentes
an. Für den Radiusvektor r folgt daher

r = R cos (p\. (6)

Als Drehmoment d9D , das von einem Leiterelement d3 verursacht wird, erhält man aus (6) im
Zusammenhang mit (5)

i
0cos <p

cos oc cos (p cos oc sin <p

f
dg?,0

—sin oc cos <p
(7)d9Jl = r x dg = IBR 2

d.  h.

dW£ = 7BR 2 (sin <x cos2 tp\ + cos <x cos tp sin <pt) dtp .

Das gesamte, von einer vollen Stromwindung erzeugte Drehmoment ergibt sich daraus durch
Integration. Die f -Komponente verschwindet wegen

2tc
f cos (p sin <p dg? = 0 .
0

Dagegen ist

2k
f COS2 <P dtp = TT .
0

Als Drehmoment einer Windung erhalten wir damit

9#! = izR2IB sin aj = mi X § . (8)

Das magnetische Moment nti ist dabei in Richtung der positiven z-Achse orientiert. Sein Betrag
ist gleich

|mi| = [j,qkR 2 I .  (9)

Für die Spule aus n Windungen folgt das Drehmoment

= nm-L X § = npLQTzR2IH sin aj . (10)

Mit den vorgegebenen Zahlen ergibt sich als Betrag des Drehmomentes

|2Rn | = 5000 • 1,257 • IO-6 • 7v • (1,5 * IO"2 ) 2 • 0,1 • 5 • 10 5 • 0,5 Nm = 0,111 Nm.
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3.2.4. Spiegelgalvanometer

Im Spalt zwischen den Polen eines starken Elektromagneten befindet sich eine Spule aus
n = 600 Windungen mit dem Querschnitt A = 12 cm2 (vgl. Bild 3.6). Sie steht, wenn durch die
Windungen kein Strom fließt, mit der Achse senkrecht zum äußeren Magnetfeld (<x = 90°).
Die Stärke des äußeren Feldes beträgt H = 5 • 105 A m-1 . Das Trägheitsmoment der Spule ist
J = 4 • 10-6 kgm2 , die Winkelrichtgröße D = 8,5 • 10-5 kg m2 s-2 . Die Dämpfungskonstante
hat den Wert b = 6,5 • 10-5 kg m2 s-1 . Untersuchen Sie die Auslenkung, wenn durch das Gerät
ein Strom der Stärke I = 1 pA fließt.

Bild 3.6. Strommeßgerät

Lösung
Wir betrachten den Auslenkwinkel (p. Er gibt die Abweichung aus der Ruhelage = 90° an.
Der Vektor hat die Richtung der festen Drehachse. Das Galvanometer folgt der Stromänderung
verzögert. Infolgedessen stellt sich der Endausschlag erst nach einer gewissen Zeit ein.
Bei einem trägen System ist die Summe aller Drehmomente gleich dem Beschleunigungsmoment:

'Z S =3W el + 9K D+ aR ä-dtf2 (1)

Darin bezeichnet

(2)9Re i = tnx®
das elektromagnetisch verursachte Drehmoment, das sich als Vektorprodukt aus dem magne-
tischen Moment m der Spule und der äußeren Feldstärke ergibt. Für die Komponente des Dreh-
momentes senkrecht zur Ebene aus Spulenachse und Feldstärke folgt auf Grund der Definition
des magnetischen Momentes

(2a)M e l  = p nAHJ sin a = pt,QnAHJ cos (p .

Bei kleinem Auslenkwinkel <p aus der Normallage kann man cos (p = sin a = 1 setzen und erhält

(2b)Afe l  ' = p nAHJ .

Die elastischen Kräfte erzeugen das rücktreibende Moment

(3)— — Dtp .
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Durch die Dämpfung entsteht ein den Bewegungsablauf verzögerndes Moment

9Kd = -b dt (4)

Wir setzen (2), (3) und (4) in (1) ein. Daraus erhalten wir bei kleinem Auslenkwinkel für die
Komponente des resultierenden Drehmomentes in Richtung senkrecht zur Schwingungsebene
der Zylinderachse

+ b - +D<p= <DFI .
di 2 d« F (5)

Hierin gibt

0F = nHA (6)

den resultierenden magnetischen Fluß n ff 23 d2I durch die Spulenwindungen an.
Nach hinreichend langer Zeit bewirken die Dämpfungen, daß das System zur Ruhe kommt.
Die zeitlichen Änderungen des Auslenkwinkels verschwinden, und es bleibt in (5)

(7)

Hieraus folgt als Meßauslenkung

<8)

Mit den vorgegebenen Zahlen ergibt sich aus (8)

= 57.10-s. 600.1 2 .10- .5.1Q5 .10-» = . =™ 8,5 • 10- 5

Verbindet man die Spule mit einem Spiegel, auf den ein Lichtstrahl fällt, so bewirkt der Strom
J = 1 jxA auf einer Skale in 1 m Entfernung eine Verschiebung der Lichtmarke um

Ax = 2o7 = 2 • 5,32 • 10“3 • 1 m = 10,6 mm.

Um die Einstellzeit zu bestimmen, lösen wir die Differentialgleichung (5) mit den Anfangs-
bedingungen

9>(0) = 0 ,  =0 .  (9)
\d« /  (=  o

Eine spezielle Lösung der inhomogenen Gleichung ist durch (8) bestimmt. Die allgemeine Lösung
der homogenen Gleichung wird am zweckmäßigsten durch die Hyperbelfunktionen ausgedrückt.
Es folgt

1 — e 2J cosh V&2 - 4=JDt , b . , v&2 - 4JD t
----------------- — - ■ ■ ■ sinh ---------------2J fb 2 — 4JD 2J

= "VT

Der zweite Summand in der Klammer setzt sich aus einem mit der Zeit abklingenden und einem
mit der Zeit zunehmenden Faktor zusammen. Wie man hieraus entnimmt, strebt der Zeiger seiner
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Endstellung am schnellsten zu, wenn die Beziehung

6 2 = 4JD (11)

(aperiodischer Grenzfall) erfüllt ist.
In der Exponentialfunktion erhält man für t = 3 s

&£ 6,5 • 10~5 • 3
2J 2 ■ 4 • 10“e

Nach Einsetzen der Zahlenwerte folgt für die Argumente der hyperbolischen Funktionen

- 4JJ> t _ y _ . =

2J

Ferner ergibt sich

b = 1,18.
y&2 _ 4jd

Bei großem Argument x > 20 kann man genähert schreiben

. , , e'£sinh x = cosh x = — 92

Damit erhalten wir für das Zusatzglied in (10) mit t = 3 s

p2°2° . 218e-24,3 . e ----- . 14 . e -M = o 015.
2

Nach drei Sekunden hat der Ausschlag 98,5% des Endwertes erreicht. Man kann daher bei einem
Meßfehler von 1,5% mit einer Einstellzeit von drei Sekunden rechnen.

3.2.5. Ballistisches Galvanometer

Es soll die während eines kurzzeitigen Stromstoßes übertragene Ladung

d«
Q=f ld t  (1)

o

gemessen werden. Hierzu verwendet man ein ballistisches Galvanometer (Spiegelgalvanometer
mit großer Schwingungsdauer).
Das Feld des Elektromagneten habe die Stärke H = 5 • 105 A m-1 . Die Spule enthalte
n = 8000 Windungen, ihre Querschnittsfläche sei A = 15 cm2 , ihr Trägheitsmoment
J = 7,5 • 10-5 kg m2 . Die Winkelrichtgröße habe den Wert D = 5,0 • 10-6 kg m2 s-2 . Für die
Dämpfungskonstante ergebe sich b = 1,0 • 10-6 kg m2 s-1 . Wie groß ist die übertragene Ladung,
wenn die Messung des maximalen Ausschlags g9max = 7,4° ergibt?

Lösung
Wir fassen den kurzzeitigen Stromstoß (1) als einmaligen Impuls auf das schwingungsfähige
System auf. Die Zeit rechnen wir vom Ende des Stromstoßes an. Für t = 0 habe also das Schwin-
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gungssystem die von Null verschiedene Winkelgeschwindigkeit

y(0) = <p0 . (2)

Der Strom erzeugt den Drehimpuls

f Ml dt = f m(t) X § dt = x f I(t)$ dt . (3)

31 bezeichnet den Vektor der Spulenfläche.
Da im Anfangszustand 31 und § senkrecht zueinander stehen, können wir hierfür auch schreiben

f M dt = ponAH f Id t  = &F f I d t  = & F Q.  (4)

Andererseits besteht zwischen dem übertragenen Drehimpuls und der erzielten Anfangswinkel-
geschwindigkeit der Zusammenhang

fMd t  = J<f>0 . (5)

Somit folgt als Beziehung zwischen der übertragenen Ladung und der Winkelgeschwindigkeit
am Ende des Stromstoßes

W) = (6)

Wir können voraussetzen, daß die Dauer des Stromstoßes so kurz ist, daß an seinem Ende noch
keine merkliche Auslenkung aus der Normallage erfolgt ist. Es gilt daher

9>(0) = 0 .  (7)
Mit Ausnahme des Anfangsimpulses wirkt auf das Schwingungssystem kein erzwingendes Dreh-
moment. Daher besteht nach (3.2.4./Ö) die Differentialgleichung

J lp +6  S + -D?’ = o - . (8)

Ihre Lösung unter Berücksichtigung der Anfangsbedingungen lautet
bt /------------

~Tj . i D / & \ 2
y = - — e 27  sm / — - — t .  (9)

4DJ - 62 F 1 \2J/

Um den Maximalausschlag und die Einstellzeit zu bestimmen, setzen wir die erste Ab-
leitung von (p nach der Zeit gleich Null. Das ergibt als Einstellzeit

arctan / ------ - - - -  . (10)
V4JD - ö 2 F &2

Wir berücksichtigen die Reihenentwicklung

arctan x = — ----— ± ••• (11)
2 x

für große Argumente x. Aus (10) und (11) ergibt sich die Einstellzeit
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Bei der näherungsweisen Berechnung des Maximalausschlages nach (9) benutzen wir die Reihen-
entwicklung

e" = 1 - y±  •••

für kleine Werte y. Damit erhalten wir, wenn wir (12) in (9) einsetzen,

fanAHQ / b \
T’m = — F— 1 — ~T ’

pD \ 4

Die Näherungen (12) und (14) gelten um so genauer, je besser die Ungleichung

6<2  fjl)

erfüllt ist.
Aus (14) folgt durch Umformen die während des Stromstoßes übertragene Ladung:

ö — -----T77 I 1 + “7" 7= ) T’M •l nAH 4 ]/jDy

Mit den vorgegebenen Zahlen erhalten wir nach (15)

(13)

(14)

(15)

(16)

2 pD 2 ]/7,5 • 10- 5 • 5,0 • 10~6

Aus (16) ergibt sich damit

]/7,5 ■ 10~5 • 5,0 • ÜF»
1,257 • 10- 6 • 8000 • 15 • 10-* • 5 • 10 5

7 4tt(1 + 0,04) As = 3,4 • 10“ 9 C.

Für die Einstellzeit folgt aus (12) der Wert

Aufgaben

A 3.2.1. In einem Elektronenbeschleuniger rotiert eine Ladung der Stärke Q = 10 -15 As
mit der Geschwindigkeit v = 0,01c in einem Kreisring mit dem Radius R = 2 m.
Wie groß ist der hierdurch verursachte elektrische Strom ?

A 3.2.2. Wie groß ist in einem Magnetfeld mit der Flußdichte B = 1 V s m~2 die Kraft auf
ein Drahtstück der Länge l = 10 cm,  das von einem Strom der Stärke I = 10 A
durchflossen wird? Das Magnetfeld steht senkrecht zur Stromrichtung.

A 3.2.3. Berechnen Sie die Kraft, mit der sich zwei parallele Ströme der Stärke I = 100 A
anziehen, die voneinander den Abstand 1 mm haben. Die Länge jeder Leitung sei
gleich 10 m.

A 3.2.4. Berechnen Sie das Drehmoment, das auf eine kreiszylindrische Spule aus
n = 1 500 Windungen im Feld der Stärke H = 1 000 A m -1 ausgeübt wird. Der
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Radius des Querschnitts ist R = 3 cm . Die Stromstärke beträgt I = 0,2 A . Das
Magnetfeld steht senkrecht zum fließenden Strom. Das Zwischenmedium ist Luft.
Berechnen Sie zur vorangegangenen Aufgabe das Drehmoment für p, = 1 500 .
Die Feldstärke in einem Spiegelgalvanometer ist gleich H = 106 A m-1 . Es wird
eine Spule aus n = 3000 Windungen mit der Querschnittfläche A = 16 cm2 ver-
wendet. Die Winkelrichtgröße hat den Wert D = 5,5 • 10-6 kgm2 s-2 . Wie groß
ist der Strom, der einen Ausschlag von einer Winkelminute hervorruft?
Stellen Sie die Formel für die Auslenkung eines Spiegelgalvanometers im aperi-
odischen Grenzfall b 2 — 4JD -> 0 auf.
In einem Spiegelgalvanometer ist das Trägheitsmoment J = 4 • 10-6 kg m2 , die
Winkelrichtgröße D = 8,5 • 10-5 kg m2 s~2 . Die Dämpfung wird so abgestimmt,
daß der aperiodische Grenzfall vorliegt. Bestimmen Sie die Zeit, die das Instrument
braucht, um 99% des Endausschlages zu erreichen.
Wie groß ist in einem ballistischen Galvanometer die Anfangswinkelgeschwindig-
keit, wenn durch die Spule aus n = 5000 Windungen mit der Querschnittfläche
A = 12,5 cm2 ein Stromstoß von 10-7 As hindurchgeht? Die Feldstärke beträgt
H = 106 A m-1 , das Trägheitsmoment J = 2,5 • IO-5 kg m2 .
Berechnen Sie zur vorangegangenen Aufgabe den Maximalausschlag und die Ein-
stellzeit, wenn die Dämpfungskonstante gleich b = 1,2 • IO-6 kg m2 s-1 , die Winkel-
richtgröße D = 8,8 • 10-6 kg m2 s-2 ist.
Bestimmen Sie für ein ballistisches Galvanometer die Auslenkung, den maximalen
Ausschlag und die Einstellzeit im aperiodischen Grenzfall.
Bestimmen Sie den Zeigerausschlag bei einem Spiegelgalvanometer im Falle
b 2 < 4JD. Welchen Ausschlag relativ zum Endausschlag erreicht dieses Galvano-
meter im Grenzfall b -> 0 nach einer Schwingungsperiode ?
Berechnen Sie die Meßauslenkung und die Einstellzeit für ein Galvanometer mit
den folgenden Daten: J = 7,2 • 10-6 kg m2 , D = 2,4 • 10~5 kg m2 s~2 , 0 F = 0,13 Vs,
5 = 6 -  IO-8 kg m2 s-1 . Der Strom ist gleich I = 10 A.
Kriechgalvanometer oder Flußmesser. Um den magnetischen Fluß durch eine
Spule zu messen, verwendet man das Kriechgalvanometer, das langsame Feld-
änderungen genau anzeigt. Es besitzt einen kleinen inneren Widerstand, der eine
große elektromagnetische Dämpfung bedingt. Das rücktreibende Richtmoment ist
sehr klein und kann während des kurzzeitigen Stromstoßes, der mit dem Aufbau
des magnetischen Feldes verbunden ist, vernachlässigt werden. Dagegen ist es für
den Rückstellvorgang zu beachten. Die Massenträgheit kann gegen das große
Dämpfungsglied während des gesamten Meßprozesses vernachlässigt werden.
Bestimmen Sie für ein Kriechgalvanometer die Meßauslenkung im Falle
b = 6,5 • 10-4 kg m2 s-1 , 0 F = 4 • 10-3 Vs, D = 1,3 • 10-6 kg m2 s-2  . Nach welcher
Gleichung geht ohne zusätzliche äußere Einwirkung der Rückstellprozeß vor sich?
Der Stromstoß ist gleich

f I dZ = 4,5 • IO"3 As.

In einer Aufhängung mit der Richtgröße k = 8 ♦ 10-4 kg s-2 befindet sich ein
Drahtring mit dem Radius R = 20 cm, der vom Strom I = 0,1 A durchflossen
wird. Parallel dazu im Abstand xQ = 2 cm fließt ein Strom der Stärke I o = 1 A .
Berechnen Sie die Endauslenkung der elastischen Aufhängung. Wie lautet die
Differentialgleichung zur Beschreibung des Auslenkvorganges?
Saitengalvanometer. Ein Draht der Länge Z = 10 cm ist in einem Magnetfeld der
Stärke H = 105 A m-1 senkrecht zur Feldrichtung ausgespannt. Er befindet sich

A 3.2.5.
A 3.2.6.

A 3.2.7.*

A 3.2.8*

A 3.2.9.

A 3.2.10.

A 3.2.11.

A 3.2.12.

A 3.2.13.

A 3.2.14.*

A 3.2.15.

A 3.2.16.
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in einer Anordnung mit der Richtgröße k = 2,0 • 10-3 kg s-2 . Stellen Sie die Diffe-
rentialgleichung für den Auslenkvorgang auf, wenn durch den Draht ein Strom
der Stärke 1=1  mA fließt. Wie groß ist die Endauslenkung ?

3.3. Eigenschaften stationärer Ströme — Kirchhoffsche Gesetze

Einführung

Stationäre Ströme verhalten sich wie inkompressible Flüssigkeiten. An die Stelle
des Druckes tritt die Spannung oder Potentialdifferenz, während die Flüssigkeits-
menge durch die elektrische Ladung zu ersetzen ist. Das folgt aus den MAXWELLSchen
Gleichungen (3.1./1) bis (3.1./4) für das stationäre Feld:
Nach (3.1./5) ergibt sich aus (3.1./1) die Existenz eines skalaren Potentials

@ = — grad 0 .

Dieses kann bei der Integration in (3.1./ 1) eingeführt werden. Dabei erhält man unter
Anwendung des STOKESschen Satzes (1.3./10) wegen rot @ = 0

J J rot @ • d9I = (ß @ • d3 = — (ß grad 0 • dg = 0 .  (2)
a c c

Das Integral über einen geschlossenen Stromkreis C läßt sich in Teilabschnitte zer-
legen, die sich aus dem Aufbau des Stromkreises ergeben (vgl. Bild 3.7) :

Bild 3.7. Geschlossener Stromkreis

Pn

(ß grad 0 • d£ = J* grad 0 • d§ +• • • • + J grad 0 • d£ = 0 .
C Po Pn-!

(3)

Daraus folgt, wenn die Integrationen ausgeführt werden,

(0px — 0p o ) + (0p 2 — 0p x ) + • • • + (0p n — &Pn-i) — 0
bzw.

(4)

(5)

Gleichung (5) enthält das erste Kirchhoffsche Gesetz der Stromverzweigung: In jedem
geschlossenen Stromkreis ist die algebraische Summe der Potential differenzen
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zwischen den einzelnen Abschnitten gleich Null. Die Potentialdifferenzen setzen sich
aus eingeprägten Spannungsquellen (Batterien, Maschinenspannungen) und ohm-
schen Spannungsverlusten

A i = -U i = -R i I (6)

zusammen. In der Wechselstromtechnik tritt dazu die induzierte Spannung.
Durch die MAXWELLsche Gleichung (3.1./2) wird die Quellenfreiheit des Stromfeldes 3
zum Ausdruck gebracht :

div 3 = div rot Q = 0 . (7)

In Verbindung mit dem GAUSSschen Satz (1.3./ 17) ergibt sich daraus durch Inte-
gration

jy /d iv3d7  = $S-d9 l  = 0 .  (8)
AV A

Betrachtet man eine Stromverzweigung gemäß Bild 3.8, so kann um den Verzwei-
gungspunkt P eine geschlossene Fläche A gelegt werden. Für die einzelnen durch
diese Fläche A hindurchtretenden Ströme gilt nach (8)

Entsprechend der Festlegung in 1.3. sind in (9) alle aus dem betrachteten Volumen V
austretenden Ströme positiv, alle eintretenden Ströme negativ zu zählen.
Gleichung (9) bringt das zweite Kirchhoffsche Gesetz der Stromverzweigung zum
Ausdruck: An jedem Verzweigungspunkt ist die algebraische Summe der Ströme
gleich Null, bzw. der Betrag aller zufließenden Ströme ist gleich dem Betrag aller
abfließenden Ströme.

Beispiel 9
Betrachtet wird eine Verzweigung in zwei parallele Ströme nach Bild 3.9. Das erste Kirchhoff-
sche Gesetz (5) fordert, daß die Summe der Potentialdifferenzen über jeden der beiden möglichen
Stromwege verschwindet. Hieraus folgt, daß die Potentialdifferenz zwischen den beiden Punkten
A und B unabhängig von der betrachteten Stromleitung sein muß :

~ ®a = U ab = RJi = B 2I 2 - (10)
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Das zweite KiRCHHOFFsche Gesetz besagt, daß die algebraische Summe aller Ströme im Punkte B
gleich Null sein muß :

- - 1  1 = 0 .  (11)

Bild 3.9. Ströme und Widerstände in einer
Stromverzweigung

(10) und (11) bilden ein Gleichungssystem zur Bestimmung der unbekannten Ströme undZ2 .
Aus diesem erhält man

I = j = (12)1 äj+ä/  2 r 1 + r 2

Für das Verhältnis der Verzweigungsströme folgt daraus

(12a)

d. h., diese verhalten sich wie die Leitwerte.

Probleme

3.3.1. Änderung des Meßbereiches eines Amperemeters durch Nebenschluß

Ein Strommeßgerät hat einen Meßbereich bis zu 25 pA. Sein Innenwiderstand beträgt R = 8,2 k£l .
Der Meßbereich soll auf 500 pA erweitert werden. Wie groß muß hierzu der Nebenschlußwider-
stand .Rsh (Shunt) sein (vgl. Bild 3.10)?

Bild 3.10. Nebenschlußwiderstand l?sh

Lösung
Aus den KiRCHHOFFschen Gesetzen (3.3./5) und (3.3./9) folgt nach (3.3./10) und (3.3./11)

Ii-Ri — I R = 0 ,  -Ii + I2 = 1 • (1)



1593.3. Eigenschaften stationärer Ströme — KiRCHHOFFSche Gesetze

In diesem Gleichungssystem ist R ± = 8,2 kQ bekannt. Wir setzen = 25 jzA, I = 500 pA und
erhalten damit im Gleichungssystemn(l) als Unbekannte die beiden Größen R 2 und - 2- 2 wird
aus der zweiten Gleichung (1) berechnet und ergibt

Z2 = I - A = (500 - 25) pA = 475 (zA. (2)

Mit diesem Wert folgt aus der ersten Gleichung (1)

Q _ 431|8Q . (s ,sh 2 / ä 475 • IO-6

Die Erweiterung des Meßbereiches auf 500 pA wird durch einen Nebenschlußwiderstand von
431,5 Q bewirkt. Bei einem kleineren Widerstand verringert sich der Strom durch das Ampere
meter. Dagegen führt ein größerer Widerstand dazu, daß die obere Grenze des zulässigen Stromes
durch den Hauptschlußwiderstand überschritten und das Meßgerät damit zerstört wird. (3) stellt
somit die obere Grenze der zulässigen Nebenschlußwiderstände dar.

3.3.2. Verwendung des Strommeßgerätes als Spannungsmesser
Es soll der Spannungsabfall längs eines Widerstandes R ± gemessen werden. Dazu steht ein Ampere-
meter mit einem Meßbereich bis zu l 0Max = 25 [zA und einem Innenwiderstand von R = 8,2 kQ
zur Verfügung. Zur Messung wird das Gerät im Nebenschluß gemäß Bild 3.11 geschaltet. Be-
rechnen Sie, welchen Vorschaltwiderstand Ry man am Instrument anzubringen hat, wenn die
auftretende Spannung Werte von maximal U = 1,5 V erreicht.

Lösung
Nach der aus dem ersten KiRCHHOFFschen Gesetz (3.3./5) folgenden Beziehung (3.3./10) sind die
Potentialdifferenzen über die beiden möglichen Stromwege gleich. Es gilt daher (vgl. Bild 3.11)

Ul = R1I 1 = (Ry + R) Zo . (1)

Bild 3 . 1 1 . Vorschaltwiderstand R y

Hieraus erhält man

J _ . u
0 ~ P "l"p P ~ J 0Max.  WZly -j- ZI zty Zt

Wir lösen in (2) nach dem Vorschaltwiderstand Ry auf und erhalten

- Ä .  (3)
■*0Max

Mit den vorgegebenen Zahlen folgt

1?V = ( — — ------- 8,2 ■ 103 ) £1 = 51,8 • 103 Q.v \25 • IO“6 /
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Durch Vergrößerung des Vorschaltwiderstandes wird der durch das Meßgerät fließende Strom
verringert. Die berechnete Größe R v stellt also den Mindestwert des vorzuschaltenden Wider-
standes dar.

3.3.3. Wheatstonesche Brücke
Zur Messung des unbekannten Widerstandes R x wird dieser gemäß1 Bild 3.12 in eine Wheatstone-
sche Brücke geschaltet. Diese enthält einen homogenen Meßdraht der Länge l = 1 m . An seine
Enden wird eine kleine Meßspannung gelegt. Parallel zum Meßdraht werden der unbekannte
Widerstand R x und ein bekannter Widerstand R = 500 Q in Reihe geschaltet. An den Meßdraht

Bild 3.12. WnEATSTONEsche Brücke

wird ein Schleifkontakt gelegt, der mit dem Punkt A zwischen den beiden Widerständen R x und R
verbunden wird. Das Amperemeter in dieser Brücke zeige die Spannung Null für y = 18,5 cm.
Berechnen Sie daraus den Wert des unbekannten Widerstandes R x ,

Lösung
Zwischen den Punkten A und B besteht im allgemeinen eine Potentialdifferenz. Wird diese gleich
Null, so ist der Spannungsabfall längs der Meßstrecke y gleich dem Spannungsabfall längs des
unbekannten Widerstandes R x , Es gilt dann

U x = R X I 1 — — AAI . (1)
y

Dabei gibt 1/y den spezifischen Widerstand, AA den Querschnitt des Meßdrahtes an.
Ebenso folgt

U2 = RI 1 = 4AI 2 . (2)
7

Wir dividieren (1) durch (2), wobei der Drahtquerschnitt, der spezifische Widerstand und die
Ströme herausfallen:

bzw. R x = —R.  (3)
R l—y  x l - y

Mit den gegebenen Werten folgt

R_ = 1 ® . 500 Q = 113,5Q.x 81,5
Die Meßgenauigkeit hängt maßgeblich von der Homogenität des Drahtes und von der Genauig-
keit des Amperemeters in der Brücke ab.
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3.3.4. Widerstand des Halbraumes bei Verwendung eines Oberflächenerders
Zur Erdung eines Strahlungsempfängers wird eine metallische Halbkugel in die Erde ein-
gegraben, so daß die Durchmesserebene mit der Erdoberfläche abschließt (vgl. Bild 3.13). Der
Radius der Halbkugel ist r0 = 25 cm . Mit dieser Erdung wird als Ausbreitungswiderstand des

Bild 3.13. Oberflächenerder

Halbraumes bzw. als Erdwiderstand die Größe R = 12 Q gemessen. Berechnen Sie daraus den
spezifischen Leitwert des umgebenden Bodens.

Lösung
Wir berechnen zunächst den Halbraumwiderstand bei Verwendung der Halbkugel als Erder.
Dazu ergänzen wir den Halbraum mit seinen Stromlinien spiegelbildlich zum Vollraum, die
Halbkugel zur Vollkugel. Die Leitfähigkeit bei Ausbreitung des Stromes in den gesamten Raum
ist doppelt so groß wie die Leitfähigkeit bei Stromausbreitung in den Halbraum.
Für den gesamten durch die Kugel fließenden Strom 21 können wir nach dem zweiten Kirch-
HOFFschen Gesetz (3.3./9) schreiben

21 = ff 3 .  dm. (i)
A

3 gibt die Stromdichte, A eine beliebige geschlossene Fläche um den Kugelmittelpunkt an.
Wählt man für A eine Kugelfläche vom Radius r (vgl. Bild 3.13), so folgt durch Auswertung des
Integrals (1)

2 I= |S |47 r r 2 . (2)
Wir lösen diese Gleichung nach der Stromdichte 3 au f und verwenden gleichzeitig das OHMsche
Gesetz :

ßW | =y  |@ W | =_L  (3)
27TF2

Zwischen zwei Kugelschalen mit den Radien rr und r2 besteht die Potentialdifferenz

r r  L j 1 1 I 1 i \ MX

J 2ny J r2 2 ! r2 )

Läßt man r2 über alle Grenzen wachsen und wählt für den Radius der Halbkugel, so erhält
man damit den Widerstand des Halbraumes:

R = y = • (5)

Er ist doppelt so groß wie der Widerstand einer Vollkugel.
Aufgelöst nach der Leitfähigkeit y folgt

y=— — . (6)

1 1 Schilling, Felder
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Mit den vorgegebenen Zahlen erhalten wir

1
2k • 0,25 • 12

Q- 1 m-1 = 5,3 • 10-2 Q -1 m-1
7 =

bzw. für den spezifischen Widerstand des Bodens

— = 19,0 Q m = 1,9 • 107 Q mm2/m.
7

Wie man aus (5) erkennt, kann der gesamte Erdwiderstand gleichwertig durch einen zylindrischen
Leiter ersetzt werden, dessen Länge gleich dem Kugelradius und dessen Querschnitt gleich der
halben Kugeloberfläche ist.

A Aufgaben

A 3.3.1. Ein Amperemeter hat einen Meßbereich von 0,1 bis 10 mA. Sein Innenwiderstand
ist gleich 1,5 kQ. 'Welcher Nebenschlußwiderstand R&h ist anzubringen, wenn der
Meßbereich bis zu 1 A erweitert werden soll?

A 3.3.2. Ein Amperemeter gestattet Messungen bis zu 100 mA. Sein Innenwiderstand be-
trägt = 9,5 kQ . Um den Meßbereich zu erweitern, wird ein Nebenschlußwider-
stand .Rsh = 250 Q angebracht. Welche Ströme können damit gemessen werden?

A 3.3.3. Welcher Vorschaltwiderstand ist in der vorangegangenen Aufgabe anzubringen,
wenn mit dem Meßgerät im Nebenschluß Spannungsabfälle bis zu U = 10000 V
gemessen werden sollen?

A 3.3.4. Mit einer WnEATSTONEschen Brücke wird ein Widerstand R x gemessen. Der
homogene Meßdraht hat die Länge l = 50 cm . Potentialausgleich erfolgt für
y = 14,4 cm . Der bekannte Widerstand befindet sich auf der entgegengesetzten
Seite der Meßbrücke und ist gleich R = 250 Q .  Wie groß ist

A 3.3.5. Berechnen Sie den Erdwiderstand für einen Boden des mittleren spezifischen Wider-
standes 1/y = 8 • 107 Qmm 2/m, wenn in diesen eine metallische Halbkugel mit
dem Durchmesser 2r0 = 50 cm eingegraben wird.

3.4. Elektrische Ströme und gleichmäßig bewegte Ladungen in Gasen
und im Hochvakuum

Einführung

Die MAXWELLschen Gleichungen gestatten keine Aussage über die Träger der
Elektrizität. Elektrische Erscheinungen, die auf den Struktureigenschaften der
Elektrizitätsträger beruhen, werden durch die MAXWELLSche Kontinuumstheorie
nicht erfaßt.
Zu diesen Erscheinungen gehören insbesondere die Gesetze der Elektrizitätsleitung
in Gasen, Flüssigkeiten und festen Körpern. Ihre Deutung erfolgt auf Grund einer
atomistischen Theorie.
Durch die Messung der transportierten elektrischen Ladung und aus der Ablenkung
elektrischer Ströme in elektrischen und in magnetischen Feldern werden genaue
Aussagen über die Ladungsträger möglich.
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Die Elementarladung e läßt sich nach der in 3.4.1. dargestellten Schwebemethode
von Millikan bestimmen. Dabei wird die konstante Geschwindigkeit einer aus
wenigen Elementarladungen bestehenden elektrischen Ladung im elektrischen Feld
beobachtet ; es liegt also der Grenzfall eines stationären Stromes vor.
Zur Messung der Elektronenmasse betrachtet man die Ablenkung von Katoden- oder
ß-Strahlen durch ein elektrisches und ein senkrecht dazu gerichtetes magnetisches
Feld (vgl. 3.4.2.).
Die für Leitungsvorgänge wichtigsten Träger positiver Ladungen sind die Ionen, die
in Kanalstrahlen auftreten. Ihre Masse kann aus der Strahlablenkung in parallel
gerichteten elektrischen und magnetischen Feldern bestimmt werden (vgl. 3.4.3.).

p Probleme

3.4.1. Millikan-Versuch
Zur Messung der elektrischen Elementarladung sprüht man nach Millikan Öltröpfchen zwischen
die Platten eines Kondensators (vgl. Bild 3.14). Durch den Sprühvorgang werden die Tröpfchen
mit einer oder mehreren elektrischen Elementarladungen versehen. Ein Lichtstrahl macht die
Öltröpfchen sichtbar, so daß ihr Steigen und Fallen unter dem Einfluß des elektrischen Feldes
und der Schwerkraft mit einem Meßfemrohr beobachtet werden kann.

Bild 3.14. Kräfte auf eine Ladung q beim
MiLLiKAN-Versuch

Die Messung mit dem in Richtung der Schwerkraft eingeschalteten elektrischen Feld der Stärke
E = 106 V m-1 ergibt bei der Beobachtung über eine längere Zeit die Fallgeschwindigkeit

= 1,930 mm s“1 . Dagegen erhält man bei dem entgegen der Schwerkraft eingeschalteten Feld
gleicher Stärke die Fallgeschwindigkeit v2 = 2,551 mm s-1 . Berechnen Sie daraus die Ladung
des Teilchens (0 = 9,81ms-2 , Dichte des Öls q = 0,915 g cm-3 , dynamische Viskosität der
Luft 7] = 1,819 • 10-5 N s m-2 ) .

Lösung
Wir betrachten zunächst die Bewegung des Öltröpfchens unter dem Einfluß von Schwerkraft
und Reibung. Die Schwerkraft ist durch

4
F$ = mg = — TW*Qg (1)

o
gegeben. Für die Reibungskraft gilt das STOKESsche Gesetz

Fr = —&w]rvQ , (2)
wobei v0 die konstante Geschwindigkeit des Teilchens angibt. Aus der Gleichgewichtsbedingung
Fs + Fr = 0 erhalten wir durch Auflösen nach v0

11*
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In dieser Gleichung ist nach Messung der Fallgeschwindigkeit v0 nur der Radius des beobachteten
Teilchens unbekannt, der somit bestimmt werden kann.
Mit eingeschaltetem elektrischem Feld folgt anstelle von (1) für die resultierende Kraft

4
FG = — nr'eg + qE, (4)

wobei q die Ladung des Tröpfchens angibt. E ist positiv, wenn das Erdschwere- und das elektrische
Feld gleichgerichtet sind, negativ, wenn beide Felder einander entgegen wirken.
Wir bezeichnen mit (i = 1, 2) die Tröpfchengeschwindigkeit im Falle des eingeschalteten
elektrischen Feldes, tritt in (2) an die Stelle von v0 . Aus der Gleichgewichtsbedingung

= 0 folgt durch Auflösen nach

qE
= + “ ------ • (5)

Die Messung von vQ bei abgeschaltetem elektrischem Feld und von bei bekannter Feldstärke E
liefert zwei Gleichungen zur Bestimmung der beiden Unbekannten r und q.
Im vorliegenden Fall wurden v± und gemessen. Nach (5) sind diese Größen durch

gegeben. Wir addieren diese beiden Gleichungen, berücksichtigen (3) und lösen nach r auf.
Damit erhalten wir

r _ 3 -] Afa + t>2 ) .

Subtrahieren wir dagegen (6) von (5) und setzen in den sich ergebenden Ausdruck (7) ein, so
folgt durch Auflösen nach der Ladung

3

9 2 i A + v2

2 1 1 y eg (4>1 l’a) ’
(8)<1 =

Mit den vorgegebenen Zahlen erhalten wir

3

= 9rc • (1,819 • 10~5 ) 2 4,481 -IQ-3 . As=  . 10 _19 c
n 0,915 . 103 • 9,81 k 7
2 • 106

Zur Messung der Elementarladung e wird eine große Zahl von Öltröpfchen beobachtet. Dabei
stellt man fest, daß sämtliche Ladungen q als ganzzahliges Vielfaches einer Elementargröße e
geschrieben werden können :

q = Ze.  (9)

Genaue Messungen in der beschriebenen Art ergeben e = 1,602 • 10-19 As. Das Elektron hat
die Ladung — e = —1,602 • 10-19 As.
Im vorliegenden Fall trägt das Öltröpfchen somit 3 Elektronenladungen.
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3.4.2. Messung der spezifischen Elektronenladung
mit dem Braunschen Katodenstrahlrohr

Es soll das Verhältnis zwischen der Elementarladung e und der Elektronenmasse bestimmt
werden. Zu diesem Zweck untersucht man in einer BRAUNschen Röhre nach Bild 3.15 die Ab-
lenkung eines Elektronenstrahles durch ein senkrecht dazu gerichtetes elektrisches Feld (£'. Die
Elektronen durchlaufen dabei einen Kondensator der Länge ZK , durchqueren einen feldfreien
Raum und treffen danach mit dem Achsenabstand qz auf einen Leuchtschirm S. Der Abstand
zwischen der Austrittsstelle aus dem elektrischen Feld und dem Leuchtschirm ist gleich Z s .

Ablenkungsraum

+ o---------- — --------------

Bild 3.15. BRAUNsche Röhre

Die Ablenkung hängt außer von der elektrischen Feldstärke @ von der Geschwindigkeit v0 der
Elektronen beim Eintritt in das elektrische Feld ab. Diese ist in der Regel nicht bekannt. Um sie
festzustellen, setzt man den Elektronenstrahl zusätzlich einem magnetischen Feld § aus. Es ist
so gerichtet, daß es der Auslenkung durch das elektrische Feld @ entgegenwirkt. Seine Größe
wird derart geregelt, daß sich die auslenkenden Kräfte des elektrischen und des magnetischen
Feldes gerade aufheben, der Strahl also genau wieder in der Achse verläuft.
Berechnen Sie die spezifische Elektronenladung, wenn folgende Meßdaten vorliegen: ZK = 5 mm,
Zs = 25 cm, = 3,71 cm, E = 1000 V m-1 , H = 325 A m-1 .
Welcher Wert ergibt sich für die Elektronenmasse, wenn e = 1,602 • 10~15 As bekannt ist?

Lösung
Wir betrachten zunächst den Fall, daß nur das elektrische Feld eingeschaltet ist. Durch dieses
wirkt auf die Elektronen die Kraft = — e@, die zu einer Beschleunigung a führt:

% e = -e& = m e a .  (1)

Diese Beschleunigung ist senkrecht zur Geschwindigkeit Ö beim Eintritt in das homogene elek-
trische Feld des Plattenkondensators gerichtet. Sie überlagert sich auf die Anfangsgeschwindig-
keit, die in der Achsenrichtung liegt. Die Elektronen durchlaufen den Kondensator in der Zeit

(2)
0

Sie verlassen ihn mit dem Achsenabstand

z= l -  a i2 . ( 3)
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Setzen wir (1) und (2) in (3) ein, so folgt

Nach Durchlaufen des Kondensators haben die Elektronen außer der Geschwindigkeitskom-
ponente t) 0 in Achsenrichtung eine Geschwindigkeitskomponente in Richtung des elektrischen
Feldes der Größe

v z = at = ------- (5)

Sie treffen infolgedessen mit der Achsenablenkung

ez = z + v = -L  e. El + 2 (6)
v0 2 m e v0

2

auf den Schirm.
In (6) ist außer m e die Anfangsgeschwindigkeit v0 unbekannt. Um diese zu bestimmen, schaltet
man ein Magnetfeld § ein, das senkrecht zur Anfangsgeschwindigkeit und senkrecht zum elek-
trischen Feld @ gerichtet ist. Nach der LoEENTZ-Gleichung ist die auf ein bewegtes Elektron
durch ein Magnetfeld § wirkende Kraft gleich

Sm = — eö X 55 = — /zoeb X § . (7)

Das Magnetfeld hebt die Auslenkung durch das elektrische Feld gerade auf :

Se + Sm = 0 .  (8)

Dazu muß nach (1) und (7) die Beziehung

E = pQv0 H (9)

gelten.
Mit den vorgegebenen Zahlen folgt aus (9), wenn wir nach v0 auflösen,

1000  1 »AK 1A6 1va = ------------------ m s-1 = 2,45 • 10 6 m s-1 .0 4k • IO“7 • 325

Diesen Wert können wir in (6) einsetzen und nach der spezifischen Ladung auflösen. Es ergibt
sich

e 2 • 3,71 • 10- 2 (2,45 • IO6 ) 2 . 1 t q— = -----  -----------—----------L A s kg“ 1 = 1,76 • 10 11 C kg“ 1 .
1000 • 5 • IO“ 3 • 0,505 & 6

Setzt man e = 1,602 • 10 -?91 As als bekannt voraus, so erhält man für die Elektronenmasse

1,602 - 10~19 kg
1,76 • 10 11 = 9,1 • IO-31 kg .m.
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3.4.3. Messung der spezifischen lonenladung nach Thomson (Parabelmethode)

Bei einer Gasentladung entstehen einfach positiv geladene Ionen, die sich mit unterschiedlicher
Geschwindigkeit bewegen. Um die auftretenden Teilchen zu analysieren, wird ihre spezifi-
sche Ladung e/mj bestimmt lonenmasse). Hierzu werden die Teilchen in Form eines
Massenstrahles durch ein Ablenksystem geleitet. Dieses besteht aus einem homogenen elek-
trischen Feld @ und einem parallel dazu gerichteten homogenen magnetischen Feld (£ und §
stehen senkrecht zur Strahlrichtung beim Eintritt in das Ablenksystem (vgl. Bild 3.16). Die Ab-
lenkung ist für die einzelnen Teilchen verschieden und hängt von ihrer Anfangsgeschwindig-
keit v0 ab. Nach Durchlaufen des Ablenksystems treffen die Teilchen auf eine Photoplatte, wo
ihre Spur sichtbar gemacht werden kann. Sie hat die Form einer Parabel.

Bild 3.16. THOMSONsche Parabel -
methode. M Magnetpole, P Konden-
satorplatte

Der Leuchtschirm habe vom Eintrittsspalt den Abstand l = 30 cm. Die elektrische Feldstärke
betrage E = 106 V m-1 , die magnetische H = 8 • 105 A m-1 . Auf der Photoplatte ergebe sich als
Spur der abgelenkten Teilchen die Parabel

y2 = Cx (1)
mit

C = 0,126 m.  (2)

Berechnen Sie daraus die spezifische lonenladung

Lösung

Auf die bewegten, mit einer positiven elektrischen Elementarladung versehenen Teilchen wirkt
nach der LoRENTZ-Gleichung (3.2./1) die Kraft

g = e (@ + vx53). (3)

Wir wählen die Richtung der Anfangsgeschwindigkeit als z-Achse, die Richtung der beiden
Felder als x- Achse. Bei positiven Ionen führt somit das elektrische Feld zu einer Ablenkung in
Richtung der x- Achse, dagegen das Magnetfeld zu einer Ablenkung in Richtung der y-Achse.
Für die Ablenkung x durch das elektrische Feld erhalten wir nach (3)

x=  — a xt 2 = — — t«.
2 x 2 otj (4)
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ax bedeutet die Beschleunigung durch das elektrische Feld, t bezeichnet die Zeit, gerechnet vom
Eintritt des Teilchens in das Ablenksystem.
Um vom Eintrittsspalt bis zur Photoplatte zu gelangen, ist für ein Teilchen mit der Anfangs-
geschwindigkeit v z = vQ die Zeit

0
(5)

erforderlich. Setzen wir diesen Wert in (4) ein, so folgt für die auf der Platte feststellbare Ab-
lenkung in Richtung der a>Achse

eEl2

2mI v0
2

Die Ablenkung in Richtung der y-Achse kann in gleicher Weise bestimmt werden. Aus (3) und (5)
ergibt sich

1 e o- o2 ey Hl2,

2 wij 2mI ?;0

In (6) und (7) ist die Anfangsgeschwindigkeit v0 unbekannt. Wir können diese Größe eliminieren
und erhalten

e y, 2H2l2

wij 2E

Durch Vergleich mit (1) folgt

e
2E

(9) kann nach der spezifischen lonenladung aufgelöst werden. Setzt man den ermittelten Wert (2)
ein, so ergibt sich

e 0, 126-2-  10« . , , .= --------- --------------------- A s kg“ 1 = 2,77 • 106 C kg“1 .
(4k • IO-7 • 8 • 105 • 0,30) 2 ö 6

Bei einfach geladenen Ionen erhalten wir daraus für die relative lonenmasse des Isotops

1 602 . 10-19
= m TN A = — ■ • 6,02 • 1026 = 34,8.1 1 A 2,77 -IO6

Aus Tabellen über die relative lonenmasse entnimmt man, daß es sich bei der betrachteten Sub-
stanz um ein Isotop des Chlors handelt.

A Aufgaben

Berechnen Sie die elektrische Ladung eines Schwebeteilchens, wenn dieses nur unter
dem Einfluß der Schwerkraft die konstante Fallgeschwindigkeit v0 = 9,68 mm s -1
hat, dagegen bei dem in Richtung der Schwerkraft eingeschalteten elektrischen Feld

A 3.4.1.
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E = 5- 105 Vm-1 im Fadenkreuz der Meßanordnung verbleibt = 1,819 • 10~5 Nsm-2 ,
g = 9,81 ms -2  , q = 0,915 g cm-3 ) .

A 3.4.2. Welche elektrische Feldstärke ist erforderlich, um ein Öltröpfchen, das eine elek-
trische Elementarladung trägt, gegen die Schwerkraft unbeweglich im Fadenkreuz
zu halten (q = 0,915 g cm-3 , Teilchenradius r = 1 p.m)?

A 3.4.3. Berechnen Sie die Fallgeschwindigkeit für ein Öltröpfchen, das eine elektrische
Elementarladung trägt. Der Tröpfchenradius ist gleich 10 p.m. Das elektrische Feld
der Stärke E = 106 V m-1 wird einmal parallel, das andere Mal antiparallel zum
Erdschwerefeld gerichtet (t] = 1,819 • 10-5 N s m-2 , g = 9,81 m s-2 , q = 0,915 g cm-3 ) .

A 3.4.4. Welche Geschwindigkeiten ergeben sich in der vorhergehenden Aufgabe, wenn das
Öltröpfchen zwei Elementarladungen trägt?

A 3.4.5. Wie groß ist der Ablenkwinkel a für ein Elektron, das senkrecht zu den Feldlinien
auf ein homogenes Feld der Stärke E = 104 V m-1 trifft und im Feld die Strecke
1 = 1 mm zurücklegt? Die Anfangsgeschwindigkeit des Elektrons beträgt 0,01c.
Wie groß ist die Geschwindigkeitskomponente in Feldrichtung nach erfolgter Ab-
lenkung ?

A 3.4.6. Um den Elektronenradius re abzuschätzen, nimmt man das Elektron als kleine
Kugel an, die mit der Ladung e~ versehen ist. Welcher Wert ergibt sich für r e ,
wenn die potentielle Energie gleich der Ruhenergie des Elektrons gesetzt wird?

A 3.4.7. Zur Messung der spezifischen lonenladung nach der Parabelmethode wird ein
Magnetfeld der Stärke H = 5 • 105 A m-1 und ein elektrisches Feld der Stärke
E = 8 • 105 V m-1 verwendet. Die Länge der Ablenkplatten beträgt l = 35 cm .
Berechnen Sie die von den beiden Isotopen des Chlors erzeugten Parabeln. Wie
groß ist die auf der Photoplatte festzustellende Ablenkdifferenz zwischen den beiden
Parabeln in der Richtung senkrecht zur Anfangsbewegung und senkrecht zum
elektrischen Feld, wenn in Richtung des elektrischen Feldes eine Ablenkung von
5 cm erfolgt? Die relativen Isotopenmassen sind gleich 35,0 bzw. 37,0.

3.5. Grundgesetze der elektrischen Leitung in Flüssigkeiten und festen Körpern

E Einführung

Wird ein Stoff AB in einer Flüssigkeit gelöst, so bildet sich ein Gleichgewicht zwischen
den nichtzerfallenen Molekülen AB und den Ionen A+, B~ aus :

AB A+ + B-. (1)

Bei starken Elektrolyten, z. B. bei NaCl, zerfällt der weitaus größte Teil der Moleküle
in Ionen Na+Cl“. Der Dissoziationsgrad « gibt den Anteil der in Ionen zerfallenen
Moleküle zur Gesamtzahl der gelösten Moleküle an (vgl. Tabelle 3).
Es bezeichne c die Konzentration des gelösten Stoffes, d. h. die Zahl der Kilomol je
Kubikmeter bzw. die Zahl der Mol je Liter. Dann gilt

Darin gibt m* die Masse des gelösten Stoffes, bezogen auf einen Kubikmeter Flüssig-
keit an. M bedeutet die molare Masse (M = M T kg kmoi-1 ). Bei einwertigen Elektro-
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lyten der Form AB A+ + B~ ist die Zahl der Ladungsträger je Kubikmeter gleich

N + =N_==occN k . (3)

Darin bedeutet

A a = 6,0220 • 1026 kmol- 1

die Avogadrosche Zahl.

Dagegen ist bei Elektrolyten A B 2 Z 2A Z1 + + Z x B Zs!- die Zahl der Ladungsträger
durch

A + = Z 2occNk , N- = Z xoccNk (4)
gegeben.

Beispiel 10
HBr hat die relative Molekülmasse 80,9. c = 0,10 mol/1 bedeutet also 8,09 kg je m3 Flüssigkeit.
Der Dissoziationsgrad ist nach Tabelle 3 gleich 0,90. Die Zahl der positiven und der negativen
Ionen je Kubikmeter ist daher in einer zehntelnormalen Bromsäurelösung gleich

= 2V_ = 0,90 • 0,10 • N k kmol/m3 = 0,09 • 6,02 . 1026 m~3 = 5,42 • 1025 m~3 .

Dagegen folgt für H 2CO 3 2H+ + CO3
2- mit a = 0,0017 für c = 0,1 mol/1:

N+ = 2 * 0,001 7 • 0,1 N k kmol/m3 = 2,05 • 1023 ni" 3 ,
= 1 • 0,0017 • 0,1 N k kmol/m3 = 1,02 . 1023 m~3 .

Durch ein von außen angelegtes Feld werden die positiv geladenen Kationen A+ zur
Katode, die negativ geladenen Anionen B“ zur Anode gezogen. Die Elektrizitäts-
leitung durch Flüssigkeiten ist daher mit einem Massentransport verbunden. An der
Anode geben die Anionen B~ ihre Ladung ab, der Stoff B wird abgeschieden. Die
Kationen A+ geben ihre Ladung an der Katode ab, der Stoff A wird abgeschieden.
Bei einfach geladenen Ionen ist der Ausgleich einer Elementarladung mit dem Ab-
scheiden einer Atomgruppe A bzw. B verbunden. Das Abscheiden eines Kilomols
mit einer einwertigen Atomgruppe bedeutet daher, daß zu jeder Elektrode die elek-
trische Ladung

±N k e = ±F (5)

gewandert ist. F wird als Faradaysche Konstante bezeichnet. F hat den Wert

F = 6,0220 • 1026 • 1,6022 • 10~19 As kmol"1 = 9,6485 C kmol- 1 . (5 a)

Beispiel 11
In einer Silbernitratlösung zerfällt das Molekül AgNO3 in die Ionen Ag+ und NO 3- . An der Katode
wird 1 kmol (107,87 kg) Silber abgeschieden, wenn ein Ladungsausgleich von

q = f I d t  = 9,6485 -IO7 As
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erfolgt ist. Es wird somit

M 107,87 kg/kmol < A n— = -------- ----------------- = 1,118 mg As"1

F 9,648 5 • 107 A s/kmol (6)

Silber abgeschieden (mit M = Ä T kg/kmol als molare Masse; A r bezeichnet die relative Atom-
masse).

Allgemein wird die Menge des abgeschiedenen Stoffes durch die FARADAYSchen
Gesetze der Elektrolyse bestimmt (vgl. 3.5.1.). Elektrolytisch abgeschiedene Stoff-
mengen lassen sich sehr genau messen. Aus der Masse des abgeschiedenen Silbers
und seiner relativen Atommasse kann daher nach (3) die Farad AYsche Konstante
F = N k e bestimmt werden. Da e aus dem Millikanversuch 3.4.1. bekannt ist, liefert
die Messung von F gleichzeitig ein Verfahren zur Messung der AvoGADROschen
Zahl N k . Die AvoGADROSche Zahl und die BoLTZMANN-Konstante k = 1,3807 • IO-23

J K -1 sind mit der Gaskonstanten R = 8,314 - 103 J K“1 kmol-1 durch die Beziehung

N k k = R (7)

verknüpft. R ist aus Messungen über die Eigenschaften der Gase genau bekannt.
Die Messung von F bzw. N k liefert somit auch ein Verfahren zur Messung von k.
Seine Messung kann ebenfalls auf spektroskopischem Weg erfolgen (vgl. [25] 4.2.),
wobei sich genaue Übereinstimmung der auf zwei völlig verschiedenen physikalischen
Wegen abgeleiteten Größen ergibt.
Bei den elektrischen Leitungsvorgängen in Flüssigkeiten und festen Körpern be-
wegen sich positive und negative elektrische Ladungen unter dem Einfluß eines elek-
trischen Feldes. Es bezeichne N+ die Zahl der Träger positiver Ladung je Raumeinheit,
N- die entsprechende Zahl der Träger negativer Ladungen. Z+ und Z_ kennzeichnen
die Zahl der Ladungen je Ladungsträger. t) + bzw. b-  geben die mittleren Driftgeschwin-
digkeiten der Ladungsträger unter dem Einfluß des elektrischen Feldes an. Sie sind
klein gegen die mittleren Geschwindigkeiten der Teilchen und dürfen mit diesen
nicht verwechselt werden (vgl. 3.5.2. und 3.5.3.).
Für die von den positiven bzw. negativen Ladungsträgern verursachte elektrische
Stromdichte gilt

k = W+ Z+eb + , j_ = — N-Z-e . (8)

Die resultierende Stromdichte ist gleich

s = j+ + j- = UV+ Z+ b + — V_Z_ö_) e .  (9)

Dabei ist zu beachten, daß die Geschwindigkeiten b + und einander entgegen-
gerichtet sind. Nach dem OHMschen Gesetz besteht die Beziehung

3 = /® .  (10)

Im folgenden wird vorausgesetzt, daß die elektrolytische Substanz in der Flüssigkeit
nur. in sehr geringer Konzentration vorhanden ist. Die Geschwindigkeit der Ladungs-
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träger wächst dann proportional dem äußeren elektrischen Feld. Sie ist bei positiven
Ladungen dem äußeren Feld gleich-, bei negativen Ladungen dem äußeren Feld
entgegengerichtet. Man schreibt daher

■0 + =b + &, (11)

und definiert die Skalare b+ bzw. b_ als Beweglichkeit der Ladungsträger. Durch Ein-
führen von (11) in (8) folgt

x 3 = (N+ Z+b+ + N_Z_b_) e®. (12)

Die Leitfähigkeit ist also nach dem OnMschen Gesetz (10) durch

y = (N+Z+b+ + N_Z_bJ e (13)

gegeben. Bei nach außen hin neutralen Lösungen ist

N+ Z+ =N_Z_=NZ,  (14)

so daß man anstelle von (13) die Gleichung

y = NZ(b+ + &_) e (15)

erhält.
Die Messung der Leitfähigkeit eines Stoffes liefert nach (15) nur die Summe der Be-
weglichkeiten aller Ladungsträgersorten. Um die Beweglichkeit einer lonenart zu
bestimmen, ist es erforderlich, den von ihr verursachten elektrischen Strom un-
abhängig von den anderen Ionen zu bestimmen bzw. die Stromdichte einer lonenart
im Verhältnis zur gesamten Stromdichte festzustellen. Das geschieht am einfachsten
nach der Methode der wandernden Grenzschicht (vgl. 3.5.2.). Aus diesen Messungen
ergibt sich nach (8), (10) und (11), wenn man (14) berücksichtigt,

Das Verhältnis (16) wird nach Hittorf als relative Überführungszahl der positiven
Ionen bezeichnet. Wie aus (16) hervorgeht, ist die Summe der relativen Überführungs-
zahlen gleich eins.
Die Beweglichkeit eines Ions hängt nur im Grenzfall unendlicher Verdünnung von
ihm allein und dem Lösungsmittel ab. Bei endlicher Konzentration wirken sämtliche
beteiligten Reaktionspartner auf die Beweglichkeit eines Ions mit. Infolgedessen
stellen die abgeleiteten Formeln nur erste Näherungen dar.
In Tabelle 4 sind die Beweglichkeiten verschiedener Ionen zusammengestellt. Sie
werden üblicherweise auf die Farad AYsche Konstante bezogen. Die absoluten Zahlen
erhält man daraus nach Beispiel 12 im Anschluß an Tabelle 4.
In festen Körpern, insbesondere bei den metallischen Leitern, erfolgt die Elektrizi-
tät sleitung im wesentlichen durch Teilchen einer Sorte, in der Regel durch Elektronen.
Die elektrische Stromdichte wird für Elektronen nach (9) durch

3 = = Neb = Neb&, (17)
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die elektrische Leitfähigkeit nach (10) und (11) durch

y = Neb (18)
dargestellt, b ist in (17) dem Elektronenstrom entgegen, dem elektrischen Feld
parallel gerichtet. N bezeichnet die Zahl der Teilchen je Raumeinheit.
Im Gegensatz zur Elektrizitätsleitung durch Flüssigkeiten ist bei festen Körpern die
Zahl der Ladungsträger N nicht bekannt. Da auch die Beweglichkeit b der Ladungs-
träger nicht bekannt ist, liefert die Messung der Leitfähigkeit auch bei festen Körpern
nur eine Gleichung für zwei Unbekannte. Eine zweite Gleichung zur Bestimmung
von N und b ergibt sich aus der Ablenkung des Elektronenstroms durch ein magne-
tisches Feld. Die hierauf beruhende physikalische Erscheinung bei der Elektrizitäts-
leitung in festen Körpern wird als Hall-Effekt bezeichnet. Der HALL-Effekt wird
in 3.5.5. behandelt.
Wie die Messung der elektrischen Leitfähigkeit und des HALL-Effektes zeigt, ist bei
einer Reihe von Metallen, z. B. bei Kupfer und bei Silber, die Zahl der Leitungs-
elektronen genähert gleich der Zahl der Atome. Dagegen zeigen andere Metalle,
z. B. Wismut, ein Differieren um Größenordnungen zwischen den genannten Größen
(vgl. Tabelle 5).

Tabelle 3. Dissoziationsgrad a bei Zimmertemperatur
Säuren und Laugen

Stoff Konzentration c
in mol l-1

(X

HBr 0,1 0,90
h 2co3 0,1 0,0017
Ca(OH) 2 0,1 0,90
HCl 1 0,78
KOH 1 0,77
NaOH 1 0,73

Salze

Stoff c in mol l-1 0,1 0,01 0,001

A+B- (z. B. KCl) 0,83 0,93 0,98
A++ (B-) 2 (z. B. BaCl 2 ) 0,75 0,87 0,95
(A+) 2B- (z. B. K 2SO4 ) 0,75 0,87 0,95
A++B— (z. B. BaSO 4 ) 0,40 0,65 0,75

Tabelle 4. lonenbeweglichkeit b bei unendlicher Verdünnung

Ion b in
Q-imSkmol-1 F- 1

Ion b in
Q -1 

m 2 k mo l-i

H+ 315 OH- 174
Na+ 42,6 F- 47,6
K+ 63,7 ci- 66,3
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Fortsetzung Tabelle 4

Ion b in
fl -1 m2 kmol -1 F -1

Ion b in
Q -1 m2 kmol-1 F -1

Cs+ 66,8 Br - 68,2
Ag+ 53,2 J - 66,8
Cu++ 45,3 C1O 3- 55,8
Zn++ 45 BrO 3 49
Fe++ 45 no 3- 62,6
Fe+++ 61 ch 3coo- 35
Ca++ 50,4 so4— 68,7

Beispiel 12
Es soll die Beweglichkeit der Kalium-Ionen bestimmt werden. Aus

& K = 63,7 Q -1 m2 kmol-1 F -1

folgt mit F = 9,65 • 107 As kmol-1

63 7 V — A IzT'nnl —
&K = — = 0,66 • 10 - * m/s V m-1 = 0,66 • IO-6 m2 V-1 s-1 .

9,65 • 107 As kmol-1

Das bedeutet: In einem Feld der Stärke 103 V m-1 driften die Ionen in einer Sekunde um die
Strecke 0,66 mm in Feldrichtung.

p Probleme

3.5.1. Faradaysche Gesetze der Elektrolyse

An eine stark verdünnte Lösung von CuSO4 wird eine elektrische Spannung gelegt, wodurch es
an der Katode zur Abscheidung von Kupfer kommt. Die Abscheidung erfolgt über eine Zeit
von t = 1 h ,  wobei die konstante Stromstärke I = 10 A aufrechterhalten wird. Wie groß ist die
Menge des abgeschiedenen Kupfers (A Cu = 63,54, ZCu = 2)? Welche Menge wird abgeschieden,
wenn die Lösung ein Chromsalz enthält (A Cr  = 52,00, ZCr  = 3)?

Lösung

Die Moleküle des gelösten Salzes setzen sich aus den Z-fach positiv geladenen Kationen und den
Z-fach negativ geladenen Anionen zusammen. Im vorliegenden Fall werden die Kationen von
den zweifach positiv geladenen Kupferionen Cu++ repräsentiert, die Anionen von der Gruppe
SO4 . Unter dem Einfluß des elektrischen Feldes wandern die Kationen zur Katode, die Anionen
zur Anode. Dabei trägt jede positive elektrische Ladung e+ die Masse

MAm = —— ,

wobei M = A r kg kmol-1 die molare Masse der Kationen angibt. Durch N Elementarladungen
wird die Masse

(1)

772, = Jv Am = —---- (2)



1753.5. Elektrische Leitung in Flüssigkeiten und festen Körpern

abgeschieden. Die gesamte zur Katode gewanderte Ladung ist mit dem Strom I und der Zeit t
durch die Beziehung

(3)

(4)

(5)

f6)

(7)

Ne = It

gegeben. Wir setzen (3) in (2) ein und erhalten für die abgeschiedene Masse

M T.in = zr-:—
ZN k e

Hierin bezeichnet

N k e = F = 9,6485 • 107 As kmol"1

die FARADAY-Könstante.
Als elektrochemisches Äquivalent definiert man

Mit diesem ergibt sich aus (4) das

1. Faradaysche Gesetz

Mm = leit = — It
ZF

Als Verhältnis der abgeschiedenen Massen bei gleichem Wert It folgt aus (7) bzw. (4) das

2. Faradaysche Gesetz

m 1 _ _ M1 fZ1

®2 2 Af 2/ 2
(8)

Mit den vorgegebenen Zahlen erhalten wir für die Masse abgeschiedenen Kupfers aus (4)

?7zCu = ----63,54: ---- A_ i s -i , iQ . 3600 AsCu 2 • 9,65 • 107 ö

= 0,3293 mg A"1 s“1 • 10 • 3600 As = 11,86 g .

Die Größe &Cu = 0,3293 mg A-1 s-1 bezeichnet das elektrochemische Äquivalent des zweiwertigen
Kupfers.
Für die Masse des abgeschiedenen Chroms ergibt sich aus (8)

mCr  = 5-2 ’°- ' 2 • 11,86 g = 6,47 g .Cr  3 • 63,54 s 8
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3.5.2. lonenbeweglichkeit und relative Überfiihrungszahl
In einem graduierten Rohr (vgl. Bild 3.17) wird eine Lösung aus Kupferchlorid auf eine Lösung
aus Eisenchlorid geschichtet, so daß eine deutlich erkennbare Schichtgrenze entsteht. Die beiden
Lösungen sind an ihrer Färbung deutlich zu erkennen; es können jedoch auch kompliziertere

Bild 3.17. Messung der relativen Überführungs-
zahl in einem graduierten Rohr

optische Beobachtungsmethoden angewandt werden. Bei der Elektrolyse wird ein , Strom von
I = 19,56 mA festgestellt. Das Rohr hat den Querschnitt A = 15,0 mm2 . Die Grenzschicht
wandert in der Zeit At = 254,5 s über eine Strecke von Al = 8,00 cm nach oben. In der Flüssig-
keit von 100 cm3 sind 1,345 g Kupferchlorid gelöst. Für die Leitfähigkeit der Lösung wird der
Wert y = 1,942 Q -1 m-1 gemessen. Welche Werte ergeben sich für die Beweglichkeit der Kupfer-
ionen und für die Beweglichkeit der Chlorionen?

Lösung
Nach (3.5./12) ist die elektrische Stromdichte durch die Gleichung

S = (N+ Z+ 6+ + N_Z_&_)e(g (1)

bestimmt. 3 = i+ + i- setzt sich aus dem Strom j+ der Kationen und dem Strom j_ der Anionen
zusammen. Im Falle N+ Z+ = NJZ_ = NZ ist

j + = NZb + e$ , j_ = NZb_e& . (2)

Das OHMsche Gesetz besagt nach (3.5./15)

y = NZe(b+ +b_) .  (3)

Damit liegt eine Gleichung zur Bestimmung von b + und b_ vor.
Wie die Untersuchung über die wandernde Grenzfläche ergibt, werden in der Zeit At die Ionen
im raumfesten Volumen AV = A Al durch andere ersetzt. Hierdurch entsteht ein lonenstrom
der Stärke
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Andererseits können wir den Strom positiver Ionen durch j+ ausdrücken. Durch Vergleich mit (4)
erhalten wir

= (5)ZJC

Nach (1) kann die elektrische Feldstärke © durch den Gesamtstrom AQ ausgedrückt werden:

|®l = ---------- -------- . (6)1 1 NZ(b+ +bJ)eA

Aus (5) und (6) folgt eine zweite Gleichung zur Bestimmung der lonenbeweglichkeiten:

(7)
b + + 6- I At v 7

Die Zahl der Ladungsträger je Raumeinheit ergibt sich aus der Konzentration c der Lösung
und dem Dissoziationsgrad a :

N + = acN k . (8)

Im vorliegenden Fall ist die relative Molekülmasse gleich 134,5, die Konzentration also c = 0,01 g/1 .
Dem entspricht nach Tabelle 3 der Dissoziationsgrad a = 0,87 . Daraus folgt wegen Z+ = 2

NZ = 2 -  0,87 • O,O11VA = 0,017 42?A .

Wir berücksichtigen WAe = F = 9,648 • 107 As kmol-1 und erhalten aus (3)

1,942 V"1 m2 s- 1 = 0,0174 • 9,648 • 107 (ö+ + &_),

während aus (7)

folgt. Durch Auflösung des Gleichungssystems ergibt sich

45,2 Q -1 m 2 kmol-1 
7 . -b 4. = ------------------------ - -  4,68 • 10-7 m/s V m-1 ,+ F /.

66,4 kl-1 m2 kmol-1

b_ = — -------—----------- = 6,88 • 10-7 m/s V m-1 .

Die Driftgeschwindigkeiten sind also sehr niedrig.

3.5.3. Driftgeschwindigkeit der Elektronen in festen Körpern

An eine Kupferleitung wird die Feldstärke E = 0,1 V m-1 gelegt. Wie groß ist die Driftgeschwin-
digkeit der Elektronen? Kupfer hat die elektrische Leitfähigkeit y = 0,57 • 108 Q -1 m-1 , die
Massendichte q = 8,9 g cm-3 , die relative Atommasse A r = 63,5.

1 2 Schilling, Felder
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Lösung
Infolge des elektrischen Feldes @ führen die Elektronen eine Driftbewegung entgegen der Feld-
richtung aus. Die Driftgeschwindigkeit werde mit = — ö bezeichnet. N gebe die Zahl der
Elektronen je Raumeinheit (m3 ) an. Als Stromdichte folgt

3 = j_ = — = Neb . (1)

Die Zahl N der Leitungselektronen kann angenähert gleich der Zahl n der Atome gesetzt werden,
da ungefähr jedes Kupferatom ein Leitungselektron liefert. Für die Zahl der Atome je Raum-
einheit erhalten wir

71 = — = J1  ? IX  N * ’A r kg kmor 1

wobei m A die Masse eines Atoms angibt.
Die Stromdichte bei bekannter Leitfähigkeit und bekannter Feldstärke folgt aus dem OuMschen
Gesetz

3 = 7®. (3)

Wir denken uns einen homogenen Leiter, dessen Querschnitt gleich der Flächeneinheit ist (1 m2 ).
Der Betrag des Vektors 3 gibt die Ladung an, die in der Zeiteinheit (1 s) einen bestimmten Quer-
schnitt A o des homogenen Leiters passiert :

3 = y . (g = — Aet). (4)

Hieraus erhalten wir für die Driftgeschwindigkeit der Elektronen

ö = 7® _7@ Akg  km°i-i. (5 )

Ne QN Ae

Mit den vorgegebenen Zahlen folgt

0,57 • 108 • 0,1 • 63,5 i a . i  iv = --------------------------------------- m s-1 = 0,41 mm s-1 .
8,9 • 103 • 6,02 • 1026 • 1,6 • IO"19

Auch in festen Körpern ist die Driftgeschwindigkeit also sehr klein.

3.5.4. Ohmsches Gesetz

In einem Kupferblock mit dem Volumen 1 m3 beträgt die Innere Energie der Leitungselektronen
bei 300 K U = 1,69 • 1011 J (vgl. [25] 3.4.1.). Die mittlere freie Weglänge der Elektronen zwischen
zwei Zusammenstößen mit Kupferatomen ist durch die Gleichung

A = ~~A ------ (1)
4 ]/2 7vr02V

gegeben [vgl. [25], Gl. (3.4./5)]. Darin bedeutet r0 den Radius des Wirkungsquerschnittes eines
KupferatomSj N die Zahl der Leitungselektronen je m3 . Zusammenstöße zwischen Elektronen
können wegen der geringen Ausdehnung der Elektronen vernachlässigt werden.
Wird an ein Metall eine Spannung gelegt, so wirkt auf jedes Leitungselektron eine Kraft, die es
in Richtung des elektrischen Feldes beschleunigt. Während der Zeit zwischen zwei Stößen erwirbt
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das Elektron eine Driftgeschwindigkeit v, die für den entstehenden elektrischen Strom verantwort-
lich ist. Bei jedem Zusammenstoß verliert das Elektron die Driftgeschwindigkeit wieder.
Leiten Sie nach diesem Modell eine Gleichung zwischen der mittleren freien Weglänge, der mitt-
leren Elektronengeschwindigkeit u und der Driftgeschwindigkeit v her. Bestimmen Sie aus der
Leitfähigkeit y = 0,57 • 108 Q -1 m-1 des Kupfers den Wirkungsquerschnitt der Kupferatome für
Stöße mit Leitungselektronen. Nach 3.5.3. kann die Zahl der Leitungselektronen für Kupfer
gleich N = 8,4 • 1028 m-3  gesetzt werden.

Lösung

Die mittlere Geschwindigkeit u der Leitungselektronen ist mit der Inneren Energie des Elek-
tronengases durch

u =
2

bzw. (2)

verknüpft. Bei fehlendem elektrischem Feld sind die Elektronengeschwindigkeiten über alle
Richtungen gleich verteilt.
Zwischen zwei Zusammenstößen vergeht im Mittel die Zeit

u (3)

Unmittelbar nach dem Zusammenstoß hat das Elektron die Driftgeschwindigkeit Null. Am
Ende der Zeit At hat es nach dem zweiten NEWTONschen Axiom die Geschwindigkeit

bj« = -----  At = -------
m e m eu (4)

erlangt. Im Mittel besitzt ein Elektron somit die Driftgeschwindigkeit

1 eAü = -----------
2 m &u (5)

Nach (3.5./5) ist die durch den Elektronenfluß verursachte Stromdichte gleich

1 eW
2 m Qui = i -=  -eNü = (6)

Aus dem Vergleich mit dem OnMschen Gesetz erhalten wir somit

2 m Qu (7)

Nach (2) folgt für die mittlere Geschwindigkeit der nach allen Richtungen sich bewegenden
Elektronen

u = 1/ -----2 ' 1 ,68  ' 1()1 - - - - -  m s- 1 = 2,10 • 106 m sr 1 .
1/ 8,4 • 10 28 • 9,1 • io- 31

Dagegen liegt nach 3.5.3. die Driftgeschwindigkeit nur in der Größenordnung mm s-1 .

12*
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Für den Radius des Wirkungsquerschnittes ergibt sich aus (7) und (1)

f
r. = -==, (8)

y8 ]/F r:ymeu

mit den vorgegebenen Zahlenwerten

1,6 • IO“19
r0 = - ------------ ------- ----  ----------- m = 2,6 • IO"12 m.

]/8,0 • 1,41 • n • 0,57 • 108 • 9,1 • IO' 31 • 2,1 • 10«

Das Kupferatom hat den Radius 1,3 • 10-10 m.  Die Leitungselektronen werden also durch die
äußeren Elektronen der Kupferatome nur wenig beeinflußt.

3.5.5. Hall-Effekt

Ein Streifen aus Wismut wird von elektrischem Strom I durchflossen. Er befindet sich in einem
homogenen Magnetfeld SS, dessen Feldlinien den Leiter senkrecht durchsetzen (vgl. Bild 3.18).
Infolge dieses Feldes wirkt nach der LoRENTZ-Gleichung auf die elektrischen Ladungsträger eine
Kraft. Sie führt dazu, daß sich die Elektronen auf dem oberen Teil des Streifens in Bild 3.18 an-

Bild 3.18. Messung der HALL-Spannung in
einem Elektronenleiter

reichern. Hierdurch entsteht zwischen dem oberen und dem unteren Streifenende eine elektrisch
Spannung die als HALL-Spannung bezeichnet wird. Der Wismutstreifen habe die Breite
a = 10 cm, die Dicke d = 1 mm und die Länge l = 1 m .  Die Stromstärke quer zu den magne-
tischen Feldlinien betrage I = 10 A . Das magnetische Feld besitze die Flußdichte B = 0,7 Vs  m-2 .
Dabei wird die Hall-Spannung (7 H = 3,5 • 10~3 V gemessen. Berechnen Sie daraus die Beweglich-
keit b der Elektronen in Wismut. Wie groß ist die Driftgeschwindigkeit, wie groß die Zahl der
Ladungsträger? Vergleichen Sie die Zahl der Elektronen je Raumeinheit mit der Zahl der Atome
je Raumeinheit (q = 9,8 g cm-3 , A r = 209,0, y = 8,6 • 105 V m A-1 ) .

Lösung

Unter dem Einfluß des magnetischen Feldes wirkt auf ein Elektron mit der Ladung — e die Kraft

Am — 6 Ö X 53 . (1)
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In Bild 3.18 wird daher in der Richtung nach rechts auf jedes Elektron im Mittel die Kraft

= evB (2)

wirksam. Sie führt dazu, daß sich die Elektronen im oberen Teil des Streifens ansammeln. Dadurch
entstehen abstoßende Kräfte, d. h., es wird ein elektrisches Feld aufgebaut. Man bezeichnet
dieses als HALL-Feld. Im Gleichgewichtszustand besteht die Beziehung

(3a)— e t> X 55 — = 0 .

Hieraus folgt für die HALL-Feldstärke

= vB bzw. = — &X$. (3)

Die Stromstärke I läßt sich durch die Dichte N und die Geschwindigkeit v der Ladungsträger
ausdrücken :

I = NevA = Nevad. (4)

A = ad bezeichnet den Leiterquerschnitt. Wir lösen (4) nach v auf und setzen diese Größe in (3)
ein. Damit ergibt sich

zn IB k hx 3x5= ------ bzw. (£ h = — - ----H NeA H Ne (5)

Für die der Messung zugängliche ÜALL-Spannung erhält man

Ur = E n a= ——Ned
(6)

Allgemein schreibt man Gleichung (5) bei Elektronenleitung in der Form

= 3 X 53, (7a)

Gleichung (6) in der Form

Z7 H = —Rh “7"-d
(7b)

Die Größe

= — = — —H Ne- Ne (8)

wird als HALL-Konstante bezeichnet. R H ist bei Elektronenleitung negativ. Erfolgt dagegen die
Elektrizitätsleitung durch positive Ladungsträger, so ist

R H = — ,H Ne
(8 a)

d. h. positiv. Dieser Fall liegt z. B. für Kadmium vor.
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Aus der Messung der HALL-Spannung kann somit nach (8) und (7 b) die Ladungsträgerdichte N
bestimmt werden. Außerdem kann auf die Art der Ladungsträger geschlossen werden.
Wir führen gemäß (3.5./17) die Beweglichkeit b ein:

3 = Ne\) = Neb&. (9)

Nach dem ÜHMschen Gesetz Q = y® können wir y = Neb schreiben. Anstelle von (8) erhält
man somit

1 -v_ _b_
Ne yE y

(10)

Die Beweglichkeit b geht demnach aus der HALL-Konstanten _R H und aus der Leitfähigkeit
hervor :

6 = — yR H (H)

Wir setzen die Meßergebnisse in die nach aufgelöste Gleichung (7) ein und erhalten

D 3,5 • 10- 3 • IO-3 3 a i !— = —— = — ----------------- m3 A-1 s—1 .H IB 10 • 0,7

Damit folgt nach (8) für die Elektronenzahl je m3

N = ------------------------- m-3 = 1,25 • 1025 m~3 .
5 • IO"’ • 1,60 • IO“19

Im Gegensatz dazu beträgt die Atomzahl je m3

qN a 9,8 • 103 • 6,02 • 1026 
3 __ . n28 3n = ------- — - ----- = ------------------------- m-3 = 2,8 • 1028 m 3 .

A r kg kmol-1 209

Bei Wismut liefert also im Gegensatz zu Kupfer und Silber nur ein kleiner Bruchteil der Atome
ein freies Elektron.
Für die Beweglichkeit erhalten wir aus (11)

b = 8,6 • 105 • 5 • IO"7 m --- 1 = 0,43 m2 V"1 s' 1 .
V m-1

Dieser Wert liegt um zwei Größenordnungen über dem des Kupfers. Um die Teilchengeschwindig-
keit zu bestimmen, ermitteln wir den Widerstand und für I = 10 A die Feldstärke:

R = — ■■
yad

= ------------— --------Q  = 0,012 £2,
8,6 • 105 • 10- x • IO“3

_ U

E = — =
l

RI 0,012-10 , n . .  v j= — = ------------ V m-1 = 0,12 V m-1 .
1 1

Damit ergibt sich für die Driftgeschwindigkeit der Elektronen

v = bE — 0,43 • 0,12 m s-1 = 5,2 cm s-1 .
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Tabelle 5. Hall- Konstante E H , Beweglichkeit b, Leitfähigkeit y,
Zahl N der Ladungsträger, Atomzahl n

Stoff
Ag Cu Au Bi Cd

jR H in IO-10 m3 A-1 s“1 -0,84 -0,536 -0,704 -6330 4-0,589
b in 10 -3 m2 V-1 s-1 5,2 3,1 3,2 525 0,78
y in 108 Q -1 m-1 0,62 0,57 0,45 0,0083 0,132
N in 1028 m~3 7,4 11,6 8,9 0,0010 10,6
n in 1028 m-3 5,9 8,4 5,9 2,8 4,6
B in Vs m-2 0 ,3 -2 ,  2 1,13 0,69 0,393 1,07

Anmerkung: Die HALL-Konstante und die Ladungsträgerzahl N sind von der
magnetischen Flußdichte abhängig.

Aufgaben

Berechnen Sie das elektrochemische Äquivalent für Aluminium (A a1 = 26,98,
Z A1 = 3), Wasserstoff (A H = 1,008, = 1) und für die OH-Gruppe (df OH = 17,01 ,

oh = 1)-
Das elektrochemische Äquivalent für Silber ist & Ag = 1,1179 mg A-1 s-1 . Be-
rechnen Sie daraus die Farad AY-Konstante F (A Ag = 107,87, Z Ag = 1) .
Ein Ring von 300 mm2 Oberfläche soll galvanisch eine 0,01 mm dicke Goldschicht
erhalten. Wie lange muß der Ring in der Lösung bleiben, wenn ein Strom von 0,5 A
fließt (& Au = 0,681 mg A-1 s-1 , Dichte @ Au = 19,3 g cm-3 )?
Berechnen Sie die elektrische Leitfähigkeit einer Kochsalzlösung der Konzentration
c = 0,01 mol/1. Die lonenbeweglichkeiten sind Tabelle 4 zu entnehmen. Der Dis-
soziationsgrad kann gleich eins gesetzt werden.
Berechnen Sie zur vorangegangenen Aufgabe die Geschwindigkeit der Kalium -
ionen, wenn die Stromdichte 3 = 1,0 mA mm-2 beträgt.
Mit welcher Geschwindigkeit bewegen sich Wasserstoffionen (& H nach Tabelle 4),
wenn das äußere Feld die Stärke 1 V cm-1 besitzt?.
Die Messung der lonenbeweglichkeit nach der Methode der wandernden Grenz-
schicht erfordert für genaue Messungen, daß die Schichtgrenze während der Unter-
suchung scharf erhalten bleibt. Hierzu wird die Konzentration der nicht unter-
suchten Indikatorlösung unterhalb der Meßlösung so gewählt, daß sowohl die
Kationen der Meßlösung als auch die Kationen der Indikatorlösung mit gleicher
Geschwindigkeit wandern. Es sei eine CuCl 2 -Lösung der Konzentration c = 0,01 mol/1
zu untersuchen. Als Indikator werde eine CaCl 2 -Lösung verwendet. Welche Kon-
zentration muß diese haben (Werte nach Tabelle 4) ?
Wie groß ist die Driftgeschwindigkeit der Elektronen in einem Kupferdraht von
1 mm2 Querschnitt, wenn ein Strom von 1 A fließt (& Cu = 3,1 • 10-3 m2 V“1 s-1 )?
Welche Elektronenbeweglichkeit ergibt sich für Silber, wenn die Zahl der Atonie n
gleich der Zahl der Elektronen N gesetzt wird (p A<r = 10,5 g cm-3 , A Ag = 107,9,
y Ag = 0,62 • 108 Q -1 m-1 ) ?

A 3.5.1.

A 3.5.2.

A 3.5.3.

A 3.5.4.

A 3.5.5.

A 3.5.6.

A 3.5.7.

A 3.5.8.

A 3.5.9.
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A 3.5.10. Wie groß ist die ÜALL-Spannung in einem Kupferstreifen, durch den der Strom
I = 100 A fließt? Das Magnetfeld hat die Stärke H = 5 • 105 A m-1 . Die Streifen-
dicke beträgt 0,1 mm (R H — 0,66 • 10-10 m3 A“1 s-1 ) .

A 3.5.11. Die Elektronenbeweglichkeit in Kupfer beträgt 3,8 « 10-3 m/sVm-1 . Berechnen
Sie die Driftgeschwindigkeit für E = 0,1 V m-1 .

A 3.5.12. Aluminium hat die ÜALL-Konstante = — 0,34 • 10-10 A-1 s-1 m3 . Berechnen
Sie daraus die Zahl der Elektronen je Raumeinheit.



4 Quasistationäre Stromkreise und elektro-
magnetische Wellen auf Leitungen

4.1. Quasistationäre Stromkreise

Einführung

Die quasistationäre Näherungsmethode wird bei langsam veränderlichen elektro-
magnetischen Feldern angewandt. Im allgemeinen sind die Änderungen periodisch,
so daß man von niederfrequenten Wechselströmen spricht. Ihre Zeitabhängigkeit
kann in der Form sin cot oder ei(üt bzw. a n eia)nt dargestellt werden.

n
Zur Integration der MAXWELLschen Gleichungen wird der Stromkreis in kleine Ab-
schnitte unterteilt und innerhalb eines jeden Teilstücks mit einem einheitlichen
Schwingungszustand gerechnet. Diese Methode ist zulässig, wenn die Ausdehnung Al
eines Abschnitts klein gegen die Wellenlänge A = c/f = 2nc/(ü ist :

dZ<A| .  (1)

Ein Gebiet kann, wenn dafür (1) erfüllt ist, den ganzen Stromkreis umfassen. Es ist
jedoch auch eine Unterteilung in differentiell kleine Abschnitte möglich (vgl. 4.4.).
Die quasistationäre Näherung besteht darin, daß das Magnetfeld wie bei stationären
Prozessen berechnet wird. Von den Verschiebungsströmen verursachte Felder bleiben
unberücksichtigt. Bei der Magnetfeldberechnung werden also Verschiebungsströme
gegen die in der Umgebung fließenden elektrischen Ströme vernachlässigt :

(2)

In den MAXWELLschen Gleichungen (1.4./1). bis (1.4./4) wird bei quasistationären
Rechnungen die Verschiebungsstromdichte ® vernachlässigt. Es ergeben sich damit
die Gleichungen

rot $ =3 , (3)

(4)dt ’rot @ =
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div © = q ,
div 33 = 0 .

(5)
(6)

Bei langsam veränderlichen Feldern arbeitet man mit den Koeffizienten der Selbst-
und der Gegeninduktion. Sie ergeben sich auf Grund der folgenden Betrachtung :
Die magnetische Energie folgt nach (1.4./21) aus den Feldgrößen § und 93
gemäß

TFm = L § ■ 93 dV .
V

(7)

Das Integral erstreckt sich über den gesamten Raum. V kennzeichnet also z. B.
eine Kugel um das betrachtete Leitersystem mit dem Durchmesser 2R oo .
Nach (3.1./6) kann die magnetische Flußdichte durch das Vektorpotential 91 aus-
gedrückt werden. Damit erhält man

V

(7a)ro t2 ld7 .

Für zwei beliebige Vektoren 21 und § gilt nach (A 1.3.5.)

div (21 X §)  = £ • rot 21 — 21 • rot § . (8)

Hiermit ergibt sich aus (7 a)

ff " = i/// d ‘ T(axS ,dF  + W 2 l - ro t£dF .  (7b)
V V’ '

Der erste Summand verschwindet :
Nach dem GAUSSschen Satz (1.3./ 17) besteht die Beziehung

fff div (91 X§)  dV = ff (9 lx$ ) -d£ ,  (9)
V

wobei die Oberfläche des Volumens V angibt. Für das Oberflächendifferentia] der
Kugel gilt

do = R 2 sin 0 d# d<p . (10)

Das Vektorpotential 21 ist nach (3.1./14) auf der Kugeloberfläche gleich

91 = 9lK = [[[ (U)4™ JJJ rPK
Bei der Integration sind sämtliche Punkte P auf den Stromleitern zu durchlaufen.
Der Index K charakterisiert, daß das Vektorpotential für einen Punkt auf der Kugel-
oberfläche bestimmt wird.
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Nach (11) verschwindet das Vektorpotential 21 im Grenzfall R -> oo mindestens wie
C1 /R f wobei C1 eine vom Leitersystem abhängige Konstante ist. Die Feldstärke §
folgt nach dem BiOT-SAVARTschen Gesetz

d§ = J- 4 x e,y r2 (12)

d. h., sie verschwindet auf der Kugel mindestens wie G2 /R 2 . Dagegen wächst die
Kugeloberfläche nur wie C0R 2 . Aus (10), (11) und (12) erhält man daher, daß das
Integral (9) für R —> oo mindestens wie

n r>2 
Ci const

CaR

verschwindet.
Die magnetische Energie ist somit nach (7 b) durch

Wm = i fff ®- rot ® dV (13)

bestimmt. Auf Grund von (3) kann man hierfür

Wm = fff 3I ’ sd7
V (14)

schreiben. Da 3 außerhalb der Leiter verschwindet, braucht das Integral (14) nur
über sämtliche Punkte P der Leiter erstreckt zu werden. Man erhält

jyj S lp-SpdFp.
Vp

(15)

Das Vektorpotential in einem Punkt P der Leiter errechnet sich wie das Potential 2lK
in (11) nach (3.1./14) auf Grund der Formel

91=  = -£- (16)
Vq

wobei Q wieder sämtliche Punkte auf den Leitern durchläuft. Rechnet man für den
gesamten Raum mit einheitlicher Permeabilität, so folgt aus (15) und (16)

Vp Vq

(17)

Bei elektrotechnischen Problemen interessiert vielfach die Wirkung zweier Leiter 1
und 2 aufeinander, z. B. der Hin- und der Rückleitung eines Stromkreises. Für diesen
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Fall kann (17) in vier Teilintegrale zerlegt werden:

P und Q auf 1
P und Q auf 2
P auf 1,  Q auf 2
P auf 2, Q auf 1

(Selbstinduktion des Leiters 1),
(Selbstinduktion des Leiters 2),
(Gegeninduktion 2 auf 1),
(Gegeninduktion 1 auf 2).

Das Ergebnis der Integration (17) wird in der Form

1 (ZU I1 2 + 2Z 12a/ 2 + Z 22Z?)
£1

(18)

dargestellt. Darin geben I x und Z2 den Strom in 1 und 2 an. Far die beiden Koeffi-
zienten der Selbstinduktion ergeben sich aus (17) die Definitionsgleichungen

i ”=  ////// d7 » d7 ' '  <1  ”

(20 )

7p(2)  Vq 2 )

Als Koeffizienten der Gegeninduktion definiert man nach (17) und (18)

ypi 1 ) y Q < 2 )

(21 )

Vp( 2 >

Die Stromliniendielitevektoren iP und sind rein geometrische Größen. Sie ergeben
sich aus den StromdichteVektoren 3p und indem diese durch die Stromstärken
dividiert werden :

• _

J-P J-Q
(22)

I P und Iq sind je nach der Integration über 1 oder 2 identisch mit oder Z2 .
Bei einem System zweier paralleler, von entgegengerichteten Strömen durchflossenen
Leiter gilt

Z1 = -Z 2 =Z.  (23)

Ferner kann man zusammenfassend

L — Lu 4- - 22 — 2L 12
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schreiben und L als Koeffizienten der Selbstinduktion des gesamten Stromkreises
definieren. Aus (18) ergibt sich damit

1 LI* (24)

Die Induktionskoeffizienten haben nach (24) die Maßeinheit

[i] = [ = VSA’1 = H(Henry) ‘ (25)

Beispiel 13

Eine Spule mit der Selbstinduktivität Z1]L = 0,1 H speichert bei einem Strom der Stärke
11 = 2 A die magnetische Energie

= — -0,1 -22 J = 0 ,2J .
2

Ein Stromkreis aus zwei parallelen Drähten mit der Selbstinduktivität L = 1 mH speichert
bei einem Strom der Stärke I = 0,1 A die magnetische Energie

TFm = — • 10- 3 -0 , l  2 J = 5nJ .
2

Nach (3) gilt außerhalb eines Leiters in quasistationärer Näherung

ro t§=0 .  (26)

Man kann daher das magnetische Feld außerhalb der Stromleiter durch ein magne-
tisches Potential F darstellen:

§ = -grad F . (27)

Wegen div 33 = div nach (6) gilt für Medien mit einheitlicher Permeabilität

div grad F = 0 bzw. £\F = 0 .  (28)

F erfüllt die Potentialgleichung.
Die Potentialfunktion F ist keine eindeutige Funktion des Ortes; sie ist mehrdeutig:
Bei der Integration über den Leiterquerschnitt folgt

ff ro t$ -d9 l  = ff S .d9 l=Z .  (29)

Andererseits kann man nach dem STOKESschen Satz (3.1./10)

ff rot § • d9l = <fi § • d§ (30)
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schreiben, wobei das Umlaufintegral über die Begrenzung des Leiterquerschnitts
zu erstrecken ist. Für das Umlaufintegral über eine geschlossene Kurve C, die den
Strom I umschlingt, folgt aus (30) mittels (27) (vgl. Bild 4.1)

(ß § -d§  = — (ß grad V-  d§ = - - T B . (31)
c c c

Wegen (29) und (30) ergibt sich bei einmaligem Umfahren des Leiters

T a - W b = ¥ v - V 0 =I. (32)

Da die Punkte A und B bei einmaligem Umfahren des Leiters zusammenfallen,
erhält man für V7 an ein und demselben Raumpunkt verschiedene Werte. Bei mehr-
maligem Umlauf unterscheiden sich zwei »Zweige« der Potentialfunktion um ein
ganzzahliges Vielfaches der Stromstärke.
Die eindeutige Festlegung auf einen bestimmten Zweig wird bei linearen Leitern,
d. h. bei Leitern mit dem Querschnitt Null, wie folgt vorgenommen : In den Strom-
kreis, mit diesem als Berandung, wird eine Fläche /S gelegt (vgl. Bild 4.1). Sie kann
beliebig gekrümmt sein. Ä wird als Verzweigungsschnitt bezeichnet. Der Durchgang

C
Bild 4.1. Verzweigungsschnitt

durch diese Fläche /S bei Operationen im elektromagnetischen Feld wird untersagt.
Damit wird die Potentialfunktion V7 im gesamten Raum mit Ausnahme des Ver-
zweigungsschnittes S zu einer eindeutigen Funktion.
Nachdem T7 eindeutig festgelegt ist, kann die Potentialfunktion mittels (27) zur Be-
rechnung der magnetischen Feldenergie verwendet werden. Aus (5) ergibt sich

Wm = 2~fff ® 2 dF  = "2 grad2 ’FdF  - (33 )

Der GuEENSche Satz in der Form (2.1./20) besagt nach (2.1./21) für Funktionen,
die der Potentialgleichung genügen,

fff grad2 T dF  = $ ’P grad P • d2I. (34)
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Für die magnetische Energie erhält man damit aus (33)

*Fm = j ff S 'g radS ' -cm. (35)

Wegen der Mehrdeutigkeit von V7 in den Punkten des Verzweigungsschnittes 8 sind
diese aus dem Integrationsgebiet V auszuschließen. Das Integral ist also über den
gesamten Raum mit Ausnahme der Abgrenzung, d. h. der durch den Verzweigungs-
schnitt ß geschaffenen Begrenzung, zu erstrecken. Daher läuft das Oberflächen-
integral (35) sowohl über die obere als auch über die untere Fläche von £. Der Ver-
zweigungsschnitt umfaßt ein Gebiet endlicher Energiedichte, seine räumliche Aus-
dehnung ist gleich Null. In den Leitern, die als ideale Leiter vorausgesetzt werden,
ist ebenfalls keine magnetische Energie enthalten. (35) liefert daher bei der Inte-
gration über die obere und die untere Fläche des Verzweigungsschnittes die gesamte
magnetische Feldenergie.
Bei der Integration über die obere Fläche von Ä folgt

ff grad -d® = -ff ’P’o -d9lo = -ff o -dSI. (36)

Dagegen ergibt sich wegen

d2I 0 = -dSIu = d2I (37)

bei der Integration über die untere Fläche

ff ¥ grad T • dSl = -ff • d9lu = ff ■ d2I. (38)

Somit erhält man für die magnetische Energie

= ( U-  Vzo)®-d9 l=  JJ Jp .d91=  93-d3l. (39)A A A
A gibt die vom Stromkreis umschlungene Fläche an. Die Größe

&F=ff 93 - dSt (40)A
kennzeichnet den magnetischen Fluß durch den Stromkreis.
Nach (39) und (40) kann man für die magnetische Feldenergie auch schreiben

wm = 1 0 F / .  (41)

Andererseits läßt sich nach (24) die magnetische Feldenergie durch den Induktions-
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koeffizienten L ausdrücken. Zwischen L und 0 F besteht nach (24) und (41) die Be-
ziehung

ff 23 • d2l = LI (42)

Für die induzierte Spannung bei Änderung des Stromes I ergibt sich daraus auf
Grund der MAXWELLSchen Gleichung (4) mit Hilfe des STOKESschen Satzes

■ (43)

Die Gleichung (43) gibt die Möglichkeit zur Messung der Induktivität eines Strom-
kreises aus der Änderung des Stromes und der induzierten Gegenspannung.

Beispiel 14
Wird in einer Spule mit der Selbstinduktivität L n = 0,1 H der Strom I 1 = 2 A im Verlauf der
Zeit At = 0,01 s ausgeschaltet, so wird damit in Richtung des Stromes die Spannung

l indl = 0,1- — V = 20V0,01

induziert. Aus AI± = 2 A, At = 0,01 s ,  17i nd  = 20 V folgt andererseits = 0,1 H .

Einen unverzweigten Stromkreis kann man durch die Ersatzschaltung nach Bild 4.2
darstellen. Nach dem PoYNTiNGschen Satz (1.4./22) besteht die Beziehung

lFe + lF m + IFw = - j  S -d9 l .  (44)

Bild 4.2. Ersatzschaltung eines unverzweigten Stromkreises

Die Summanden auf der linken Seite geben die Energieänderung im Raum V an.
Nach (2.1./26) und (2.1./16) ist die elektrische Energie eines Kondensators gleich

UQ Q2

2 2C ’ (45)
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wobei Q die elektrische Ladung einer Kondensatorplatte angibt. Die magnetische
Energie ist durch (24) bestimmt. Für die Wärmeleistung erhält man nach (1.4./22)
und (1.4./25) bei einem homogenen Leiter

*” = ///®- 3dF  =VJ/J 3 ,d r  “ d = s/ ’- (46)

Die Ladung Q ist durch

Q = J I d« (47)

gegeben. Damit folgt aus (45)

QQ Z f Z dtJFe = vF = (48 )
während sich aus (24)

- LH (49)
ergibt.
Die in das Gebiet V einfließende Energie ist gleich

-ff <S • d® = U eZ ,  (50)

wobei Ue die äußere bzw. eingeprägte Spannung bezeichnet. Setzt man (46) sowie (48)
bis (50) in den PoYNTiNGschen Satz (44) ein, so kürzt sich die Stromstärke I heraus,
und man erhält

f Id t
LI + R I+  U (51)

Durch Differentiation entsteht hieraus die Schwingungsgleichung

li+ Ri + -h i = ü e (52)

Die Lösung dieser Gleichung erfolgt in der Elektrotechnik mit Hilfe des Ansatzes

I = I Q e . (53)

Für die freie Schwingung ist Ue = 0 und damit auch Üe = 0 . Setzt man Üe = 0
zusammen mit (53) in (52) ein, so erhält man eine algebraische Gleichung mit den
Lösungen

n /  1 R 2 iR
y ~CL ~ 4L2 + 2L ' (54)

1 3 Schilling, Felder
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Bei Vernachlässigung der Dämpfung folgt aus (54) die

1
C0 0 = , - -  ■

]/ZC
Thomsonsche Formel

Die Lösung mit negativem Vorzeichen ist physikalisch nicht sinnvoll.
/ 0 = <z>0 /2tc bezeichnet die Eigen- oder Resonanzfrequenz des Schwingkreises. R, L ,C
sind im allgemeinen frequenzabhängig. Der Widerstand 7?(/0 ) = wird als Re-
sonanzwiderstand bezeichnet.
Für die erzwungene Schwingung ist besonders der eingeschwungene Zustand von
Interesse. Wird der Stromkreis an eine Wechselspannung

UQ = UQ ei(ot (56)

gelegt, so kann man zur Bestimmung des Stromes im eingeschwungenen Zustand
von dem Ansatz

I = I Q e™* (57)

ausgehen. Mit den Funktionen (56) und (57) ergibt sich aus (52)

— oj> 2 L + i coR G .I o = i (oUq.

Hieraus folgt das OHMsche Gesetz für Wechselstrom (vgl. Bild 4.3)

-£®- = 5R= JR+iLz  — L)
Io \ coG J (58)

Der komplexe Widerstand

91 = latle1”

wird als Impedanz bezeichnet. Sein Absolutbetrag

(58 a)

(59)

Bild 4.3. OnMsches Gesetz für Wechselstrom
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gibt den Scheinwiderstand an ; für den Phasenwinkel 92 erhält man

tan <p = -------p . (60)

Der reelle Anteil R des komplexen Widerstandes 91 in (58) wird als Wirkwiderstand,
der imaginäre Anteil ojL ------- als Blindwiderstand definiert.

(p kennzeichnet die Phasenverschiebung zwischen der Spannung U = UQ ei(üt und
dem Strom

I = 70 e1“' = — e1'“*-’’) . (61)

Beispiel 15

In einem niederfrequenten Stromkreis mit der Frequenz / = 50 Hz sei L = 1,25 H ,  C = 15 pF,
R = 60Q.
Man errechnet

<oL = 1,25 • 2n • 5012 = 392,712, -A_ = --------------------- £2 = 212,212.
coC 15 • IO“6 • 2k • 50

Daraus folgt der Blindwiderstand cdL — = (392,7 — 212,2)11 = 180,5 Q .  Die Impedanz
a>C

ist gleich 91=  (60 + i 180,5) Q ,  für den Scheinwiderstand folgt |fR| = VßO2 + 180,52 £l
= 190,2 Q ,  als Phasenwinkel erhält man

© = arctan = 71,6°.T 60

Das periodische Verhalten des Stromes und der Spannung wird in der GAUSSschen
Ebene durch zwei rotierende Vektoren dargestellt (vgl. Bild 4.4). Schreibt man die
zeitliche Abhängigkeit in der Form eia)t , so rotieren die beiden Vektoren entgegen
dem Uhrzeigersinn. Bei positiver Phasenverschiebung (p eilt der Spannungsvektor U
um diesen konstanten Winkel dem Strom I voraus.

Bild 4.4. Kotierende Vektoren in
der GAUSSschen Ebene

13*
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p Probleme

4.1J. Wärmewirkung im Wechselstromkreis

Eine Spule der Induktivität L = 500 mH wird mit einem Schichtkondensator der Kapazität
C = 10 pF in Reihe geschaltet. Der ohmsche Widerstand beträgt R = 40 Q .  Berechnen Sie die
effektive. Stromstärke und die Wärmeleistung, wenn der Stromkreis durch eine Spannungsquelle
mit der effektiven Spannung Ueii = 220 V gespeist wird und die Frequenz f = 50 Hz beträgt.

Lösung

Für die Berechnung der Wärmeleistung müssen wir die Spannung und den Strom miteinander
multiplizieren. Aus diesem Grund beziehen wir uns auf die Realteile und schreiben für die Span-
nung

U = Uo cos a)t (1)

und nach (4.1./61) für den Strom

I = cos (cot — <p) . (2)

Durch Integration über eine Periode t = 2k/&> erhalten wir für die Leistung

(3)

Das zweite Integral verschwindet. Das erste liefert

(4)

Definieren wir

(5)

und setzen diesen Ausdruck in (4) ein, so ergibt sich bis auf den Faktor cos (p ein der Wärme-
wirkung bei Gleichstrom entsprechendes Gesetz :

p cos<p . (6)



1974.1. Quasistationäre Stromkreise

Der Scheinwiderstand ist nach (4.1./59) gleich

= 1/402 + • 50 • 0,5 -------------i ---------- Vß  = 165,80.
|Z \ 2k • 50 • 10 • IO“6 /

Für die Phasenverschiebung erhalten wir nach (4.1./60)

wZ -----
, coCm = arctan -------------T T>

(7>

= arctan — = —76,1°
40

Aus (7) folgt als effektive Stromstärke

j. _ Deff _ 220
eff 165,8

A= 1,33 A.

Hieraus ergibt sich als Stromleistung

r/2 220 2

P = tZeff eff cos <p = — cos <p = — — cos 76,1° W = 70,1 W.
|?R| 165,8

4.1.2. • Leistungsanpassung

Eine Spannungsquelle (vgl. Bild 4.5) hat den inneren Widerstand = (4,5 + i 0,5) Q . Die
Generatorspannung bei Leerlauf ist durch U = Do sin cot gegeben, mit UQ = 310 V.  Welcher
äußere Widerstand $Ra ist anzubringen, um dem Generator ein Maximum an Wirkleistung zu
entnehmen? Wie groß ist die Leistung bei reellem innerem Widerstand?

Bild 4.5. Spannungsquelle mit Innen- und
Außenwiderstand

Lösung

Die am Verbraucher anliegende Spannung ist gleich

SR
(1>
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Der Strom hat die Stärke

I = — = g o sin(ot  (9)
9?a ffti + 3?a '

Wir können die Widerstände in der Form

fRa = R & e*% = R. e m (3)

schreiben.
Für die Wirkleistung erhalten wir aus (1) und (2)

-r» r Un2 
ItRal COS G9aP w = eff- eff COS Q?a = -------------------------- . (4)w eff eff 2 IfRj 4- fRal 2

(4) ist eine Funktion der beiden unabhängigen Variablen SR a und q\. Soll diese ein Maximum
annehmen, so müssen die beiden Gleichungen

dP w q &P w = q

erfüllt sein. Als Lösung der Gleichungen (5) ergibt sich

(6)

R & = R i 9  9?a = — <Pi bzw. fRa = SRi* (5 a)

wobei fft* den konjugiert komplexen Wert von bedeutet.
Mit diesen Werten folgt für die maximal zu entnehmende Wirkleistung

„ UQ
2 cos UQ

2 1
XT(r ,r' " ' ■ ■ ' •

42?i 1 4- cos 2(pi SR[ cos (p-Y
(6)

Im vorliegenden Fall muß der Außenwiderstand gleich £Ra = (4,5 — i 0,5) Q sein. Ferner erhält
man mit den vorgegebenen Zahlen aus (6)

31 02

P w = --  W = 2,67 kW.W 8-4 ,5

Besteht der Innenwiderstand nur aus dem ohmschen Widerstand, so folgt aus (6) wegen tp = 0 ,
a = 0

eff = ” Uq bezeichnet die effektive Spannung der Spannungsquelle bei Leerlauf.

4.1.3. Freie elektrische Schwingungen
Ein Schwingkreis besteht aus einem Kondensator mit der Kapazität C = 10 pF und einer Spule
der Induktivität L = 0,2 mH . Der ohmsche Widerstand ist gleich R = 450 mO . Berechnen Sie
die Resonanzfrequenz und die Resonanzwellenlänge des Schwingkreises. Wie groß ist die Ab-
.klingzeit (Zeit des Abklingens der Amplitude auf 1/e) ?
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Lösung

Nach (4.1./52) lautet die Differentialgleichung freier elektrischer Schwingungen

Li + Ri + -1  = 0 . (1)

Zur Lösung gehen wir vom Exponentialansatz

I = I o e1“.1 (2)

aus. Mit diesem erhalten wir aus (1)

£a>(,2 + il?a>0 + -1-j I o e1”«* = 0 . (3)

Diese Gleichung hat die Lösung

iR
2L (4)co0

1 RFür ----  erhält man einen Wert in der Größenordnung 1014 , für — dagegen nur in der Größen-
LC L

Ordnung 104 . Der Widerstand wirkt sich im vorliegenden Fall im Vergleich zu L und C praktisch
nicht auf die Resonanzfrequenz aus. Es folgt nach der THOMSONschen Formel

co0 = -4=7 = ■■ ■*• -----  s- 1 = 4,47 • 108 s- 1 .
1/LC j/2 • IO“1 • IO“11

1

Als Resonanzfrequenz ergibt sich

f0 = = 7,11 • 10’ Hz,0 2n

als Resonanzwellenlänge

Q . Iß8

— — - — m = 4,2 m (UKW-Bereich) .
7,11 - IO7

1 _ c o
Ä° “7"To

Für die Abklingzeit erhalten wir aus (4) in Verbindung mit (2)

2L 2 -0 ,2 -  IO"3 . 0Q---- = ----------------- s = 0,89 ms .
R 0,450

Emschaltvorgang im Stromkreis mit Selbstinduktion4.1.4.

Eine Spule hat die Selbstinduktivität = 85 mH . Der ohmsche Widerstand beträgt
R = 12,5 mQ.  Untersuchen Sie den Einschaltprozeß. Bestimmen Sie, welche Zeit vergeht, bis
der Strom 99% seines Endwertes erreicht hat.
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Lösung
Die Spule der Induktivität L = L ir erzeugt bei Stromänderungen die Gegenspannung

i nd  - L df .

Diese ist zur Spannung ü zu addieren, die von der Spannungsquelle geliefert wird. Es folgt damit
für die Stromstärke I

U-L  -
d£

R
1 = bzw. L -------1- JRI = U .

di (2)

Zum Zeitpunkt der Einschaltung des Stromes, d. h. für t = 0 ,  hat dieser die Stärke 1(0) = 0 .
Als Lösung der Differentialgleichung (2), die diese Randbedingung erfüllt, ergibt sich

Bild 4.6. Der Anstieg der elektrischen
Stromstärke beim Einschaltvorgang

Der erste Summand kennzeichnet eine spezielle Lösung der inhomogenen Gleichung. Den zweiten
Summanden erhält man durch e-Ansatz aus der homogenen Differentialgleichung. Er klingt mit
zunehmender Zeit t exponentiell ab, der Strom steigt entsprechend an (vgl. Bild 4.6). Die Zeit
tf0 99 , die vergeht, bis der Strom 99% seines Endwertes erreicht hat, ergibt sich aus der Zeit bis
zum Abklingen des zweiten Summanden in (3) auf den Wert 0,01. Man erhält

t. 99 = — In 100 = • 4,61 s = 31,4 s .0,99 R 12,5

Dieser große Wert ist durch die hohe Induktivität und durch den relativ kleinen ohmschen
Widerstand bedingt.

4.1.5. Dämpfung eines Galvanometers

In einem Galvanometer liefert die bei der Bewegung der Spule induzierte Gegenspannung den
Hauptanteil an der Dämpfung. Gegenüber dieser elektromagnetischen Dämpfung kann die
Dämpfung durch Wirbelströme und Reibung im allgemeinen vernachlässigt werden. Berechnen
Sie unter dieser Voraussetzung die Dämpfung eines Galvanometers mit dem magnetischen Fluß
0 F = nBA = 0,015 Vs, dem Innenwiderstand = 260 Q und dem Außenwiderstand Ra = 420Q
(vgl. 3.2.4. Spiegelgalvanometer).
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Lösung
Nach (3.2.4./5) wird der Zeigerausschlag des Meßgerätes durch die Gleichung

J -S- + b + D,p = (1 )d£ 2 d£

bestimmt, g? gibt darin die Auslenkung aus der Ruhelage an. In der Ruhelage steht die Spulen-
achse senkrecht zur Feldrichtung (<x = 90°). Unsere Aufgabe besteht darin, den Koeffizienten b
im zweiten Summanden der Gleichung (1) zu bestimmen. Dazu setzen wir voraus, daß das magne-
tische Feld innerhalb der Spule homogen ist.
Eine Verdrehung aus der Ruhelage um den Winkel A(p infolge eines Meßstromes führt dazu,
daß die Spule von dem magnetischen Fluß

A = nBAAtp (2)

durchsetzt wird. Für die Änderung des magnetischen Flusses mit der Zeit t ergibt sich daraus,
wenn man mit kleinem Auslenkwinkel rechnet,

ff (3)

Der induzierte Strom wird daher gleich

I = = ------- ffSL . (4)
incl + R. R x + Ra d£

Er ist nach der LENZschen Regel dem Meßstrom I entgegengerichtet. Infolgedessen verursacht
er ein Drehmoment, das dem vom Meßstrom erzeugten entgegenwirkt.
Für das durch I hervorgerufene Drehmoment W gilt

= m X § bzw. |9R| = ptnIAH = 0 F / .  (5)

Ihm wirkt nach (4) das induzierte Drehmoment

0 F
2 dg?

_Z?i -|- R& d£ (6)

entgegen. Als Differentialgleichung des Auslenkwinkels folgt damit, wenn das Trägheitsmoment
und die Winkelrichtgröße eingesetzt werden,

J + Dtp = 0 F / -
di 2

0 F 
2 dg?

R\ + -®a
(7)

Hier kann wegen des Faktors g? der Koeffizient

0 F 
2 _ (nfiHA) 2

“F Rq, R[ H- 
Rq,

(8)

als Dämpfungskonstante definiert werden.
Mit den vorgegebenen Zahlen ergibt sich

0,0152

260 + 420
b = J s  = 3,31 • IO"7 J s .



202 4. Stromkreise und Wellen auf Leitungen

A Aufgaben

A4.1.1. In einem Stromkreis gilt L = 40 mH, R = 15 Q .  Die Frequenz beträgt / = 50 Hz.
Berechnen Sie den Blind- und den Scheinwiderstand. Wie groß ist die effektive
Stromstärke, wenn die effektive Spannung Ueii  = 220 V vorliegt? Berechnen Sie
die Phasenverschiebung (p zwischen Spannung und Strom.

A 4.1.2. Wie groß sind der Schein- und der Blindwiderstand in einem Stromkreis mit der
Induktivität L = 25 mH, der Kapazität C = 0,5 pF und dem ohmschen Wider-
stand R == 100 Q? Die Frequenz beträgt f = 500 Hz . Wie ändert sich das Ergebnis
für f = 5000 Hz?

A 4.1.3. Eine Spule mit der Induktivität L = 2,5 H und dem ohmschen Widerstand
R = 200 kQ wird mit einem Kondensator in Reihe geschaltet. Wie groß muß dessen
Kapazität C sein, wenn der Blindwiderstand der Spule kompensiert werden soll?
Die Frequenz betrage f = 10000 Hz.  Welches Ergebnis erhält man bei Parallel-
schaltung?

A 4.1.4. Eine Spule der Induktivität L = 5 mH und ein Kondensator der Kapazität C = 2 pF
sind in Reihe geschaltet. Der ohmsche Widerstand sei zu vernachlässigen. Bei
welcher Frequenz wird der Blindwiderstand der Spule durch den Kondensator
kompensiert? Wie verändert sich das Ergebnis bei Parallelschaltung?

A 4.1.5. Berechnen Sie zu A 4.1.1. die Wärmeleistung des Wechselstromkreises.

A 4.1.6. Ein Stromkreis mit der Induktivität L = 1,5 mH und dem ohmschen Widerstand
R = 5Q ist an eine Spannungsquelle mit der effektiven Spannung Ueff = 10000 V
angeschlossen. Berechnen Sie die Wärmeleistung. Die Frequenz beträgt
/ = 5 • 107 Hz.

A4.  1.7. Berechnen Sie die Resonanzfrequenz eines Schwingkreises mit der Induktivität
L = 25mH,  der Kapazität C = 0,8 pF und dem ohmschen Widerstand
R = 3,5 mQ . Welche Abweichung ergibt sich gegen die Resonanzfrequenz nach
der THOMSONschen Formel?

A 4.1.8. Berechnen Sie zur vorangegangenen Aufgabe die Abklingzeit.

A 4.1.9. Berechnen Sie für einen Gleichstromkreis mit der Induktivität L = 125 mH und
dem ohmschen Widerstand R = 2,5 Q die Zeit, die beim Einschalten vergeht, bis
der Strom 99,9 % des Endwertes erreicht hat.

A 4.1.10. Stellen Sie die Gleichung für das Ausschalten eines Gleichstromes in einem Strom-
kreis mit Selbstinduktion auf.

A4.  1.11. Nach welcher Zeit ist ein Gleichstrom in einem Stromkreis mit der Induktivität
L = 10 H und dem Widerstand R = 2 kQ beim Ausschaltprozeß auf 1% des An-
fangswertes abgesunken?

A 4.1.12. Ein Kondensator der Kapazität C = 100 pF befindet sich zur Zeit t = 0 unter der
Spannung U = 220 V.  Er wird über einen Widerstand R = 10 kQ entladen. Geben
Sie die Formel für den zeitlichen Stromverlauf an. Nach welcher Zeit ist der Strom
auf den Wert 1/e abgesunken?

A4.  1.13. Untersuchen Sie das Verhalten eines Schwingkreises, der eine Spule mit Eisenkern
enthält.
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A 4.1.14. Berechnen Sie die Dämpfung eines Galvanometers mit dem magnetischen Fluß
0 F = 0,050 Vs, dem Innenwiderstand R x = 400 Q und dem Außenwiderstand
R a = 600Q.

A 4.1.15. Wie groß ist maximal der Spannungsabfall am Nutzwiderstand, wenn eine Span-
nungsquelle mit reellem Innenwiderstand R vorliegt? Die Leerlaufspannung sei
gleich U = Uo sin a>t .

A 4.1.16. Wie lautet die Anpassungsbedingung bei einer Spannungsquelle, wenn die Schein-
leistung P s = U e{iI e f { zu einem Maximum werden soll?

4.2. Grundlagen der Vierpoltheorie

£ Einführung

Vierpole sind Netzwerke mit vier Anschlußklemmen, zwei für den Eingang, zwei für
den Ausgang (vgl. Bild 4.7). Sie werden als aktive Vierpole bezeichnet, wenn sie Strom-
oder Spannungsquellen enthalten, die auf die angeschlossenen Netze zur Wirkung
kommen. Beispiele für aktive Vierpole sind Transistoren und Röhren. Passive Vierpole
enthalten keine Strom- oder Spannungsquellen, bzw. ihre Wirkung ist nach außen
hin kompensiert. Dämpfungsglieder, elektrische Filter, Schwingungssiebe und Trans-
formatoren sind Beispiele für passive Vierpole.

O---------------------o
z/7 | U2

o---------------------o Bild 4.7. Ströme und Spannungen beim Vierpol

V T

Bei passiven Vierpolen ergibt sich aus den KiRCHHOFFSchen Stromverzweigungs-
gesetzen als Beziehung zwischen dem Strom und der Spannung U1 auf der Ein-
gangsseite und dem Strom J 2 und der Spannung U2 auf der Ausgangsseite eine Ma-
trizengleichung der Form

C7A = M n 12\ (UA (1)
A / = vAl 22/ \A /

A n , -4n, -4 2i, -422 sind im allgemeinen komplex und frequenzabhängig. A 12 hat die
Dimension eines Widerstandes, A 21 die eines Leitwertes. Bei A n und Ä 22 handelt es
sich um dimensionslose Größen.
Führt die Vertauschung der Eingangs- und Ausgangsklemmen zu keiner Änderung
der Ströme und Spannungen in den angeschlossenen Netzen, so wird der Vierpol als
längssymmetrisch bezeichnet (vgl. Bild 4.8 und 4.9). Für längssymmetrische Vierpole
folgt auf Grund der Vertauschungsmöglichkeit

(2)An — 22*
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i

Bild 4.8. Längssymmetrisches II-Glied

Bild 4.9. Längssymmetrisches T-Glied

Bild 4.10. Unsymmetrisches II-Glied

Bild 4.11. Unsymmetrisches T-Glied

Vierpole können als II-Glied nach Bild 4.8 bzw. 4.10 oder als T-Glied nach Bild 4.9
bzw. 4.11 dargestellt werden.
Für das II-Glied in nach Bild 4.8 erhält man nach den KiRCHHOFFSchen Gesetzen

. . 9£S a a , 9ft®\ii — 1 H-----2— ’ 12 — 21 — ® 1 1 j- ( l a  )

Beim T-Glied des längssymmetrischen Vierpols nach Bild 4.9 ergibt sich

a < . 9ft® A , 9£®Ä 4 . . . .■n — 1 + — 2— ’ 12 — 91 (1  H - L 21 — ® • (1b)

Aus ( la)  und (1b) folgt: Für das längssymmetrische II-Glied und für das längssym-
metrische T-Glied ist die Koeffizientendeterminante der Matrix in (1) eins:

- 21=1 .  (1C)

Unsymmetrische Glieder lassen sich aus symmetrischen zusammensetzen.
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Anstelle der Koeffizienten A 11} A 12 , A 21 , A 22 führt man das Übertragungsmaß g und
den Wellenwiderstand 3 ein.
Das Übertragungsmaß g des längssymmetrischen Vierpols wird durch die Beziehung

cosh = A n = 1 H - - - -— (3)

definiert. Daraus ergibt sich wegen (2)

sinh g = ]/cosh2 g — 1 = A 12 A 21 = y SR® -| ----

Der Wellenwiderstand $ des längssymmetrischen Vierpols ist durch

(4)

festgelegt. Für das II -Glied erhält man daraus ebenso wie für das T-Glied

(5)

Werden die Größen 4 n , 2< 12 , 4 2 i mittels (1 c), (3) und (5) durch 3 und g ausgedrückt,
so folgt anstelle von (1) als allgemeine Beziehung zwischen den Strömen und Span-
nungen am Eingang und Ausgang eines Vierpols

U1 \ / cosh g 3 sinh / U2

Zi / ~~ I -4 sinh g cosh g I I I 2

Anstelle der hyperbolischen Funktionen können Exponentialfunktionen eingeführt
werden. In diesen schreiben sich die Vierpolgleichungen

u 2 — 3A \ /e»

-3 /2  L,

<3 / \

/ u 2 + 3Z 2

2 + 3 2

\ 8

Aus (6) folgt der Eingangswiderstand

— + tanh g
(7)
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mit

3tÄ =~.  (7 a)

Es findet somit durch einen Vierpol stets eine Transformation des Widerstandes 3i A
am Ausgang in den am Eingang gemessenen Wert 9t E statt (vgl. Bild 4.12).

Bild 4.12. Abschlußwiderstand 9t A und
Eingangswiderstand 9tE des Vierpols

Bei Kurzschluß 9t A = 0 ist der Eingangswiderstand gleich

K = 3 tanh 0 ,  (7 b)

bei Leerlauf 9t A = oo ergibt sich für den Eingangswiderstand

9tL = 3co th£ .  (7 c)

Aus (7 b) und (7 c) erhält man den Wellenwiderstand 3 und das Übertragungsmaß g
gemäß

3=]ARk3*l,  tanh<7 = lÄ  .f ytL

Für die Spannungsübersetzung des Vierpols folgt aus (6) und (7)

U 2 = _________3tÄ ________
Ui 91a cosh !7 + 3 s *n h 9

für die Stromübersetzung

I_2 = _________3 ________
Jj 3 cosh g + 9tA sinh g

Ist der Abschlußwiderstand des Vierpols gleich dem Wellenwiderstand

31a = 3 ,

so erfolgt keine Widerstandstransformation, und es gilt

(9)

(10)

91E=3iA = 3 - (11)
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Dieser Fall wird als Anpassung (Widerstandsanpassung) bezeichnet. Zwischen den
Spannungen und Strömen am Ausgang und am Eingang des Vierpols bestehen nach
(9) und (10) bei Anpassung die Beziehungen

U 2 = U, e-e, (11 a)

/ 2 =I ie~ g .

Das Übertragungsmaß g setzt sich aus Real- und Imaginärteil zusammen :

(Hb)

(12)

oc bezeichnet das Phasen-, ß das Dämpfungsmaß.
Die Dämpfung wird in Neper (Np) oder in Dezibel (dB) angegeben : Besteht zwischen
zwei Amplituden bzw. zwei Effektivwerten (des Stromes oder der Spannung) das
Verhältnis

2

so gibt

ß = In Np = 2,302 1g Np
-Ä-2 (13)

das Dämpfungsmaß in Neper an.
Die Leistung ist proportional dem Quadrat der Amplitude. Man erhält

P A 2
= e .

A
Allgemein ist es zweckmäßiger, das Dämpfungsmaß auf Logarithmen zur Basis 10
zu beziehen. Man definiert als Dämpfungsmaß in Dezibel (dB) :

& = 10 1g dB = 20 1g -jl dB

= 20 1g dB = 201g dB
U 2e ff

(14)

Zwischen der Angabe in Neper und der Angabe in Dezibel besteht die Beziehung

10“ = e2 bzw. b = In 10

woraus die Umrechnungsformeln

8,686 dB = 1 Np,  1 dB = 0,1151 Np

folgen.
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Beispiel 16

Durch ein Dämpfungsglied werden die Spannung und der Strom auf 1% ihres Ausgangswertes
herabgesetzt. Für die Dämpfung in Neper folgt

ß= In ip Np = 4,60 Np.

Das Dämpfungsmaß in Dezibel ist

b = 20 1g dB = 10 1g dB = 40 dB.

Probleme

4.2.1. Dämpfungsglied

Ein Vierpol, der aus reinen Wirkwider ständen aufgebaut ist, soll den Wellenwiderstand % = 300 Q
und die Leistungsdämpfung b = 10 dB haben. Berechnen Sie die einzubauenden Widerstände
für ein II-Glied. Welche Spannungs- und welche Leistungsübersetzung erfolgt, wenn der Ausgang
mit dem Wellenwiderstand abgeschlossen ist?

Lösung

Bei einem II-Glied gilt nach (4.2./5) für den Wellenwiderstand

und nach (4.2./3) für das Übertragungsmaß

7 RGcosh 0=14-—.  (2)
Zi

In (2) können wir nach dem Additionstheorem der hyperbolischen Funktionen schreiben

cosh g = cosh (i + ß) = cosh ß cos a + i sinh ß sin a . (3)

Da nach (2) cosh g rein reell sein muß, folgt

. o RGcosh ß cos a = 1 H------- , (2 a)

sinh ß sin a = 0 . (2b)
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Die Dämpfungskonstante soll von Null verschieden sein. Es muß daher nach (2b)

a = 0 (4)

gelten. Damit ergibt sich aus (2 a)

RG = 2(coshß - 1).

Den vorgegebenen Wert b = 10 dB rechnen wir um:

ß = 10 • 0,1151 Np = 1,151 Np.

Damit erhalten wir

RG = 2(cosh 1,15 - 1) = 2(1,74 - 1) = 1,48.

Für das Verhältnis der beiden unbekannten Größen folgt aus (1)

300Q = 1/J. ----------* ---------- bzw. = 1 ’ 233  ’ 105 Q2 -
k G / 1,48 G

|/ + 4

Hieraus ergibt sich für den Längswiderstand fR = R und für die Querableitung @ = G

R = 427Q, - i -=  289Q.

Ist der Vierpol mit dem Wellenwiderstand abgeschlossen, so können wir

U2 = ZI 2

setzen. Damit erhalten wir aus (4.2./11) wegen a = 0

U1 =U 2 eß, I ± = I 2 rf.

Für die Spannungsübersetzung folgt damit

= e -i,i5 = 0 317.
Ur

Die Leistungsübersetzung wird, wie gefordert, gleich

= e~2 - 30 = 0,10.

4.2.2. Schwingungssieb (Drosselkette)

Bild 4.13 zeigt eine Drosselkette, die sich aus reinen Blindwiderständen aufbaut. Die Daten der
eingebauten Schaltelemente sind L = 0,1 H ,  C = 100 pF .  Untersuchen Sie die Übertragungs-
eigenschaften.

1 4 Schilling, Felder
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Bild 4.13. Drosselkette

Lösung
Es liegt ein T-Glied vor mit

fR = ico£, ® = icoC. (1)

Für den Wellenwiderstand folgt nach (4.2./Ö)

-i /S i / fR®" n lL n / co2LC
~ ]/® y 1 + 4 ~ ]/o j/ 1 “ 4

Nach (4.2./3) und (4.2./1 c) erhalten wir für das Übertragungsmaß

, , o - . . , Q . . . 01® . oo2LCcosh g = cosh ß cos <% + i sinh ß sm oc = 1 -------- - -  1 --------- . (3)

Durch Trennung des Realteiles vom Imaginärteil entsteht

, o < oo 2LCcosh ß cos a = 1 ------------ , (4)
2

sinh ß sin oc = 0 . (5)

Gleichung (5) gestattet zwei Lösungen. Im ersten Fall ergibt sich

oc = 0 (mod 7v) , cos oc = ± 1 . (6)

Wegen cosh ß 1 muß cos oc = — 1 , also oc = tz sein. Dann ist (4) lösbar für

2co mit (jo? = -------- . (7)
]/LC

Wie man aus (2) entnimmt, bedeutet diese Bedingung, daß der Wellenwiderstand des Vierpols
imaginär ist :

1 lL Jmc

\ c \ 4 (8)

Der Dämpfungskoeffizient ist gleich

p , (co 2LC \ß = arcosh I — ------- I I .

Er steigt mit zunehmender Frequenz rasch an.

(9)
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Im zweiten Fall ist

sinhß = 0 ,  d. h. ß = 0 . (10)

Aus (4) folgt damit

< cd*LCcos (X = 1 -----------
2 (11)

Diese Gleichung ist lösbar für cos <x — 1 ,  d. h. für

2
€0 C0g =

fLC
(12)

Man erhält eine ungedämpfte Übertragung, jedoch tritt eine Phasenverschiebung auf. Der
Wellenwiderstand ist

1 -  ,
“ g

23 = (13)

also rein reell.
Zusammengefaßt ergibt sich: Kreisfrequenzen bis zu

2
1/LC

2____________ s- 1 = 6,32 • 105 s- 1 ,
]/0,l • 100 • IO“12

d. h., Frequenzen

6’ 32 - 1( ! -= i , o i . i o*h z27V

werden ungedämpft übertragen. Frequenzen oberhalb dieser Grenzfrequenz werden gedämpft.
Bei wesentlicher Überschreitung der Sperrfrequenz wirkt der Vierpol als Sperre. Der Bereich
/ /g wird daher als Durchlaßbereich, der Bereich / > /g als Sperrbereich bezeichnet.

4.2.3. Doppelsieb

Ein Kurzwellenempfänger enthält einen Vierpol nach Bild 4.14. Er soll derart abgestimmt
werden, daß Frequenzen zwischen coj = 2k • 107 s-1 und co n = 2k • 1,2 • 107 s-1 ungedämpft
empfangen werden können, jedoch sollen Störungen aus den Frequenzbereichen darüber und
darunter ausgeschlossen werden. Welcher Durchlaßbereich ergibt sich, wenn die Spulen die Induk-
tivitäten L-J2 = 0,5 mH, L 2 = 0,01 mH haben?

Bild 4.14. Doppelsieb

14*
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L ösung
Der Längswiderstand des T-Gliedes ist gleich

111

Für die Querableitung erhalten wir

& = iLc 2 - -LV (2)
\ «>A/

Aus (4.2./3) folgt

cosh g = 1 H-----— , (3)

d. h.

------tt) (ß>°2 ------y-)
cos oc cosh ß + i sin a sinh ß = 1 — ' ---------- 1--------------60 - 2 -.

Der Bereich gedämpfter Wellen ist durch

s ina  = O, sinhß =f= 0 ,  (4)

der Durchlaßbereich durch

s ina  =}= 0 ,  s inhß = 0 (5)

bestimmt. Sollen gedämpfte Wellen vorliegen, muß also cos oc die Werte + 1 oder — 1 annehmen.
Für cosa =4 -1  ergibt sich der Bereich gedämpfter Wellen aus der Forderung coshß > 1 .
Nach (3) bedeutet das

La - -M - 44 < o .  (6)\ (Z)C/-£ J y co-L/2 /

Wir setzen

2 1 2 1

" ‘ -ZA’

und erhalten damit anstelle von (6)

(co 2 — cOi2 ) (co2 — co 22) <0  (6 a)

als Bedingung für die Existenz gedämpfter Wellen.
Für cos oc = — 1 muß nach (3) bei gedämpften Wellen

4co 2(co2 - «j 2) (co2 - w2
2) > —— (8)

1710 2

erfüllt sein.
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Die Grenzen zwischen Durchlaß- und Dämpfungsbereichen erhält man aus (6 a) und (8):

Bild 4.15. Durchlaßbereich und Sperrbereiche eines Doppelsiebes

Bild 4.15 zeigt den Verlauf von coshgr nach (3). Soll die Schwingung den Vierpol ungedämpft
passieren können, so muß cosh g im Intervall

(10)— 1 cosh g + 1

liegen. Der Durchlaßbereich wird hiernach zwischen cox und co2 durch einen Dämpfungsbereich
unterbrochen. Um diese Unterbrechung zu beseitigen, stimmen wir die Bauteile so ab, daß

coi = co 2 
= "o , d. h- L 1C1 = L 2C2 (11)

gilt. Für die Grenzen erhalten wir damit nach (9)

y
2C

1 H— -F 2
2

(12)

Mit den vorgegebenen Zahlen folgt

c 2
= 0,01.

2>1

Für die Wurzeln in (12) ergeben sich damit die Werte 0,905 und 1,105. Die Kapazitäten müssen
daher gleich

_w = — w — F=0)21pp
1 4k2/i£i 4tt2 • 1014 • 0,001 r

c 2 = lOOCi = 21 pF

sein. Als Grenzen des ungedämpften Bereiches erhalten wir damit

/r = 10’ Hz , f„ = 10’ Hz = 1,22 • 10’ Hz ., l  0,905
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4.2.4. Wien— Maxwell-Brücke zur Messung der Induktivität

Zur Messung des Wechselstromwiderstandes einer Spule wird diese in eine Meßbrücke .mit den
festen bzw. stufenweise regulierbaren Widerständen R ± und jR2 und dem variablen komplexen

Widerstand R -| - - ---— geschaltet (vgl. Bild 4.16). Stellen Sie die Bedingung dafür auf, daß
i a>C

zwischen den Punkten A und B keine Spannung vorhanden ist.
Wie groß sind die Induktivität L x und der ohmsche Widerstand R x , wenn für die festen Wider-
stände die Werte R r = R 2 = 1 kQ eingestellt sind und bei Stromabgleich für die stetig veränder-
lichen Größen R = 250 kQ,  C = 1,5 • 10-8 F gemessen wird?

Bild 4.16. Wien— MAXWELL-Brücke

Lösung
In Bild 4.16 addieren sich die parallel geschalteten Widerstände gemäß

— + i<uC=— . (1)
R 81 v '

Soll zwischen A und B keine Spannung bestehen, also durch das Meßgerät kein Strom fließen,
so müssen die beiden Gleichungen

(-&B “1“ W>LX } I 1 = R2I2, (2)

R1 I 1 = (3)

erfüllt sein. Durch Division erhält man

R x + voL x = R R
SR 2? 2 ' ’

Trennung von Real- und Imaginärteil ergibt

(5)

L x = 0R 1 R2 . (6)
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Wir setzen die vorgegebenen Werte ein und erhalten

103 • 103
R x = _AL_11L_Q = 4,oQ.x 250 • 103

L x = 1,5 • 10~8 • 103 • 103 A s V- 1 (V A-1 ) 2 = 0,015 H .

In gleicher Weise können Kapazitäten gemessen werden.

4.2.5. Eisenloser Transformator

Ein Transformator besteht primärseitig aus einer kreiszylindrischen Spule mit n x = 20 Win-
dungen. Sekundärseitig befindet sich eine Spule mit n2 = 2000 Windungen. Die Längen und die
Querschnittsradien beider Spulen sind gleich : = l2 = l = 25 cm , = _R 20 = _R0 = 2 cm .
Der Drahtquerschnitt ist primärseitig gleich = 1 cm2 , sekundärseitig gleich A 2 = 1 mm2 .
Beide Spulen bestehen aus Kupferdraht (y — 5,9 • 107 Q -1 m-1 ).  Sie seien vollständig miteinander
Verkettet, d. h., der magnetische Fluß einer Spule geht vollständig auch durch die andere Spule.
Berechnen Sie die Leerlaufspannungs- und die Kurzschlußstromübersetzung des Transformators.
Wie groß ist der Eingangswiderstand, wenn der Transformator sekundär seitig mit der Impedanz

= 6,6 kQ abgeschlossen ist? Welche Leistung wird übertragen, wenn dabei primärseitig die
effektive Spannung U l e i i  = 220 V anliegt? Wie groß sind sekundärseitig Strom und Spannung?
Die Frequenz des Wechselstromes beträgt / = 500 Hz .
Wie in 4.3.1. und 4.3.2. abgeleitet wird, sind die beiden Induktionskoeffizienten der Selbst-
induktion durch

L .  = Ljj = 2 .<>n )S?i.o 2 . (j = i ,  2 ) (1)
1)

bestimmt. Der Koeffizient der Gegeninduktion ist bei vollständiger Verkettung durch

gegeben (vgl. 4.3.2.).

Lösung

Aus (1) und (2) ergeben sich die Werte

L x = L n = 2,53 pH, L 2 = L 22 = 25,3 mH, L12 = 253 pH. (3)

Für die ohmschen Widerstände erhält man primärseitig einen Wert in der Größenordnung 1 mQ,
sekundärseitig R 2 = 4,27 Q .
Der Strom I x auf der Primärseite erzeugt auf der Sekundärseite durch die Gegeninduktion den
Spannungsabfall

— ZlZ72 = (4)

Das obere Vorzeichen gilt für gleichsinnige Wicklung der beiden Spulen, das untere für gegen-
sinnige.
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Für die Spannungen U1 und ü 2 in den beiden Stromkreisen folgt nach Bild 4.17

— U i -J- R 1I 1 d- icoLjIj —|- icoL12 / 2 — 0 ,

L72 i d- - 2- 2 d- iu>L2l 2 — 6 . (6)

Die oberen Vorzeichen gelten für gleichsinnige, die unteren für gegensinnige Wicklungen.

Bild 4.17. Eisenloser Transformator als Vierpol

Das System der beiden miteinander gekoppelten Gleichungen (5) und (6) kann in Form der Ma-
trizengleichung

U = KI (7)

zusammengefaßt werden, mit der Spannungsmatrix

der Strommatrix

und der Impedanzmatrix

K = ±ia)£12 \ = /jRi + ico£x ±i<uL12
\=FicoL12 — K 2 / \=Fia>£12 — E 2 — icoL2

Sind im Stromkreis kapazitive Widerstände eingeschaltet, so können Ki und fR2 gemäß

fRy — Rj + i(oLj + - —— (j — 1, 2)icoCj (H)

erweitert werden.
Im vorliegenden Fall sind die ohmschen Widerstände gegen die Induktanzen zu vernachlässigen;
Kondensatoren fehlen. Es folgt damit aus (5) und (6)

U1 = L12l 2 ),

J72 
= kz>( -F - 2- 2) •

(12)

(13)
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Bei Leerlauf ist der sekundärseitige Strom 1 2 gleich Null. Für die LeerlaufSpannungsübersetzung
ergibt sich damit

| £? |  = 12.

N £1 ’
(14)

Kurzschluß ist durch U2 = 0 gekennzeichnet. Als Kurzschlußstromübersetzung erhält man

(15)

(16)

(17)

Bei vollständiger Verkettung folgt nach (1) und (2)

Mit dem Transformator erfolgt bei Leerlauf die Spannungsübersetzung 100: 1, bei Kurzschluß
die Stromübersetzung 1 : 100. ü ist gleich 0,01.
Ist der Transformator sekundärseitig mit dem Widerstand fRA abgeschlossen, so verwendet
man zur Berechnung des Stromes und der Spannung die beiden Gleichungen (5) und (6). Darin
lassen sich zwei der vier Größen L71? 11? U2 , I 2 auf die beiden anderen zurückführen. Der Abschluß-
widerstand

91a
*2

(18)

vermittelt eine dritte Beziehung. Eine vierte ergibt sich durch die Eingangsbedingungen.
Wir beschränken uns auf gleichsinnige Wicklungen und benutzen die Definitionsgleichungen (11).
Aus (6) erhalten wir damit auf Grund der Anfangsbedingungen (18)

I ------ !
9* 2 + 9t A

(19)

Dieser Zusammenhang kann in (5) eingeführt werden, woraus folgt

_OA£12_

9*2 + 9*a
s jie = -y (20)

Hieraus ergibt sich in Verbindung mit (19) der Sekundärstrom

icoL12Z2 = --------- 12-------- u
(9*2 + 9*a ) + ® 2 ii2

(21)

während wir für die Sekundärspannung wegen (18)

— icoL129tAU2 = -------------— i2 a------
+ 9* A ) +

(22)

erhalten.
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Mit den vorgegebenen Zahlen folgt aus (20), wenn die ohmschen Widerstände vernachlässigt
werden,

«ftE = i [2tv - 500 • 2,53 • 10-s H----------(2tc ' 500 ’ 253 ' 10 ~6)2-------- 1q  = i 7,9 • 10~3 Q.E [ 2tt • 500 • 25,3 • 10~3 + 6,6 - 103 J

Für die sekundäre Spannung erhalten wir nach (22) J72eff = 21980 V, für den sekundärseitigen
Strom nach (21) l 2eff  = 3,33 A.  Wegen des reellen Abschlußwiderstandes besteht keine Phasen-
verschiebung, so daß sich für die am Abschluß entnommene Nutzleistung

P = ü 2eff Z2eff = 21980 V • 2,33 A = 73,2 W

ergibt.

Aufgaben

A 4.2.1. Bestimmen Sie den Eingangswiderstand eines kurzgeschlossenen Vierpols.

A 4.2.2. Ein leerlaufender Vierpol hat den Wellenwiderstand 300 Q, das Phasenmaß oc = n ,
das Dämpfungsmaß Null. Wie groß ist sein Eingangswiderstand?

A 4.2.3. Geben Sie das Leistungsverhältnis P1 : P 2 = 500 in Dezibel und in Neper an.

A 4.2.4. Als Signal-Rausch-Verhältnis eines Meßgerätes (vgl. 5.2.) werden 35 dB angegeben.
Wie groß ist das Verhältnis zwischen Signal- und Rauschleistung, zwischen Signal-
und Rauschspannung?

A 4.2.5. Ein T-Glied hat die Widerstände SR = 400 Q ,  l/($ = 20 Q .  Wie groß sind der
Wellenwiderstand und das Übertragungsmaß

A 4.2.6. Es soll ein Dämpfungsglied mit dem Wellenwiderstand Z = 180 Q und dem Dämp-
fungsmaß ß = 1,5 Np gebaut werden. Berechnen Sie die Widerstände für ein
T-Glied.

A 4.2.7. Zwei Vierpole gleichen Wellenwiderstandes und gleichen Übertragungsmaßes sind
hintereinandergeschaltet. Geben Sie die Übertragungsformel an. Welcher Wellen-
widerstand und welches Übertragungsmaß ergeben sich für den resultierenden
Vierpol?

A 4.2.8. Zur Unterdrückung von Oberwellen wird ein Vierpol nach Bild 4.18 mit C = 0,1 pF ,
L = 1 mH verwendet. Bestimmen Sie die Grenzfrequenz des Vierpols.

L L
2 2

o— | ----------onnnRP——°

T :o 4 -o Bild 4.18. T-Glied
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A 4.2.9. Bestimmen Sie den Durchlaßbereich und den Sperrbereich für eine Kondensator-
kette nach Bild 4.19. Welche Formel ergibt sich für den Wellenwiderstand?

2C 2C
Hl  ------j ------IH

gz
o ---------------1 o Bild 4.19. Kondensatorkette

Welcher Durchlaßbereich und welcher Sperrbereich ergibt sich für die Drosselkette
nach Bild 4.20? Wie groß ist der Wellenwiderstand?
Berechnen Sie den Durchlaßbereich für ein Doppelsieb nach Bild 4.14 = 2,5 pF,
L ± = 500 mH, L 2 = 2 mH) .

A 4.2.10.

A 4.2.11.

A 4.2.12.

A 4.2.13.

C

•— rh — 0

2L | I 2L

□ -----------1 -------1--------o Bild 4.20. II-Glied

In einer Wien— MAXWELL-Brücke nach Bild 4.16 betragen die festen Widerstände
R ± = 5 kQ,  R 2 = 10 kQ.  Spannungsabgleich wird für R = 550 kll, C = 4,5 • 10~9 F
gemessen. Die Frequenz ist gleich / = 50 Hz. Berechnen Sie L x und R x .
Zur Messung von Kondensatoren verwendet man die Kapazitätsmeßbrücke nach
Bild 4.21. Stellen Sie für diese die Abgleichbedingung auf und bestimmen Sie
daraus die Gleichungen für die unbekannte Kapazität Cx und den unbekannten
Widerstand R x .

Bild 4.21. Kapazitätsmeßbrücke

Berechnen Sie die Leerlaufspannungs- und die Kurzschlußstromübersetzung für
einen Transformator mit den Windungszahlen n ± = 10000, n 2 = 10. Wie groß
ist der Eingangswiderstand für / = 50Hz,  L12 = l , 5mH,  9lA = 15kQ? Die
Spulenquerschnitte sind gleich.
Berechnen Sie zur vorangegangenen Aufgabe die übertragene Leistung, wenn die
effektive Spannung primärseitig 220 V beträgt.
Stellen Sie die Formel für den Eingangswiderstand eines Transformators auf, wenn
der Abschlußwiderstand 91 A gegen die Induktanz coL2 vernachlässigbar klein ist.

A 4.2.14.

A 4.2.15.

A 4.2.16.
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4.3. Berechnung der Induktionskoeffizienten und des Wellenwiderstandes

Einführung

Die Berechnung der Induktionskoeffizienten kann allgemein nach den Gleichungen
(4.1. /19) bis (4.1./21) erfolgen. Ihre Anwendung ergibt mehrfache Integrale, deren
Auswertung in der Regel zu komplizierten Rechnungen führt. Man ist daher bestrebt,
einfachere Verfahren anzuwenden.
Vielfach führt entweder die Energiegleichung

£ (1)

zum Ziel, oder man nutzt den Zusammenhang (4.1./42) zwischen dem magnetischen
Fluß und dem Induktionskoeffizienten

<Z>F = 83 . d9l = LI
A

(2)

aus.

Beispiel 17
Es soll der Selbstinduktionskoeffizient einer kreiszyiindrischen Spule bestimmt werden, deren
Länge l groß ist gegen den Querschnittradius R.
Die gespeicherte magnetische Energie ist gleich

< 3 >Z

Das Magnetfeld hat die Stärke

Setzt man (4) zusammen mit 55 = in (3) ein und berechnet das Volumen V der Spule aus
Grundfläche k_R2 und Länge l, so folgt

g. - . 1=)

Für den aus einer Spule mit der Induktivität L = L lt bestehenden Stromkreis ist nach (4.1./24)

w m = 4- (6)z

Damit ergibt sich aus dem Vergleich von (5) und (6)

l'n — ----- ----- • (7)
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Beispiel 18
Es soll die Induktivität zweier koaxialer Zylinder bzw. die Induktivität einer Ko-
axialleitung der Länge l bestimmt werden . Der Zylinderradius des kompakten Innenleiters sei
R 19 der Innenradius des Außenleiters Äa . Die Störungen an den Enden des Zylinders seien zu
vernachlässigen .
Das Magnetfeld im Innern ist gleich

Hieraus folgt als magnetischer Fluß (vgl. Bild 4.22)

Äa

0F = // 58 ■ d2t = f d ’’- (9 )

A Ri

Bild 4.22. Längsschnitt durch eine Koaxial-
leitung mit ihren magnetischen Feldlinien

Durch Auswertung des Integrals ergibt sich

0 F = - \  a I = LI .  (10)

Für die Induktivität der Leitung erhält man daraus

£ = ln (H)
2re Ri '

Sie ist der Leiterlänge proportional.

Bei homogenen Leitern ändern sich über die gesamte Länge der Leitung weder die
geometrischen Abmessungen noch die Materialeigenschaften. Kapazität und Induk-
tivität sind proportional der Leiterlänge. Daher wird bei homogenen Leitungen die
Angabe der Induktivität und der Kapazität auf Leiterstücke der Länge 1 m be-
zogen. Diese Größen werden als Induktivitätsbelag L' und als Kapazitätsbelag C'
definiert. L r hat die Maßeinheit II m-1 , 0 '  die Maßeinheit F m-1 . Nach Beispiel 18
ist der Induktivitätsbelag einer Koaxialleitung

Z' = -F  ln - - < 12>Z7C
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Für den Kapazitätsbelag erhält man nach (2.1.2./7)

0 , = 2™> (13)
i - a
l n  Ä7

Bei hohen Frequenzen können die Verluste durch Wärmewirkung vernachlässigt
werden, wenn hochwertiges Isolationsmaterial verwendet wird (vgl. 4.4.). Es besteht
dann zwischen dem Induktivitätsbelag L' und dem Kapazitätsbelag 0' bei homogenen
Leitern allgemein die Beziehung

(14)= ]/e/z

(vgl. 4.4. /27). c0 gibt darin die Lichtgeschwindigkeit im Vakuum, n die Brechzahl
des Zwischenmediums an.
Das Verhältnis

(15)

hat die Maßeinheit Q. Es gibt bei verlustfreien, homogenen Leitern den Wellen wider-
stand an (vgl. 4.4./9).

Probleme

4.3.1. Selbstinduktivität einer Spule

Eine Spule aus n = 15000 Windungen mit kreisförmigem Querschnitt hat den Radius R = 0,5 cm
und die Länge l = 12 cm. Berechnen Sie den Koeffizienten L ±1 der Selbstinduktion. Wie groß ist
die induzierte Gegenspannung, wenn im Verlauf von At = 2 s der Strom I von 0,4 A gleichmäßig
auf Null reduziert wird?

Lösung

Der magnetische Fluß durch den Spulenquerschnitt ist gleich

S3-d9I = 1«0ff4 = Ju0 y-7tÄ 2 . (1)

Nach (4.3. /2) besteht die Beziehung

ff ®.d9I  = 0 F = LI .  (2)



2234.3. Induktionskoeffizienten und Wellenwiderstand

Aus dem Vergleich von (1) und (2) erhalten wir damit für L

L = L 11 =-  0 — . (3).

Im Gegensatz zu den homogenen Leitern ist die Induktivität der Spule nicht proportional der
Leitungslänge. Daher ist es nicht möglich, für sie einen Induktivitätsbelag zu definieren.
Die induzierte Gegenspannung ergibt sich gemäß

ar

Mit den vorgegebenen Zahlen folgt für den Koeffizienten der Selbstinduktion

1,257-10-». 150W.  (5-10-
= ---------------------------------------- ±1 = v,loO±l.11 0,12

Die induzierte Gegenspannung wird gleich

0.4
ind = -0,185 • — V = -0,037 V.2

4.3.2. Gegeninduktivität zweier gekoppelter Spulen

Im Innern einer Spule aus n ± = 5000 Windungen befindet sich eine zweite Spule, die
n 2 = 3000 Windungen enthält. Die Länge beider Spulen ist l = 15 cm. Der Durchmesser des
Spulen Querschnitts beträgt für die erste Spule 2J?X = 2 cm, für die zweite Spule 27?2 = 1,5 cm.
Das Zwischenmedium ist Luft. Berechnen Sie die Gegeninduktivität der beiden Spulen. Welche
Spannung wird in der zweiten Spule hervorgerufen, wenn durch die erste Wechselstrom mit
der Periodenzahl f = 50 Hz und der effektiven Stromstärke l l e f f  = 0,1 A fließt? Welcher Anteil
der in der ersten Spule erzeugten Feldlinien geht durch die zweite Spule?

Lösung

Fließt durch die äußere Spule der Strom so wird damit in der inneren Spule der magnetische
Fluß

<Z>F = fj' (1)

erzeugt. Die Änderung des Stromes in der äußeren Spule induziert in der inneren Spule die Span-
nung

v = M f = dZi
2 di l di V ’

Nach (4.1. /43) ist die Gegeninduktivität L12 durch

E72 = _£2 12 di (3)
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definiert. Somit erhält man für die Gegeninduktivität des verketteten Systems

n n R
- 12 — j •

Mit den vorgegebenen Zahlen folgt

= k ■ 1,256 •..101 000 3 000 - (0,75 • 1Q- H = H

0,15

Für die induzierte Spannung ergibt sich, wenn man die zeitliche Abhängigkeit in der Form eia) *
voraussetzt,

/— i— i(tot — —
Z72 = — üuco/j = — iZ12 <o/l e f t  72 e1“' = i 12 coll e f f  P e ' 2 ' ' (5)

Mit den vorgegebenen Werten erhalten wir

U2 = 0,022 • 2k • 50 • 0,1 • 1,41 • e \ 2 / V = 0,98 e \ 2/ y .

Die induzierte Spannung eilt bei vernachlässigbarem ohmschem Widerstand dem Strom um eine
Viertelperiode nach.
Die Gegeninduktivität zweier Spulen wird im allgemeinen in der Form

L k l  L (6)

dargestellt, k bezeichnet den Kopplungsfaktor. Er liegt im Wertebereich

0 k 1 . (7)

Im betrachteten Fall ist

k = — = = 0,75, k* = = 0,5625.
2,0 J?!2

Das bedeutet: 56,25% der in der ersten Spule erzeugten magnetischen Feldlinien gehen durch
die zweite Spule.

4.3.3. Wellenwiderstand und Induktivitätsbelag der Koaxialleitung

In einer Koaxialleitung beträgt der Durchmesser des Innenleiters 2-Rj = 6,25 mm, der Innen-
durchmesser des Außenleiters 2_Ra = 20 mm . Berechnen Sie den Wellenwiderstand und den In-
duktionsbelag der Leitung. Zur Halterung des Innenleiters wird dieser mit kreisförmigen Stützen
aus Kunstharz versehen. Welchen Durchmesser muß der Innenleiter an dieser Stelle haben,
wenn der Wellenwiderstand unverändert bleiben soll? Die Dielektrizitätszahl des Kunstharzes
sei e T = 4,5 .

Lösung
Der Induktivitätsbelag kann nach Beispiel 18 berechnet werden. Eine andere Methode besteht
darin, anstelle des Induktivitätsbelages zunächst den Kapazitätsbelag zu berechnen. Nach
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(2.1.2./7) ist dieser gleich

c ' =  — vl)
In—-

Zwischen C' und L' besteht nach (4.3./14) die Beziehung

<m2

L 'C '=  — (2)
Co2

Hieraus erhält man den Induktivitätsbelag

L '=-  -\n &)
Ri

in Übereinstimmung mit (4.3./12). Der Wellenwiderstand der Leitung wird gleich

' u 1 .------- In .
e 2k (4)

Hierin können wir jjl = setzen und erhalten damit

2 = 1 Ü2. 1 /_L _L in A- .
[/ £0 |/ £r 2k (5)

Mit den vorgegebenen Zahlen folgt nach (5) für Luft mit £ r = 1

1 20Z = 120k ---- In ----— Q = 69, 8Q  70£I.
2k 6,25

(5a)

Als Induktivitätsbelag ergibt sich aus (3)

L' = 411 ' 10 ’ in h m- 1 = 2,33 • 10~’ H m- 1 .
2k 6,25

Wird das Zwischenmedium durch die angebrachten Stützen verändert, so verändert sich längs
dieses Leitungsstückes auch der Wellenwiderstand. Bei vorgegebenen Abmessungen für das
Außenleiterrohr läßt sich das nur durch eine Verkleinerung des Innenleiterdurchmessers kom-
pensieren. Für £ r = 4,5 ergibt sich aus (5) mit dem Wellenwiderstand nach (5 a) der Innenleiter-
durchmesser 2R i = 1,7 mm.

4.3.4. Wellenwiderstand einer Bandleitung

Eine Leitung besteht aus zwei parallelen Bändern (vgl. Bild 4.23). Ihre Breite beträgt b = 5 cm,
ihr Abstand voneinander a = 1 mm . Das Zwischenmedium hat die relative Dielektrizitäts-
konstante £r = 2,5 . Berechnen Sie den Induktivitätsbelag und den Wellenwiderstand der Leitung.

1 5 Schilling, Felder
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bänder Bild 4.23. Schnitt durch eine Bandleitung

Lösung
Die Stromdichte ist gleich I/&. Wegen rot § = 3 folgt damit als magnetische Feldstärke

#=4- -  (i)0

Für die magnetische Energie in einem Leiterstück der Länge l ergibt sich daraus

1 1 Z2

= — »IPV = -i- abl. (2)
Z Z 0

Sie ist andererseits gleich

W m = ±-L'Fl,  (3)
Zi

Aus dem Vergleich von (2) und (3) ergibt sich

L' = /J, ruo - - .  (4)
0

Zwischen Induktivitäts- und Kapazitätsbelag besteht nach (4.3./14) der Zusammenhang

tfFö' = (5)

Aus (4) und (5) folgt für den Wellenwiderstand der Bandleitung

|/ C [■ e b

Setzt man hierin p = pQ , e — n 2sQ9 so ergibt sich



4.3. Induktionskoeffizienten und Wellenwiderstand 227

Mit den vorliegenden Zahlen erhalten wir
IO-3

L' = 1,256 • IO“6 ----  ------ H m" 1 = 2,51 • IO"8 H m" 1 ,
5 • IO"2

1 IO“3

Z = 120k ------------------- Q = 4,77 Q.
1 5 5 • 10~2

4.3.5. Induktivität zweier Zylinderschalen

Ein zylindrisches Rohr mit kreisförmigem Querschnitt hat die Wandstärke b = 2 mm. Der
Innendurchmesser beträgt 2R = 20 mm. Durch zwei symmetrisch zueinander angeordnete
Schlitze mit dem Öffnungswinkel 2<p0 = 2° (vgl. 2.2.5. und Bild 2.15) wird der Zylinder in zwei
Schalen geteilt. Berechnen Sie den Induktivitätsbelag der Schalen. Wie groß ist der Wellenwider-
stand der entstandenen Leitung?

Lösung
Nach (2.2.Ö./27) ergibt sich bei verschwindender Wandstärke für die Kapazität, bezogen auf 1 m
Leitungslänge,

K (1/— —)
c = — y g» + 1 /_ (i)

K (1 )

mit

“ •=  ®

gemäß (2.2.5./15). Kann die Wandstärke nicht vernachlässigt werden, so läßt sich die von ihr ver-
ursachte Kapazität genähert nach (2.2.1./12) mit l = 1 m berechnen:

£o l n ( l  + 64- )
20/ = 2 -------- (3)

2?>o
Entsprechend den zwei Schlitzen ist die Teilkapazität der Bewandung doppelt zu zählen.
Im vorliegenden Fall ist

d = R sin 29?o = 2R<pQ ,

so daß wir anstelle von (3)

«° 111 f 1 + 4)
<Y - -  --------\ Rl  (4)

2?>o

schreiben können. Mit den vorgegebenen Zahlen folgt

, 8,86 • IO“12 In (1 + 0,2) • 1800/ —~ —----------------- — ! -------- F m-1 — 46,3 pF m 1 .1 2k

15*
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Nach (2.2.5.) ist der Kapazitätsbelag bei vernachlässigbarer Wandstärke C' = 61,2 pF m -1 .
Für den gesamten Kapazitätsbelag erhält man damit

C g ' = a + 20/ = (61,2 + 2 • 46,3) pF m" 1 = 153,8 pF m” 1 .

Der Induktivitätsbelag folgt auf Grund der Beziehung (4.3. /14):

G g g

Mit dem errechneten Wert erhalten wir

H m- 1 = 7,23 • IO" 8 H m' 1 .
(3 • 108 ) 2 • 153,8 • IO" 12

Für den Wellenwiderstand ergibt sich

7,23 • 10~ 8

153,8 • IO" 12 Q = 22Q.

4.3.6. Selbst- und Gegeninduktion einer Zweidrahtleitung

Eine Leitung besteht aus zwei parallelen Drähten. Die Länge l der gesamten Leitung ist groß
gegen den Abstand a der beiden parallelen Drähte. Dieser ist groß gegen den Querschnittsradius
r 0 des einzelnen Drahtes.
Berechnen Sie den Induktionskoeffizienten der Leitung für l = 3,8 km,  a = 40 cm,  r0 = 1,5 mm.
Wie groß ist der Induktivitätsbelag der Leitung ?

Lösung
Nach (4.1./18) ist die gesamte magnetische Energie durch

TTm = 4- + 2LM + i 22Z2
2) (1)Zi

gegeben. Hierin setzen wir

= I ,  I 2 = -I  (2)

ein. Außerdem gilt L X1 — L 22 . Wir definieren

■Ls = 2(LX1 L 12 ) . (3)

Damit folgt aus (1)

TFra = 4" &

d.  h . ,  Lg bezeichnet den Induktionskoeffizienten des gesamten Leitungssystems aus Hin- und
Rückleitung.
Um den Koeffizienten L 12 der Gegeninduktion zu berechnen, wenden wir (4.1./21) an :

(5)
J J r 12
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Darin kann

dFi = • d = A r dsj, dP 2 = $2 * d3 2 = A 2 ds 2 (6)

gesetzt werden, wobei A den Leiterquerschnitt, d3 das Element eines Leiterstücks bedeutet.
Die Stromliniendichtevektoren hängen mit der Stromdichte gemäß

i = -f (7)

zusammen, wobei die Stromstärke I durch

3 • * = I (8)

gegeben ist. Im Falle der parallelen Zweidrahtleitung ist

’ _ 'xJl _ a51 • _ xJ2 _ a5~2 /q\

31 ’ 1311 1 32 • 2 I32 | 2

Daraus folgt

. . . d dPg = __ 3 X - 3A d 2 ds2 = _ cos (3 1? 3 2 ) ds t ds2

r 12 1311 I32 | l -2r !2 r 12

wobei (3i, 3 2 ) n Winkel zwischen beiden Stromrichtungen angibt. Bei der parallelen Zweidraht-
leitung ist cos (3i, 3 2 ) = — 1 . Damit folgt aus (5) und (10)

r - C C d5 i d<s 2

Wir wählen die Richtung der Stromdichtevektoren i als z-Achse und erhalten damit (vgl. Bild
4.24)

______dz 2
V«2 + («2 -

dzx . (12)

Bild 4.24. Zweidrahtleitung
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Es folgt

£ 12 = —¥—(21 In ------ 2 a 2 + F + 2a) .
4k \ a /

Unter der Voraussetzung l >a ergibt sich

? (in — — 1 ) .2k \ a /

(13)

(14)

Der Gegeninduktionskoeffizient ist der Leiterlänge nicht proportional. Man kann keinen auf
die Längeneinheit bezogenen Koeffizienten der Gegeninduktion definieren.
Der Selbstinduktionskoeffizient für eine Leitung ist nach (4.1. /19)

= _P_ f f  i i - i i ' dFxdP ;
11 J J ru

(15)

Bei konstantem Querschnitt A und konstanter Stromdichte 3 folgt

L = P f f f f  f f dzx' d ! dA/
4tU2 J J J J J J + (Z/ - ztf

Ai Ai 0 0

(16)

Dabei ist zu berücksichtigen, daß auch Stromelemente, die sich auf der gleichen Querschnittebene
befinden, miteinander wechselwirken. Es ergibt sich durch Auswerten der inneren Integrale
über dzT und dzx '

Ai Ai

Eür kreisförmigen Leiterquerschnitt können wir

dA x = 271?! dr1?  d j/ = 2tw/ dr/ (18)

schreiben. Ferner gilt in (16)

r = cos — r/ cos g?/) 2 + (rx sin — rr ' sin <p/) 2 . (18 a)

Damit erhalten wir schließlich

[jl / 2? 3 \ .
ii = -f- In ----------T • (19)2k \ r0 4 /

Wir können nunmehr die Induktivität des Stromkreises berechnen. Dazu setzen wir (14) und (19)
in (3) ein und erhalten

(20)z s =
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Diese Größe kann im Gegensatz zur Gegen- und zur Selbstinduktion auf die Längeneinheit be-
zogen werden:

L ' =S l dl
(21)

Mit den vorgegebenen Zahlen folgt

1,256 • 10-« /, 40 1 \ TT ,--------------- I In ------1 -----  1 H m-1 =
, 0,5 4 /

1,85 -IO“6 Vs A-im- 1 .z s ' =

Für die Länge l = 3800 m erhalten wir

L s = L 3 ' ■ 3,8 • 103 m = 7,03 • 10 -3 H.

A Aufgaben

A 4.3.1. Berechnen Sie den induktiven Widerstand einer Spule mit kreisförmigem Quer-
schnitt. Der Querschnittradius ist gleich _R0 = 0,5 cm , die Spulenlänge l = 20 cm .
Auf der Spule befinden sich n = 10000 Windungen. Das Zwischenmedium ist
Luft. Die Frequenz des Wechselstromes beträgt f = 50 Hz .

A 4.3.2. Wie groß muß die Windungszahl einer Kreiszylinderspule mit dem Querschnitt
1 cm2 und der Länge 10 cm sein, wenn diese die Induktivität a) 1 mH, b) 1 pH
haben soll?

A 4.3.3. Eine Spule aus n = 15000 Windungen mit dem Querschnittradius RQ = 1 cm wird
mit einem Schichtkondensator der Kapazität C = 10 pF in Reihe geschaltet. Die
Wicklungen der Spule bestehen aus Aluminiumdraht (y = 4,2 • 107 Q _1 m-1 ) mit
dem Querschnitt r0

2it = 0,5 mm2 . Für die Spulenlänge ist l = 20 cm zu setzen.
Berechnen Sie die Induktivität der Spule. Wie groß ist der Blindwiderstand, wenn
die Frequenz / = 50 Hz beträgt? Welchen Scheinwiderstand und welche Impedanz
erhält man? Bestimmen Sie den Winkel der Phasenverschiebung.

A 4.3.4. Ein Schwingkreis besteht aus einem Kondensator der Kapazität 10 pF und einer
Spule mit n = 300 Windungen. Der Radius des Spulenquerschnittes beträgt
jR0 == 5 mm , die Spulenlänge l = 10 cm . Die Wicklungen enthalten Kupferdraht
mit dem Querschnitt AA = 0,5 mm2 . Berechnen Sie die Induktivität und den
ohmschen Widerstand. Wie groß sind die Resonanzfrequenz und die Abklingzeit ?
(y = 5,9 • 107 Q- x m- 1 )

A 4.3.5. Eine Spule aus 8000 Windungen ist um eine zweite Spule gewickelt, die 1500 Win-
dungen enthält. Der Durchmesser des Spulenquerschnitts beträgt für beide Spulen
2 0 == 1 cm, die Länge l = 15 cm. Wie groß ist die Gegeninduktivität? Das
Zwischenmedium ist Luft.

A 4.3.6. In einem Koaxialkabel beträgt der Innendurchmesser des Außenleiters 2E a = 40 mm ,
der Durchmesser des Innenleiters 2R { = 8 mm . Das Zwischenmedium ist Luft.
Berechnen Sie den Wellenwiderstand.

A 4.3.7. Eine Koaxialleitung besitzt einen Außenleiter mit dem Innendurchmesser
2I?a = 4 cm. Das Zwischenmedium hat die Dielektrizitätszahl er = 2,5. Wiegroß
muß der Durchmesser des Innenleiters sein, wenn der Wellenwiderstand den
standardisierten Wert von 70 Q annehmen soll?
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A 4.3.8. Wie groß sind L', C'9 Z für eine Bandleitung mit den Abmessungen b = 10 cm,
a = 2 mm? Ferner ist cr = 2,7, [jl t = 1 .

A 4.3.9. In einer Bandleitung mit der Breite b = 5 cm soll sich der Wellenwiderstand
exponentiell über die Länge l = 50 cm von Z = 10 Q auf Z = 40 Q verändern.
Das Zwischenmedium ist Luft. Wie ist der Abstand der Bänder zu verändern?
Die Krümmung der Feldlinien und die Randstörungen sind zu vernachlässigen.

A 4.3.10. Ein zylindrisches Rohr mit der Wandstärke b — 4 mm und dem Innendurchmesser
2R = 20 mm wird durch zwei symmetrische Schlitze mit dem Öffnungswinkel
2g?0 = 2° in zwei Halbschalen zerlegt. Berechnen Sie den Induktivitätsbelag und
den Wellenwiderstand dieser Leitung.

A4.3.11. In einer Zweidrahtleitung beträgt der Drahtabstand a = 50 cm . Der Durchmesser
jedes Drahtes ist gleich 2r0 = 2 mm. Berechnen Sie den Induktivitätsbelag.

A 4.3.12. Wie groß ist in der vorangegangenen Aufgabe die Selbstinduktivität, wenn die
Leitungslänge 1 km beträgt? Welcher Wert ergibt sich für 1 = 2 km?

A 4.3.13. Leiten Sie aus der Formel für die Induktivität der Zweidrahtleitung die Induk-
tivität und die Kapazität einer Horizontalantenne ab. Wie groß ist L für eine
Horizontalantenne der Länge l = 2,50 m , die sich in der Höhe h = 20 m über der
leitenden Erde befindet und den Drahtdurchmesser 2r0 = 1 mm aufweist ?

A 4.3.14. Über dem Erdboden in der Höhe h = 5 m ist eine Leitung mit dem Drahtdurch-
messer 2r0 = 5 mm ausgespannt. Die Rückleitung erfolgt durch die Erde. Wie
groß ist der Wellenwiderstand?

4.4. Elektrische Leitungen

E Einführung

Ein Widerstand, der an eine Leitung angeschlossen ist, wird durch diese transformiert
(vgl. Bild 4.25 a). Hierdurch lassen sich für die Mikrowellentechnik Blindwiderstände
herstellen, die mit Spulen und Kondensatoren nicht zu realisieren sind.
Elektrische Leitungen haben im allgemeinen eine große Länge. Sie kann gegen die
Wellenlänge nicht vernachlässigt werden. Es ist daher erforderlich, die unterschied-
lichen Schwingungszustände auf den einzelnen Punkten der Leitung zu berücksich-
tigen.
Die Fernleitung elektromagnetischer Wellen läßt sich nach der Theorie quasistatio-
närer Vorgänge behandeln, wenn der Abstand zwischen Hin- und Rückleitung klein
gegen die Leiterlänge ist. In diesem Falle kann man die homogene, d. h. räumlich
unveränderliche Leitung in differentielle Abschnitte unterteilen und das elektro-
magnetische Feld unabhängig von Randstörungen untersuchen.
Bild 4.25 zeigt das Ersatzschaltbild eines Leitungsdifferentials. Auf ihm sind die
Kapazität C' dz zwischen den beiden Leiterteilen und die Selbstinduktion L' dz
gleichmäßig verteilt. Sind R und R 2 die ohmschen Widerstände der beiden einzelnen
Leiter je Meter Leitungslänge, so beträgt der ohmsche Widerstand des Leitungs-
differentials R' dz = (Ri + R 2 ) d z .
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Bild 4.25. Leitungsdifferential

Bild 4.25 a.) Transformation des Abschlußwiderstandes durch eine Leitung
der Länge l

Außer dem Spannungsabfall infolge des Widerstandes tritt im Stromkreis eine Strom-
verzweigung auf. Sie entsteht dadurch, daß das Füllmaterial zwischen den beiden
Leitern stets etwas leitend ist. Es erfolgt daher ein geringer Stromübergang von
einem Leiter zum anderen. Der elektrische Leitwert quer zur eigentlichen Leitung,
bezogen auf die Längeneinheit, wird als Ableitung G' definiert. G' hat die Einheit
Q-i m -i. Bezeichnet U die Spannung zwischen den beiden Leitern, so ist der über
das Differential dz abgeleitete Strom gleich UG f dz.
Bei der Berechnung des Wechselstromwiderstandes hat man den Skineffekt zu be-
rücksichtigen. Seine theoretische Ableitung erfolgt unter 5.3.1. im folgenden Haupt-
abschnitt. Der Strom fließt mit nachweisbarer Intensität bei Wechselfeldern nur in
einer dünnen Schicht am äußeren Umfang des Leiters; das Leiterinnere ist nahezu
stromfrei. Die Dicke der von einem merklichen Strom durchflossenen Schicht ist
um so kleiner, je größere Werte die Frequenz annimmt. Bei nicht zu stark ge-
krümmten Leiteroberflächen kann man den Wechselstromwiderstand so berechnen,
als wäre der gesamte Strom gleichmäßig auf die Außenschicht der Dicke

(1)

verteilt, d wird als Eindringtiefe bezeichnet.

Beispiel 19

Aluminium hat den spezifischen Widerstand

— = 2,7 • 10 -8 Qm.
7
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Für die Permeabilität kann man [a, = taQ setzen. Daraus erhält man bei der Frequenz / = 10 9 Hz
als Eindringtiefe

2 • 2,7 • IO"8

---------- --------------- m = 0,0026 mm.
4k • IO"7 • 2tc • 10 9d =

Beispiel 20
Eine Bandleitung bestehe aus zwei Leitungsbändern der Breite 6 = 1 cm.  Der Abstand beider
Bänder betrage d = 0,1 mm.  Das leitende Material sei Aluminium mit dem spezifischen Wider-
stand 1/y = 2,7 • IO-8 Qm.  Als Zwischenmedium wird Polystyrol (e r = 2,55> y < IO-13 !!" -1 m -1 )
verwendet. Zu berechnen sind R' , G', L', C'.
Die Dicke des Bandes ist groß gegen die Eindringtiefe. Daher folgt

1 1 1 • 2,7 • IO-8 
n i . i------- = ------ = -------------------— 12 m-1 = 1,0512 m -1

y AA  ------ybd -------10 -2 • 2,6 • 10 -6R'  = R<

und für den Widerstandsbelag der Leitung

R' = Ri + R 2' = 2,1 Q m -1 .

Die Berechnung des Ableitungsbelages erfordert, den Kehrwert des Widerstandes einer Leitung
der Länge a = 0,1 mm mit dem Querschnitt 1 m mal 1 cm und dem spezifischen Leitwert
y < 10 -13 Q -1 m -1 zu berechnen. Man erhält

10~ 13 • 10~ 2

G' < — Q-i m -i = 10-n Q-i m-i .
10“ 4

Für den Kapazitätsbelag ergibt sich

AA
a

2,55 • 8,85 - IQ-i 2 • 1 . 10~2

IO"4 F m- 1 = 2,3 • 10- 9 F m" 1 .

Der Induktivitätsbelag wird gleich

4k -  IO"7 • IO-4 „ . m8TT i-----------------:— H m -1 = 1,3 • IO-8 H m -1 .
10“ 2

Wie aus den errechneten Werten zu entnehmen ist, bestehen die Ungleichungen

G'< o)C', R'< a)C'.

Die Größen L f dz und R r dz bewirken längs des Leiterstückes dz eine Spannungs-
änderung von U(z) auf U(z) + dU(z). Nach dem ersten KiRCHHOFFschen Strom-
verzweigungsgesetz (3.3. /5) ergibt sich, wenn man in Bild 4.25 im Uhrzeigersinn um-
läuft,

— U -|- L' dz icoZ R] dz I -j- U -|- dü  -f- R% dz I = 0 •
Hieraus folgt die Differentialgleichung

- = (icoZ' + R') I . (2a)
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Für die Stromänderung erhält man nach dem zweiten KiRCHHOFFschen Strom-
verzweigungsgesetz (3.3./9) (vgl. Bild 4.25)

- I  + G' dz U + C f dz ia>U + I + dZ = 0 .

Daraus ergibt sich

- = (iwC" + G') U . (2b)dz

Zur Lösung des aus (2 a) und (2 b) bestehenden Gleichungssystems wird die zweite

Gleichung differenziert. Aus dem Vergleich der beiden für —— sich ergebendendz
Ausdrücke folgt die lineare Differentialgleichung zweiter Ordnung

d 2Z d 2Z—— ---- (icol/ •+ 7?') (icoC' + G f ) I = 0 bzw. ---- y2Z = 0 .  (3)dz2 dz2

Die Größe

wird als Fortpflanzungskonstante bezeichnet.
Für die Spannung U erhält man aus (2 a) und (2 b) dieselbe Differentialgleichung
wie für I :

£_ /  ?7 = o. (5 )

(3) und (5) lassen sich unabhängig voneinander durch Exponentialansatz lösen. Wird
die Zeitabhängigkeit in der Form ei(üt geschrieben, so lauten die allgemeinen Lö-
sungen der Differentialgleichungen

U(z,t) = eiü)t U(z) = w z + U 2 e~ ) , (6)

I(z,t) = I(z) = ew (Zx e?z 4- Z2 e~ yZ ) . (7)

Strom und Spannung setzen sich aus der Überlagerung zweier Wellen zusammen.

Die konstanten Koeffizienten Z71? U 2 , Zx , I 2 in (6) und (7) sind nicht unabhängig von-
einander. Nach (2 a) und (2 b) bestehen zwischen ihnen die beiden Beziehungen

ü 2 = 3Z 2 . (8)
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Darin wird

1 icoL -|- R
° = V iaiC' + G' (9)

als Wellenwiderstand der Leitung bezeichnet.
Mit (8) sind zwei Gleichungen zur Bestimmung der vier Konstanten in (6) und (7)
vorhanden. Zwei weitere Gleichungen ergeben sich durch die Bedingungen am An-
fang und am Ende der Leitung. Am Leitungseingang, für z = 0 , ist die Spannung
nach (6) durch

D(0, t) = eM (U1 + U2 ) = Z70 e1“' (10a)

vorgegeben. Es besteht also zwischen U x und U 2 der Zusammenhang

Z7t + U t = Z70 . (10)

Die Verhältnisse am Ende z = l der Leitung sind durch den Abschlußwiderstand

1(1) (11a)

bestimmt. Hieraus erhält man unter Verwendung der Gleichungen (6) bis (8)

91a _ i + U 2 e-
3 -u + ü  1 ‘

Der Zeitfaktor ew hebt sich aus den Randbedingungen heraus. Er ist auf die un-
bekannten Koeffizienten ohne Einfluß. Als Lösung des Gleichungssystems (10)
und (11) erhält man

TT ~ 3)  TT _ ______________________ .
1 2(3  sinh yl + fR A cosh yl ’ 2 2(3  sinh yl + 9t A cosh yl)

Die Eingangsimpedanz bzw. der Eingangswiderstand ist durch das konstante Ver-
hältnis

(11)

+ 3) (12)

Ke 7(0)
zwischen Spannung und Strom am Eingang z = 0 der Leitung definiert. Man bezieht
den Eingangswiderstand auf den Wellenwiderstand 3 und bezeichnet SRe/3 a s

normierten Eingangswiderstand. Hierfür erhält man aus (10) in Verbindung mit (12)
sowie auf Grund von (8)

(13)

f i 7
-r +t " h i , i

$ 1 + tanh yl
3

(14)
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Durch die homogene Leitung der Länge l mit dem Wellenwiderstand 3 und der
Fortpflanzungskonstanten y wird der Widerstand $R A gemäß (14) in den Wider-
stand fR E transformiert. Nur wenn der Abschlußwiderstand 9i A genau gleich dem
Wellenwiderstand 3 ist, findet keine Widerstandstransformation statt, und der Ein-
gangswiderstand ist für alle Längen l des Leiters gleich

91e = 3*a = 3 -
Dieser Fall wird als Anpassung (Widerstandsanpassung) bezeichnet (vgl. 4.2.).
Zur Diskussion der Transformationsformel (14) schreibt man

SR a = 3 t an h c. (15)

Darin ist c eine komplexe Größe :

c = b 4- ia .  (16)

Setzt man (15) in (14) ein, so folgt nach dem Additionstheorem der hyperbolischen
Tangensfunktion

9ft E tanh c + tanh yl , ,
-tt- = 

i x— r —; — 7—r = tanh (c + •3 1 + tanh c tanh yl
(17)

Die Funktion tanh z = tanh (x + i y) wird durch das Tangensrelief dargestellt.
Hierauf beruhen Verfahren zur graphischen Berechnung der Transformationseigen-
schaften verlustbehafteter Leitungen.
Im allgemeinen sind die Verluste durch den ohmschen Widerstand und durch die
Ableitung klein. In den folgenden Ausführungen werden daher nur noch verlustfreie
Leiter behandelt.
Können die Verlustgrößen R' und G' gegen a>L' und atC' vernachlässigt werden, so
wird nach (9) der Wellenwiderstand reell:

(18)

dagegen nach (4) die Fortpflanzungskonstante rein imaginär :

y = ioc = ia) L'C' (19)

In Tabelle 6 sind die Formeln für die Wellenwiderstände Z der wichtigsten Leitungen
zusammengestellt (vgl. 4.3.).
Beachtet man die Beziehung

tanh i od = i tan od , (20)
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so erhält man aus (14) für den normierten Eingangswiderstand

, T

l+ i  —— tan odz

Diese Funktion läßt sich graphisch durch ein Kreisdiagramm darstellen (vgl.
4.4.1.).
Für die Spannung und für den Strom folgt aus (6) und (7) im Falle ß = 0

U(zfy = eiCÜ< U(z) = ei(üt (U1 eiaz + U2 e~iaz ) , 1
I(z,t) = eiojt I(z) = eiCüZ (Zx eiaz + I 2 e-iaz ) . j

Ausdrücke der Form

u = u Q = Qi(a)t-icz) (23)

stellen fortschreitende ebene Wellen dar. Darin bezeichnet u Q die Amplitude,

99 = 99(2, t) = o)t — kz (23 a)

die Phase, k die Wellenzahl, k wird häufig für <x. gesetzt.
Die Amplitude kann gemäß

0 = W ei<Po (23 b)

charakterisiert werden. Wie daraus zu erkennen ist, kennzeichnet eine komplexe
Amplitude eine Phasenverschiebung (pQ . Eine reelle negative Amplitude bedeutet

99O = —7t.

Die Geschwindigkeit, mit der die Phase einer Welle im Raum fortschreitet, heißt
Phasengeschwindigkeit. Um diese Größe zu berechnen, betrachtet man das Fort-
schreiten eines konstanten Phasenwertes. Nach (23 a) ergibt sich für 99 = const

Daraus folgt für die Komponente der Phasengeschwindigkeit in Richtung der z -Achse

\ CU /<p=const

Elektromagnetische Wellen der Form ei(ü) *“ fcz) breiten sich hiernach mit der Phasen-
geschwindigkeit

c = -%- (23d)k
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in Richtung der z-Achse aus, während Wellen der Form ei(cü *+fcz) in Richtung der
negativen z-Achse fortschreiten. Strom und Spannung einer Leitung setzen sich somit
nach (22) aus zwei gegenläufigen Wellen zusammen. Die Überlagerung der beiden
in entgegengesetzten Richtungen fortschreitenden Wellen nach (22) ergibt eine
stehende Welle (vgl. 4.4.1. bis 4.4.3., insbesondere 4.4. 3. /5).
Das Schwingungsbild einer fortschreitenden Welle muß sich auf einer verlustfreien
Leitung mit der Periode einer Wellenlänge 2 wiederholen. Das ist nach (22) nur der
Fall für

(24)

Die Wellenlänge ist dabei auf das Ausbreitungsmedium der elektromagnetischen
Welle zu beziehen. Aus (23 d) und (24) ergibt sich

„ 2tzc c ,CO f (25)

wobei f = co/2tt die Frequenz bezeichnet. Die Phasengeschwindigkeit bei der Aus-
breitung elektromagnetischer Wellen in einem unbegrenzten Medium mit der Brech-
zahl n ist gleich

Co _ 1
n (26)

Darin bedeutet c0 die Lichtgeschwindigkeit in Vakuum. Anstelle von (25) kann man
daher

2 = — (25 a)
CO

schreiben. Wird (25 a) in (24) eingesetzt, so folgt aus dem Vergleich mit (19)

rDC  7 = —=.— = lep.0) c (27)

(s. 4.3./14).

Tabelle 6. Wellenwiderstände bei verlustfreien Leitern

Leitertyp Wellenwiderstand Z Erläuterungen

/— = 120jrQ = 377QVakuum (28)
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Fortsetzung Tabelle 6

Leitertyp Wellenwiderstand Z Erläuterungen

Koaxialleitung
Al—— 60 In|/ £ r R\

_Ra Innenradius des Außen-,
Außenradius des Innen-

leiters
(29)

Bandleitung
]/— 377 — Q
|/ e T b

b Breite, a Abstand der
Bänder (30)

Zweidrahtleitung
1/— 120 In— □

a Abstand der Draht-
achsen, rQ Drahtradius (31

Draht über
leitender Ebene 1/ — 60 In — Q

h Höhe über der leitenden
Ebene (32)

p Probleme

4.4.1. Anpassungs- und Phasenkreis

Eine Flachbandleitung mit dem Wellenwiderstand Z = 240 Q ist mit dem Wider-
stand = (192— i 144) Q abgeschlossen. Untersuchen Sie die Transformation dieses Wider-
standes durch die Leitung. Wie wird der Abschlußwiderstand durch eine Leitung der Länge
l = 15 cm transformiert (A = 1,50 m)?

Lösung
Wir betrachten zunächst die Transformation eines rein reellen Widerstandes X 5 Z durch die
Leitung. Hierzu setzen wir

A = (1)
z

Nach (4.4./21) ist der Eingangswiderstand durch

m + i tanaZ
---------- = ■ - \A )
Z 1 + im tan al

gegeben. Den Zähler rechts können wir schreiben

m + i tan al = — (m -|— — (1 + im tan al) — — I m -- - -— | (1 — im tan al) ,
2 \ m / 2 \ m /

womit aus (2)

fRE 1 / 1 \ 1 /  1 \ 1 — imtanaZ
— t -------- | m 4------ 1 = — I m ------- 1 --------------------- (3)
Z 2 \ m / 2 \ m / 1 + im tan al
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folgt. Da m ein rein reeller Wert ist, hat der letzte Faktor rechts den Absolutbetrag eins. Der
gesamte Ausdruck (3) ergibt daher für variable Werte l einen Kreis mit dem Radius

(4)

Der normierte Eingangswiderstand 9tE / durchläuft demzufolge bei variablen Werten l einen
Kreis. Sein Mittelpunkt hat in der komplexen Widerstandsebene die Koordinaten

-1-L + — ) ,0 ;  (5)
2 \ m /

er liegt also auf der reellen Achse. Dieser Kreis wird als Anpassungskreis bezeichnet. Die Größe
m 1 gibt den Grad der Anpassung an.
In gleicher Weise erhält man aus (2)

9tE i /x 7 x 7x i ,x 7 . , n 1 — im tan al-------- (tan al — cot od) = — (tan al 4- cot al) ----------------- .
Z 2 2 1 + im tan al (6)

Der normierte Eingangswiderstand durchläuft hiernach für konstante Phasen al pnd variable
Anpassungswerte m einen Kreis mit dem Radius

| —F" an ~ c°t | ~ | an co |*
Der Mittelpunkt dieses Kreises hat die Koordinaten

0, — (tan al — cot al) . (8)

Er wird als Phasenkreis bezeichnet.
Man erhält hiernach unter der Voraussetzung (1) den gesuchten Eingangswiderstand als Schnitt-
punkt des durch (4) und (5) festgelegten Anpassungskreises m.mit dem durch (7) und (8) be-
stimmten Phasenkreis al.
Die Bestimmung des Eingangswiderstandes kann nach Bild 4.26 graphisch erfolgen. In dieser
Darstellung sind die Anpassungskreise durch m, die Phasenkreise durch Z/A gekennzeichnet.
Wir betrachten nun den Fall, daß die Leitung mit einem beliebigen komplexen Widerstand ab-
geschlossen ist oder daß der Abschluß widerstand reell ist, jedoch 9t A = _R A > Z gilt.
Nach dem graphischen Verfahren gemäß Bild 4.26 kann man den Abschlußwiderstand als Ein-
gangswiderstand einer Leitung der Länge V auffassen, die mit einem rein reellen Widerstand
X < Z abgeschlossen ist. Im vorliegenden Fall ist

fR A 192 - i 144
- - - -  = ------------------- = U,ö — 1 U,b .
Z 240

Aus Bild 4.26 entnimmt man, daß der Anpassungskreis durch m = 0,5, der Phasenkreis durch
l'/h = 0,375 festgelegt ist. Der Abschluß widerstand 9t A = (192 — i 144) Q wird hiernach durch
den reellen Widerstand X = 0,5# = 120 Q repräsentiert, der durch die Leitung der Länge

V = 0,375A = 0,375 • 1,50 m = 56,25 cm

in den gegebenen Widerstand 9tA transformiert wird.

1 6 Schilling, Felder
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Bild 4.26. Anpassungs- und Phasenkreise in der Widerstandsebene

Für die Phase erhält man

a Z= L = 2K = 2K.0J0 .A 1,50

Zusammen mit al' = 2n • 0,375 ergibt das

2rr
— (V + l) = 2k(0,375 + 0,100) = 2re . 0,475.

Ä

Als Schnittpunkt des Anpassungskreises m = 0,5 mit dem Phasenkreis (V 4- Z)/A = 0,475 er-
halten wir nach Bild 4.26

= 0,51 - i 0,12,
Z

d. h.
gtE = (0,51 - i 0,12) 240<l = (122 - i 29) Q .
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4.4.2. Größter und kleinster Wert des Wirkwiderstandes

Der Widerstand = (150 — i 30) Q soll durch eine verlustfreie Leitung mit dem Wellen-
widerstand Z ■= 120 Q in einen rein reellen Widerstand transformiert werden. Für den Eingangs-
widerstand soll sich dabei ein Minimum ergeben. Welche Leitungslänge ist hierfür zu wählen,
wenn die Wellenlänge A = 50 cm beträgt. Wie ist die Abmessung zu wählen, wenn der Eingangs-
widerstand ein Maximum werden soll ?

Lösung
Nach 4.4.1. kann jeder komplexe Widerstand durch eine Leitung der Länge V dargestellt werden,
die mit dem rein reellen Widerstand X = mZ (m 1) abgeschlossen ist. Für den normierten
Eingangswiderstand schreiben wir daher nach (4.4.1. /3)

91e 1 /  1 \ 1 / 1 \ 1 — im tana(Z + V)— = — l m H------ H ----- Im ------- ---------------- ------- - . (1)
Z 2 \ m ) 2 \ m ] 1 im tan a(Z + V)

Rein reelle Werte des Eingangswiderstandes ergeben sich, wenn tan a(Z + V) entweder gleich
Null wird oder über alle Grenzen wächst. Es muß also entweder

l 4- V = n (n = 0, 1, . . .)

oder
2 A

l + V = n — + — (n = 0, 1, . . .)

erfüllt sein. Im ersten Fall erhält man

Z | % |min

im zweiten Fall

_ I e I ___

% . \ % |max m

Diese Beziehungen gehen anschaulich aus der graphischen Darstellung nach Bild 4.26 hervor.
Zwischen dem größten und dem kleinsten Wert des Wirkwiderstandes besteht nach (4) und (5)
der Zusammenhang

1 1 I f I  =1  bZW- I Elmax = (6)| |min | & |max

Im vorliegenden Fall beträgt der normierte Wert des Abschluß Widerstandes

Z 120

Aus Bild 4.26 entnehmen wir

m = 0,72, — = 0,30.
A

(2)

(3)

(4)

(5)

16*
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Für den kleinsten reellen Wert des normierten Eingangswiderstandes folgt damit

| | =»  = 0,72,
| |min

für den größten

fei == ± = J_ = 139  .
| % |max ™ 0,72

Auf dem Anpassungskreis m = 0,72 von Z'/A = 0,30 fortschreitend, erhalten wir für
(Z + 0/2 = 0,50, d. h. für

l = 0,202 = 0,20 • 50 cm = 10 cm

den kleinsten Wert des Wirkwiderstandes

= ( E)min = 0,72 • 120Q = 86Q.

Der größte Wert des Wirkwiderstandes

= ( E)max = U9 • 120Q = 167Q

wird nach Durchlaufen einer weiteren Viertelwellenlänge, d. h. für

Z = (0,20 + 0,25) 2 = 0,452 = 22,5 cm

angenommen.
Die Angaben über die Länge der Leitungen erfolgen mit dem Modul 2/2 = 25 cm .

4.4.3. Messung des Abschlußwiderstandes einer Leitung

Es soll der Abschlußwiderstand einer Koaxialleitung mit dem Wellenwiderständ Z = 70 Q ge-
messen werden. Hierzu wird zwischen dem Sender S und der Leitung L eine Meßleitung ML
mit dem gleichen Wellenwiderstand geschaltet (vgl. Bild 4.27).
Bei der Messung ersetzt man zunächst den unbekannten Abschlußwiderstand $lA durch einen
Kurzschluß und bestimmt auf der Meßleitung durch Abtasten die Spannungsknoten. Für diese
werden auf der Skale die Werte (in mm) 20, 170, 320, 470 gemessen. Nach Einschalten des Ab-
schlußwiderstandes fft A werden die Punkte maximaler und die Punkte minimaler Spannung be-
stimmt. Für das Verhältnis zwischen den Spannungswerten ergebe sich

- P ’ml " =0>75  .
max

Bild 4.27. Anordnung zur Messung des
AbschlußWiderstandes. S Sender, ML Meß-
leitung mit Skale und verschiebbarem
Meßverstärker MV, L Leitung
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Die Punkte minimaler Spannung seien auf der Meßleitung bei 80, 230, 380 gelegen, die Punkte
maximaler Spannung bei 5, 155, 305, 455. Bestimmen Sie aus diesen Angaben den Abschluß-
widerstand der Leitung.

Lösung
Der gegebene Abschlußwiderstand $RA kann durch eine Leitung der Länge V ersetzt werden,
die mit dem reellen Abschlußwiderstand X = mZ abgeschlossen ist. Die Leitung der Ersatz-
länge V bewirkt eine Verschiebung der Spannungsminima. Im vorliegenden Fall beträgt diese

dZ = V = (80 — 20) mm = (230 — 170) mm = 6 cm.

Der Abstand zweier Spannungsminima ist gleich 2/2. Aus den gemessenen Werten auf der Meß-
leitung kann man daher die Wellenlänge überprüfen:

2 = 2(170 — 20) mm = 30 cm.

Für den Parameter des Phasenkreises folgt

Der Anpassungskreis ergibt sich aus dem Verhältnis der minimalen zur maximalen Spannung.
Wir schreiben nach (4.4./22) die Spannung als Überlagerung zweier Wellen

U(z, t) = e t eia * 4- ü 2 e~iaz  ) . (1)

Die Amplituden sind durch die Formeln (4.4./12) darstellbar. Im Falle verlustfreier Leitungen
folgt wegen y = i a :

v = u (£ftA - Z) e-i«< v = u (9tA + Z)e
1 ° 2(9tA cos od + i Z sin od) ’ 2 0 2(9tA cos od + i Z sin od)

Für das Verhältnis der Spannungsamplituden ergibt sich hieraus

In (3) kann die Darstellung von £R A durch eine Leitung der Länge V mit dem Abschlußwider-
stand X = mZ berücksichtigt werden. Hierzu hat man l durch l + V und fR A durch X zu ersetzen.
Es ergibt sich

= ____ e -2i Ä(Z+r)u2 x + z (4)

Wir drücken in (1) die Spannungsamplitude U1 auf Grund des Zusammenhanges (4) durch U z
aus; für die zeit- und ortsabhängige Spannung schreiben wir also nach (1)

Z7(z,<) = Uae1"* [ - - ----— e1«2 + e~la2

[ 1 + w
(5)
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Der Wert des Spannungsmaximums ergibt sich aus (5), wenn die Beträge der Summanden addiert
werden. Das Minimum folgt aus der Differenz der Beträge. Es folgt somit aus (5)

_ 1 ~ ro 
+ l

min = m
max 1 m ■ ■£

1 + m

(6)

Das Verhältnis des Spannungsminimums zum Spannungsmaximum auf der Leitung ist gleich
der Anpassung m.
Im vorliegenden Fall erhalten wir m = 0,75 . Der gesuchte Widerstand liegt auf dem Anpassungs-
kreis 0,75 und auf dem Phasenkreis l'/l = 0,20 . Nach Bild 4.26 entspricht diesen Werten der
normierte Widerstand

= 1,23 + i0,22.z ■
Für den gesuchten Abschlußwiderstand ergibt sich

= (86 + iO,15)Q.

4.4.4. Anpassung durch Veränderung des Wellenwiderstandes

Eine Koaxialleitung mit den Abmessungen 2I? i = 5 mm, 2J?a = 16 mm ist mit dem Wider-
stand 9t A = (77 + i 32,5) Q abgeschlossen. Wie ist die Leitung zu verändern, um Anpassung zu
erzielen? Welche Dimensionierungen ergeben sich für 2 = 20 cm?

Lösung
Nach 4.3.3. hat die Koaxialleitung den Wellenwiderstand Z = 70 Q .  Der normierte Abschluß-
widerstand ist somit gleich

«,  77 + 132. .  _
Z 70

£
2

schließen an fR A zunächst eine Leitung 0 mit dem Wellenwiderstand ZQ = Z = 70 Q an, der wir
die Länge Zo = 0,092 geben (vgl. Bild 4.28). Dabei wird der komplexe in einen rein reellen
Widerstand transformiert.

= 0,16 (vgl. Bild 4.28). WirIm Kreisdiagramm entspricht das den Kreisen m = 0,63,

Seine Größe beträgt nach dem Diagramm

Wo = m (1)

in Zahlen
70 Q
0,63

= 111Q.SReo —

Gegenüber einer sich daran anschließenden Leitung mit dem Wellenwiderstand Z x repräsentiert
der ermittelte Eingangswiderstand 9ft Eo einen Abschlußwiderstand fft A1 . Der normierte Abschluß-
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Bild 4.28. Anpassung durch Veränderung des Wellenwiderstandes

widerstand beträgt für diese Leitung

Ai Eo Eo 1 ?2)
Z x Z x Zq Z r m Z r

Er läßt sich graphisch darstellen, indem man im Kreisdiagramm den normierten Widerstand
SReo/ o i m Maßstab ZJZ r verändert, d. h. auf der reellen Achse von $RE o/ o nach SReo/ i fort-
schreitet. Wir wählen

|» = (3)

Mit den vorliegenden Zahlen erhalten wir

Z r = -A_ = = 88, 2Q .
]/m V0,63

Daraus ergibt sich nach (2) und (3)

Eo _ Eo Z. 1
Z o Z x j/

Gibt man der Leitung 1 die Länge A/4, so gelangt man zum normierten Eingangswiderstand

Mit den vorgegebenen Werten erhalten wir

- 3 -=  ]<63 = 0,79.
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An die Leitung 1 schließen wir als Leitung 2 die Leitung mit den ursprünglichen Abmessungen
an. Ihr Wellenwiderstand ist Z 2 = Zo . Für den normierten Abschlußwiderstand folgt nach (5)
und (3)

A2 = Ei = ei = 1

2 ]/m
(6)

Die Leitungstransformation hat zur Anpassung geführt. Mit den gegebenen Zahlenwerten er-
halten wir

Zo = 0,092 = 0,09 • 20 cm = 1,80 cm, Zx = 0,252 = 5,00 cm.

Der Wellenwiderstand ZY = 88,2 Q wird bei festem Außenleiterdurchmesser 21?a = 16 mm durch
27 = 3,68 mm realisiert.

4.4.5.* Eingangswiderstand der Koaxialleitung mit geschlitztem Außenleiter

Zur symmetrischen Anpassung des Abschlußwiderstandes an eine Koaxialleitung wird der Außen-
leiterzylinder durch zwei symmetrische Schlitze (vgl. Bild 2.15) in zwei Halbschalen zerlegt, von
denen eine am Ausgang mit dem Innenleiter kurzgeschlossen ist. Der Abschlußwiderstand
(Dipol) befindet sich am Ausgang der beiden Halbschalen. Stellen Sie die Formel für den Ein-
gangswiderstand eines derartigen Leitungssystems auf.
Der Außenleiter habe die Wandstärke b = 2 mm . Sein Innendurchmesser betrage 2.Ra = 20 mm .
Die Schlitzwinkel seien gleich 2<pQ = 2° . Der Innenleiter habe den Durchmesser 2-Rj = 6,25 mm .
Der Abschlußwiderstand zwischen den beiden Zylinderhalbschalen sei gleich 91a = (350 — i70)Q.
Die Wellenlänge betrage 2 = 20 cm . Wie ist die Schlitzlänge zu wählen, um die beste Anpassung
zu erzielen?

Lösung
Wir kennzeichnen den Innenleiter durch den Index 0, die beiden Halbschalen durch 1 und 2.
Für das Differential des Leitungssystems ergibt sich das Ersatzschaltbild nach Bild 4.29.

Bild 4.29. Leitungsdifferential und Abschluß der Koaxialleitung mit geschlitztem
Außenleiter
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Der Strom 70 im Innenleiter ist mit den beiden Außenströmen durch

I« = -<Ii + h) (1)

verknüpft. Nach dem zweiten KiRCHHOFFschen Gesetz erhalten wir

- -  - aU. + bü , ,  (2)
dz

- = 6C71 + au ‘ (3)dz

mit
a = ico(Cia + Caa ), b = — icoCaa (4)

(vgl. Bild 4.29).
Für die Spannungen ergibt sich nach dem ersten KiRCHHOFFschen Gesetz aus den Leitern 1 und 0

- + &*12 . (5)dz

Darin haben a* und &* die Bedeutung

a* = ico(La ' 4- Li' — 2L- a ) ,  6* = ico(Li' + Laa — 2L'ia ) (6)

(vgl. Bild 4.29).
Eine ähnliche Gleichung erhalten wir aus 0 und 2 :

- + a *T*- (?)dz

Die beiden Außenleiterhalbschalen liegen spiegelbildlich zueinander. Ein Unterschied in ihrem
elektrischen Zustand kann nur durch die Abschlußwiderstände hervorgerufen werden. Wir be-
zeichnen die Abschlußwiderstände mit $ und
Für = Q muß

U z) = r 2 (z) = E7(Z), A(z) = I a(z) = Ä (8)
21

gelten. Es liegt dann nur noch ein System aus zwei Leitern vor: dem Außen- und dem Innen-
leiter. Wegen der Symmetrie auch am Leitungsausgang kann sich zwischen den beiden Halb-
schalen keine Potentialdifferenz ausbilden. Bezeichnet man den Induktivitäts- und den Kapa-
zitätsbelag der entstandenen Leitung mit und so müssen die Gleichungen

- = i£oi i '7 ’ (9)dz

- = imCr'U (10)
dz
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bestehen. Dagegen folgt aus (5)

= + &*)/. (11)dz 2

Aus (2) und (3) erhält man im Spezialfall (8)

_ JL = 2(a + 6) U.  (12)
dz

Durch Vergleich der Koeffizienten gelangt man zu den beiden Gleichungen

icoif = — (a* + &*), icoCI ' = 2(a + 6). (13)
2

Ein zweiter Spezialfall ergibt sich, wenn sich die beiden Außenschalen auf entgegengesetzten
Potentialen befinden, während der Innenleiter das Potential Null hat.
Es gilt dann

= - = 2?-, I 1 = -I 2 = I ,  I o = O. (14)

Induktivitäts- und Kapazitätsbelag dieser Leitung seien mit XjJ und ii bezeichnet. Wir ver-
fahren wie im ersten Spezialfall und erhalten das Gleichungssystem

icoLn = 2(a* — &*) , icoCn = — (a — b) . (15)
2

Die insgesamt vier Gleichungen aus (13) und (15) bilden ein algebraisches System zur Rück-
führung der vier Koeffizienten a, b, a*, &* auf die Größen L , C , L'n , C'n . Es folgt

« = ico + Cfij , b = ico ( £ — Cfjj ,
(16)

a* = ico L t ' + , b* = ico ---- .

Wir setzen (16) in (2) und (3) ein. Durch Addition dieser beiden Gleichungen entsteht

_ d(7i + Z2) = 1 . mC + . (17 a)
dz 2

Ebenso erhalten wir aus (5) und (7)

_ dttz, + U 2 ) = 2io)L .{I + . (17b )

dz

Subtrahieren wir dagegen die Gleichungen, so folgt

d(/ t - I 2 ) = (18a)
dz

" CS»)
dz 2
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In (17) treten nur noch Größen des ersten, in (18) nur noch Größen des zweiten Spezialfalles auf.
Die allgemeinen Lösungen der Gleichungssysteme (17) und (18) schreiben wir in der Form

L + 2 = cos ocz 4- A 12 sin ocz, I
I (19 a)I7i + U2 = B 1± sin ocz 4- -#12 cos ocz ; J

I-. — 12 = A 21 cos <xz 4- A 22 sin ocz, 11 2 21 22 L (19b)
U1 — U2 = B 2i sin ocz 4- B 22 cos ocz. j

Darin gilt

a = — = co VLj'Cj' = co L'n C'n ’
A

Führt man die Wellenwiderstände

(2<”

ein, so ergibt sich aus (17) und (18) durch Koeffizientenvergleich mit den Lösungsansätzen (19a)
und (19b)

■ 11 — jBh , " 12  — 7* B-\c>f11 2Z T 
11 12 2Zj

j 2i p , _ 2i
±21  — -D 21> 22 — „ " - °22 ’

Z I I  11

(21)

Am Eingang in das Mehrleitersystem, für z = 0 , müssen die Anfangsbedingungen

(0) = r 0 , r 2 (0) = Z7O (22)

erfüllt sein, wobei I7oeict)f die zwischen Innen- und Außenleiter angelegte Spannung bedeutet.
(22) liefert

B12 = 2t70 , B 22 = 0 .  (23)

Am Ausgang des Leitungssystems rechnen wir mit

5ß = 0 ,  n = öo, $ = $ A . (24)

(vgl. Bild 4.29). $ A charakterisiert einen komplexen Widerstand, der durch den am Ende der
Leitung angebrachten Dipol verursacht wird. Aus den KiROHHOFFschen Stromverzweigungs-
gesetzen ergeben sich damit die Randbedingungen

£71(0 = 0 ,  UM = MMl), (25)

die wir auch in der Form

UM + UM = f)tA [ /1(;) -+  h{l)  - , (25a)

UM - UM = 8ta [ - + ~ 7a(;)  1 (25 b)I 2 21
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schreiben können. Hieraus erhalten wir

bos2 od sin2 od— cos od sin od + iOiA ( '
4 = 2tf 0 ----------------------------V

sin2 od — i9l A cos od sin

4 Zu (26 a)

B 21 = — 2Ua cot od — B- (26 b)

Damit sind Strom- und Spannungsverteilung auf der Leitung bestimmt. Der Eingangswiderstand
des Leitungssystems ist definiert als

Z7(0) 17,(0) + r 2(0)
1(0) A(0) + / 2(0)8tE = (27)

Daraus erhalten wir

i tan od

Zi
(28)

tan od cot od
4Zj

Der normierte Eingangsleitwert läßt sich in der Form

ß. z ®a3a + i tan od
E 1 1 + i@a 3a tan (29)

mit

®a3a = <®aZ I — 4i -4- cot <xl
Zu

(30)

schreiben. Das betrachtete Dreileitersystem verhält sich hiernach wie ein Zweileitersystem, das
mit dem Leitwert 4($ A und einer zu dieser parallelgeschalteten leerlaufenden Leitung ab-
geschlossen ist. Die Länge dieser Leitung und die Länge des Zweileitersystems sind identisch mit
der Schlitzlänge l, jedoch weichen ihre Wellenwiderstände Z, und Z voneinander ab.
Bei der Berechnung von Zjj kann im vorliegenden Fall der Innenleiter unberücksichtigt bleiben.
Mit den vorgegebenen Zahlen folgt nach 4.3.2. und 4.3.4.

Z = 70 Zji = 22 Q .

Aus (30) ergibt sich mit den vorgegebenen Werten

4 -70  , . 70  x 2ttZ------------------ 4i — cot --------
350 — i 70 --------22 -----0,20 m®a3a =

Soll der vorgegebene Abschlußwiderstand an die Koaxialleitung optimal angepaßt werden, so
müssen sich die imaginären Anteile herausheben. Das erfordert, daß die Gleichung

x 2tcZ 22-70cot -------- - -  --------------- - -  0,012
0,20 m 3502 + 702
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besteht. Sie wird für

d. h. für die Schlitzlänge

1 559l = —----- 20 cm = 4,96 cm
2tt

erfüllt.

A Aufgaben

A 4.4.1. Berechnen Sie die Eindringtiefe bei Kupfer für die Frequenzen / = 162/3 Hz und
f = 1010 Hz (y = 5,9 • 107 Q -1 m“1 ) .

A 4.4.2. Wie groß ist der Widerstandsbelag einer Koaxialleitung aus Kupfer, wenn der
Innendurchmesser des Außenleiters 22?a = 16mm, der Außendurchmesser des
Innenleiters 2B, { = 5 mm beträgt (/ = 1010 Hz) ?

A 4.4.3. Der induktive Widerstand SR = i 35£2 soll durch eine kurzgeschlossene Leitung
mit dem Wellenwiderstand Z = 70 £1 dargestellt werden. Welche Länge muß die
Leitung haben?

A 4.4.4. Durch eine Leitung mit dem Wellenwiderstand Z = 70 £2 soll der induktive Wider-
stand 9tA = i 35 £1 in den kapazitiven Widerstand 9tE = — i 175 £} transformiert
werden. Wie lang muß die Leitung sein?

A 4.4.5. Eine Leitung läuft an ihrem Ende leer. Für welche Leitungslängen wird der un-
endlich große Abschlußwiderstand 9i A = oo in einen Kurzschluß 9tE = 0 trans-
formiert?

A 4.4.6. An eine leerlaufende Leitung wird am Eingang eine Spannung angelegt. Mit einer
Kontrollampe werden die Spannungsmaxima und -minima festgestellt. Für welche
Leiterlängen wird ein Maximum der Spannung beobachtet? Für welche Stellen auf
der Leitung bleibt die Lampe dunkel ? (LECHER-Leitung)

A 4.4.7. Berechnen Sie die Eingangsimpedanz einer Bandleitung mit den Abmessungen
a = 2 mm, b = 2 cm. Das Zwischenmedium hat die Dielektrizitätszahl er = 3,55.
Die Leitungslänge beträgt l = 7,00 m ,  die Frequenz / = 2,275 • 106 Hz. Der Ab-
schlußwiderstand ist gleich 91 A = — i’4,0£l.

A 4.4.8. Wie ist der Widerstand 9t A = (45 4- i 15) £1 an eine Leitung mit dem Wellen-
widerstand Z = 60 Q angepaßt?

A 4.4.9. Ein Widerstand 9tA = (90 — i 30) £1 soll durch einen reellen Widerstand _RA < Z
und eine Leitung mit dem Wellenwiderstand Z = 60 £1 dargestellt werden. Be-
stimmen Sie RJZ = m und l'/L

A 4.4.10. Eine Zweidrahtleitung der Länge l = 4,5 km mit den Abmessungen r0 = 1 mm,
a = 2 cm wird mit Wechselstrom der Frequenz f = 5000 Hz gespeist. Sie ist mit
dem Widerstand 9t A = 540 Q abgeschlossen. Wie wird dieser durch die Leitung
transformiert?
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A 4.4.11. Eine Leitung mit der Länge l = 2,4 cm und dem Wellenwiderstand Z = 60 Q ist
mit dem Widerstand 91a = 150Q abgeschlossen. Die Wellenlänge beträgt A = 20 cm .
Wie groß ist der Eingangswiderstand?

A 4.4.12. Bei der Messung des Abschluß Widerstandes wird eine Verschiebung Al = 15,6 cm
der Spannungsminima gegen die Kurzschlußpunkte festgestellt. Die Wellenlänge
beträgt A = 39 cm. Für das Verhältnis des Spannungsminimums zum -maximum
ergibt sich L min  /Lm ax = 0,65. Der Wellenwiderstand beträgt Z = 60Q. Wie groß
ist S a -

A 4.4.13. Eine Leitung mit dem Wellenwiderstand Z = 60 Q ist mit dem Widerstand
91 A = (42 + i 30) Q abgeschlossen. Bestimmen Sie den kleinsten und den größten
Wert des Wirkwiderstandes, wenn die Leitung verlängert wird. Für welche Lei-
tungslängen werden diese Werte angenommen? Die Wellenlänge beträgt A = 20 cm .

A 4.4.14. Der Abschlußwiderstand einer Leitung mit dem Wellenwiderstand Z = 70 Q be-
trägt = 175 Q .  Bestimmen Sie den kleinsten Wert des Wirkwiderstandes bei
der Widerstandstransformation durch die Leitung. Welche Länge muß die Leitung
haben?

A 4.4.15. Stellen Sie die Formel für den normierten Eingangsleitwert @ E Z = einer
verlustfreien Leitung auf, wenn diese mit dem normierten Leitwert &&Z = Z/ t
abgeschlossen ist.

A 4.4.16. Stellen Sie die Formeln für den normierten Eingangsleitwert und für den normierten
Eingangswiderstand einer leerlaufenden Leitung ($  A = 0 bzw. TR A = °°) auf. Die
Leitung sei verlustfrei.

A 4.4.17. Welche Operation ist im Kreisdiagramm durchzuführen, um normierte Wider-
stände in normierte Leitwerte umzurechnen? Bestimmen Sie danach zu tfZ
= 0,73 + i 0,20 den normierten Leitwert.

A 4.4.18. Der Abschlußwiderstand 91 A 
= (48 — i 36) Q soll durch Veränderung der Leitung

an den Wellenwiderstand Z = 60 Q angepaßt werden. Wie ist die Leitung zu ver-
ändern?

A 4.4.19. Berechnen Sie den Eingangswiderstand einer Koaxialleitung mit geschlitztem
Außenleiter für die Schlitzlängen l = A/4 und l = A/2 .

A 4.4.20. Definieren Sie den Reflexionsfaktor bei der Wellenausbreitung in einer Leitung
mit dem Wellenwiderstand Z, die mit dem Widerstand 91a abgeschlossen ist.

A 4.4.21. Bestimmen Sie in erster Näherung den Wellenwiderstand 3 und die Fortpflanzungs-
konstante y einer Leitung unter Berücksichtigung der Verluste durch den ohmschen
Widerstand und durch Ableitung.

4.5. Der Transistor als aktiver Vierpol

1C Einführung

Das Grundmaterial der Transistoren ist Silizium oder Germanium. Beide Stoffe sind
vierwertig; ihre Atome enthalten vier Valenzelektronen. Hierauf beruht der Aufbau
des Kristallgitters dieser Stoffe, der in Form der Diamantstruktur erfolgt (vgl.
Bild 4.30) : Jedes Silizium- bzw. Germaniumatom ist von vier anderen umgeben.
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Bei den reinen Kristallen des Germaniums und des Siliziums sind die Valenzelektronen
durch das symmetrische Gitternetz sehr fest gebunden. Es besteht nur eine äußerst
geringe Wahrscheinlichkeit für die Bildung freier, d. h.  nur an den Kristall gebundener
Elektronen infolge statistischer Prozesse. Reine Kristalle sind daher besonders bei
tiefen Temperaturen praktisch Nichtleiter. Mit zunehmender Temperatur steigt die
Leitfähigkeit jedoch etwas an, im Gegensatz zum Verhalten der Metalle. Der reine
Kristall stellt daher bei nicht zu tiefen Temperaturen einen Eigenhalbleiter dar.

Bild 4.30. Siliziumkristall mit Fremdatom

Baut man im geringen Maße drei- oder fünfwertige Fremdatome in das Gitter des
Germaniums oder des Siliziums ein, so wächst die Leitfähigkeit stark an. Sie liegt
um mehrere Größenordnungen über der des reinen Kristalls. Man bezeichnet der-
artige Kristalle, deren Leitfähigkeit durch eingebaute Fremdatome stark vergrößert
wird, als Fremdhalbleiter. Ihre Leitfähigkeit verringert sich ebenfalls mit abneh-
mender Temperatur.
Bei den Fremdhalbleitern unterscheidet man zwischen Überschuß- und Mangel-
halbleitern.
Überschußhalbleiter (n-Halbleiter) entstehen, wenn in den vierwertigen Kristall
fünfwertige Fremdstoffe, z. B. Antimon, Phosphor oder Arsen, eingebaut werden.
Von den fünf Valenzelektronen dieser Stoffe können nur vier mit den Valenzelek-
tronen der benachbarten Silizium- oder Germaniumatome zu einer abgeschlossenen
Schale aus acht Elektronen gebunden werden. Das übrigbleibende Elektron ist nur
schwach an das Atom gebunden und läßt sich mit geringem Energieaufwand ab-
lösen. Hierdurch wird es innerhalb des Kristalls zum freien Elektron, das einem
äußeren Feld folgen und sich durch den gesamten Kristall bewegen kann.
Bei den Mangelhalbleitern (p-Halbleiter) sind in den Kristall Fremdatome mit drei
Valenzelektronen eingebaut, z. B. Bor, Aluminium oder Indium. Dabei bleibt eine
Valenz der Germanium- oder Siliziumatome ungebunden, d. h., in den normaler-
weise abgeschlossenen Schalen tritt eine Elektronenlücke auf. Sie kann von Atom
zu Atom durch den Kristall wandern und verhält sich dabei wie ein Teilchen mit
positiver Elementarladung und der Masse eines Elektrons. Die Elektronenlücke
wird daher als Defektelektron bezeichnet und wie ein selbständiges Teilchen be-
handelt, das sich unter dem Einfluß eines äußeren Feldes durch den Kristall be-
wegt.
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In einem Festkörper können die p- und die n-leitenden Bezirke nebeneinander auf-
treten. Ein Gebiet, in dem ein p- und ein n-leitender Bezirk Zusammenstößen, wird
als pn-Übergang bezeichnet. Er ist der grundlegende Bestandteil aller Halbleiter-
bauelemente. Ein kleiner Kristall mit einem pn-Übergang heißt pn- Diode.
Im n-Bereich. besteht ein Überschuß an freien Elektronen, im p-Bereich an Defekt-
elektronen. Liegt keine äußere Spannung an, so diffundieren beim Kontakt zwischen
beiden Halbleiterschichten Elektronen vorwiegend vom n- in den p-Bereich, Defekt-
elektronen vom p- in den n-Bereich. Der n-Bereich wird dadurch positiv, der
p-Bereich negativ aufgeladen. In einer schmalen Übergangszone (beiderseits des pn-
Überganges) bildet sich eine Dipolschicht aus (Schottkysche Sperrschicht), deren
elektrisches Feld die weitere Aufladung verhindert: Am pn-Übergang entsteht eine
Potentialschwelle. Im Gleichgewicht tritt nur noch ein schwacher Elektronenstrom
von der n- zur p- Schicht auf, der durch einen entgegengerichteten Strom von der p-
zur n-Schicht diffundierender Elektronen ausgeglichen wird. Analog liegen die Ver-
hältnisse bei den Defektelektronen.

i:
p i-i------u.

+ 1
+ [ti ___ Bild 4.31. pn-Schicht

Sperrschicht

— ► Durchlaßrichtung

Bei anliegender Spannung wirkt die pn-Schicht als Gleichrichter (vgl. Bild 4.31):
Liegt die n-Schicht an der negativen, die p-Schicht an der positiven Elektrode, so
wird im n-Bereich das Elektronenpotential angehoben, die Potentialschwelle ab-
gebaut. Infolgedessen können Elektronen in größerer Zahl die Sperrschicht über-
winden und in die p-Schicht diffundieren. Analog verhalten sich die bevorzugt vom
p- in den n-Bereich wandernden Defektelektronen.
Bei entgegengesetzter Polung (n-Schicht am positiven, p-Schicht am negativen Pol)
erhöht sich die Potentialschwelle am pn-Übergang, und der schwache Elektronen-
strom in den p-BereichJwird verringert. Elektronen, die vom p- in den n-Bereich
diffundieren, sind nur in ganz geringer Zahl vorhanden. Es fließt daher als resul-
tierender Strom nur ein sehr schwacher elektrischer Strom vom n- in den p-Bereich.
Er wird als Sperrstrom bezeichnet. Erst von einer bestimmten, als Durchbruchspan-
nung Üd bezeichneten Grenze an wächst der Strom in Sperrichtung mit zunehmender
Sperrspannung steil an (vgl. Kennlinie Bild 4.32).

Durchlaß-
richtung

Sperr-
UDi richturig

Bild 4.32. Strom-Spannungs-Kennlinie
einer pn-Diode
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Für den vom Plus- zum Minuspol fließenden elektrischen Strom ist somit die Richtung
von der p- zur n-Schicht Durchlaßrichtung (Durchlaßpolung). Ein in entgegen-
gesetzter Richtung fließender Strom weist bei nicht zu hohen Spannungen einen um
Größenordnungen höheren Widerstand auf (Sperrpolung).
Der Flächen- oder Sperrschichttransistor ist aus drei sich abwechselnden p- und n-
Schichten aufgebaut. Er enthält also zwei pn-Übergänge, von denen bei Anliegen
äußerer Spannung einer in Durchlaßrichtung, einer in Sperrichtung gepolt ist. Man
unterscheidet zwischen npn- und pnp-Transistoren (vgl. Bild 4.33 a und Bild 4.33 b).
Die mittlere Schicht eines Transistors wird als Basis bezeichnet. Sie muß äußerst
dünn sein, wenn der Transistor seine Funktion erfüllen soll. Auf der in Durchlaß-
richtung gepolten Seite wird die äußere Schicht als Emitter definiert, auf der in
Sperrichtung gepolten Seite als Kollektor (vgl. Bild 4.33a und Bild 4.33b).

Man bezeichnet die in den Bildern 4.33 a und 4.33 b dargestellten Schaltungen eines
Transistors als Basisschaltung. In der Basisschaltung des npn-Transistors nach
Bild 4.33 a liegt die Kollektorelektrode C am positiven Pol einer Spannungsquelle,
während die Basiselektrode B an den negativen Pol dieser Spannungsquelle an-
geschlossen ist. Die Emitterelektrode E ist mit dem Minuspol einer zweiten Span-
nungsquelle verbunden, deren positiver Pol ebenfalls an der Basiselektrode liegt.
Es bestehen also zwei Stromkreise, der Emitterkreis über Emitter und Basis und der
Kollektorkreis über Kollektor und Basis. Der Basiselektrode, als dem gemeinsamen
Anschlußpol beider Stromkreise, kann das Potential Null zugeordnet werden. Sie ist
im allgemeinen an Masse gelegt.
Bild 4.34 zeigt das Schaltbild des npn-Transistors in Basisschaltung zusammen mit
dem Nutz- oder Lastwiderstand am Ausgang und den Eingangsklemmen.
In der Transistortechnik werden elektrische Ströme, die zum Kristall hinfließen,
positiv gezählt. Vom Kristall wegfließende Ströme sind negativ. Beim npn-Transistor

17  Schilling, Felder
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Bild 4.34. Technisches Schaltbild für einen npn-Transistor in Basisschaltung

nach Bild 4.34 ist der vom Emitter zum negativen Pol der Spannungsquelle fließende
Emitterstrom ZE negativ, dagegen der vom positiven Pol zum Kollektor fließende
Kollektorstrom I c positiv.
Die Spannung zwischen zwei Punkten A und B wird gemäß (1.2./18) gleich der
Potentialdifferenz

Uab = &a — &b (1)

gesetzt. Zwischen der Kollektor- und der Emitterelektrode besteht beim npn-
Transistor eine positive Spannung Z7CE . Auch die Spannung ?7BE zwischen der Basis-
und der Emitterelektrode ist positiv, jedoch kleiner als Z7CE  .
Im linken Stromkreis des npn-Transistors nach Bild 4.33 a fließen Elektronen vom
Emitter zur Basis, Defektelektronen von der Basis zum Emitter. Bei der Fertigung
der Transistoren erfolgt in der Basisschicht die Dotierung mit Fremdatomen derart,
daß hier nur ein geringer Anteil von Defektelektronen auf tritt, verglichen mit dem
Anteil der freien Elektronen in der Emitterschicht. Außerdem ist die Basis sehr
dünn (wenige p,m). Es läßt sich damit erreichen, daß nur sehr wenige Defektelektronen
aus der Basisschicht mit Elektronen aus der Emitterschicht rekombinieren. Der
weitaus größte Teil der aus dem Emitter in die Basis diffundierten Elektronen ge-
langt in die Sperrschicht zwischen Basis und Kollektor. Hier werden sie durch ein
starkes elektrisches Feld zur Kollektorelektrode 0 hin beschleunigt und fließen über
diese ab.
Je nach der Qualität des Transistors läßt sich erreichen, daß der Emitterstrom
zu 95% bis über 99% in den Kollektorkreis übergeht, an der Basis also nur ein
kleiner Bruchteil des Emitterstromes als Basisstrom erscheint. Emitterstrom ZE
und Kollektorstrom 7C sind daher dem Betrage nach nahezu gleich.
Der Widerstand des Kollektörkreises mit seinem in Sperrichtung gepolten pn-
Übergang ist wesentlich größer als der Widerstand des Emitterkreises. Wegen der
nahezu gleichen Ströme liegt daher die Spannung des Kollektorkreises weit über der
Spannung des Emitterkreises. Die Basisschaltung führt somit zu einer hohen Span-
nungsübersetzung bei nahezu gleichbleibenden Strömen. Große Spannungen und
damit verbunden große Leistungen des Kollektorkreises lassen sich durch kleine
Spannungen und kleine Leistungen des Emitterkreises steuern.
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Wichtigste Grundschaltung für die praktische Anwendung ist die Emitterschaltung
nach Bild 4.35 a und Bild 4.35 b. Die Basis liegt auf der Eingangsseite, der Kollektor
auf der Ausgangsseite. Gemeinsame Anschlußelektrode ist der Emitter, der das

Bild 4.35. npn-Transistor in Emitterschaltung
iRx Eingangswiderstand, $RL Abschluß- bzw. Lastwiderstand (auch Nutzwiderstand)

Potential Null erhält. Vom ausgelösten Emitterstrom geht wie bei der Basisschaltung
nur ein geringer Bruchteil an die Basiselektrode, während der weitaus größte Teil
dem Kollektor zufließt. Der schwache Eingangsstrom ZB ist daher mit einem um
ein Vielfaches größeren Ausgangsstrom — I c verknüpft. Andererseits ist wegen des
in Sperrichtung gepolten pn-Überganges der Widerstand im Kollektorkreis bedeutend
größer als im Basiskreis. Durch die angelegte Batteriespannung werden die Ladungs-
träger wie bei der Basisschaltung nach Passieren der in Sperrichtung gepolten Über-
gangsschicht stark beschleunigt. Auf der Ausgangsseite ist daher auch die Spannung
um ein Vielfaches größer als auf der Eingangsseite. Die Emitterschaltung wirkt
damit sowohl ström- als auch spannungsverstärkend.
Bei der Kollektorschaltung nach Bild 4.36 a und Bild 4.36 b bildet der Basiskreis
den Eingangs- oder Steuerkreis, der Emitterkreis den Ausgangskreis. Gemeinsamer
Anschlußpol für beide Stromkreise ist die Kollektorelektrode, der man das Potential
Null gibt.

Bild 4.36. npn-Transistor in Kollektorschaltung

17*
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Der pnp -Transistor hat die gleichen Verstärkereigenschaften wie der npn-Transistor.
Das unterschiedliche Verhalten ergibt sich daraus, daß p- und n-Schichten mit-
einander vertauscht sind. Man kann daher die Eigenschaften des pnp -Transistors
aus denen des npn-Transistors ableiten, indem Elektronen und Defektelektronen
sowie positive und negative Pole der Spannungsquellen vertauscht werden. Damit
erhält man z. B. die Emitterschaltung nach Bild 4.37.
Die zwischen den Transistorelektroden auftretenden Spannungen bestimmen un-
abhängig von der Schaltung den Arbeitspunkt. Von den Spannungen hängen die im
Transistor fließenden Ströme ab. Vielfach erfolgt die Kennzeichnung des Arbeits-
punktes durch Angabe der Ströme und Spannungen.

Bild 4.37. pnp -Transistor in
Emitterschaltung

Beispiel 21
Der Arbeitspunkt eines pnp-Transistors in Emitterschaltung nach Bild 4.37 sei durch Z7EB = 0,1 V
und 17EC = 5,0 V bestimmt. Soll der Transistor in Basisschaltung auf dem gleichen Arbeitspunkt
liegen, so müssen durch äußere Spannungen die folgenden Potentialdifferenzen erzeugt werden:
UEB = 0,1 V, UCB = 17ce + Z7eb = (—5,0 4- 0,1) V = —4,9 V. In der Kollektorschaltung ist
U BC = 5,0 V, 17bc = 4,9 V zu wählen.

Liegt zwischen den Transistorelektroden kein äußerer Widerstand, so sind die
Potentialdifferenzen ?7CE  , £7BE  , Ubc identisch mit den anzulegenden Batterie-
spannungen. Ist dagegen ein Widerstand R eingeschaltet, so hat man den an ihm
auftretenden Spannungsabfall RI zu berücksichtigen. Die von der Spannungsquelle
gelieferte Spannung wird in diesem Fall mit Z7B bezeichnet.

Beispiel 22
Der Transistor SC 207 soll in Bild 4.35 auf den Arbeitspunkt UCE = 6 V, I c = 2 mA eingestellt
werden. Beträgt der ausgangsseitige Last widerstand 0lL = 5kQ,  so erfolgt für I c = 2 mA an
diesem Widerstand der Spannungsabfall 9lLZc — & ' iß3 ' 2 • 10-3 V = 10 V. Die erforderliche
Batteriespannung U B muß dann gleich

U B = UCB + 9Vc (2)

sein, d. h., es ist U B = 16 V zu wählen.

Der Transistor stellt einen aktiven Vierpol dar. In der Emitterschaltung nach
Bild 4.35 a) ist der Basisstrom I B identisch mit dem Eingangsstrom I 19 der Kollektor-
strom I c bis auf das Vorzeichen identisch mit dem Ausgangsstrom I 2 . Es gilt also
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Bild 4.38. Ströme und Spannungen bei einem Transistor- Vierpol

(vgl. Bild 4.38)

I 2 =I*  = -I C . • (3)

Die Stromübersetzung |Z2 /ZX I wird am größten, wenn der Ausgangskreis kurzgeschlos-
sen ist, d. h. der Nutzwiderstand 9tL gleich Null ist.
Zur Verstärkung von Wechselströmen überlagert man diese den für den Betrieb des
Transistors notwendigen Gleichströmen. Der Eingangs- und der Ausgangsstrom
haben somit die Form

h — z' b  — - b + A>b ela, S 2 — — ic — — Cfc + oc (4 )

ZB und I c bedeuten die Gleichstromanteile. Die periodisch veränderlichen Anteile
sind in den zweiten Summanden dargestellt.
Als Kurzschlußstromverstärkung der Emitterschaltung definiert man das Verhältnis
der Wechselstromamplituden bei ausgangsseitigem Kurzschluß (Lastwiderstand

=0) :

0B PRl=O
ß = (5)

Die Kurzschlußstromverstärkung ist vom Arbeitspunkt abhängig. Sie kann aus der
Veränderung der im Transistor fließenden Gleichströme ZB und I c berechnet werden.
Kennzeichnet A den Arbeitspunkt, einen benachbarten Punkt gleicher ausgangs-
seitiger Spannung Z7CE  , so erhält man die Kurzschlußstromverstärkung ß aus

J/c

B Uce

ZcM)  ~ / cMl)

JbM)  — bM1)  J7ce
ß = (6)

Bei den Eingangs- und Ausgangswiderständen unterscheidet man zwischen den
Werten für Gleichstrom und denen für Wechselstrom. Sie sind ebenfalls vom Arbeits-
punkt abhängig.
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Für den Gleichstrom-Eingangswiderstand gilt bei der Emitterschaltung

9t1=  = = -  1- = - - .
A AJ>

(7)

Der Wechselstrom-Eingangswiderstand gibt das Verhältnis der Amplituden von
Eingangsspannung und Eingangsstrom an. Er läßt sich aus den Gleichstromwerten
berechnen, wenn die Ausgangsspannung UCE oder der Ausgangsstrom — I c fest-
bleiben :

Z7B eM) — beMi) (8)7 b (A) - I B (A) I7ce bzw. Ic

Für die Ausgangswiderstände in der Emitterschaltung folgt

3i2=  = fRU = — SR2~ = fRU = - (  J CE  ) • (9)
A \ /UBEbzvv. Zb

Als LeerlaufSpannungsübersetzung definiert man das Verhältnis der Spannungs-
amplituden bei eingangsseitigem Leerlauf (Leitwert zwischen den Eingangsklemmen
gleich Null bzw. Stromamplitude Ao gleich Null) :

U2Q au2
T1

Zl Z7C e
Z1 U BE |Zb bzw. Ic

(10)
0 Zio = O

Die Kennlinien eines Transistors stellen den Zusammenhang zwischen den im Tran-
sistor fließenden Strömen und den Potentialdifferenzen graphisch dar. Von Interesse
ist besonders die Emitterschaltung, für die folgende Kennlinienfelder angegeben
werden :

a) das Ausgangskennlinienfeld A(  ce)>
b) das Eingangskennlinienfeld ZB (UBE  ),
c) das Übertragungskennlinienfeld A(A) bzw. A(  be)-

Bei den Kennlinien bezieht man sich auf zwei Grenzfälle :
1. Spannungssteuerung,
2. Stromsteuerung.

Ihre Unterscheidung ist besonders für die Ausgangskennlinien wichtig. Hat die
äußere Spannungsquelle (vgl. Bild 4.38) einen niedrigen Innenwiderstand, der dem
Betrage nach weit unter dem Eingangswiderstand des Transistors liegt, so spricht
man von Spannungssteuerung. Wie aus 4.1.2. folgt, ist in diesem Falle die dem Ein-
gang zugeführte Steuerspannung vom Transistor nahezu unabhängig und wird daher
nicht verzerrt. Dagegen kann durch den Außenwiderstand der Eingangsstrom ver-
zerrt werden. In den Kennlinien wird deshalb die Eingangsspannung als Parameter
gewählt.
Im Falle der Stromsteuerung hat die Spannungsquelle einen hohen Innenwiderstand,
der weit über dem Eingangswiderstand des Transistors liegt. Der Eingangsstrom ist
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vom Eingangswiderstand nahezu unabhängig und wird nicht verzerrt, während im
allgemeinen eine Verzerrung der Eingangsspannung auf tritt. Die Kennlinien werden
daher mit dem Eingangsstrom als Parameter dargestellt.
In Bild 4.39 sind die Ausgangskennlinien /c( ce) des Transistors SC 207 in Emitter-
schaltung für eingeprägte Spannungssteuerung (Bild 4.39 a 1) und für eingeprägte
Stromsteuerung (Bild 4.39 a 2) dargestellt. Bild 4.39 b enthält die Eingangskenn-
linien 7 B (tf BE  ), Bild 4.39 c die Übertragungskennlinien ZC (ZB ). Bei diesen Kurven
ist die Ausgangsspannung /7CE als Parameter gewählt, 4.39 b und 4.39 c sind also
auf Spannungssteuerung beschränkt.

Bild 4.39. Kennlinien des npn-Transistors SC 207
a 1) Ausgangskennlinien bei eingeprägter Spannungssteuerung

Für die Verstärkertechnik sind besonders die Beträge der Strom- und der Spannungs-
übersetzung sowie des Wechselstrom-Eingangs- und -Ausgangswiderstandes von
Interesse. Sie können aus der Kennlinie einfach ermittelt werden. Dabei ist darauf
zu achten, daß die Kenngrößen vom Arbeitspunkt abhängig sind. Es muß daher
entsprechend den Gleichungen (6), (8), (9) und (10) stets ein Parameter festgehalten
werden.

Beispiel 23
Bei Spannungssteuerung entspricht dem Arbeitspunkt A (Uq- = 6,0 V, C7BE — 600 mV) nach
Bild 4.39 a l  die Stromstärke / c =2 ,0mA.  Sie fällt bei konstanter Eingangsspannung
C7BE = 600 mV um AIC = —0,1 mA auf 1,9 mA, wenn die Ausgangsspannung umJ  (7CE = — 3 V
auf 3V gesenkt wird. Daraus folgt nach (9) für den Betrag des Wechselstrom-Ausgangswider-
standes im Arbeitspunkt A

Q 0
l 2~l = o 1 • IO-3 = 30

Nach Bild 4.39b entspricht dem Arbeitspunkt A der Eingangsstrom ZB = 52 pA. Wächst die
Eingangsspannung von 600 auf 620 mV, so verändert sich bei konstanter Ausgangsspannung
17CE = 6 V der Eingangsstrom um = 14 pA auf 66 pA. Nach (8) erhält man damit für den
Wechselstrom-Eingangswiderstand

90 . 1 O~3l l = 10  Q = l , 4kQ.1 1 1 14 -10-6
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Aus Bild 4.39 c entnimmt man für den Arbeitspunkt A bei konstanter Ausgangsspannung
C7ce  = 6 V: = 5 (zA, AIC = 0,3 mA und daraus nach (6) für die Kurzschlußstromverstär-
kung

ß= =60 .r 5 • IO-6

Parameter
I b (HA)

Bild 4.39
a 2) Ausgangskennlinien
bei eingeprägter
Stromsteuerung

Parameter
UCE (V)

Bild 4.39 b. Eingangskennlinien

Bild 4.39 c. Übertragungs- oder Mischkennlinien
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Ein Signal mit der Wechselstromamplitude 1 p,A am Eingang wird somit durch den Transistor
auf 60 (zA verstärkt .
Die Berechnung der Spannungsübersetzung nach (10) kann auf Grund der Kennlinien in Bild
4.39 b vor sich gehen. Im Arbeitspunkt A gilt

C be  ~ 600 mV, U — 6 V, I-q = 52 pA.

Die benachbarte Kurve ist für UCE = 2V aufgenommen. Bei konstantem Eingangsstrom
ZB = 50 jizA (gleiche Ordinate) liest man auf der Abszisse 17BE = 585 mV ab. Daraus folgt die
Leerlaufspannungsverstärkung

Hat das Eingangssignal z. B. die Spannungsamplitude 1 mV, so ist diese am Ausgang auf 265 mV
verstärkt.

Die Größenordnung des Eingangs- und des Ausgangswiderstandes in der Basis- und
in der Kollektorschaltung kann aus den Werten der Emitterschaltung abgeschätzt
werden.

Beispiel 24
In der Basisschaltung ist

* IAI = I e I ,  l il = I ebI-

Gegenüber der Emitterschaltung tritt also der Emitterstrom als Eingangsstrom an die Stelle des
Basisstromes. Die Spannung ändert sich auf der Eingangsseite nicht.
Das Verhältnis der Emitterstrom- zur Basisstromamplitude kann genähert gleich der Kurzschluß-
stromübersetzung angenommen werden, wobei berücksichtigt wird, daß Emitter- und Kollektor-
strom dem Betrage nach nahezu gleich sind :

I J C I
| B |a | |a

Daraus folgt für den Betrag des Eingangswiderstandes in Basisschaltung

| | | | p p

Mit den errechneten Werten aus Beispiel 23 ergibt sich

60

In Tabelle 7 sind die Größenordnungen der Ein- und Ausgangswiderstände sowie der
Strom- und der Spannungsübersetzungen zusammengestellt (vgl. auch 4.5.2.).
Aus der Krümmung der Kennlinien geht hervor, daß die Verknüpfung zwischen den
Eingangs- und Ausgangsgrößen nichtlinear ist, daß jedoch die Nichtlinearität in
kleineren Bereichen im allgemeinen vernachlässigt werden kann. Bei kleiner Aus-
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Tabelle 7. Die Größenordnungen bei den Grundschaltungen eines Transistors

Basis-
schaltung

Emitter-
schaltung

Kollektor-
schaltung

Eingangswiderstand 100 ß Ikß 100 kß
Ausgangswiderstand 1 Mß 100 kß 100 ß
Stromübersetzung <1 100 100
Spannungsübersetzung ...1000 -1000 < 1

Steuerung um einen bestimmten Arbeitspunkt kann man genähert mit Beziehungen
entsprechend den Vierpolgleichungen (4.2. /I) rechnen. In der Transistortechnik, ins-
besondere im NF-Bereich, ist es häufig zweckmäßig, die hybride Darstellung

i o  — Wio + 12 20 >
= 21Ao 22 20

(11)

zu verwenden. Z710 , Z10 , U 2 q ,  Z20 bezeichnen die Amplituden der Spannungen und der
Ströme am Eingang und am Ausgang. Die hybriden Vierpolparameter h iJc sind vom
Arbeitspunkt abhängig. In Tabellen werden typische Werte für die Transistoren
angegeben. Die Bedeutung der hybriden Vierpolparameter geht aus 4.5.3. hervor.
Bei kleinen Wechselströmen und -Spannungen bestimmen die Vierpolparameter voll-
ständig die Betriebseigenschaften des Transistors (vgl. 4.5.4.).
Im Bereich sehr niedriger Spannungen zwischen Kollektor und Emitter (Uce in der
Größenordnung 0,1... 1 V) fällt nach Bild 4.39 a 1 und Bild 4.39 a 2 der Kollektor-
strom Zc mit abnehmender Spannung t/ CE steil ab. Dagegen bleibt der Strom Zc
nach Überschreiten dieses Bereiches nahezu konstant, wenn J7CE verändert wird.
Man bezeichnet die Spannung, von der an der Strom Zc bei Spannungserhöhungen
nahezu unverändert bleibt, als Rest- oder Kniespannung C7ce r  (vgl. Bild 4.40). Die
schwache Abhängigkeit der Restspannung Uq vom Basisstrom kann meist ver-
nachlässigt werden. Z7CER liegt zwischen 0,1 und 1 V.
Der Kollektorstrom Zc geht auch bei fehlendem Steuerstrom ZB = 0 nicht genau auf
Null zurück. Bei der Öffnung des Eingangskreises, d. h., wenn der Basisstrom auf
Null absinkt, fließt zwischen Emitter und Kollektor ein schwacher Strom weiter.
Er wird als Kollektorreststrom Zco  bezeichnet (vgl. Bild 4.40) und beträgt 0,1 nA
bis einige mA.

Bild 4.40. Rest- oder Kniespannung Z7CER 
un d Kollektorreststrom Zc0
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Tabelle 8 a. Vierpolparameter von Transistoren in Emitterschaltung

Transistor Aufbau Ä11
in kQ

21 22

in 10“6 Q _1
12

IO-4
Bemerkung

SC 100 pnp 0,5 15 32 1,8 typ-

SC 104 pnp 1,8 55 150 6 max.

SC 207 npn 2,3 30 48 3,8 typ-

SF 121 npn 700 95 31 3,5 typ-

SF 122 npn 700 95 31 3,5 typ-

SS 101 Pnp 0,2 8 10 1 min.
0,46 14 28 2 typ-
0,9 22 50 6 max.

GC 116 Pnp 1,3 56 200 20 max.

Tabelle 8b. Eigenschaften von Transistoren

Transistor Aufbau Zulässige Höchstwerte Rest- Rest-
Spannung ström

Strom Leistung Spannung

ic Pyo C E O C E R Ado
in A in mW in V in V in pA

SC 112 npn 0,1 600 20 0,3
SC 207 npn 0,1 200 40 0,4
SF 127 npn 0,5 600 40 0,3
SF 128 npn 0,5 600 60 0,5 100
SS 101 Pnp 0,2 250 33 1 2
GC 116 pnp 0,15 20 0,2 25
GD241 pnp 3,0 35 0,3 1000
GS 121 Pnp 0,1 20 0,5

Anmerkung: Der erste Buchstabe S bzw. G kennzeichnet Silizium bzw. Germanium als Grund-
stoff. Durch den zweiten Buchstaben wird die Verwendungsmöglichkeit angegeben: 0 NE-
Transistoren, D NF-Leistungstransistoren, F HF-Transistoren, S Schalttransistoren.
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Probleme

4.5.1. Kurzschlußstromverstärkung

Der Silizium-npn-Tfansistor SC 111 läßt in der Emitterschaltung maximal eine Kurzschluß-
stromverstärkung um den Faktor ß = 550 zu. Berechnen Sie die Stromverstärkung in der Basis-
schaltung und in der Kollektorschaltung bei ausgangsseitigem Kurzschluß.

Lösung

In der Emitterschaltung nach Bild 4.38 wird der Transistor mit dem Basisstrom ZB ausgesteuert.
Der Kollektorstrom auf der Ausgangsseite ist am größten, wenn diese kurzgeschlossen ist. Als
Kurzschlußstromverstärkung in Emitterschaltung definiert man (vgl. 4.5./5)

I 7 ob I

Zwischen den Amplituden des Basis-, des Emitter- und des Kollektorstromes besteht nach den
Gesetzen der Strom Verzweigung die Beziehung

Ä)B + /oc + A)E — 6 . (2)

Hierin ist nach 4.5. |ZoB | klein gegen |ZoE | und gegen |ZoC |. Schreiben wir daher

Iqe  — loc A)B> (2a)

so ist aus dem Vorzeichen zu erkennen, daß entsprechend der Festlegung, zum Kristall hin-
fließende Ströme positiv zu rechnen, der Emitter- und der Kollektorstrom gegeneinander um
180° phasenverschoben sind.
Wir drücken in (1) ZoB durch ZoE und ZoC aus und erhalten

ß = l- ocl _ _______1 1 ' /g\
IA)E + A)C I _ / 0E . I £oE I _ £

Voc  / Roe l

In der Basisschaltung wird der Kollektorstrom durch den Emitterstrom gesteuert. Das Ver-
hältnis zwischen den Beträgen der Amplituden bei kollektorseitigem Kurzschluß definiert man
als Kurzschlußstromverstärkung a der Basisschaltung :

a = I I _ _ J oC .
| A)E | A)E

Wir erhalten somit
O 1 K ßp = --------- bzw. <x = ----- — .

ß + i
(X

(4)

(5)

Da ß eine große Zahl ist, liegt <x nahe bei eins.
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In der Kollektorschaltung nach Bild 4.36 steuert der Basisstrom den Emitterstrom. Für das
Verhältnis zwischen den Wechselstromamplituden folgt bei ausgangsseitigem (emitterseitigem)
Kurzschluß mittels (2) und (1)

y = | j oEL  IJ ob + 4c|- = i +i g. (6)
| -*0B | ROBI

Mit dem vorgegebenen Wert erhalten wir aus (5) für die Kurzschlußstromverstärkungen in Basis-
schaltung bzw. in Kollektorschaltung

550
a=  — = 0,998, 7 = 551.

551 z

4.5.2. Eingangswiderstand

Die Emitterschaltung des Transistors SF 121 besitze den Eingangswiderstand = 0,8 kQ,
während der Lastwiderstand am Ausgang = 100 kQ beträgt. Berechnen Sie die Eingangs-
widerstände der Basis- und der Kollektorschaltung. Die Kurzschlußstromverstärkung in Emitter-
schaltung ist ß = 95 .

Lösung
Der Eingangswiderstand ist gleich dem Verhältnis zwischen der Spannungs- und der Strom-
amplitude an der Eingangsklemme. In der Emitterschaltung nach Bild 4.38 ist der Eingangs-
strom gleich dem Basisstrom. Damit folgt als Verhältnis der Spannungsamplitude U1Q zur Strom-
amplitude 710

atiE = = ( i )
-*10 -*0B

Nach den StromVerzweigungsgesetzen sowie nach 4.5.1./4 können wir schreiben

qr = 10 = OBE OBE = OEB z 2 \

A)B A)B — (A)E 4- A)c) A)e(1 — a )

Der Eingangswiderstand in Basisschaltung ist nach Bild 4.34 gleich

9*ib = (3)
-*0E -*0E

Wir erhalten daher als Beziehung zwischen den Eingangswiderständen

S ie = SRib --  -------- > (4 )1 — OC

bzw. wenn wir die Verknüpfung nach (4.5.1./5) einsetzen,

1E = 1B (1 +£ ) •  (5)

In der Kollektorschaltung nach Bild 4.36 fließt der steuernde Basiswechselstrom von der Klemme
12 aus über die als widerstandsfrei anzusehenden Gleichspannungsquellen zum Transistor und



270 4. Stromkreise und Wellen auf Leitungen

von dort zur Klemme 11. Aus Bild 4.36 erhalten wir damit

U i0  — ~ S iToE + oBE*  (6 )

Für den Emitterstrom setzen wir in erster Näherung den Kurzschlußstrom nach (4.5.1./6) ein
und berücksichtigen die Phasenverschiebung :

Ä)E = ~ - ob(1 + ß)- (7)

Damit ergibt sich aus (6) die Spannungsamplitude

10 = 9Wob(1 + ß) + OBE-  (8 )

Als Eingangswiderstand der Kollektorschaltung folgt

$R1K = - = 9JL (1 +ß)  + ~ (9)
■‘OB -‘OB

Der zweite Summand ist nach (2) der Eingangswiderstand für die Emitterschaltung. Somit
können wir schreiben

1K = 1E  + l (1  + £) .  (10)

Einsetzen der Zahlenwerte liefert nach (5)

9,-» r77 kß - 8 - 3Q

und nach (10)

ik = (0,8 + 100 • 96) kQ = 9,6 MQ.

Der Eingangswiderstand der Emitterschaltung liegt hiernach im allgemeinen um ein bis zwei
Größenordnungen über dem der Basisschaltung und wird vom Eingangswiderstand der Kollektor-
schaltung um einige Größenordnungen übertroffen (vgl. Tabelle 7).

4.5.3. Vierpolgleichung des Transistors

Zwischen den Amplituden der Eingangsspannung U10 , des Eingangsstromes 710 , der Ausgangs-
spannung U2Q und des Ausgangsstromes I 20 besteht bei einem Transistor die Beziehung

£7 10 = n- io + 12  20? (1)

Ao = 21710 + 22 20? (2 )

sofern die Amplituden kleine Größen sind.
Für den Silizium-pnp-Niederfrequenztransistor SC 104 in Emitterschaltung werden als typische
Werte die hybriden Koeffizienten

= 1,8 kQ, ä12 = 6 • IO-4 , h21 = 55, h22 = 150 • lO Q" 1

angegeben. Untersuchen Sie die physikalische Bedeutung dieser Größen.
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Lösung
Bei Kurzschluß U20 — 0 au der Ausgangsseite folgt aus (1)

bzw. Äu (3)
?7ceUgO — 0

Äu gibt somit den Eingangswiderstand bei ausgangsseitigem Kurzschluß an :

*u = (9*1~) 020=0  • (4)

Im betrachteten Fall ist dieser in der Emitterschaltung gleich

( i e )  o =o  =l ,8kQ.

Aus (2) folgt für {720 = 0

21 bzw.
t 20 = 0

21 (5)
|J7ce

Danach kennzeichnet A2 i die Kurzschlußstromverstärkung. Bei der Emitterschaltung ist diese
nach (4.5.1./1) gleich

= (— ) = (6)\ h)B / U"ce

Im vorliegenden Fall ergibt sich also ß = 55 .
Bei eingangsseitigem Leerlauf ist 710 = 0 .  Damit folgt aus (1)

*12 = bzw. Ä12 = • (7)
\ 20 /110=0  M CE/Zb

Der Koeffizient h12 kennzeichnet das Spannungsverhältnis zwischen dem Vierpoleingang und
-ausgang bei eingangsseitigem Wechselstromleerlauf. h12 gibt somit ein Maß für die Spannungs-
rückwirkung zwischen den beiden Vierpolseiten. In dem vorgegebenen Fall erhalten wir

= 6 . io- 4 ,
W2o /Z10 = 0

d. h., geringe eingangsseitige Spannungen bewirken große ausgangsseitige Spannungen.
Aus (2) folgt bei eingangsseitigem Leerlauf 710 = 0

*22 = (7 ) (8)
\<7 2o/Lo = O

bzw.

= (v 2 -) = ( ~)l 10 =0 .  (8  a)
22 \ - / 2O/ - f io  = O

h22 kennzeichnet den Ausgangsleitwert bei eingangsseitigem Leerlauf. Mit der vorgegebenen
Größe erhalten wir nach (8 a) für den Ausgangswiderstand = U20/I 2Q bei eingangsseitigem
Leerlauf

(9t2~)z„=o = ------- -----  & = 6,67 k£2.1 2 U 150  . 10 -6
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4.5.4. Betriebseigenschaften eines Transistors bei kleinen Signalspannungen

Der Transistor SF 122 ist in Emitterschaltung mit dem Nutzwiderstand £RL = 5 kQ abgeschlossen.
Bestimmen Sie die betriebliche Stromverstärkung Ao/Ao? die betriebliche Spannungsverstärkung
Ao/ Ao? den Eingangswiderstand = U1QII1Q sowie die Leistungsverstärkung Die Vier-

polparameter des Transistors in Emitterschaltung lauten

Äu = 700Q, A12 = 3,5 • IO“4 , ä 21 = 95, ä 22 = 31 • lO"6 1 .

Lösung
Ströme und Spannungen sind nach (4.5.3./1) durch die beiden Gleichungen

Ao = AiAo + A2Ao> (1)

Ao = AlAo + A2A0 (2)

verknüpft. Zwischen den Amplituden des Stromes und der Spannung am Ausgang des Vierpols
besteht die Beziehung

Ao=-  lAo« (3)

Wir setzen (3) in (1) ein und lösen nach Ao/Ao ail f :

Ao _ Ai / \

Ao 1 + ää

In (1) können wir Z10 gemäß (4) durch I 20 
un d weiter Z20 mittels (3) durch U20 ausdrücken. Es

folgt nach Umformungen für die Spannungsverstärkung

Ap _ ~A1 L /g\
Ao

mit

zlA = A1A2 AaAi- (6)

Der Eingangswiderstand ergibt sich aus

Ao Ao . Ao/Ao

Ao Ao/Ao Ao

woraus man mittels (4) und (5) erhält

zIASRl Ai
1 + A2 L

(7)
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Für die Leistungsverstärkung folgt schließlich bei einem reellen Nutzwiderstand 9tL = R

y _ -?2 __ - 2Q2- L _ - L ______ 212 ____
L “ Pi “ Ao 2 Pi “ (1 + W '

Mit den vorgegebenen Zahlen erhalten wir aus (4)

- 2- = ------------------— ------------------ = 82,2 .
I 10 1 + 31 • IO“6 • 5 • 10 3

Aus (6) ergibt sich

Ah = 700 • 31 • IO“6 - 3,5 • 10~4 • 95 = -0,01155

und damit aus (5)

-95 • 5 • 10 3
£20. = ------------- ” t” ----------- = -740.
Um -5  • 103 • 0,011 55 + 700

Das negative Vorzeichen kennzeichnet die Phasenumkehr. Der Eingangswiderstand wird nach (7)
gleich

1 + 31 • IO“6 • 5 • 10 3

die Leistungsverstärkung nach (8)

VL = = 5 ' 103 ------— --------------- - -  = 60800.
Pi 556 (1 + 31 • IO“6 • 5 • 10 3 ) 2

95 2

4.5.5. Arbeitspunkteinstellung durch Spannungsteilerwiderstände

Für den npn-Transistor SC 207 in Emitterschaltung soll der Arbeitspunkt I c = 2 mA,  UCE = 4 V
mit einer Spannungsteilerschaltung nach Bild 4.41 eingestellt werden. Der Lastwiderstand beträgt

= 5kQ.  Wie sind die Spannungsteilerwiderstände zu wählen, wenn die Summe der beiden
Ströme und Zr I  gleich dem Fünffachen des Basisstromes ist?

Lösung

Es gelten die folgenden Beziehungen

h ~~ hi — (1 )

Rl lh l  = BE> (2)

B — BE — Rfh = 0 . (3)

Aus (3) folgt, wenn wir ZT aus (1), Zn aus (2) einsetzen,

U B - <7BE - Ri = 0 .  (4)

18  Schilling, Felder
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Bild 4.41. Arbeitspunkteinstellung eines Transistors durch Spannungsteilung

Hieraus erhalten wir

_ Uü — BE
Rn be  + - ii b

Ferner besteht die Beziehung

b+  tfE c -9Wc = 0 .  (6)

Nach (1) und (2) gilt

h + Ai = i _l_ 2 be
Ib ii b

Soll dieses Verhältnis gleich 5 sein, so muß

-Rii = (7)11 2/ b

erfüllt sein.
Nach Bild 4.39 a 2 ist für den angestrebten Arbeitspunkt 1 B = 45 pA. Damit folgt nach Bild
4.39 b (7be  = 585 mV. Aus (7) ergibt sich

p 585- IO"3 
n-ßjT = -------------— £2 = 6,5 k£2n 2 • 45 • IO"6

während wir aus (6)

U B = UCE + 9V C = (4 + 5 • 103 . 2 . 10- 3 ) V = 14 V

und damit aus (5)

14 - 585 • IO"3

= 6,5 • 103 ------------ ’ 7 -------------- £2 = 99,4 kQ1 585 • IO-3 + 6,5 • 103 • 45 • IO"6

erhalten.

4.5.6. Relaisschaltung mit Transistoren

Zur Anwendung des Transistors als elektronischer Schalter wird eine Anordnung nach Bild 4.42
verwendet. Sie stellt einen von zwei möglichen Zuständen her, die mit 0 und L bezeichnet werden.
Bild 4.43 zeigt die Kennlinien des verwendeten Schalttransistors Trs S und die den Zuständen 0
und L entsprechenden Arbeitspunkte.
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Bei 0 ist der Ausgangswiderstand des Schalttransistors sehr groß, beiL sehr klein. O entspricht
dem ausgeschalteten, L dem eingeschalteten Stromkreis.
Die Schaltung erfolgt durch einen Lichtstrahl, der auf ein Photoelement einwirkt. Zwischen
dem Fotoelement und dem Schalttransistor befindet sich ein weiterer Transistor Trs V.
Fällt kein Licht auf das Fotoelement, so liegt im vorgeschalteten Transistor Trs V zwischen der
Basis- und der Emitterelektrode die von der Batterie hervorgerufene Spannung U . Sie führt
in Trs V zu einem großen Kollektorstrom I c 

y und einer großen Kollektorspannung £7ce- I m Schalt-
transistor wirkt diese Spannung der durch die Batterie verursachten Spannung zwischen der
Basis- und der Emitterelektrode entgegen, so daß der Basisstrom des Schalttransistors gleich Null,
der Kollektorstrom gleich dem Reststrom Z co ist (Zustand 0).  Durch die äußere Spannungsquelle
und durch geeignete Wahl der eingeschalteten Widerstände kann im Schalttransistor Trs S die
Spannung UCE auf sehr große Werte gebracht werden. UCE ist nach oben begrenzt, da die Durch-
bruchspannung (vgl. Bild 4.32) nicht erreicht werden darf. Es muß UCE U CE0 sein.
Durch Lichteinwirkung wird das Fotoelement zur Spannungsquelle. Diese ist so geschaltet, daß
die erzeugte Spannung an der Basis des zwischengeschalteten Transistors Trs V der Batterie-
spannung entgegenwirkt und den Basisstrom schwächt. Infolgedessen vermindert sich auch
der Kollektorstrom Zc 

v . Die Kollektorspannung nimmt gleichfalls ab. Dagegen steigt der
Basisstrom des Schalttransistors an und führt zu einem großen Kollektorstrom.
Die Abnahme der Kollektorspannung Uce im vorgeschalteten Transistor Trs V bewirkt, daß im
Schalttransistor Trs S die Spannung zwischen der Kollektor- und der Emitterelektrode ebenfalls
abnimmt. Trifft der volle Lichtstrahl das Fotoelement, so wird damit in Trs S der Arbeits-
punkt L eingestellt.

Bild 4.42. Relaisschaltung mit Transistoren

Der Strom I c des Arbeitspunktes L reicht gerade aus, das an die Kollektorelektrode des Schalt-
transistors angeschlossene Relais anzuziehen. Eine Schwächung oder Unterbrechung des Licht-
strahles führt zur Abnahme des Kollektorstromes. Dabei fällt das Relais ab, und es wird ein
technischer Prozeß (z. B. ein Alarmzeichen) ausgelöst.
Berechnen Sie die optimalen Werte des Ausgangswiderstandes bei Verwendung des mittelschnellen
Schalttransistors SF 128. Wie groß ist die aufgenommene Leistung?
Welche Schal tleistung wird aufgebracht, wenn der Wicklungswiderstand _RL 

= 80Q beträgt
und der Arbeitspunkt L durch I c = 400 mA, UCE = 0,5 V festgelegt ist?

Lösung
Für den npn-Transistor SF 128 entnimmt man Tabellenbüchern über Transistoren die folgenden
Angaben :
Die zulässige Höchstspannung in der Emitterschaltung beträgt UCEO = 60V, der zulässige

18*
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Höchststrom / c — 500 mA. Als zulässige Höchstleistung des Transistors werden P V 0 = 600 mW
angegeben (vgl. Tabelle 8b  und Bild 4.43). Der Reststrom beträgt I c0  = 0,1 mA, die Rest-
spannung C7ce r  = 0,5 V.

7 2 3 4

Parameter IB (fiA)

ReststromO

Uce M
Bild 4.43. Kennlinien und Arbeitspunkte eines Schalttransistors

Der größtmögliche Wert des Ausgangswiderstandes (Innenwiderstandes) im Falle des aus-
geschalteten Stromkreises ist somit gleich

P i 0  = ceo (Sperrwiderstand). (1)
co

Für den Ausgangswiderstand bei eingeschaltetem Stromkreis folgt als kleinstmöglicher Wert

P iL  = (Durchlaß widerstand). (2)

Die aufgenommene Leistung für den Sperrzustand O ergibt sich aus

•Po = CEO CO- (3)

Im offenen Zustand L nimmt der Transistor die Leistung

Pl = Ücer4 (4)
auf.
Mit den vorgegebenen Zahlen folgt als Sperrwiderstand

_R10 = -----60 £1 = 600 kO,10 0,1 - i o - 3

als Durchlaßwiderstand

0,5
500 • IO"3 Q = 1Q.PiL =

Die aufgenommenen Leistungen im gesperrten und im offenen Zustand sind nach (3) und (4)

P o = 60 • 0,1 • IO’3 W = 6 mW,

P L = 0,5 • 500 • IO"3 W = 250 mW.
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Als Schaltleistung definiert man die Leistung P N , die vom Nutzwiderstand P L während der
Durchlaßschaltung aufgenommen wird, d. h., während der Zustand L geschaltet ist. Dafür er-
halten wir

P N = P L1 C 
2 . (5)

Bei dem vorgegebenen Arbeitspunkt ergibt sich aus (5)

P N = 80 • (400 • IO“3 ) 2 W = 12,8 W.

4.5.7.* Zweistufiger Vorverstärker mit RC-Kopplung

Für den zweistufigen Vorverstärker nach Bild 4.44 wird eine Ausgangswechselspannung
t/ 2 eff = 1,0 V gefordert. Als Verstärker dient für beide Stufen der npn-Transistor SC 207, dessen
Kennlinien in Bild 4.39 dargestellt sind. Der Arbeitspunkt ist für beide Stufen an die Stelle
17C e = 3 V, / c = 1,0 mA, ZB = 28 pA gelegt. Die Vierpolparameter des Transistors lauten in
Emitterschaltung für den Arbeitspunkt

Än = 2 ,3kQ,  A12 = 3,8 • 10- 4 , Ä21 = 30, A22 = 48 • 10-6 Q -1 .

Als Betriebsspannung wird eine Spannungsquelle mit Z7B = 15 V gewählt. Der Spannungsabfall
an den Emitterwiderständen P E1 = P E2 == P E soll 0,4 V betragen. Die Spannungsteilerwider-
stände sind durch P n = P n i  = P I l 2  = 10 kQ bestimmt.

Bild 4.44. Zweistufiger Vorverstärker

Berechnen Sie die erforderliche Größe der Lastwiderstände, die Strom- und die Spannungs-
verstärkung sowie den Eingangswiderstand jeder einzelnen Verstärkerstufe. Wie groß ist die er-
forderliche Eingangsspannung? Welche Kapazitäten müssen die Kondensatoren haben, wenn
gegenüber hohen Frequenzen für cog /2ju = 50 Hz als unterer Grenzfrequenz ein Stromabfall
1 : ]/2 zügelassen wird?

Lösung
Geht man vom zweiten Verstärkerkreis aus und betrachtet die Spannung in der rechten Schleife
des Bildes 4.44, so ergibt sich die Beziehung

— E2 E ” + - L2 C + ce  — 0 .  (1)
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Wir setzen genähert ZE = — I c und erhalten nach Umformung

n i d _ — CE
-tt E2 ~r — ------j-------- •

7 C

Mit den vorgegebenen Zahlen folgt
__  Q

ä E2 + 1?L2 = -7"- 3 Q = 12 kQ.10-3

Soll am Widerstand E E2  ein Spannungsabfall von R c — 0,4 V erfolgen, so muß

0 4ä E2 = = 400QIO-3

sein. Für den erforderlichen Lastwiderstand erhält man damit _RL2 = l l , 6kQ.

(2)

Bild 4,44 a

In Bild 4.44 a betrachten wir den Vierpol zwischen den Punkten 11', 12' und 21', 22'. Die Aus-
gangswechselgrößen des betrachteten Vierpols sind mit denen des Eingangs über den relativ
niedrigen Widerstand _R E2  gegengekoppelt. Bei der Berechnung dieser Kopplung können die
parallel zu _R E geschalteten Widerstände _RL2 und E l 2  als unendlich groß angenommen werden,
so daß über diese keine Kopplung zu berücksichtigen ist. Die auftretenden Spannungen sind beim
Vorverstärker so klein, daß mit den Vierpolparametern gerechnet werden kann. Wir bezeichnen
die Vierpolparameter für j? E2  = 0 mit hi k , dagegen für j? E2 0 mit h'ik :

Uio = + 12 20’  (3 )

Z 2 
= 21710 H“ 22 20» (4)

UJo = (5)

- 20 = 21710 + 22 20 ’  I (0 )

In Bild 4.44 a ist der Transistorvierpol für _R E2 = 0 durch die Punkte 11, 12; 21, 22, dagegen
für _R E 2 0 durch 11', 12' ; 21', 22' dargestellt.
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Der Emitterwiderstand wird sowohl von 1/ als auch von I 2 ' durchflossen. An ihm erfolgt
der Spannungsabfall — 20) • Somit bestehen die Beziehungen

10 = 10 + 2( 10 — 20)’ (?)
20 = 20 “F - £2( 10 — 20) • (8)

Die Ströme ändern sich nicht :

/lo = Ao> (9)
0 = 20 .  ( i o )

Wir lösen (8) nach I72O 
au un( l setzen den sich ergebenden Ausdruck in (4) ein. Indem wir (9)

und (10) berücksichtigen, erhalten wir

t 21 — 22 E2 r _J 22 tt
720  “ 1 I Ä P 710  + 1 l Ä 7?1 r «'22 2t E2 1 r '22-tt E2

Durch Vergleich der Koeffizienten in (11) und (6) folgt

21 22- E2

1 + 22- E2
(12).

(13)22

1 + 22 E2

Ebenso gelangt man mittels (3), (7), (9) und (10) zu

(1 4- Ä21 ) (1 — Ä12 )
----i 1 r D-------- E 2 ’1 Ä 2 2'tt E2

Ml _ -|_ (14)

(15)12  + 22 E2

1 + 22- E2
2 =

In (12) bis (15) können wir in erster Näherung ä22ä E2 1 ,  Ä12 < 1 ,  h21 >1 setzen. Damit folgt
genähert

Ml = Ä u + Ä211?e 2 , — 12 + 22- E2> 1

Ml == Ml > 22 == 
M2 • J

Mit den vorgegebenen Werten erhalten wir

Mi = (2,3 • 103 + 30 • 400) Q = 14,3 k£l,
= 3,8 • 10- 4 + 4,8 • IO-6 • 400 = 19,6 * IO"3 ,

21 == 30,
= 48 • 10-6 Q -1 .

Damit folgt nach (4.5.4./4) für die Stromverstärkung

20 _ 21

710 1 + 22 L2
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nach (4.5.4./5) für die Spannungsverstärkung

20 — A 2 1- L2

- L2 Ah' + ii

nach (4.5.4./7) für den Eingangswiderstand der zweiten Verstärkerstufe

= Ah'R Li 4- An
1 + 22 L2

Mit den vorliegenden Zahlen ergibt sich nach (4.5.4./6)

Ah' = 14,3 • 103 • 48 • IO"6 - 19,6 • 10~ 3 • 30 = 98,4 * IO"3 .

Hieraus erhalten wir nach (17), (18) und (19)

= 19,3, = -22,5,  9t12 = 9,92 kQ.
10 10

Die erste Verstärkerstufe enthält parallel zum Emitterwiderstand J? E1 die Emitterkapazität CE .
Sie wird derart gewählt, daß ihr elektrischer Widerstand dem Betrag nach klein gegen die reelle
Größe .R E1 ist. Der Emitterwiderstand ist damit praktisch durch die Emitterkapazität kurz-
geschlossen.
Den wirksamen Lastwiderstand des ersten Verstärkerkreises berechnen wir aus den parallel-
geschalteten Widerständen _BL1 , Ht12 , JRf ist so groß, daß sein Leitwert zu vernachlässigen ist.
Es folgt

— + -1— , (20)
aiiL -RL1 äh

mit den vorgegebenen Zahlen fR1L = 3,5 kQ .
Damit erhalten wir nach (4.5.4./4) und (4.Ö.4./5) für die Strom- und für die Spannungsverstärkung
der ersten Verstärkerstufe

0 21

7 0 1 + 22 1L

0 _ _ 1L

?70 SRil Ah + Äu

während nach (4.5.4./7) für den Eingangswiderstand der ersten Stufe

m = Ah SR1L + h±1
1 + A 2 2 iL

folgt.
Die vorgegebenen Zahlen eingesetzt, liefert

12. = 25,7, - 2- = -39,6, 91h = 2,27 kQ.

Die gesamte Spannungsverstärkung durch beide Stufen ist somit gleich

. -Ek = 22,5 • 39,6 = 891 .
Ulo U.

(18)

(19)

(21)

(22)

(23)
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Um die Ausgangswechselspannung 1,0 V zu erzielen, muß die Eingangswechselspannung

t7 »eH = -V=l ,12mV
oy±

betragen.

Zur Bestimmung der Kapazität C c zwischen den beiden Transistoren betrachten wir die Ersatz-
schaltung nach Bild 4.44b. Der Ausgangswiderstand $R21 der ersten Stufe hat im allgemeinen bei
der Emitterschaltung einen Wert in der Größenordnung 100 kQ (vgl. Tabelle 7). In Bild 4.44b
kommt daher in der Parallelschaltung links des Kondensators C c nur der Widerstand RL2 zur
Wirkung. Rechts von C c kann man sich auf und den Eingangswiderstand 9t12 des rechten
Transistors beschränken. Es folgt

■RL2 H ------ -----[- f— + —

Ae L2
(24)

Für das Verhältnis zwischen den Strömen am Eingang fR12 bei sehr hohen Frequenzen a> -> oo
und bei der Grenzfrequenz cog ergibt sich daraus

L2 + - — ------F ----F
_______1 \ - n SR12 /

+Gr + -grT\ 11 Jh2 /

Aeoo

Aeg
(25)

Hieraus folgt als erforderliche Kapazität, wenn die Grenzfrequenz = 50 Hz betragen soll,

C
(26)

Mit den vorgegebenen Zahlen erhalten wir

10- 3
F = 0,192 • 10 -6 F .

10-9,92 \
10 + 9,92 /

2k -  50 11,6 +

Der Kondensator CE schließt bei richtiger Dimensionierung den Emitterwiderstand jR e kurz.
Dieser braucht im Ersatzschaltbild zur Berechnung von CE daher nicht berücksichtigt zu werden.
Am Kondensator CE tritt ein Spannungsabfall auf, der dem Betrage nach gleich

Ijc/I = J£eL
o)6 e

(27.)
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ist. Dieser wirkt durch die Gegenkopplung auf den Eingangskreis. Hier fließt der Basisstrom ZB ,
den wir genähert aus dem Emitterstrom über die Kurzschlußstromverstärkung ß = h21 be-
stimmen :

MtZ | = As-| Zb |. (28)
coC E

Bei der Berechnung der Rückwirkung auf den Eingangskreis ist die Emitterkapazität daher nur
mit einzusetzen.

1 21

— ! ---------II— q ----------°

rp' [>

o—l --------------------1— o Bild 4.44 c

Von den im Eingangskreis vorhandenen Widerständen berücksichtigen wir den Eingangswider-
stand fR11? den wir gleich seinem Kurzschlußwert annehmen. Alle anderen Widerstände werden
in einem zusammenfassenden Widerstand R' aufgenommen. Es ergibt sich damit das Ersatzschalt-
bild nach Bild 4.44 c. Aus diesem folgt analog (26) für die erforderliche Kondensatorkapazität

Bei festgelegtem CE wird die untere Grenzfrequenz mg am größten für R' = 0 . Dieser Fall stellt
die ungünstigste Möglichkeit dar. Man errechnet daher CE am einfachsten aus

(CW=0 =-  ~ -  (30)
COg/2-ii

Diese Kapazität gewährleistet mindestens bis cog herab eine einwandfreie Funktion des Ver-
stärkers.
Mit den vorgegebenen Zahlen erhalten wir CE = 41,5 pF.

4.5.8.* Gegentakt-B-Verstärker

Um eine große Leistungsverstärkung bei kleiner Verzerrung zu erzielen, werden die Endstufen
von NF-Transistorverstärkern als Gegentakt-B-Verstärker nach Bild 4.45 aufgebaut.
Die Spannungen sind durch Vorverstärker auf so große Werte gebracht worden, daß mit den
Kennlinien gearbeitet werden muß.
Nach der Lage des Arbeitspunktes im Eingangskennlinienfeld ZB (UBE  ) unterscheidet man
zwischen A- und B-Verstärkern.
Bei den A-Verstärkern fließt im Ruhezustand, d. h., wenn keine Signalspannung anliegt, ein
schwacher Eingangsstrom (Basisruhestrom). Zwischen der Basis- und der Emitterelektrode liegt
eine hinreichend große Spannung (Größenordnung 0,01 ---l V), so daß eine Aussteuerung sowohl
nach positiven als auch nach negativen Werten der Signalspannung möglich ist.
Dagegen liegt bei B-Verstärkern der Arbeitspunkt so, daß der Transistor nur nach einer Seite
ausgesteuert werden kann (z. B. für U1 > 0 beim npn-Transistor). Signalspannungen in der
Gegenrichtung führen am pn-Übergang zwischen Basis und Emitter zu Spannungen in Sperr-
richtung und damit zur Sperrung des Transistors.
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Beim Gegentakt-B-Verstärker führt der Übertrager ÜT das Eingangssignal U± den beiden Tran-
sistoreingängen mit der Phasenverschiebung zu. Von den Transistoren arbeitet immer nur einer,
während der zweite gesperrt ist. Ein Wechsel im Arbeitstakt erfolgt jeweils während des Über-
gangs von der positiven zur negativen Halbwelle des Steuersignals U19 da im Transistor nur für
eine Spannungsrichtung zwischen Basis und Emitter ein Kollektorstrom fließt.

Bild 4.45. Endstufe eines Transistorverstärkers (Gegentakt-B-Verstärker)

Nach ihrer Verstärkung durch die Transistoren werden die beiden Halb wellen wieder zusammen
gefaßt. Bild 4.46 veranschaulicht die Vorgänge. Zur Realisierung der Gegentakt-B- Verstärkung
legt man den Arbeitspunkt A des Ruhezustandes (keine Signalspannung) in beiden Transistoren
auf einen sehr kleinen Kollektorstrom I c = / CA (vgl. Bild 4.47).

Bild 4.46. Spannungen und Ströme bei der Gegentakt- Verstärkung

Der Spannungsabfall in den Spulenwicklungen kann im allgemeinen vernachlässigt werden. An
den Elektroden liegt praktisch die gesamte Batteriespannung :

Üb = ÜCE1 = üCB2 = ÜCE .

Bild 4.47. Kennlinien für die Gegentakt-B-Verstärkung
A Arbeitspunkt des Ruhezustandes, AB Arbeitsgerade
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In der Gegentaktschaltung nach Bild 4.45 wird für die Leistungsverstärkung der npn-Transistor
SF 127 verwendet. Als zulässige Höchstwerte werden für diesen Transistor angegeben (vgl. Ta-
belle 8b, S. 267): maximale Spannung P CEO = 40 V, maximaler Strom 7C = 500 mA.
Die vom Transistor in Wärme umgesetzte Leistung darf nicht größer als P Vo = 0,6 W sein.
Geben Sie die erforderliche Mindestgröße des Arbeitswiderstandes an, wenn die Batteriespannung
U-q = 20 V beträgt.
Wie groß ist die von der Gegentaktstufe abgegebene Wechselstromleistung bei vollständiger Aus-
steuerung, wenn der Arbeitswiderstand R = 80 Q beträgt? Wie groß ist der Wirkungsgrad?
Die Restspannung des Transistors ist gleich P CER — 0,3 V. Der Arbeitspunkt für den Ruhe-
strom liegt bei ZCA = 5 mA; P CEA 

= = 20 V .

Lösung

Nach Bild 4.47 werden die Kollektorspannung vom Arbeitspunktwert P CEA = B bis zur Rest-
spannung P CER  , der Kollektorstrom I c vom Arbeitspunktwert I CA bis zum maximalen Wert
Jcmax variiert. Icmax mu ß kleiner als die maximal zulässige Stromstärke I c sein, wenn der Tran-
sistor gebrauchsfertig bleiben soll.
Bezeichnen P oCE 

un d Ac die Amplituden der Wechsel großen, so definiert man

m = ------ OCE = ---------- OC---------- (1 )

— CER Cmax “ AjA

als Grad der Aussteuerung. Maximale Aussteuerung ist durch m = 1 gekennzeichnet.
Die von der Schaltung abgegebene Wechselstromleistung beträgt

2P = OCE — Ac  = m 2 ( B — cer)  2
2 27? 7

wobei

R = 
U .oCK (3 )

Ac

den Arbeitswiderstand des Kollektorkreises angibt.
Der Mittelwert der Kollektorwechselspannung ist gleich 27oC /tu. Für die von der Batterie ab-
gegebene Leistung folgt damit, abgesehen von der durch den kleinen Ruhestrom verursachten
Leistung,

2P B = - r B = (/Cmax  - I CA) U B . (4)
TU 7U

Die von einem der beiden Transistoren in Wärme umgesetzte Verlustleistung P v ist gleich

P v = P B -P  = (7Cmax  - J CA)P B - - &— JML. (5  )
7U 47?

Wir bestimmen das Maximum P Vo der Verlustleistung. Es ergibt sich aus

L = 0 .
dm (6)

(?)

Man erhält

2 ?7B

7t {7b — PcER
(m)p vo



4.5. Der Transistor als aktiver Vierpol 285

Diese Größe setzen wir in (5) ein und berücksichtigen (3) und (1). Damit folgt

Ist die maximal zulässige Verlustleistung vorgegeben, so kann man mittels (8) den Mindestwert
des Arbeitswiderstandes bestimmen:

B !ä -®min = - • (9)
tc2P V o

Für den maximalen Kollektorstrom ergibt sich bei bekanntem R aus (1) in Verbindung mit (3)

r r , — CERJ Cmax — 1 Ck H ------------

Der Wirkungsgrad der Schaltung gibt das Verhältnis zwischen der Wechselstromleistung und
der gesamten von der Batterie abgegebenen Leistung an. Nach (2) und (4) folgt

Mit den vorliegenden Zahlen ergibt sich aus (9) als Mindestwert des Arbeitswiderstandes

202
-R min  = ——---- = 67,6 Q .m,n  it2 • 0,6

Im betrachteten Fall ist der Arbeitswiderstand R = 80Q. Wir setzen diese Größe in (10) ein
und erhalten

OA __  AO

Icmax = 0,005 A + -----— A = 226 mA.ÖV

Der Strom liegt also unter dem zulässigen Höchstwert I c = 0,5 A.  Für die Strom- und für die
Spannungsamplitude folgt bei maximaler Aussteuerung m = 1 aus (1)

I oC = m(ICmax  - / CA) = 221 mA,

t oCE = ™( B — CEr) — 19,7 V .

Für die von der Gegentaktstufe übertragene Wechselstromleistung ergibt sich nach (2) im Falle
m = 1

19 7 2
2P = - -  W = 2,43 W.

2 -80

Der Wirkungsgrad wird für m = 1
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A Aufgaben

A 4.5.1. Ein Transistor in Basisschaltung arbeitet bei t/ EB = 0,3 V, L BC = 4,5 V. Welche
Spannungen sind in der Emitterschaltung und in der Kollektorschaltung anzu-
bringen, wenn die gleichen Ströme wie bei der Basisschaltung fließen sollen?

A 4.5.2. Der Transistor SF 216 hat in Emitterschaltung die Kurzschlußstromverstärkung
224 •••560. Berechnen Sie den Wertebereich der Kurzschlußstromverstärkung für
die Basisschaltung.

A 4.5.3. Der Transistor SC 108 habe in Emitterschaltung den Eingangs widerstand
= 1,5 kQ.  Wie groß ist der Eingangswiderstand in der Basisschaltung? Die

Kurzschlußstromverstärkung in Emitterschaltung ist gleich ß = 22 .
A 4.5.4. Für den Eingangswiderstand in Emitterschaltung wird bei Verwendung des Schalt-

transistors SS 101 die Größe fft1E = 0,7 kQ gemessen. In der Basisschaltung wird
der Eingangswiderstand $R1B = 50 £2 festgestellt. Bestimmen Sie die Kurzschluß-
stromVerstärkung für alle drei Grundschaltungen.

A 4.5.5. Bestimmen Sie aus den Vierpolparametern nach Tabelle 8 die Stromverstärkung
für den Transistor SF 122 in Emitterschaltung, wenn der Nutzwiderstand

= 10 kQ beträgt.
A 4.5.6. Berechnen Sie zur vorangegangenen Aufgabe den Eingangswiderstand.
A 4.5.7. Stellen Sie die Formel für den Ausgangswiderstand 9t2 = 2/ 2 des Transistors

auf, wenn der Eingang mit dem Widerstand (Innenwiderstand der Signalquelle)
versehen ist.

A 4.5.8.* Stellen Sie die Bedingungsgleichung für optimale Leistungsanpassung auf und be-
rechnen Sie die optimale Leistungsübersetzung.

A 4.5.9.* Leiten Sie auf Grund der physikalischen Eigenschaften die A-Parameter für die
Basis- und für die Kollektorschaltung aus denen der Emitterschaltung ab.

A 4.5.10. Bestimmen Sie zu Aufgabe A 4.5.5. die Stromverstärkungen in der Basis- und in
der Kollektorschaltung.

A 4.5.11. Bestimmen Sie aus den Kennlinien des Bildes 4.39 die Kurzschlußstromverstär-
kung ß des Transistors SC 207 für I7CE = 4 V, Iq = 4 mA.

A 4.5.12. Der Transistor SC 207 ist auf den Arbeitspunkt 17CE = 4V,Z C = 4 mA eingestellt
und wird ausgangsseitig mit dem Lastwiderstand = 1,5, kQ abgeschlossen. Be-
stimmen Sie die anzulegende Batteriespannung.

A 4.5.13. Bestimmen Sie für den Arbeitspunkt l c = 3mA,  L CE == 4 V des Transistors
SC 207 im Grenzfall der Stromsteuerung die Größen ZB , ZE , 17BE  , 17CB (vgl. Bild
4.39).

A 4.5.14.* Der Transistor SC 207 soll durch einen Vorwiderstand nach Bild 4.48 auf die
folgenden Arbeitswerte eingestellt werden: Zc = 4,2 mA, ZB = 70 pA., L CE = 5 V.
Der Nutzwiderstand beträgt fRL == 1 k£2 . Bestimmen Sie die anzulegende Span-
nung und den Vorwiderstand Rv (Kennlinien nach Bild 4.39).

A 4.5.15.* Berechnen Sie zur vorangegangenen Aufgabe die Leistungsverstärkung.

A 4.5.16. Mit einem Spannungsteiler soll für den Transistor SC 207 der Arbeitspunkt
I c = 1,5 mA, £7ce  = 2 V, ZB = 50 pA eingestellt werden. Der Lastwiderstand
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beträgt R L = 0,8 kQ,  die Summe der Ströme I r und Zn soll das Fünffache des
Basisstromes betragen. Bestimmen Sie die erforderliche Batteriespannung U-q
sowie die Widerstände Rf und R n ,

A 4.5.17. Für den Schalttransistor SS 101 beträgt die hochstzulässige Spannung J7CE0 — 33 V,
der Reststrom Zco  = 2 p,A. Der maximal zulässige Strom ist bei der Temperatur
125°C gleich I c = 200 mA, die Restspannung CER = 1 V. Berechnen Sie den
Durchlaß- und den Sperrwiderstand, wenn die angegebenen Werte die beiden
Arbeitspunkte im Schaltbetrieb bestimmen.

A 4.5.18. Berechnen Sie für den Schalttransistor SS 101 die Schaltleistung, wenn ein Nutz-
widerstand von 200 Q angeschlossen ist. Wie groß sind die aufgenommenen Lei-
stungen im gesperrten und im offenen Zustand? Die Arbeitspunkte seien durch
ZC l = 150 mA , cel  = 1 V, Zco  = 10 A, C7ceo  = 12 V festgelegt.

A 4.5.19. In der Verstärkerschaltung nach Bild 4.44 soll die untere Grenzfrequenz 162/3 Hz
betragen. Die Widerstände sind gleich 9tL2 = 20 kQ,  9t12 = 5kQ,  _RI l2  = 2kQ.
Wie groß muß die Kopplungskapazität sein?

A 4.5.20. Der Arbeitswiderstand eines Leistungsverstärkers beträgt R = 50 kQ.  Die Ver-
lustleistung darf 0,2 W nicht übersteigen. Welche Bedingung ergibt sich daraus
für den Arbeitspunkt?

A 4.5.21.* Stellen Sie die Formel für die Einstellung des Arbeitspunktes bei einem Transistor
mit Vorwiderstand auf, wenn der Widerstand R zwischen der Emitterelektrode
und Masse berücksichtigt wird. Schaltung nach Bild 4.48.

Bild 4.48. Arbeitspunkteinstellung
durch Vorwiderstand

A 4.5.22.* Stellen Sie unter der gleichen Voraussetzung wie in der vorangegangenen Aufgabe
die Formel für das Verhältnis der Spannungsteilerwiderstände auf, wenn die Arbeits-
punkteinstellung nach Bild 4.41 erfolgt.

■

Bild 4.49. Verstärkerschaltung

A 4.5.23.* Ein Transistor befindet sich in der Gegenkopplungsschaltung nach Bild 4.49. Be-
stimmen Sie die Vierpolparameter dieser Schaltung, wenn die Vierpolparameter
des Transistors bekannt sind.



5. Hochfrequente Wechselfelder

5.1. Das elektromagnetische Feld elektrischer und magnetischer Dipole

e Einführung

Bei den rasch veränderlichen elektromagnetischen Feldern der drahtlosen Über-
tragungstechnik sind die Voraussetzungen für die quasistationäre Rechnung nicht
erfüllt. Man muß die ungekürzten MAXWELLschen Gleichungen (1.4./1) bis (1.4./4)

® + 3=ro t£ ,  (1)
® = - ro t® ,  (2)

div © = Q , (3)

div 93 = 0 (4)

verwenden. In einem einheitlichen Medium bestehen nach (1.4./5) bis (1.4./7) die
linearen Beziehungen

(5)

(6)
(7)

Drückt man § durch 93, © durch ® aus, so ergeben sich anstelle von (1) und (3)
die beiden Gleichungen

+ Xs = rot ® * (1 a )

div@ = — . (3a)

Die Gleichung (4) wird wie in 3. durch Einführung des Vektorpotentials 91 befriedigt:

93=  rot 91. (8)
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Setzt man diesen Ansatz in (2) ein, so folgt

rot (® + 21) = 0 .  (9)

Das Verschwinden der Rotation eines Vektorfeldes bedeutet, daß dieses sich als
Gradient eines skalaren Potentials —0 darstellen läßt. Daraus ergibt sich

@ = — grad 0 — 21. (10)

(8) und (10) können in ( la)  eingesetzt werden. Man erhält (vgl. 1.3. A 6.)

— e/z (grad 0 + 21) + /uß = rot rot 21- = — + grad div 21. (11)

Diese Gleichung wird stets dann erfüllt, wenn die beiden Gleichungen

— *7 1 + 3 = 0 (12)

und
div 21 + e//0 = 0 (13)

befriedigt werden. Berücksichtigt man in (3a) die Beziehung (10), so folgt

+ d ivä  + — =0 .  (14)e

Aus (14) ergibt sich mittels (13)

/\<P — eß# + qe = 0 . (15)

Das skalare Potential 0 und das Vektorpotential 21 genügen nach (12) und (15)
Differentialgleichungen der gleichen Form. Mit der Erfüllung dieser Gleichungen
durch 0 und 21 ist die Erfüllung der MAXWELLschen Gleichungen gewährleistet.
Die Lösungen der Gleichungen (12) und (15) können durch die retardierten Potentiale

z , t |  = -k J'JJ ’> a r  ( i ß )

W, = C ’ - dV (17)
mit

d7  = d£ d?y df

dargestellt werden. Ladungs- und Stromdichte am Ort (f, 77, f) sind bei der Inte-
gration nicht mit ihren Werten zur Zeit t ,  für die 21 und 0 bestimmt werden sollen,
sondern einem früheren Zeitpunkt

T = t - — (18)c

1 9 Schilling, Felder
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einzusetzen. Die Differenz

t — r = r

entspricht der Zeit, die für die Ausbreitung der Welle vom Integrations- zum Auf-
punkt erforderlich ist. Der Ausdruck

c0 1c = ---  =n

gibt die Phasengeschwindigkeit der Welle an, die Größe

r = ]/(« — £) 2 + (7/ — r/) 2 + (z — C) 2 ( 19  )

bezeichnet die Entfernung zwischen Integrations- und Aufpunkt; n ist die Brech-
zahl des Mediums.
Ein kleiner Körper wird als Strom- oder Leiterelement bezeichnet, wenn die Strom-
dichte in jedem seiner Punkte gleich ist. Für ein Stromelement I df) kann der Ab-
stand seiner einzelnen Punkte vom Aufpunkt konstant gleich r gesetzt werden.
Das Stromelement im Punkt P 0 (f, C) erzeugt also nach (17) im Aufpunkt P(x, y, z)
das Vektorpotential

d9l = dSl , y, z , t)  = ■%- df) . (20)rPP0

Das von einem beliebigen ausgedehnten Körper mit bekannter Stromverteilung aus-
gestrahlte Feld läßt sich genähert berechnen, indem man die von den einzelnen
Stromelementen ausgehenden Felder unabhängig voneinander bestimmt und vek-
toriell addiert. Im folgenden werden zeitlich periodisch veränderliche Felder der
Form er1(at betrachtet.
Ein Leiterstück der Länge A, auf dem näherungsweise die elektrische Stromdichte
als räumlich konstant angesehen werden kann, sich jedoch mit der Zeit t verändert,
wird als Elementardipol bezeichnet. Die Länge h des Dipols muß klein gegen die
Wellenlänge 2 sein, wenn die Voraussetzung räumlicher Konstanz der Stromdichte
erfüllt sein soll:

nc 2jvnc2 = — = ------- . (21)/ co

Anschaulich kann man sich einen Elementardipol als kurze Stabantenne vorstellen,
die oben und unten in einen nach außen hin abgeschirmten Schwingkreis eingeschaltet
ist (vgl. Bild 5.1). Strahlung erfolgt nur durch die kurze Antenne. Infolge der hin-
und herfließenden Wechselströme tragen die abgeschirmten Bauelemente des Dipols
die Ladung wobei Q = Q(t) eine Funktion der Zeit ist. Das elektrische Moment
des Elementardipols ist durch .

m = Qt) (22)
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Bild 5.1. Modell des strahlenden Dipols

bestimmt. Andererseits hängen die elektrische Ladung Q des Dipols, die in ihm vor-
handene Stromstärke I und sein elektrisches Moment m = Qt) bzw. dm = Q dfy
durch die Formeln

= (23)

zusammen. Daraus folgt in Verbindung mit (20) für das Vektorpotential des Elemen-
tardipols

(
<_ c. nr \Yl, t ------- 1

«H*. y, <,) = — ------------- --------— . (24)4k? ot

Die Größe

(
c. c. nr \f, T}, ------- I

W, y, Z,) t, = -- ------------------ -------- ---- (25)4ks r

wird als elektrischer Hertzscher Vektor des vom elektrischen Dipol erzeugten elektro-
magnetischen Feldes bezeichnet. Der ÜERTZsche Vektor 3 ist orts- und zeitabhängig.
Mit dem Vektorpotentia] 91 ist er durch die Formel

(26)

verknüpft. Dieser Zusammenhang wird allgemein als Definition für den HERTZschen
Vektor eines elektromagnetischen Feldes benutzt.
Aus (26) und (12) ergibt sich für 3 im stromfreien Raum die Differentialgleichung

4- (A3 — «>“3) =0 .Ot

Sie wird erfüllt, wenn 3 der Wellengleichung

A3 — e<“3 = 0 (27)

19*
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genügt. Wie aus (12) und (15) folgt, erfüllen im ström- und ladungsfreien Raum auch
das skalare Potential 0 und das Vektorpotential 91 die Wellengleichung.
Das skalare Potential 0 ergibt sich nach (26) und (13) aus dem ÜERTZschen Vektor 3
gemäß

0 -d ivg .  (28)

Für die elektrische Feldstärke ® erhält man damit nach (10)

® = — grad div 3 — e 3 -  (29 a)

Auf Grund der Beziehung grad div 3 ~ AB + r °t r °l B folgt daraus mittels (27)

® = rot rot 3 • (29)

Für die magnetische Flußdichte 93 ergibt sich nach (8)

93 = e/z rot 3 • (30)

Wie man aus den MAXWELLschen Gleichungen (1) bis (4) herleiten kann, genügen
auch die elektromagnetischen Feldgrößen im ström- und ladungsfreien Raum der
Wellengleichung. Für die elektrische Feldstärke ® verläuft der Beweis über die
Gültigkeit der Wellengleichung in der folgenden Weise:
Differenziert man die MAXWELLsche Gleichung (1) nach der Zeit und wendet auf (2)
die Operation rot an, so entsteht für 3=0

e® = rot rot § = —rot rot ®.

Hieraus erhält man

epfe = —rot rot ® = A® — grad div

Im homogenen ladungsfreien Raum gilt nach (3)

div ® = 0 .
Damit verbleibt die Wellengleichung

A®-  ® = o .

Für periodisch veränderliche Felder geht (27) in die zeitfreie Wellengleichung

ab + 2 B = 0 (31)

über. Der Zeitfaktor e-W kürzt sich heraus.
Berücksichtigt man in (31)

n 2

W = (32)c o
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so entsteht

A3 + 2 3=o ,  (33)

wobei

= (34)

die Wellenzahl, Ao die Vakuumwellenlänge bedeuten.

Aus dem magnetischen Moment rrtm einer Stromschleife definiert man den magne-
tischen Hertzsehen Vektor

___1 rnm ( | ,  rj, C, r)
r (35)

Für das von der Stromschleife ausgehende Feld ergeben sich die Formeln

@ = — z< r rot 3m,ot

& = rot rot 3 m (36)

(vgl. 5.1.8.).

Probleme

5.1.1. Hertzscher Dipol (Elementardipol)

Ein elektrischer Dipol befindet sich in großer Höhe über der Erde. Er wird von einem Strom mit
der effektiven Stärke l eff = 0,1 A und der Frequenz / == 108 Hz durchflossen. Die Länge des
Dipols beträgt h = 15cm. Bestimmen Sie das Strahlungsfeld in großer Entfernung vom Dipol.
Untersuchen Sie die Richtcharakteristik und berechnen Sie die ausgestrahlte Leistung. Wie groß
ist der Strahlungswiderstand des Dipols?

Lösung
Wir wählen den Antennenmittelpunkt als Anfangspunkt des Koordinatensystems. Die z- Achse
legen wir in Richtung der Antennenachse. Der HERTZsche Vektor ist nach (5.1./25) und (5.1./27)
bis auf eine Konstante dem Dipolstrom, d. h. der z-Achse parallelgerichtet (vgl. Bild 5.2). Die
Konstante kann gleich Null gesetzt werden. Wir erhalten damit für den HERTZschen Vektor
3 = (o, o, 3 Z ).
Es ist zweckmäßig, Kugelkoordinaten r, ft, (p einzuführen. Die Antennenachse bezeichnet die
Richtung # = 0 .  Nach (1.2./12) erhalten wir für die Komponenten des HERTZschen Vektors in
Kugelkoordinaten

3r = 3z cos#,  3& = — 3zsin , 3 = 0 . (1)
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$ z ist nach (5.1./25) außer von der Zeit t von der Aufpunktkoordinate r abhängig, dagegen von &
und (p unabhängig. Nach (1.3./7b) folgt damit

rot r 3 = rot# 3 = 0 ,  rot 3 = — sin # • ( 2 )
dr.

Des weiteren liefert (1.3./20)

div 3 = cos & , (3)
dr

ferner (1.2./13)

grad r d iv3  = cos # - l 2 , grad div 3 = — , grad d iv3  = 0 .  (4)

Hieraus erhalten wir nach (5.1./28) und (5.1./29), wenn wir B = ptfe berücksichtigen,

$r = 0 ,  = ( = 0 ,

d. h., nur für $ , @r , (£# ergeben sich Werte ungleich Null.
Wir führen das elektrische Moment m des Dipols ein. Es hängt nur von der Zeit ab. Bei der Be-
rechnung der Feldgrößen sind retardierte Potentiale zu verwenden, so daß m in der funktionellen
Abhängigkeit

/ .  nr \m = m u --------- )
\ c o /

(6)

erscheint. Mit dem HERTZschen Vektor ist es durch (5.1 ./25) verknüpft. Nach (5.1./29) und (5.1./30)
erhalten wir für m =

„ 1 sin & / d . 1 . \
„ m z n t J ,  (7)47t r \ or r /

1 cos#  id2m z .. 2 dm z 2 \
- -  A 1 9 2 + 2 tttz) ’ (8)47te r \ dr2 ------------------r ■ dr r2 /

_ 1 s ind  / .. 1 dm z , m z \
a + • ( 9 >4tt£ r \ r dr r /

Zwischen der Ableitung nach der Zeit t und der Ableitung nach dem Abstand r besteht die Ver-
knüpfung

dm n dm ,— dm
~dr " c ~dT ~ * £ ~dt'

(6a)

In (8) heben sich daher der erste und der zweite Summand heraus. Wir beschränken uns auf das
Fernfeld r > 2 und berücksichtigen in (7) bis (9) nur Glieder der Ordnung 1/r, während Glieder
höherer Ordnung in 1/r vernachlässigt werden. Für die Feldkomponente (£ r folgt damit aus (8)

ß r = 0 . (10)
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Die anderen beiden Komponenten erhalten wir aus (7) und (9) :

~ iTsü sin # •• A nr '-----  mz (i -----
4k r \ c )

(11)

~ u, sin 'd' .. / ± nr \
= T -------- m2 t ------- .4k r \ c f

(12)

Das magnetische Feld hat somit für A die Richtung der Breiten-, das elektrische Feld die
Richtung der Längenkreise um den Dipol (vgl. Bild 5.2). Zwischen dem magnetischen und dem

Bild 5.2. Lage der Vektoren eines Elementardipols

elektrischen Feld besteht keine Phasenverschiebung. Als Verhältnis der elektrischen zur magne-
tischen Feldstärke ergibt sich

®± = 1 /Z=z .
&<P |/ e

(13)

In der Dipolachse, d. h. für # = 0 ,  verschwinden die Glieder des Fernfeldes. Dagegen ist hier
nach (8) ungleich Null. Dieses Glied nimmt proportional 1/r2 ab;  es entstammt dem dritten und
vierten Summanden in (8). Diese nur in 4er Achse merkliche Einwirkung des Nahfeldes nimmt
mit zunehmender Entfernung sehr rasch ab.
Die größte Feldstärke wird in der Richtung senkrecht zum
odische Ströme

Dipol # = — gemessen. Für peri-
2

I = Zo e-iwt

besteht nach (5.1./23) der Zusammenhang

— = — !) = - icoZo e-i"‘ f) .
St2 dt ’ 0

Damit folgt für die elektrische Feldstärke

‘ ' -?) h = _ J 0A sin # e - iM - kr) , (14)
4irr x ° " 2 A r
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für die magnetische Feldstärke

— i ffi/z (üIqIi sin ft e~  ~ kr>*
4kf

I Qh sin # . . .  . .—— _____  e — i(co£ — kr)
22 r

(15)

für die Effektivwerte

ua> sin & T Z h sin #
---------- kith = — ---------4k T --------------2 2 T(®#)eff = (16)

]/ ü(D sin $ , , 1 h s in#
( p<p)eff — — ----------- 7 effÄ = — ~2 --------4k r 2 2 r

(17)

Da und (£# von 99 unabhängig sind, ist die Feldstärke in der Horizontalebene # = —, d. h.

in der Ebene senkrecht zur Dipolachse, richtungsunabhängig : Die Horizontalcharakteristik ist
ein Kreis. Der Elementardipol zeigt in der Horizontalebene keine Richtwirkung. Dagegen ist
in jeder den Dipol enthaltenden Vertikalebene die Feldstärke proportional sin #, also richtungs-
abhängig. Trägt man den zur vorgegebenen Richtung # gehörenden Effektivwert der Feldstärke
über dem Winkel auf, so entsteht die Vertikalcharakteristik nach Bild 5.3. Die abgestrahlte

Bild 5.3. Vertikalcharakteristik eines Dipols

Leistung ergibt sich durch Integration über die Kugelfläche :

2k k
P = f f (&p)ett (®«)eff sintfdddy. (18)

0 0

Wir setzen (16) und (17) in (18) ein und erhalten

27t K

p = f F le « 2 f f sin’ & irf • (19)
0 0

Das innere Integral hat den Wert 4/3; das äußere ist gleich 2k. Somit folgt

P= Z n- l  = RM3 2
(20)
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Die Größe

s 3 A2 (21)

wird als Strahlungswiderstand des ungeerdeten Elementardipols bezeichnet.

Für die Ausbreitung in Luft oder Vakuum ist Z = ZQ = 120k Q.  Somit ergibt sich mit den vor-
gegebenen Zahlen

o /n 1 5\2
P=— k-120k — 0,l  2 W = 20mW,

3 \ 3 )
R s = 2,0Q.

5.1.2. Vertikalantenne auf leitender Erde

Eine Stabantenne ist senkrecht in die Höhe geführt. Die Dicke des Antennenstabes und der
Abstand seines Fußpunktes vom Erdboden sind gegen die Stablänge l = h = 15 cm zu vernach-
lässigen. Bestimmen Sie die elektrische Feldstärke auf dem Erdboden im Abstand 1 km, wenn
die Strahlungsleistung P = 20 W beträgt. Die Wellenlänge ist gleich A = 3,00 m .

Lösung
Wir setzen die Erde als idealleitend voraus. Die elektrischen Feldlinien müssen überall senkrecht
auf die Erdoberfläche treffen. Das wird gewährleistet, wenn wir die Antenne mit ihren Ladungen
an der Erdoberfläche spiegeln. Anstelle des Dipols im freien Raum mit der Länge h haben wir also
einen Dipol der Länge 2h zu betrachten. Dem nach oben gerichteten negativen Ladungsstrom ent-
spricht spiegelbildlich ein nach unten gerichteter positiver Ladungsstrom. Er kann ebenfalls
als ein nach oben gerichteter negativer Strom aufgefaßt werden. Die Stromstärke ist also ein-
schließlich des Vorzeichens oben und unten gleich. Das Feld eines vertikal auf die Erdoberfläche
aufgesetzten Dipols entspricht hiernach dem Feld, das im freien Raum ein Dipol doppelter Länge
in den oberen Halbraum ausstrahlt (vgl. Bild 5.4).

Bild 5.4. Elektrische Feldlinien eines geerdeten Dipols.
------------- Feldlinien des Dipols im freien Raum

Für die effektive elektrische Feldstärke folgt auf Grund dieser Anschauung gemäß (5.1.1./16)

A s in#
( )eff = % ----------- - eff * C 1 )A r

Das Verhältnis zwischen elektrischer und magnetischer Feldstärke ist wie beim Elementardipol
gleich Z.
Bei der Berechnung der ausgestrahlten Leistung haben wir davon auszugehen, daß gegenüber
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dem Elementardipol sowohl (@ ) e ff als auch ($p) e ff verdoppelt sind. Die Integration erstreckt sich
jedoch nur über die Halbkugel, da in die idealleitende Erde kein Feld ausgestrahlt wird. Hier-
durch ergibt sich der Faktor 1/2. Anstelle (5.1.1./20) erhalten wir damit für die Strahlungsleistung
des geerdeten Dipols die

4 h2
Riidenbergsche Strahlungsformel P = — nZ — I eff

2 .
3 A2 (2)

Der Strahlungswiderstand des geerdeten Dipols wird

R& = — tkZs 3 A2 (3)

Setzt man für Z den Wellenwiderstand des Vakuums ein, so folgt

Ä2
R3 = 160k2 — Q.s Ä2 (4)

Einer Strahlungsleistung von 20 W entspricht im vorliegenden Fall die Stromstärke

- 1/ 3P Aeff |/ 4kZ0 h
3 >20 3,00

4tc • 120k 0,15
A = 2,25 A .

Diese ergibt an der Erdoberfläche # = k/2 im Abstand 1 km

= 120tc — A 2 > 25 V m-1 = 42 • 10~3 V m- 1 .3,00 103

5.1.3. Reflektordipol

Zwei parallele, gleich lange Elementardipole (vgl. Bild 5.5) werden von Strömen gleicher Stärke
durchflossen. Sie sind unter verschiedenen Phasen angeregt. Untersuchen Sie, wie groß der Ab-
stand zwischen beiden Dipolen sein muß, damit sich ihre Strahlung in der einen Richtung maximal
verstärkt, in der Gegenrichtung jedoch gerade aufhebt.

Bild 5.5. Parallele Dipole

Dipol 1 Dipol 2
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Lösung

Wir gehen von der Gleichung (5.1.1./14) für die elektrische Feldkomponente aus. Die Kon-
stanten fassen wir in der Größe E zusammen und schreiben

= Esmff e _ i ( a t  _ kr

r

Entsprechend der Aufgabenstellung beschränken wir uns auf die Horizontalebene # = k/2 .
Werden in (1) die Real teile gewählt, so erhält man für die von den beiden Dipolen ausgehenden
Wellen

@0! = sin (a>t — kr , (2)r i

Eo bezeichnet eine reelle Konstante.
Bei der Berechnung des retardierten Feldes in einem weit entfernten Punkt können wir für beide
Strahler mit dem gleichen Azimut 99 rechnen. Es gilt daher

r i = r 2 + a cos 99. (4)

Im Nenner von (3) und (2) ist der Unterschied zwischen und r2 vernachlässigbar. Hier rechnen
wir daher mit r1 = r2 = r . Dagegen ist die Differenz — r2 = a cos 99 im Zähler bei den Phasen
von Bedeutung. Für das resultierende Feld der überlagerten Wellen ergibt sich dementsprechend

En= — [sin (a>t — kr- + sin (cot — kr2 + y))]
r

2E0 / ka • . , 7 1= — - cos I — cos 99 + - -1 sm I a)t — kr + . (5)

Wie wir hieraus entnehmen, ist die Amplitude der resultierenden Schwingung richtungsabhängig.
Soll für eine Richtung q)r maximale Verstärkung, für die Gegenrichtung jedoch Auslöschung er-
folgen, so müssen nach (5) die beiden Gleichungen

— cos cp1 + -jr- = 0 (mod tt), — — cos + — = — (mod tc) (6)
2 2 2 2 2

erfüllt sein. Als Lösung dieses Gleichungssystems folgt

ka cos 99x == ----- (mod 2k) .
2 (7)— (mod 2k) ,

Ist 99x — k ,  so erhält man aus (7)

K 2w = — , a = —
2 4 (8)
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Wird von den beiden Dipolen im Abstand a = — nur einer an die Spannungsquelle angeschlossen,
4

so erregt dieser durch seine Strahlung den zweiten. Dabei tritt gerade die Phasenverschiebung
= ka = k/2 auf. Ein im Abstand A/4 hinter einem stromgespeisten Dipol angebrachter un-

gespeister Dipol wirkt daher als Reflektor.

5.1.4. Das Fernfeld einer langen Stabantenne (Halbwellendipol)

Bestimmen Sie das Fernfeld, das eine 20 cm lange Stabantenne unter der Wellenlänge A = 40 cm
aussendet. Die Antenne befindet sich hoch über dem Erdboden, so daß von hier keine Rück-
wirkung erfolgt. Welche Feldstärke wird in der Entfernung r = 1 km unter dem Winkel # = 45°
gegen die Stabachse gemessen, wenn die Ausgangsleistung P = 1 W beträgt?

Lösung

Die Antennenlänge ist nicht mehr klein gegen die Wellenlänge. Sie wird daher im folgenden mit l
bezeichnet.
Wir zerlegen den Dipol in Elementardipole der Länge dz. Für das elektrische Feld, das von einem
dieser Elementardipole ausgeht, erhalten wir nach (5.1.1./14)

zv i n- n Sin# . . , , . . . .d@0 = -----— ------ - kr) dz. (1)
2Ar

Bezeichnet z den Abstand eines Antennenpunktes vom Antennenmittelpunkt (vgl. Bild 5.6),
so gilt für die Weglänge vom Elementardipol dz zum Aufpunkt

r = r(z) = r0 — z cos # .  (2)

Bild 5.6. Stabantenne

Darin gibt r0 die Entfernung vom Antennen mittelpunkt zum Aufpunkt an. Wir setzen (2) im
Exponenten von (1) ein, während wir im Nenner mit r = r0 rechnen. Durch Integration über die
Antenne folgt

= — 1 sln C I z) e-ikzeos$ dz.
2Ar0 J

(3)
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Wir setzen auf der Antenne eine Stromverteilung der Form

I 0 (z) = I Q cos kz (4)

Avoraus. Bei dieser Stromverteilung hat die — Antenne an ihren beiden Enden Stromknoten.
(3) kann damit aus

e — ikz cos#
I cos kz e~  ikz cos & dz = ------------- (— i cos cos kz + sin kz) + C . (4a)J k sin 2 &

Aberechnet werden. Für den Effektivwert bei der Länge l = — folgt nach (1.1./28) aus (3), (4)
und (4 a) 2

®e« = 008 (v cos • &2jcr0 sm v- \ 2 /

Zeff bedeutet die effektive Stromstärke im Antennenmittelpunkt. In der Richtung $ = ?r/2 erhält
man für die effektive Feldstärke des ungeerdeten Halbwellendipols

= (Jeff
2Kr0

(6)

Die effektive magnetische Feldkomponente ist durch den Zusammenhang mit dem Wellen-
widerstand gegeben (vgl. 5.1.1./13).
Als Strahlungsleistung ergibt sich

27t 7C

P = $ <s • d2( = J J sin & dd dy
0 0

(7)

Der Strahlungswiderstand ist auf Grund der Beziehung

P = Rs eff2 (8)

definiert. Er ist ebenfalls auf den Strom im Antennenmittelpunkt bezogen.
Die Auswertung des bestimmten Integrals (7) ist auf elementarem Wege nicht möglich. Man erhält

1 — cos t
t

dt = 1,22...
o 0
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Daraus folgt als Strahlungswiderstand des ungeerdeten Halbwellendipols

(9)

Drückt man l eff nach (8) durch die Strahlungsleistung P aus, so folgt für die Feldstärke in Rich-
tung maximaler Strahlung

p A
Rs 2nr

(6a)

Mit den vorgegebenen Zahlen ergibt sich nach (8)

l e«=] /£  = l/ -A  = 117mA.

Die elektrische Feldstärke wird somit nach (5) in der Entfernung 1 km unter dem Winkel # = 45°
gleich

= 120TC °’-* 7 cos (0,707 • 90°) V m-1 = 4,4 • IO“3 V m" 1 .e" 2rc • 103 • 0,707

5.1.5. Dipolzeile

Vier gleichphasig erregte Halbwellendipole sind in einer Dipolzeile nach Bild 5.7 angeordnet.
Der Mittelpunktsabstand a zweier benachbarter Dipole ist geringfügig größer als die halbe Wellen -

2
länge, so daß man zwar mit a = — rechnen kann, jedoch kein Kontakt besteht. Stellen Sie die

2
Formel für die elektrische Feldstärke im Fernfeld auf und vergleichen Sie die Richtcharakteristik
mit der des Elementardipols. Wie groß ist die Leistungsdämpfung gegenüber dem Maximum
für eine Strahlung, die unter, dem Winkel 10° gegen die Horizontalebene (d. h. für # = 80°)
beobachtet wird?

Bild 5.7. Dipolzeile
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Lösung

Wir betrachten eine Dipolzeile aus n Halbwellendipolen, die wir von unten nach oben mit v = 1
bis v = n numerieren. Die Phasendifferenz, die ein vom r-ten Dipol ausgehender Strahl gegen
den entsprechenden Strahl des ersten Dipols im Fernfeld hat, ist gleich

vkd = v — — cos d' = vtz cos (1)
A 2 7

Für die Stärke des vom v-ten Dipol ausgehenden elektrischen Feldes erhält man daraus nach
(5.1.4./3) und (5.1.4./6)

' ------------J— e — i ( wf — m COS #) .
27tr sin #

Die resultierende Feldstärke ergibt sich durch Summierung über sämtliche Dipole. Wir erhalten
für den Effektivwert durch Mittelwertbildung

2</eff cos (y cos &\
= ---------X - --ö -------- S ei-* c°s <> . (3)27rrsin# | w - i  |

In (3) errechnen wir den Absolutwert der Summe gemäß

n=i  # I I 1 e i 7 twcos  | 1 / (1  e iKWC0S ) ( l  e — i n cos# )

1 e iTC cos # 1 / (1  e i7 ™cosi>) (1 e — incos# )

• n7Z q\sin I — cos#]

— r (4)
sin | — cos # ]

\ 2  /

Hieraus ergibt sich für das resultierende Feld

Z0I e ff cos ( — cos <?) sin I — cos # )
--------L, ----- 7------- = “ f /(», ■ (5)

2nr sin # sm I — cos #
\2  /

Für # = 0 folgt nach der Bebnoulli— 1’HosPiTALschen Regel aus (5) wie beim Elementardipol
die Feldstärke Null. Dagegen erhält man für # = —

7 T
bzw. lim = n ■ ”- eff

2w

2

lim /(n,#) = n (6)

d. h. den n-fachen Wert des Halbwellendipols. Die Feldstärke kann somit durch eine Zeile aus
n Dipolen gegenüber dem einfachen Dipol auf das n-fache gesteigert werden.
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Unter dem Winkel = 80°, d. h. 10° gegen das Maximum, erhalten wir

i h a  i cos (90° cos 80°) sin (360° cos 80°) . cos 15,62° sin 62,5
' 6 sin 80° sin (90° cos 80°) ö sin 80° sin 15,62°

= 0,5801.

Dagegen ergibt sich nach (6)

log /(4, 90°) = log 4 = 0,6021 .

Für die Leistungsdämpfung b folgt daraus nach (4.2./14)

b = 10 lg M dB = 201g dB = 201g dB,6 P(80°) 6 ®# (80°) /(4, 80°)
d. h.

b = 20(0,6021 - 0,5081) dB = 1,9 dB.

Ein einzelner Halbwellendipol hat demgegenüber nach (5.1.4./8) unter $ = 80° die Leistungs-
dämpfung

& = 20 lg ------Sm 8 °° ------ dB = 0,19 dB.& cos (90° cos 80°)

Die Richtwirkung der Dipolzeile aus vier Dipolen ist also bedeutend besser als die des Halbwellen-
dipols.

5.1.6. Dipolgruppe

Eine Dipolgruppe aus m = 4= parallel zueinander angeordneten Halbwellendipolen wird gleich-
phasig erregt. Der Abstand der Dipole voneinander beträgt A/2. Untersuchen Sie die Richt-
charakteristik. Wie groß ist die Leistungsdämpfung im Empfänger, wenn die Empfangsantenne
aus der Richtung maximalen Empfangs um Zig? = 10° verdreht wird?

Lösung

Wir wählen die Achsenrichtung der parallelen Dipole als z-Achse, die Verbindungsgerade zwischen
den Dipolen als «/-Achse (vgl. Bild 5.8). Der Aufpunkt habe die Kugelkoordinaten r, g?. Ko-
ordinatenanfangspunkt ist der Mittelpunkt des ersten Dipols.
Für die Wegdifferenz zweier paralleler, von gleichwertigen Punkten auf benachbarten Antennen
ausgehenden Strahlen ergibt sich

i / / A \ 2d = r — Ur2 sin 2 $ cos2 g? -f- I r sin # sin g? ----— I r2 cos2 $

/ A . _ . \ l . _ .r — I r ----— sm v sm g? I = — sm & sing?.

Die Phasendifferenz zwischen zwei derartigen Strahlen beträgt

kd = K sin & sin g? . (2)
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In gleicher Weise wie bei der Dipolzeile folgt daraus für das effektive Feld (vgl. 5.1.5./5)

- o eff cos ( — cos $ ) sin I ~ sin # sin V )
( )eff = ------------------------ -----------------T ------------ (3)

sin 'd' sin I — sin # sin <p j

Durch die Dipolgruppe erfolgt somit eine Richtwirkung auch in der Horizontalebene.
Für g) = 0 ergibt sich aus (3) durch Grenzübergang

sm I — sin v' sin 99 • Q— sin v> • cd
r 2

= lim ---------------
<p->0 77 • ny --- Sin V • G9

2

lim = lim
<p—>0 ?>->0 = m.

sin I — sin # sin 99

Wie aus (3) folgt, strahlt die betrachtete Dipolgruppe am stärksten in Richtung der x-Achse und
entgegengesetzt dazu, d. h. in die Richtungen 99 = 0 und 99 = k .  Es erfolgt jedoch auch eine

relativ starke Strahlung in die Richtung 99 = — .
( 2

Für die Leistungsdämpfung der Strahlung in Richtung 99 = 10°, & = 90° erhalten wir relativ
zum Maximum im Falle m = 4

6 == 20Ig 4 .Sin (90 -Qsin l0 °-)
sin (360° sin 10°)

dB = 1,7 dB.

Sie ist etwas geringer als bei der Dipolzeile.

5.1.7. Der Gewinn einer Dipolebene mit Reflektor

Es soll eine sowohl in der Vertikal- als auch in der Horizontalebene scharf gerichtete räumliche
Strahlung erzeugt werden. Hierzu werden die Funktionen der Dipolzeile mit denen der Dipol -
gruppe kombiniert, indem m — 4 gleiche parallele Dipolzeilen mit je n = 3 Halbwellendipolen
zu einer Dipolebene geschaltet werden. Der Querabstand der Dipolzeilen beträgt A/2.

20 Schilling, Felder
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Um Strahlung nach nur einer Richtung zu gewährleisten, wird hinter der Dipolebene im Ab-
stand 2/4 eine zweite Dipolebene angebracht, die nicht gesondert erregt wird.
Bestimmen Sie die Intensität und die Feldstärke der Strahlung im Vergleich zu einem einfachen
Halbwellendipol.

Lösung

Die Dipolebene allein verknüpft die Wirkung von Dipolzeile und -gruppe. Es folgt daher nach
(5.1.5./5) und (5.1.6./3)

n7Z Q>- -  COS UZ0Zeff cos
(1)

2ttt sin & sin sm

In der Richtung cp = 0 (mod ?t), & = — erhalten wir durch Grenzübergang

mn. (2)

2Der Gewinn g gibt die Intensität in Richtung maximaler Strahlung, bezogen auf einen — Dipol
2

an. Für die Dipolebene aus m gleichen parallelen Dipolzeilen mit je n Halbwellendipolen beträgt
der Gewinn im Falle des Querabstandes 2/2 (vgl. 5.1.4./6)

g = (mn) 2 . (3)

Ohne Reflektor erhalten wir also im vorliegenden Fall

g = (4 .3)  2 = 144.

Durch die im Abstand 2/4 hinter der Dipolebene befindliche Reflektoranordnung wird nach 5.1.3.
die Feldstärke in der einen Richtung verdoppelt, in der Gegenrichtung annulliert. Der Gewinn
erhöht sich damit auf

= 4m 2n2

mit den vorgegebenen Zahlen also auf 576.
Die Feldstärke erhöht sich um den Faktor 2mn = 24 .

5.1.8. Rahmenantenne

Eine kreisförmige Stromschleife hat den Durchmesser 2R = 20 cm . Die effektive Stromstärke
beträgt I eff = 5 A, die Frequenz ist / = 100 MHz. Wie groß ist die Feldstärke in 10 km Ent-
fernung? Berechnen Sie den Strahlungswiderstand und die Strahlungsleistung (vgl. Bild 5.9).

Lösung

Wir wählen den Mittelpunkt der Schleife als Koordinatenanfangspunkt, die Schleifenebene als
rr,2/-Ebene. Der Aufpunkt, in dem sich die Empfangsantenne befindet, erhält die Cartesischen
Koordinaten x, 0, z, die Kugelkoordinaten r, #, 0.
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Bild 5.9. Zur Berechnung des Feldes
einer Rahmenantenne

Benutzt man Kugelkoordinaten, so hat das Vektorpotential nur die Komponente

27!

0
(1)

r' gibt den Abstand vom Integrations- zum Aufpunkt, 99' die Winkelkoordinate des Integrations-
punktes an. Der Abstand r' folgt gemäß

r' 2 _ r 2 _j_ _ß2 — 2rR cos g?' sin # , (2)

worin $ den Winkel zwischen dem Radiusvektor des Aufpunktes und der z-Achse bezeichnet.
Im Falle R r können wir genähert

r' = r — R cos 99' sin — = — ( 1 + — cos <p f sin (3)
r' r \ r /

schreiben. Damit folgt aus (1)

27!

C e ifcEcos<p'sin COS9) ' d  ' e (4)
47V r J

0

mit k = co/c0 = 2tv/20 (Brechzahl n = 1).
Für das Integral ergibt sich unter der Voraussetzung 2tujR 2

27!

J (1 + cos <p' sin #) cos 99' dg/ = i kR sin #7v. (5)
0

20*
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Somit erhält man wegen

= en —
8t

für die Komponente 3<p des (elektrischen) HERTzschen Vektors

R 2I Q sin & (7)
4r

Die anderen Komponenten von 3 sind gleich Null. Aus 3 ergibt sich nach (5.1./29) und (5.1./30)
das Fernfeld

k 21 0R2 sin # e-i ( wi - fcr)
*t = - — 2 r (8)

n 2I QR 2 sin
= 77 1 /  —A2 |/ e0 r £o

(9)

Wie man sich durch Nachrechnen überzeugt, gelangt man zu diesen Feldgrößen auch, wenn man
nach (5.1./35) über das magnetische Moment der Stromschleife den magnetischen HERTzschen
Vektor einführt und die Feldgrößen nach (5.1./36) und (5.1./37) berechnet.
Die Effektivwerte erhalten wir aus (9) :

k 2R2 sin & T _ „
= “77 ------------ 7 eff> ( r)eff = 4) (Weff -A2 r

(10)

Aus dem Vergleich mit (5.1.1./16) und (5.1.1./17) entnehmen wir: Setzt man in (10)

2tt:2J?2 2k .h = -------- = — A (A Rahmenflache) ,
A ■ A (11)

so stimmen sowohl die beiden elektrischen als auch die beiden magnetischen Komponenten
überein. Bei der Rahmenantenne haben die magnetischen Feldlinien jedoch im Gegensatz zum
Feld des elektrischen Dipols die Richtung der Längenkreise, während die elektrischen Feldlinien

. in Richtung der Breitenkreise verlaufen. und § haben also ihre Rolle getauscht.
Bei kleinen Querschnittsabmessungen kann (11) auf beliebige Rahmenquerschnittflächen A er-
weitert werden. Zur Berechnung der Strahlungsleistung setzen wir (11) in (5.1.1./20) ein und
erhalten

bzw. p = ! / eff2.
3A4 eff 3 A4 f (12)

Der Strahlungswiderstand der Rahmenantenne ist also

8tc5ä 4 _ 8x4 2Z0
xlc  — ------------ Z/n DZW.  Xie — ----------------- .s 3/ 4 ® s 3A4 (13)

Mit den vorgegebenen Zahlen folgt bei optimaler Ausrichtung

K2 • 0.1 2 1
(®  )eff = --------------------- • 5 A m-1 = 5,48 • 10-6 A m-1 ,

( r)eff = 120k • 5,48 . 10- 6 V m- 1 = 2,07 • 10~3 V m" 1 .
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Für die Strahlungsleistung erhalten wir

87T5 • 120tt . 10~4

3 • 34 • 25 W = 9,49 W.P =

Der Strahlungswiderstand beträgt

R s = 0,38 Q.

Bei n Windungen vergrößern sich und (£r um den Faktor n, P um den Faktor n 2 .

Aufgaben

A 5.1.1. Wie groß ist der Strahlungswiderstand eines Dipols von 25 cm Länge, wenn eine
Strahlung der Wellenlänge 2 m ausgesandt wird? Der Dipol befindet sich in gro-
ßer Entfernung von der Erde.

A 5.1.2. Berechnen Sie die effektive Feldstärke in der Hori ontalebene eines Dipols der
Länge h = 20 cm; l eff = 1 A, 2 = 1,50 m .  Der Dipol befindet sich in großer
Entfernung von der Erde, der Aufpunkt im Abstand 100 m vom Dipol.

A 5.1.3. Wie groß ist die effektive Stromstärke in einem Sender der Frequenz 500 kHz,
der eine Strahlungsleistung von 0,15 W abgibt, wenn die Länge der Vertikalan-
tenne 60 cm beträgt? Der Sender befindet sich in großer Entfernung von der Erde.

A 5.1.4. Welche Strahlungsleistung hat ein 20 m hoher Sender, der auf der Frequenz
f = 1,5 MHz sendet und in dem ein Strom der Stärke I eff = 20 A fließt?

A 5.1.5. Bestimmen Sie das Feld einer Horizontalantenne, die unmittelbar über dem Erd-
boden angebracht ist.

A 5.1.6.* Stellen Sie die Formel auf für die elektrische Feldstärke eines Dipols der Länge
l = 2 in der Entfernung r0 unter dem Winkel # gegen die Achse (r0 > 2) .

A 5.1.7.* Stellen Sie die Formel für die elektrische Feldstärke eines Dipols der Länge l = n —
(n = 1, 2, 3, .. .) auf.

A 5.1.8.* Wie groß ist der Strahlungswiderstand einer auf die Erde aufgesetzten Vertikal -
2antenne der Länge 1 = — 2 Der Strom hat am Fußpunkt sein Maximum und sinkt
4

an der Spitze nach einem Cosinusgesetz auf Null ab.
A 5.1.9.* Berechnen Sie den Strahlungswiderstand einer kurzen; auf die Erde aufgesetzten

Vertikalantenne der Länge h. Der Strom hat an der Spitze die Stärke Null und
nimmt zur Mitte hin linear zu.

A 5.1.10. Berechnen Sie die Leistungsdämpfung bei einer Dipolzeile aus 20 Halbwellendipolen
(Abstand 2/2), wenn der Empfänger aus der Hauptstrahlungsrichtung in die Rich-
tung & = 89° gedreht wird.

A 5.1.11. Unter welchem Winkel # gegen die Achse erfolgt bei einer Dipolzeile aus n Halb-
wellendipolen (Abstand 2/2) keine Strahlung? Untersuchen Sie speziell n = 6 .

A 5.1.12. Geben Sie die Leistungsdämpfung einer Dipolebene aus 20 Zeilen und 20 Gruppen
in der Richtung # = 89°, (p = 1° an.

A 5.1.13. Ein geerdeter elektrischer Dipol mit dem Strahlungswiderstand _R S = 8Q wird
mit dem Strom Zeff = 0,3 A gespeist. Welche elektrische und welche magnetische
Feldstärke werden in 10 km Entfernung in der Horizontalebene # = tc/2 gemessen?



310 5. Hochfrequente Wechselfelder

A 5.1.14. Wie groß sind der Strahlungswiderstand und die Strahlungsleistung einer kreis-
förmigen Rahmenantenne mit dem Durchmesser 2R = 50 cm, wenn diese mit dem
Strom Zeff = 4A gespeist wird? Die Frequenz beträgt / = 20 MHz.

A 5.1.15. Eine Antenne hat den Gewinn g = 120. Welche Verstärkung in dB tritt hierdurch
2gegenübereinem — Dipol ein? Wie groß sind die Spannungs- und die Leistungs-

verstärkung ?
A 5.1.16. Eine Antenne hat den Gewinn g = 120. Mit ihr als Empfangsantenne wird die

Feldstärke @ e ff = 1,5 • 10-3 V m-1 gemessen. Bei Verwendung einer zweiten
Antenne mißt man die Feldstärke Qr eff = 2,7 • 10~3 V m-1 . Wie groß ist der Gewinn
dieser Antenne ?

5.2. Ausstrahlung und Empfang elektromagnetischer Wellen

E Einführung

Die Sendeanlage mit ihrer Sendeantenne und die Empfangsanlage mit ihrer Emp-
fangsantenne bilden ein Übertragungssystem. Sende- und Empfangsantenne mit dem
dazwischenliegenden Eeld können als Vierpol aufgefaßt werden, an dem eingangs-
seitig der Sender, ausgangsseitig der Empfänger angeschlossen sind. Das von der
Sendeantenne ausgestrahlte Feld erzeugt zwischen der Empfangsantenne und der
Erde eine Wechselspannung, die auf der Antenne zu einem elektrischen Strom führt.
Grundlage für die physikalische Behandlung der Gesetzmäßigkeiten beim Empfang
elektromagnetischer Wellen ist das Reziprozitätstheorem. Zu seiner Erklärung geht
man von einem Sender am Ort S aus, der eine Sendeleistung P ausstrahlt. Hierdurch
wird in der Empfangsantenne am Ort A die Spannung U k induziert. Wird die gleiche
Sendeleistung P am Ort A über die hier befindliche Antenne ausgestrahlt, so induziert
diese in der Antenne bei S ebenfalls die Spannung U Sender und Empfänger sind
also zueinander reziprok : Sie können miteinander vertauscht werden, ohne daß sich
in der Wechselwirkung zwischen beiden Orten etwas ändert.
Aus dem Reziprozitätstheorem folgt, daß der Gewinn g einer Antenne unabhängig
davon ist, ob diese für die Ausstrahlung oder für den Empfang des Feldes verwendet
wird.
Die von der Antenne ausgehenden Wellen werden durch die Absorption gedämpft.
Hierdurch tritt gegenüber den in 5.1. für verlustfreie Wellenausbreitung abgeleiteten
Formeln ein zusätzlicher Faktor

e- (1)
auf. Bei der Bodenwelle, die sich entlang der Erdoberfläche ausbreitet, hängt ß im
wesentlichen vom Boden und von der Frequenz ab. In erster Näherung kann man
schreiben

ß = J=- (2 )
P ]/Ä
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Mittlere Meßwerte für B bei verschiedenen Böden sind in Tabelle 9 zusammen-
gestellt. Bei idealleitender Erde ist ß gleich Null, wenn die Wellenausbreitung im
Vakuum erfolgt.
Dezimeter- und Zentimeterwellen werden im allgemeinen nicht als Bodenwellen ab-
gestrahlt. Sie breiten sich, auf ein bestimmtes Ziel gerichtet, durch den freien Raum
aus. Ihre Dämpfungskonstante hängt daher nicht vom Boden, sondern von der Atmo-
sphäre ab. Meßwerte hierüber gehen aus Tabelle 10 hervor.

Tabelle 9. Mittlere Meßwerte für B bei der Dämpfung elektromagnetischer Wellen

Boden B
in 10 -6 Np m-1 / 2 in 10 -6 dB m -1 / 2

Meerwasser 50 430
feuchter Boden 290 2500
trockener Boden 900 7800
Großstadtgelände 2100 18000

Tabelle 10. Mittlere Meßwerte über die Dämpfung von Zentimeterwellen
durch die Atmosphäre

ß bei A = 3 cm ß bei X = 6 cm
in 10 -6 Np m -1 in 10 -6 dB m -1 in 10 -6 Np m -1 in 10 -6 dB m-1

durch Regen 22 mm/h
Dunst über dem Meer
über Festland
(mittl. Breiten)

92 800 6 50
16 140 1 9

1 9 - -

Eine Vertikalantenne der Länge l auf der die elektrische Stromstärke Zeff
in jedem Punkt gleich ist, erzeugt nach (5.1.2./1) unter Berücksichtigung der Dämp-
fung im Abstand r die effektive elektrische Feldstärke (vgl. 1.1. /29)

®eff = Z 0/ eff e- . (3)

Die hierdurch zwischen der Empfangsantenne und der Erde hervorgerufene Span-
nung kann in erster Näherung unter der Voraussetzung bestimmt werden, daß der
Strom auch auf der Empfangsantenne in jedem Punkt gleich ist. Diese Voraussetzung
ist für h A immer gut erfüllt.
Stehen die elektrischen Feldlinien und die Empfangsantenne senkrecht zur Erdober-
fläche, so erhält man

ÄE 1 T

tf Ant = f ®eff dz = ®e t ( Ä E = e- .J Ar (4)
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Darin bezeichnet Ä E die Höhe der Empfangsantenne.

Beispiel 25
Eine Vertikalantenne der Höhe As = 9 m sende auf der Wellenlänge 2 = 380 m.  Die Strom-
stärke betrage 7eff = 20 A.  Der Abstand zwischen dem Sende- und dem Empfangsort betrage
r = 150 km.  Dazwischen befinde sich trockener Boden (B = 900 • 10-6 Np m-1 /2 ) .  Für ß folgt
aus (2)

o 900 • IO”6

ß = ----— — Np m- 1 = 46 • IO-6 Np m“1 .
|38Ö

Als Feldstärke am Empfangsort ergibt sich aus (3)

q
( )eff = l 2 <hr • 20 ----------------- exp ( -46  • IO"6 • 1,5 • 105 ) Vnr 1 = 1,2 •v * eff 380 • 150 • 103

Die Antennenspannung wird nach (4) für AE = 2,5 m

Z7 Ant  = 1,2 • IO"6 • 2,5 V m- 1 = 3,0 • IO-6 V.

Bei Antennen, deren Länge gegen die Wellenlänge nicht zu vernachlässigen ist, hat
man die Stromverteilung zu berücksichtigen. Wegen des Reziprozitätstheorems
braucht man bei der Untersuchung über die Wechselwirkung zwischen der Antenne
und dem Feld keinen Unterschied zwischen Sende- und Empfangsantenne zu machen.
Man kann also das von einer Antenne abgestrahlte Feld betrachten und daraus Rück-
schlüsse auf den Empfang ziehen.
Um das von einer vorgegebenen Antenne erzeugte Außenfeld genähert zu berechnen,
wird diese durch ein Stromelement der Länge h = he i i  ersetzt, in dem die Strom-
stärke konstant ist. Auf der Antenne nimmt man eine Stromverteilung

= I Q cos <xz (5)

an. Diese Stromverteilung wird auch bei einer Vertikalantenne vorausgesetzt, deren
Fußpunkt sich nicht an der Erdoberfläche, sondern in der Höhe a befindet (vgl.
Bild 2.8). Man geht also von einer Stromverteilung aus, als erfolge die Speisung
vom Erdboden aus über ein strahlungsloses Kabel der Länge a. Diese Festlegung
ist besonders für beschwerte Antennen zweckmäßig. Bei ihnen ist zur Kopplung
oder Abstimmung am Fußpunkt ein Kondensator oder eine Spule eingeschaltet (vgl.
Ö.2.2./6).
Das Stromelement wird durch die Gleichung

O, + l d + l

hvh + J I e tf(z) dz = Zo / cos ocz da (6)
a a

definiert. Den konstanten Strom Zeff des Stromelementes setzt man gleich dem
Effektivwert des vorgegebenen Antennenstroms im Speisepunkt. Nach (5) besteht
also die Beziehung

Aff = AffW = A cos <xa. (7)
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Aus (6) folgt

I ef{A = — [sin <x(a + l) — sin <xd] ,
(X (8)

woraus sich mit tx = für die effektive Antennenhöhe
A

• / I 7\ • 27za
sm — (a + l) — sm — -

A A7h = —
2tc (9)2tt&cos ——

A

ergibt.

Beispiel 26
Bei einer kurzen Antenne, deren geometrische Länge l klein gegen die Wellenlänge A ist, sind
effektive Höhe h und geometrische Länge 1 genähert gleich. Aus (9) ergibt sich bei Anwendung
der Additionstheoreme

h = l für — <1 .
A

Beispiel 27
Für eine Vertikalantenne mit dem Fußpunkt in der Höhe a = 50 cm und der Länge l = 8 m
erhält man nach (9) bei der Wellenlänge A = 30 m

8 5 0 5
sin 360° - sin 360°

Ä= 31 0-----------------30-------- m = U9m

2k cos — 360°
30

Als Strahlungswiderstand dieser Antenne folgt nach (5.1.2./4)

(
4 1Q\ 2

— Q = 30 ,80 .
30 /

Beispiel 28
ABei der geerdeten Vertikalantenne mit der Länge l = — folgt
4

= V < 9a  >A.

A AEin --Strahler im freien Raum kann derart gedeutet werden, daß zwei --Strahler spiegelbildlich

zueinander stehen. Die Stromverteilung ist, von den Dipolenden aus betrachtet, durch ein Cosinus-
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gesetz gegeben. Daraus ergibt sich nach (9a), wenn man beachtet, daß in den gesamten Raum
gestrahlt wird,

Ä; / 2  =2-=A.  (9b )
2k tc

Beim -Dipol nach (9a) hat man den Strahlungswiderstand nach (5.1.2./3) zu berechnen:

(Äsh/4= 4 0 =40Q.O \ Ä J

2
Dagegen folgt beim —Strahler nach (5.1.1./21) und (9b)

(-Rs h /2=y  o 
2 =8OQ.

Dieser Wert liegt um etwa 10% über dem genaueren Wert nach (5.1.4./9).

Beispiel 29
Bei der Rahmenantenne aus n Windungen mit der Empfangsfläche A folgt nach (5.1.8./11),
wenn die Rahmenabmessungen klein gegen A/4 sind,

h = — An.
A

Bei der drahtlosen Übertragung erzeugt man in der Sendestation die Trägerschwin-
gung UT = U qT sin ajt und strahlt diese als elektromagnetische Welle aus. Die Träger-
schwingung erfolgt mit hoher Frequenz f (f = fT Träger- oder Sendefrequenz, oj = 27zf
Kreisfrequenz der Trägerschwingung). Auf die Trägerschwingung wird das Nutz-
signal = ?7om sin moduliert, indem z. B. die Amplitude, die Phase oder die
Frequenz periodisch mit der Kreisfrequenz verändert werden. Die Frequenz / M
des Nutzsignals muß um Größenordnungen niedriger als die Trägerfrequenz / sein,
wenn eine einwandfreie Übertragung erfolgen soll. /M wird als Modulationsfrequenz
definiert.
Von den verschiedenen Modulationen wird in der Nachrichtentechnik am häufigsten
die Amplitudenmodulation angewandt. Sie führt zu Schwingungen der Form

U = UQ (1 + m sin co t) sin cot. (10)

Der Faktor m definiert den Modulationsgrad.
Eine amplitudenmodulierte Schwingung kann z. B. durch ein Mikrofon erzeugt
werden, das die Leitfähigkeit des Sendekreises, um einen Mittelwert schwankend,
periodisch verändert (vgl. Bild 5.14).
Im allgemeinen besteht das Nutzsignal aus der Überlagerung mehrerer Schwingungen
mit verschiedener Frequenz und verschiedener Amplitude. Der auf die Träger-
frequenz des Senders abgestimmte Empfänger überführt das durch den Modulations-
vorgang frequenz verschobene Nutzsignal wieder in den ursprünglichen Frequenz-
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bereich (Demodulation). Zur einwandfreien Übertragung müssen bei der Demodu-
lation Schwingungen erzeugt werden, deren Frequenzen mit den entsprechenden
Frequenzen des Nutzsignals übereinstimmen und deren Amplituden denen des Nutz-
signals proportional sind. Bei der amplitudenmodulierten Schwingung kann die De-
modulation grundsätzlich mit den gleichen Geräten wie die Modulation erfolgen,
z. B. mit einem Mikrofon.
Der Empfänger setzt sich im Prinzip aus dem für die Abstimmung erforderlichen
Resonanzschwingkreis und dem Verstärkervierpol zusammen. Die Antenne stellt die
Spannungsquelle des Empfängers dar. Ihr Widerstand 5RAn t = kann als Innen-
widerstand der Spannungsquelle aufgefaßt werden. Der Außenwiderstand 9la = 9t
wird maßgeblich durch den Widerstand des Resonatorschwingkreises bestimmt. Für
die am Verstärkervierpol liegende Spannung U v erhält man nach (4.1.2./1) (vgl.
Bild 5.10)

U — 77 (11)

Uv

Bild 5.10. Prinzipschaltbild der
Empfangsanlage

Antenne Resonanz- Verstärker-
schwing- vierpol
kreis '

Bei der Abstimmung des Resonatorkreises verschwinden in (11) die Blindkompo-
nenten. Hierdurch läßt sich erreichen, daß bei Resonanz die am Verstärker liegende
Spannung 17v ihrem Betrag nach die Antennenspannung U Ant übersteigt. Der
Quotient

wird als Spannungsüberhöhung definiert.
Für den Empfang des Nutzsignals kommt nur den auf die Trägerwelle modulierten
Amplitudenschwankungen Bedeutung zu. Sie verursachen im Empfänger Spannungs-
schwankungen um einen Mittelwert. Nach (10) sind die Spannungsschwankungen
durch

AU = mlj\ sin (13)

gegeben. Bezeichnet U Ant die vom Sender hervorgerufene effektive Antennenspan-
nung, so kann also bei einem Modulationsgrad m hiervon nur der Anteil m für den
Empfang des Signals genutzt werden. Infolge der nach (11) bzw. (12) bei der Ab-
stimmung auf tretenden Spannungsüberhöhung erhält man somit für die am Ver-
stärkervierpol liegende Nutzspannung

=mvü kni . (14)
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Die für eine einwandfreie Übertragung erforderliche Nutzspannung wird durch das
Rauschen bestimmt. Es findet seine Ursache in statistischen Schwankungen bei der
Verteilung der Elektronen.
Das thermische Rauschen tritt bei jedem Wirkwiderstand R auf. Es führt zu unregel-
mäßigen Spannungsschwankungen, deren Effektivwert mit UR bezeichnet wird.
Nach Ny Quist rauscht jeder Wirkwiderstand R mit der mittleren Leistung

P R = 4kT4 f .  (15)

Darin bezeichnet k = 1,38 • IO-23 J K -1 die Boltzmann -Konstante, T die thermo-
dynamische Temperatur (absolute Temperatur), Af die Bandbreite des Frequenz-
bereiches. Blindwiderstände liefern keinen Beitrag zur Rauschleistung.
In den Verstärkern treten spezielle, von der Physik des Verstärkers abhängige
Rauscheffekte auf. Das Rauschen von Verstärkerröhren denkt man durch einen
mit dem Wirkwiderstand R des Eingangskreises in Reihe liegenden Widerstand P ä
entstanden, der als äquivalenter Rauschwiderstand bezeichnet wird. R und P ä
addieren sich zum Rauschwiderstand i?R (vgl. Bild 5.11):

Pr = -K + Rä. •
Der äquivalente Rauschwiderstand P ä ist für Zimmertemperatur definiert. Für die
in Gebrauch befindlichen Röhren liegen die Rauschwiderstände zwischen 0,5 kQ
und 100 kQ.

I—
* 5

7* I Bild 5.11. Äquivalenter Rauschwiderstand 7?ä
\~)Ur HB einer Verstärkerröhre

L— ________________ HB Heizbatterie, K Katode, A Anode, G Gitter

Aus der Verknüpfung zwischen Leistung und Spannung folgt nach (15) für die
Rauschspannung des Empfängers

Ur = -|/ r7 = kTAf  J?R - (16)

Beispiel 30
Der Resonanzwiderstand eines Mittel wellenempfängers mit Röhrenverstärkung beträgt 150 kQ,
der äquivalente Rauschwiderstand der Röhre j?ä = 70 kQ . Die Bandbreite ist gleich d /  = 9 kHz .
Hieraus ergibt sich bei Zimmertemperatur T = 288 K

R r = (150 + 70) kQ = 220 kQ

und daraus nach (16) für die Rauschspannung

P R = A • 1,38 • IO"23 • 288 • 9 • 103 • 220 • 103 V = 5,6 • 10~6 V.

Das Verhältnis zwischen der Nutzleistung P und der Rauschleistung p bezeichnet
man als Störabstand q — P/p.
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Allgemein wird zur Kennzeichnung des Rauschverhaltens eines Vierpols insbesondere
bei Transistoren die Rauschzahl F eingeführt. Sie gibt das Verhältnis zwischen dem
Störabstand am Eingang des Vierpols und dem Störabstand am Ausgang an :

Eingangsstörabstand P-eIpe _ £e
Ausgangsstörabstand PaIPa £?a

Darin bedeuten P E bzw. p E die von der Signalquelle am Eingang des Vierpols an-
gebotene Nutz- bzw. Rauschleistung. P A und p k geben die. Nutz- bzw. Rausch-
leistung am Vierpolausgang an. Bezeichnet V L die Leistungsverstärkung im Emp-
fänger, so besteht zwischen den Nutzleistungen die Beziehung

Pa = F l P e . (18)

Dagegen hat man für den Zusammenhang zwischen den Rauschleistungen am Aus-
gang und am Eingang zu schreiben

Pa = VlPe + Pz- (19)
Darin bedeutet pz die im Empfänger entstehende Rauschleistung. Setzt man (18)
in (17) ein, so folgt

j, _ PrIPe _ Pa (20)
V l P e /Pa VlPe V ’

Durch Umformung entsteht hieraus

Pa =FV lPe . (21)

Durch den Vierpol mit der Rauschzahl F und der Leistungsverstärkung V L wird
die Rauschleistung somit nicht nur um den Faktor V L , sondern um den Faktor FV L
vergrößert. Der Vierpol wirkt also auf das Eigenrauschen derart, als würde nicht
nur die Rauschleistung pE , sondern die um den Faktor F vergrößerte Rauschleistung
Fp E angeboten. Setzt man voraus, daß die von der Umgebung in den Empfänger
gelangende Rauschleistung zu vernachlässigen ist, so kann für die im Empfänger
mit angeschlossenem Verstärker auf tretende Rauschleistung geschrieben werden:

pF =4FUTAf .  (22)
Die Rauschspannung wird nach (22) gleich

U E = 4FkT Af B ,  (23)
wobei P den Resonanzwiderstand angibt.
In den Tabellenwerken über Transistoren werden die Rauschzahl und die Leistungs-
verstärkung allgemein in dB angegeben. Dabei definiert man

P — IQlgP ,  F L = 101gFL~|. (24)

Tabelle 11 enthält die Rauschzah] für verschiedene Transistoren.



318 5. Hochfrequente Wechselfelder

Die Forderungen an die Qualität einer Übertragung beziehen sich auf den Stör-
abstand q als Verhältnis zwischen der am Eingang hegenden Nutzleistung P E = P N
und der Rauschleistung im Empfänger. Nach (14) und (22) bzw. (23) folgt
hierfür bei einem Empfänger mit der Rauschzahl F und dem Resonanz widerstand R

P s

' pF 4PkT Af R

Der Störabstand q = 10 1g q wird ebenfalls in dB angegeben. Tabelle 12 enthält
Daten über Frequenzen, Bandbreite und Störabstand bei verschiedenen Über-
tragungsformen. In den Tabellen 13 und 14 sind Rauschzahlen und Störabstände
zusammengestellt.

Tabelle 11. Rauschzahlen von Transistoren

Transistor Rauschzahl F in dB Bemerkung

SCHI 8 typ-

SC 112 5 max.

SC 207 5,6 typ. / = 1 kHz, d /  = 850 kHz
8 max.

SF 127 4,5 d/  = 1 kHz

SF 132 7 f =  1 kHz
3,5 f = 10 kHz
2,5 / = 100 kHz
6 /=  50 MHz

SS 101 15 max.
6 typ-

GC 116 6 typ. f = 1 kHz, Af = 1 kHz
20 max.

GS 109 25 max.

GS 121 25 max.

Probleme

5.2.1. Widerstand einer Antenne im Speisepunkt
Eine geerdete Vertikalantenne (vgl. 2.1.7.) der Länge l = 15 cm mit dem Durchmesser 2r0 = 1 cm
wird am Fußpunkt durch einen Generator der Frequenz f = 108 Hz gespeist. Berechnen Sie den
Widerstand im Speisepunkt. Die ohmschen Verluste seien gegen den Strahlungswiderstand zu
vernachlässigen.
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Tabelle 12. Frequenzbereich und mittlere Werte für Bandbreite und Störabstand
bei verschiedenen Übertragungsformen

Bezeichnung Trägerfrequenzbereich
/
in MHz

Bandbreite

in kHz

Störabstand
Q
in dB

Telegraphie 0,03- -300 0,1-1, 5 4—16

Telephonie 0,03- • -300 0,3—3 13—33

Rundfunk :
Langwelle 0, 15- • -0,285 bis 9,0 30
Mittelwelle 0,535— 1,605 bis 9,0 40
Kurzwelle 5,95—26,1 10 30
UKW 20-500 bis 400 40—50

Fernsehen :
Bild 30—100 7,0 42- •• 57
Ton 100- -300

300- -1000 7,0 18—35

Tabelle 13. Rauschzahlen für Funkempfänger

Bezeichnung F
in dB

Telephonie-Funkempfänger
im festen Funkdienst 1 , 6 — 30 MHz 4—10
im beweglichen Funkdienst 30 • • • 300 MHz 8 • • • 1 1

Telegraphie-Empfänger 5 • • • 10

Rundfunkempfänger — Kurz- und Mittelwelle 6---21
UKW 8-26

Fernsehempfänger — Bild 5—14
Ton 6 -13

Tabelle 14. Störabstände

Qualität Leistungs-
verhältnis

Spannungs-
verhältnis

Q
in dB

Grenze der Wahrnehmbarkeit 1 1 0
Grenze der Sprachverständlichkeit 10 3,2 10
Ausreichende Musikqualität 1000 32 30
Ausreichende Fernsehqualität 10000 .100 40
Einwandfreie Qualität
bei zwei Gesprächen 1000000 1000 60
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Lösung

Um möglichst einfache Formeln zu erhalten, wird die Vertikalantenne mit ihrem Spiegelbild in
erster Näherung als Leitungssystem mit konstantem Wellenwiderstand behandelt. Obgleich diese
Auffassung nur eine sehr grobe Näherung darstellt, liefert sie für die Praxis brauchbare Er-
gebnisse.
An der Spitze der Vertikalantenne fließt kein Strom. Es liegt somit ein leerlaufendes Leitungs-
system vor, d. h., die Leitung ist mit einem unendlich großen Widerstand abgeschlossen. Für
den Eingangswiderstand am Fußpunkt erhalten wir nach (4.4/14)

SRe = 3 cothyZ. (1)

V berechnen wir nach (4.4./4) unter der Voraussetzung, daß die Ableitung G' verschwindet und
daß auch der Widerstandsbelag R', in den der Strahlungswiderstand eingeht, nur kleine Werte
annimmt. Es folgt

1 -----------
2 L'a>

bzw.

(2)

(3)

Darin bedeutet

den Realteil des WellenWiderstandes 3 der Vertikalantenne. Der imaginäre Anteil des Wellen-
widerstandes wird vernachlässigt. Setzen wir (4) und (2) in (1) ein, so folgt für ß a ,

CO. v XK r/- I m 7-1 V COS al + i ßl sin al$R e = Z coth [(i a + ß) Z] = Z --------------—--------i sm al

d. h. in Verbindung mit (3)

R'lfR E = — \Z cot al H------ .
2

Die Größe R' dZ kennzeichnet den Strahlungswiderstand eines kleinen Leiterstücks der Länge dZ.
Bei der geerdeten Vertikalantenne ist nach (5.1.2./3) der Strahlungswiderstand gleich

B s = - n.Z0 —S 3 o

Daraus ergibt sich für die gesuchte Größe

Ra
2

— t = ±_ z V = B2 dl 3 Z2 s (7)
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Bei Antennen, deren Länge oberhalb 2/10 liegt, ist die Stromverteilung zu berücksichtigen.
Man schreibt daher anstelle von (7)

ersetzt also die geometrische Länge nach (5.2./9) durch die effektive Höhe A.
Den Wellenwiderstand Z der Vertikalantenne errechnen wir genähert aus der Kapazität.
Nach 2.1.7. ist diese gleich

c - (9)6

Die Antenne kann mit ihrem Spiegelbild in erster Näherung als Leitungssystem aufgefaßt werden,
wenn man in (9) den Ausdruck In Z/r0 als langsam veränderlich gegen l ansieht. Für den Kapazitäts-
belag folgt damit aus (9)

G' = . (10)

Hieraus ergibt sich als Wellenwiderstand der geerdeten Vertikalantenne

Z = Ä. = In — . (11)
C' 2k ]/3 r0

Für den Eingangswiderstand am Fußpunkt der geerdeten Vertikalantenne folgt somit in erster
Näherung

2ir7
9t E = - iZco t  — + 7? s , (12)

A

wobei Z aus (11), R$ aus (8) hervorgeht.
Mit den vorgegebenen Zahlen erhalten wir aus (11) und (12)

0 15 0 15Z = 60 In ------ --------- co t 360°Q = 171 • 3,08£l = 527Q.
]/3 • 5 • 10 -3 3,00

Die effektive Antennenhöhe ist nach (5.2./9) gleich

Ä = sin • 360° cm = 14,8 cm.
2k 3,00

Für den Strahlungswiderstand ergibt sich nach (8) 2?s = 3,8 £2. Somit folgt als Fußpunktwider-
stand der Vertikalantenne $R E = (3,8 — i 527) Q .

21  Schilling, Felder
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5.2.2. Verkürzung und Verlängerung einer Vertikalantenne
durch eingeschaltete Spulen und Kondensatoren

Eine Vertikalantenne der Länge l = 15 m mit dem Wellenwiderstand Z = 300 Q ist über eine
Spule der Induktivität L = 10 [iH an den Empfänger gekoppelt. Zur Abstimmung wird ein Dreh-
kondensator eingeschaltet (vgl. Bild 5.12). Berechnen Sie die erforderliche Kapazität des Kon-
densators bei der Resonanzabstimmun’g auf eine Welle der Länge A = 75 m .  Welche effektive
Höhe besitzt die Antenne bei Resonanz ?

Bild 5.12. Schaltung zur induktiven
Kopplung der Antenne an den
Empfänger mit Drehkondensator
zur Abstimmung

Lösung

Nach (5.2.1./12) ist der Eingangswiderstand der Vertikalantenne gleich
Q_7

SRE = - iZco t  +Ä S . (1)
A

Der Kondensator und die Spule sind zur Antenne in Reihe geschaltet. Für den gesamten Wider-
stand erhalten wir somit

fR = — i Z cot — + i coL — i —— F 7? s .
A coC

(2)

Resonanz liegt vor, wenn der Imaginärteil verschwindet, d. h. für $R = _RS . Dafür muß die ein-
geschaltete Kapazität gleich

co \a>L — Z cot

sein. Mit den vorgegebenen Zahlen folgt

C = ----------------:---------------- ------------------------------- F = 2,59 • io- 10 F .
2rr • 4 • 10« Ü • 10« • 10 • IO“ 6 - 300 cot — • 360°]

\ 75 )

Durch die vorgegebene Spule und den Kondensator mit der berechneten Kapazität erfolgt schein-
bar eine Verlängerung der Antenne auf A/4. Eine im Fußpunkt eingeschaltete Spule wirkt nach (2)
scheinbar als Verlängerung, ein Kondensator als Verkürzung der Antenne. Diese scheinbare
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Längenveränderung Al kann auf Grund der Gleichung

„ x l , T 1 v , 27r(Z + dZ) .— Z cot ------H ------- = —Z cot ------------- (4)
2 a>C 2

definiert werden.
Im allgemeinen interessiert der Resonanzfall. Für diesen verschwindet der Ausdruck (4), d. h.,
die eingeschalteten Spulen und Kondensatoren wirken im Resonanzfall gerade so, als sei die
Länge der Antenne zusammen mit der Verlängerung gleich 2/4:

dZ + Z=4-  (5)4

An der Spitze der Vertikalantenne muß sich ein Stromknoten befinden. Diese Stromverteilung
ergibt sich nach (5.2./5), wenn man

2a = Al = - l (6)

setzt. Bezüglich der Stromverteilung auf der vorgegebenen, auf Resonanz abgestimmten Vertikal-
antenne hat man also so zu rechnen, als befinde sich der Fußpunkt in der Höhe a, und die Antenne
erstrecke sich von z = a bis z = .

Im vorgegebenen Fall ist nach (6)

a = (18,75 - 15,00) m = 3,75 m .

Daraus folgt nach (5.2./9) die effektive Höhe

< . 2tt • 3,75
1 — sm -------

5.2.3. Schwingkreis mit induktiver Kopplung

Eine Vertikalantenne ist über einen Transformator an den Schwingkreis des Empfängers ge-
koppelt (vgl. Bild 5.13). Der Kopplungsfaktor ist 1c = 0,04. Als Antenne wird ein zylindrischer
Stab der Länge l = 3,50 m verwendet, dessen Durchmesser 2r0 = 5 mm beträgt. Der Verlust-
widerstand in der Antenne hat die Größe 3Q, die Induktivität der Spule auf der Antennenseite

Bild 5.13. Empfangskreis mit induktiver
Kopplung an die Antenne

21*
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ist gleich L& = 450 pH. Empfängerseitig beträgt die Induktivität der Spule L = 250 pH, der
ohmsche Widerstand R = 30 Q .  Es wird eine Sendung der Frequenz f = 106 Hz empfangen.
Berechnen Sie die Spannungsüberhöhung.

Lösung

Wir fassen die Antenne mit ihrer Kopplungsspule als Primärschwingkreis (La , C Ant , Ä Ant ) auf.
jßAnt enthält sowohl den ohmschen Verlust- als auch den Strahlungswiderstand. Der Resonator-
schwingkreis stellt den Sekundärschwingkreis (L, C, R) dar. Die Gegeninduktivität zwischen den
beiden Spulen ist nach (4.3.2./6)

L 12 = k (1)

worin k den Kopplungsfaktor bezeichnet.
Entsprechend Bild 5.13 können wir den Kondensator als Abschlußwiderstand

des Sekundärschwingkreises auffassen, während

3t2 = i coL + R

den sekundärseitigen Widerstand bezeichnet (vgl. 4.2.5.). Zur abkürzenden Darstellung der
Formeln legen wir fest

3t = 3t2 + 3t A = R 4- i (coL -----— 3ta = i An  t + i ( w L a ------t;— •\ coC/ \ coC Ant /

Nach (4.2.Ö./22) erhalten wir für die sekundärseitige Spannung

V = - Ant ’ (2 )

3ta3t + co 2Lj 2 i (oC

wobei U Ant die Spannung in der Antenne bezeichnet.
Durch Abstimmung des Sekundärkreises auf die Sendefrequenz ergibt sich

LC = ~ .  (3)
CO 2

Als Dämpfung des Primär- bzw. des Sekundärkreises werden die Größen

4 = bzw. d = ~ ,  (4)a)L & coL

als Verstimmung des Primärkreises der Ausdruck

eingeführt.
Unter Verwendung dieser Definitionen folgt im Resonanzfall (3) aus (2)

TT _ _ TT 1 / _____V,r Ant 1/ T / 7 . . \ j \ 19 ’F L& (4 + 1 ®a) d + k 2
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Die Primärdämpfung kann bei nicht zu großer Antennenhöhe im allgemeinen gegen die Ver-
stimmung vernachlässigt werden. Ist außerdem die Kopplungsgröße k2 klein gegen das Produkt
aus Sekundärkreisdämpfung und Verstimmung, so vereinfacht sich (6) in

-. / L k
|/ x d— i Ant (7)

Mit den vorgegebenen Zahlen erhalten wir nach (5.2.1./10) für die Antennenkapazität

_ 2k£o Z 2k • 8,85 • IO-12 . 3,50
Ant - — = — ------- ---------- F = 294 pF.In ------ In ---------------

V3r0 y'3-2,5-10-3

Die Resonanzfrequenz co a des Primärkreises ist daher

coa = - 1 = ----- 1 s- 1 = 8,74 • 10« s- 1 .
yia Ant V450 • 10- 6 • 29,1 ■ IO-12

Für die Verstimmung folgt aus (5)

Die Dämpfung des Primärkreises ist

d __ + 3Ü
a 2k • 106 • 450 • 10" 6Q ’

Der Strahlungswiderstand liegt nach (5.1.2./4) unterhalb 1 Q. Für die Dämpfung des Primär-
kreises erhält man daher einen Wert unter 0,002. Dagegen ergibt sich für die Dämpfung des
Sekundärkreises

30d = ----------—----------- = 0,019
2k • 10 6 • 250 • IO-6

Mit diesen Größen erhält man aus (9) für die Spannungsüberhöhung

v = I I 1/250 0,04
V ~ | ü Ant | ~ .  |/ 450 0,94 • 0,019

5.2.4. Modulationsgrad

Zur Amplitudenmodulation wird in einem Stromkreis die hochfrequente Wechselspannung

U = Uo sincü T £ (co T = cd) (1)

als Trägerschwingung induziert (vgl. Bild 5.14). Die Übertragung der Modulationsschwingung
erfolgt durch ein in den Stromkreis geschaltetes Mikrofon, das die elektrische Leitfähigkeit G im
Takt der Modulationsfrequenz ändert :

G = Gq -|- G1 sin cD t . (2)
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WWWVr

Bild 5.14. Überlagerung der
Modulationsschwingung auf die
Trägerschwingung bei der
Amplitudenmodulation

Zur Messung des Modulationsgrades wird die Schwingung auf den Leuchtschirm eines Elektronen-
strahloszillographen abgebildet. Dabei wird als Verhältnis des Amplitudenmaximums zum
Minimum

gemessen. Berechnen Sie daraus den Modulationsgrad.

Lösung

Aus (1) und (2) ergibt sich für den Strom

I = UG = Uq(Gq + G1 sin si n (3)

Hierfür können wir in der Bezeichnung nach (5.2./10) mit co = a)T

I = I0 ( l  m sin sin a> T t (4)

schreiben. Darin ist

/ o =r oö o , (5)
Go

Der Modulationsgrad kennzeichnet also im vorliegenden Fall die maximale relative Schwankung
des Leitwertes.
Ist die Trägerfrequenz groß gegen die Modulationsfrequenz, so kann die modulierte Schwingung (4)
als harmonische Schwingung mit langsam veränderlicher Amplitude aufgefaßt werden. Für
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sino> M£ = 1 folgt als Amplitude die Größe Z0 (l + m). Dagegen erhält man für sinco Mf = — 1
die Amplitude Z0 (l  — m). Das Verhältnis beider Größen ist gleich

a 1 + m
b 1 — m (6)

Hieraus ergibt sich für den Modulationsgrad

1-1
ba, — bm = ------- (7)

Mit den vorgegebenen Zahlen folgt

2,4 — 1m = ------- = 0,41 .
2,4 + 1

5.2.5. Messung der Rauschzahl eines Verstärkers

Zur Messung der Rauschzahl eines Verstärkervierpols wird dieser an einen Prüfgenerator mit
regelbarer Rauschleistung (Rauschgenerator) angeschlossen. Der Anschluß erfolgt derart über
eine Leitung, daß Anpassung vorliegt. Bei ausgeschaltetem Nutzsignal mißt man am Ausgang
des Verstärkers die Leistung P o , die durch das thermische Rauschen des Prüfgenerators und des
Transistorverstärkers im Meßgerät verursacht wird. Durch Veränderung der Rauschleistung des
Generators wird ein Nutzsignal übertragen, das zusammen mit dem thermischen Rauschen im
Meßgerät die Ausgangsleistung 2P 0 anzeigt. Hierfür ist, bezogen auf 1 Hz Bandbreite, im Rausch-
generator die zusätzliche Nutzleistung P E ' = 3,48 • 10-20 W Hz -1 aufzubringen. Berechnen Sie
daraus die Rauschzahl des Verstärkers. Die Temperatur betrage T = 300 K .

Lösung

Es liegt eine Spannungsquelle mit einem Außenwiderstand P a vor, der an den Innenwiderstand R {
angepaßt ist. Von der angebotenen Spannung wird daher nach 4.1.2. die Hälfte, von der an-
gebotenen Rauschleistung ein Viertel genutzt. Bei ausgeschaltetem Nutzsignal überträgt der
angepaßte Rauschgenerator somit nach (5.2./15) die thermische Rauschleistung

Pu = kTAf . (1)

Sie wird durch den Verstärker auf VLp E verstärkt, wobei VL die Leistungsverstärkung

■Pe
(2)

angibt. P E und P A bezeichnen die Nutzleistung am Eingang und am Ausgang des Verstärkers.
Zur verstärkten Rauschleistung des Generators kommt die Eigenrauschleistung des Verstärkers
hinzu, so daß das Meßgerät die Leistung

Po = VL7? e + p z (3)
anzeigt.
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Mit dem vom Rauschgenerator aufgenommenen Nutzsignal P E verdoppelt sich die Ausgangs-
leistung. Es gilt also

2P 0 
= L- E 4~ iPe + Pi- (4)

Hieraus erhalten wir

= JVe = lPe + Pz- ( 5 )

Nach (5.2./20) und (5.2./19) ist die Rauschzahl F durch

F = Pa  = VlPe + Pz  (6)
7l?e VlPe

bestimmt. Wir setzen (5) ein und erhalten

= (7)

iPe Pe
Die zur Verdoppelung der Ausgangsleistung aufzuwendende Nutzleistung schreiben wir in der
Form

P E = P E ' d / .  (8)

(8) und (1) in (7) eingesetzt, ergibt

F = (9)
KT

Mit den vorgegebenen Zahlen erhalten wir

F = . 3A-.t“_ =8 ,4 .1,38 • IO“23 • 300

Daraus folgt, in der Einheit dB gemessen,

t = 10 1g F = 10 1g 8,4 = 9,2 dB.

5.2.6. Störabstand im Empfänger (Signal-Rauseh-Verhältnis)

Ein Sender wird mit der Leistung P = 0,1 W auf der Wellenlänge Ä = 3,15 m betrieben. Die
Sendeantenne hat den Gewinn g§ = 100. Der Modulationsgrad beträgt m = 0,65. In der Ent-
fernung r = 30 km befindet sich der Empfänger mit der Rauschzahl F = 9 dB , der Spannungs-
überhöhung v = 4,0 und dem Resonanzwiderstand R = 15 kQ . Durch die Atmosphäre erfolgt
eine Dämpfung b = 0,05 dB km-1 . Wie groß muß der Gewinn der Empfangsantenne sein, wenn
ein Störabstand § = 40 dB gefordert wird? Die Bandbreite beträgt Af = 3 • 105 Hz. Bei der
Rauschleistung ist nur der Empfänger (T = 288 K) zu berücksichtigen.

Lösung

Nach (5.1.4./6a) erzeugt ein Halbwellendipol im freien Raum die Feldstärke

A_
Rs 2tw

(Ps = 73,2 Q) .(®effh/2 —
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Hat der Strahler den Gewinn g§, so folgt unter Berücksichtigung der Dämpfung

®eff = l / l/- (1)
|/ R$ 2r:r

Für die Spannung in der Empfangsantenne erhält man bei einem 2/2-Dipol nach (5.2. /9b)

2
( Ant) l /2  = ®eff 2/2 = ®eff — •

7C

In der Antenne mit dem Gewinn g% wird also die Spannung

/ p y o
UAnt = Vf/E ®efÄ/2 = 1/  TT"[/ Rs 2n 2r

erzeugt. Unter Berücksichtigung der Spannungsüberhöhung v und des Modulationsgrades m
erhalten wir nach (5.2./14) für die Nutzspannung

1 /  - (3 )|/ R s 2n2r

Die Rauschspannung ist nach (5.2. /23)

U F = FkTAfR, (4)

wobei R den Resonanzwiderstand angibt. Für den Störabstand folgt

o = = gsgEttWPZ./U 2 
e _2jSru P F

2 lf>r.l FkT AfRR&r2

Die Größe ß ist über b bekannt. Wir können

e -2/?r = io-br

verwenden und für b die vorgegebene Größe einsetzen. Damit erhalten wir aus (5)

g = 10 Ig g = 10 1g + 10  ’8 fe - - mr. (6)
J.UTU /v_t ZJy .tl/XlzQZ

Wir lösen diese Gleichung nach 1g g% auf :

* P . gsV2m 2PZ 0
2A2 , _ , F

10 8 IfrWcT 4fRR s r2 10

Mit den vorgegebenen Zahlen folgt

, 40 , 100 • 4,02 • 0,65 2 • 0,1 • 120 2tt2 • 3,152
lg q v = ------ Ig  -------------------------------------------------------------------------------------------------------ö E 10 ö 16tt 4 • 1,38 • IO"23 • 288 • 3 • 105 • 15 • 103 • 73,2 • (30 • 103 ) 2

+ 0,05 • 30 + 0,9 = 1,685, gE = 48,5 50.

Die Empfangsantenne muß den Gewinn fünfzig besitzen, damit der geforderte Störabstand
eingehalten wird.
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Aufgaben

Berechnen Sie die Dämpfung in dB für eine Mittelwelle (2 = 400 m) und für eine
Ultrakurzwelle (2 = 4 m) bei lehmigem Boden (B = 10-4 Np m-1 / 2 ), wenn die Aus-
breitung über r = 20 km erfolgt.
Wie groß ist die Spannung in einer Vertikalantenne der Höhe h = 8,50 m? Die
Sendeantenne hat die effektive Höhe h = 70 m.  Der Sendestrom im Maximum
beträgt I eff = 15 A. Als Wellenlänge ist 2 = 450 m zu setzen. Die Ausbreitung
erfolgt über trockenen Boden (B = 8,8 • 10-4 Np m-1 /2 ). Für den Abstand zwischen
Sender und Empfänger ist r = 100 km zu setzen. Welche elektrische Feldstärke
besteht am Empfangsort ?
Berechnen Sie zur vorangegangenen Aufgabe die Feldstärke unter Vernachlässigung
der Dämpfung.
Welche Leerlaufspannung tritt in einer Antenne der Länge l = 10 cm auf, wenn
die Empfangsfeldstärke @ eff = 0,1 • 10-3 V m-1 beträgt? Die Wellenlänge ist
Z = 5m.
Berechnen Sie die an einer Antenne der Länge l = 2,50 m liegende Leerlaufspan-
nung, wenn die Feldstärke @ eff =.0,1 • 10-3 V m-1 und die Wellenlänge 2 = 10 m
beträgt.
Wie groß ist die effektive Höhe einer Vertikalantenne der Länge l = 6,50 m mit
dem Fußpunkt bei a = 1,50 m für die Wellenlänge 2 = 40 m?
Berechnen Sie den Widerstand einer geerdeten Vertikalantenne der Länge l = 20 cm
mit dem Durchmesser 2r0 = 1,5 cm. Die Wellenlänge beträgt 2 = 3 m ,  der ohmsche
Widerstand 8 Q.
Wie groß ist der Wellenwiderstand einer Vertikalantenne der Länge l = 60 cm
mit dem Durchmesser 2r0 = 4,5 cm?
In einer Empfangsantenne beträgt der Resonanzwiderstand R = 50 kQ , der äqui-
valente Rauschwiderstand des Verstärkers R& = 150 kQ.  Die Bandbreite ist gleich
9 kHz, die Spannungsüberhöhung beträgt v = 3,5, der Modulationsgrad m = 0,6.
Gefordert wird ein Störabstand von 40 dB. Wie groß muß die Empfangsfeldstärke
sein, wenn die Empfangshöhe 4 m beträgt (T = 300 K) ?
Eine Rahmenantenne mit der Empfangsfläche A = 30 cm2 enthält n = 50 Win-
dungen. Die Wellenlänge beträgt 2 = 1,50 m .  Am Empfangsort wird die magne-
tische Feldstärke § e ff — * 10-5 A m-1 gemessen. Wie groß ist die induzierte
Spannung ?
Berechnen Sie die Dämpfung des Primär- und des Sekundärkreises sowie die
Verstimmung des Primärkreises für eine Empfangsschaltung nach Bild 5.13
mit folgenden Werten: L = 50 mH, R = 15 kQ,  L a = 500 [zH, C Ant = 80 pF,
J? Ant = 40 Q . Die Frequenz beträgt / = 10 MHz .
Es wird eine amplitudenmodulierte Schwingung mit dem Elektronenstrahloszillo-
graphen überprüft. Welche Bedingung ergibt sich für das Verhältnis zwischen dem
maximalen und dem minimalen Ausschlag, wenn der Modulationsgrad größer als 0,3
sein soll ?
Zerlegen Sie die amplitudenmodulierte Schwingung (1 + m sin sin a) 7 t in die
Trägerwelle mit der Kreisfrequenz co T und die beiden Seitenbänder mit den Fre-
quenzen co T + co M und co-r — co M (Seitenbandzerlegung).
Wie groß ist die Rauschspannung in einem Kurzwellenempfänger mit dem Ersatz-
widerstand der Röhren R& = 1,2 kQ und dem Resonanzwiderstand R = 4,8 kQ,
wenn die Bandbreite d /  = 10 kHz beträgt (T = 288 K)?

A 5.2.1.

A 5.2.2.

A 5.2.3.

A 5.2.4.

A 5.2.5.

A 5.2.6.

A 5.2.7.

A 5.2.8.

A 5.2.9.

A 5.2.10.

A 5.2.11.

A 5.2.12.

A 5.2.13.

A 5.2.14.
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A 5.2.15. Wie groß ist die Rauschspannung in einem Empfänger mit dem Resonanzwider-
stand R = 15 kQ und der Rauschzahl F = 8,5 dB, wenn die Bandbreite 9 kHz
beträgt (T = 288 K)?

A 5.2.16. Welche Rauschzahl hat ein Verstärker der Bandbreite 106 Hz bei Zimmertemperatur
T = 288 K ,  wenn bei Anpassung eine zusätzliche Nutzleistung von 5,2 • 10-14 W
erforderlich ist, um eine Verdoppelung der empfangenen Nutzleistung gegenüber
dem thermischen Rauschen zu erzielen?

A 5.2.17. Ein Empfangsgerät mit dem Resonanzwiderstand R = 15 kQ und der Rauschzahl
F = 12 dB .soll bei T = 288 K höchstens die Rauschspannung 1 p.V besitzen.
Welche Grenze ergibt sich daraus für die Bandbreite?

A 5.2.18. In einer Empfangsanlage beträgt der Resonanzwiderstand des Schwingkreises
R = 15 kQ,  der Ersatzwiderstand des Verstärkers R& = 50 kQ.  Die Bandbreite
ist Zf/ = 9 kHz, die Spannungsüberhöhung v = 3,5. Berechnen Sie die Rausch-
spannung am Verstärker. Welche Eingangsfeldstärke ist erforderlich, um bei 60%
Modulation einen Störabstand von 40 dB zu erhalten? Die effektive Antennenhöhe
beträgt h = 4 m.  Für die Temperatur ist T = 300 K zu setzen.

A 5.2.19. Ein Empfänger mit der Rauschzahl F = 9,5 dB, dem Resonanzwiderstand
R = 300 Q und der Bandbreite Zf/ = 100 kHz ist an die Empfangsantenne an-
gepaßt. Der Modulationsgrad ist gleich eins. Gefordert wird ein Störabstand von
40 dB. Als Empfangsantenne wird eine Rahmenantenne mit der Empfangsfläche
A = 400 cm2 verwendet, die Windungszahl beträgt n = 100. Empfangen werden
Schwingungen der Wellenlänge A =-5  m . Wie groß muß die Feldstärke für einwand-
freien Empfang sein (T = 288 K)?

A 5.2.20. Um wieviel dB erhöht sich der Störabstand in einer Empfangsanlage, wenn a) die
Sendefeldstärke, b) der Gewinn verdoppelt werden?

5.3. Elektromagnetische Wellen an leitenden Medien
(Wellenleiter und Resonatoren)

Einführung

Zur Berechnung des Feldes bei der Ausbreitung elektromagnetischer Wellen an
leitenden Medien, z. B. an Drähten, an metallischen Ebenen sowie in rechteckigen
oder runden Hohlleitern, führt man die transversalen auf die longitudinalen Kom-
ponenten zurück. Dabei ist die elektrische Leitfähigkeit der Medien zu berücksich-
tigen.
Aus den ersten beiden MAXWELLSchen Gleichungen ergeben sich unter Berücksich-
tigung der linearen Verknüpfungen mit den Materialkonstanten die Beziehungen

— rot@, 8 —- + yfc = rot
ot et

Es werden periodische Vorgänge betrachtet, bei denen die zeitliche Abhängigkeit in
der Form exp (— i cot) gegeben ist. Die zeitliche Ableitung einer Feldgröße kann daher
durch die Multiplikation mit — i co ersetzt werden:

a . a2 
2

dt ’ dt2

(1)

(2)
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Aus (1) folgt

— i cd[j,$q = —rot ® , (— i coe + y) ® = rot § . (3)

Diese beiden Gleichungen können als System zur Bestimmung der Feldvektoren @
und § aufgefaßt werden. Zur Eliminierung von § dividiert man die erste Gleichung
(3) durch — i co/z und wendet anschließend die Operation rot an. Durch Vergleich
mit der zweiten Gleichung (3) ergibt sich

rot rot @ = (e/zco 2 + i y cu) (4)

Die Größe

£ ' =  fi+ i
CD

(5)

wird als komplexe Dielektrizitätskonstante, die Größe

k' = + i y/zco = ‘|/e //zcü 2 (6)

als komplexe Wellenzahl definiert. Für nichtabsorbierende Stoffe ist die Wellenzahl

7 l!----2k, = ye/uar = —-— . (6a)

Mit der komplexen Wellenzahl geht (4) über in

rot rot 6 = k' 2 &. (7)

Anstelle der Operation rot rot kann nach A 1.3.6. auch die Operation grad div —A
angewandt werden. Beschränkt man die Untersuchungen auf ladungsfreie, homogene
Medien, so gilt div @ = 0 .  Gleichung (7) geht dann in die zeitfreie Wellengleichung

A® + &' 2 ® = o (8)
über.
Die Ausbreitungsrichtung der Welle wird als z- Achse gewählt. Bei periodischen Vor-
gängen ist der Schwingungszustand für einen bestimmten Zeitpunkt t daher durch
eine Gleichung der Form

@ = @0 eiÄ* e~i(üt bzw. @ = ®0 ei(ÄZ-ü,i) (9)

gegeben.
Ähnlich der zeitlichen Ableitung kann die Ableitung nach der longitudinalen Ko-
ordinate z durch eine Multiplikation ersetzt werden :

d2
- -  = — h2 .
dz2

_a_
dz= iÄ, (10)
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Die transversalen Koordinaten werden zunächst allgemein mit u und v bezeichnet.
u und v definieren in der Ebene senkrecht zur Ausbreitungsrichtung ein orthogonales
Koordinatensystem. In Cartesischen Koordinaten sind u und v identisch mit x und y,
in Zylinderkoordinaten identisch mit r und 99. du, dv, dz bilden in dieser Folge ein
Rechtssystem.
In (9) wird die Abhängigkeit von den transversalen Koordinaten durch @0 = &Q (u,v)
erfaßt. Die betrachteten Wellen haben also die Form

@ = Q (u, v) . (11)

Das Bogenelement einer Raumkurve hat im u, v9 z-System die Länge

+ dz2 . (12)

(13)

Ü und V sind hier

Für Cartesische Koordinaten u = x ,  v = y gilt U = 1 , V = 1 .  Bei Verwendung
von Zylinderkoordinaten u = r , v = <p erhält man

?7 = 1 ,  7 = —. (13a)r

Der Laplace-Operator A kann in einen nur von der longitudinalen Komponente z
und in einen nur von den transversalen Komponenten u und v abhängigen Anteil
aufgespalten werden :

a2

A = - 2 + £\u,v (14)

In Cartesischen Koordinaten ist

a2 a 2
= Au,, = - + > (15 )

in Zylinderkoordinaten nach (1.3./29)

a2 1 a 1 a 2
A = Aw> = + + (16)

Werden (14) und (10) in die Schwingungsgleichung (8) eingesetzt, so folgt als Diffe-
rentialgleichung des elektrischen Feldes (11)

AJ  + r -  2)®  = o .  (17)

Dieselbe Gleichung gilt für die magnetische Feldstärke § — .
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Kennt man als Lösung der Gleichung (17) und ihrer Randbedingungen die Longi-
tudinalkomponenten und $$ z , so lassen sich daraus die Transversalkomponenten
bestimmen. Die Transversalkomponenten der Rotation sind allgemein durch die
Formeln

, ~ T7 ae. ae» a®u arot  u g = V — --------— , rot» ® = —------ U ——dv dz dz du

gegeben. Für Cartesische Koordinaten erhält man daraus (1.3./5), für Zylinder-
koordinaten (1.3./9) bis (1.3./11).
Mit den beiden Formeln für die Rotation ergeben sich aus (3) unter Beachtung von
(5) und (6) für die Komponenten im u, v, 2 -Koordinatensystem die Gleichungen

i a>u&v = rot» @ = i h&u — U — — ,du

— i = rot„ = —ih v + V ;

i = rot a ® = - i  + V dv

— i cos'@„ = rot B § = i — U

Die ersten beiden Gleichungen (18) liefern

= F 2 1 . 2 '  ( hü  +k 2 — h2 \ du |/ 8 dv /

~ _ i / i  A' a®, d$  z \
k 2 — h2 \ |/ /z du dv /

die letzten beiden

(18)

(19)

(20)

(21)

(22)

Damit sind die Transversal- auf die Longitudinalkomponenten zurückgeführt.

Bei der Lösung zylindersymmetrischer Probleme gelangt man aus der Gleichung (8)
bzw. aus (17) zu einer Differentialgleichung der Form

d2Z(g) 1 dZ(g )
d g 

2 p d g (
nn2 \

1 ) z (p )  =0 . (23)
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Sie wird als Besselsche Differentialgleichung, ihre Lösungen werden als Zylmderfunk-
tionen bezeichnet. Die Zylinderfunktionen sind so normiert, daß die folgenden Re-
kursionsformeln gelten :

z B_1 (e ) + z B+1 fe)= — zm ,  (24)
Q

= (25)

Im folgenden wird mit ganzzahligen Werten n gerechnet.
Spezielle Lösungen der BESSELschen Differentialgleichung (23) sind die Bessel-
Funktionen n-ter Ordnung

Für ganzzahlige negative Werte n = — 1, — 2, . . .  sind sie durch die Beziehung

J~M (27)

mit den BESSEL-Funktionen für positive Parameter n verknüpft. Jn (o) und J- n (Q)
sind also linear abhängig.
Das Verhalten für p = 0 wird durch die Gleichungen

<7o(O)=l,
(28)

J n (0) = 0 für n > 0 ,

wiedergegeben.
Bei reellen Werten q gilt ferner

l imJ w (o )=0 .  (29)
e->oo

Die Neumannschen Funktionen sind ebenfalls Lösungen der BESSELschen Diffe-
rentialgleichung (23). Sie sind für nichtganzzahlige Werte n durch die Gleichung

_ J n (e) cos nn — J_ w (e)
sin nnNM (30)

gegeben.
Im Falle ganzzahliger Parameter n ergeben sich aus (30) für die NEUMANNschen
Punktionen Grenzwerte, die nach der i/HospiTALschen Regel berechnet werden
können.
Für q -> 0 wird die NsuMANNsche Funktion logarithmisch unendlich. N n strebt
ebenso wie J n gegen Null, wenn die reelle Variable q über alle Grenzen wächst.
Bild 5.15 zeigt die Kurven J o fe) nnd iG?) sowie N q (q) und N q).
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Bild 5.15. a) Die BESSEL-Funktionen
J 0 (e) und

Bild 5.15. b) Die NEUMANNschen.
Funktionen N 0 (q) und N\(q)

Linear unabhängige Lösungen der BESSELschen Differentialgleichung sind die
BESSELschen und die NEUMANNschen. Funktionen. Die allgemeine Lösung der
Gleichung (23) lautet daher

Z n (Q )=AJ n ( e )+BNM.  (31)

Ein weiteres Paar linear unabhängiger Lösungen wird durch die ÜANKELSchen
Funktionen geliefert.
Die Hankelschen Funktionen erster und zweiter Art sind durch die Gleichungen

Hn )=J n (Q ) + iNM,  (32)
W=J w (o ) - i  ) (33)

definiert. Nur für reelle Argumente q sind Hn und Hn zueinander konjugiert
komplex.
Am Nullpunkt gilt

lim = oo, lim |# w
(2) te)l = (34)

e->o e~>o
Speziell besteht für kleine Werte |@| die Entwicklung

Ho™ = 1±— ln + . . .  (35)K 2
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mit

/ I I  1
I”(‘  + 2 + 3 + = 1,781... (35 a)/o = exp

Bei komplexen Werten q sind die ÜANKELSchen Funktionen in der p-Ebene verzweigt.
Sie werden eindeutig, wenn man q = |o| ei a r ce  setzt und arc @ auf — k <L arc @ < tz
beschränkt.
Das Verhalten der ÜANKELSchen Funktionen vom Index n für £ —> 0 ist durch die
asymptotischen Gleichungen

lim = lim . 1) !  lim = lim (W - . 1) !  (—V
q—>0 q—>0 i tu \Q / ß—>o i tz \ Q /

(n = 1 ,2 ,3 .  . . .)  (36)

bestimmt. Für o oo gelten die asymptotischen Gleichungen

lim = lim 1 / — e ( n+  2 ) 2 ] , (37)
(J—»OO Q—»OO |/

lim 2Zn 
(2) (g) = lim 1 /— e (”+2)2]. (3g)

Q—»OO ß—»OO |/ "KQ

Jt Probleme

5.3.1. Skineffekt

Ein System aus mehreren metallischen Schichten (vgl. Bild 5.16) enthält Kupfer als oberste
Schicht. Die Länge des Schichtsystems beträgt l = 20 cm, die Breite 6 = 5 mm, die Dicke der
Kupferschicht a = 1 mm . An das Schichtsystem wird über die gesamte Länge l eine Wechsel-
spannung der Frequenz f = 3 • 105 Hz angelegt. Berechnen Sie für die Kupferschicht das elektro-
magnetische Feld, bestimmen Sie die Eindringtiefe d des elektrischen Stromes und berechnen Sie
den Wechselstromwiderstand. Randstörungen sind zu vernachlässigen (y = 57,5 • 106 Q -1 m-1 ) .

Lösung

Wir betrachten das Feld in einem metallischen Halbraum, der durch die Ebene x = 0 begrenzt
wird. Die rr-Achse weise in den leeren Raum. In die Richtung der sich fortpflanzenden Welle
legen wir die z-Achse (vgl. Bild 5.16). Werden Randstörungen vernachlässigt, so besteht nur
eine Abhängigkeit von den Koordinaten z und x. Daher kann allgemein

± = o
dy (1)

gesetzt werden.

22 Schilling, Felder
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Bild 5.16. Mehrschichtsystem mit Kupfer
als oberster Schicht

Die longitudinale Komponente nehmen wir gleich Null an. Bei Benutzung Cartesischer Ko-
ordinaten ist in (5.3./19) bis (5.3./22) u = x ,  v = y zu setzen. Wegen (1) folgt daher für = 0
aus (5.3./21) und (Ö.3./22)

®y = o ,  = o .  (2)
Die longitudinale Komponente muß der Gleichung (5.3./17) genügen. Schreiben wir

= A(x) ek - O, (3)

so verbleibt für A(x) die Differentialgleichung

+ ( - )A( X ) '=0 .  (4)

Ihre Lösung lautet

A(x) = A r &]/k' 2 -h  2 x e -i]/k' 2 -h  2 x .  (5)

Das WurzelVorzeichen legen wir derart fest, daß der Imaginärteil stets positiv ist.
Wir betrachten zunächst die Lösung für Luft, d. h. im Halbraum x > 0 ,  und nehmen dabei
eine von Null verschiedene Leitfähigkeit an. Der imaginäre Anteil der Größe ]/k'2 — Ä-2 be-
wirkt, daß für x -> -|-oo A(x) über alle Grenzen wächst, wenn nicht

A 2 = 0 für x > 0 (6 a)

gilt. Dagegen führt im Halbraum x < 0 die Leitfähigkeit dazu, daß der erste Summand in (6)
über alle Grenzen wächst. Es muß daher

A r = 0 für x < 0 (6 b)

gelten. Somit folgt

A(x) = A ± eil/ico 2 -fi2 x für x > 0 ,  ' (7)

A(x) = A 2 Q~ k M 2 -h  2 x für (8)

An der Trennebene x — 0 müssen die Tangentialkomponenten des elektrischen Feldes überein-
stimmen. Das bedeutet in (7) und (8)

A 1 = A 2 = A .  (9)

Die transversalen Komponenten schreiben wir

= B(x) (10)

y = C(x) hz- . (11)
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Wenden wir (5.3./19) und (5.3./20) an, so folgt

B(x) = ----- - - e o 2 - ä 2 x für x > 0 ,
]/&0

2 - A2

1 A , ______
B(x) = ----- — e-iVW* » für x S 0 ;

lV 2 - &

C(x) = - 1/— k °A h<a
2 -h 2 x für x > 0 ,

|/ Po k0
2 -h 2

-1 /e M' + i £• , , . _____
C(x )=\ /  ---------- - -  ■ M - e- kM 2 -n 2 x für

y ~ h2

(12)

(13)

(14)

(15)

Die Normalkomponenten von § müssen für x = 0 stetig übergehen. Das erfordert nach (14)
und (15)

l 2 KZ 2------±o. ---- = (16)
/V - A2 J«M VW 2 - &

Wir können = /z0 setzen und nach 1/h2 auflösen. Damit ergibt sich

— - -  ------1 -------- • (17)h2 k 2 & M ' 2

Im Falle eines gut leitenden Mediums überwiegt die Leitungsstromdichte die Verschiebungs-
stromdichte co£@. Daher können wir mit

kK ' = = (1 + i) 1/ (18)
1/

rechnen. Gleichzeitig gilt |Ä;MZ | k0 , so daß wir für gute Leiter

h2 = k0' 2 (19)

setzen können.
Aus den Amplituden (12) und (13) entnehmen wir

für ®>0,  l®zl> l®a-| für X < 0 .
Im Vakuum hat das elektrische Feld die Richtung normal zur Leiteroberfläche, im Leiter da-
gegen die Richtung der fortschreitenden Welle.
Wir betrachten das Feld im Leit erinneren. Es ist nach (13) und wegen |&M

Z | J5>> k0 durch

i/ x
(S z = = AeV 2 e ' V 2 / (20)

gegeben. Mit zunehmender Eindringtiefe nimmt hiernach die elektrische Feldstärke und ebenso
die Stromdichte J = y(S rasch ab. Der Wechselstrom nutzt scheinbar nur eine dünne Schicht aus.
Ihre Stärke folgt aus (20) gemäß

0 1f eaX dx = — . (21)

22*
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Man kann demnach bei hinreichender Dicke des Mediums so rechnen, als wäre der Strom mit
der an der Leiteroberfläche bestehenden Stromdichte yA auf eine Schicht der Stärke

(22)

gleichmäßig verteilt, der übrige Leiter dagegen völlig stromfrei. Im vorliegenden Fall folgt als
Eindringtiefe

d = 1 /  --------------------------------------- m = 0,12 mm.
|/ 4k • IO"7 • 57,5 • 106 • 2k • 3 • 105

Es gilt also d = 0,12 mm a = 1 mm .
Als Widerstand der Kupferschicht und des Schichtsystems ergibt sich daher

R = — = ---------------— -----------: Q = 5 7 . io- 3 ß .
ydb 57,5 • 106 • 1,2 • IO-4 • 5 • 10~3

5.3.2. Zylindrischer Leiter

Bestimmen Sie das elektromagnetische Feld im Innen- und im Außenraum eines zylindrischen
Leiters. Welche Phasengeschwindigkeit und welche Dämpfungskonstante hat eine Schwingung
der Frequenz f = 3 • 108 Hz , wenn die Wellenausbreitung längs eines Stahldrahtes mit

dem spezifischen Widerstand — = 0,2 Q mm2/m erfolgt? Der Durchmesser des Drahtes sei
27?o = O,O2mm. ?

Lösung

a) Die Feldkomponenten
Wir führen Zylinderkoordinaten r, tp, z ein und machen für die longitudinale Komponente des
Magnetfeldes den Ansatz

§ z = 0 .  (1)

Die Zylindersymmetrie bedingt

= (2 )
O(p I

Daraus ergibt sich nach (5.3./21) und (5.3,/22)

®„ = 0 ,  § r = 0 .  (3)

Für die longitudinale Komponente des elektrischen Feldes schreiben wir

= A(q) (4)

mit

e = k'2 -h 2 r . (5)
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Zur Bestimmung der Funktion A(q) erhalten wir nach (5.3./17) die Differentialgleichung

+ ± +4=0 .
d@2 e de (6)

Sie ist ein Spezialfall der BESSELschen Gleichung (5.3./23) für n = 0 .  Ihre allgemeine Lösung
für das Innere des zylindrischen Leiters schreiben wir nach (5.3./31)

A(q) = CJM-  DN.( Q ). (7)

Für r -> 0 bzw. q -> 0 wächst N0 über alle Grenzen. Damit würde das Feld in der Drahtachse
unendlich groß werden. Das läßt sich mittels

D = 0 (8)

verhindern. Man erhält somit für das metallische Medium r jR0

(S z = <7J0 (yZ: M' 2 - A2 r) für r R„. (9)

Die transversalen Komponenten werden nach (5.3./19) und (5.3./20)

= lh CJ a' (yjfcM' 2 - h2 r) (10)
y M' 2 - ä2

----- 1 / — CJ 0' (y*M' 2 - Ä2 r) e«»2"“-*) . (11)
yi M' 2 - Ä2 I' /-*

JQ' bedeutet die Ableitung der BESSEL-Funktion nach dem Argument

s = 2 -h 2 r .

Im Außenraum r R o wird das Feld am zweckmäßigsten durch die beiden ÜANKELschen Funk-
tionen dargestellt:

S 2 = [ „( (y Ä2 r) + - Ä2 r)] für (12)-

q ist im allgemeinen komplex. Beachtet man die asymptotischen Gleichungen nach (5.3./37)

ff„ (1) (e) = 1/— Ä„<2) (e) = 1/A (13)|/ TCQ |/ TVQ

so ergibt sich wegen der Vorzeichenfestsetzung (Imaginärteil positiv), daß für r -> oo die Funk-
tion HnW gegen Null, dagegen H gegen Unendlich strebt. Um das Auftreten einer unendlich
großen Feldstärke zu verhindern, muß man in (12) daher

B = 0 (14}

setzen. Es verbleibt somit für den Außenraum

®2 = - h2 r) für (15)
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Nach (5.3./19) und (5.3./20) ergeben sich die Transversalkomponenten

= ---- - ----- AH 0W'(lk,? - h2 r\ (16)
|%0

2 - Ä2

§ = 1/-!». lfc ° fT0(D' (W - Ä2 r) . (17)
F i«o Vv-ä 2

b) Grenzbedingungen für r = R o
Auf der Oberfläche des Drahtes müssen die Tangentialkomponenten und stetig sein. Das
bedingt nach (9) und (15) die Gleichung

CJ 0 (vV 2 - Ä2 Bo ) - AH0 W (l/kj - Ä2 Äo ) = 0 . (18)

Nach (11) und (17) folgt

C W 1/e' . j z _ A HW , (yfco2 _ Ä2 j?o ) = 0 . (19)
VW  2 - A2 ]/fc0

2 - A2

Das aus (18) und (19) gebildete Gleichungssystem ist nur lösbar, wenn seine Koeffizienten-
determinante verschwindet, d. h., wenn

go (1) (Vfco2 - -Ro) = h - Ä2 . / V {20)

J 0 ( m2 ' - ä 2 1?0 ) kM' 1/k* -&] !  J o' A2 J?0 )

gilt. Hierin ist nur h unbekannt.
Die transzendente Gleichung läßt sich unter Ausnutzung der Eigenschaften von J x und Hn ver-
einfachen. Für gute Leiter kann die komplexe Wellenzahl &M' nach (5.3./6) gleich

W = /iyjwco = (1 + i) ( 21  )

die komplexe Dielektrizitätskonstante nach (5.3./5) gleich

e' = i — (22)
CO

gesetzt werden. Geht man davon aus, daß h wie beim ebenen Problem in der Größenordnung
von liegt, so gelten die Ungleichungen

Wir können daher im Argument der BESSEL-Funktionen V m' 2 — - o durch 'i? 0 ersetzen.
Die BESSEL-Funktion ist nach den Definitionsgleichungen (Ö.3./32) und (5.3./33) gleich

Jnik Ro) = [HnW (kM'R„) + Hn (fcM'Ä0)] . (24)2i
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o) und 7?0 werden als so groß vorausgesetzt, daß für metallische Leiter |&M'.R0 | 1 gilt. Auf Grund
der asymptotischen Gleichungen (5.3./37) und (5.3./38) folgt aus (24)

*o) | (25)

Mittels (Ö.3./35) ergibt sich wegen k0 & h

(26>
o(1)/ (W-  -Ro) \ 2 2 /

Mit diesen Näherungen erhalten wir aus (20) die Gleichung

u In u = v .  (27)

Darin haben u und v die Bedeutung

u = , v = _ ini n/K (28)
4 2 |/ e'

mit y0 = 1,781 nach (5.3./35a).

c) Kettenbruchverfahren zur numerischen Berechnung von h
Wir gehen davon aus, daß In u gegen u langsam veränderlich ist. Bezeichnet daher u n die n-te
Näherung, so kann für die (n + l)-te Näherung

WB+1 In u n = v (29)

geschrieben werden. Geht man von = v aus, so folgt

(30)

Mit den vorgegebenen Zahlen folgt nach (5. 3. /6b)

Für v erhalten wir aus (28) in Verbindung mit (22)

v = - — 1.781 2 tf-i 8,85 • IO"12 • 0,2 • IO"6 • 2tt • 3 • 108 6,28 • IO’ 2 • IO' 3

2
= (1 + i) 4,07 • 10~9 .
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Aus (30) folgt damit

= 3 • 10~10 ei0 « 66 , u 2 = 2,6 • 10-10 e i0  » 76 ,

u 3 = 2,60 • 10-10 ei0 » 75 = 2,60 • 10- 10 (cos 43° + i sin 43°) .

Der letzte Wert kann bereits als ausreichende Näherung angesehen werden. Damit ergibt sich
aus (28)

(31 )

bzw. mit den vorgegebenen Zahlen und dem errechneten Näherungswert

[
4- • 2 60 • 10~10 pio« 7 * 1

6,282 H--------— — ----------- m- 2 = (41,84 + i 2,23) m~2 .
(1,781 • IO’5 ) 2 J v 7

Daraus erhalten wir

h = 6,47 ei0 ’027 = (6,47 + i 0,17) m" 1 .

Für die Abhängigkeit der Welle von z und t folgt damit nach (12)

= ®0 (r) e- 0 ’ 017* e K6 ’47*-< (32)

Um die Phasengeschwindigkeit cPh der Welle bei der Ausbreitung längs des zylindrischen Leiters
zu erhalten, gehen wir von

7 2tc co co
äzq — ~ — , r Re h — ■ (33)

A c0 Cph

aus. Danach können wir schreiben
6 28

Cph = 6T7 C° = °’ 97c °-

5.3.3. Rechteckiger Hohlleiter

In einem rechteckigen Hohlleiter mit den Abmessungen a = 30 mm, b = 50 mm wird durch
eine Schleife eine elektromagnetische Welle erzeugt. Sie soll durch den Hohlleiter im Wellen-
längenbereich 7, 7 •••9, 1 cm übertragen werden. Untersuchen Sie, welche Wellentypen durch
den Hohlleiter weitergeleitet werden. Wie groß ist der Abstand zweier Schwingungsknoten für
Ä = 8,4 cm bei stehenden Hohlleiterwellen?

Lösung
Die Ausbreitungsrichtung wird als z-Achse gewählt, x- und ?/-Achse sind durch zwei zueinander
senkrecht stehende Kanten des Hohlleiters bestimmt (vgl. Bild 5.17).
Wir gehen vom Ansatz

@ = (£0 e-i ( w<“Az), & = (1)
aus und berechnen die Transversal- aus den Longitudinalkomponenten. Für (£z besteht nach
(5.3./17) die Gleichung

+ 2. + (fc2 _ Ä 2) g 0
cte 2 8y 2 z (2)
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Bild 5.17. Koordinatensystem zur Darstellung
der Hohlleiterwellen

erfüllt dieselbe Differentialgleichung wie
Die Gleichung (2) wird durch den Ansatz

s« = /(®) g(y) (4)
gelöst. Setzen wir diesen in (2) ein, so folgt

TT?<S0 + TT ~ h2 )f(x)g(y) = ° .  (5)ay

Diese Gleichung läßt sich separieren :

d2/ d 2<j

Links tritt nur x9 rechts nur y als unabhängige Variable auf. Diese beiden Variablen können
willkürlich geändert werden. Das kann nur dann mit der bestehenden Gleichung (6) verträglich
sein, wenn hier sowohl die linke als auch die rechte Seite konstant sind. Anstelle von (6) ergeben
sich damit die beiden gewöhnlichen Gleichungen

d 2/ ; d2,/

h und y, sind Konstanten. Sie sind mit k2 — h2 durch die Beziehung
2 + 2 = k 2 2 ( 8 )

verknüpft, wie man sich durch Addition beider Gleichungen (7) und Vergleich mit (6) überzeugt.
Die Gleichungen (7) sind homogene lineare Differentialgleichungen zweiter Ordnung mit kon-
stanten Koeffizienten. Sie haben die allgemeine Lösung

f(x) = A cos hx B sin hx, g(y) = C cos y/y D sin jj/y . (9)

Wir können somit für die Longitudinalkomponenten schreiben

<34 = (A x cos hx 4- B ± sin hx) (C cos yx 4- Dr sin yy) eUhz-wt), (10)

= (Ä 2 cos hx + B 2 sin hx) (C2 cos yy 4- D2 sin yy) , (11)
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Man unterscheidet in der Hohlleitertechnik zwischen den TM-Wellen (auch iE-Wellen), für
die = 0 ist (transversales Magnetfeld), und den TE -Wellen (auch H-Wellen), für die = 0
gilt (transversales elektrisches Feld).
Es werden zunächst TM-Wellen betrachtet. Am Rand des Hohlleiters müssen die Tangential -
komponenten des elektrischen Feldes stetig sein. Setzen wir voraus, daß der Hohlraum von ideal-
leitendem Material umgeben ist, so muß also

(®z)Rand = 0 (12)

sein. Das bedeutet: Es ist

@z = 0 für x = 0 und x = a ;  y = 0 und y — b .  (13)

Die Bedingungen (13) werden erfüllt für

(14a)

xa = n x r: mit n x = 1, 2, 3, (14b)

pb = n yr: mit n y = 1, 2, 3, . . .  (14c)

Das Produkt der Konstanten können wir zu einer einheitlichen Konstanten zusammen-
fassen. Wir schreiben diese im Hinblick auf die Transversalkomponenten

i nx ny (V “ 2 ) •

Damit folgt aus (10)

= i E nn  (kJ ~ &2 ) sin sin (15)y ab

Die Transversalkomponenten ergeben sich auf Grund der Formeln (5.3./19) bis (5.3./23). Man
erhält

~ „ n T7th n x . n v izy ..
= —E  nn  -3— cos sm -£-£■

a a b

S = —E  nn  -2— sm =- cosy y b a b

= E nx ny eoa> sin cosb a b

(16)

Die noch unbestimmte Größe h folgt aus (8), wenn man darin (14b) und (14c) einsetzt. Wir er-
halten

7 47t2 
a?

27T2 7l»2TC2

h 2 = ------------- ----------- ----
A2 a 2 62 (17)
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Soll die Welle nicht abklingen, so muß A2 positiv, h also reell sein. Das bedeutet: Es muß

(18)

erfüllt sein. Ag wird als GrenzWellenlänge bezeichnet. Die Weiterleitung von elektromagnetischen
Wellen in einem Hohlraum ist somit auf kleine Wellenlängen (Größenordnung: Hohlleiterabmes-
sung) beschränkt. Wir setzen Ag in (17) ein und erhalten

(19)

Die Fortpflanzung längs der z-Achse ist also nicht durch exp [ i — z j bestimmt, sondern durch
/ 2k \ \ /

exp ( i — z | ,  mit der scheinbaren Wellenlänge

1A- -/ 2 2r Ag
Diese Formel ist allgemein gültig, unabhängig von der Form des Hohlleiters.
Bei den TE- bzw. H-Wellen gilt im gesamten Hohlraum = 0.
Die Bandbedingungen erfordern, daß die Normalkomponente der magnetischen Flußdichte stetig
übergeht. An der Oberfläche des idealen Leiter's gilt daher

(20)

— 9 .

Um eine Randbedingung für zu erhalten, gehen wir davon aus, daß diese Longitudinal-
komponente für die H-Wellen die Bedeutung eines Potentials besitzt: Die Transversalkompo-
nenten $& x bzw. $& y ergeben sich nach (5.3./20) und (Ö.3./22) bis auf einen konstanten Faktor
durch partielle Ableitung nach x bzw. y, $QX und $Qy haben somit die Bedeutung von Feldkompo-
nenten, die aus dem »Potential« abgeleitet werden können. Der aus den Komponenten $q x
und $Q y gebildete Vektor steht wegen = 0 an der Leiterfläche zu dieser parallel. Andererseits
muß die Äquipotentialfläche = const von den Feldlinien des Vektorfeldes $)x i 4- %>y j senk-
recht durchsetzt werden. Die Äquipotentialflächen § = const stehen daher auf der Leiterfläche
senkrecht. Es gilt also

= 0 .  (21)
/Rand

Die Lösung der Differentialgleichung und die Erfüllung der Randbedingungen geht bei den
TE -Wellen in gleicherweise wie bei denTM-Wellen vor sich. Es ergibt sich analog (15) aus (11)

H n n cos cos e i(fe-w9 .
kQ

2 y a b& =

Diese Lösung erfüllt die aus (21) folgenden Randbedingungen

=0
dx

für x = 0 und x = a (23)
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und

= 0 für y = 0 und y = b .  (24)
ty

Die Fortpflanzungskonstante h stimmt mit dem aus (17) hervorgehenden Wert überein. Man
erhält also auch für die Grenzwellenlänge und für die scheinbare Wellenlänge A die nach (18)
und (20) sich ergebenden Ausdrücke.
Aus (22) gelangt man zu den Transversalkomponenten

~ „ nj.Tc -• nT nx . n ny ... ..
= —1 -2- Hn n cos Sin -4-kob v a b

~ . nTv:x n 1tTty ... M@ = I Zo H sm cos -1-2- elf«2-“'),
kQa y a b

~ . h nTiz TT . nTxzx n vizy ...
— H„x„y sin cos -2-2-kQ

2 a y a b

~ i h n t.Tz TT nTnx . n y ... MSV. = ---------- -Hnn  cos sm ALJL fMz-ait) .Jv k b xy  a b
Darin steht ZQ für den Wellenwiderstand des Vakuums.

(25)

Wie man aus (15) und (16) für die TM-Wellen entnimmt, bedeutet n x = 0 oder n y = 0 ,  daß das
gesamte elektromagnetische Feld verschwindet. Einfachste Welle bei den TM- bzw. -Wellen
ist daher die 2£ir Welle, d. h. die TM-Welle mit n x = l , n y = 1 .
Aus (18) erhält man mit den vorgegebenen Abmessungen für die Grenzwellenlänge der E i r  -Welle

. 2= ---- ■ cm = 5,15 cm.

!€)■<)■
Im vorgegebenen Hohlleiter kann daher keine 2?ir Welle im Wellenlängenbereich zwischen 7,7
und 9,1 cm übertragen werden. Da sich mit zunehmender Ordnung die Grenzwellenlänge ver-
ringert, ist mit dem vorgegebenen Hohlleiter überhaupt keine Übertragung von 22-Wellen mög-
lich.
Für die H 10 - Welle ergibt sich aus (18) die Grenzwellenlänge Ag = 2a = 6 cm. Auch diese Welle
kann nicht übertragen werden, wenn der Wellenlängenbereich zwischen 7,7 und 9,1 cm liegt.
Dagegen folgt für die H01 -Welle 2g = 10 cm, für die jEf20 -Welle Ag = 5 cm. Im vorliegenden
Hohlleiter mit rechteckigem Querschnitt kann sich innerhalb des festgelegten Wellenlängen-
bereiches A = 7,7- • -9,1 cm nur die 7J01 -Welle ausbilden. Sie wird durch keine andere Welle ge-
stört.
Der Abstand zweier Schwingungsknoten bei einem System stehender Wellen ist gleich A/2,
d. h. nach (20) für A = 8,4 cm:

Er ist also bei der gleichen Frequenz im Hohlleiter größer als im freien Raum. Für die Transversal-
komponenten des Feldes erhalten wir

&x sin — sin — eWz-at).
b b

(26)
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Die Komponenten sind gleich Null. Es ergeben sich damit die in Bild 5.18 dargestellten
Feldlinien.

a) Elektrische Feldlinien in der x, y-Ebene

Elektrische Feldlinien
in der y, z-Ebene

c) Magnetische Feldlinien
in der x, z-Ebene

Bild 5.18. Feldlinien der H 10 -Welle

5.3.4. Kreiszylindrischer Hohlleiter

Ein kreiszylindrischer Hohlleiter hat den Kreisradius R = 4 em . Untersuchen Sie die auftretenden
Hohlleiterwellen. Für welche Wellenlängen tritt nur eine Hohlleiterwelle auf?

Lösung
Es werden Zylinderkoordinaten eingeführt. Unter Berücksichtigung von (5.3./16) und des Ex-
ponentialansatzes (5.3./11) ergibt sich aus (5.3./17) für den Hohlraum

«*. + ± S + ± «I + /t: _ e, _ „
ÖT2 r Qr r2 y 22 / (1)

Hierin setzen wir analog (5.3.4./19)

h = 2k (2)

(3)

Die Separation der Gleichung (1) erfolgt durch den Ansatz

cos m<p .

Darin muß m ganzzahlig

m = 0, 1, 2, . . .

sein, um bezüglich (p die Periodizität 2k der Lösung zu gewährleisten.
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(3) in (1) eingesetzt, führt auf die modifizierte BESSELsche Differentialgleichung

» + ±»  + / _ U ) = o ,  (4)
dr2 r dr \ Äg

2 r2 / n 7 7

die mit Hilfe der Transformation

, 2k
y = / ,  e = -5- »• (5)Äg

in die BESSELsche Differentialgleichung

y" + y y' + (1 - y)  y = 0 <6 )

übergeht. Der Strich ' bedeutet die Ableitung nach dem Argument q der Zylinderfunktion.
Die allgemeine Lösung der BESSELschen Differentialgleichung (6) im Falle ganzzahliger Werte m
lautet

y = C±Jm (&) + C2Nm (Q) . (7)

Für q = 0 bzw. r — 0 wächst die NEUMANNSche Funktion nach Bild 5.15 über alle Grenzen.
Um diese Singularität zu beseitigen, muß C2 = 0 gesetzt werden. Für die Longitudinalkomponente
der -Wellen im Hohlzylinder ergibt sich damit

(8)-— cos m<p .

Am Rande des Hohlleiters muß die Bedingung

= 0 für r = R , (9)

erfüllt sein. Das geschieht durch geeignete Wahl von Ag . Tabelle 15 enthält die Nullstellen der
BESSEL-Funktionen J o , J x , J 2 . Ferner sind die Ableitungen J o' und J r' tabelliert. Zur Erfüllung
der Randbedingung (9) ist es erforderlich, daß das Argument der BESSEL-Funktion für r = R
gleich einer Nullstelle ist:

2tzR _
“5 — Qmn •
Äg

(10)

Qmn bedeutet die n-te Nullstelle der BESSEL-Funktion m-ter Ordnung. Die Grenzwellenlänge Ag
der -Wellen hängt also gemäß

- _ 70 E\ —
mn — )mn

Qmn
(11)

von der Nullstelle Qmn ab.
Zur vereinfachten Darstellung der Transversalkomponenten setzen wir

A;02 — h2
1 

7 2&o2 (12)
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Bei der Ableitung benutzen wir die Kettenregel und schreiben

= 2k dJ ro (e) = 2nJ m ' .
df -mn d -mn (13)

Für die Transversalkomponenten der Ü-Welle erhalten wir aus (5.3./19) his (Ü.3./23) mit (8),
(H), (12)

®r = 77 p-4' (t ) cos nup
*0 mn \AmnJ

= V 2 J m ' cos e11"2- “0 ,
0 mn \ Nnn /

>

hmJ m (— — ) sin m®
W? V-mJ

sinmy
Qr Vmnl

(14)

Im Falle der Grundwelle m = 0 sind sämtliche Komponenten von der Winkel variablen 99 un-
abhängig und die beiden Transversalkomponenten und gleich Null. Aus (5.3./21) und
(5.3./25) folgt als Ableitung der BESSEL-Funktion nullter Ordnung

J0'(e) = = (15)dg

Die Longitudinalkomponente der JET-Wellen lautet

£>z = c’oJ m (y-j 008 ™P (16)

Sie muß wie in 5.3.3. der Randbedingung

= 0 (17)
dn

genügen. Das bedeutet im vorliegenden Fall

= 0 für r = R .  (18)
dr

Wir setzen (16) in (18) ein und erhalten

M¥)=o\ Ä8 /
als Gleichung zur Bestimmung der Grenzwellenlängen 2g . Bezeichnet q'mn die Nullstellen der
Funktion so ergibt sich für die Grenzwellenlängen der H-Wellen

r _ H\  _mn \ g )mn ,
Qmn

(20)
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Für die Transversalkomponenten folgt aus (5.3./19) bis (5.3./23)

= Hmn ZQ ~J m sin mcp
Vmnl

= Hmn sin mtp e z-ait)'vip mn , 2 v \ v / r ’r \ A mn/

= H mn Z 0 J m ' ( -) cos mg> ,
'Wmn \ A mn /

£>r = ~H mn ---------- Jm | ----- I cos mtp Q z-ait)vT mn 722  771 i 2 I •
"'O mn \ mn!

Hmn hängt mit der Konstanten CQ in (16) gemäß

(21)

(22)

zusammen. Im Falle m = 0 besteht wie bei den .27- Wellen keine Abhängigkeit von der Variablen 99,
und die Transversalkomponenten (£r und verschwinden.
Die Fortpflanzungskonstante h und die scheinbare Wellenlänge erhält man auf Grund der Be-
ziehungen (5.3.3./19) und (5.3.3./20).
Für die H 01 -Welle ergibt sich aus (20) wegen = 0

2nR _
2 0 i — - — 00 .  (23)

£01

Das bedeutet, daß das Argument der Funktion J o' gleich Null ist. Nach (15) folgt

J Q'W = -A(0) = 0 .

Aus (21) erhalten wir somit, daß sämtliche Transversalkomponenten verschwinden. Wegen
div (S = 0 verschwinden auch die Longitudinalkomponenten. Es liegt also überhaupt keine
Welle vor.

Tabelle 15. Nullstellen der BESSEL-Funktionen und ihrer Ableitungen

m

Wb n 1 2 3 1 2 3

0 2,405 5,520 8,654 0,00 3,832 7,016
1 3,832 7,016 10,177 1,84 5,33 8,54
2 5,135 8,417 11,620 3,054 6,706 9,969

Wie wir aus Tabelle 15 entnehmen, ist die GrenzWellenlänge am größten für die H ir Welle. Nach
(20) ergibt sich

2tü
AL = ----- 4 cm = 13,7 cm .11 1,84
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Die nächstkleinere Grenzwellenlänge kommt der 2?01 -Welle mit

A01 = 4 cm = 10,45 cm01 2,405
zu. Zwischen A = 10,45 cm und A = 13,7 cm tritt somit im Hohlzylinder nur eine Hohlleiterwelle,
die E n -Welle, auf.

5.3.5. Rechteckiger Hohlraumresonator

Ein Hohlraumresonator entsteht aus einer Hohlleitung, indem jedes der beiden Leiterenden
durch eine Metallplatte abgeschlossen wird. Berechnen Sie die längste Resonanzwellenlänge für
einen rechteckigen Hohlraumresonator. Seine Länge betrage l = 30 cm . Die rechteckige Grund-
fläche habe die Abmessungen a = 3 cm , 6 = 5 cm .

Lösung
Die Reflexion der Wellen an den metallischen Begrenzungsflächen führt zu stehenden Wellen.
Am metallischen Abschluß vorn und hinten darf das elektrische Feld nur eine Komponente
orthogonal zur Begrenzungsebene haben. Um diese Randbedingung erfüllen zu können, muß die
Hohlleiterlänge l ein ganzzahliges Vielfaches der halben Hohlleiterwellenlänge A sein:

? = ( = 0 ,1 ,2 , . . . ) .  (1)

Nach (5.3.3./20) ist die Hohlleiterwellenlänge von der Grenzwellenlänge Ag abhängig. Wir setzen
in diese Formel die Verknüpfung (5.3.3./18) mit den Hohlleiterabmessungen ein. Aufgelöst nach
der Vakuumwellenlänge folgt

2A = %nxnynz = - - -  ----- , ( , 71 , n z = 0, 1, 2, . . .) . (2)

|/ a 2 & 2 c2

Diese Größe wird als Resonanzwellenlänge bezeichnet.
Um zu entscheiden, welcher der Parameter n xi n y , n z Null werden kann, ist es erforderlich, das
elektromagnetische Feld der stehenden Welle zu bestimmen. Dazu machen wir nach (5.3.3./1)
den Ansatz der Überlagerung einer hin- und einer rücklaufenden Welle. Wir schreiben für die
Longitudinalkomponenten der beiden TM-Wellen nach (5.3.4./15)

= E(kQ
2 — h2 ) sin sin

a b

= E (&0
2 — h2 ) sin sin e -i(hz+a>t) .

a b

Die Fortpflanzungskonstante h kann durch die Hohlleiterwellenlänge A ausgedrückt werden.
Berücksichtigt man (1), so folgt

<»>

Zur Berechnung der Transversalkomponenten wenden wir die Gleichungen (5.3./19) bis (5.3./23)
an. Sie gelten nach (5.3./11) unter der Voraussetzung einer fortschreitenden Welle der Form
exp [i (hz — co£)], also zunächst nur für die hinlaufenden Wellen der Form (3). Die rücklaufenden
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354 5. Hochfrequente Wechselfelder

Wellen (4) können zur Ableitung ihrer Transversalkomponenten auf die Form (5.3./11) zurück-
geführt werden, wenn man in (5.3./11) und damit ebenso in (5.3./19) bis (5.3./23) h durch — h
ersetzt. Im einzelnen ergeben sich aus der Überlagerung von (3) und (4) für die Transversal-
komponenten der stehenden Welle des TM-Feldes

= — 2E x ■ cos —— sm sm e~lw< ,
* al a b l

- ' n  nju:2 . n xizx njvy . wjtcz . ,= —2E — sm —— cos sm e~ 7 ,y bl a b l

~ n yn 2 . n xnx n znz . .= — 4i E — — ------- sin — cos cos e~lwZ ,
ZMtWi* ab l

(6)

Wie wir hieraus entnehmen, kann bei den stehenden TM-Wellen die Größe n z gleich Null werden,
ohne daß sämtliche Feldkomponenten verschwinden. Als größte Resonanzwellenlänge ergibt sich
bei den TM-Wellen nach (2) die 1,1,0-Welle:

A1 ’ 1 * 0 
= — - —— . (7)

l /  n x2 n y2

[/ a2 ” b 2

Nach (6) sind nur die Amplituden der magnetischen Transversalkomponenten räumlich ver-
änderlich. Als größte Wellenlänge der TM-Wellen erhalten wir mit den vorgegebenen Zahlen

21 ’ 1 ’ 0 = — — cm — 5,1 cm.

1/ -+-|/ 32 5 2

Für die stehenden Wellen der TE -Wellen folgt mit dem Ansatz

e (Ä) = H cos V* cog n y
v a b

= H cos cog
k 2 ab

für die Transversalkomponenten

_ nTTr7 n yTz n xTWc , n yny . njnz . .& x = 2HZ0 cos —— sm sm e~w ,x 0 bk0 a b 1,

rr • Krim n yTzy . n zr:z . .= —2HZq -2— sm cos sm e“ lcüf ,
akQ ab l

. rr n x n/n:?>. . n xnx n izy n znz . .= —i Zf — sm — cos cos e“ lwf ,
lakQ ab l

. TT n yn k“ n xitx . n vizz . .= — i H y cos sm cos e“icüf .
Iblc ab l

(8)

(9)

(10)
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Im Gegensatz zu den TM-Wellen darf nach (10) bei den TE-Wellen n z nicht Null werden, wenn
nicht das gesamte Feld verschwinden soll. Dagegen muß nur entweder n x oder n y von Null ver-
schieden sein. Im Falle b > a erhält man somit bei TE-Wellen als längste Grenzwellenlänge des
rechteckigen Hohlraumresonators

2».i.i = — 2 — . (11)

]/— + —|/ l2

mit den vorgegebenen Zahlen
2A0 * 1 ’ 1 = ---- ■ ■ cm = 9,9 cm.

5.3.6. Gütefaktor und Verlustfaktor eines Hohlraumresonators

Der Gütefaktor Q gibt das Verhältnis zwischen dem 27r-fachen des Energieinhaltes W und der
während einer Periode verlorenen Energie

an:
= ( 1)

£V r V
/

Pv bezeichnet die Verlustleistung. Den Kehrwert des Gütefaktors definiert man als Verlust-
faktor.
Bestimmen Sie den Gütefaktor eines Hohlraumresonators aus Kupfer mit den Abmessungen
a = 3 cm, b = 5 cm, l = 30 cm für die F 110 -Resonatorwelle. Es ist mit y = 57,5 • 106 Q -1 m-1

zu rechnen.

Lösung
Wir nehmen an, das Medium zwischen den Metallwänden sei Vakuum, so daß Verluste durch
das dielektrische Zwischenmedium nicht auftreten. Die metallischen Verluste entstehen durch
die endliche Leitfähigkeit der Hohlleiterwände. Um diese Verluste zu berechnen, bestimmen
wir den Strom in den Wänden bei Abstimmung auf Resonanz. Wir setzen voraus, daß der Krüm-
mungsradius an der Leiteroberfläche groß gegen die Eindringtiefe d ist.
Aus der MAXWELLSchen Gleichung (1.4./1) folgt bei vernachlässigbarem Verschiebungsstrom auf
Grund des STOKESschen Satzes nach (1.4.3./7)

= nx§ .  (2)

Darin bezeichnet (Einheit A m-1 ) die Oberflächenstromdichte, § die magnetische Feldstärke
an der Hohlleiterwand, n gibt die in das Vakuum gerichtete Flächennormale an. hängt mit der
Stromdichte Q bzw. mit der Stromdichte $ 0 

an der Oberfläche des Leiters gemäß
oo oo __3

S = f S dz = f So e d dz = Sod (3)
o o

zusammen (vgl. 5.3.1.).

24 Schilling, Felder



356 5. Hochfrequente Wechselfelder

Die Verlustleistung in einem Stromkreis mit der Stromstärke I und dem Widerstand R errechnet
sich aus

P v = B/l f( . (4)
In einem Leiterstück mit der Eindringtiefe d, der in Stromrichtung gemessenen Länge ds x und
der senkrecht zur Normalen- und senkrecht zur Stromrichtung gemessenen Breite ds 2 beträgt die
Verlustleistung nach (5)

dsdP V = -7i-(.3oeff dS2 ) 2 .
yd ds

Hieraus ergibt sich mittels (3)

/I n ®eff ds 2ar v = -------------- .yd
Die gesamte Verlustleistung des Hohlleiters folgt hieraus durch Integration:

Pv = yd ff « d dÄ2 -
Das Doppelintegral ist über die gesamte Oberfläche des Hohlleiters zu erstrecken.
Aus (5.3.5./6J erhalten wir für die 110 -Welle

~ 4i E tu2 . tzx Tzy . t-------------- sm — cos — e-1Cdi ,a -------b

(5)

(6)

(?)

Za M

4i E 7T2 ivdu . ivu . .----- cos — sm — e-1Cüi

aA
TZX . Tzy

®* = 0 ,

a b
(8)

= 0 .

Für die z-Komponente des elektrischen Feldes folgt nach (5.3.5. /3) und (5.3.Ö./4) durch Addition

= 2E (kQ
2 — h2 ) sin — sin — e~i(üt .

a b (9)

Die z-Komponente des magnetischen Feldes ist gleich Null.
Als Fortpflanzungskonstante ergibt sich nach (5.3.5./Ö) für n z = 0 :

h = 0 . (10)
Die Resonatorwellenlänge ist nach (5.3.5J7) gleich

Ai.i.0 = — ..... ,2 ----------- .

]/— + —
1/ a 2 b2

(H)

Aus (8) und (9) erhalten wir nach (7) durch Integration über alle sechs rechteckigen Leiterflächen
f i b

sin2 ~ dy dz -f
o

p 16 E _
v ~ yd Z 2 K

sin2 — dx dz
a (12)

o
b a

, r r / 1 . o tzx o ~y , i o . (
+ I — sm2 — cos2 ~ H cos2 — Slir

J J \ b 2 a b
0 0

1

a2 a &
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Die Auswertung der Integrale liefert

Pv=  "7- W + a63 + a3fe)- < 13 )yaZ0a 4o4

Um die Gesamtenergie W des Hohlraumresonators zu berechnen, berücksichtigen wir, daß nach
(8) und (9) (5 sein Maximum annimmt, wenn § verschwindet. Für die Gesamtenergie können wir
daher schreiben

W== T s°fff (14)

Hier setzen wir (9) bis (11) ein:

l b a
W = 2erik(I

i E 2 f f f  sin 2 — sin 2 da: dy dz = . (15)
J J J a b a 2dW v '
0 0 0

Zu dem gleichen Ergebnis gelangt man aus den § -Komponenten nach (8). Wir setzen (15) und (13)
in (1) ein und erhalten

_ co JF _ 7cyZ0<Z 1/a2 4- b 2 3 l
Q ~ ~P ~ ~ 2\2l(a? + & 3 ) + (a2 + & 2 ) ab] ’

Anstelle des Gütefaktors wird häufig der Verlustfaktor verwendet :

Die Eindringtiefe ist nach (5.3.1./22) sowie (5.3.5./2) durch

gegeben.
Mit den vorliegenden Zahlen folgt

d = -i / ---------------------- - -----  ---------- ------ m = 8,7 • 10-’ m .
/ tt • 57,5 • 10« ■ 12071 ]/— + — • 10 2

|/ |/ 9 25

Daraus ergibt sich für den Gütefaktor

7t • 57,5 • 10 6 • 1207t ■ 8,7 • 10~7 ]/0 + 25 3 • 10~6 ■ 0,30
~ 2[0,60(27 + 125) 10~6 + (9 + 25) 3 • 5 • IO-8 ] “

24*
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Aufgaben

Welche Formel ergibt sich für die Fortpflanzungskonstante h, wenn der metallische
Halbraum die Permeabilität 4= /liq hat?
Berechnen Sie die Eindringtiefe d elektromagnetischer Wellen der Frequenz
f = 1000 Hz in Kupfer (y = 57,5 106 Q -1 m-1 ).
Wie groß ist der Widerstand für Wechselstrom der Frequenz / = 1 000 Hz in einer
Kupferplatte der Länge l = 1,50 m und der Breite b = 5 cm? Die Dicke sei groß
gegen die Eindringtiefe.
Berechnen Sie den Wechselstromwiderstand einer zylindrischen Leitung aus Kupfer
mit der Länge 1 = 2 km und dem Durchmesser 27?0 = 2 mm, wenn durch die
Leitung Wechselstrom der Frequenz / = 3 • 105 Hz fließt.
Eine Rechteckhohlleitung hat die Abmessungen a = 5 cm , 5  = 3 cm . Es soll der
Wellenlängenbereich zwischen 10,1 und 11,4 cm übertragen werden. Welche Hohl-
leiterwellen sind für die Übertragung möglich?
Berechnen Sie die GrenzWellenlänge der E ir Welle für einen Rechteckhohlleiter
mit den Abmessungen a = 8 cm, 6 = 5 cm. Welche Wellentypen sind für
A = 7,9 cm in diesem Hohlleiter außerdem möglich?
Geben Sie zur vorhergehenden Aufgabe den Wellenlängenbereich an, für den im
vorgegebenen Rechteckhohlleiter allein die H 10 -Welle übertragen wird.
Geben Sie die Dämpfung der _EJ01 -Welle in einem kreiszylindrischen Hohlleiter mit
dem Durchmesser 2B, = 8 cm an, wenn die Wellenlänge A = 12 cm beträgt. Die
durchlaufene Strecke ist gleich 6 cm.
In einem als Grenzwellendämpfer gebauten Hohlleiter mit Mikroschrauben zur
Verstellung von a soll die H 10 -Welle nach Durchlaufen der Strecke 10 cm die
Dämpfung 40 dB besitzen. Wie groß ist a einzustellen für A = 5,0 cm?
Berechnen Sie die in einem Rechteckhohlleiter mit den Abmessungen a = 3 cm,
6 = 5 cm durch die H 01 -Welle übertragene Leistung, wenn die Wellenlänge A = 8 cm
beträgt. Die effektive elektrische Feldstärke hat im Hohlleiter den Maximalwert
1 V m-1 .
Wie groß sind die längsten Eigenwellen bzw. Resonatorwellen für einen kasten-
förmigen Hohlraumresonator mit den Abmessungen a = 2 cm, 6 = 3 cm,
l = 10 cm?
Leiten Sie die Formel für die Eindringtiefe der H 011 -Resonatorwelle ab.
Bestimmen Sie den Verlustfaktor der H 011 -Resonatorwelle.
Stellen Sie die allgemeine Formel für den Verlustfaktor der -Resonatorwellen in
einem kastenförmigen Resonator auf.
Stellen Sie die allgemeine Formel für den Verlustfaktor der H-Resonatorwellen in
einem kastenförmigen Resonator auf.
Der Gütefaktor eines Hohlraumresonators für eine spezielle Resonatorwelle beträgt
Q = 105 . Sämtliche Abmessungen sowie die Wellenlänge werden vervierfacht. Wie
verändert sich Q ?

A 5.3.1.*

A 5.3.2.

A 5.3.3.

A 5.3.4.

A 5.3.5.

A 5.3.6.

A 5.3.7.

A 5.3.8.

A 5.3.9.

A 5.3.10.

A 5.3.11.

A 5.3.12*
A 5.3.13.*
A 5.3.14.*

A 5.3.15.*

A 5.3.16*



Lösung der Aufgaben

A 1.1.1. D = 1,27 As m-2 , E = 1,44 • 1011 V m* 1

A 1.1.2. F = 2,30 • IO“8 N = 2,30 • 10~3 dyn

A 1.1.3. ® = —3,13 • IO“7 — Asm“ 2 , E = — 2,40 • IO1 V m"1

r

A 1.1.4. E = Spannung (7/Abstand a = 22000 V m-1

A 1.1.5. 17 = — = 285 V
2e

A 1.1.6. F = 1,6 • IO"13 N

A 1.1.7. — = 4- m-3eg, Q = 2,3 • IO-16 As
oc 3

A 1.1.8. 0,707 | i |  A = 983 A
A 1.1.9. H = 40000 A m -1

A 1.1.10. B = 14,95Q, I = 14,7 A ,  H = 1,03 • 10 6 A m" 1

A 1.1.11. I7i nd  = 0,12 V
A 1.1.12. B = 1,5 Vs m- 2

A 1.1.13. = — 20 kA im Innenraum, = 0 im Außenraum
A 1.2.1. 0 = 0 O ~ (10* + 20?/ - 15s) V nr 1 - (10z 2 - 5?/2 ) V m~2

A 1.2.2. 0 = Cr —
r

A 1.2.3. , 1 n r _ v v rgrad — = ------------ , grad e r = e r — ,

grad z r = z e e r + i z + r ei(P?z

A 1.2.4. U = 0 ,  Spannung ist wegunabhängig

A 1.2.5. U = 76700 V
A 1.2.6. U = 200 V
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A 1.2.7. W = 1000eV = 1,60 • IO-16 J ,  v = 1,9 • 10 7 m s- 1 < c0

A 1.2.8. 0 _ -IO" 6 1 _ + 
1

V
“ 4k • 8,85 • 10-i 2

_]/(« — l )  2 + y2 + z2 }/(a; 4- 1)2 + j/2 y

A 1.2.9. 1 ___  + 
1

(x — l )  2 + y2 + z 2 + l )  2 -j- y2 + z2 3

A 1.2.10. U = U o + 220 y V , Uo Potential gegen Masse

A 1.2.11. = —2 • 10- 8 J ,  |me | = 10-’ Asm, |3R| = 2 • 10" 8 J

A 1.2.12. |m e | = 3,14 • IO*7 Vsm

Ä 1.2.13. |9£R| = 3,14 • 10- 4 J

A 1.2.14. = 1,165-
2m

io- 29 Vsm, h = —
2k

A 1.2.15. m m = 6,01 • 10 -5 Vsm

A 1.2.16. m m = 4,2 • IO-5 Vsm

A 1.2.17. H = 0,299 A m- 1

A 1.2.18. H = 0,019 A m- 1

A 1.3.1. rot © = 2C(y — z , z  —- x, x — y)

A 1.3.2. ©<p = 0 ,  ©0 = 0 ,  ©\ r = /(r) r ,  rot © = 0 .  Das Feld hat ein Potential.

A 1.3.3. Das Feld muß die Form ©~ = C1 + C2 + C3z n haben.

A 1.3.4.
r

div r = 3 , div — =
r

2— , div z e1?! = 2z e1(p

r

A 1.3.5. div ©X© = V-  ©X§ = § • rot © — © • rot §

A 1.3.6. Aus V X (V X ©) = W • © — v • v© folgt rot rot © = grad div © —■ A®

A 1.3.7. grad 3X • 58 = 31 • \/58 4- 58 • W + 3X X rot 58 + 58 X rot 31,
rot 31 X 58 = 31 div 58 - 58 div 31

A 1.3.8. a© 2 = r a©y a©r
dq> dz ’ dz

= a(r©y ) = d .
dr dr dr

A 1.3.9. rot grad q) = v X V99 == o ,
div rot 31 = V * V X 3X = V X 3X • V = V X V • 31 = 0

A 1.3.10. ( r i nd  )e ff = 70,1 V

A 1.3.11. (©<p)eff = 558 Vm- 1

A 1.3.12. Rotor in Richtung der Feldspulenachse, Effektivwert 3,16 V m -2
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A 1.3.13. Für die geschlossene Fläche ist (ß) 58 • d2I = const . Aus der Geschlossenheit der

magnetischen Feldlinien folgt fff div 58 d7  = 0 bzw. div 58 = 0 .

A 1.3.14. Ir
a) = für ’’ = '&?• = 7 ’ 96  A m-1 >

h) &<p = für = r = R a> = 3,98 A m -1 ,
2nr

c) § = — ~ r * für Äa <r<Ä aa , §„ = 1,44 Am -1 ,Vf  2nr R - R a - - aa>

d) §„ = 0

A 1.3.15. E = —— = 3000 V m- 1

27T£0r

A 1.3.16. a) = 15,9 Am- 1 , b) &? = 3,2 A m" 1 , c) £ = 0

A 1.3.17. a) ®r = 1130 V m- 1 , b) S r = 2825 V m“1 , c) @r = 1 410 V m“ 1

A 1.3.18. q = 5,3 • IO-8 As m -3

A 1.4.1. Q = 1,27 • IO- 4 As

A 1.4.2. mi nd  = — 3,2 • IO-6 m

A 1.4.3. r = 2,3 • 10 5 s

A 1.4.4. t > 1,5 • IO"16 s

A 1.4.5. Aus == rot § und div £@ = q folgt div rot § = q , d .  h. q = 0

A 1.4.6. ®Itang = ®IItang> £ I Inorm = £ II®IInorm;

®itang = sin (fi, @i norm = cos (Pi (i = I, I I) .  Daraus folgt
tan (pi £i
tan 9?n £ n

A 1.4.7. tangpj /zj
tan tm

A 1.4.8. P = 84 kW

A 1.4.9. — e0@2 = 4,4 • IO“18 J m- 3 , — ,u0§ 2 = 4,4 • 10~18 J m“ 3,
2 2
|@X§ |  = 2,65 • 10“ 9 J m- 2

A 1.4.10. E = l , 25 -104 Vm -1

A 1.4.11.
<3) 2 O2

Druck p = — = ----------- , d.  h .  5,73 • 10 5 N m~2 = 5,85 at
2£0 32t; 2£0B 4

A 1.4.12. W = 0,64 J ,  p = 0,081 at

A 1.4.13. W = 1,93 J
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A 1.4.14. Aus p = — £0 ®2 und E = — —— ergibt sich als gesamte wirksame Kraft
2 4ks 0 jR2

Q2
F = 4:T:R2 p = -------  . Somit folgt als potentielle Energie

8k£0Ä 2

OO _ 02
pot = - p dr = — d. h. lF pot = -450 J .

R 8to 0ü

A 2.1.1. C = 5,09 • 10~10 F

A 2.1.2. W = 3,98 • IO"3 J

A 2.1.3. C = 4k £ 
R1B2 , g = _g_ -Ri - -Rz

R ± — R 2 4k£Z2 4tt£ R ±R 2

A 2.1.4. C = 4tzeR

A 2.1.5. R = 9 • 10’ m

A 2.1.6. 0 = _Q_ /J ____1_\ (g = _Q_ 'xi + yi + (Z — o)f _ OT + yi + (z + z0 ) f
4™ V ’•'/ 4to [y + yi + (z _ 2#) g y g + yi + (Z + Zo) 2

wenn die Metallplatte als x, y-Ebene, die Verbindungslinie Q'Q als z-Achse gewählt
wird. = 2,6 V m-1 , = 0

A 2.1.7. 2 , t v

A 2.1.8. a) 0 = -E (1 - b) 0 = -E& (1 -
\ rA ] \ r3 / 4K£0r

A 2.1.9. m = 1,0 • 10-14 Asm, EY = 13,6 V m-1

A 2.1.10. = -7,2 V m-\ ®„ = 0
7T£oa

A2.1.11. (x2 + y2 + a2 ) — 4=a2x2 = C

A 2.1.12. q' = 1,36 • 10-’ Asm- 1

A 2.1.13.
_ ci>) 2 [

0 = ----- In ------—— -------- ; auf der Oberfläche der zylindrischen Leitung ist

° \ X ~a)  +y2

0 gleich Uo = \n a ~ R ° ,  Uo = 91,1 V .
2k£0 R o — d

, [(z - a) 2 + y2]
0 = -2- In -------------------

4TOo [(* + a)« + y*]
A 2.1.14.

A. 2.1.15. 0 O = — Eox - - - -— • grad In —
4k£0 r
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A 2.2.1. u = ---------- , v = -------- ----  ; u = const und v = const sind Kreise durch den
x2 + y2 x2 + y2

Anfangspunkt des Koordinatensystems, die die x- bzw. die y-Achse berühren. Das
Feld entspricht dem des Liniendipols (sehr nahe benachbarte entgegengesetzte
Ladungen auf zwei dünnen Drähten beiderseits der Achse).

'n2 v 2
A 2.2.2. x = u 2 = —----- v2 , y = 2uv

4u2 4v2

Zwei Scharen konfokaler Parabeln als Äquipotentiallinien. Eine Gerade kann durch
eine der langgestreckten Parabeln genähert und damit das Feldproblem einer
Kante gegenüber einer Ebene gelöst werden.

A 2.2.3. x = c cosh u cos v , y = c sinh u sin v
u = const wird in Ellipse überführt, Brennweite /, v = const wird in Hyperbel
überführt. Spezialfall ergibt Kante gegenüber leitender Ebene.

A 2.2.4. Einheitskreis wird a) in Strecke zwischen —1 und +1, b) in Strecke zwischen — i
und 4-i abgebildet.

A 2.2.5. u = j cos 92, v = ----— sin 92

u 2 v2
a) Für konstante r folgt ---------------1 --------------- = 1 , d. h., Kreise werden in

bv )  1

konfokale Ellipsen abgebildet, im Falle r = 1 in Strecke —2 — [-2.

b) Für konstantes 92 folgt -------- ------------ = 1 , d. h., Geraden gehen in
4 cos2 92 4 sin 2 92

konfokale Hyperbeln über.

A 2.2.6. Im Falle r = const werden die Kreise x2 + y2 = r2 in der z-Ebene zu Ellip- -
262 222sen -----------— -j --------------- = 1 ,  r = c ergibt Strecke —2c — [-2c. Gerade durch

(' + ")■ e - 7) 1

den Ursprungspunkt, unter dem Winkel 92 gegen die reelle Achse geneigt, wird in
2 2

Hyperbel --------------------------- = 1 transformiert.
4c2 cos2 92 4c2 sin 2 92

A 2.2.7. z = A(ew — w) + B

t, K
A2.2.8. l nz  = A 2 f V(* ~ (* ~ 4- Bg . w = Ä 3 f-- d * 4- Rg

J V(« — ®i) (« + 1) s(s — «3) J l/s(s + 1) (s — a 3)0 0
C

A 2.2.9. w = Ä 3 C ----- — + B 3
J /(« — «i) (s + 1) «(« — a 3)
0

A 2.3.1. n = 5,9 • 10-4
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A 2.3.2. H = 2,1 • 106 A m-1

A 2.3.3. H = (e r - 1) e0 (£2

A 2.3.4. % = 1,25 • IO"3

A 2.3.5. = Ntn m , H = ------ ----- = 8,4 • 1028 m- 3 , |rnm | = 2,6 • IO’29 Vs m
A r kg kmol-1

A 2.3.6. |mB | = 145  • IO“29 Vsm, JHlL = 2,3
IwbI

A 2.3.7. JF = 1M = 2 ,7J
Q

A 2.3.8. TF W = 3kT = 4,32 • IO-20 J ,  = mm • § ; |mm | - 2,6 • IO-29 Vsm,
H = 1,66 • 109 Am”1 . Derartige Felder existieren nur zwischen den Elementar-
teilchen; sie sind technisch nicht zu realisieren.

A 2.4.1. N = 0,333..., = 60 Am-1

A 2.4.2. = 999,66 A nr 1

A 2.4.3. TV = 0,5

A 2.4.4. = 19998 A m" 1

A 2.4.5. Senkrecht zur Plattenebene N = 1 , parallel N = 0

A 2.4.6. = 20000 A m- 1 , H t = 19,98 A m" 1

A 2.4.7. £ = 0,85, V = 0,18
A 2.4.8. H = 3,3 A m-1 in der Massivkugel, H = 5,0 A m-1 im kleinen Innenraum der

Massivkugel

A 2.4.9. Hi = ------------------- , Hi = 1,5 A m- 1

A 2.4.10. d/(jr)Resultierende Kraft g = m ♦ V© = vttx ---■ Ho . Diamagnetische Stoffe werden
dx

aus dem Gebiet maximaler Feldstärke heraus-, paramagnetische Stoffe (m > 0)
hineinbewegt.

A 2.4.11. ~ 1 / , 3mm * r \
& = 3 n tm+  ” r ,47r/z0r3 \ r2 /

tanfc = — = 2 tan geographische Breite

/ l - j l / l  \2 \ /  l 1 l l l  \2 \

A 3.1.1.
! Q+1/Q-) O -4H

P' A 
111 / , --------------V / / --------------\4tc / l i l l \ 2 \ I l / l \ 2 \

(v  -Z <> + 1/ hr - 2 <> + ,'22 H - v _z » + l/ v + 2« + ri2 )
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A 3.1.2. = — In —2 2k r±

A 3.1.3. dz + d O bzw. d = dzH- -f dy = O
ox dy

Die magnetischen Feldlinien fallen mit den Kurven = const zusammen. Man
erhält Kreise.

A 3.1.4. 0 = ln -, 0 = 1,99 • 10~10 Vs
2k jRj

A 3.1.5. § senkrecht zur Stromrichtung, H = — , H = 5 A m-1

b

A 3.1.6. H = 2,26 • 10 4 A m" 1

A 3.1.7. für Pi a>  Z, d .  h. H a = —
l + a

A 3.1.8. = 1,21 • 10 5 A m- 1

A 3.1.9. H = 16 A m- 1

A 3.1.10. Mitte: H = 1000 A m“ 1 , Abstand 4 m:  H = 1,9 A m -1

A 3.1.11. a) 1 .71  = 3900 Am- 1 , a) 2. H = 2320 A m" 1 ,
b) 1. Zf = 2320 Am- 1 , b) 2. H = 1220 Am- 1

A 3.2.1. Z = 2,4 • IO-10 A

A 3.2.2. F = 1 N

A 3.2.3. F = 0,2 N

A 3.2.4. M = 1,06 • IO" 3 Nm

A 3.2.5. M = 1,6 Nm
A 3.2.6. I = 2,6 • IO“10 A

A 3.2.7.
bt

= — l - e  (1 +

A 3.2.8. e - ( l  4- x) = 0,01 mit x = — = 6,64, t = 1,44 s

A 3.2.9. >(0) = 0,031 s- 1 = 1,8° s- 1

A 3.2.10. = >6°, = 2,6 s

A 3.2.11. <p = >(0) t e i J  , 9> m = e yjp ’

t - i /Z
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/ 1/4JD - &2 , b . ]/4JZ> - 62 ,2J  i cos ------------- t H---------------- sm ------------- t
\ 2J ±JD — b 2 2J

A 3.2.12.

A 3.2.13.

A 3.2.14.

q) = 0,986 4g? M

— 3,6 s ,  = 3,1°

d£ b J
0

Meßausschlag cp = 1,6° wird praktisch sofort angenommen. Beim Rückstellen

kriecht das Gerät gemäß (p = g? M e b = <pmax e-0 *002i

T Pfßlnl j i t #o i  /#o2
mx + bx + kx = —— — , Endauslenkung = — ---- / ---------------— ,

Xq x 2 1/ 4 k

#M = mm

mx + bx + kx = (jLqIHI , Endauslenkung mm

A 3.2.15.

A 3.2.16.

A 3.3.1.

A 3.3.2.

A 3.3.3.

A 3.3.4.

A 3.3.5.

A 3.4.1.

A 3.4.2.

7?sh 15,15 Q

I = + I 2 < 3,9 A

R y = 90,5 kQ

R x = 101,1 Q

R = 49,9 Q

q = -6,25 • IO’ 17 As

E = — n = 2,3 • 10 5 V m- 1

3 e

A 3.4.3. vr = 1,101 cm s-1 , v2 = 1,092 cm s-1

A 3.4.4. = 1,106 cm s-1 , v2 = 1,087 cm s-1

A 3.4.5. v z = 5,86 • 10 5 m s" 1 , oc = 11,0°

e2

A 3.4.6. re = ----------- = 1,4 • IO”15 m
87V€0We C2

A 3.4.7. y2 = Cx mit C = 0,0833 m -1 bzw. C = 0,0788 m -1 ; Ay =1 ,7  mm

A 3.5.1. Ä;A ] = 0,0932 mg A-1 s -1 , k = 0,01045 mg A-1 s-1

A 3.5.2. R = 9,648 • 10 7 As kmoh 1

A 3.5.3. t = 170 s

A 3.5.4. u = 1,30 m 2 kmob 1 F- 1

A 3.5.5. v = 0,51 mm s-1
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A 3.5.6. v = 0,33 mm s-1

A 3.5.7. Cj = fe+2 (6+1 + &-), = 0)01064
c i &+i (d +2 + &_)

A 3.5.8. v = 0,054 mm s-1

A 3.5.9. n = 5,9 • 1028 , b = 6,5 mm/s V m-1

A 3.5.10. U n = 4,2 • IO"5 V

A 3.5.11. v = 0,38 mm s”1

A 3.5.12. N = 1,8 • 1029

A 4.1.1. L = 12,6Q, |fR| = 19, 6Q ,  I eii  = 11,2 A, = 40°

A 4.1.2. a) a>L = -3,1 kQ, |3t| = 3,1 kß;  b) <»L ----- = 467 Q ,  |Sft[ = 478 Q
(oG coC

A 4.1.3. C = 101 pF, 0 = 38,6 pF

A 4.1.4. co0 = Io = 1,6 MHz
)/LC

für beide Schaltungen

A 4.1.5. P = 1,89 kW

A 4.1.6. |$| =a>£ = 471kQ, cos <p = 1,06 • 10-5 , P = 2,2 mW

A 4.1.7. /o = 1,13 • 106 Hz, d /  = 5500 Hz

A 4.1.8. r = 14,3 s
A 4.1.9. 0,999 = 0,35 s

A 4.1.10.
R

I = Io l 1

A 4.1.11. o,oi == ms
A 4.1.12. t = PC = 2 • 10- 8 s

A 4.1.13. Mit zunehmender Stärke des Magnetfeldes nimmt die Permeabilität ab. Daher ver-
ringert sich die Selbstinduktion der Spule mit Eisenkern, wenn die Stromstärke
ansteigt. Der Schwingkreis stellt ein anharmonisches System dar. Seine Resonanz-
frequenz hängt von der effektiven Stromstärke ab.

A 4.1.14. b = 2,5 • IO"6 Js

A 4.1.15. VFBei Anpassung folgt t7eff = — UQ4

A 4.1.16. Ra = Ri , (p& = bzw. $R a = SRi

A 4.2.1. b = 10 1g = 27 dB,  = — In — = 3,11 Np
P 2 2 P 2
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A 4.2.2. 9xx = 3 coth 9 ,  d. h. 9 = 00

A 4.2.3. & = 27 dB, ß = 3,11 Np

A 4.2.4. Pi : P 2 = 3,2 • 10 3 , C72 = 56

A 4.2.5. Z = 2190, y = ß = 3,09

A 4.2.6. R = 2290 ,  1/G = 84,7O

A 4.2.7. / t t  \ /coshy 3 shih 7 \ /coshy 3 si R h 7 \ i t t  \
p 1 ] = 11  | 1 1 | p 2 j
\ Ii / 1 — sinh y cosh y 1 1 — sinh y cosh y 1 \ 1% /

\ 3  / \ 3  /
/cosh 2y 3 sinh %7 \

= 11  I / 2 \1 — sinh 2y cosh 2y ] \ I  2 )
\ 3 /

A 4.2.8. / g = 3,2 • 10 7 Hz

A 4.2.9. Durchlaßbereich co > co0 = , 3 =1 / ~ 1A — —
yzö l, c  1 0,2

Sperrbereich <o < w0 , 3 = i I / 77 ]  Av — 1
G |/ co2

A 4.2.10. Durchlaßbereich u> < co0 = , 3 = l/"77 1 /  ~
i/Lc y 0 ]/

Sperrbereich co > co0 , 3 — i 1/ 1/ 0

[/ C |/ co2 — co0
2

A 4.2.11. /i = 1,34 • 10 5 Hz < f < 1,65 • 10 5 Hz = f n

A 4.2.12. R x = 90,9 Q , L x = 225 mH

A 4.2.13. D _ 1 2 p _ 2 3

- 3 - l

A 4.2.14. w = 1000, 9tE = i471Q

A 4.2.15. 2eff = 0,22 V ,  I 2e f f  = 1 ,5 .  10- 5 A,  P = 3,3 • IO”6 W

A 4.2.16.
V) 2

SRe = = 9iA nf
A 4.3.1. i coL = i 15,5 Q

A 4.3.2. a) n = 892, b) n = 28

A 4.3.3. L = 444 mH,  <oL - A = -1780, |3l| = 184Q,  «R = (44,9 - i 178)0 ,
a>C

cp = -75° 50'

A 4.3.4. L = 88,8piH, P = 319mQ,  co0 = 3,36 • IO 7 s" 1 , / 0 = 5,34MHz, 20 = 56,1 m :

— = 0,557 ms
R



Lösung der Aufgaben 369

A 4.3.5. L 12 = 7,9 mH

A 4.3.6. Z = 96,6 Q

A 4.3.7. 2-Rj = 3,07 cm

A 4.3.8. 1/ = 2,5 • IO-8 H m" 1 , C' = 1,2 • 10~9 F m -1 , Z = 4,6 Q

A 4.3.9. Z = Z 0 e c2 , Z o = 10 Q ,  c = 2,77 m -1 , z = 0 : a = 1,3 mm,
z = l = 0,5 m : a = 5,3 mm

A 4.3.10. L f = 4,8 • 10- 8 Hm- 1 , Z = 14,4 Q

A 4.3.11. L' = 2,59 ♦ IO"6 H m" 1

A 4.3.12. Ln = 2,75 mH für 1 km,  L ir = 5,78 mH für 2 km

A 4.3.13. X = — In — , c= -  L ; L = 5,6 • IO-6 H2k r 0 in

A 4.3.14. Z = — 1/  - l n— , 2 = 497,6Q
2k |/ e r0

A 4.4.1. d — 1,6 cm,  d = 0,66 p,m

A 4.4.2. R' = (— + — V 1?' = 2,1Q
%nyd \R & Rj

A 4.4.3. — = i 0,50 für 9iA = 0 ;  tan — = 0,5,
z A

l = 0,074A + n • 0,5A (n = 0, 1, 2, . . . )

A 4.4.4. 1 91— = 0,311 4- n • 0,5, wenn — = — i 2,5 sein soll; die Transformation wird durch
A Z
l = 0,385A + n • 0,5A realisiert.

A 4.4.5.
A A

9t E = 0 für l = — + n —
4 2

A 4.4.6. A A ASpannungsmaximum: l = n — ; Spannungsminimum l = — + n —

A 4.4.7. Z = 20Q,  — =0 ,1 ,  3tE = i9 ,2Q
A

A 4.4.8. in = 0,67

A 4.4.9. m = 0,56, — = 0,296
A

A 4.4.10. Z = 36O£2, — = 0,075, = 1,2 - i 0,4, 3tE = (430 - i 140) Q
A Z

A 4.4.11. )R e = (42 - i45 )Q

A 4.4.12. 5Ra = (49 — i21)£ i
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A 4.4.13. m = 0,50, — = 0,105; ( E)min — 30 Q für l = 7,9 cm,
Ä

( E)max = 120 Q für l = 2,9 cm

A 4.4.14. — =2 ,5 ,  m = 0,40, (9tE ) mln = 28£2, Z = L
m 4

A 4.4.15. z = + i tan al
E 1 + i ® tan al

A 4.4.16. ($ E Z = i tan a l ,  = — i cot al
Z

A 4.4.17. Der Anpassungskreis m bleibt unverändert. Zum Parameter des Phasenkreises ist
0,25 zu addieren.

m = 0,675, —= 0,06 + 0,25 = 0,31, & E Z = 1,26 — i0,35
A

A 4.4.18. m = 0,5; Zo = 0,1252, = 84,8£2, = 0,252

A 4.4.19.

oII
M
l
 

M

1| (N

iII

8sl«S
A 4.4.20. Für l = 0 folgt p = - - - -3

u2 9tA + 3

A 4.4.21.
° |/ 0' [ <o \2L'  20'}]’

y = i £O ]/E7ö7 [ i - - (  + O
|_ co \2L 2G /J

A 4.5.1. Emitterschaltung: ?7EB = 0,3 V ,  ?7EC = 4,8 V
Kollektorschaltung: C7 ec  = 4,8 V ,  U BC = 4,5 V

A 4.5.2. a = 99, 55%- --99, 82%

A 4.5.3. 9t1B = 65,2 £2

A 4.5.4. a = 0,928, ß = 13, y = 14

A 4.5.5. = 69,5
h

A 4.5.6. 91! = 457 £2

A 4.5.7. qx _ hu + SHq
2 Ah + Ä22 9iG

A 4.5.8. 91! = Rg = 1 /  , 912 = ä l =1 / -  -
y “'22? |/ 22

/ \ _ 72 
27?l _ ________ 21 __________

\ p J opt Ii 2f g ~(/Äh +



Lösung der Aufgaben 37 1

A 4.5.9. x __  ______________ ne  _____________ 7 _ ________ ~ I2e  ________
'fc'll'h — 9 'i'19'h —

1 + h 21 Q — h 12e  + 4h e 1 + 2 ie  — I2e +

_ _______~ 2ie  _ ______________ 22e _____________

1 + 2ie  I2e + 1 + 2ie ~ I2e  +

l lc  = i l e>  120  ~ 1 12e> 210 = 1 21e ’  22c  = 22e

A 4.5.10. (är 73 '3
A 4.5.11. ß = 100

A 4.5.12. U B = 10 V

A 4.5.13. I B = 60 pA, = 3,06 mA,  U BB = 610 mV, cb = > 9 V

A 4.5.14. Ü B = 9,2 V ,  R v = EbZl£be = 122,5 kß mit LT
BE = 625 mV

A 4.5.15. P, = PjJc. = 29 4

Pl w

A 4.5.16. U BE = 590 mV, Pi = 20,1 kß,  P n = 5 ,9kß ,  U ß = 3,2 V

A 4.5.17. P i 0  = 16,5 MQ, P iL  = 5ß

A 4.5.18. P N = 4,5 W,  P o = 0,12 mW, P L = 150 mW

A 4.5.19. C = 0,455 (iE

A 4.5.20. P EC = P B 10 V

A 4.5.21.
VB /

A 4.5.22. Ri _ Ub ~ BE — - eC C + fyß)
• 11 BE + - B- II + -Ke C + - b)

A 4.5.23. h a ' = Äu + Ä22P' (1  + Ä21) (1  - fela)
11 11 22 Ä22 ( l  + h 22 R')

7 , __  12 H- 
22- 7 / __  21 22- -l f __  2212 — 4 ix  nz ’ /2'21 — 4 ix  dz ’ /2'22 — 4 IX  DZ1 4~ Ä 2 2-S 1 + 22- 1 H“ 22-

A 5.1.1. P s = 12,3 ß

A 5.1.2. e ef f  = 0,25 V m- 1

A 5.1.3. Zef{  = 13,2 A

A 5.1.4. P = 6,3 kW

A 5.1.5. Die entgegengesetzten Ladungen bewegen sich oben und unten in gleicher Richtung.
Sind sie unmittelbar benachbart, so heben sich ihre Felder auf. Ein Feld ist jedoch
bereits bei sehr kleinen Abständen nachzuweisen.

A 5.1.6. Z o sin (tc sin d)
W)ef f=  o 

7 eff . q27rr0 t sin

25  Schi l l ing,  Felder
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/ W7r a \cos —cos#
A 5.1.7. a) n = 1, 3, 5, . . .  (@# )eff = --------

2tw0 sm u

sin f — cos
b) n = 2, 4, 6, . . . -------\ 2 '

27rr0 sm -u

A 5.1.8. 2? s = 36,6 Q

A 5.1.9. -R s = 73,2 Q

A 5.1.10. b = 0,42 dB

A5.1.11. 2v& = arccos — (v = 0, 1, 2, . . .) ;
n

# = 70,5° und 109,5°; $ = 48,2° und 131,8° sowie & = 0° und 180°

A 5.1.12. b = (0,42 4- 0,44) dB = 0,86 dB

A 5.1.13. = 0,071 , ®eff = 8,0 • IO“4 V m- 1 , $ e t f  = 2,1 • 10~6 A m“ 1

X

A 5.1.14. 7?s = 0,023 7 Q, P = 0,38 W

A 5.1.15.
p U

Ft = 20,8 dB, ----- = 120, — = 11.0
Pa/2

A 5.1.16. g = 389

A 5.2.1. b = 0,87 dB, b = 8,7 dB

A 5.2.2. (®s) eff — 139 • IO-6 V m -1

A 5.2.3. (6 e )ff = 88 -  10- 3 Vm-!

A 5.2.4. U o = 10 p.V

A 5.2.5. Ut, = 0,16 mV

A 5.2.6. h = 4,70 m

A 5.2.7. 9H E = (15 368) Q

A 5.2.8. Z = 164Q

A 5.2.9. ®eff = 6,5 • IO“3 V m- 1

A 5.2.10. ®eff = Z&eti = 5,65 • IO-3 V m-\ I7Ant = W(@eH = 3,5 • IO’ 3 V

A 5.2.11. da = l ,27%, cZ = 4,78%, a;a = 0,367

A 5.2.12. T > 1586
b

A 5.2.13. 7Yb(1 + m sin co M tf) sin co T i = sin co T -j ----- cos (co T — co M ) t ------- cos (co T + co M ) t2 2
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A 5.2.14. U R = 1,0 (ZV

A 5.2.15. E = 7 , l ,  tf R = l ,2 | zV

A 5.2.16. F = 12,9, F = 11,2 dB

A 5.2.17. d/ < 260 Hz

A 5.2.18. U R = 3,1 . 10- 6 V,  © ef f  = 37 • IO-6 V m -1

A 5.2.19. U R = 2,06 • IO-6 V,  (£eff  = 82 • 10~ 6 V m" 1

A 5.2.20. a) Aq = 20 1g 2 dB = 6,0 dB ,  b) Ag = 10 1g 2 dB = 3,0 dB

A 5.3.1. Ä / W m'2 ~ W’kp' 2

1 / R/  2 £ '2I / „ 2 2 01/ 2 
k™' 2V "'O "'M

A 5.3.2. d = 2,1 mm

A 5.3.3. R = 2,5 • 10- 4 Q
A 5.3.4. R = 45,7 D
A 5.3.5. keine

A 5.3.6. 2g = 8,48 cm; -Hqi, H2q

A 5.3.7. 10 cm < 2 < 16 cm

A 5.3.8. 1,77 Np bzw. 15,4 dB

i /  i i— 2n / — -----—z
A 5.3.9. Die Welle klingt gemäß e ' 2g 2 ab. 2g = 2a ,  a = 2,35 cm

A 5.3.10. p = (ge_ff) 2 max /M 2 
a& p = 0 716  . 10 -6 W

2Z0 \ a )

A 5.3.11. TM : 21 ’ 1 « 0 = 3,3 cm,  TE : 20 ’ 1 - 1 = 5,7 cm

A 5.3.12.

]/ ]/£ + y

A 5.3.13. 1 _ 22 / Z 3 + fr 3 J_\
Q ~ nyZ Qd \bl* + lb* + a)

/n 2 , n 2 \

A 5.3.14. 1 _ 22 / a 3 6 3 1 |
Q TzyZQd 1 l 1

\a 2 + b 2 /

/nx
2 n x2 i n y2 \

1 22 / a 3 + 6 3 + Z 3 a2b ‘ b 2a |
A 5.3.15. Q TtyZ„d | n v2 1

\ a2 + &2 + l2 a2 + b2 J

25*
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A 5.3.16. Q ist proportional der Gesamtenergie, d. h. dem Volumen, entgegengesetzt pro-
portional der Oberfläche und der Eindringtiefe :

Der Gütefaktor verändert sich also proportional VÄ", d. h. Q = 2 • 105 .



Tafeln

Tafel 1. Dielektrizitätszahlen

Stoff s r = e/e0 Bemerkung

Hartporzellan 5- ••6,5 20 °C
7---8 90 °C

Spezialporzellan 40-.. 80
Glas 3 -  12
Quarzglas 4
Glimmer 5.  .-8
Hartpapier 5 .7
Kabel- und Zellulosepapier (ölimprägniert) 4 -  -4, 3
Gummi 2,5-.3,5
Kolophonium 2,5
Paraffin 2- .-2,5
Polystyrol (Trolitul) 2,5
Nitrobenzol 36
Wasser (statisch, bei Sättigungsdruck) 87,69 0°C

80,08 20 °C
55,15 100°C

9,74 370 °C
Flußsand 2,5 trocken

9 15% Wassergehalt
Gartenerde 1,9 trocken

8 19% Wassergehalt
Ferrite 10 4 -10«

Tafel 2. Elektrische Leitfähigkeit der Stoffe

Stoff V
in Q -1 m -1

Aluminium
Eisen rein

weicher Stahl

33 --35,5 • 10 6

10,4 • 10 6

>6,7  • 10 6
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Fortsetzung Tafel 2

Stoff
in Q -1 m -1

Kupfer weich >57 • 10 6

hart >55 • 10 6

Silber ’ 61,3 • 10 6

Manganin (86% Cu, 12% Mn, 2% Ni) 2,32 • 10 6

Konstantan (54% Cu, 45% Ni, 1% Mn) 2,00 • 10 6

Hartkohle, Graphit 2,5- • -50 • 10 3

Glimmer 10 _13 ---10-15

Paraffinöl IO-14

Glas bei 15 °C lO- - lO“15

Quarzglas 2 • IO-18

Tafel 3. Magnetische Eigenschaften der Stoffe
Tafel 3A  Tafel 3B
Suszeptibilität diamagnetischer Stoffe Suszeptibilität paramagnetischer Stoffe

Stoff K = /U. r — 1
io- 6

Stoff H = /-l r — 1
10~e

Steinsalz
Wismut
Wasser
Wasserstoff

-13,9
-156
-9 ,0
-0,002

Palladium
Platin
Aluminium
Flüssiger Sauerstoff
Gasförmiger Sauerstoff

782
264

21
3620

1,8

Tafel 3C. Eigenschaften weichmagnetischer Stoffe

Stoff Curie- Anfangs- Maximal- Flußdichte bei
temperatur Permeabil:ität 1 Am- 1 10 2 A m- 1 10 4 A m" 1

e Ah Zh in in in
°c 10 3 10 3 Vs m- 2 Vsm- 2 Vs m" 2

Hyperm 50 470 5---8 40 - .  60 0,011 0,143
Permalloy C 430- -460 10- -40 70-.. 250 0,02. .  0,03 0,80 0,84
Supermalloy C 400 55--150 100«. -900 0,4...  0,52 bis 0,78
Mümetall E I 410 25- -35 100 0,08 0,72 0,79

Tafel 3D.  Sättigungsinduktion, Remanenz, Koerzitivfeldstärke
weich- und hartmagnetischer Werkstoffe sowie von Ferriten und Pulvermagneten

Material Sättigungsinduktion Remanenz Koerzitivfeldstärke
R He

in Vs m-2 in Vs m -2 in A m -1

Eisen 2,1 0,9-.-l,4 8---120
(technisch rein)
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Fortsetzung Tafel 3D

Material Sättigungsinduktion
B s
in Vs m~2

Remanenz
Br
in Vs m~2

Koerzitivfeldstärke

in A m -1

Nickel
(technisch rein)

0,61 bis 0,38 50- ”220

Kobalt
(technisch rein)

1,67- -1,89 0,5 ”0,9 640- ”880

Hyperm
(50% Ni, Fe)

1,5-- 1,6 0 ,6”  1,2 5-.-8

Permalloy C
(Fe, Ni, Mo)

0,8-- -0,9 0,5 3

Supermalloy
(Fe, Ni, Mo)

0,68”.  0,8 0,4- ”0,5 0,2- ”0,7

Chrom —Nickel — Stahl 0,3 30000
Platin— Eisen 0,45 ”0,63 120000 ” 350000

Magnetit Fe 3 O4 bis 0,6 0,32 170
Siferrit 1 100 N 22
(MnO, ZnO, Fe 2O3 )

0,4 0,14 24

Kobaltferrit 0,16 70000

Mangan — Wismut
(Bismanol, Pulvermagnet)

Tafel 4. Physikalische Konstanten

0,43 .”0,48 290000

Elektrische Feldkonstante £o 8,8542 • 10~12 As V- 1 m" 1

Magnetische Feldkonstante 1,257 • IO“6 Vs A- 1 m- 1

BoLTZMANN-Konstante k 1,3807 • IO"23 J K“ 1

Elektrisches Elementarquantum e 1,602 • IO-19 As
Lichtgeschwindigkeit im Vakuum c o 2,99792 • 10 8 ms- 1

AvoGADROsche Konstante A 6,0220 • IO26 kmol“1

Ruhmasse des Elektrons 7?le 9,109 • 10- 31 kg
Ruhmasse des Protons ™p 1,6726 • IO' 27 kg
Ruhmasse des Neutrons 1,6749 • IO“27 kg
Gaskonstante, allgemeine R 8,3144 • 10 3 J kmol" 1 K -1

PLANOKsches Wirkungsquantum h 6,6262 • 10- 34 Js
FARADAYsche Konstante F 9,6485 • 10 7 As kmol -1

Tafel 5. Formelzeichen und Kurzzeichen

A Ampere
A Amplitude

Fläche
Ä T relative Atommasse (früher Atomgewicht)
31 Flächenvektor

Vektorpotential
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Abstand, geometrische Länge, Lagekoordinate
Basis, Basiselektrode
Amplitude
magnetische Flußdichte oder Induktion
Dicke, geometrische Länge, Lagekoordinate
Dämpfung in dB
Beweglichkeit
Coulomb
Kollektor, Kollektorelektrode
Amplitude
Kapazität
Wegkurve
Fortpflanzungsgeschwindigkeit elektromagnetischer Wellen im Medium
Konzentration
Fortpflanzungsgeschwindigkeit elektromagnetischer Wellen im Vakuum
dielektrische Erregung oder Verschiebungsdichte
Eindringtiefe
Emitter, Emitterelektrode
elektrische Feldstärke
Elementarladung
Einheitsvektor
Farad
Rauschzahl
Kraft
Frequenz
Ableitung
Leitwert
Gewinn einer Antenne
Übertragungsmaß
HANKELsche Funktion
magnetische Feldstärke
effektive Höhe, geometrische Abmessung
hybrider Vierpolparameter
Übertragungsparameter
Stromstärke
imaginäre Einheit
Einheitsvektor
Joule
BESSEL-Funktion
Trägheitsmoment
Stromdichtevektor des gesamten Stromes
Einheitsvektor
Stromdichtevektor einer lonenart
Oberflächenstromdichte in A m-1

BoLTZMANN-Konstante
elektrochemisches Äquivalent
Wellenzahl
Einheitsvektor
Induktivität
Drehimpuls
geometrische Länge
molare Masse
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relative Molekülmasse (früher Molekulargewicht)
Drehmoment
Magnetisierung

m Anpassung
Dipolzahl
Masse

me

N

elektrisches Moment
magnetisches Moment
Entmagnetisierungsfaktor
NEUMANNsche Funktion
Teilchenzahl

n Brechzahl
Dipolzahl
Teilchenzahl
Windungszahl

n
P

Normalenvektor (Einheitsvektor)
Leistung
Polstärke
Punkt

$
P

elektrische Polarisation
Druck
Rauschleistung

Q
Q

Ladung
Ladung
Linienladungsdichte

R elektrischer Widerstand
Radius eines Spulenquerschnitts, Zylinderradius

SRe
%

fR2
r
r
£

5
§
T
t
U

u, V
V
V
Vl
V
W
w
w

Impedanz
Abschluß-, Last- bzw. Nutzwiderstand
Eingangswiderstand einer Leitung oder eines Vierpols
Innenwiderstand
Eingangswiderstand eines Transistors
Ausgangswiderstand eines Transistors
Radius, Zylinder- bzw. Kugelkoordinate
Radius- bzw. Abstandsvektor
Verzweigungsschnitt

♦ Poynting- Vektor
Spin
Leiterelement
thermodynamische Temperatur
Zeit
Spannung
magnetische Spannung
Koordinaten bei konformer Abbildung
Volt
Volumen
Leistungsverstärkung
Driftgeschwindigkeit, Teilchengeschwindigkeit
Watt
Energie
Energiedichte
komplexe Variable bei konformer Abbildung
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y
Z

Abmessungen, Koordinaten, Variable
Ladungszahl
Wellenwiderstand
Zyl inderfunktion

3
Wellenwiderstand des Vakuums
HERTZscher Vektor
komplexer Wellenwiderstand

z Abmessung, komplexe Variable, Zylinderkoordinate

(X Dissoziationsgrad
Kurzschlußstromverstärkung in Basisschaltung
Phasenmaß
Winkel

ß Dämpfung in Np
Kurzschlußstromverstärkung in Emitterschaltung
Winkel

y elektrische Leitfähigkeit
Fortpflanzungskonstante
Kurzschlußstromverstärkung in Kollektorschaltung

E Dielektrizitätskonstante (absolute) oder Permittivität
numerische Exzentrizität

«0

c

n

Dielektrizitätszahl (relative Dielektrizitätskonstante)
elektrische Feldkonstante
komplexe Variable bei konformer Abbildung, Lagekoordinate
Koordinate
Zähigkeit

e
$

CuRiE-Temperatur
Kugelkoordinate

A
X
V

0

V
n

Q

Suszeptibilität
Wellenlänge im Hohlleiter
Wellenlänge
Permeabilität (absolute)
Permeabilitätszahl (relative Permeabilität)
magnetische Feldkonstante
Laufzahl
Koordinaten
Raumladungsdichte
Massendichte
Störabstand

a Fläche
Flächenladungsdichte

T
0

Zeitkoordinate
Potential
Phasenverschiebung
Winkel, Zylinder- bzw. Kugelkoordinate
magnetisches Potential
Potentialfunktion

Q

€0

Ohm
Kreisfrequenz
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