K.-H. BACHMANN

ALGOL-PROGRAMMIERUNG
MIT VARIANTE FUR ROBOTRON 300

VEB DEUTSCHER VERLAG DER WISSENSCHAFTEN

K.-H. BACHMANN

ALGOL-PROGRAMMIERUNG
MIT VARIANTE FUR ROBOTRON 300

ALGOL-PROGRAMMIERUNG
MIT VARIANTE FUR ROBOTRON 300

VON
K.-H. BACHMANN

Mit 8 Abbildungen

Dritte, berichtigte und erweiterte Auflage

VEB DEUTSCHER VERLAG DER WISSENSCHAFTEN
BERLIN 1969

ES19B

COPYRIGHT 1969 BY VEB DEUTSCHER VERLAG DER WISSENSCHAFTEN, BERLIN
PRINTED IN THE GERMAN DEMOCRATIC REPUBLIC

LIZENZ-NR. 206 - 435/81/69

GESAMTHERSTELLUNG: VEB LEIPZIGER DRUCKHAUS, LEIPZIG (II1/18/203)

INHALTSVERZEICHNIS

TLALGOL 60 ..o e i

§ 1. Programmbeschreibung in ALGOL
§ 2. Anwendung von ALGOL

II. ALGOL-Variante Robotron 300 ...ttt iiiie e iiiaeeenannn

§ 3. Kurze Beschreibung der Rechenanlage Robotron 300

§ 4. Einschrankungen der ALGOL-Varianteccoiiiiiiiineenninaannn.
§ 5. Erweiterungen der ALGOL-Variante

§ 6. Herstellung von Eingabestreifenccoiiiiiiiiiiinnnna...
§ 7. Ablauf der Ubersetzung

§8. Fehlererkennungottt ittt ettt
§ 0. BeisPiele i e

LiteraturverzZeiChmisttt e e e

SaChVEIZEICNIS o it e e

I. ALGOL 60

§ 1. Programmbeschreibung in ALGOL

Zur Programmierung eines Problems fiir einen bestimmten Rechenautomaten ist
im allgemeinen eine betrachtliche Arbeit zu leisten. Das Resultat ist ein Maschinen-
programm, das an Hand von vorbereiteten Beispielen am Automaten noch zu
priifen ist. Derartige Programme sind nur fiir einen Automatentyp (Automaten
mit gleichem Befehlsschliissel) geeignet; soll das gleiche Problem mit einem ande-
ren Automaten behandelt werden, so mufl es nochmals programmiert werden.
Diese Sachlage fiihrte zu dem Wunsch, eine einheitliche, fiir beliebige Automaten
verwendbare Schreibweise fiir Programme zu besitzen. Aus dieser Schreibweise
werden die Programme in der Regel vom betreffenden Automaten selbst mittels
eines Ubersetzungsprogramms in ein Maschinenprogramm umgeformt. Dieser
Vorgang wird auch als automatisches Programmieren bezeichnet.

Es existiert bisher keine allgemein als verbindlich anerkannte Formulierungs-
sprache zur Beschreibung von Programmen, die man in dieser mehr maschinen-
unabhingigen Form oft auch als Algorithmen bezeichnet. Es wurde eine groBe
Zahl von Sprachen fiir verschiedenartige Zwecke konstruiert, man bezeichnet sie
auch als problemorientierte Sprachen. Beispiele sind die Sprachen ALGOL
(algorithmic language) fiir Zwecke der numerischen Mathematik und COBOL
(common business oriented language) fiir kommerzielle Zwecke. Die Sprache
ALGOL, die hier naher betrachtet werden soll, wurde ab 1958 in einer internatio-
nalen Gemeinschaftsarbeit entwickelt und 1960 in einer bis auf spéter vorgenom-
mene kleinere Korrekturen endgiiltigen Fassung ALGOL 60 veroffentlicht. Der
korrigierte Bericht iiber ALGOL 60 ist [44]. Bei der Entwicklung von ALGOL
wurden die hauptsichlich fiir die automatische Ubersetzung in IBM-Rechen-
anlagen entworfene Sprache FORTRAN und die algorithmische Schreibweise von
RUTISHAUSER beriicksichtigt [24], [49], [50].

An eine problemorientierte Sprache sind eine Anzahl von Forderungen zu
stellen, damit sie dem vorgesehenen Zweck dienen kann. Solche Forderungen
sind etwa:

1. Die Sprache muB eindeutig sein, d. h., einer Beschreibung eines Programms
in der betreffenden Sprache muB3 genau eine Vorschrift zur Verarbeitung
gegebener Daten zugeordnet sein. Dabei ist es jedoch zuldssig und auch nicht
zu vermeiden, daBl diese Vorschrift an verschiedenen Automaten verschieden
realisiert wird.

8 I. ALGOL 60

2. Die Sprache muB eine vollstdndige Beschreibung eines Programms erlauben,
d. h., alle zur Losung eines Problems notwendigen Angaben miissen in der
Sprache darstellbar sein.

3. Die Sprache soll beziiglich einer Problemklasse vollstdndig sein. Diese For-
derung besagt, daB eine unabhéngig von der betreffenden Sprache formulierte
Problemklasse durch Programme 16sbar sein muf3, die in der Sprache for-
muliert sind.

4. Die Sprache soll, soweit es die bisher angegebenen Forderungen zulassen, die
in der betreffenden Problemklasse iibliche Symbolik weitgehend beibehalten.

5. Texte der Sprache sollen einfach herzustellen und zu lesen sein.

Ein Programm fiir einen Rechenautomaten ist eine Folge von Befehlen, die in
einer bestimmten Reihenfolge abgearbeitet werden. Entsprechend besteht ein
ALGOL-Programm im wesentlichen aus Sprachelementen, die als Anweisungen
bezeichnet werden und ebenso in einer bestimmten Reihenfolge abgearbeitet
werden. In Maschinenprogrammen sind die einzelnen Befehle meist in adressier-
baren Speicherzellen untergebracht, damit ein Sprung zu einem solchen Befehl
erfolgen kann; dementsprechend konnen in ALGOL Anweisungen durch Vor-
setzen einer Marke gekennzeichnet werden. Man bezeichnet solche Anweisungen
als markierte Anweisungen. Die erwdhnte Reihenfolge, in der die einzelnen
Anweisungen eines ALGOL-Textes abgearbeitet werden, ist die, in der sie notiert
sind; es kann jedoch durch eine Sprunganweisung veranlaBt werden, daB3 diese
Reihenfolge durchbrochen und bei einer markierten Anweisung, die Ziel der
Sprunganweisung ist, fortgefahren wird. Zur Niederschrift eines Textes einer
Sprache werden Zeichen benutzt, die fiir die Sprache ALGOL 60 als ALGOL-
Zeichen oder Grundsymbole bezeichnet werden sollen. Grundsymbole sind die
kleinen und groBen lateinischen Buchstaben, die Ziffern 0-9, die Zeichen +, —,
x, | zur Bezeichnung der vier Grundrechenarten, die Klammern (und) und
eine Anzahl weiterer Symbole, von denen hier einige mit einer deutschen Aus-
sprache (vgl. [58]) und einer kurzen (unvollstindigen) Erlduterung ihrer Anwen-
dung angegeben seien. Weitere Grundsymbole werden von Fall zu Fall eingefiihrt.

Grundsymbol Aussprache Anwendung
Semikolon Trennzeichen zwischen Anweisungen
Doppelpunkt Trennzeichen zwischen Marke und
Anweisung in einer markierten An-
weisung
Komma Trennzeichen zwischen Elementen

einer Liste

§ 1. Programmbeschreibung in ALGOL 9

= ergibt sich aus Wertzuweisungszeichen zur Zuwei-
sung eines Wertes an eine Variable

begin Beginn Anfangszeichen einer aus mehreren
Anweisungen zusammengesetzten
Anweisung

end Ende Endzeichen einer zusammengesetz-
ten Anweisung

go to Sprung nach Sprungzeichen in einer Sprunganwei-
sung

if wenn Zeichen vor einer Bedingung in

einer bedingten Anweisung

then dann Zeichen nach einer Bedingung in
einer bedingten Anweisung

else sonst Zeichen zur Trennung von zwei auf
Grund einer Bedingung auszuwih-
lenden Anweisungen, die Teil einer
bedingten Anweisung sind

[eckige Klammer Trennzeichen zwischen dem Namen
auf fiir eine indizierte Variable und der
Liste der zugeordneten Indizes
] eckige Klammer SchluBzeichen hinter einer Liste von
zZu Indizes

Hierzu sei bemerkt, daB3 bedingte Anweisungen solche Anweisungen sind, deren
Ausfithrung von der Erfiillung einer hinter dem Zeichen if stehenden Bedingung
abhingt. Zur Formulierung von Bedingungen konnen u. a. Vergleichsaussagen
(Relationen) benutzt werden, in denen die Relationszeichen <, <, =, #+, =
und > als Grundsymbole Verwendung finden. Einige der ALGOL-Zeichen sind
durch halbfett gedruckte englische Worte dargestellt, meist ist die englische Aus-
sprache dieser Worte statt der angegebenen deutschen Aussprache beim Lesen
von ALGOL-Programmen iiblich. In Manuskripten werden die hier durch halb-
fetten Druck hervorgehobenen Grundsymbole durch Aufschreiben der gleichen
Worte und Unterstreichen gekennzeichnet. Es sei noch darauf hingewiesen, daf3
die meisten ALGOL-Zeichen nicht nur die angegebene Verwendung finden, son-
dern auch in anderen spater zu besprechenden Zusammenhidngen in einem
ALGOL-Programm vorkommen kénnen. Die folgende Einfithrung in ALGOL 60
besteht aus verschiedenen Stufen, fiir einfache Programme geniigt die Kenntnis
der Stufen 1 und 3.

10 I. ALGOL 60

1. Stufe: Elementare Anweisungen

Eine numerische Rechnung in einem programmgesteuerten Rechenautomaten
lauft im wesentlichen so ab, daB3 in Speicherzellen, die Variablen zugeordnet sind,
gewisse Verschliisselungen fiir Zahlen gespeichert werden. Diese Zahlen werden
durch arithmetische Verkniipfungen ebenso verschliisselter Zahlen gewonnen. Sie
werden als Werte angesehen, die die Variablen annehmen konnen; der Werte-
bereich ist endlich. Der Vorgang der Zuordnung eines Wertes zu einer Variablen
wird als Wertzuweisung bezeichnet, die Vorschrift zur Bildung eines Zahlen-
wertes ist ein arithmetischer Ausdruck. Der Wertebereich fiir Zahlenwerte in
ALGOL ist theoretisch die Menge der reellen Zahlen, bei praktischen Anwendun-
gen jedoch stets eine endliche Teilmenge. Eine Wertzuweisung wird in ihrer ein-
fachsten Form in ALGOL geschrieben als

Variable : = arithmetischer Ausdruck.

Zur Darstellung einer Variablen wird in ALGOL eine Folge von Buchstaben oder
Ziffern benutzt, die mit einem Buchstaben beginnen muB, eine solche Folge heif3t
Name der Variablen. Es treten einfache Variable auf, deren Darstellung allein
aus ihrem Namen besteht, und indizierte Variable, zu deren Darstellung auf den
Namen eine in eckige Klammern eingeschlossene Liste von Indizes folgt. Dar-
stellungen von Variablen sind also z. B. x, y, al, D, alpha, a[i k], a[1,2] usw. Dazu
ist zu bemerken, daf als Index ein beliebiger arithmetischer Ausdruck auftreten
kann und daB zur Bildung arithmetischer Ausdriicke neben Variablen auch Zahlen
und Funktionen direkt verwendet werden konnen.

Hier soll zunichst nicht auf den formalen Aufbau der Sprache eingegangen,
sondern nur an Beispielen erlautert werden, wie ALGOL-Programme zu schreiben
sind. Dabei wird unter Beriicksichtigung der oben formulierten Forderung Nr. 4
die in der Arithmetik gebrauchliche Schreibweise weitgehend iibernommen und
nur von Fall zu Fall auf Abweichungen hingewiesen.

Beispiele fiir Wertzuweisungen sind:

y:i=1 Der einfachen Variablen y wird der Wert 1 zugeordnet.

z 1= sin(x) Der einfachen Variablen z wird der Wert der Funktion
sin x zugeordnet, der sich aus dem der unabhangigen Varia-
blen x zugeordneten Wert ergibt.

f 1= max(a,b) Falls in einer spéter zu erlduternden Art eine Funktion max
von zwei Variablen definiert ist, wird der einfachen Varia-
blen f der sich aus den aktuellen Werten von @ und b er-
gebende Wert der Funktion max zugeordnet. Dabei steht

§ 1. Programmbeschreibung in ALGOL 11

die kiirzere Bezeichnung ,,aktueller Wert* fiir den Begriff
,,einer Variablen zur betreffenden Zeit zugeordneter Wert*.

Bemerkung. Funktionen sind stets so zu schreiben, daB3 auftretende Argumente
in runde Klammern eingeschlossen sind. Zwei oder mehr Argumente
werden durch Komma getrennt, die Argumente konnen auch arith-
metische Ausdriicke sein.

pi= 3.14159 Der einfachen Variablen pi wird der Wert 3.14159 zu-

geordnet.

Bemerkung. Der Dezimalpunkt wird in ALGOL zur Trennung von ganzem und
gebrochenem Teil einer Dezimalzahl benutzt.
Fi=sqrt(x12+y12)
Der einfachen Variablen r wird der aktuelle Wert von
x2 + y? zugeordnet.

Bemerkung. Die Potenzierung wird in ALGOL statt durch Hohersetzen des
Exponenten durch Einschieben eines ALGOL-Zeichens 1 dargestellt.
Die Funktion mit dem Namen sqrt (von square root) bezeichnet die
positive Quadratwurzel aus dem aktuellen Wert des Arguments.

ali,k]:= ali,k] + q x a[j,k]

Der indizierten Variablen a[i,k] wird der Wert des rechts-
stehenden Ausdruckes zugeordnet, wobei zur Berechnung
dieses Ausdrucks der vorher q[i,k] zugeordnete Wert zu ver-
wenden ist.

Bemerkung. Indizierte Variable bezeichnen eine einzelne Variable aus einem Feld
von Variablen, z. B. Komponenten von Matrizen oder Vektoren. Als
Indizes konnen auch arithmetische Ausdriicke auftreten, die ganz-
zahlig zu runden sind.

i=i+1 Der aktuelle Wert der einfachen Variablen i ist um 1 zu
erhdhen.

x:=al(@2xb12+dlex (f+ h)b

Der auf der rechten Seite stehende Ausdruck wird in der
iiblichen arithmetischen Notation als

2b2+§(f+h)

b

a

geschrieben.

12 1. ALGOL 60

Bemerkung. Bei der Berechnung arithmetischer Ausdriicke sind Prioritatsregeln
zu beachten:

1. Eingeklammerte Teilausdriicke werden bei der Berechnung als
Variable (ochne Namen) angesehen, ihr Wert ist der Wert des Teil-
ausdrucks.

2.1 wird vor x und /, x und / werden vor + und — bearbeitet,
sonst werden die Operationszeichen von links nach rechts ab-
gearbeitet. Die Werte der Operanden werden ebenfalls in der
notierten Reihenfolge berechnet. (Die Operanden koénnen Funk-
tionen sein, deren Werte erst zu berechnen sind, bei Variablen und
Zahlen eriibrigt sich die Berechnung).

Operationszeichen diirfen in ALGOL nicht weggelassen werden.

Die Berechnung des letzten Ausdrucks sei an einem Zahlenbeispiel verfolgt.
Vor der Berechnung liege folgende Wertzuordnung vor:

a=2, b=2 d=3, e=2, f=-5 h=3.

Zuerst ist der umfassendere Klammerausdruck zu berechnen. In ihm wird zun4chst
b 1 2 berechnet, der Wert dieses Teilausdrucks ist 4. Danach wird 2 x b 12 =8
berechnet, dann dfe = 1.5, danach f+ h = —2, daraus dfe x (f + h) = =3,
erst dann folgt die Addition, die dem Klammerausdruck den Wert 5 zuordnet. Die
Potenzierung a 1 5 erfolgt wieder vor der Division durch b, der Wert des ganzen
Ausdrucks wird somit 16.

x:=al(-2)

Bemerkung. Auf ein Operationszeichen muB} stets eine Variable, Zahl, Funktion
oder ein eingeklammerter Teilausdruck folgen, a T —2 ist nicht zu-
lassig.

Einer Wertzuweisung entspricht in einem zugeordneten Maschinenprogramm im
allgemeinen eine Folge von Befehlen. Die Wertzuweisung in ALGOL wird als
Einheit angesehen, d. h., es ist nicht mdéglich, irgendwo innerhalb der Wert-
zuweisung mit ihrer Abarbeitung zu beginnen. Entsprechendes gilt auch fiir andere
ALGOL-Anweisungen. Eine Ausnahme bildet die zusammengesetzte Anweisung,
die in mancher Beziehung ebenfalls als Einheit angesehen wird, in deren Inneres
jedoch gesprungen werden kann. Eine zusammengesetzte Anweisung besteht aus
einer Folge von Anweisungen, z. B. Wertzuweisungen, die jeweils durch ein
Semikolon getrennt sind. Vor der ersten Anweisung der Folge steht das ALGOL-

§ 1. Programmbeschreibung in ALGOL 13

Zeichen begin, hinter der letzten Anweisung das ALGOL-Zeichen end. Ein Beispiel
fiir eine zusammengesetzte Anweisung ist

begin y : = (x + 0.16)/(0.46 x x + 0.70); y:= 0.5 x (y + x/y);
y:=0.5 x (y + x/y) end.

Diese Anweisung liefert eine gute Naherung y fiir \/ ;c, sofern ‘1‘ <x =1 gilt.

An einem Zahlenbeispiel sei die Abarbeitung erlautert. Hat x vor Beginn der
Anweisung den Wert 0.36, so ergeben sich in den drei Teilanweisungen folgende
Werte fiir y:

y:= 0.600739371534; y:= 0.600000454986; y := 0.600000000000.

In der zweiten Teilanweisung wird zur Berechnung des rechtsstehenden Ausdrucks
der erste Wert fiir y verwendet, in der dritten der zweite Wert fiir y.

Soll ein Sprung zu einer Anweisung fiihren, so ist die Anweisung zu markieren.
Die einfachste Form einer markierten Anweisung ist

Marke: Anweisung.

Als Marken finden Namen oder (vorzeichenlose) ganze Zahlen Verwendung.
Sprunganweisungen haben die Form

go to Marke.

Auch diese Form ist nur die einfachste Art von Sprunganweisungen, sie geniigt
aber fast immer; im allgemeinen kann die Marke durch einen sogenannten Ziel-
ausdruck ersetzt werden. Die Ausfithrung einer Sprunganweisung geschieht ein-
fach so, daB3 die mit der betreffenden Marke markierte Anweisung als néachste
Anweisung ausgefiithrt wird. Das setzt voraus, daBl es genau eine solche Anweisung
im betreffenden ALGOL-Text gibt. Sprunganweisungen treten héufig als Teil
einer komplizierteren Anweisung — der bedingten Anweisung — auf, von der es
zwei Arten gibt:

1. Art: if R then A4,
2. Art: if R then A4, else 4,.

In dieser Notierung steht R fiir eine Relation (allgemeiner fiir einen spéter zu
behandelnden logischen oder Booleschen Ausdruck), 4, und 4, sind Anweisungen,
die auch markiert sein konnen. A; darf allerdings nicht wieder eine bedingte
Anweisung sein. Es tritt also in den bedingten Anweisungen ein dhnlicher Fall
wie bei den zusammengesetzten Anweisungen auf, dal eine Anweisung andere
Anweisungen enthilt, zu denen gesprungen werden darf. Das sollte, da hierbei
Schwierigkeiten im Verstindnis des Programms auftreten konnen, jedoch mog-
lichst vermieden werden. Die Ausfithrung einer bedingten Anweisung geschieht
so, daB gepriift wird, ob die Relation R erfiillt ist. Ist das der Fall, so wird 4,

14 I. ALGOL 60

ausgefiihrt, damit ist die Anweisung abgearbeitet. Andernfalls wird bei der 1. Art
zur folgenden Anweisung iibergegangen, bei der 2. Art A4, ausgefiihrt, womit die
Anweisung in diesem Fall auch abgearbeitet ist.

Als Beispiel fiir die Verwendung dieser Anweisungen sei eine zusammengesetzte
Anweisung gebracht, die die Lésung einer quadratischen Gleichung x2 + p - x
+ g = 0 beschreibt, p und ¢ seien reelle Zahlen, die Losungen x; = u, + i v,
X, = u, + i- v, konnen reell oder komplex sein. Im folgenden wird u1 statt u,,
vl statt v, usw. geschrieben, damit in ALGOL zuléssige Namen fiir die Variablen
auftreten:
begin D :=0.25 x p12 — g;

if D < O then go to A4;
ul:= —0.5 x p + sqrt(D); u2:= —0.5 x p — sqrt(D);
vl :=0; v2:=0; goto B;
A: ul:= —0.5 x p; vl:= sqrt(—D);
u2:= —0.5 x p; v2:= —sqrt(—D);
B: D :=0 end

Diese zusammengesetzte Anweisung enthilt manches Uberfliissige. So ist die
markierte Anweisung ,,B: D := 0* nur angefiihrt worden, damit zur Anweisung
,,80 to B“, die ein Uberspringen der vier darauffolgenden Anweisungen ver-
anlassen soll, eine mit B markierte Anweisung existiert. Wird eine neue Art von
Anweisung, die leere Anweisung, eingefiihrt, so 148t sich statt dessen

...; B:end

schreiben. Die leere Anweisung tritt im Schriftbild iiberhaupt nicht in Erscheinung,
sie ist nichts anderes als eine weggelassene Anweisung und eigentlich nur zu dem
Zweck eingefiihrt, um zum Ende einer zusammengesetzten Anweisung springen
zu konnen. Weiter fillt auf, daB der Ausdruck ,,—0.5 x p*‘ zweimal berechnet
werden mufBl. Das kann verbessert werden, wenn Wertzuweisungen eingefiihrt
werden, in denen mehreren Variablen gleichzeitig derselbe Wert zugewiesen wird.
Die betreffenden Variablen werden dazu alle durch jeweils ein ALGOL-Zeichen : =
getrennt links vom bewertenden Ausdruck notiert. Damit 148t sich die behandelte
Anweisung einfacher wie folgt formulieren:

begin D := 025 x p12 — g;
if D < O then go to A4;

ul := —0.5 x p + sqrt(D); u2:= —0.5 x p — sqrt(D);
vl :=12:=0; goto B;
A: ul:=u2:=05 x p; vl:=sqrt(—D); ©2:= —sqrt(—D);

B: end

§ 1. Programmbeschreibung in ALGOL 15

Die Anweisung 1aBt sich auch génzlich ohne Sprunganweisung formulieren,
auch die mehrfache Berechnung der Teilausdriicke ,,—0.5 x p* und ,,sqrt(D)*

(d. h. v/ 5) 1aBt sich vermeiden.

Eine geeignete Form ist etwa
begin D :=0.25 x p12 — g;
ul ;= u2:= —0.5 x p; vl := sqri(abs(D));
if D = 0 then
begin ul :=ul + vl; w2:=u2 —vl; vl:=22:=0 end

else v2:= —vl
end

Der darin auftretende Ausdruck sqrt(abs(D)) dient zur Berechnung von \/ |D],
allgemein wird in ALGOL abs(a) statt |a| geschrieben, wobei a ein beliebiger
arithmetischer Ausdruck ist. Eine Bemerkung ist noch zur mehrfachen Wert-
zuweisung zu machen. Es sei z. B.

ir=v[i]l:=i+1

eine zweifache Wertzuweisung, der aktuelle Wert von i vor Abarbeitung dieser
Anweisung sei 2. Dann bedeutet dies die Zuweisung des Wertes 3 an die Variable i
und an die Variable v[2]. Es sind die auf der linken Seite einer Wertzuweisung
in Indizes vorkommenden Ausdriicke in jedem Fall vor der Zuweisung des
Wertes der rechten Seite an die einzelnen Variablen zu berechnen. Daher ist
nicht der neue Wert von i, d. h. 3, in v[{] zu beriicksichtigen, sondern der alte
Wert 2.

Der mehrfachen Wertzuweisung entsprechend sind auch mehrfache Markierun-
gen moglich, d.h., es konnen beliebig viele jeweils durch einen Doppel-
punkt getrennte Marken vor eine Anweisung geschrieben werden. Eine Sprung-
anweisung mit einer dieser Marken als Zielausdruck fithrt zu der betreffenden
Anweisung.

In den hier als Beispiel angefiihrten Anweisungen traten bereits mehrfach Funk-
tionen auf. Im allgemeinen sind solche Funktionen in besonderen Funktions-
erklarungen zu definieren, einige sogenannte Standardfunktionen, zu deren
Bezeichnung festgesetzte Namen dienen, werden jedoch nicht gesondert definiert,
sondern haben eine festgelegte Bedeutung. Es handelt sich dabei um elementare
Funktionen eines Arguments, das ein arithmetischer Ausdruck ist, der im fol-
genden mit E bezeichnet sei. Diese Funktionen sind:

16 I. ALGOL 60

abs(E) zur Berechnung von |E]

+1 fir E>0
sign(E) sign(E) = 0 fir E=0

-1 fir E<O
sqri(E) zur Berechnung von + \/ E fiir E = 0, sonst undefiniert
sin(E) zur Berechnung des Sinus von E (E im Bogenma@)
cos(E) zur Berechnung des Cosinus von E (E im Bogenmal)

arctan(E) zur Berechnung des Hauptwertes von arctan(E), d. h.
~Io arctan(E) < +Zr—
2 2

In(E) zur Berechnung des natiirlichen Logarithmus von E fiir £ > 0,
sonst undefiniert

exp(E) Zur Berechnung von e
entier(E) zur Berechnung der groBten ganzen Zahl < E

Bemerkung. Mit dem in den Erlduterungen angefiihrten E ist stets der aktuelle
Wert des arithmetischen Ausdrucks E gemeint.

Es seien noch einige zusammengesetzte Anweisungen als Beispiele angegeben:
1.begin z:= 125 X y; y:= z — entier(z) end

Dieses Beispiel beschreibt eine Anweisung zur Erzeugung einer neuen Pseudo-
zufallszahl y aus einer alten Pseudozufallszahl y. Ist y anfangs ein ungerades
Vielfaches von 2710, so ergeben sich durch fortlaufende Anwendung dieser An-
weisung 256 in 0 < y < 1 gleichverteilte Zahlen, bei der 256-ten Anwendung ent-
steht wieder die Ausgangszahl. Eine z. B. von y = /9,4 = 0.000976 5625 aus-
gehende Folge liefert folgende Werte bei sechsmaliger Anwendung:

y:=0.1220703125; y:= 0.2587890625; y:= 0.3486328125;
y:=0.5791015625; y:= 0.3876953125; y:= 0.4619140625.

Eine solche Art der Erzeugung von Pseudozufallszahlen ist der Arbeitsweise von
im Dualsystem arbeitenden Rechenautomaten angepaft.

2.begin i:=1; s:=0; l:s:=s+ali] xb[i]; i:=i+1;
ifi < nthengoto 1 end

Bemerkung. Die Zahl 1 tritt in diesem Beispiel sowohl als Marke als auch als
Wert einer Variablen auf. Um eventuell mégliche Verwechslungen bei

§ 1. Programmbeschreibung in ALGOL 17

komplizierteren Programmen auszuschlieBen, ist bei vielen ALGOL-
Ubersetzungsprogrammen die Verwendung ganzer Zahlen als Marken
nicht zuldssig. Es ist daher zweckmiaBig, nur Namen als Marken zu

verwenden.

Die Anweisung beschreibt die Berechnung des Skalarproduktes s aus zwei Vek-
toren mit je n Komponenten a[1] bis a[n] und b[1] bis b[n].

3.begin i:=1; A:k:=i+1;
B: w:= ali,k]; ali,k]:= alk,il; alk,i]:= w;
k:=k + 1; if k < nthen go to B;
i:=i+1; ifi < nthengo to 4 end

Die Anweisung beschreibt die Transponierung einer quadratischen Matrix mit
Elementen a[i,k] mit 1 < i, k < n.

2. Stufe: Laufanweisungen

In den beiden letzten Beispielen treten zu wiederholende Programmteile (Zyklen)
auf. Bei der Berechnung des Skalarproduktes dndert sich die Variable i von 1 bis »
jeweils um 1, darauf wird jedesmal das Produkt a[i] x b[i] gebildet und zu s
addiert. Dieser Vorgang 148t sich in ALGOL kiirzer beschreiben:

begin s := 0; fori:= 1step 1 until n do s:= s + a[i] x b[i] end

Die zweite Anweisung innerhalb dieser zusammengesetzten Anweisung ist eine
sogenannte Laufanweisung, die ausdriickt, daB die hinter do stehende Anweisung
s:= s + a[i] x b[i] fir die Werte i = 1 bis i = n wiederholt auszufiihren ist.
Zu ihrer Formulierung werden die ALGOL-Zeichen for, step, until und do ge-
braucht, die als ,,fiir*, ,,Schritt*, ,,bis* und ,,filhre aus* ausgesprochen werden

konnen.
Eine Laufanweisung kann auf mehrere Arten gebildet werden, die am haufigsten

vorkommende Form ist
for V' := a, step a, until a; do 4

Dabei steht V fiir eine beliebige Variable (Laufvariable), a,, a, und a; stehen fiir
beliebige arithmetische Ausdriicke, A fiir eine beliebige Anweisung. Ist der Aus-
druck a, stets positiv, so wird die Anweisung A ausgefiihrt, wenn a3 = Vist. Nach
jeder Ausfithrung von 4 wird ¥ um a, erhoht, und 4 wird, falls immer noch
a; = Vist, wiederholt ausgefiihrt. Die angegebene Anweisung zur Transponierung

2 Bachmann, ALGOL-Programmierung

18 1. ALGOL 60

einer quadratischen Matrix schreibt sich als Laufanweisung

fori:= 1stepluntiln — 1 do
for k:= i + 1 step 1 until » do
begin w := a[i,k]; ali,k]:= alk,i]; alk,i]:= w end
Bemerkung. Die in einer Laufanweisung vorkommende Anweisung kann wieder
eine Laufanweisung sein. Sollen mehrere Anweisungen wiederholt

werden, so sind sie durch Einklammern mit begin und end zu einer
einzigen (zusammengesetzten) Anweisung zusammenzufassen.

Weitere Beispiele mit Laufanweisungen sind:

1. for i := 1 step 1 until » do
for k := 1 step 1 until m do
begin c[i,k] := 0;

for j:= 1 step 1 until / do

cli,k] := c[i,k] + ali,j] x b[j,k] end
Diese Anweisung beschreibt die Multiplikation einer (n,/)-Matrix mit Elemen-
ten a[i,j] mit einer (I,m)-Matrix mit Elementen b[j,k]. Das Resultat ist die
(n,m)-Matrix mit Elementen c[i,k].

2. begin for j:= 1 step 1 until n — 1 do
begin for i := j + 1 step 1 until » do
begin ¢ := —a[i,jl/alj,jl;
fork:=j+ 1step 1 untiln + 1 do
ali,k] := ali,k] + q x a[j,k]
end
end;
x[n] := a[n,n + 1]/a[n,n];
fork:=n — 1 step — | until 1 do
begin s := alk,n + 1]; forj:= k + 1 step 1 until » do
si=s — alk,j] x x[jl;
x[k] := slalk,k]
end
end

Bemerkung. Ist der hinter step stehende Ausdruck a, negativ, so wird die hinter
do stehende Anweisung ausgefiihrt, wenn a; < V ist.

§ 1. Programmbeschreibung in ALGOL 19

Die aus drei Teilanweisungen bestehende zusammengesetzte Anweisung beschreibt
die Losung eines linearen Gleichungssystems

n

Z apXey = aipnrr (=1,...,n)
k=1

mittels des GauBlschen Eliminationsverfahrens. Die beiden letzten Teilanweisungen
konnen auch durch eine einzige ersetzt werden:

for k := n step — 1 until 1 do
begin s := alk,n + 1]; forj:= k + 1 step 1 until n do
s:= s — alk,jl x x[j];
x[k] := s/alk,k]
end

Hierbei tritt die Besonderheit auf, daB innerhalb der innersten Laufanweisung
Hforj:=k + 1step 1 until ndo ...* im Fall £k = n die Laufvariable j den Anfangs-
wert n + 1 hat. Die Relation V' < a3, d. h. hier j < », zur Ausfithrung der hinter
do stehenden Anweisung ist somit nicht erfiillt, die Wirkung der Laufanweisung
ist die einer leeren Anweisung, s behilt den Wert von a[n,n + 1], x[n] ergibt sich
daher ebenso wie oben angegeben.

Im allgemeinen ist es auch zulassig, daB der in einer Laufanweisung hinter step
stehende Ausdruck a, den Wert 0 annehmen kann. Eine allgemeine Vorschrift
zur Abarbeitung von

for V := a, step a, until a; do A
kann wieder in ALGOL dargestellt werden und lautet
begin V:= a,; M: if sign(a,) x (V — a;) > 0 then go to Ende;
A; Vi=V 4+ a,; gotoM;
Ende: end
Aus dieser Darstellung folgen die oben angegebenen Regeln zur Ausfithrung der

Anweisung A4 und auch, daB3 A4 stets ausgefiihrt wird, wenn a, den Wert 0 hat.
Als weiteres Beispiel sei eine Anweisung zur Berechnung des Wertes f eines

n

Polynoms f(x) =) a, * x* mittels des Hornerschen Schemas gegeben:
k=1
begin b[n]:= a[n]; fork:= n — 1 step — 1 until O do
blk]:= alk] + bk + 1] x x; f:= b[0] end
Da stets nur eine Komponente des Vektors b im vorkommenden Ausdruck

alk] + blk + 1] x x gebraucht wird, lassen sich alle Komponenten bei auto-
2*

20 I. ALGOL 60

matischer Rechnung in der gleichen Speicherzelle speichern, die zuletzt den
gesuchten Funktionswert enthélt. Die Anweisung vereinfacht sich dadurch zu

begin f:= a[n]; for k:=n — 1 step —1 until 0 do
fi=alk] + f x x end

Auch fiir » = 1 und n = 0 liefert diese Anweisung die richtigen Funktionswerte
(a; - x + ao bzw. a,). Ein nach der automatischen Ubersetzung bei den meisten
Rechenautomaten kiirzeres Maschinenprogramm erhalt man mit

begin f:= 0; for k:= nstep —1 until 0 do /:= alk] + f x x end

Bemerkung. Indizierte Variable sollten so wenig wie moglich verwendet werden,
da bei vielen Ubersetzungssystemen die Adressenberechnung fiir
indizierte Variable zusitzliche Befehle im erzeugten Maschinen-
programm erfordert. Weiter sei darauf hingewiesen, daB stets deutlich
zwischen der Ziffer 0 und dem Buchstaben O unterschieden werden
muB, zweckméBiger Weise wird O (Buchstabe O) nicht als Name
benutzt, Entsprechendes gilt fiir das Multiplikationszeichen x und den
Buchstaben x. Oft wird statt x auch * geschrieben.

Soll fiir » = 1 und » = 0 die Abarbeitung der Laufanweisung vermieden werden,
so kann z. B. geschrieben werden:
begin f:= 0; if n > 1 then
begin for k := n step —1 until 0 do f:= a[k] + f X x end
else if » = 1 then f:= a[l1] x x + a[0] else f:= a[0]
end
Bemerkung. Es ist nicht zuldssig, daB} in der bedingten Anweisung
if R then 4, else 4,
die Anweisung 4; eine Laufanweisung ist; gegebenenfalls ist eine
Laufanweisung durch Einklammern in begin und end zu einer ,,zu-
sammengesetzten Anweisung* zu machen. Der Grund dafiir ist, daB3
if R then for i := 1 step 1 until » do if R, then A4, else 4,
sowohl durch
if R then begin for i := 1 step 1 until » do if R, then A, end else A4,
als auch durch
if R then begin for i := 1 step 1 until » do if R, then A; else 4, end

interpretiert werden konnte. Es ist jedoch erlaubt, in
if R then A4,
fiir 4, eine Laufanweisung zu verwenden, d. h., der als Beispiel fiir

§ 1. Programmbeschreibung in ALGOL 21

eine mogliche Zweideutigkeit angegebenen Anweisung wird ein-
deutig die zweite Bedeutung zugewiesen. Als Merkregel kann man
aufstellen, daB sich das Zeichen else auf das niherliegende Zeichen
then bezieht, d. h. die Alternative zu A5 und nicht zu einer nach A4;
abschlieBenden Laufanweisung einleitet.

Die im letzten Beispiel vorkommende Bedingung ,,if » = 1° kann bei der
Realisierung in Rechenautonaten auf Schwierigkeiten stoen, wenn 7 als Resultat
einer anderen Rechnung entstanden ist, bei der durch Rundungsfehler statt des
gewiinschten Wertes n = 1 ein etwas davon verschiedener Wert auftritt. Theore-
tisch ist dann die Bedingung erfiillt, praktisch jedoch nicht. Das 148t sich vermei-
den, wenn vorher festgelegt wird, daB die Variable » nur ganzzahlige Werte
annehmen darf und bei jeder Wertzuweisung an » entsprechend gerundet wird,
Man bezeichnet eine solche Festlegung als Typerklarung oder Typvereinbarung;
durch sie wird einer Variablen ein Typ zugeordnet (ganzzahlig oder reell). All-
gemein dienen Erkldrungen oder Vereinbarungen zur Zuordnung gewisser Eigen-
schaften zu vorkommenden Namen.

3. Stufe: Typ- und Felderklirungen

In ALGOL 60 sind alle vorkommenden Namen mit Ausnahme der Namen fiir
Marken und fiir sogenannte formale Parameter zu erkldren, d. h., sie sind in einer
Erklarung aufzufithren. Auch Namen fiir Standardfunktionen und Standardpro-
zeduren werden nicht erklart. Eine Erklarung ist innerhalb eines Blockes giiltig.
Ein Block ist eine Anweisung, die wie eine zusammengesetzte Anweisung aus einer
Folge von in begin und end eingeschlossenen Anweisungen besteht. Zwischen dem
Zeichen begin und der ersten dieser Anweisungen sind noch Erklarungen fiir
gewisse innerhalb des Blockes vorkommende Namen notiert. Die Zeichen begin
und end erhalten dadurch eine weitere Bedeutung, sie dienen sowohl zur Kenn-
zeichnung zusammengesetzter Anweisungen als auch zur Kennzeichnung von
Blocken. In ALGOL werden Variable, Felder von Variablen sowie die noch zu
besprechenden Prozeduren (Funktionen und Unterprogramme) und Verteiler mit
einem gemeinsamen Ausdruck GroBen genannt und durch Namen bezeichnet.
GroBen, deren Namen in einem Block erkldrt (vereinbart) werden, heiflen in
diesem Block lokale GrofBlen. Ein Name der lokalen Gr68e hat auBerhalb des
Blocks keine Bedeutung, sofern er dort nicht nochmals erklart ist. In einer Er-
klarung kann mehreren Namen die gleiche Eigenschaft zugeordnet werden, diese
Namen sind dann stets in einer Liste durch Kommata getrennt zusammengefaBt.
Ein Block gilt als Anweisung, kann demnach innerhalb eines anderen Blocks
ebenso wie in einer bedingten Anweisung, Laufanweisung oder zusammengesetzten

22 I. ALGOL 60

Anweisung vorkommen. Da Blocke verschachtelt werden kénnen, ist die Bezeich-
nung lokale GroBe relativ. Ist etwa in einem Block B, ein weiterer Block B, als
Anweisung enthalten und wird in B; ein Name g als Bezeichnung fiir eine ganz-
zahlige Variable a erklért, so ist a beziiglich B, lokal, nicht jedoch beziiglich B, ;
a heilit dann in B, global. Es ist allerdings auch moglich, in B, den Namen a neu
zu erklédren, er hat dann bei jedem Auftreten in B, diese neue Bedeutung. Man
sollte jedoch versuchen, in einem Programm das Auftreten gleicher Namen fiir
verschiedene Groflen zu vermeiden; Ausnahmen sollten nur die formalen Para-
meter machen (Argumente in Funktionserkldrungen bzw. Erklarungen von Unter-
programmen). Die am Blockanfang stehenden Erkldrungen sind jeweils durch
Semikolon getrennt. Auch dieses Zeichen erhilt dadurch eine weitere Bedeutung.

Neben den bereits erwdhnten Typerklirungen gibt es in ALGOL 60 Feld-
erklarungen, Verteilererklarungen sowie Funktions- und Unterprogramm-
erkldarungen, die beiden letzten sind nur wenig verschieden, werden daher meist
gemeinsam als Prozedurerklarungen bezeichnet. Besonders diese Prozedur-
erklarungen, deren Zweck die Bezeichnung ganzer Algorithmen durch einen
Namen ist, ermdglichen den vielseitigen Einsatz von ALGOL.

Die einfachsten Erklarungen sind die Typerkldrungen von der Form

real L oder integer L.

Dabei sind real und integer ALGOL-Zeichen mit der empfohlenen deutschen
Aussprache ,,reell und ,,ganzzahlig*; L steht fiir eine Liste von Namen, von
denen jeder einzelne dadurch als Bezeichnung einer einfachen (nicht indizierten)
Variablen definiert wird, deren Wertebereich die Menge der reellen bzw. ganzen
Zahlen ist. Diese Definition ist nur innerhalb des Blockes giiltig, in dem die Er-
klarung steht. Eine dritte Art von Typerklarungen ist

Boolean L.

Diese Erklarung definiert die Name der Liste L als Bezeichnungen zweiwertiger
Variabler, deren Definitionsbereich die Menge {true, false} ist. Fiir die ALGOL-
Zeichen Boolean, true und false ist als deutsche Aussprache ,,Boolesch®, ,,richtig*
und ,,falsch*‘ empfohlen worden. Diese zweiwertigen Variablen dienen zur Durch-
fithrung von Rechnungen im Aussagenkalkiill der mathematischen Logik, mit
ihnen konnen Aussagen, die in ALGOL als Boolesche Ausdriicke') bzzeichnet
werden, gebildet werden, die als Werte ebenfalls nur true und false annehmen
konnen. Die Booleschen Ausdriicke kommen in Bedingungen hinter dem ALGOL-
Zeichen if vor, die bisher erwdhnten Relationen zwischen arithmetischen Aus-

1) Nach GeorGE BooLE (englischer Mathematiker, 1815-1864).

§ 1. Programmbeschreibung in ALGOL 23

driicken gelten in ALGOL ebenfalls als Boolesche Ausdriicke, die den Wert true
annehmen, wenn die Relation erfiillt ist, andernfalls den Wert false.

Felderkldrungen dienen zur Definition der Wertebereiche fiir die Indizes von
indizierten Variablen und zur Festlegung der zu ihrer Bezeichnung verwendeten
Namen. Die Gesamtheit der indizierten Variablen mit einem Namen heiBt ein
Feld, je nach Anzahl der Indizes konnen wir von eindimensionalen Feldern
(Vektoren), zweidimensionalen Feldern (Matrizen), dreidimensionalen Feldern
usw. sprechen. Eine Felderklarung kann z. B. die Form

array L[G]

haben. Das Grundsymbol array wird ,,Feld* ausgesprochen, L steht wieder fiir
eine Liste von Namen, G fiir eine Grenzenliste. L enthilt die Namen von Feldern,
die gleiche Dimension und gleiche Wertebereiche fiir die Indizes haben. Die
Grenzenliste besteht aus einer der Dimension entsprechenden Anzahl von durch
jeweils ein Komma getrennten Grenzenpaaren. Jedes Grenzenpaar hat die Form
,dp d,'‘, wobei a, und a, ganzzahlige arithmetische Ausdriicke sind. Ist a,; : a,,
das n-te Grenzenpaar einer Grenzenliste, so mull der Wert i, des n-ten Index
einer indizierten Variablen mit einem Namen aus der zugehorigen Feldliste L
der Bedingung a,; < i, < a,, geniigen. Andernfalls darf die indizierte Variable
nicht verwendet werden; alle Ausdriicke und Anweisungen, in denen eine solche
unzuldssige Variable vorkommt, gelten als nicht definiert. Um den Wertebereich
fur die indizierten Variablen zu definieren, sind die Felderkldrungen jeweils mit
Typerklarungen verbunden und haben dementsprechend eine der Formen

real array L[G]; integer array L[G] oder Boolean array L[G].

Es ist moglich, in der ersten Form das Zeichen real wegzulassen. Weiter kénnen
mehrere Felderklarungen gleichen Typs zu einer einzigen Felderkldrung, z. B.
der Form

array Ll [GI], L2[G2]a sy Ln[Gn]

vereinigt werden. In die Grenzenpaare diirfen stets nur globale Verdnderliche und
Konstante eingehen.

Zur Erlduterung der Verwendung von Typ- und Felderkldrungen seien einige
der bereits gebrachten Beispiele nochmals in Form von Blocken notiert:

1. begin real x,y; y:= (x + 0.16)/(0.46 x x + 0.70);
y:=05%x(+x/y); y:=05x%x @+ x/y)
end

24 1. ALGOL 60

2. begin integer i; real s; array a,b[1:n];
it=1; s:=0; l:s:=s+4+a[i] xb[i]l; i:=i+1;
if i < n then go to 1
end

3. begin integer i,j,k; array a[l:n, 1:1];
array b[l:1, 1:m]; arrayc[l:n,1:m];
for i:= 1 step 1 until » do
for k := 1 step 1 until m do
begin c[i,k]:= 0;
for j:= 1 step 1 until / do
c[i,k] : = c[i,k] + ali,j] x b[j.k]
end
end

In ALGOL 60 sind Programme Blocke, in denen alle vorkommenden Namen
erklart sind, oder zusammengesetzte Anweisungen ohne zu erklirende Namen.
Die Blocke unter 2. und 3. sind hiernach keine ALGOL-Programme, da die Namen
n, I und m in ihnen nicht erklirt sind. Diese Namen diirfen in den Blécken auch
nicht erklart werden, da sie in Grenzenpaaren vorkommen und darin keine lokalen
GroBen zuldssig sind. Das zweite Beispiel 14Bt sich etwa in folgender Weise zu
einem Programm erweitern:
begin integer n; n:= 100;
begin integer i; real s; array a,b[1:n];
it=1; s:=0; A:s:=s5+a[i] X b[i]; i:=1i+ 1;
if i < n then go to 4
end
end

Dieses Programm ist ein Block mit der lokalen GréBe n, der aus zwei Anweisungen
besteht; die zweite ist wieder ein Block mit den lokalen GréBen i, s, @ und b sowie
der ebenfalls als lokale GréBe geltenden Marke A, durch die hier die oben benutzte
Marke 1 ersetzt wurde, um ein Beispiel fiir einen nicht besonders zu erklirenden
Namen zu geben. Die Variable n ist beziiglich dieses im ersten Block enthaltenen
inneren Blockes glubal, kann danach in einer Felderklarung

array a,b[1 : n]

benutzt werden. Dariiber hinaus ist noch zu bemerken, daB jeder zur Berechnung
von Indexgrenzen benutzten Variablen beim Eintritt in den betreffenden Block
bereits ein Wert zugeordnet sein muB. Das geschieht im Beispiel durch die An-
weisung n: = 100.

§ 1. Programmbeschreibung in ALGOL 25

Auch allen anderen Variablen mu3 vor ihrer Verwendung ein Wert zugeordnet
sein, da sonst nicht mit ihnen gerechnet werden kann. Aus diesem Grunde ist der
im ersten Beispiel angegebene Block nur formal ein Programm, da der Variablen x
bei Ausrechnung des ersten Ausdrucks kein Wert zugeordnet ist. Diese Wert-
zuweisung kann auBerhalb des Blocks geschehen, dann darf x aber nicht im Block
erklart werden. Ein sinnvolles Programm ergibt sich etwa durch
begin real x; x:= 0.5;

beginreal y; y:= (x + 0.16)/(0.46 x x + 0.70);
y:i=05x(y+x/y); y:=05x(+x/y)
end
end

Bei komplizierten Programmen muB man sehr aufmerksam sein, um nicht in
einer Anweisung eine unbewertete GroBe zu benutzen. Spiter zu besprechende
besondere Anweisungen dienen zur Einstellung der benétigten Anfangswerte
durch Ablesen von einem Eingabemedium.

Bei Eintritt in einen Block sind die im Block lokalen GréBen unbewertet. Eine
Ausnahme bilden nur die als own erklirten Variablen und Felder (vgl. 6. Stufe).
Bei Austritt aus dem Block verlieren die Erklarungen ihre Giiltigkeit, die betreffen-
den GroBen sind dann nicht definiert.

4. Stufe: Prozeduren

Zur Definition von Funktionen dienen Funktionserklirungen, die zum Namen einer
Funktion eine Vorschrift zur Berechnung der Funktion zuordnen. Eine Funktion
hangt von einer Anzahl von Argumenten ab, die bei jeder Anwendung der Funk-
tion andere Variable oder Ausdriicke sein konnen. Es kann z. B. einmal sin(x + 1)
und ein andermal sin (y) gebraucht werden, jedesmal ist die gleiche Funktion, d. h.
die gleiche Rechenvorschrift (der gleiche Algorithmus), gemeint, sie wird nur mit
anderen Parametern ausgefiihrt. In der Funktionserkldrung wird die Rechen-
vorschrift unter Verwendung freier oder formaler Parameter notiert, die bei der
aktuellen Ausfithrung entweder durch aktuelle Parameter ersetzt werden oder
mit Werten aktueller Parameter bewertet werden. Beim klassischen Funktions-
begriff kann man die Recheuvorschrift mit Variablen notieren, denen vor der
jeweiligen Berechnung des Funktionswertes bestimmte Werte zugewiesen werden.
Der in ALGOL verwendete Funktionsbegriff ist allgemeiner, er ist aus der in
Rechenautomaten iiblichen Unterprogrammtechnik entwickelt worden, in ihm
konnen z. B. auch formale Parameter als formale Marken oder als formale Namen
fiir Unterprogramme auftreten, die dann bei jeder Ausfithrung durch die aktuelle
Marke bzw. den aktuellen Unterprogrammnamen zu ersetzen sind.

26 I. ALGOL 60

Die fiir Funktionserklarungen verwendete Schreibweise sei an einem Beispiel
erdrtert:

real procedure wurzel (x); value x; real x;

begin real y; y:= (x + 0.16)/(0.46 x x + 0.70);
y:=0.5 % (y + x/y); wurzel:= 0.5 x (¥ + x/y) end

Neu eingefiihrt wurden die Grundsymbole procedure (Prozedur) und value (Wert).
Zur Kennzeichnung, daB3 es sich um eine Funktion mit reellem Wertebereich
handelt, ist vor das Zeichen procedure ein Zeichen real zu setzen. Die Funktion
wird mit dem Namen ,,wurzel* bezeichnet. Auf diesen Namen folgt in Klammern
eingeschlossen der formale Parameter x; im allgemeinen kann eine ganze Liste
von formalen Parametern (Namen) auf den Prozedurnamen folgen. Dieser for-
male Parameter x wird durch die Angabe value x als ein formaler Parameter
charakterisiert, dem vor jeder Abarbeitung des die Funktion definierenden
Algorithmus der Wert eines aktuellen Parameters zuzuweisen ist. Die darauf
folgende Spezifikation real x ist zwar keine Erklarung, da sie sich nicht auf eine
Variable bezieht, sondern auf einen formalen Parameter, sie hat aber eine gleich-
artige Wirkung, die bei der folgenden Erlduterung des Prozeduraufrufs zu be-
sprechen ist. Der die Funktionserkldrung abschlieBende Block enthalt die Anwei-
sung
wurzel := 0.5 x (y + x/y),

durch deren Ausfithrung der aktuelle Funktionswert festgelegt wird. Dabei wird
der Funktionsname ,,wurzel* wie eine einfache Variable von Typ real behandelt.

Funktionen werden bei der Bildung von Ausdriicken wie Variable benutzt.
Die Funktion ,,wurzel* kann etwa in einer Wertzuweisung vorkommen, z. B. in

z:=xly —wurzel(x 12+ y12) + y.
Die Ausfithrung dieser Wertzuweisung 1a8t sich durch folgenden Block beschreiben:

begin real Hilfsvariable, wurzel; Hilfsvariable := x[y;
begin real x1; xl:=x124 y12;
begin real y; y:= (x1 + 0.16)/(0.46 x x1 + 0.70);
y:=0.5x (y + x1/y);
wurzel := 0.5 x (y + x1/y)
end
end; z:= Hilfsvariable — wurzel + y
end!)

1) Man beachte, daB y in der abschlieBenden Anweisung nicht mit dem lokalen y im innersten
Block iibereinstimmt; dieses hat nach dem Verlassen des Blocks keine Bedeutung mehr.

§ 1. Programmbeschreibung in ALGOL 27

Allgemein wird beim Prozeduraufruf, der durch Erkennen des Prozedurnamens
und einer anschlieBenden in Klammern gesetzten Liste von aktuellen Parametern
(Namen oder Ausdriicke) eingeleitet wird, der durch die Prozedurerklarung
gegebene Algorithmus abgearbeitet. Dieser Algorithmus wird dabei als Block
angesehen, der den aufrufenden Namen ersetzt, wobei gegebenenfalls einige
Namen (formale Parameter) innerhalb des Algorithmus durch andere Namen,
Ausdriicke oder Zeichenfolgen zu ersetzen sind. Es ist dabei gleichgiiltig, ob es
sich um eine Funktionserklirung oder eine Unterprogrammerklirung handelt;
im Gegensatz zu Unterprogrammen haben Funktionen einen Wert vom Typ real,
integer oder Boolean, und beim Funktionsaufruf wird der Funktion dieser Wert
zugeordnet. Die Anzahl der aktuellen Parameter mufBl mit der Anzahl der
formalen Parameter iibereinstimmen. Beim Aufruf werden die aktuellen Para-
meter den formalen Parametern in der notierten Reihenfolge zugeordnet.
Gewisse formale Parameter kénnen als Parameter mit Anfangswert definiert
werden, indem sie in der Prozedurerklarung in einer auf das Zeichen value folgen-
den Liste aufgefiihrt werden. Solchen Parametern wird vor Abarbeitung des
Algorithmus der Wert des zugeordneten aktuellen Parameters zugewiesen. Diese
formalen Parameter miissen innerhalb der Prozedurerkldrung spezifiziert sein,
d. h., ihnen wird eine Eigenschaft zugeordnet, die mit den Eigenschaften des
batreffenden aktuellen Parameters vertraglich sein muB. In ALGOL werden als
Werte angesehen: reelle Zahlen (ganze Zahlen als Spezialfall) und Wahrheits-
werte (true und false) als Werte von einfachen und indizierten Variablen, geordnete
Mengen von Werten indizierter Variablen als Werte von Feldern, Marken als
Werte von Zielausdriicken. Ein Parameter mit Anfangswert kann daher als real,
integer, Boolean, (real) array, integer array, Boolean array oder label (Marke) spezi-
fiziert werden. Die Wertzuweisung an diese Parameter geschieht nun vor Aus-
fiihrung des in jedem Fall als Block anzusehenden Algorithmus, und zwar auller-
halb dieses Blockes. Bei als real, integer oder Boolean spezifizierten Parametern
denkt man sich die formalen Parameter als Variable entsprechenden Typs
erklart, denen sogleich die Werte der aktu:llen Parameter zugewiesen werden.
Damit hierbei keine Schwierigkeiten auftreten, sind die Namen der formalen
Parameter gegebenenfalls passend zu &ndern. Im aufgefithrten Beispiel ist zur
Beschreibung der Ausfiithrung eine solche Anderung vorzunehmen. Der Parameter
x wird bei Ausfithrung durch die reellwertige Variable x1 ersetzt, damit der Block

begin real x1; xl:=x12+ y12; begin...end end

notiert werden kann. Wiirde die Bezeichnung x des formalen Parameters fiir die
bai der Ausfithrung auftretende Variable iibearnommen, so bedeutete das im soeben
notierten Block, daB die Variable x neu erklart wiirde und der Ausdruck x 12

28 1. ALGOL 60

+ » 1 2 nicht gebildet werden konnte, weil dieser Variablen kein Wert zugeordnet
ware. Einem als Feld spezifizierten formalen Parameter (durch array usw.) darf
nur der Name eines (erklarten) Feldes als aktueller Parameter zugeordnet sein;
handelt es sich um einen Parameter mit Anfangswert, so ist dieser Parameter als
Feld mit den gleichen Grenzen wie der entsprechende aktuelle Parameter erklart
zu denken. Diesem Feld wird der Wert des aktuellen Feldes zugeordnet, d. h.,
jeder seiner indizierten Variablen wird der Wert der entsprechenden indizierten
Variablen des aktuellen Feldes zugewiesen. Dieser Vorgang 146t sich in ALGOL
gegebenenfalls nach Abanderung des Namens des formalen Parameters wie bei
einfachen Variablen beschreiben. Ist ein Parameter mit Anfangswert als label
spezifiziert, so ist ihm ein Zielausdruck als aktueller Parameter zuzuordnen. Der
Wert dieses Zielausdruckes (eine Marke) ersetzt vor Ausfithrung des Algorithmus
in dessen ALGOL-Notation (dem Prozedurrumpf) den zugeordneten formalen
Parameter iiberall.

Formale Parameter, die nicht in der auf value folgenden Liste von Namen auf-
gefiihrt sind, werden anders behandelt. Sie werden vor Ausfithrung des Algorith-
mus im Prozedurrumpf iiberall durch die zugeordneten aktuellen Parameter
ersetzt, und zwar durch die betreffende Zeichenfolge (Namen oder Ausdruck),
und nicht durch den Wert des aktuellen Parameters. Wahrend die oben beschrie-
bene Zuweisung eines Wertes an einen formalen Parameter als Wertaufruf (call
by value) bezeichnet wird, spricht man bei dieser Substitution vom Namensaufruf
(call by name). Diese durch Zeichenfolgen zu ersetzenden Parameter seien hier
als symbolische Parameter bezeichnet, sie halten einen Platz fiir den aktuellen
Parameter frei. Kommen in den aktuellen Parametern Namen vor, die auch als
Bezeichnung formaler Parameter mit Anfangswert oder lokaler GréBen des
Prozedurrumpfes auftreten, so sind diese formalen und lokalen Gré8en durch
passend abgednderte Bezeichnungen zu ersetzen. Ein Prozeduraufruf kann nur
ausgefithrt werden, wenn die vorzunehmenden Substitutionen und Bewertungen
zu Anweisungen fithren, die mit den ALGOL-Regeln vertréaglich sind. Gegebenen-
falls sind die substituierenden Zeichenfolgen in Klammern einzuschlieBen. Sym-
bolische Parameter kénnen ebenfalls spezifiziert werden, es ist jedoch nicht vor-
geschrieben. Neben den bereits erwahnten Spezifizierungen konnen noch folgende
verwendet werden : procedure, real procedure, integer procedure, Boolean procedure,
switch (Verteiler) und string (Zeichenreihe). Es ist erforderlich, daB3 die durch die
Spezifikation eines formalen Parameters angegebenen Eigenschaften sowohl mit
der Verwendung des Parameters im Prozedurrumpf als auch mit den Eigenschaften
des beim Prozeduraufruf zugeordneten aktuellen Parameters vertrdglich sind.
Zum Beispiel kann ein als array spezifizierter formaler Parameter nicht durch eine
als real erklarte aktuelle Variable ersetzt werden. Auf die Begriffe ,,Verteiler* und

§ 1. Programmbeschreibung in ALGOL 29

..Zeichenreihe** wird spiter eingegangen. Hier sei noch erwihnt, daB auch para-
meterlose Prozeduren zuldssig sind, es treten dann bei der Erklarung keine for-
malen Parameter auf, entsprechend auch keine aktuellen Parameter beim Aufruf.

Zur Erlauterung sollen einige weitere Funktionserklarungen aufgestellt und
analysiert werden. Dabei sollen die Funktionsnamen so gewahlt werden, daB sie
moglichst kurz sind und bereits eine gewisse Aussage iiber die Funktion ent-
halten.

1. real procedure max(x,y); value x, y; real x, y;
if x < y then max := y else max := x

Bemerkung. Der Prozedurrumpf braucht nicht die Form eines Blockes zu haben,
er wird bei Ausfithrung der Prozedur trotzdem als Block angesehen.

Die Funktion max mit den zwei Argumenten x und y (reelle Zahlen) erhélt den
Wert der groBeren der beiden Zahlen, bei Gleichheit ihren gemeinsamen Wert.
Die Ausfithrung eines Aufrufs ,,max(a,b)* geschieht in der Art

begin real x, y; x:=a; y:=b;
begin if x < y then max := y else max := x end

end

Dabei wird max wie eine globale reelle Veranderliche behandelt, die auBBerhalb
dieses Blocks erklart ist. Man beachte jedoch, dal max keine Variable, sondern
eine Funktion bezeichnet, also nicht auBerhalb des Prozedurrumpfes wie eine
Variable behandelt werden kann; auch im Prozedurrumpf darf max in isolierter
Form nur auf der linken Seite einer Wertzuweisung vorkommen.

2. real procedure poly (a,n,x); value n, x; array q;
integer n; real x;
begin integer k; realt; ¢:=0;
for k:= nstep —1 until 0 do 7 : = alk] + ¢ x x;

poly:=1t
end

Diese Funktionserklarung gibt einen Algorithmus (Hornersches Schema) zur
n
Berechnung von poly (a,n,x) = Z a, * x* an (vgl. [2]). Bei einem Aufruf muB3 der
k=0

erste aktuelle Parameter Name eines eindimensionalen Feldes sein, der zweite
und dritte Parameter miissen arithmetische Ausdriicke sein, wobei der zweite

30 1. ALGOL 60

einen ganzzahligen Wert haben soll. So bedeutet etwa f:= poly (4, 10,

sqrtut2 4+ v12) + 1) die Berechnung von f = Z Ak(\/u + 0?2 + 1) Die
Ausfithrung 148t sich beschreiben durch

begin real poly;
begin integer n; real x; n:=10; x:=sqrtut2+0v12) + 1;
begin integer k; realz; f:= 0;
for k:=nstep —1 until 0 do 7 := A[k] + ¢ x x;

poly =1t
end

end; f:= poly
end

Sind in der Erkldarung alle drei Parameter symbolische Parameter, so erfolgt die
Ausfithrung nach

begin real poly;
begin integer k; realt; ¢:=0;
for k := 10 step — 1 until 0 do
ti=Alk] + t x (sqrtu 12 +v12) + 1);
poly:=t

end; f:= poly
end

Bei der automatischen Ubersetzung kann die Verwendung symbolischer Para-
meter an Stelle von Parametern mit Anfangswert zu kiirzeren Maschinenprogram-
men fiihren, jedoch kann dadurch in Spezialféllen eine wesentlich ldngare Rechen-
zeit entstehen. Im vorliegenden Beispiel ist mit symbolischem Parameter x der
Ausdruck sgrt(u 12 + v 1 2) + 1 elfmal zu berechnen; falls x ein Parameter mit
Anfangswert ist, nur einmal. Bei Feldern ist es im allgemeinen zweckmaBiger,
symbolische Parameter zu benutzen, da fiir Felder mit Anfangswert nochmals der
gleiche Speicherraum benétigt wird wie fiir das aktuelle Feld. Es kann jedoch
Falle geben, in denen der Aufbau des Programms die Einfiihrung eines Feldes als
formaler Parameter mit Anfangswert als zweckmaBig erscheinen 148t.

In der Formulierung der Funktionserklarung fiir die Funktion poly wird die
lokale Verdnderliche ¢ eingefiihrt. Sofern man auf eine solche Verdnderliche ver-
zichten wollte und den Prozedurrumpf

§ 1. Programmbeschreibung in ALGOL 31

begin integer k; poly:= 0; for k:= nstep — 1 until 0 do

poly := alk] + poly x x
end
schriebe, so wire das eine in ALGOL 60 unzulassige Formulierung. Der Name poly
bezeichnet nidmlich eine Funktion von drei Verdnderlichen, aber nicht eine
Variable. Er muB} jedoch in der Funktionserkldrung mindestens einmal auf der
linken Seite einer Wertzuweisung vorkommen, damit der Funktion ein Wert
zugeordnet werden kann. Jedes andere Vorkommen des Prozedurnamens inner-
halb des Prozedurrumpfes bewirkt einen Prozeduraufruf, dazu muBl jedoch die
vorgeschriebene Anzahl aktueller Parameter mit notiert werden. Man bezeichnet
einen solchen Aufruf der gleichen Prozedur wihrend ihrer Ausfithrung als rekur-
siven Aufruf. Ein Beispiel dafiir ist

3. real procedure POLY(a,n,x); value x; array a;
integer n; real x;

if n > 0 then POLY := a[n] x x1Tn + POLY(a,n — 1,x)
else POLY := a[0]

Die Ausfithrung sei an Hand der Anweisung F:= POLY(B,2, Z 1 2) erlautert.
Entsprechend dem bisherigen Vorgehen ergibt sich folgende Durchfithrung:

begin real POL;
begin real x; x:=Z12;
begin if 2 > 0 then POL := B[2] x x12 +
POLY(B,2 — 1,x)
else POL := B[0]
end
end; F:= POL
end

Die hierin auftretende Funktion POLY (B, 2 — 1, x) ist nach dem gleichen Schema
auszuwerten, dabei tritt eine Funktion POLY(B,2 — 1 — 1, x) auf. Wird diese
ausgewertet, so hat die Relation 2 — 1 — 1 > 0 den Wert false, und die Aus-
wertung der an sich auftretenden Funktion POLY(B,2 — 1 — 1 — 1, x) erfolgt
nicht, sondern es ergibt sich der Wert von POLY(B,2 — 1 — 1, x) — der natiir-
lich gleich dem Wert von POLY(B, 0, x) ist — zu B[0]. Daraus ergibt sich wiederum
der Wert von POLY(B,2 — 1,x) zu B[1] x x11 + B[0] und schlieBlich der
Wert von POLY(B, 2, x) zu B[2] x x 12 + B[l] x x11 + B[0].

Der rekursive Aufruf von Prozeduren fiihrt oft zu kurzen Formulierungen in
ALGOL, denen jedoch meist komplizierte Maschinenprogramme und lange

32 1. ALGOL 60

Rechenzeiten entsprechen. Daher sollte man diese Art der Programmierung mog-
lichst vermeiden (vgl. [48]). Bei vielen ALGOL-Ubersetzern ist ein rekursiver
Aufruf auch nicht zugelassen. Die Beschreibung der Ausfiithrung eines rekursiven
Prozeduraufrufs durch eine ALGOL-Anweisung kann nicht in Form eines ge-
streckten Programms geschehen, da im allgemeinen nicht bekannt ist, wie oft der
rekursive Aufruf erfolgt. Eine den Ablauf des Algorithmus ,,POLY* beschreibende
Prozedur kann etwa folgende Form haben:

4. real procedure POLY1(a, n, x); value x; integer n; real x;

begin array Keller[0:n — 1]; integer j; real POLYH,;
if n > O then
begin for j:= O step 1 until » — 1 do
Keller[jl:= a[n — j] x x1(n — j) end
POLYH := a[0];
if n > O then
begin for j:= n — 1 step — 1 until O do
POLYH := Keller[j] + POLYH end

POLY1:= POLYH
end

Bemerkung. Formale Parameter konnen als globale GroBen im Prozedurrumpf
auch in Felderkldrungen vorkommen.

Das lokale Feld ,,Keller* nimmt Zwischenresultate auf, die in der Prozedur POLY
bei jedem der rekursiven Aufrufe entstehen. Diese Zwischenresultate werden bei
der Bewertung der lokalen Hilfsvariablen POLYH benutzt, die nacheinander die
Werte annimmt, die bei den einzelnen rekursiven Aufrufen der Funktior POLY

zugeordnet werden.
5. integer procedure ggT'(a,b, Ausgang); integer a, b; label Ausgang;
begin integer 7;
if a < 0 then go to Ausgang;
if b < O then go to Ausgang;
ifa <bthenbeginr:=a; a:=b; b:=r end
A:r:=a — b x entier(alb);
if r = O then gg7 := b else
begina:=b; b:=r; goto Aend
end

§ 1. Programmbeschreibung in ALGOL 33

Bemerkung. Statt entier(a/b) kann auch a + b geschrieben werden. Das Opera-
tionszeichen + fiir ganzzahlige Division ist nur fiir ganzzahlige
Operanden definiert und liefert das ganzzahlige Resultat sign(a/b)
x entier(abs(a/b)).

Die Funktion ggT bezeichnet den gréBten gemeinsamen Teiler der natiirlichen
Zahlen a und b. Ist eine der beiden Zahlen keine natiirliche Zahl, so wird zur
Anweisung mit der formalen Maike ,,Ausgang gesprungen, z. B. bewirkt
ggT(-3, 1, B) einen Sprung zu der mit ,,B“ markierten Anweisung. Das an-
gewandte Verfahren zur Bestimmung des groBten gemeinsamen Teilers ist der
bekannte Euklidische Algorithmus.

Wihrend Funktionen bei der Bildung von Ausdriicken auftreten, werden Unter-
programme durch eine Unterprogrammanweisung aufgerufen (auch als Prozedur-
anweisung bezeichnet). Eine Unterprogrammanweisung besteht aus einem Namen,
gefolgt von einer eingeklammerten Liste aktueller Parameter, unterscheidet sich
in der Schreibweise also nicht von einer Funktion. Der Name ist einem Algorith-
mus zugeordnet, der in einer Unterprogrammerklirung definiert sein muB, die
genauso wie eine Funktionserkldrung aufgebaut ist, nur ist das erste Zeichen der
Erklarung das ALGOL-Zeichen procedure ohne ein vorgesetztes Typzeichen
(real, integer, Boolean). Die Ausfithrung erfolgt in der beim Funktionsaufruf
erorterten Weise.

Es seien einige Beispiele fiir Unterprogrammerklirungen angefiihrt:

1. procedure add(al, a2, b1, b2, r1, r2);
real al, a2, b1, b2, r1, r2;
begin 71 := al + bl; r2:= a2 + b2 end

2. procedure Mult(al, a2, b1, b2, r1, r2);
real al, a2, b1, b2, r1, r2;
begin r1 := al x bl — a2 x b2;
r2:=a2 x bl + al x b2 end

Die Unterprogramme ,,add* und ,,Mult* dienen zur Addition bzw. Multipli-
kation zweier komplexer Zahlen al + i-a2 und bl + i- b2 mit dem Resultat
rl + i-r2. Mit Hilfe dieser beiden Unterprogrammerkldrungen kann die Berech-
nung des Wertes eines komplexen Polynoms

pl4+ip2=Y (Al +i-A4A2) (u +i-v)
k=0

in folgender Weise formuliert werden:

3 Bachmann, AT.GOL-Programmierung

34 I. ALGOL 60

3. procedure polyK(Al, A2, n, u, v, pl, p2);

value n, u, v; array A1, A2; integer n;

real u,v, pl, p2;

begin procedure add(al, a2, b1, b2, r1, r2);
real al, a2, b1, b2, rl, r2;
begin vl := al + bl; r2:= a2 + b2 end;
procedure mult(al, a2, b1, b2, r1, r2);
real al, a2, bl, b2, rl, r2;
beginreal 1; t:=al x bl — a2 x b2;

r2:=a2 x bl + al x b2; rl:=1 end;

integer k; pl:= p2:=0;
for k := n step — 1 until 0 do
begin mult (pl, p2, u, v, pl, p2);
add(Al[k], A2[k], p1, p2, p1, p2)
end

end

Im Gegensatz zu Funktionserklarungen sind bei Unterprogrammerkliarungen die
Resultate im allgemeinen in der Liste formaler Parameter aufzufithren. Wahrend
eine Funktion in ALGOL 60 stets eine einwertige Funktion ist, kénnen bei Unter-
programmen mehrere Resultate auftreten. Auch Funktionen, bei denen Felder
als Resultate auftreten, sind im Sinne von ALGOL 60 keine Funktionen, sondern
Unterprogramme. Diese gesonderte Anfithrung der Resultate bedingt manchmal
eine etwas langwierige Schreibweise. Das dritte Beispiel zeigt, wie innerhalb
des Prozedurrumpfes, der ein Block ist, wieder Prozedurerklirungen vorkommen
koénnen. Es zeigt weiter die Moglichkeit, in verschiedenen Prozedurerklirungen
gleichartig bezeichnete formale Parameter zu verwenden, die keinerlei Beziehung
zueinander haben. Es sei weiter darauf hingewiesen, daB3 der gleiche aktuelle Para-
meter mehrfach bei Aufruf einer Prozedur vorkommen kann, z. B. pl und p2
in mult(pl, p2, u, v, pl, p2). Die Ausfithrung dieses Unterprogramms geschieht wie
beginreal t; t:=pl x u — p2 x v;
p2:=p2 xu+pl xv; pl:=1t end

Falls die zusétzliche lokale Variable ¢ in mult gegeniiber Mult nicht eingefiihrt
wiirde, erhielte man nicht das gewiinschte Produkt, denn Mult(pl, p2, u, v, p1, p2)
ergibt die Ausfithrung
begin pl := pl X u — p2 X v;

p2:=p2 x u + pl x v end,
in der bei der zweiten Anweisung die Variable pl bereits einen neuen Wert hat.

§ 1. Programmbeschreibung in ALGOL 35

Es sind in ALGOL 60 einige Standardunterprogramme vorgesehen, deren
Aufruf in einem Programm erfolgen kann, ohne daB der zugehorige Algorith-
mus in einer Unterprogrammerkldrung definiert wird. Der Grund fiir die
Einfithrung dieser Standardunterprogramme ist, dal die Funktion dieser Algo-
rithmen nicht mit den bisher behandelten ALGOL-Anweisungen beschreibbar
ist [46]. Es handelt sich um Unterprogramme zur Beschreibung von Eingabe-
und Ausgabevorgidngen an Rechenautomaten und eine weitere Standardfunktion
mit dem Namen Jength zur Festellung der Anzahl von Zeichen in einer Zeichen-
reihe.

Hier seien nur die Unterprogramme inreal, outreal, inarray und outarray erlau-
tert. Jedes dieser Unterprogramme ist zum Aufruf mit zwei aktuellen Parametern
zu verbinden. Der erste Parameter ist ein arithmetischer Ausdruck, dessen Wert
eine natiirliche Zahl sein muB, die einen numerierten Eingabe- oder Ausgabe-
kanal des betreffenden Rechenautomaten bezeichnet. Bei inreal und outreal mufl
der zweite aktuelle Parameter der Name einer als real oder integer erklarten Varia-
blen sein. Die Wirkung von inreal ist, daB3 eine auf dem Eingabemedium nach
gewissen vom betreffenden Rechenautomaten abhingenden Vorschriften dar-
gestellte reelle Zahl der Variablen als Wert zugewiesen wird. Das Eingabemedium
muB mit dem durch den ersten Parameter bezeichneten Kanal verbunden sein
und wird automatisch um eine Zahl weitergestellt. Die Wirkung von outreal
besteht in der entsprechenden Ausgabe des Wertes der Variablen. Der zweite Para-
meter der Unterprogramme inarray und outarray ist Name eines Feldes. Durch
outarray wird veranlaBt, daBl der Wert des bezeichneten Feldes ausgegeben wird,
dieser Wert ist eine geordnete Menge reeller Zahlen. Die Ordnung ist bei einem
n-dimensionalen Feld dadurch gegeben, daB a[k,, k., ..., k,] Vorganger von
alji,Jjas «+-5Jn] ist, wenn der erste von einem Index j, verschiedene Index &k, < j,
ist. Sie entspricht also bei ein- und zweidimensionalen Feldern der iiblichen
Darstellung von Vektoren bzw. von aus Zeilenvektoren zusammengesetzten
Matrizen. Durch inarray wird eine entsprechende Eingabe, d.h. eine Wert-
zuweisung an alle einzelnen Variablen des Feldes veranlaBt. Eine Erkliarung
des Feldes muB in jedem Fall vorangegangen sein. Die Struktur des Feldes
ist nur durch die Erklarung bestimmt und nicht aus der Anordnung der Werte
auf dem Eingabe- oder Ausgabemedium ersichtlich. Weitere Unterprogramme
zur Eingabe und Ausgabe einzelner Zeichen sind mit insymbol und outsymbol
bezeichnet (vgl. S. 42).

Ein Programm in ALGOL 60 ist ein Block oder eine zusammengesetzte Anwei-
sung. Da alle vorkommenden Namen zu erkldren sind, treten Programme in
Form zusammengesetzter Anweisungen iiblicherweise nicht auf. Programme unter
Anwendung der Standardunterprogramme sind z. B.

g

36 1. ALGOL 60

1. begin outreal(1, 3.14159) end
Durch dieses Programm wird iiber Kanal 1 die Zahl 3.14159 ausgegeben.
2. begin integer n; inreal(2,n);
begin array a, b, c[1 : n,1 : n]; integer i, k, j;
inarray(2,a); inarray(2,b);
for i:= 1 step 1 until » do
for k := 1 step 1 until n do
begin c[i,k] := 0;
for j:= 1 step 1 until n do
cli,k] := c[i,k] + ali,j] x b[j,k]
end; outarray(l,c)
end
end

Mit diesem Programm wird die Eingabe zweier (n,n)-Matrizen iiber Kanal 2 mit
Elementen al[/,j] und b[j k] sowie ihre Multiplikation mit dem Resultat c[i,k]
und dessen Ausgabe iiber Kanal 1 beschrieben. Auf dem Eingabemedium sind
nacheinander die Zahl »n sowie die Zahlen a[l1,1], a[1,2], ..., a[n,n], b[1,1], b[1,2],
..., b[n,n] angeordnet.

5. Stufe: Verteiler

AuBer Typerkldrungen, Felderklarungen und Prozedurerkldrungen sind in
ALGOL 60 noch Verteilererklarungen vorgesehen. Durch eine Verteilererkldrung
wird einem Vektor von Zielausdriicken ein Name (Verteilername) zugeordnet. Ein
Zielausdruck ist ein Ausdruck, dem als Wert eine Marke zugeordnet ist. Der ein-
fachste Zielausdruck wird durch eine Marke dargestellt, jedoch ist auch ein Ver-
teiler ein Zielausdruck. Ein Verteiler wird als Verteilername mit einem nach-
folgenden in eckige Klammern eingeschlossenen positiven ganzzahligen arith-
metischen Ausdruck notiert, ist also duBerlich nicht von einer einfach indizierten
Variablen unterscheidbar. Der Wert eines Verteilers ist gleich dem Wert des Ziel-
ausdruckes, der die Komponente des Vektors in der Verteilererklarung ist, die
dem Indexwert entspricht. Zur Darstellung von Verteilererklarungen wird das neue
Grundsymbol switch (Verteiler) eingefiihrt, das Wertzuweisungszeichen := wird
mit einer weiteren Bedeutung verwendet. Ein Beispiel fiir eine Verteilererklarung
ist switch V:= A4, B, C, D, E. Kommt innerhalb des Giiltigkeitsbereichs dieser
Verteilererklarung (d. h. im Block, an dessen Anfang die Verteilererklarung steht,
solange nicht der Name V¥ in einem internen Block neu erklért ist) ein Zielausdruck
V[i] vor, so wird dadurch die i-te Marke aus der Liste von Marken 4, B, C, D, E

§ 1. Programmbeschreibung in ALGOL 37

ausgewahlt. V[i] ist also nur fiir i = 1, 2, ..., 5 definiert. Eine Sprunganweisung,
deren Zielausdruck ein nicht definierter Verteiler ist, wird wie eine leere Anweisung
ausgefithrt. In der Verteilerliste rechts des Zeichens := konnen beliebige Ziel-
ausdriicke stehen, die jeweils bei ihrer Auswahl durch den Verteiler ausgewertet
werden. Ein Beispiel fiir den Einsatz eines Verteilers ist:

begin integer i, j; switch S:= A4, B, S[j], 4;
A: inreal(l,i); inreal(l,j); go to S[i + j];
B: outreal(2,i — j) end

Dieses Programm wird von den Werten des in den Eingabekanal 1 gelegten Ein-
gabemediums gesteuert, fiir die nur die Zahlen 1 und 2 zugelassen werden. Ist
das Eingabemedium z. B. ein Lochstreifen mit den Zahlen

2,2,2,1,1,2,

so werden durch das Programm folgende Anweisungen ausgefiihrt!):

ir=2

ji=2

go to S[4] = go to A

ii=2

j:i=1

go to S[3] = go to S[j] = go to S[1] = goto 4
i:=1

Jji=2

go to S[3] = go to S[j] = go to S[2] = go to B
outreal(2, —1)

Es wird also eine Zahl —1 iiber Kanal 2 ausgegeben und das Programm beendet.
Wenn auch dieses Programm keinen praktischen Nutzen hat, so zeigt es doch
gut die Wirkungsweise des Verteilermechanismus; insbesondere die Mdoglichkeit
des ,,rekursiven Aufrufs®“ des gleichen Verteilers, der bei Auswertung eines Ziel-
ausdrucks mehrfach dieselbe Verteilererklarung benutzen kann.

Es sei darauf hingewiesen, daB} die in der Liste der Zielausdriicke einer Verteiler-
erklirung vorkommenden Namen keine globalen GroBen zu sein brauchen, wie
es bei Felderkldrungen innerhalb der Feldgrenzen erforderlich ist. In der Regel
werden es Marken sein, die innerhalb des betreffenden Blocks Anweisungen
markieren, also lokal sind. Ein Sonderfall tritt auf, wenn innerhalb des Blockes

1) Hierbei driickt das Gleicheitszeichen die Aquivalenz der nebeneinanderstehenden An-
weisungen aus, es handelt sich nicht um das Relationszeichen aus ALGOL 60,

38 1. ALGOL 60

ein weiterer Block eingeschlossen ist, in dem eine Marke nochmals erklart wird
(d. h. eine Anweisung markiert). Ergibt sich diese Marke innerhalb dieses inneren
Blockes als Resultat der Auswertung des im umfassenden Block erklirten Ver-
teilers, so erfolgt der Sprung zur entsprechend markierten Anweisung im umfassen-

den Block.
Beispiel. begin switch V' := L, M; integer x;

L: inreal(x);
M : begin integer y; inreal(y);
if x > y then go to V[x];
L: outreal(y)
end
end

Die Sprunganweisung go to V[x] wird z. B. im Fall x = 1 .und y = 0 als Sprung zur
Anweisung ,,L: inreal(x)* ausgefiihrt, nicht zur Anweisung ,,L: outreal(y), die
bei x < y ausgefiihrt wird. Da in ALGOL 60 eine Sprunganweisung zu einem nicht
definierten Wert eines Verteilers wie eine leere Anweisung behandelt wird, wird L:
outreal(y) auch ausgefiihrt, wenn x weder den Wert 1 noch den Wert 2 hat.

6. Stufe: Ergéinzungen

In ALGOL 60 sind weitere — seltener angewandte — Bildungen méglich. Typ-
und Felderklarungen konnen durch ein vorgesetztes Zeichen own (eigen) erweitert
werden. Die dadurch als own erklarten Namen fiir Variable und Felder erhalten
die zusatzliche Eigenschaft, dafl ihnen bei Eingang in einen vorher schon einmal
abgearbeiteten Block der Wert zugeordnet wird, den sie beim letztmaligen Ver-
lassen dieses Blocks hatten. Schwierigkeiten treten bei als own erklarten Feldern
auf, wenn sich die Feldgrenzen, die jeweils beim Eintritt in den Block berechnet
werden und dann bis zum Verlassen des Blocks giiltig sind, dndern. Dadurch
konnen auch bei als own erklarten Feldern nicht mit Werten belegte indizierte
Variable auftreten. In vielen Ubersetzungssystemen wird own nicht oder nur mit
Einschrankungen verwendet.

Wie bereits erwahnt wurde, konnen zweiwertige Aussagen oder Boolesche Aus-
driicke (auch als logische Ausdriicke bezeichnet) gebildet werden. Thre Elemente
sind einfache oder indizierte Variable, zweiwertige (Boolesche) Funktionen,
Relationen oder eingeklammerte Boolesche Ausdriicke. Sie konnen die Werte true
und false annehmen. Wie bei arithmetischen Ausdriicken gibt es spezielle Opera-
tionszeichen zur Verkniipfung von zwei Operanden und ein Operationszeichen —
(gesprochen ,,nicht*) zur Anwendung auf einen Operanden. Diese letzte Operation

§ 1. Programmbeschreibung in ALGOL 39

(Negation) hat den Effekt, als Resultat den negierten Wert des Operanden (true
statt false bzw. false statt true) zu ergeben. Fiir die zweistelligen Operationen gibt
die folgende Tabelle Auskunft iiber die Bildung des Resultatwertes:

Operations- Aussprache Wert des Wert des Wert des

zeichen ersten zweiten Resultates
Operanden Operanden

A und false false false
false true false
true false false
true true true

\% oder false false false
false true true
true false true
true true true

o impliziert false false true
false true true
true false false
true true true

= dquivalent false false true
false true false
true false false
true true true

Bei der Bildung Boolescher Ausdriicke aus den erwahnten Elementen sind wie bei
arithmetischen Ausdriicken Vorrangregeln in der Verkniipfung von Operanden
zu beachten. Bei Operationszeichen mit gleichem Rang geschieht die Verkniipfung
weiter links stehender Operanden zuerst. Die Rangfolge ist

I.—; 2. A; 3.v; 4.o; 5 =.
Beispiele.
l.mavanbd

Sei Wert(a) = true, Wert(b) = false. Die Auswertung ergibt
Wert(—a) = false

Wert(a A b) = false

Wert(—a v a A b) = false

Durch Einsetzen der anderen mdoglichen Wertekombinationen fiir @ und b kann
man sich iiberzeugen, daB dieser Ausdruck dem Ausdruck a o b dquivalent ist.

40 I. ALGOL 60

22.anbAcv —a

Sei Wert(a) = true, Wert(b) = false, Wert(c) = false. Es folgt
Wert(—a) = false
Wert(a A b) = false
Wert(a A b A ¢) = false
Wert(a A b A ¢ v —a) = false

3.1xAXx=52

Hier treten als Elemente 1 £ x und x < 2 auf. Der Ausdruck erhilt nur den
Wert true, wenn beide Elemente den Wert true haben, d. h. x im Intervall
1 < x £ 2 liegt. Derartige mehrstellige Relationen kénnen demnach in
ALGOL 60 mittels des Zeichens A in der angegebenen Weise geschrieben
werden.

Ahnlich wie bedingte Anweisungen koénnen in ALGOL 60 auch bedingte Aus-
driicke gebildet werden. Die bisher verwendeten Ausdriicke werden als einfache
Ausdriicke bezeichnet, es gibt einfache arithmetische Ausdriicke, einfache Boole-
sche Ausdriicke und einfache Zielausdriicke. Ist E ein einfacher Ausdruck, 4 ein
beliebiger (einfacher oder bedingter) Ausdruck des gleichen Typs, B ein Boolescher
Ausdruck, so ist

if B then E else A

ein bedingter Ausdruck dieses Typs. Als Typ wird dabei die Eigenschaft bezeich-
net, ein arithmetischer, Boolescher oder Zielausdruck zu sein. Ein eingeklammerter
Ausdruck zahlt als einfacher Ausdruck.

Beispiele.
l.ifx < 1thena + belsea — b
2.if a A b then (if x < 1 then x — 1 else abs(x)) else abs(x) — 1
3.ififu <vthena A belsea v bthenx < lelsey <1 va

Der erste Ausdruck ist ebenso wie der zweite ein arithmetischer Ausdruck, der
dritte ein Boolescher Ausdruck. Analysiert man den dritten Ausdruck, so hat

er die Form

if B then F else A

mit B=ifu <vthena A belsea v b
E=x<1
A=y<lAa

§ 1. Programmbeschreibung in ALGOL 41

Die Bewertung eines bedingten Ausdruckes geschieht so, daB zuerst der Boolesche
Ausdruck B ausgewertet wird, er hat entweder den Wert true oder den Wert false.
Ist sein Wert true, so hat der gesamte Ausdruck den Wert des Ausdrucks E hinter
then, andernfalls den Wert des Ausdrucks A hinter else. Im dritten Beispiel wird
der Wert von B entweder gleich dem Wert von a A b (falls u < v) oder gleich
dem Wert von a v b (falls u = v). Der gesamte Ausdruck hat entweder den Wert
x < 1 oder den Wert von y < 1 A a, je nachdem, ob B den Wert true oder false
hat.

Bedingte Ausdriicke konnen auBer fiir arithmetische Ausdriicke in Relationen
iiberall an Stelle einfacher Ausdriicke eingesetzt werden. Diese Moglichkeit kann
in Prozeduren eventuell die Notation vereinfachen, da bedingte Ausdriicke auch
aktuelle Parameter sein kénnen.

Bei Laufanweisungen war bisher nur eine Form

for V := a, step a, until a; do 4

behandelt worden. An Stelle des step-until-Elementes ,,a, step a, until a;* kann
eine ganze Liste von Laufelementen auftreten. Solche Laufelemente haben ent-
weder die Form eines arithmetischen Ausdrucks, die bereits erwdahnte Form oder
die Form ,,a while 5*‘. Dabei ist ¢ ein arithmetischer Ausdruck und b ein Boole-
scher Ausdruck. Das Zeichen while (solange) ist ein neu einzufithrendes Grund-
symbol.

Die Ausfithrung geschieht so, daf3 der Variablen V nacheinander die sich aus
den einzelnen Laufelementen ergebenden Werte zugewiesen werden und jedesmal
die Anweisung A4 ausgefiihrt wird. Ist ein Laufelement ein einzelner arithmetischer
Ausdruck, so wird ¥ der Wert dieses Ausdrucks zugewiesen und A4 unbedingt aus-
gefiihrt. Hat ein Laufelement die Form eines step-until-Elementes, so erfolgt die
Wertzuweisung an ¥ und die Ausfithrung von A4 in der oben bereits beschriebenen
Art. Hat schlieBlich ein Laufelement die Form ,,a while 5*, so erhilt V' vor jeder
Ausfiihrung von 4 den Wert von a zugewiesen; b wird ausgewertet und 4 dann
ausgefiihrt, wenn b den Wert true hat. Darauf wird der gesamte Vorgang wieder-
holt, sofern nicht durch eine im Innern von A vorkommende Sprunganweisung
die Laufanweisung verlassen wird. Hat 4 den Wert false, so wird zum néchsten
Element der Liste iibergegangen, falls ,,a while 5* nicht das letzte Element der
Liste ist. Dann wird die gesamte Laufanweisung beendet. Ist die Laufanweisung
dadurch beendet worden, daB sie iiber eine im Innern von A gelegene Sprung-
anweisung verlassen wird, so behilt ¥ den letzten zugewiesenen Wert. Wird jedoch
die Laufanweisung nach Abarbeitung der gesamten Liste der Laufelemente
beendet, so ist der Wert von V undefiniert.

42 1. ALGOL 60

Beispiel. for x := 0 step 0.001 until 1, 1.01 step 0.01 until 10,
x + 0.1 while exp(—x) = 0.0000000001 do
outreal(2, exp(— x))

Diese Anweisung beschreibt die Tabellierung von e~* iiber Ausgabe-
kanal 2 mit verschiedenen Schrittweiten (0.001 fiir 0 < x < 1, 0.01 fiir
1 < x =10 und 0.1 fiir x > 10). Die Ausfithrung wird abgebrochen,
wenn exp(—x) < 0.0000000001 ist.

Um Zahlen verschiedener GroBenordnung bequem schreiben zu konnen, wurde
noch das Grundsymbol ,, zur Notierung von Zehnerpotenzen eingefiihrt. Eine
Zahl a - 10° kann damit in ALGOL 60 in der Form a,,b geschrieben werden,
b ist eine ganze Zahl mit oder ohne Vorzeichen, a eine beliebige Zahl mit oder ohne
Dezimalpunkt. Auch die Form ,,b fiir die Zahl 10® in der iiblichen Schreibweise
ist zuldssig. Damit kann das oben angefiihrte letzte Laufelement auch in der Form

x + 0.1 while exp(—x) = ;, — 10

geschrieben werden.

Als aktuelle Parameter kénnen in ALGOL 60 auch Zeichenreihen vorkommen.
Um sie zu kennzeichnen, werden zwei verschiedene Apostrophe ¢ und ’ eingefiihrt,
die Anfang und Ende der Zeichenreihe angeben. Zwischen ihnen steht eine be-
liebige Folge von Zeichen mit Ausnahme dieser beiden Apostrophe. Es ist auch
moglich, darin statt eines Zeichens wieder eine Zeichenreihe zu schreiben.

9

Beispiele. ‘abc
‘10,1 — 10,2’

‘a‘BC’ 10°1”

Bemerkung. Das ALGOL-Zeichen — ist als Zeichen fiir einen Zwischenraum
innerhalb von Zeichenreihen bestimmt. Es kann etwa bei der Aus-
gabe von Zahlen auf einem Druckstreifen fiir das Freilassen einer
Zeile benutzt werden. Eine Bedeutung dieses Zeichens ist nicht fest-
gelegt.

In den Standardunterprogrammen insymbol und outsymbol wird eine Zeichen-
reihe als aktueller Parameter benitzt. Diese Unterprogramme haben drei Para-
meter, der erste ist ein arithmetischer Ausdruck (mit natiirlicher Zahl als Wert),
der zweite eine Zeichenreihe. Durch den ersten Parameter wird ein Eingabe- bzw.
Ausgabekanal ausgewahlt. In insymbol ist der dritte Parameter eine Variable, in
outsymbol ist er ein arithmetischer Ausdruck, der natiirliche Zahlen als Werte an-
nehmen kann. Die Wirkung von insymbol besteht darin, daB3 das néchste Zeichen

§ 1. Programmbeschreibung in ALGOL 43

vom Eingabemedium gelesen und von links nach rechts mit den Zeichen verglichen
wird, die in der Zeichenreihe als zweitem aktuellen Parameter enthalten sind.
Stimmt es mit dem »n-ten Zeichen iiberein, so wird der mit dem dritten Parameter
bezeichneten Variablen die natiirliche Zahl »n als Wert zugewiesen. Kommt keine
Ubereinstimmung zustande, so wird der Variablen die Zahl 0 zugeordnet. Durch
outsymbol wird das dem Wert (n) des dritten aktuellen Parameters entsprechende
n-te Zeichen aus der Zeichenreihe (zweiter aktueller Parameter) herausgesucht und
iiber den ausgewihlten Ausgabekanal ausgegeben

Beispiele.
1. insymbol(1,°0123456789, + —’ n)
bewirkt Zuweisung einer der Zahlen 1 bis 13 an »n; wird z. B. ein Zeichen +
vom Eingabemedium gelesen, so wird » der Wert 12 zugeordnet.

2. begin real x; integer z; z:= 0;
for x := 0 step ;,—3 until 1, 1.01 step 0.01 until 10,
x + 0.1 while exp(—x) = ;0—10 do
begin outreal(2, exp(—x)); z:=2z + 1;
if z = 10 then
begin outsymbol(2, ‘—’,1); z:= 0 end
end
end

Dieses Programm beschreibt die gleiche Tabellierung wie oben mit Einschieben
eines Zwischenraumes nach jedem zehnten Wert.

Es sei noch bemerkt, daB fiir nicht in ALGOL 60 vorgesehene Zeichen negative
Zahlen als Codes zur Ein- und Ausgabe mit insymbol bzw. outsymbol entsprechend
der verfiigbaren Rechenanlage und ihrem Verwendungszweck festgelegt werden
konnen.

In ALGOL 60-Programmen konnen noch erlduternde Texte nach bestimmten
Vorschriften eingeschoben werden. Dazu ist das Grundsymbol comment (Bemer-
kung) eingefiihrt worden. Hinter jedem Semikolon oder begin kann dieses Zeichen
mit einer nachfolgenden Zeichenfolge, die mit einem Semikolon endet, eingescho-
ben werden. Die Zeichenfolge selbst darf demnach kein Semikolon enthalten.
Hinter einem Zeichen end kann ebenfalls ein erlduternder Text eingefiigt werden,
der kein Semikolon, end oder else enthalten darf. Eines dieser Zeichen muf3 auf
diesen Text folgen, sofern das Programm nicht abgeschlossen ist. Im Parameterteil
einer Prozedur kann jedes die Parameter trennende Komma durch)B:(ersetzt
werden, wobei B eine beliebige Folge von Buchstaben ist. Diese Schreibweise dient

44 1. ALGOL 60

zur Erlauterung des darauf folgenden aktuellen oder formalen Parameters, z. B.
add(al,a2,b1,b2) Resultat: (r1,r2).

Werden ALGOL 60-Programme verdffentlicht, so geschieht das meist in Form
einer Prozedurerklarung. Jedes Programm kann durch Vorsetzen eines Zeichens
procedure und eines Namens zu einer parameterlosen Prozedur gemacht werden.
Esist jedoch zweckmaBig, gewisse GroBen als Parameter einzufiihren. AbschlieBend
sei als Beispiel eine Funktionserkldrung mit Erlauterungen angegeben:

real procedure cosinus(x);

comment Die Funktion cosinus(x) entspricht der Standardfunktion cos(x),
der abweichende Name ist gewahlt, da Standardfunktionen nicht
erklirt werden;

value x; real x;

begin comment Das Argument wird zunédchst auf das Intervall0 < y < 2 x pi
mit pi : = 3.14159265 reduziert, es wird ausgenutzt, daB cos(x)
eine gerade Funktion ist;
real y, z; integer q; switch V' := A, B, B, A;
y 1= abs(x);
y:=y — entier(y/6.28318531) x 6.28318531;
q := entier(y[1.57079633) + 1;
comment g gibt den Quadranten des Arguments y an, dieses wird im
folgenden auf 0 < y < pi/8 reduziert. cos(y) wird durch
Taylorsche Entwicklung 1 — y12/2 + y14/24 — y 16/720
approximiert, durch zweimalige Anwendung von cos(2 x y)
=2 X cos(y) x cos(y) — 1 zuriicktransformiert;
if y > 3.14159265 then y : = 6.28318531 — y;
if y > 1.57079633 then y : = 3.14159265 — y;
yi=y x y/16;
comment Beginn des Hornerschen Schemas fiir Berechnung der Taylor-
schen Entwicklung;
z:=1/24 — y[720;
z:=zxy—05;, zi=zxy+1;
comment Beginn der Riicktransformation;
z:=2Xzxz—1;, z:=2xzxz-—1;
go to V[gq]; comment Der Verteiler V' dient zur Festlegung des Vor-
zeichens des Resultats;
B: cosinus := —z; goto C;
A: cosinus 1= z;
C: end cosinus

§ 1. Programmbeschreibung in ALGOL 45

Die wichtigsten Regeln zur Bildung von ALGOL 60-Programmen seien zum
AbschluB zusammengestellt:

1.

Ein ALGOL 60-Programm ist ein Block oder eine zusammengesetzte An-
weisung, eingeschlossen in begin und end.

. Am Anfang eines Blockes stehen Erklirungen zur Festlegung von Eigen-

schaften vorkommender Namen. Namen sind mit einem Buchstaben begin-
nende Zeichenfolgen aus Buchstaben und Ziffern. Sie dienen zur Bezeichnung
von Variablen, Feldern, Marken, Prozeduren und Verteilern.

. Der eigentliche Inhalt des Programms wird durch eine oder mehrere An-

weisungen beschrieben, die im Block auf die Erklarungen folgen.

. Anweisungen sind: Wertzuweisungen, Sprunganweisungen, leere Anweisun-

gen, bedingte Anweisungen, Laufanweisungen, Unterprogrammanweisungen,
zusammengesetzte Anweisungen und Blocke.

. Erkliarungen gelten innerhalb eines Blockes. Da in einem Block ein weiterer

Block eingeschlossen sein kann, ist eine Neuerklarung des gleichen Namens
dort moglich. Nach Beendigung des eingeschlossenen Blocks gilt dann jedoch
die alte Erklarung wieder, der Giiltigkeitsbereich hat ein ,,Loch* (solche Kon-
struktionen sollten vermieden werden). In einem Block erkldrte Namen heiBlen
beziiglich des Blocks lokal. Ein Name darf nicht mehrfach im gleichen Block-
kopf (Erklarungsteil des Blocks) erklart werden.

. Erklarungen sind Typerklarungen der Form real L, integer L oder Boolean L;

Felderklarungen der Form array L,[G,], L,[G,], ..., L,[G,], in denen statt
array auch integer array oder Boolean array stehen kann; Prozedurerklérun-
gen und Verteilererklarungen. L bzw. L, bezeichnen Listen von durch Komma
getrennten Namen, die G sind Listen von ebenfalls durch Komma getrennten
Grenzenpaaren. Ein Grenzenpaar besteht aus zwei ganzzahligen arithmetischen
Ausdriicken, die Grenzen fiir den entsprechenden Index einer zugeordneten
indizierten Variablen angeben. Diese arithmetischen Ausdriicke diirfen nicht
mit lokalen Variablen oder Funktionen gebildet werden. Eine indizierte
Variable hat den Namen eines Feldes, gefolgt von einer Liste von Indizes, die
in eckige Klammern eingeschlossen sind; sie bezeichnet eine Komponente
eines Feldes. Prozedurerklarungen beginnen mit procedure (Unterprogramm-
erklarungen) oder real procedure, integer procedure bzw. Boolean procedure
(Funktionserkldrungen) und einem Namen. Auf den Namen folgt eine Liste
von in Klammern eingeschlossenen verschiedenen Namen (formale Parameter).
Diese Liste kann auch entfallen. Der Prozedurrumpf ist eine Anweisung —
meist ein Block — zur Definition des Unterprogramms (der Funktion). Darin

46

10.

11.

12.

13.

1. ALGOL 60

vorkommende formale Parameter werden bei Ausfithrung durch aktuelle Para-
meter ersetzt, wenn sie nicht in der Prozedurerkldrung als Parameter mit
Anfangswert definiert werden (durch Aufnahme in eine Liste hinter dem
Zeichen value, sie sind dann auch zu spezifizieren). Diese Parameter erhalten
nur zu Beginn der Ausfithrung den Wert des betreffenden aktuellen Parameters
zugeordnet. Die fiir formale Parameter benutzten Namen diirfen mit Namen
anderer im Programm — aber nicht im Prozedurrumpf — verwendeter Grofen
iibereinstimmen. Verteilererklarungen haben die Form switch V' := L, wobei
V ein Name und L eine Liste von Zielausdriicken ist.

. Wertzuweisungen haben die Form V,:= V, := .--:= V, := E. Dabei sind

V, bis V, einfache (als real, integer oder Boolean erklarte) Variable oder indi-
zierte Variable (Komponenten von Feldern) gleichen Typs. E ist ein arithmeti-
scher oder Boolescher Ausdruck, der mit geringfiigigen Einschrankungen in der
iiblichen mathematischen Notation niedergeschrieben ist. Fiir ¥; kann im In-
neren einer Funktionserklarung auch der Funktionsname stehen. Durch die
Wertzuweisung wird den linksstehenden GroBen der Wert des rechtsstehenden
Ausdrucks zugewiesen (bei Booleschen Ausdriicken miissen links als Boolean
oder Boolean procedure erkliarte Namen stehen).

. Sprunganweisungen haben die Form go to D, wobei D eine Marke oder ein

Zielausdruck ist. Sie veranlassen, dal das Programm bei der entsprechend
markierten Anweisung fortgesetzt wird. Ist D = V[i] (Verteiler), so wird der
i-te Zielausdruck aus der entsprechenden Verteilererkldrung verwendet.

. Anweisungen konnen durch Vorsetzen von einer oder mehreren Marken

(Namen oder ganze Zahlen) mit jeweils einem Doppelpunkt markiert werden.

Bedingte Anweisungen der Form if B then A dienen zur bedingten Ausfithrung
der unbedingten Anweisung A (wenn der Boolesche Ausdruck B den Wert
true hat). Bedingte Anweisungen der Form if B then A, else 4, dienen je
nach dem Wert von B zur Auswahl zwischen der unbedingten Anweisung A4,
und der Anweisung 4, (letztere, wenn B den Wert false hat).

Laufanweisungen (meist in der Form for V := a, step a. until a; do 4) dienen
zur mehrfachen Ausfithrung einer Anweisung 4. Eine Laufvariable ¥ nimmt
dabei verschiedene Werte an.

Unterprogrammanweisungen rufen Unterprogramme iiber ihren Namen auf.

Eine Liste aktueller Parameter, die in Klammern eingeschlossen sind, enthalt
Informationen iiber die spezielle Ausfithrung (vgl. 6. und 16.).

Zusammengesetzte Anweisungen unterscheiden sich von Blocken dadurch,
daB in ihnen keine Erkliarungen vorkommen. In Blécken auftretende Marken

§ 2. Anwendung von ALGOL 47

(an markierten Anweisungen) gelten als lokale Gro8en, ein Sprung in das
Innere eines Blocks ist daher nicht moglich, in das Innere einer zusammen-
gesetzten Anweisung kann gesprungen werden.

14. Leere Anweisungen bestehen aus der leeren Zeichenreihe, sie dienen zur An-
bringung von Marken, z. B. am Ende eines Blocks.

15. Als Trennzeichen zwischen Erklarungen, Anweisungen, Spezifikationen und
Wertlisten (Liste hinter value) dient das Semikolon.

16. Es empfiehlt sich, in Prozedurerklarungen (vgl. 6.) auftretende formale Para-
meter zu spezifizieren. Eine Spezifikation besteht aus einem Spezifikator, gefolgt
von einer Liste formaler Parameter. Ein formaler Parameter darf hochstens
einmal spezifiziert werden, Parameter mit Anfangswert miissen spezifiziert
werden. Als Spezifikatoren konnen auftreten: real, integer, Boolean, array,
real array, integer array, Boolean array, procedure, real procedure, integer proce-
dure, Boolean procedure, label, switch und string. Spezifikationen erldutern die
Art der betreffenden formalen Parameter. Die beim Aufruf einer Prozedur
vorkommenden aktuellen Parameter sollen die durch Spezifikation zugeordneter
formaler Parameter angegebenen Eigenschaften haben. Spezifikationen sind
keine Erkldarungen, ihre Wirkung ist bei Parametern mit Anfangswert der einer
entsprechenden Erklarung gleich. Feldgrenzen werden dabei gegebenenfalls vom
aktuellen Parameter iibernommen. Spezifikationen stehen in der Prozedur-
erklarung direkt vor dem Prozedurrumpf.

17. Im Zweifelsfall wahle man statt einer eleganten Notation lieber eine, deren
Eindeutigkeit klar ist, auch wenn sie umsténdlicher erscheint.

§ 2. Anwendung von ALGOL

Soll ein in ALGOL geschriebenes Programm auf einem dafiir geeigneten Rechen-
automaten bearbeitet werden, so muB es in einer wohlbestimmten Form eingabe-
fertig vorbereitet werden. Im allgemeinen wird das Programm auf Lochstreifen
oder Lochkarten umgesetzt und in dieser Form in die Maschine eingegeben,
iibersetzt und abgearbeitet. Entsprechend sind die einzelnen ALGOL-Ze:chen auf
dem Eingabemedium durch Codes dargestellt, die normalerweise aus einem ein-
zelnen Eingabezeichen bestehen, jedoch in Sonderfallen auch mehrere Eingabe-
zeichen umfassen konnen.

Aus praktischen Erwigungen ist es zweckmaBig, zur Herstellung eines ein-
gabefertigen ALGOL-Programms eine Schreibmaschine zu benutzen, da man
dann Tippfehler sofort erkennt. Die Schreibmaschine ist mit einer Zusatzeinrich-

48 I. ALGOL 60

tung versehen, die automatisch einen Lochstreifen herstellt, in den mit jedem
Tastenanschlag eine Lochkombination gestanzt wird. Vielfach verwendet werden
Fernschreibmaschinen, die einen international genormten Lochstreifencode haben,
den Fiinfkanal-Telegraphen-Code. Nachteilig ist, daB mit 5 Kanélen nur 2% = 32
Kombinationen erzeugbar sind, wahrend das ALGOL-Alphabet 116 Zeichen
umfaBt. Daher sind Lochstreifen mit 7 oder 8 Kanélen besser geeignet, die eben-
falls mit speziellen Schreibmaschinen hergestellt werden konnen. Auch mit der-
artigen Lochstreifen werden ALGOL-Zeichen wie begin und procedure nicht durch
ein einziges Eingabezeichen, sondern durch eine Folge von Eingabezeichen dar-
gestellt, da jedem Tastenanschlag ein Zeichen entspricht und das Schriftbild
mehrere Anschlage erfordert. Schreibmaschinen, die fiir jedes ALGOL-Zeichen
nur ein Eingabezeichen auf einem Lochstreifen erzeugen, gibt es bisher nicht.
Die Erzeugung von Lochkarten mit Hilfe eines Schreiblochers geschieht im Prinzip
ebenso wie die Herstellung eines Lochstreifens. Der Vorteil des Lochstreifens
gegeniiber der Lochkarte liegt im geringeren Platzbedarf bei der Aufbewahrung,
Lochkarten bieten dagegen die Moglichkeit, Programmteile in beliebiger Reihen-
folge zu Programmen zusammenstellen zu kdnnen.

Es konnen nicht beliebige ALGOL-Programme zur Ubersetzung und Bearbei-
tung auf einen gegebenen Rechenautomaten zugelassen werden. Selbstverstand-
lich sind Beschrankungen durch die Speicherkapazitat des Rechenautomaten, die
die Anzahl der Variablen, den Umfang der Felder und die Liange des ALGOL-
Programms begrenzen. Dariiber hinaus sind in den meisten Ubersetzungssystemen
Einschrankungen in den zuldssigen Konstruktionen von ALGOL-Programmen
vorgesehen, z. B. sind als own erkldrte Felder nicht zuldssig, oder der rekursive
Aufruf von Prozeduren ist nicht gestattet usw. Zu jedem Ubersetzungssystem sind
diese Einschriankungen ebenso wie die Beschriankungen durch die Speicher-
kapazitit dem Benutzer mitzuteilen. Eine gegeniiber ALGOL 60 eingeschrinkte
Sprache ist die Sprache IFIP SUBSET ALGOL 60. Ihre Einschriankungen sind
auch in der sogenannten ALCOR-Konvention enthalten [2], [27]. ALCOR ist
eine Abkiirzung fiir ALGOL-Converter. Diese ALCOR-Konvention enthalt
neben Einschridnkungen der Sprache ALGOL 60 auch einen Eingabecode, der der
Verwendung von Fiinfkanallochstreifen besonders angepaBt ist und sich nur wenig
vom internationalen Telegraphencode Nr. 2 unterscheidet, der im Fernschreib-
verkehr benutzt wird. Es ist auch mdéglich, in einem speziellen ALCOR-Code
gelochte Lochkarten zur Eingabe zu verwenden, sofern die Eigenschaften des
betreffenden Rechenautomaten das zulassen. Die ALCOR-Gruppe, die ca. 40
Institutionen als Mitglieder umfaBt, benutzt Ubersetzungssysteme, die auf den
ALCOR-Konventionen basieren. Obwohl die einzelnen Mitglieder sehr ver-
schiedenartige Rechenautomaten verwenden, sind die Programme iiberall ver-

§ 2. Anwendung von ALGOL 49

wendbar, wenn gewisse Verschiedenheiten in Zahlendarstellung, Eingabe und
Ausgabe beriicksichtigt werden.

Die wesentlichsten Einschrinkungen der Sprache IFIP SUBSET ALGOL 60
gegeniiber ALGOL 60 seien im folgenden angegeben. Fiir eine vollstandige Dar-
stellung sei auf [2] oder [45] verwiesen:

. Erklarungen mit own sind nicht zugelassen.

. Ein rekursiver Aufruf von Prozeduren ist nicht méglich.

. Als Marken sind nur Namen (keine ganzen Zahlen) erlaubt.
. Alle formalen Parameter sind zu spezifizieren.

[Y S

. Eine Sprunganweisung zu einem undefinierten Verteiler wird nicht wie eine
leere Anweisung behandelt, sondern ist undefiniert (ein Programm mit einer
solchen Anweisung ist demnach nicht korrekt). Es sind nur einfache, nicht
eingeklammerte Zielausdriicke zugelassen.

6. Potenzierung ist nicht mit ganzzahliger Basis und negativem ganzzahligen

Exponenten méglich.

7. Eine Laufvariable muB} eine einfache Variable sein.
8. In einer Verteilerliste diirfen nur Marken auftreten.

9. Als aktuelle Parameter, die symbolische Parameter ersetzen, kdnnen nur
Namen oder Zeichenreihen benutzt werden, also keine Ausdriicke.

10. Das Alphabet enthélt nur kleine Buchstaben, das Zeichen -+ fiir ganzzahlige
Divisionen ist weggelassen, entsprechend ist diese Operation nicht zugelassen.

11. Namen, die in den ersten 6 Zeichen iibereinstimmen, werden als gleich an-
gesehen.

Nachfolgend seien die im ALCOR-Code benutzten Eingabezeichen einschlief3-
lich der zugeordneten Lochkombination auf dem Fiinfkanallochstreifen an-
gegeben. Mit Ausnahme der sogenannten Betriebszeichen sind jeder Loch-
kombination zwei Zeichen zugeordnet, ein Buchstabe und ein anderes Zeichen.
Welches Zeichen gemeint ist, wird dadurch festgelegt, daB die Fernschreib-
maschine entweder durch das Betriebszeichen ,.Buchstabenumschaltung® in den
Zustand ,,buchstabenseitig** oder durch das Betriebszeichen ,,Ziffernumschaltung**
in den Zustand ,,ziffernseitig® versetzt wird. Dieses Verfahren ist dasselbe wie bei
jeder handelsiiblichen Schreibmaschine fiir das Schreiben kleiner oder groBer
Buchstaben mit der gleichen Taste durch Betitigung der Umschalttaste. Weitere
Betriebszeichen sind ,,Wagenriicklauf*, ,,Zeilenvorschub‘‘ und ,,Zwischenraum*
Auf dem 17,5 mm breiten Lochstreifen ist auBer den fiinf das Zeichen bestimmen-
den Spuren noch eine Taktspur vorhanden. Fiir ein zu stanzendes Zeichen ist eine

4 Bachmann, ALGOL-Programmierung

50 I. ALGOL 60

Zeile vorgesehen, deren Lage durch ein Loch in der Taktspur zwischen der zweiten
und dritten Zeichenspur fixiert ist.
Die Zuordnung zwischen Lochkombinationen und Zeichen ist:

gelochte Spuren

1
1

Die Lochkombination

2

2

N

NN NN

o

[\

N

3

Zeichen Zeichen
buchstabenseitig ziffernseitig
a —
-4 -5 b X
— 4 C :
- 4 d (unzuléssig)
e 3
- 4 f [
-—4-=5 g]
-5 h 10
i 8
-4 J ;
— 4 k (
-5 1)
— 4 -5 m
-4 n ,
— 4 - 5 o 9
-5 P 0
-5 q 1
- 4 T 4
s '
-5 t 5
u 7
—4 -5 v =
-5 w 2
— 4 -5 X /!
~ 5 y 6
-5 z +
- 4 ,, Wagenriicklauf*
,,Zeilenvorschub*
— 4 -5 ,,Buchstabenumschaltung*
— 4 -5 ,,Ziffernumschaltung**
,,Zwischenraum**

,,1-4‘ ist ziffernseitig unzulissig, da diese bei Ubermitt-

lung des Lochstreifens iiber einen Fernschreibkanal den Namensgeber des Emp-

§ 2. Anwendung von ALGOL 51

fangers auslost. Die ,,leere Lochkombination®, bei der nur das Taktloch gelocht
ist, ist ebenfalls unzuldssig. Abb. 1 zeigt ein Stiick eines Lochstreifens.

Fiir gewisse ALGOL-Zeichen ist eine Darstellung durch mehrere Zeichen im
ALCOR-Code vorgesehen. Die Zuordnung ist folgende:

ALGOL- ALGOL-

Zeichen ALCOR-Code Zeichen ALCOR-Code
1 "power’ A ‘and’

< "less’ - not’

=< ‘not greater’ = 1=

= ‘equal’ — ,,Zwischenraum®
> 'not less’ ¢ (¢

> 'greater’ "y

+ ‘not equal’ begin "begin’

= ‘equiv’ end ‘end’

o "impl’ go to 'go to’

Y% ‘or’ Usw.

Die in ALGOL durch unterstrichene englische Worte dargestellten Zeichen werden
im ALCOR-Code durch entsprechende in Apostroph eingeschlossene Worte dar-
gestellt (Wortsymbole). Erlaubt das zur Herstellung benutzte Gerit nur das Schrei-
ben groBer Buchstaben, so reprasentieren diese die kleinen.

Abb. 1. Lochstreifen

Ein in ALGOL vorliegendes Programm ist vor seiner Anwendung an einer
Rechenanlage zu iiberpriifen, ob es die fiir die Rechenanlage bestehenden Ein-
schrinkungen — z. B. die der ALCOR-Konvention — erfiillt. Danach wird es in
eingabefertiger Form auf Lochstreifen oder Lochkarten gestanzt und nochmals ge-
priift. Die Rechenanlage stellt daraus mittels eines besonderen Leseprogramms
und eines Ubersetzungsprogramms ein Maschinenprogramm her, das dann im
Speicher der Maschine zur anschliefenden Rechnung bereitsteht oder auch ausge-
geben wird. Bei Maschinen mit kleiner Speicherkapazitit ist meist nur die zweite
Moglichkeit vorgesehen, das ausgegebene Programm ist dann vor Beginn der
eigentlichen Rechnung wieder einzugeben. Trotz sorgféltiger Priifung k6nnen in
4%

52 I. ALGOL 60

einem Programm noch Fehler enthalten sein. Vom Ubersetzungsprogramm wird
dann eine Fehlermeldung gegeben. Mit Hilfe eines speziellen K orrekturprogramms
14Bt sich ein derartiger Fehler haufig sofort beseitigen. Oft wird auch nach ent-
deckten Fehlern in der Ubersetzung fortgefahren, um weitere Fehler ebenfalls zu
finden. Dabei handelt es sich jedoch nur um Verletzungen der gegebenen Regeln,
nicht um inhaltliche Fehler im Rechenverfahren.

Fiir die Eingabe von Daten und die Ausgabe von Resultaten sind hiufig Stan-
dardprozeduren vorgesehen, die von den oben erlduterten Standardprozeduren
inreal, inarray,insymbol, outreal, outarray und outsymbol abweichen. In derALCOR-
Konvention werden z. B. read(V) fiir die Bewertung der Variablen V durch Ein-
gabe und print(V) firr das Ausdrucken des Wertes von ¥ benutzt.

Umfangreiche Programme setzen sich meist aus Teilprogrammen zusammen.
ALGOL 60 bietet die Méglichkeit, solche Teilprogramme mit einem Namen zu
versehen und in der Form einer Unterprogrammerkldrung in ein groBeres Pro-
gramm einzufiigen. Die Abarbeitung eines solchen Unterprogramms wird durch
einen Unterprogrammaufruf veranlaBt. Hat man eine Anzahl dieser ALGOL-
Prozeduren in einer Unterprogrammbibliothek gesammelt und liegen sie dort
eingabefertig vor, so besteht die Programmierungsarbeit im wesentlichen im
Schreiben eines Rahmenprogramms. Bei der Eingabe sind die verschiedenen
Programmteile zusammenzufiigen, was bei auf Karten gelochten Programmen
einfach durch Aufeinanderlegen der verschiedenen KartenstoBe erfolgen kann.
Bei Lochstreifeneingabe sind die einzelnen Teile entweder zusammenzukleben,
einzeln nacheinander einzugeben oder in einer besonderen Kopiereinrichtung auf
einen gemeinsamen Streifen zu kopieren. In Unterprogrammen kommen hiufig
globale GréBen vor. Es ist dann dafiir zu sorgen, daB im Rahmenprogramm diese
globalen GroBen erklirt werden und gegebenenfalls auch die notwendigen
Bewertungen vor Eintritt in das Unterprogramm erfolgen. Solche GréBen kdnnen
auch als Parameter in das Unterprogramm eingefiihrt werden.

Als Beispiel sei ein ALGOL-Programm zur Bestimmung aller Nullstellen eines

Polynoms mit reellen Koeffizienten P(z) = 2 ¢ * z* entwickelt. Als Verfahren
k=0

werde ein Verfahren starksten Abstiegs benutzt, das eine Modifikation des New-
tonschen Verfahrens darstellt [23]. Zunéachst wird ein Hilfsprogramm entwickelt,

n
das die Bestimmung des Funktionswertes eines Polynoms f(z) = Y. a - z*
k=0

erlaubt. Es ist zweckmiBig, z nicht von vornherein als komplex anzunehmen,
sondern zwei verschiedene Verfahren fiir reelles z und komplexes z zu verwenden.
Eine Boolesche Variable ,,komplex‘‘ soll den Wert true annehmen, wenn mit z
als komplexer Zahl gerechnet wird. Wird mit der reellen Zahl z = x gerechnet,

§ 2. Anwendung von ALGOL 53

so habe komplex den Wert false. Diese zweite Variante kann mit dem iiblichen

Hornerschen Schema ausgefiihrt werden, fiir das in §1 eine real procedure

poly(a,n,x) erklart wurde. Fiir die erste Variante kann ebenfalls ein abgewandeltes

Hornersches Schema nach CorLrATZz [31] benutzt werden. Es beruht auf der

Division f(z): (22 — p'z — q), wenn f(u + i'v) zu berechnen ist und p = 2+,
= — (2 + v?) gesetzt wird. Man erhilt

f2) =g@) (2> — pz — q) + ayz + ap.
Es folgt fiir z = u + i-v

S+ iv) = gu + iv) - @* — v* — pu+ u? + v* + i [2uv — pv))
+ ay'(u + iv) + a; = ay'u + ag + iayv = Rf + i-If.

Zur Durchfithrung der Division kann ein Rechenschema benutzt werden:

ay an-1 a; ao
pA, pA> pA,
qAns1 iA_a ﬁd_
An+1 =0 An = ay An—l Al AO

Jedes 4, (i = 0, ..., n — 1) ist Summe der dariiberstehenden reellen Zahlen. Es gilt

g2) =) Ay 2% 4 = Ay, ap = Ay — p'A,. Daraus folgt
k=2

Rf=A4, (u—p)+ Ao = Ay — 4, " u;
I_f=A1'U.

Ein ALGOL-Unterprogramm fiir diese Rechnung kommt mit drei Hilfsvariablen
und einer Laufvariablen aus:

procedure kompoly(a, n, u, v, Rf, If); value n,u, v; array a;
integer n; real u, v, Rf, If;
begin integer k; real t1, 12, 13, p, q;
t1:=0; R2:=a[n]; p:=2xu; qg:= —uxu+ v X 0v);
for k:=n — 1 step —1 until O do
begin 13 := alk] + p x 12 + g x t1;
tl:=12; 2:=13
end;
Rfi=12—1tl xu; Ifi=1t1l xv
end

Soll nach Bestimmung einer reellen Nullstelle z, oder eines Paares konjugierter
komplexer Nullstellen z, = x, + i'y;, z, = x; — i-y; das Polynom durch

54 I. ALGOL 60

Division durch z — z, bzw. (z — z,) * (z — z,) auf ein Polynom (n — 1)-ten bzw.
(n — 2)-ten Grades reduziert werden, so ist es zweckmiBig, die Prozeduren fiir
die Ausfithrung des Hornerschen Schemas sowohl im reellen als auch im kom-
plexen Fall abzuiandern. Die Koeffizienten des Polynoms g(z) sind ja im kom-
plexen Fall gerade die Koeffizienten des gesuchten Polynoms, entsprechend wird
auch im reellen Fall im Hornerschen Schema eine Division durch z — x aus-
gefithrt. Das Rechenschema hat die Gestalt

a, 4p— a, ao
A, x A,x Aix
An = ay An—l Al Ao

Es gilt f(z) = g*(2) - (z — x) + Ao mit g¥*(z) = Y, A4, z*~1. Fir 4, = 0 geht
k=1

die Division ohne Rest auf, x ist Nullstelle von f(z). Beide Rechenschemata konnen
in einem Unterprogramm zusammengefaBt werden, in dem die Variable ,,kom-
plex* eine globale GroBe ist.

procedure Hornerschema(a, n, u, v) Resultat :(Rf, If, A);
value n, u, v; array a, A; integer n; real u, v, Rf, If;
begin integer k; real p, q;
if komplex
then begin A[n + 11:=0; A[n]l:=a[n]; p:=2 x u;
g:= —(u X u+0vxv);
for k:=n — 1 step — 1 until O do
Alk]:=alk] + p x Alk + 1] + g x A[k + 2];
Rf:= A[0] — A[1] x u; If:= A[l] x v
end
else begin A[n] := a[n];
for k:= n — 1 step —1 until O do
Alk]:= alk] + u x A[k + 1];
Rf:= A[0]; If:=0
end
end

Das Programm soll so geschrieben werden, daBl eine Nullstelle eines Polynoms

Y. b, z¥ = P(z) bestimmt wird und danach dieses Polynom in ein Produkt aus
k=0
einem linearen bzw. quadratischen Faktor und einem Faktor (n — 1)-ten bzw.

(n — 2)-ten Grades zerlegt wird, der dann P,(z) ersetzt. Anfangs gilt r = m und

§ 2. Anwendung von ALGOL 55

b, = ¢, (k =0, ..., m). Weiter sei noch ¢,, = 1 vorausgesetzt, um den Sonderfall

¢, = 0 von vornherein auszuschlieBen. In einem Teil 1 des Programms wird die
r-1

Ableitung Py(z) = z (k + 1) - by,y - z* gebildet. Dieser und die folgenden Teile

k=0
seien zundchst ohne Beriicksichtigung von Erklarungen notiert:

Teil1: for k:= Ostep 1 until r — 1 do Blk]:= (k + 1) x b[k + 1];

In Teil 2 wird mit der Durchfithrung des Newtonschen Verfahrens begonnen,
dabei wird von einem gegebenen Anfangswert z0 = x0 + i -0 ausgegangen:
Teil 2: Hornerschema(b, r, x0, y0, Rf, If, A);
M:= Rf x Rf + If x If;
Teil 21: if M < delta then go to Kontrolle;
Hornerschema(B, r — 1, x0, y0, Rfa, Ifa, A);
N := Rfa x Rfa + Ifa x Ifa,
if N > M x epsilon
then begin if komplex
then begin x1 := x0 — (Rf x Rfa + If x Ifa)|N;
yl:=3)0 — (If x Rfa — Rf x Ifa)|N
end
else begin x1 := x0 — Rf/Rfa; yl:= y0 end
end
else begin x0 := x0 + d; go to Teil 2 end;

Bemerkung. Ist M = |P(z,)|*> < d, so wird z, als geniigend gute Naherung fiir
eine Nullstelle angesehen. Diese wird im Programmteil Kontrolle
nochmals gepriift. Ist N = |P,(z,)|?> > ¢+ M, so wird ein Schritt des
Newtonschen Verfahrens ausgefiihrt; es ist dadurch wegen M = § > 0
die Ausfithrbarkeit der Division P.(z,)/P/(zo) gesichert, und es gilt
|P(z0)]P{(z0)] < V1 Je. Ist die Bedingung fiir N nicht erfiillt, so wird
x0 um eine gegebene Konstante d abgeandert und von vorn begonnen.
Wird ¢ geniigend klein gewdhlt, so ist die Bedingung N > ¢- M
hochstens in einander fremden Umgebungen der Nullstellen von P;
verletzt.

In Teil 3 des Programms wird gepriift, ob |P(z,)| < 0.8 |P,(zo)| ist. Ist das der Fall,
so wird das Newtonsche Verfahren fortgesetzt. Andernfalls wird die Newtonsche
Korrektur so lange halbiert, bis ein absolut kleinerer Funktionswert als |P,(zo)|
gefunden wird. Sollte das nach z. B. 100 Schritten noch nicht geschehen sein, so
wird zu einem Programmteil ,,Sonderfall*“ gegangen.

56 1. ALGOL 60

Teil3: ZV := 0;
Hornerschema(b, r, x1, y1, Rf, If, A);
M1:= Rf x Rf + If x If;
if M1 <0.64 x M
then Teil 31: begin x0:= x1; y0:=yl; M:= M1; go to Teil2] end
else Halbierung: begin ZV := ZV + 1; x1:= 0.5 x (x0 + x1);
y1:=0.5 x (30 + yl);
Hornerschema(b, r, x1, y1, Rf, If, A);
M1 := Rf x Rf + If x If;
fMl <M
then begin if M1 < 0.64 x M
then go to Teil 31
else go to Teil 4
end

else begin if ZV < 100
then go to Halbierung
else go to Sonderfall
end
end;

Der vierte Programmteil enthilt eine weitere Anderung gegeniiber dem urspriing-
lichen Newtonschen Verfahren, wenn |P,(z,)| < 0.8 |P,(z,)| nicht, aber |P/(z,)]
< |PJ(zo)| erreicht wurde, wie es in der Umgebung einer Nullstelle von P;(z) auf-
treten kann. Es wird dann gepriift, ob fiir z, = z, + 2i(z; — z,) ein absolut klei-
nerer Funktionswert erhalten wird. Ist das der Fall, so wird das Verfahren mit
diesem z, an Stelle von z, neu begonnen, sonst mit z;, .
Teil4: x2:=x0 — 2 x (y1 — »0); y2:=y0 + 2 x (x1 — x0);
Merke := komplex; komplex := true;
Hornerschema(b, r, x2, y2, Rf, If, A);
M2:= Rf x Rf + If x If;
if M2 < M1
then begin x0 := x2;)0:=y2; M:= M2; goto Teil2l end
else begin komplex := Merke; x0:= x1; y0:= yl go to Teil 2 end;

Der Programmteil Kontrolle dient zur Priifung der gefundenen N&herung z,
durch Einsetzen in das Polynom P(z). AuBerdem werden die Koeffizienten b, des
niachsten Polynoms P,(z) fixiert, die gefundene Nullstelle bzw. das Paar kon-
jugiert komplexer Nullstellen wird ausgegeben. Ist |P(z,)|?> = 6§, so wird das ge-
samte Verfahren nochmals auf P(z) statt auf P,(z) angewandt. Dabei wird einer

§ 2. Anwendung von ALGOL 57

Booleschen Variablen ,,Pruefung* der Wert true erteilt, die Werte der 4, und r
werden aufbewahrt, bis z, geniigend korrigiert ist.

Kontrolle: if Pruefung thenbegin r := H; for k := 0 step 1 until r do b[k] : = A[k];
Pruefung .= false; go to Ausgabe
end;
if komplex then begin r := r — 2; for k := 0 step 1 until r do
hl[k] := blk]:= Alk + 2] end
else beginr:=r — 1; for k:= 0 step 1 until r do
hl[k]:= blk]:= Alk + 1] end
Hornerschema(c, m, x0, y0, Rf, If, A);
M:=Rf x Rf + If x If;
if M < delta then
Ausgabe: begin if komplex
then begin outreal(1, x0); outreal(l, y0);
for j:= 1 step 1 until 7 do outsymbol(1,’komplex’,j)
end
else begin outreal(1, x0);
for j := 1 step until 5 do outsymbol(1,reell’,j)
end;
ifr>05
then begin x0 := y0:= 0; komplex : = false; goto Teil1end
else go to Ende
end;

Pruefung := true; H:=r; go to Teil 0;
Teil 0 ist vor Teil 1 zu setzen; darin wird r = m und P,(z) = P(z) gesetzt.
Teil 0: r:= m; for k:= O step 1 until do b[k] := c[k];

In den Programmteil Sonderfall wird eingetreten, wenn kein absolut kleinerer
Funktionswert als P,(z,) aufzufinden ist, obwohl [P,(z)|?> = § ist. Es ist zu ver-
muten, daB dieses Verhalten auf Rundungsfehler zuriickzufiithren ist, die sich
besonders stark bemerkbar machen, wenn |P;(z,)| sehr groB ist. Aus diesem
Grunde wird gepriift, ob |P;(z,)|? - &, > |P,(z0)|?> mit einem kleinen &; > 0 gilt. In
diesem Fall wird zum Programmteil Kontrolle iibergegangen, andernfalls wird das
Programm mit Fehleranzeige beendet.

Sonderfall: if N x epsilonl > M then go to Kontrolle;
for j = 1 step 1 until 6 do outsymbol(1,'Fehler’,j); Ende:

58 I. ALGOL 60

Obwohl es an sich nicht sinnvoll ist, die einfachen Falle » = 2 und r = 1 (quadra-
tische bzw. lineare Gleichung) nach diesem Verfahren zu behandeln, seien diese
Fille nicht gesondert programmiert, da das zusétzliche Entscheidungen und
Programmteile erfordert. In das Programm ist noch ein Teil zur Eingabe bzw. zur
Berechnung der ¢, aufzunehmen, alle Namen sind zu erklaren. AuBerdem sind
Anfangswerte fiir x0, y0, komplex und Pruefung einzustellen.

Programm:
begin integer m; inreal(2,m);
begin real x0, Y0, Rf, If, Rfa, Ifa, delta, epsilon, N, M, x1, y1,
x2, y2, M1, M2, d, epsilonl;

integer k, r, ZV, j, H; Boolean komplex, Merke, Pruefung;
array b, ¢, h[0:m], A[0:m + 1], B[0:m — 1];
procedure Hornerschema ...,
inreal(2, delta); inreal(2, epsilon); inreal(2, d);
inreal(2, epsilonl); inarray(2,c); Pruefung := false;
x0:= y0:= 0; komplex := false; TeilO: ...;
Teil1:...; Teil2:...; Teil3:...; Teil4: ...,
Kontrolle: ...; Sonderfall: ...;

Ende: end

end.

Jedes Programm 148t sich auch als Prozedurrumpf auffassen und in eine Prozedur-
erklirung einbetten. Werden formale Parameter eingefiihrt, so sind diese nicht
mehr zu erklaren, sondern zu spezifizieren. Im vorliegenden Fall kénnte man
schreiben:

procedure Nullstellenbestimmung (c, m, delta, epsilon, epsilonl, d);

value m, delta, epsilon, epsilonl, d; array c;

integer m; real delta, epsilon, epsilonl, d;

begin real x0, y0, Rf, If, Rfa, Ifa, N, M, x1, y1, x2, y2, M1, M2;
integer k, r, ZV, j, H; Boolean komplex, Merke, Pruefung;
array b, h[0:m], A[0:m + 1], B[0:m — 1];
procedure Hornerschema ...,
Pruefung: = false ; ...;

Ende: end

In einem weiteren Beispiel sei die gendherte Losung der Anfangswertaufgabe
fiir eine gewdhnliche Differentialgleichung erster Ordnung nach dem Runge-
Kutta-Verfahren programmiert. Die Differentialgleichung sei z’ = f(x,z), gegeben
sei der Anfangswert za an der Stelle xa. Das Verfahren werde mit der Schritt-

§ 2. Anwendung von ALGOL 59

weite h > 0 ausgefiihrt, je zwei Schritte seien zu einem Doppelschritt zusammen-
gefaBit. Die gendherte Integration von einem Ausgangspunkt (x,, zo) fithrt zu
folgendem Formelsatz:

Jo = f(x0, 20)

h h
21=Zo+§'fo, X1 = Xo +5, f1=f(x1, z1)
h h
Z; = Zo +§’f1, x2=xo+§- |2 = f(x2, 22)
23 =20 + h-f3, X3 =Xo + h, f3=/[(x3,23)

h h h h
Z4 = Zo +g’fo +§'f1 +§‘f2 +8'fss Xo =Xo + h, fo=f(xs,2s)

h h
25=Z4+5'f4, xs=x4+5a S5 = f(xs, z5)
h h
z(,=z4+5'f5, x6=x4+-2—, Je = f(xs, z6)
Z, =24+ h-fe, X;=X4+ h, f1=[f(x1,27)

h h h h
zZg=z4+=fao+-fas+t-fo+="f1, Xe=X4+h, fo=[(xs,23)
6 3 3 6
Zusatzlich wird berechnet
h 4h h
Zg =20 +=-"fot+t —"fa+="Js.
8 0 3 fO 3 f4 3 fS

Ist Z3 — zg geniigend klein, so wird das Verfahren fortgesetzt, andernfalls wird
der Schritt mit halber Schrittweite wiederholt. Ist Z3 — zg sehr klein, so kann die

Schrittweite verdoppelt werden.
Das Verfahren kann in ALGOL 60 in folgender Weise dargestellt werden:

begin real ha, xa, xe, za, delta, epsilon, hm; inreal(2, xa); inreal(2, xe);
inreal(2,za); inreal(2ha); inreal(2,hm); inreal(2,delta);
inreal(2,epsilon);
begin real v, z, x0, 20, z4, Z8, F, h, d3, c;
integer i; array d, ¢[0:2]; Boolean Durchilauf 2;
h:= ha;

60 I. ALGOL 60

Anfang: x:= xa; z:= za; d[0]:=d[l]:= h/2; d[2]:= h;
d3:=e[0]:= h/6; c:=¢[l]:=e[2):= h/3; F:=f(x,2);
comment f bezeichnet eine globale Funktion;
A:xa:=x; za:= Z8:= z; Durchlauf2 .= false;
B:x0:=x; 20:=2z4:=z; Z8:=Z8 + ¢ x F;

if Durchlauf2 then Z8 := Z8 + h x F;

for i := O step 1 until 2 do

begin x := x0 + d[i]; z:= z0 + d[i] x F;

z4:=z4 + ¢[i] x F; F:= f(x,2)

end;

x:=x0+h; z:=2z4+d3 x F; F:=f(x,2);

if = Durchlauf2 then begin Durchlauf 2 := true; go to B end;

Kontrolle: Z8 := Z8 + ¢ x F;
if abs(Z8 — z) < epsilon
then begin if /# < m then begin 2:= 2 X h; go to Anfang end

end;
if abs(Z8 — z) > delta
then begin 4 := h/2; go to Anfang end;
outreal(1,x); outreal(1,z); outsymbol(1,'—’, 1);
if x < xe then go to A
end
end

Bei jeder Anwendung dieses Blocks ist er in einen weiteren Block einzuordnen, in

dem die globale Funktion f erklart ist. Zum Beispiel kann z’ = (x — z) - z inte-
griert werden, wenn ein Programm

begin real procedure f(x,z); value x, z; real x, z;
fi=(x—-2) x z;
begin ...
(obiges Verfahren)
end
end

programmiert und ein entsprechender Satz von Anfangswerten zur Eingabe iiber
Kanal 2 vorbereitet wird.

Das Verfahren 148t sich leicht zur Losung von Differentialgleichungssystemen
erster Ordnung erweitern. Das zu 16sende System laute

zr = fillx, 245 ..y zy) fir k=1,..,n.

§ 2. Anwendung von ALGOL 61

An Stelle des oben benutzten Z8 — z muf} bei der Priifung eine passende Norm

des Vektors mit den Komponenten Z8; — z,,...,Z8, — z, treten, z.B.

max |28, — zi|. Zur Darstellung werde jetzt die Form einer Unterprogramm-
k

erklarung gewéhlt:

procedure RKSystem (ha, xa, xe, n, za, delta, epsilon, hm, f);
value ha, xa, xe, delta, epsilon, hm, n;
real ha, xa, xe, delta, epsilon, hm; integer n;
array za; real procedure f;

begin real x, x0, A, d3, c;
array z, z0, z4, Z8, F[l1:n];
array d, ¢[0:2];
integer i, k; Boolean Durchlauf2;
h:= ha;

Anfang: x := xa; for k:= 1 step 1 until n do z[k] := zalk];
d0):=d[1]:= h/2; d[2]:= h; d3:= e[0]:= h/6;
c:=¢[l]:= e[2]:= h/3;
for k := 1 step 1 until n do F[k]:= f(x, z, k);

A: xa:= x; for k:= 1 step 1 until » do zalk] := Z8[k]:= z[k];

Durchlauf? : = false;
B: x0:= x; for k:= 1 step 1 until n do
begin z0[k] := z4[k] : = z[k];
Z8[k]:= Z8[k] + ¢ x Fl[k];
if Durchlauf 2 then Z8[k] := Z8[k] + h x F[k]
end;
for:i := 0 step 1 until 2 do
begin x := x0 + d[i]; for k := 1 step 1 until n do
begin z[k] := z0[k] + d[i] x Fl[k];
z4[k] = z4[k] + e[i] x Flk]
end;
for k := 1 step 1 until n do F[k] := f(x,z,k)
end;
x:=x0 + h; for k:= 1 step 1 until n do z[k] : = z4[k] + d3 x Flk];

for k := 1 step 1 until » do F[k]:= f(x,z,k);
if —Durchlauf2 then begin Durchlauf2 := true; go to B end

62 1. ALGOL 60

Kontrolle: for k := 1 step 1 until n do Z8[k] := Z8[k] + ¢ x F[k];
for k := 1 step 1 until # do
if abs(Z8[k] — z[k]) = epsilon then go to K1;
if 4 < hm then begin 2 := 2 x h; go to Anfang end;
K1:for k:= 1 step 1 until n do
if abs(Z8[k] — z[k]) > delta
then begin /4 := h/2; go to Anfang end;
outreal(1,x); outarray(l,z); outsymbol(l, ‘—’, 1);
if x < xe then go to A
end

Soll z.B. die Differentialgleichung "V = (1 + x — x2) y gendhert integriert
werden, so fithrt man diese zunéchst auf ein System von Gleichungen erster Ord-
nung zuriick:

z, =y oder zy =z,

!
22 =) Z3 = Z3
z3 =" 73 =z,
z4 =y zz=0+x—-x)z

An Anfangsbedingungen seien gegeben y(0) = »”(0) = 0, »'(0) = y""'(0) = 1.
Die Genauigkeit sei durch 6 = 1075 und ¢ = 10~ ® bestimmt, als Anfangsschritt-
weite und auch als maximale Schrittweite werde 0.1 gewahlt; die Integration soll
bis xe = 1 durchgefiihrt werden.

Es entsteht folgendes Programm:

begin real procedure f(x,z,k); value x, k; real x; array z; integer k;
begin switch V' := A1, A2, A3, A4;
go to V[k];
Al:f:= z[2]; goto A5;
A2:f:= z[3]; goto AS5;
A3:f:= z[4]; go to A5;
Ad:f:=(1 + x — x x x) x z[1];
AS5: end
array ZA[1:4];
procedure RKSystem ...;
ZA[l]:= ZA[3]:=0; ZA[2]:= ZA[4]:=1;
RKSystem (0.1,0, 1,4, ZA, 1o—5, 10—38, 0.1, f)

end

§ 2. Anwendung von ALGOL 63

Die in der Unterprogrammerklarung RKSystem hiufig vorkommende Anweisung
»for k :=1step 1 until n do F[k] := f(x,z,k)* kann vorteilhaft als Unterprogramm
betrachtet werden, dadurch wird das gesamte Programm Kkiirzer. Dieses Unter-
programm konnte als ,,Funktion(x,z,n,F)* aufgerufen werden. Der letzte der
formalen Parameter von RKSystem miite dann ,,Funktion* lauten und als
procedure (nicht als real procedure) spezifiziert werden. Fiir das betrachtete Bei-
spiel ergibt sich ein entsprechend geéndertes Programm:

begin procedure P(X,Z,N,R); value X,N; real X; integer N; array Z,R;
begin R[1]:= Z[2]; R[2]:= Z[3]; R[3]:= Z[4];
RM4]:=(1 4+ X - X x X) x Z[1]
end;
array ZA[l:4];
procedure RKSystem (ha, xa, xe, n, za, delta, epsilon, hm, Funktion); ...;
ZA[l]:= ZA[3]:=0; ZA[2]:= ZA[4]:=1;

RKSyslem(O.l, 0, 1, 4, ZA, 10_5, 10—8, 0.1, P)
end

Die Wahl der Namen formaler Parameter fiir ein Unterprogramm ist vollig frei,
es empfiehlt sich trotzdem, um den Leser eines Programms vor Verwechslungen
zu schiitzen, moglichst nicht solche Namen zu benutzen, die im Programm noch
an anderer Stelle auftreten. Es hétte das Unterprogramm ohne weiteres auch in
der Form Funktion(x,z,n,F), in der es aufgerufen wird, erklart werden konnen,
nur bezeichnen die Namen x, z, » und F dann einmal formale und einmal aktuelle
Parameter. Eine solche Schreibweise erleichtert mitunter das Verstindnis, darf
jedoch nicht dazu fithren, keinen Unterschied zwischen aktuellen und formalen
Parametern zu machen. An der Erklarung der Prozedur P ist noch bemerkenswert,
daB der formale Parameter N im Prozedurrumpf nicht vorkommt. Ahnliches
kann bei speziellen Erklarungen fiir formale Unterprogramme haufig auftreten.
Keinesfalls darf der betreffende Parameter jedoch im formalen Parameterteil weg-
gelassen werden, da stets die Anzahl aktueller und formaler Parameter iiberein-
stimmen muB.

ALGOL-Unterprogramme, die hiufig benutzt werden, konnen auch direkt als
Maschinenunterprogramme formuliert werden. Das hat besonders dann Vorteile,
wenn dadurch wesentliche Einsparungen an Rechenzeit, eventuell auch an Spei-
cherraum erzielt werden. Die Erklarung eines solchen Maschinenunterprogramms
erfolgt so, daB an Stelle des Prozedurrumpfes eine nicht in ALGOL geschriebene
Zeichenfolge tritt, die mit einem Semikolon abzuschlieBen ist. Diese Zeichenfolge
besteht bei Anwendung der ALCOR-Konvention nur aus dem Symbol ‘code’

64 I. ALGOL 60

(dieses Symbol gehort nicht zu den ALGOL-Zeichen). Es muB dann innerhalb
des benutzten Ubersetzungssystems dafiir gesorgt werden, daB das Maschinen-
unterprogramm in die Maschine eingegeben wird. Seine Form mu8 die in ALGOL
geforderte Parameterzuordnung gestatten, natiirlich mu3 auch der erforderliche
Speicherplatz freigehalten werden. Beim Aufruf muB das Maschinenunterpro-
gramm auffindbar sein, nach seiner Beendigung ist wieder in das iibersetzte Pro-
gramm zu springen. Fiir den ALGOL-Programmierer macht diese Art der Ein-
fithrung die Verwendung von Maschinenunterprogrammen besonders einfach,
Bei der Ubersetzung des ALGOL-Programms miissen allerdings die zusitzlichen
Vorschriften fiir die Eingabe der Maschinenunterprogramme beachtet werden.

Als Beispiel wurde angenommen, ein dem Unterprogramm RKSystem dhn-
liches Unterprogramm rkscode zur genaherten Losung von Differentialgleichungs-
systemen liege vor. Soll nun das Randwertproblem

'+ (a1x + ag) ¥ + (b,x* + bix + bo) y = 0.
y0) =¢, y1)=4d

gelost werden, so kann dies unter Benutzung dieses Maschinenunterprogramms
geschehen. Es werden dazu zwei Losungen y,(x) und y,(x) der Differential-
gleichung mit y,(0) = y,(0) = ¢ und y3(0) = 0, »5(0) = 1 bestimmt. Da die
Differentialgleichung linear ist, ist mit y;(x) und y,(x) auch k;y,(x) + k,y,(x)
eine Losung. Die Konstanten k, und k, sind aus

kiy:(1) + kpy.(1) = d

kl + k2 = 1
zu bestimmen. Fiir y;(1) = y,(1) ist die Randwertaufgabe nicht 16sbar, falls nicht
y1(1) = y,(1) = d ist; dann gibt es eine ganze Losungsschar, k; und k, ergeben
sich zu

ky = (d — y2())/(:(1) — y2(1))

ky = (y1(1) — D/(y:(1) — y2(1)).
Mit den Anfangsbedingungen y;(0) = ¢, y3(0) = k, wird die Integration nochmals

zur Kontrolle wiederholt.
Das benutzte Unterprogramm rkscode diene zur Integration des Gleichungs-
systems z; = fiy(x, z;, ..., z,) fir i = 1, ..., n mit dem Runge-Kutta-Verfahren.

Als formale Parameter treten auf:
ha = Anfangswert der Schrittweite, ha > 0
hm = Maximalwert der Schrittweite, im = 2"ha (r ganze nicht negative Zahl)

xa = Anfangswert fiir x
xe = Endwert fiir x, xe > x, xe — x ganzzahliges Vielfaches von /m

§ 2. Anwendung von ALGOL

n = Anzahl der Gleichungen
za = Anfangsvektor, za[i] = z; (xa)

ze = Resultatvektor, ze[i] = Z,(xe) (Z; seien die durch das Verfahren erzeug-

ten Niherungen)
del = Toleranz fiir gewiinschte Genauigkeit

eps = FehlermaB bei Priifung zur Verdoppelung der Schrittweite,

eps < 1072 - del

fk = Unterprogrammname zur Erzeugung der f; mit 4 Parametern
1. Parameter: x, 2. Parameter: Vektor z mit Komponenten z;
3. Parameter: n, 4. Parameter: Vektor f mit Komponenten f;
dr = Boolesche Variable mit Wert true, wenn Zwischenresultate zu drucken

sind, sonst false.

Gegeniiber dem Unterprogramm RKSystem sei die Verdoppelung der Schritt-
weite nur an Stellen erlaubt, die sich von xa durch ein ganzzahliges Vielfaches
von hm unterscheiden. Die Ausgabe der Néaherungen erfolge nur, wenn dr den
Wert true hat. Ein Programm zur Ldsung des betrachteten Problems kann in
folgender Form in der ALCOR-Notation geschrieben werden.

'begin’ 'procedure’ rkscode (ha, hm, xa, xe, n, za, ze, del, eps, fk, dr);

'value’ ha, hm, xa, xe, n, del, eps, dr;

‘real’ ha, hm, xa, xe, n, del, eps; 'boolean’ dr; 'array’ za, ze,

'procedure’ fk; ‘code’;

‘real’ a0, al, b0, b2, c, d, k1, k2; 'array’ anf, endl, end2[1:2];

'procedure’ fkt (x, z, m, f); 'value’ x, m;
‘real’ x; 'integer’ m; 'array’ zf;
"begin’ f[1]:= z[2];
fI2]:= — (al x x + a0) x z[2]
— (02 x x x x + bl x x + b0) x z[1]
‘end’;
inreal(2, a0); inreal(2, al);
inreal(2, b0); inreal(2, bl); inreal(2, b2);
inreal(2, ¢); inreal2,d); anf[1]:=c; anf[2]:= 0;
rkscode (0.1, 0.1, 0, 1, 2, anf, endl, 1,—35, 10—38, fkt, 'false’);
anf[1]:=¢; anfl2]:=1;
rkscode(0.1,0.1, 0, 1, 2, anf, end2, 1,—5, 10—38, fkt, 'false’);
"if" abs(end1[1] — end2[1]) < ;0—4 'then’ 'go to’ sonder;

k1 := (d — end2[1])/(end1[1] — end2[1]);
k2 := (endl[1] — d)/(end1[1] — end2[1));

5 Bachmann, ALGOL-Programmierung

66 1. ALGOL 60

druck: anfl]:= c¢; anf2]:= k2;
rkscode (0.1, 0.1, 0. 1, 2, anf, endl, 1,—5, 10— 38, fkt, 'true’);
'go to’ ende;

sonder: 'if’ abs(end1[1] — d) > ;,—4 'then’ 'go to’ unloesbar 'else’
k2:=0.5; 'go to’ druck;

unloesbar: outsymbol(1, '('u’)’, 1)

ende:

‘end’

Bei der Programmierung in ALGOL 60 fiir eine bestimmte Rechenanlage emp-
fiehlt es sich, Besonderheiten der Rechenanlage und des Ubersetzungssystems zu
beriicksichtigen. Das gilt vor allem dann, wenn ein ALGOL-Programm héaufiger
benutzt werden soll. Solche Besonderheiten konnen etwa bei der Behandlung
indizierter Variabler in Laufanweisungen auftreten. Bei manchen Ubersetzungs-
systemen wird die Anderung einer Laufvariablen besonders einfach, wenn sie in
Indexlisten nur an letzter Stelle als Variable steht und in der Laufanweisung
jeweils um eine Konstante erhoht wird. Es ist dann nidmlich auch die Adresse
der betreffenden indizierten Variablen nur um diese Konstante zu erh6hen, wenn
die Laufvariable gedndert wird. Am Beispiel der Matrizenmultiplikation sei das
erlautert. Es war bereits die Anweisung

for i := 1 step 1 until » do
for k := 1 step 1 until m do
begin c[i,k] := 0;
for j:= 1 step 1 until / do

c[i,k] := cli,k] + ali,jl1 x b[j,k]
end

angegeben worden. Die einzige, nur an letzter Stelle einer Indexliste auftretende
Laufvariable ist k. Um die mit der Anderung von k auftretenden Adresseninde-
rungen moglichst hdufig vorkommen zu lassen, miiBte die Laufanweisung mit
der Laufvariablen k in den beiden anderen Laufanweisungen eingeschlossen sein.
In der angegebenen Form wird sie »-mal durchlaufen, die Laufanweisung mit
der Laufvariablen j jedoch 7 - m-mal. Im vorliegenden Fall sind Umordnungen
einfach méglich, einmal konnen die Laufanweisungen in der Form for i ... do
forj do ... for k angeordnet werden, ein andermal in der Form for j
do ... fori...do ... for k ... (vgl. [1]).

§ 2. Anwendung von ALGOL 67

1. Form: for i := 1 step 1 until n do
begin for £ := 1 step 1 until m do c[i,k] := 0;
for j:= 1 step 1 until / do
for k := 1 step 1 until m do
cli,k] := cli,k] + ali,j] x bljk]
end

2. Form: begin for i : = step 1 until » do
for k := 1 step 1 until m do c[i,k] := O;
for j:= 1 step 1 until / do
for i := 1 step 1 until » do
for k := 1 step 1 until m do
cli,k] := c[i,k] + ali,jl x b[j,k]

end

Ist ein Ubersetzungssystem so beschaffen, daB bei jedem Vorkommen einer in-
dizierten Variablen eine komplizierte Adressenrechnung ausgefiithrt wird, so
sollte man versuchen, die Anzahl dieser Vorkommen weitgehend zu verringern.
Man wird dann die Matrizenmultiplikation schreiben:

for i := 1 step 1 until » do
for k := 1 step 1 until m do
begin real s; s:=0
for j:= 1 step 1 until / do
s:= 5 + a[i,j] x b[jk];
clik]l:=s
end

Es kann auch versucht werden, an Stelle von Matrizen nur mit Vektoren zu
hantieren, um kiirzere Rechenzeiten zu erreichen. Dann ist jedoch meist die An-
fertigung einer Code-Prozedur zweckméiBiger, da der Vorteil von ALGOL darin
liegt, Probleme schnell und iibersichtlich zu programmieren. Dieser Vorteil geht
jedoch verloren, wenn man spezielle Eigenschaften einer bestimmten Rechen-
anlage in der ALGOL-Notation stark beriicksichtigt, um sehr schnell ablaufende
Programme zu erhalten. Das hier angefiihrte Beispiel der Matrizenmultiplikation
sollte nur als Anregung bei der Programmierung &hnlicher Probleme dienen, fiir
die Matrizenmultiplikation wird meistens eine Code-Prozedur existieren.

Weitere Programmierungsbeispiele werden hier nicht gebracht. In Form von
ALGOL-Prozeduren geschriebene Programme werden laufend veréffentlicht, z. B.
in [19], [20], [21], man vgl. auch [1], [2], [11], [14]. Zu einer Rechenanlage gehort
eine Unterprogrammbibliothek, die auch in ALGOL-Programme einfiigbare

%

68 I. ALGOL 60

Maschinenunterprogramme enthélt, sofern die Rechenanlage zur Verarbeitung
von ALGOL-Programmen vorgesehen ist. Bei der Programmierung eines speziel-
len Problems kann in vielen Fiallen weitgehend auf diese Unterprogramm-
bibliothek zuriickgegriffen werden, die Programmierungsarbeit wird dadurch
weiter erleichtert; die Anzahl der Fehlerquellen wird verringert, da die Unter-
programme gepriift sind; das Programm wird kiirzer und iibersichtlicher.

Bei jeder Programmierung ist darauf zu achten, daB die Resultate méglichst
weitgehend kontrolliert werden, da auch in Rechenautomaten Rechenfehler vor-
kommen koOnnen. Naherungsverfahren sollten so beschaffen sein, daB sie mit
Fehlerabschatzungen oder wenigstens Fehlerschdtzungen verbunden sind. Daher
sollte man bei dem Einsatz eines Unterprogramms stets priifen, wie weit diese
Gesichtspunkte im Unterprogramm beriicksichtigt sind. Auch Sonderfille, wie
etwa das Verschwinden eines Nenners, sollen stets beachtet werden. Die hier
wiedergegebenen Programme erfiillen diese Bedingungen nicht vollstindig. So
enthilt das Programm zur Berechnung der Nullstellen eines Polynoms weder
Fehlerabschatzungen noch Fehlerschiatzungen, statt dessen nur eine Kontrolle
einer gefundenen N#herung durch Berechnen des Polynomwertes, wobei nicht
beriicksichtigt wird, da diese Berechnung mit dem Hornerschen Schema wesent-
liche Rundungsfehler erzeugen kann. Das Programm zur L6sung von Differential-
gleichungssystemen berechnet nur ein Ma8 fiir die GréBenordnung des Fehlers.
Beim letzten Programm zur Losung der Randwertaufgabe wird die gefundene
Néherungslésung nicht noch einmal kontrolliert. Da die Niherungslésung ge-
druckt wird, kann man an den ausgedruckten Resultaten ablesen, ob die Rand-
wertaufgabe tatsiachlich gelost wurde. Daher kann auf eine solche Kontrolle auch
verzichtet werden.

Die mit der Bestimmung der Fehler von Niaherungsverfahren zusammen-
hingenden Probleme fallen in das Arbeitsgebiet der Numerischen Mathematik.
Dazu gehort z. B. auch das Problem der Stabilitit einer Rechnung. Bei instabilen
Verfahren treten starke Fehlerfortpflanzungen auf, die im Laufe einer lingeren
Rechnung zu vollstédndig falschen Resultaten fithren k6nnen. Hier kann auf der-
artige Fragen nicht eingegangen werden, es sei jedoch betont, daB ihre Klarung
im Hinblick auf eine weitere Automatisierung von Rechenvorgingen aulerordent-
lich wichtig ist. Probleme, die von einem rein theoretischen Standpunkt aus als
vollstindig gel6st anzusehen sind, konnen in numerischer Betrachtung durchaus
offen sein. Das gilt z. B. fiir die Bestimmung der Nullstellen von Polynomen einer
Veranderlichen, deren Existenz durch den Fundamentalsatz der Algebra gewahr-
leistet ist. Die numerische Losung kann jedoch in Spezialféllen immer wieder
Schwierigkeiten bereiten, besonders dann, wenn man noch die Fehler der Null-
stellen wissen mochte. Auch der EinfluB von Ungenauigkeiten der Koeffizienten

§ 2. Anwendung von ALGOL 69

spielt hierbei eine Rolle, man vgl. z. B. [56]. Da derartige Fragen bei vielen Pro-
blemen nur teilweise gelost sind, hat die Numerische Mathematik ein sehr um-
fangreiches Aufgabengebiet, dessen Bewiltigung Voraussetzungen fiir eine weitere
Automatisierung wissenschaftlicher und technischer Berechnungen schafft. Aus
der umfangreichen Literatur seien hier nur [1], [4], [18] und [34] erwahnt.

Fiir die ALGOL-Programmierung ist die Arbeitsweise ebenso wie bei der
Maschinenprogrammierung; man kann mehrere Arbeitsginge unterscheiden:

1. Auswahl eines numerischen Verfahrens.
2. Darstellung in ALGOL.

3. Korrekte Niederschrift entsprechend den Regeln des benutzten Ubersetzungs-
systems.

4. Auswahl numerischer Beispiele mit bekannten Resultaten.

5. Ubersetzung des Programms und Priifung an den ausgewihlten Beispielen.

Beim fiinften Arbeitsgang wird man haufig noch Fehler feststellen, die sowohl
formaler Art (nicht korrekte Notierung) als auch Fehler in der Formulierung
des Verfahrens (unberiicksichtigte Sonderfille, mehrfach ausgenutzte Variable,
nicht eingestellte Anfangswerte usw.) sein konnen. Es kann sein, daBl gewisse
Fehler bei den ausgewahlten Beispielen gar nicht in Erscheinung treten, daher
sollen die Beispiele so gewahlt werden, daB ein moglichst weiter Bereich erfaf3t
wird. Nur ein mehrfach einwandfrei gelaufenes Programm sollte in eine Programm-
bibliothek aufgenommen werden.

II. ALGOL-VARIANTE ROBOTRON 300

Die zur Arbeit mit dem Rechenautomaten Robotron 300 einsetzbare Variante
von ALGOL wird hier naher betrachtet. Es handelt sich dabei um eine Erweiterung
der auf Seite 52 beschriebenen Sprache IFIP SUBSET ALGOL 60. Die Ein-
schrankung, daB3 eine Potenzierung mit ganzzahliger Basis und negativem ganz-
zahligen Exponenten nicht méglich ist, entféllt; ebenso darf das Zeichen + fiir
ganzzahlige Division verwendet werden. Zusitzlich werden weitere Standard-
funktionen sowie Standardprozeduren zur Ein- und Ausgabe eingefiihrt. Zur An-
wendung dieser ALGOL-Variante sind einige Kenntnisse iiber den Aufbau der
Rechenanlage erforderlich.

§ 3. Kurze Beschreibung der Rechenanlage Robotron 300

Die Rechenanlage verarbeitet alphanumerische Zeichen, jedes alphanumerische
Zeichen ist eine Zusammenfassung von acht bits. Die einzelnen bits eines Zeichens
werden parallel verarbeitet, die Zeichen selbst in Serie. Der Hauptspeicher der
Anlage ist ein Ferritkernspeicher, der 40000 Zeichen aufnehmen kann; jede dieser
40000 Stellen ist adressierbar. Es konnen Folgen von Zeichen automatisch ver-
arbezitet werden, die in Stellen mit aufeinanderfolgenden Adressen gespeichert
sind. Die Zeichenfolge wird entweder durch ein markiertes Zeichen (Zeichen mit
Wortmarke) oder durch eines von drei Sonderzeichen (Satzmarke, Gruppen-
marke, Blockmarke) abgeschlossen. Die Verarbeitung von Zeichenfolgen wird wie
iiblich durch Befehle veranlaBBt. Das Befehlssystem ist ein EinadreBsystem, im
allgemeinen gibt die Adresse eines Befehls die Stelle an, mit der beginnend die zu
verarbeitende Zeichenfolge gespeichert ist.

Bei Notierung eines Zeichens in Form einer Bitfolge werden im allgemeinen nur
sechs bits notiert, sic werden von links nach rechts als v-bit, u-bit, 8-bit, 4-bit,
2-bit, 1-bit bezeichnet. Fiir Eingabezwecke kann ein Lochstreifen benutzt werden,
der als Achtkanalstreifen aufgebaut ist. Auf diesem Lochstreifen werden bits mit
dem Wert 1 wie iiblich durch ein Loch dargestellt, bits mit dem Wert O bleiben
ungelocht. Die Anordnung der einzelnen bits erfolgt in Spuren, zwischen der
dritten und vierten Spur liegt eine Taktspur. Es besteht folgende Zuordnung:

§ 3. Kurze Beschreibung der Rechenanlage Robotron 300 71

Spur 1: 1-bit

Spur 2: 2-bit

Spur 3: 4-bit

Taktspur

Spur 4: 8-bit

Spur 5: Priifbit

Spur 6: u-bit

Spur 7: v-bit

Spur 8: Wortmarkenbit

Das Priifbit wird so gebildet, daB die Gesamtzahl der bits je Zeichen ungerade ist
(einschlieBlich Priifbit und Wortmarkenbit). Das Wortmarkenbit wird besetzt,
wenn das betreffende Zeichen als Ende eines Wortes (spezielle Zeichenfolge) mar-
kiert ist oder eines der erwahnten Sonderzeichen ist. Bei der Niederschrift einzelner
Zeichen werden selbstverstindlich nicht die Bitfolgen notiert, sondern die dar-
zustellenden Zeichen selbst. Die 64 verfiigbaren Zeichen sind in der folgenden
Tabelle so zusammengestellt, daB jeweils 16 Zeichen in einer Zeile nebeneinander
stehen (entsprechend den Bitfolgen 0000, 0001, ..., 1111 in der iiblichen Anotd-
nung); die einzelnen Zeilen entsprechen den Kombinationen 00, 01, 10 und 11 von
v-bit und u-bit:

0 1 23 4567890 # (v]
+ a bc d e f g h i ~ ;b vy o«
— j k1l mmnopgqr =) * = < ?

/] s t u v wZXxyz = % A >]

In der Rechenanlage gespeicherte Zeichen kdonnen mit Hilfe einer am Steuerpult
der Anlage angeschlossenen Schreibmaschine geschrieben werden oder mittels
eines Zeilendruckers ausgedruckt werden. Die Zeichen kdnnen weiter in der oben
beschriebenen Form auf Lochstreifen oder in einer hier nicht ndher zu erdrternden
Art auf Lochkarten gestanzt werden. Werden Zeichen iiber die Schreibmaschine
ausgeschrieben, so werden mit Wortmarke markierte Zeichen unterstrichen, falls
ein entsprechender Ausgabebefehl verwendet wird. Das Zeichen [] veranlaBt die
Betatigung der Leertaste, erscheint also nicht im Schriftbild. Bei Ausgabe iiber
den Schnelldrucker werden die kleinen Buchstaben durch groBle ersetzt (0 und o
sind dann nicht mehr unterscheidbar), die Zeichen [, ~, =, 2, Y, YY und A

erscheinen als Leerzeichen oder fithren auf einen Druckerfehler. Im Haupt-
speicher dienen die Zeichen ~, =~ bzw. % als Satzmarke, Gruppenmarke bzw.
Blockmarke, wenn sie zusétzlich durch eine Wortmarke gekennzeichnet sind.

72 1I. ALGOL-Variante Robotron 300

Die Zeichenverarbeitung im Inneren der Maschine erfolgt in der Zentraleinheit,
die neben dem Hauptspeicher Steuerwerk und Rechenwerk umfaBt. Zur Bedie-
nung der Anlage ist ein Steuerpult mit Anzeigetafel und der bereits erwahnten
Schreibmaschine, iiber die auch Informationen eingegeben werden konnen, vor-
gesehen. Weitere Eingabegerite sind Lochstreifen- und Lochkartenleser, die Aus-
gabe erfolgt iiber die bereits erwahnten Gerate. Die Speicherkapazitit kann durch
AnschluBl von Zusatzkernspeicher, Magnetbandgerdten und Magnettrommel-
speichern gesteigert werden.

Zur Ubersetzung und Verarbeitung von ALGOL-Programmen sind Zentral-
einheit, Steuerpult mit Schreibmaschine, Lochstreifenleser, Schnelldrucker und
Zusatzkernspeicher fiir 10000 Zeichen erforderlich. Um groBere Programme iiber-
setzen zu konnen, sind Zwischenausgaben erforderlich. Hierzu werden iiblicher-
weise Magnetbandgerdte benutzt, jedoch ist auch die Verwendung des Loch-
streifenstanzers moglich; dabei erhSht sich der Zeitbedarf betrachtlich. Der Ein-
satz von Magnetbandgeraten hat den weiteren Vorteil, daB der Wechsel zwischen
den verschiedenen Programmteilen des ALGOL-Ubersetzers automatisch und
schnell erfolgt.

Die Rechenanlage kann ganze Zahlen und Gleitkommazahlen verarbeiten. Die
Zahlen sind als vorzeichenbehaftete Dezimalzahlen mit einer unter gewissen
Einschriankungen beliebigen Stellenzahl dargestellt. Zu Rechnungen wird ein
Akkumulator benutzt, der 120 Stellen aufnehmen kann. Die héchste Stelle einer
Zahl trigt eine Wortmarke, adressiert wird die Zahl an ihrer niedrigsten Stelle.
Diese Stelle tragt bei ganzen Zahlen auch das Vorzeichen, das als Minuszeichen
im v-bit erscheint, das Pluszeichen wird weggelassen. Gleitkommazahlen enthalten
in den beiden niedrigsten Stellen den Exponenten, die restlichen Stellen bilden die
ganzzahlige Mantisse. Sowohl Exponent als auch Mantisse sind vorzeichenbehaf-
tet, wie bei ganzen Zahlen beschrieben. Fiir den Exponenten e gilt somit
—99 < e £ 99. In der hier behandelten ALGOL-Variante sind samtliche Zahlen
zehnstellige Gleitkommazahlen (8 Stellen Mantisse und 2 Stellen Exponent). Die
Zahl 7t wird also maschinenintern genahert dargestellt durch 314159270p, dabei
ist die Zeichenfolge Op Darstellung des Exponenten —7. Ganze Zahlen werden
ebenfalls als Gleitkommazahlen mit dem Exponenten O dargestellt, der Bereich
fiir darstellbare ganze Zahlen g ist daher |g| < 108. Zur Speicherung logischer
Werte sind in der Rechenanlage 20 elektronische Schalter (Selektoren O, ..., 19)
und vier Handschalter (Wahlschalter 0, ..., 3) vorhanden. Die elektronischen Schal-
ter konnen automatisch aus- bzw. eingeschaltet werden, die Wahlschalter nur
von Hand. Der einem Schalter zugeordnete Wert ist true, wenn der Schalter ein-
geschaltet ist, false, wenn der Schalter ausgeschaltet ist.

§ 4. Einschrankungen der ALGOL-Variante 73

§ 4. Einschrinkungen der ALGOL-Variante

Die Einschrankungen der ALGOL-Variante gegeniiber der Sprache ALGOL 60
seien hier im einzelnen aufgezahlt, ihre Reihenfolge entspricht der Anordnung des
revidierten ALGOL-Berichtes [44].

1. Es sind nur kleine Buchstaben zugelassen (a, b, ..., z).

2. Die Zeichen own und — sind nicht zugelassen.

3. Namen, die in den ersten sechs Zeichen iibereinstimmen, werden als gleich

angeschen.

. Zahlen miissen den durch die maschineninterne Darstellung (s. 0.) bedingten

Einschriankungen hinsichtlich ihres Absolutbetrages geniigen.

. Zeichenreihen kdnnen aus den maschineninternen Zeichen mit Ausnahme der

Zeichen ~, =, =, Y, YV und A gebildet werden. Die Zeichenfolgen '("und’)’
stellen die ALGOL-Zeichen ¢ und ’ dar, daher diirfen sie im Inneren einer
eigentlichen Zeichenkette nicht vorkommen.

6. Der Absolutbetrag eines Index muB kleiner als 105 sein.

7. Der Wert eines einfachen arithmetischen Ausdrucks ist hochstens dann vom

12.

13.

Typ integer, wenn das Resultat und alle bei seiner Auswertung entstehenden
Zwischenresultate (mit Ausnahme der Zwischenresultate bei der Berechnung
des Argumentes der Standardfunktion entier) absolut kleiner als 10® bleiben.

. Eine Potenz a 1 i (a beliebiger arithmetischer Ausdruck, i ganzzahliger arith-

metischer Ausdruck) hat den gleichen Typ wie a, wenn i eine vorzeichenlose
nichtnegative ganze Zahl ist, sonst den Typ real.

. Als Marken sind nur Namen zugelassen.
10.
11.

Bedingte Zielausdriicke sind nicht zugelassen.

Eine Sprunganweisung ist undefiniert, wenn der Zielausdruck ein Verteiler ist,
dessen Wert undefiniert ist.

In Laufanweisungen darf zwischen for und := nur eine einfache Variable
stehen. Bei Beendigung einer Laufanweisung behilt diese Variable ihren
letzten Wert.

Aktuelle Parameter, die symbolische Parameter ersetzen (call by name) diir-
fen nur Namen, Zeichenketten oder indizierte Variable sein. Im letzteren Fall
werden jedoch die Indizes wie bei Wertaufruf (call by value) behandelt. Namen
von Standardprozeduren fiir Ein- und Ausgabe sind als aktuelle Parameter
nicht zugelassen.

74 11. ALGOL-Variante Robotron 300

14. Als aktuelle Parameter fiir Wertaufruf sind nur Ausdriicke zugelassen, jedoch
nicht parameterlose Funktionen. Daher diirfen Namen von Feldern als aktuelle
Parameter nur im Namensaufruf verwendet werden.

15. Bei Namensaufruf miissen Art und Typ des aktuellen Parameters mit Art und
Typ des zugeordneten formalen Parameters iibereinstimmen. Bei Wertaufruf
gilt Entsprechendes mit der Ausnahme, daB aktuelle Parameter vom Typ
integer formalen Parametern vom Typ real zugeordnet werden diirfen.

16. Eine Prozedur darf wahrend der Ausfithrung des Prozedurkérpers, wahrend
der Auswertung aktueller mit Namen aufgerufener Parameter oder wiahrend
der Auswertung von Erklarungen innerhalb der Prozedur nicht nochmals auf-
gerufen werden.

17. Erklarungen mit own entfallen.

18. Der Absolutbetrag des Wertes einer Feldgrenze muB kleiner als 10° sein.

19. Auf der rechten Seite einer Verteilererklarung diirfen nur Marken vorkom-
men. Diese Marken miissen in dem Block, in dessen Kopf die Verteilererkla-
rung enthalten ist, lokal oder global sein, sie diirfen also nicht erst in einem
inneren Block als Ziel (Marke vor :) auftreten.

20. Samtliche formalen Parameter miissen spezifiziert werden.

§ 5. Erweiterungen der ALGOL-Variante

Gegeniiber ALGOL 60 wurden zusatzliche Standardfunktionen und Standard-
prozeduren sowie die neuen Zeichen code und wait eingefiihrt. Das Zeichen wait
ist fiir den Inhalt des Programms ohne Bedeutung, es hat nur den Zweck, die Uber-
setzung zeitweilig unterbrechen zu konnen. Das Zeichen code ist im ALGOL-
Programm als Prozedurkorper fiir solche Prozeduren zu verwenden, die im Ma-
schinencode programmiert vorliegen. Diese Prozeduren werden wahrend des Pro-
grammlaufs bei erstmaligem Aufruf eingelesen. Sie sind entweder auf Magnetband
oder auf Lochstreifen gespeichert und werden entsprechend automatisch ein-
gelesen oder durch eine Schreibmaschinenausschrift angefordert.

Im folgenden bezeichne E bzw. E; einen arithmetischen Ausdruck, B einen
logischen Ausdruck, I bzw. I, einen ganzzahligen arithmetischen Ausdruck. An
Standardfunktionen treten zu denen von ALGOL 60 hinzu:

tan(E) fiir den tangens von E.
arcsin(E) fiir den Hauptwert des arcus sinus von E.
arccos(E) fiir den Hauptwert des arcus cosinus von E.

arc(E,, E5) fiir den im Bogenmall angegebenen Polwinkel

§ 5. Erweiterungen der ALGOL-Variante 75

eines Punktes mit den kartesischen Koordinaten
E, und E,. Dabei ist 0 < arc(E,, E,) < 2=,
arc(0, 0) ist undefiniert.

div(l,, I,) fiir den ganzen Teil von I, /I,.

res(I,, I,) fur I, — div(I,, I,) x I, (Rest der Division I, /I,).
max(Eq, ..., E,) fiir den groBten Wert von E,, ..., E,.

min(E,, ..., E,) fiir den kleinsten Wert von E,, ..., E,.

sel(I) fiir die Stellung des Schalters / mit 0 < 7 < 23.

Dabei sind die Schalter 0, ..., 19 die Selektoren
0,...,19; die Schalter 20,...,23 die Wahl-
schalter O, ..., 3.

sel(I, B) fiir die Stellung des Schalters / mit 0 < 7 < 19.
Ist B true, so wird der Schalter zusétzlich (nach
Abfrage) eingeschaltet; ist B false, ausgeschaltet.

Die neu eingefiihrten Standardfunktionen haben folgende Typen:

real procedure tan, arcsin, arccos, arc, max, min,
integer procedure div, res;
Boolean procedure sel.

Die fiir Ein- und Ausgabezwecke eingefiihrten Standardprozeduren haben die
Namen read, print, write, input und output. Dabei dient read zum Einlesen von
Werten iiber Lochstreifen, print zum Ausdrucken von Werten bzw. Zeichenreihen
iber Schnelldrucker, write zum entsprechenden Ausschreiben mittels der Steuer-
pultschreibmaschine, input zum Einlesen von Werten iiber ein durch den ersten
Parameter zu spezifizierendes Gerat, output zur entsprechenden Ausgabe. Der bei
input bzw. output das Geréat spezifizierende erste Parameter ist eine ganze Zahl
(Kanal), Kanal 1 bezeichnet den Lochstreifenstanzer, Kanal 2 den Eingabeteil der
Steuerpultschreibmaschine. Die Standardprozeduren koénnen mit beliebig vielen
Parametern notiert werden. Fiir read sind als Parameter Variable (auch indizierte
Variable) und Feldnamen zugelassen, fiir print und write arithmetische und
logische Ausdriicke sowie Zeichenreihen, fiir print zusatzlich noch Feldnamen.
Wihrend bei read, write, print und input verschiedene Arten von Parametern in
einem aktuellen Parameterteil vereint sein konnen, sind bei output nur Parameter
gleichen Typs in einem aktuellen Parameterteil zugelassen, abgesehen vom ersten
Parameter fiir die Kanalnummer und dem zweiten Parameter fiir ein Format.
Anhand eines Beispiels sei die Wirkungsweise der einzelnen Standardprozeduren
erlautert:

76 II. ALGOL-Variante Robotron 300

begin real x,y; integer i,k,n; array a[l:3,1:3];
read(x,y); write(x,y); input(2,n);
print(n, ‘produkt (1=, x X y); print(n x x, n = 1);
for i := 1 step 1 until 3 do
for k := 1 step 1 until 3 do a[i,k]:= i + k;
print(a); output(l,‘e’, a); output(l,‘l’,n £ 1)

end

Die Anweisung read(x,y) veranlaBt, dal zwei Zeichengruppen vom Lochstreifen
gelesen werden. Diese Zeichengruppen werden gepriift, ob sie reelle oder ganze
Zahlen darstellen, entsprechend in die interne Zahlendarstellung umgeformt und
danach zur Bewertung der Variablen x und y benutzt. Der verwendete Lochstreifen
ist ein Achtkanalstreifen (vgl. § 6), er wird mit einet speziellen Schreibmaschine
hergestellt. Als Trennzeichen zwischen den einzelnen Zeichengruppen (Eingabe-
informationen) dient das Zeichen Wagenriicklauf/Zeilenvorschub. In der internen
Zeichendarstellung (vgl. § 3) entspricht diesem das Zeichen Satzmarke (geschrie-
ben als ~). Die Eingabeinformation ist fiir Zahlen die in ALGOL 60 iibliche Zah-
lendarstellung (z. B. 0.1; 25; .2; ,,—5; —7.5; —0,25,,—3 usw.). Sollen x und y
die Werte 0.1 und 5,,—2 zugeordnet werden, so ist bei Herstellung des Loch-
streifens mit der Eingabeschreibmaschine zu schreiben:

0.1
S# =2
Das Zeichen ;, wird bei Ein- und Ausgabe prinzipiell durch das Zeichen # dar-
gestellt. Sollen logische Werte eingegeben werden, so sind die Zeichenfolgen
‘true’ bzw. ‘false’ auf den Eingabestreifen zu lochen.
Die Anweisung write(x,y) veranlaBBt die Ausschrift

.10000000 # 00 .500000000# —01

mittels der Steuerpultschreibmaschine. Reelle Zahlen werden stets in Form nor-
mierter Gleitkommazahlen ausgegeben, d. h., sie beginnen mit . und einer von 0
verschiedenen Ziffer, gegebenenfalls davor noch ein Minuszeichen. Eine Aus-
nahme bildet die Zahl O, bei der die ausgegebene Mantisse die Form .00000000
hat; der Exponententeil kann von Fall zu Fall verschieden sein. Ganze Zahlen
werden in der iiblichen Schreibweise ausgegeben. Die gleiche Darstellung wird
auch bei Ausgabe iiber den Schnelldrucker mittels print benutzt. Im einzelnen ist
der Aufbau (das Ausgabeformat) ausgegebener Zeichenreihen folgender:

Reelle Zahlen werden mit 14 Zeichen ausgegeben, das erste Zeichen ist — bei
negativen Zahlen, Zwischenraum bei nichtnegativen Zahlen; das zweite Zeichen
ist der Dezimalpunkt (.); drittes bis zehntes Zeichen werden von Dezimalziffern

§ 5. Erweiterungen der ALGOL-Variante 77

besetzt; das elfte Zeichen ist #, das zwolfte Zeichen ist Vorzeichen des Exponen-
ten (— oder Zwischenraum); dreizehntes und vierzehntes Zeichen sind Dezimal-
ziffern (Exponent). Ganze Zahlen werden mit neun Zeichen ausgegeben. Hat eine
ganze Zahl m < 8 geltende Stellen, so besetzen die m Ziffern die letzten Stellen,
das Vorzeichen wird direkt davor gesetzt (— oder Zwischenraum). Logische
Werte werden als ‘true’ oder ‘false’ (TRUE' bzw. 'FALSE’ auf Schnelldrucker)
ausgegeben. Zeichenreihen werden ohne Beriicksichtigung der begrenzenden
ALGOL-Zeichen ‘ und ’ ausgegeben. Zwischen je zwei auszugebenden Zeichen-
gruppen, deren Ausgabe durch einen Aufruf von write bzw. print veranlaBt wird,
werden drei Zwischenrdume eingeschoben. Reicht bei Ausgabe iiber den Schnell-
drucker der Platz auf einer Zeile nicht aus, so wird mit der betreffenden Zeichen-
gruppe eine neue Zeile begonnen. Bei Beendigung einer Zeile auf der Steuerpult-
schreibmaschine erfolgen Zeilenvorschub und Wagenriicklauf automatisch.
Die Anweisung input(2,n) bewirkt die Ausschrift einer Meldung

sr — eingabe:

mittels der Steuerpultschreibmaschine. Danach geht der Automat in einen Zustand
iiber, der eine Eingabe iiber diese Schreibmaschine verlangt. Nach Eingabe einer
Zahl, deren Darstellung mit dem Typ des zweiten Parameters von input vertrig-
lich sein muB, wird der Programmablauf fortgesetzt. Die einzugebende Zahl ist
durch eine Satzmarke (~) abzuschlieBen. Hier kann z. B. eine die ganze Zahl 2
darstellende Zeichenfolge (2~) eingetippt werden. Das Schreibmaschinen-
protokoll hat danach die Form

sr — eingabe: 2~
Zwischenraume werden bei der Eingabe iibergangen.
Die Ausfithrungen der Anweisungen
print(n, ‘produkt (1=, x X y); print(n X x,n = 1)
bewirkt den Druck folgender Zeilen mit dem Schnelldrucker:

2 PRODUKT = 50000000 # —02
.20000000# 00 'FALSE’

Mit jeder neuen Anweisung print wird eine neue Schnelldruckerzeile begonnen,
ebenso mit jeder neuen Anweisung write eine neue Schreibmaschinenzeile. Die
Anweisung print(a) veranlaBt den Druck der Matrix a mittels Schnelldrucker.
Zum Druckbild ist zu bemerken, daB die Einzelwerte eines Feldes in lexikogra-
phischer Reihenfolge ausgegeben werden (vgl. Erlduterung zu outarray auf S. 35).
Bei n-dimensionalen Feldern werden die Werte mit iibereinstimmenden n — 1 ersten
Indizes in einer Ausgabegruppe zusammengefalt. Vor jede solche Ausgabegruppe

78 II. ALGOL-Variante Robotron 300

wird eine Zeile mit diesen Indizes gedruckt, bei einer zu groBen Dimension wer-
den entsprechend mehrere Zeilen mit Indizes gedruckt. Die Ausgabegruppe selbst
wird in einer dem Typ entsprechenden Anordnung gedruckt, als erster der Wert
mit dem kleinstmoglichen letzten Index. Bei eindimensionalen Feldern (Vektoren)
gibt es nur eine Ausgabegruppe, eine Indexzeile wird nicht gedruckt. Zweidimen-
sionale Felder (Matrizen) werden demnach in der iiblichen Schreibweise (zeilen-
weise) mit zwischengeschobenen Zeilennummern gedruckt. Fiir jeden Index sind
sechs Zeichen vorgesehen, sonst entspricht das Druckbild eines Index dem einer
ganzen Zahl. Hier ergibt sich folgende Anordnung:

1

.20000000# 01 .30000000% O1 .40000000# O1
2

.30000000# 01 .40000000% O1 .50000000# O1
3

.40000000# 01 .50000000# O1 .60000000# O1

Werden Felder mit einer Anweisung read eingelesen, so ist die gleiche lexiko-
graphische Anordnung der Werte auf dem Eingabestreifen zu wahlen, Indizes
sind in diesem Fall nicht zu lochen. Die Matrix a kann mit der Anweisung
output(l, ‘e’, a) in der fiir eine solche Eingabe erforderlichen Form gestanzt wer-
den. Die abschlieBende Anweisung output(l, ‘I’,n £ 1) veranlafit Stanzen der
Zeichenfolge ‘true’ [J~. Das Format ‘¢’ bzw. ‘I’ als zweiter aktueller Parameter
von output dient zur Bezeichnung der hier eingefithrten Ausgabeformate fiir Zahlen
und logische Werte.

§ 6. Herstellung von Eingabestreifen

Eingabelochstreifen werden mit einer Schreibmaschine hergestellt, die Achtkanal-
lochstreifen in einem Code locht, der weitgehend mit dem Interncode der Rechen-
anlage Robotron 300 iibereinstimmt. Es ist der Code des Schreibautomaten
Optima 528. Da mit diesem Schreibautomaten sowohl groBe als auch kleine Buch-
staben und eine Anzahl von Sonderzeichen geschrieben werden konnen, sind
ebenso wie bei den bereits beschriebenen internationalen Fiinfkanal-Fernschreib-
code Umschaltzeichen vorgesehen (vgl. S. 49). Fiir die Herstellung von ALGOL-
Eingabelochstreifen diirfen weder groBe Buchstaben noch die Sonderzeichen A
und © (Irrung Satz) verwendet werden. Die folgende Tabelle enthilt die Zu-
ordnung zwischen ALGOL-Zeichen und der bei der Herstellung des Lochstreifens

§ 6. Herstellung von Eingabestreifen

79

zu benutzenden Schreibweise, Buchstaben und Ziffern werden in der Tabelle

nicht aufgefiihrt.

ALGOL-
Zeichen
true
false

+

T > < UM HFIVIAY AT T X

Text auf
Schreibmaschine

"true’
'false’

’

‘notgreater
‘notless’
'notequal’
‘equiv’
"impl’

‘or
'and’
'not’

’

e = N’ A~

I(/
I)I

ALGOL-
Zeichen

do

step
until
while
begin
end
Boolean
integer
real
array
string
label
value
switch

comment

code
wait

Text auf
Schreibmaschine

#

‘go to’
f
‘then’
‘else’
"for’
'do’
‘step’
"until’
'while’
"begin’
‘end’
"boolean’
'integer’
'real’
‘array’
'string’
"label’
'value’
‘switch’
‘comment’
‘code’
'wait’

Einige ALGOL-Zeichen konnen auch in anderer Form geschrieben werden,
und zwar < als ‘less’, = als ‘equal’, > als ‘greater’, 1 als **. Das Zeichen wait
darf nur nach ; oder end verwendet werden. Der Zweck von wait ist, einen Teil-
lochstreifen abzuschlieBen. Es ist dadurch mdglich, ein Programm auf mehrere
Lochstreifen zu schreiben. Wird wihrend der Ubersetzung ein Zeichen wait er-
reicht, so wird die Ubersetzung unterbrochen, der nichste Teilstreifen kann ein-
gelegt werden. Danach wird die Rechenanlage neu gestartet. Es ist wichtig, jeden

80 11. ALGOL-Variante Robotron 300

Lochstreifen — auch Teilstreifen — mit einem Zeichen Wagenriicklauf/Zeilen-
vorschub abzuschlieBen, da anderenfalls der Eingabevorgang nicht abgeschlossen
wird. Die Tasten fiir Zeilenvorschub und fiir Wagenriicklauf allein diirfen nicht
benutzt werden.

§ 7. Ablauf der Ubersetzung

Der Ablauf der Ubersetzung wird hier nur grob skizziert; fiir Einzelheiten sei auf
die Bedienungsanleitung verwiesen. Nach Einlegen des Magnetbandes mit dem
Ubersetzungsprogramm und des Lochstreifens mit dem ALGOL-Programm
wird die Maschine gestartet. Uber die Steuerpultschreibmaschine wird der Text

titel:

ausgeschrieben. Hierauf ist ein aus vier Zeichen bestehender Titel einzutippen,
der im Lauf der Ubersetzung und Rechnung auf simtliche ausgegebenen Proto-
kolle gedruckt wird. Wihrend der folgenden Ubersetzung wird der Lochstreifen
zeilenweise, d.h. jeweils bis zu einem Zeichen Wagenriicklauf/Zeilenvorschub,
gelesen. Die Zeilen werden gezihlt, iiber Schnelldrucker wird der ALGOL-
Text mit Zeilennummern versehen zur Kontrolle ausgedruckt. Nach Beendigung
der Ubersetzung folgt die Schreibmaschinenausschrift

ausgabe:

Hierauf kann entweder ja oder nein eingetippt werden. Im ersten Fall wird das
erzeugte Maschinenprogramm ausgegeben, im zweiten Fall beginnt die Rechnung.
Der Beginn der Rechnung wird durch Ausschreiben des zu Beginn eingegebenen
Titels gefolgt von ,,start* angezeigt. Es kann dann durch Betatigung des Start-
knopfes die Ausfithrung des iibersetzten ALGOL-Programms ausgelost werden;
vorher ist gegebenenfalls ein Datenlochstreifen einzulegen. Nach Beendigung der
Rechnung folgt die Schreibmaschinenschrift

ende ...
... wiederholen?:

Hierbei deutet ... den Titel des Programms an; nach Eintippen von ja bzw. nein
wird die Rechnung wiederholt oder die Abarbeitung des Programms eingestellt.
Bei Wiederholung wird wie oben beschrieben

... start

iiber die Schreibmaschine ausgegeben, es kann dann gegebenenfalls ein neuer
Datenstreifen eingelegt werden ; danach wird wie oben verfahren.

§ 8. Fehlererkennung 81

§ 8. Fehlererkennung

Die Ubersetzung lduft in zwei Phasen ab; in jeder Phase konnen gewisse Fehler
im zu {iibersetzenden Programm entdeckt werden. Es ist jedoch auch moglich,
daB sich Fehler erst wihrend der Rechnung bemerkbar machen. In jedem Fall
werden Fehlermeldungen iiber den Schnelldrucker ausgegeben. In Sonderféllen
kann es vorkommen, dal auch regelwidrige Eingangstexte iibersetzt und ge-
rechnet werden, die dann vorliegende Interpretation des Eingangstextes kann in
solchen Féllen mit dem vom Programmierer beabsichtigten — jedoch inkorrekt
notierten — Effekt iibereinstimmen.

Werden bei der Ubersetzung Fehler bemerkt, so wird die betreffende Phase zu
Ende gefiihrt, um eventuell noch weitere Fehler entdecken zu kénnen. Das erzeugte
Programm ist dann nicht verwertbar; es folgt die Schreibmaschinenausschrift

programm fehlerhaft

Danach wird die Ubersetzung abgebrochen. Ein Fehler kann bei dem Versuch,
die Ubersetzung weiterzufiihren, in gewissen Fillen weitere Fehlermeldungen her-
vorrufen, da dem Ubersetzungsprogramm Informationen fehlen konnen. Es ist
daher in jedem Einzelfall zu iiberpriifen, ob der angezeigte Fehler tatsichlich
vorliegt. Die Fehlermeldungen werden bei Ablauf der ersten Ubersetzungsphase
zwischen die einzelnen Protokollzeilen gedruckt; sie stehen daher automatisch
an der Programmstelle, an der sich der Fehler erstmalig bemerkbar macht. Diese
Stelle stimmt im allgemeinen nicht mit der Stelle iiberein, an der der Fehler gemacht
wurde; z. B. werden fehlende Erklarungen erst am Ende des Programms gemeldet.
Wihrend der zweiten Ubersetzungsphase werden eine Zeilennummer, die Nummer
des Semikolons in der betreffenden Zeile und die Nummer einer Fehlergruppe
ausgedruckt. Das angegebene Semikolon ist das vor dem Erkennen des ange-
zeigten Fehlers zuletzt aufgetretene Semikolon; der Fehler selbst kann also auch
in einer der folgenden Zeilen erkannt worden sein.

Wihrend der ersten Ubersetzungsphase konnen die in der folgenden Tabelle
erlauterten Fehlermeldungen gedruckt werden

Fehlermeldung Fehlerart
UEBERLAUF 01 Der vorhandene Speicherplatz reicht zur Ubersetzung nicht
aus

UEBERLAUF 02 Die Struktur des ALGOL-Programms ist zu kompliziert
UEBERLAUF 03 Abbruch der Ubersetzung wegen andauernder Auswirkung
fritherer Fehler
FEHLER 04 Falscher Zahlenaufbau

6 Bachmann, ALGOL-Programmierung

82

II. ALGOL-Variante Robotron 300

FEHLER 05 Unzuléssiges ALGOL-Zeichen verwendet

FEHLER 06 Markierung durch einen bereits erkldrten oder zur Markie-
rung verwendeten Namen; Benutzung einer Marke, die kein
Name ist

FEHLER 07 Falsche Klammerstruktur

FEHLER 08 Name in unzuldssigem Zusammenhang

FEHLER 09 Syntaktischer Fehler in Ausdruck oder in Wertzuweisung

FEHLER 10 Variable hinter for ist keine einfache Variable

FEHLER 11 Falscher Aufbau einer Prozedurerklarung

FEHLER 12 Zeichen code nicht als Prozedurkorper verwendet

FEHLER 13 Spezifikationszeichen procedure in falschem Zusammenhang

FEHLER 14 Formaler Parameter nicht spezifiziert

FEHLER 15 Erklarung nicht am Blockanfang

FEHLER 16 Nachwirkung eines fritheren Fehlers

FEHLER 17 Abbruch der Ubersetzung als Wirkung fritherer Fehler

ALGOL-TEXT FALSCH Nicht verwertbares Zeichen

FEHLER 18 vom Lochstreifen gelesen,
daher Abbruch der Ubersetzung
FEHLER 19 Zeichen else in falschem Zusammenhang

Die am Ende der ersten Ubersetzungsphase mogliche Fehlermeldung

DEKL? ...

enthalt einen sechsstelligen Namen, der im Programm vorkam, ohne daB er an
dieser Stelle erklért war.

Die Fehlerarten, die in der zweiten Ubersetzungsphase erkannt werden konnen,
sind in zehn Gruppen eingeteilt, die mit 0 bis 9 numeriert sind. Den einzelnen
Gruppen entsprechen folgende Fehler:

S W N = O

O 00 9 &N L

: Objektprogramm zu umfangreich

: Syntaktischer Fehler im ALGOL-Programm

: Typ eines Operanden nicht mit Operationszeichen vertraglich

: Typen in Wertzuweisung nicht vertraglich

: Aktueller Parameter einer Standardfunktion oder Standardprozedur hat

falschen Typ

: Unzuldssige Namen in Verteilerliste

: Anzahl aktueller Parameter falsch

: Unzuliissige aktuelle Parameter in Eingabeprozedur
: Ausdruck als linke Seite einer Wertzuweisung

: Syntaktischer Fehler im ALGOL-Programm

§ 9. Beispiele 83

Tritt bei der Abarbeitung des iibersetzten Programms ein Fehler auf, so wird
eine Fehlermeldung iiber die Steuerpultschreibmaschine ausgeschrieben und mit
der Ausnahme von Eingabefehlern zusétzlich iiber Schnelldrucker ausgedruckt.
AnschlieBend wird der Programmlauf angehalten. Als Fehlerausdrucke sind
moglich: ZELLE LEER; ADRESSE > 39999; DIVISOR = 0; HS VOLL;
SPRUNG IN BLOCK ; FELDGRENZEN; FELDLANGE; PARAMETERTYP;
AUSDRUCK ALS PARAMETER; PARAMETERANZAHL; INDEX ZU
KLEIN; INDEX ZU GROSS; WERT UNBESTIMMT; ARGUMENT < 0;
ZAHL ZU GROSS; KANAL NR.; SEL NR. und als Fehlerausschriften bei
Eingabefehlern ,,eingabefehler : 1s*, ,,eingabefehler : sr*“ und ,,eingabefehler : typ*.
Die Fehlermeldungen sind in den meisten Féllen direkt verstidndlich; daher seien
nur einige Fehler erlautert:

HS VOLL tritt auf, wenn der vorhandene Speicherplatz zur Fort-
setzung der Rechnung nicht ausreicht.

FELDGRENZEN tritt auf, wenn eine obere Feldgrenze kleiner als die zuge-
horige untere Grenze ist.

FELDLANGE tritt auf, wenn der Speicherplatz nicht ausreicht, um ein
neu erklirtes Feld aufzunehmen.

KANAL NR. tritt auf, wenn eine nicht vorgesehene Kanalnummer in
input bzw. output verwendet wird.

SEL NR. tritt auf, wenn in der Standardfunktion sel eine unzulas-

sige Selektornummer verwendet wird.

Zu den Eingabefehlern ist zu bemerken, daB die Ausschriften erfolgen, wenn
ein eingegebener Wert inkorrekt aufgebaut ist — dabei bezieht sich 1s auf die
Lochstreifeneingabe, sr auf die Schreibmaschineneingabe — oder einen Typ hat,
der mit dem Typ des in der Eingabeprozedur stehenden Parameters nicht ver-
traglich ist.

Eine weitere Fehlerklasse wird durch die Schreibmaschinenausschrift ,,anzeige*
gekennzeichnet. Dadurch wird auf eine Fehleranzeige am Steuerpult hingewiesen.

§ 9. Beispiele
Im folgenden sind zwei Beispiele wiedergegeben, als erstes ein Programm zur
Lo6sung der quadratischen Gleichung

x? + px + q = 0.

Die Eingangsdaten p und g werden auf Lochstreifen gelocht; die Rechnung wird
mit jeweils neuen Daten solange wiederholt, bis einmal p = 99999999 gelesen

6%

84 II. ALGOL-Variante Robotron 300

wird. Im zweiten Beispiel wird die auf Seite 44 behandelte Funktion cosinus be-
nutzt. Das Programm veranlaBt das Ausdrucken einer Tabelle von cos x fiir
x =0°...,180° in Schritten von 1°. Wiedergegeben sind Programmnieder-
schrift (Abb. 2 und Abb. 6), Datenniederschrift beim ersten Beispiel (Abb. 3),
Ubersetzungsprotokoll des Schnelldruckers (Abb. 4 und Abb. 7) und Rechen-
resultate (Abb. 5 und Abb. 8). Die benutzten Titel sind qugl und cosi.

tbegin'treal'd,p,q,u,Vv;
print('('loesung von x'power'2 + p*x +.q = 0r)');
print(*(r 1))
asread(p,q)s'1f?p=99999999 then''goto' by
print(*('p =*)',p,'('qa =')',a);
ds=0,25*p'powar!2-q}
us==0,5*p;vi=sqrt(abs(d));
tifrd'notless?0* then'
print(t('x1 =), u+v, ' ('x2 =), u-v)'else!’
tbegin'print(*(1x1 =1)t,u,t (14 1%1) 1 ,v);
print('('xZ =t)? ,n,v(o- 1'*')',v)
tendt; print(*(* *)?);'goto'ay
bstend!j'wait!
Abb. 2. Programmniederschrift qugl!

-2
1
-0,7
0.1
0.1
- +4594=1
5.4#=1
1,018¢f=1
#1
3.4#1
.6
.8
-$#12
T4#22
99999999
0
Abb. 3. Datenniederschrift qugl

01
02
03
04
a5
a6
27
oF:}
29
10
19
12
13

§ 9. Beispiele

+BEGIN+ .REALD P Q U V3

PRINTC'('LOESUNG VON X'POWER'2 + pxX + Q =
PRINTC'C*

')

0')*')s

A:READ(P,Q)s ' IF'P=99999999 ' THEN' 'G0TO0 '8

PRINTC'C'P

=')'nP"('Q

D:=0.25%xP'POWER'2-Q:
U:==0.5%p;y:i=gQRT(ABS(D));
"IF'D'NOTLESS'U' THEN'

PRINTC' (X1

=), UgV, (X2

"BEGIN'PRINT(' C('X1 =")",y,"

'END'; PRINTC' (!

PRINT(C'('X2:=')",U,
I)I');I‘G'OT

B:'END';'WAIT®

0

(
(

1]
1]
A;

=')',Q);

)t U-V) TELSE "
o)LV
- xL

Abb. 4. Ubersetzungsprotokoll qugl

LOESUNG yON X'pPOWER'2 + p¥X + g = O

P
x1

p
x1

P
x1

P
X1
X2

P
X1
X2

=]
x1
X2

P

X1
X2

Won

nounon houn naun

- 20000000% 01
10000000# O1

-.700000004# 0O
.50000000# 0O

.100000004 0O
.17000000¢ 0O

.54000000# 00
-.27000000# 00
-.27000000# 00

.10000000# 02
-.50000000# 01
-.500000004 01

.60000000# 00
-,30000000¢ 0O
-.30000000¢ 0O

-.10000000¢ 13
.50000000# 12
-50000000# 12

Abb. 5. Rechenresultate qugl!

Q -10000000* ot
x2 = .10000000# 01
T .10000000¢ 0O
X2 = .20000000# 0O
Q = .45900000#-01
X2 = .27000000# 00
Q = ,10180000¢ 0O
+ % .17000000# 00
- % -17000000# 0O
Q = .34000000# 02
+ % .30000000# 01
-~ I» .30000000# O1
Q = .80000000# 00
+ Ix ,BL261498 ¢ (O
- 1% .B4261498¢ QO
Q ,74000000¢ 24

+

I % .70000000# 12
% .70000000* 12

85

QueL

'begint 'integerti;
'real!'procedure’ cosinus(x);
tcemment'die funktion cosinus(x)entspricht der standard-
funktion cos(x), der abweichende name ist
erforderlich,da standardfunktionen nicht
erklaert werden;
fvalue'xi'real’x;
‘begin' 'comment' das argument wird zunaechst auf das
intervallO'notgreater'y'notgreater!
2¢pi mit pig=3,14159265reduziert,
es wird ausgenutzt,dass cos (x)eine
gerads funktion ist;
'real'y,z;'integer'qs'switch?vi=a,b,b,a;
ys=abs(x);

yi=y-entier(y/6,283 185 31)*6,283 185 31;

qs=entier(y/1,57079633)+1;

‘comment?’q gibt den quadranten des arguments y an,
dieses wird im folgenden auf O'notgreater!
y'notgreater'pi/8 reduziert,cos(y)wird
durech taylersche entwicklungi-y!power!
2/2+ytpower?4/24~-y'power?6/720approximiert,
durch gweimalige anwendumg von cos(2*y)=2%

cos(y)*cos(y)=-1zuruecktransformiert;
1iftytgreater’3,14159265'then'ys=6,28318531
A
"iftytgreater'1,57079633'then'ys=3,14159265
-Y3
Fi=y*y/16;3
fcomment' beginn des hornerschen schemas
fuer berechnung der taylorschen
entwicklung;
x1=1/24-y/720;
£i=z*y=0,5;21=2%y+13
‘comment' beginn der rueckiransformation;
£t=2%(3%*2-0,5) ;x1=2%(2*2-0,5)}
tgote'v[q]l;'comment'der verteiler v dient zur
festlegung des vorzeichens des resultats;
bicosinuss==g;'goto’c;
ascesimug=g;
ci'end'cosimms;
tfortis=0'step'1'until’ 180'do! Abb. 6.
print(i,eesinns(3,14159265/180%1)) Programmnieder-
‘ond''walt? schrift cosi

§9. Beispiele 87

cosi
‘BEGIN+ « INTEGER: I3
'REAL' 'PROCEDURE"' COSINUS(X}}

'COMMENT'DIE FUNKTION gOSINUS(X)ENTSPRICHT DER STANDARD-
FUNKTION COS(X), DER ABWEICHENDE NAME IST
ERFORQERLIcH;DA STANDARDFUNKT IONEN NIGHT
ERKLAERT WERDEN;

*VALUE *X3 *REAL * X1
'BEBIN''COMMENT' DAS ARROGUMENT WIRD ZUNAECHST AUF DAS
INTERVALLQ 'NOTGREATER 'y +NOTGREATER"
2#P| MIT P|133.14159265REDVUZIERT.,
ES WIRD AUSGENUTZT,DASS COS (X)EINE
GERADE FUNKTION IST:
"REAL'Y.Z1 INTEGER'Qs'SHITCH'Vi=A.B.B. A}

. Yi1=ABS(X)
yi1=y<-ENTIER(Y/6,283 185 31)%6,283 4185 31,
Q13ENTIER(Y/4.57p79633) ¢4
*COMMENT'Q Gigy DEN QUADRANTEN DES ARGUMENTS vy aN,

D!/ESES WIRp IM FOLGENDEN AUF g'NOTGRgaTER'’

Y'NOTGREATER'P!/8 REDUZIERT.COg(Y)W!IRD

DURCH TAYLORSCHE ENTWICKLUNG4=Y 'POWER

2/2+Y'pOHER'U/24=Y ' pOWER'6/T20ApPpRX.I MIERT.

DURCH ZWEIMALIGE ANWENDUNG VON cOS(2%Y)=2x

COSCY)%C0S(Y)a1ZURUECKTRANSFORMIERT:
‘IF'Y'GREATER'3.14159265 ' THEN'Y1=6,28318531
-Ys
'IF'Y'GREATER'1.57079633 ' THEN'Y1=3,14159265
-Y3
YisYnY/163
+COMMENT+ BEGINN DES HORNERSCHEN SCHgMAS
FUER BgRECHNUNG pER TAYLORSCHEN
ENTWICKLUNG:
Z134,24=-Y/720;
213Z2%Y0.5;21272%Y+1,
*COMMENT + gEGINN DER RUECKTRANSFORMAT|ON,
ZiaR(2Z%Z2e0.5);2132%(2%Z2-0.5)3
'GOTO'VIQ)s "cOMMENT 'pER VERTEILER V plgNT ZUR
FESTLEGUNG DEs VQRZE!CHENS DE3 RESULTATS:
BiCOSINUS1=-2,'G0TO0"'C}
A1COSINUS1=2Z;
Ct'END'COSINUS:
'FOR'1ts0'STEP'"1"UNT|L"'180"'D0" B
PRINT(],COSINUS(3.14159265/180g%1))
"END' "WAIT!

Abb. 7. Ubersetzungsprotokoll cosi

VONIOWM EWN 20

.10000000¢
.999841768¢
.99939076¢
.99862960¢
.99756410¢#
,99619478+#
99452184 ¢
,99254616¢#
.99026810¢
,98768836¢
.98480776 ¢
,98162726¢
197814754 #
,97437008¢
,97029576¢#
. 96592574 ¢
,96126166¢
,95630466¢
, 95105644
,94551856¢
. 939692640
.933568048¢
,92718384¢
.92050492¢
,94354538¢
,90630784¢
,89879410¢
,89100660¢
.882947564
,87461970¢
,86602538,
,85716732¢
. B4BQ4B12s
.83867058¢
,82903752¢
. 81915200¢
,80901700¢
, 79863552+
,78801070¢
777146009
76604436,
. 15470962¢
. T43144684
L, 73135374,
. 71933974 ¢
,70710680¢
694658328
,68199830¢#
.66913062¢
.65605906¢
,64278766#
,62932038¢
,61566138¢
,60181502#
,587765248
.57357646¢#
.559419278¢
. 54463906¢#
1529919240
.51503808¢
. 499999924
, 484809549
JL694T150¢
L 49399042¢
L 43837110¢
, 422618180
,48673654¢

o
00
00
00
oo
00
00
00
00
00
a0

00

00

00

00

00

00

00
s]a}
[s1s}
00
00
00
0o
00
00
00
00
00
00
00
00
00
00

00

Qo

00

00
00

00

00

0o
00
00
00
0o
0o
00
00
00
00
00
00
00
00
00
00
00
00
00
00
0o
00
00
00

00

67
68
69
70

12
73
T4
75
76
77
78
79

81
82

84
85
86
87
88
89
90

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
t12
113
114
115
116
117
118
119
120
1214
122
123
124
125
126
127
128
129
130
131
132

139073112¢
1374606487
1358367927
1342020124
132556816
130901694 ¢
127563732¢
125881892
1281921867
122495094
«20791156¢
+190Q80892#
+17364816¢
+15643438¢
1139417298¢
112186922#
+10452826#

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

187155640%-01

+69756300#-01
,52335800e-01
.34899320#-01
,174521600-01

,12000000#-08
-,174522604-01

-.348993204.01
-,523358000-01
-,697563000-01
-.871556400-01

-,10452826¢
-,12186922¢
«,13917298%#
«,15643438¢
-,17364816¢
-,19080892¢
-, 207911684
-,2249510690
«,24192198¢
-.,25881904¢
«,27563732¢
,29237176s
«.30901694¢
«,32556816,
«,34202012¢
-,35836792¢
-,37460648,
«1390734120
=1 40673654¢ 0
-.t2§61?180
-y 7
.;2 39903%0
-, 469471620
- hﬂb8096.0
-.500000068
-.51503808¢
-.52991924,
-,54463906
-.559192924
-,.57357646,
-,.587785%24¢
-,60181%02¢
-, 61566952¢
-,62932038¢
-,642787660
-,65605906¢
-,66913062+

00
oo
00
00
00
(]s)
00
00
00
00
00
oo
[s]e}
00
00
[1]1]
00
a0

a0

00
]
a0
00
00
00
00
0o
00
00
00
00
00
00

00
00

133
134

13
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
15

166
167
108
169
170
11
172
173
174
175
176
117
178
179
180

-:68199846¢
«.169465846¢
«.70710¢80¢
«,7193397hy
«,73135374¢
-, 74314488,
-,79670962¢
-,76604436,
-,77744600¢
-,78801070¢
-.79863552
-,809017000¢
-.81915200+
-,82903766+#
-,83867058¢
-,84804812¢
«,85716732¢
-,866025384
-,87461970¢
-,88294756,
-,89100660¢#
-,89879410¢
«1906307840»
19135459
=.92039492?
-.93710 84t
338048,
«.939692640
.,945910560
,9%199%660¢
-,956304682,
.,96126166,
,963925%4,

= 970295760
197437008,
-, 978147544
._981627260
.,984807760
«,98768836¢
«,990268100¢
©,992546164
=,99452200¢
«,99619478¢
«1997564100
=:95862960¢
«,99939076¢
=199984768°¢
-,10000000¢2

00
00
00
00
Q0
00
00
00
00
00
00
00
00
00
00
00
[o]¢]
00
00
0o
oo
00
00
00

0
0

[o]s}
00
00
00
00
oo
00
00
00
00
00
ao
00
00
00
00
00
o0
00

[sls}
01

Abb. 8. Rechenresultate cosi

LITERATURVERZEICHNIS

Biicher und Sammelbinde

[1] F. L. BAUER, J. HENHOLD, K. SAMELSON und R. SAUER, Moderne Rechenanlagen, Stutt-
gart 1965.
[2] R. BAUMANN, ALGOL-MANUAL der ALCOR-Gruppe, Miinchen-Wien 1965.
[3] B. V. BowpeN (Herausgeber), Faster than thought, a symposium on digital machines,
London 1953.
[4] L. CoLLAaTZ, Funktionalanalysis und numerische Mathematik, Berlin-Gottingen-Heidel-
berg 1964.
[5] R. GoopmaN (Herausgeber), Annual review in automatic programming, Oxford-London-
New York-Paris, Vol. 1, 1960; Vol. 2, 1961; Vol. 3, 1963; Vol. 4, 1964.
[6] B. W. GNEDENKO, W. S. KOrROLJUK und J. L. JUSTSCHENKO, Elemente der Programmierung,
Leipzig 1964 (Ubersetzung aus dem Russischen).
[7]1 F. R. GUNTscH, Einfilhrung in die Programmierung digitaler Rechenautomaten, 2. Aufl.,
Berlin 1963.
[8] W. HorrMANN (Herausgeber), Digitale Informationswandler, Braunschweig 1962.
[9]1 A. M. JagLom und I. M. JaAcLom, Wahrscheinlichkeit und Information, 3. Aufl., Berlin
1967 (Ubersetzung aus dem Russischen).
[10] W. KAMMERER, Ziffernrechenautomaten, 3. Aufl., Berlin 1963.
[11] I. O. KernER und G. ZreLke, Einfithrung in die algorithmische Sprache ALGOL, Leipzig
1966.
[12] A.I. Kitow und N. A. Krinizki, Elektronische Digitalrechner und Programmierung,
Leipzig 1962 (Ubersetzung aus dem Russischen).
[13] W. KNODEL, Programmieren von Ziffernrechenanlagen, Wien 1961.
[14] K. NickeL, ALGOL-Praktikum, Karlsruhe 1964.
[15] B. RANDELL und L. J. RusseLL, ALGOL 60 Implementation, London-New York 1964.
[16] K. STemBUCH (Herausgeber), Taschenbuch der Nachrichtenverarbeitung, Berlin-Gottingen-
Heidelberg 1962.
[17] H. V. WiLkEs, D. J. WHEELER und S. GIiLL, The preparation of programs for an electronic
digital computer, Reading, Mass., 1951.
[18] R. ZURMUHL, Praktische Mathematik fiir Ingenieure und Physiker, 4. Aufl., Berlin-Gottin-
gen-Heidelberg 1963.

Zeitschriften
Die zitierten Zeitschriften enthalten laufend Algorithmen in ALGOL 60.
[19] Communications of the Association for Computing Machinery, New York.
[20] Nordisk Tidskrift for Informationsbehandling, Kopenhagen.
[21] Numerische Mathematik, Berlin-Go6ttingen-Heidelberg.

Originalarbeiten
[22] K.-H. BACHMANN, Einige Besonderheiten des Dresdner Rechenautomaten D 1, Nachrichten-
techn. Fachber. 4, 90-91 (1956).

90 Literaturverzeichnis

[23] K.-H. BACHMANN, Losung algebraischer Gleichungen nach der Methode des stirksten
Abstiegs, Z. angew. Math. Mech. 40, 132-135 (1960).

[24] J. W. BAckus u. a., The FORTRAN automatic coding system, Proc. West. Joint Comp.
Conf., Los Angeles 1957, 188-198.

[25] J. W. Backus, The syntax and semantics of the proposed interpational algebraic language
of the Zurich ACM-GAMM conference, Proc. intern. Conf. Inf. Proc., UNESCO, Paris
1959, 125-132.

|26]1 F. L. BAuEr und K. SAMELSON, Maschinelle Verarbeitung von Programmsprachen, in [8],
227-268.

[27] R. BAuMANN, ALGOL-Manual der ALCOR-Gruppe, Elektronische Rechenanlagen 3,
206-212, 259-265 (1961); 4, 71-85 (1962).

[28] H. BOTTENBRUCH, Programmierung digitaler Systeme, in [16], 1330-1398.

[29] N. CHomsky, Three models for the description of language, IRE Transactions on Infor-
mation theory IT-2, 113-124 (1956).

[30] Y. CHU, An ALGOL-like computer design language, Comm. ACM 8, 607-615 (1965).

[31] L. CoLLATZ, Das Hornersche Schema bei komplexen Wurzeln algebraischer Gleichungen,
Z. Angew. Math. Mech. 20, 235-236 (1940).

[32] E. W. DUKSTRA, Recursive programming, Numer. Math. 2, 312-318 (1960).

[33] J. EickeL, M. PAuL, F. L. BAUER und K. SAMELSON, A syntax controlled generator of formal
language processors, Comm. ACM 6, 451455 (1963).

[34] M. ENGELI, Automatisierte Behandlung elliptischer Randwertprobleme, Dissertation
Zirich 1962.

[35] F. R. GUNTscH und W. HANDLER, Zur Simultanarbeit bei Digitalrechnern, Elektronische
Rechenanlagen 2, 117-128 (1960).

[36] W. HANDLER, Digitale Universalrechenautomaten in [16], 1009-1158.

[37] U. HiL, H. LAaNGMAACK, H. R.ScHwarRz und G. SEEGMULLER, Efficient handling of
subscripted variables in ALGOL 60 compilers, Proc. Symp. on symbolic languages in data
processing, Rom 1962, 331-340.

[38] W. HorFrMANN, Entwicklungsbericht und Literaturzusammenstellung {iber Ziffern-Rechen-
automaten, in [8], 650-717.

[39] E. T. Irons, The structure and use of the syntax directed compiler, in [5], Vol. 3, 207-227.

[40] L. KALMAR, On a digital computer which can be programmed in a mathematical formula
language, II. Magyar Matematikai Kongressuzs, Budapest 1960.

[41]1 W. KAMMERER, Ziffernrechenautomat mit Programmierung nach mathematischem Formel-
bild, Jenaer Jahrbuch 1959/I1.

[42] P. J. LANDIN, A correspondence between ALGOL 60 and Church’s Lambda-notation,
Comm. ACM 8, 89-101, 158-165 (1965).

[43] N. J. LEBMANN, Bericht iiber den Entwurf eines kleinen Rechenautomaten an der Tech-
nischen Hochschule Dresden, Ber. Mathematikertagung, Berlin 1953, 262-270.

[44] P. Naur (Herausgeber), Revised report on the algorithmic language ALGOL 60, Numer.
Math. 4, 420-453 (1963). Deutsche Ubersetzung, Berlin 1966.

[45] W. L. vaN DER POEL (Herausgeber), Report on SUBSET ALGOL 60 (IFIP), Numer. Math. 6,
454-458 (1964).

[46] W. L. vaN DER PoEL (Herausgeber), Report on input-output procedures for ALGOL 60,
Numer. Math. 6, 459462 (1964). Deutsche Ubersetzung, Berlin 1966.

[47] W. L. VAN DER PoEL, Microprogramming and trickology, in [8], 269-311.

[48] H. G. Ricg, Recursion and iteration, Comm. ACM 8, 114-115 (1965).

Literaturverzeichnis 91

[49] H. RUTISHAUSER, Automatische Rechenplanfertigung bei programmgesteuerten Rechen-
maschinen. Mitt. Inst. Angew. Math. ETH Ziirich Nr. 3, Basel 1952.

[50] H. RUTISHAUSER, Mafinahmen zur Vereinfachung der Programmierung, Nachrichtentechn.
Fachber. 4, 26-30 (1956).

[51] K. SAMELSON, Probleme der Programmierungstechnik, Nachrichtentechn. Fachber. 4,
139-140 (1956).

[52] K. SAMELSON, Probleme der Programmierungstechnik, Aktuelle Probleme der Rechen-
technik, Berlin 1957, 61-68.

[53] K. SaMEeLsoN und F. L. BAUER, MaBnahmen zur Erzielung kurzer und tibersichtlicher Pro-
gramme fir Rechenautomaten, Z. Angew. Math. Mech. 34, 262-272 (1954).

[54] K. SaMmeLsoN und F. L. BAUER, Sequentielle Formeliibersetzung, Elektronische Rechen-
anlagen 1, 176-182 (1959).

[55] H. ScHECHER, MaBinahmen zur Vereinfachung von Rechenpldnen, Z. Angew. Math. Mech.
36, 377-395 (1956).

[56] J. H. WILKINSON, The evaluation of the zeros of ill-conditioned polynomials, Numer.
Math. 1, 150-180 (1959).

[57] K. Zusg, Uber den allgemeinen Plankalkiil als Mittel zur Formulierung schematisch-kombi-
nativer Aufgaben, Arch. Math. 1, 441449 (1948/49).

[58] Fachnormenausschuf8 Informationsverarbeitung im Deutschen Normenausschu3, ALGOL-
Worterbuch, Elektronische Datenverarbeitung 1963, 115-117.

NAMEN- UND SACHVERZEICHNIS

aktueller Parameter 27

— Wert 11

ALCOR 48

ALCOR-Code 51

ALGOL 7

ALGOL-Zeichen 8

Anweisung 8

—, bedingte 13, 20, 46

—, leere 14, 47

—, markierte 13

—, zusammengesetzte 12, 46
Laufanweisung 17, 41, 46
Prozeduranweisung 33
Sprunganweisung 13, 46
Unterprogrammanweisung 33, 46

arithmetischer Ausdruck 10, 12

Aufruf 27

—, rekursiver 31, 37

Ausdruck, arithmetischer 10, 12

—, bedingter 40

—, Boolescher 22, 38

—, logischer 38
Zielausdruck 13, 28, 36

Ausgabe 35, 75

bedingte Anweisung 13, 20, 46
—r Ausdruck 40

Block 21, 45

BooLE, G. 22

Boolescher Ausdruck 22, 38

COBOL 7
CorLaTzZ, L. 53

Dezimalpunkt 11

Eingabe 35, 75
Eliminationsverfahren 19

Erkldrung 21
Felderkldrung 23, 45
Funktionserkldrung 25, 45
Typerkldrung 22, 45

Unterprogrammerklarung 27, 33, 45

Verteilererkldrung 36, 46
Euklidischer Algorithmus 33

Fehlererkennung 81

Feld 11, 23

Felderkldrung 23, 45
Fernschreibcode 50
formaler Parameter 21, 25
FORTRAN 7

freier Parameter 25
Funktion 11, 15
Funktionserkldrung 25, 45

GauBsches Eliminationsverfahren 19
global 22

Grenzenliste 23

GroBe 21

groBter gemeinsamer Teiler 33
Grundsymbol 8

Hornersches Schema 19, 29, 34, 53

indizierte Variable 10

Kellerungsprinzip 32

Laufanweisung 17, 41, 46
Laufelement 41

leere Anweisung 14, 47
Lochkarte 48
Lochstreifen 48

logischer Ausdruck 38
lokal 21

94 Namen- und Sachverzeichnis

Marke 13, 21
markierte Anweisung 13
Matrixtransponierung 17

Matrizenmultiplikation 17, 36, 66

Name 10

Namensaufruf 28
Newtonsches Verfahren 52
Nullstellenbestimmung 52

Parameter, aktueller 27
— mit Anfangswert 27
—, formaler 21, 25

—, freier 25

—, symbolischer 28
Potenzierung 11
Prioritdtsregeln 12
problemorientierte Sprache 7
Programm 24
Prozedur 26
Prozeduranweisung 33
Prozeduraufruf 27
Prozedurrumpf 28
Pseudozufallszahlen 16

quadratische Gleichung 14

Rahmenprogramm 52
Randwertaufgabe 64
rekursiver Aufruf 31, 37
Relation 9, 13
Relationszeichen 9
Robotron 300 70
Runge-Kutta-Verfahren 58
RUTISHAUSER, H. 7

Schreibautomat 78
Skalarprodukt 16
Spezifikation 26, 28, 47
Sprache, problemorientierte 7
Sprunganweisung 13, 46
Standardfunktion 15, 74
Standardprozedur 75
Standardunterprogramm 35
SUBSET 48

Typerklarung 22, 45

Ubersetzung 80

Unterprogrammanweisung 33, 46

Unterprogrammbibliothek 48

Unterprogrammerkldrung 27, 33, 45

Variable 10

—, einfache 10

—, indizierte 10
Vereinbarung 21
Vergleichsaussage 9
Verteiler 36
Verteilererkldarung 36, 46

Wert 10, 26, 27
Wertaufruf 28
Wertzuweisung 10, 46
—, mehrfache 14, 46

Zeichenreihe 42
Zielausdruck 13, 28, 36

zusammengesetzte Anweisung 12, 46

Zyklus 17

