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VORWORT

Der umfassende Aufbau des Sozialismus in der Deutschen Demokratischen Republik
erfordert, dafl alle Werktitigen stindig an ihrer Weiterbildung arbeiten. Unsere
Fachschulen setzen heute in der Regel das Niveau der 10. Klasse der allgemeinbilden-
den polytechnischen Oberschule und eine abgeschlossene Berufsausbildung voraus.
Um einem mdoglichst groBen Kreis von Werktitigen aus Industrie und Landwirt-
schaft den Besuch einer Fachschule zu erméglichen, werden an den Volkshochschulen
Vorbereitungslehrgiinge fiir das Fachschulstudium durchgefiihrt. Diese Vorberei-
tungslehrginge stellen eine Ubergangslésung fiir jene Werktitigen dar, die den Ab-
schluf} der 10. Klasse bisher nicht erwerben konnten.

Das vorliegende Studienmaterial wurde von der ehemaligen Zentralstelle fir die
Fachschulausbildung — Lehrmaterial fir Grundlagenficher — Dresden, fir diese
Vorbereitungslehrginge entwickelt. Es entspricht nicht in jeder Hinsicht den An-
forderungen an die Fachschulbewerber. enthilt aber die wichtigsten Stoffschwer-
punkte und ist in seiner methodischen Gestaltung besonders auf das Selbststudium
eingerichtet. t

Vielfach gedullerten Wiinschen entsprechend, wurde dieses Studienmaterial iiber
den Buchhandel allen Interessenten zugénglich gemacht. Es hat sich inzwischen
auch in anderen Lehrveranstaltungen zur Erwachsenenqua’ifizierung bewihrt und
vor allem die Betriebsakademien in ihrer Arbeit unterstitzt.

Wir hoffen, dafl wir mit diesem Studienmaterial auch IThnen helfen kénnen, sich
den Weg zu einer hoheren Qualifikation zu ebnen und wiinschen Ihnen beim Stu-
dium viel Erfolg.

Institut fiir Fachschulwesen
der Deutschen Demokratischen Republik
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1. Einfiihrung

1.1. Weshalb Physik ?

Im Laufe der Zeit hat es der Mensch gelernt, die Naturkrafte immer besser zu nutzen
und die GesetzmiBigkeiten ihres Wirkens kennenzulernen. Mehr als je ist heute eine
griindliche Kenntnis der Naturgesetze eine notwendige Voraussetzung fiir jede
schopferische Arbeit in Technik und Landwirtschaft. Die Wissenschaft, deren Auf-
gabe darin besteht, uns die nétigen Einsichten in die Zusammenhénge und Gesetz-
maBigkeiten der Natur zu vermitteln, ist die Physik [von physis (griech.) Natur].
Daher missen auch Sie sich ein gediegenes physikalisches Wissen aneignen. Damit
bauen Sie sich das Fundament fir jede spezielle technische Aufgabe, die Sie spiter
einmal 16sen wollen. Es gibt hier nichts Uberfliissiges, denn immer wieder kommt es
vor, daBl Dinge von bisher nur theoretischer Bedeutung plotzlich auch praktischen
Wert bekommen. Denken Sie nur daran, wieviel physikalische Erkenntnis gesammelt
werden muBte, bis unsere heutigen Fotoapparate geschaffen werden konnten.

1.2. Was gehort zur Physik?

Der Umfang des Arbeitsgebietes ,,Physik‘* ist recht groB3. Frither bedeutete Physik
soviel wie Naturlehre schlechthin. Spater haben sich dann die Wissenschaften von
den belebten Dingen (von den Pflanzen, Tieren und vom Menschen) selbstiandig
weiterentwickelt ; auch dic Chemie gehort nicht mehr zur Physik.

Die Physik beschéftigt sich mit den Vorgédngen in der unbelebten Natur, soweit
sie nicht auf stofflichen Verinderungen der beteiligten Korper beruhen.

Da Sie sich im Rahmen Ihrer Vorbereitung auf das Fachschulstudium auch mit
Chemje zu beschaftigen haben, soll zunédchst untersucht werden, wodurch sich physi-
kalische Vorginge von chemischen unterscheiden.

Nehmen Sie z. B. ein Streichholz: Sie kénnen es zerbrechen oder in kleine Spéne zer-
schneiden. Es dndert dabei nur seine Form ; die Substanz des Holzes bleibt nach wie
vor dieselbe. Die Verdinderung betrifft nur den physikalischen Zustand. Zur Ent-
ziindung gebracht, verbrennt das Streichholz, und eine tiefgreifende stoffliche Ver-
anderung findet statt. Teils bildet sich Asche, teils ein erstickend wirkendes Gas und
ein kleiner Rest verkohlten Holzes.

Wenn sich — wie in diesem Falle — das urspriingliche Material stofflich veriandert hat,
handelt es sich um einen chemischen Vorgang.

Betrachten Sie als zweites Beispiel das Wasser: Es kann zu Eis gefrieren oder auch
verdampfen. Gewill bestehen zwischen diesen drei Zustandsformen (fest, fliissig,
gasformig) duBerlich grofle Unterschiede; Sie wissen aber, dal es sich nur um ver-
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schiedene Zustinde ein und desselben Stoffes handelt. Das Eis kann bei Erwarmung
schmelzen und der Dampf sich bei der Abkiihlung wieder zu Wasser verdichten.
Letzten Endes bleibt es immer derselbe Stoff, der seinen Zustand nur voriibergehend
verandert hatte. Das sind also physikalische Vorginge.

Achten Sie deshalb stets darauf, ob sich der Stoff nach Beendigung eines Vorganges
chemisch veriandert hat oder nicht. Dann werden Sie selbst entscheiden kénnen, was
zu dem Bereich der Chemie oder zu dem der Physik gehort.

Die Physik umfafit folgende Teilgebiete:

die Lehre von der Bewegung und dem Gleichgewicht (Mechanik),
die Wirmelehre (Kalorik),

die Lehre vom Schall (Akustik).

die Lehre von der Elektrizitat und vom Magnetismus (Elektrik),
die Lehre vom Licht (Optik),

dic Atomphysik (Atomistik).

Uber all diese Gebiete werden Sie sich im Laufe Thres kiinftigen Studiums einen Uber-
blick verschaffen.

Das vorliegende Studienmaterial beschrankt sich auf die Behandlung der allgemeinen
physikalischen Grundbegriffc und einiger Teile der Mechanik, der Kalorik, der
Elektrik und der Optik. Dieses Grundwissen miissen Sie bei Beginn lhres Fachschul-
studiums besitzen.



MECHANIK

2. Physikalische Grundbegriffe

2.1. Methoden der Physik

Frei von allen persénlichen Gefithlen und Vorurteilen, d. h. objektiv, mull der Physi-
ker die Naturerscheinungen beobachten und sie dann ebenso sachlich und auf ein-
fachste Weise Dbeschreiben. Zur Beschreibung der Natur miissen exakt definierte .
Begriffc eingefiihrt werden. In der Physik miissen diese Begriffe die Beobachtbarkeit
bzw. MeBbarkeit einschlicBen. Man nennt sie physikalisehe GroQen.

Wie Sie bald erkennen werden, spielt in der Physik die Mathematik eine aulierordentlich
grole Rolle. Ein physikalisches Problem kann crst dann als gelost angesehen werden,
wenn der mathematische Zusammenhang zwischen den beteiligten Groflen auf-
gefunden ist. Fir den Physiker gibt es im wesentlichen drei Wege, um zu physika-
lischen Erkenntnissen zu gelangen:

dic Beobachtung,
das Experiment (den Versuch),
die Rechnung.

Die Beobachtung hat vor allem friither cine grolle Rolle gespielt. Manche Gesetz-
maBigkeiten wurden rein zufallig beobachtet. Beim heutigen Entwicklungsstand
der Physik werden keine neuen FErkenntnisse nur durch Beobachtung gewonnen
wérden kénnen. Der Physiker mul} vielmehr umfangreiche Versuche anstellen. Diese
Versuche werden mathematisch ausgewertet. Diese Methode wendet man in der
Experimentalphysik an.

Die Theoretische Physik bevorzugt Methoden der Héheren Mathematik, um zu ncuen
Tirkenntnissen zu gelangen. Jedoch miissen auch hier Theorie und Praxis eine Einheit
bilden. Der Experimentalphysiker kommt ohne theoretische Uberlegungen nicht aus.
wiithrend Ergebnisse, zu denen der theoretische Physiker gelangt ist, durch Versuche
gepriift werden miissen.

2.2, Physikalische GréBen und Einheiten

Wir hatten oben festgestellt, dal physikalische Groflen beobachtbar bzw. mellbar
sein miissen. Wir haben uns daher am Anfang mit den elementaren Grundlagen der
MeBkunde vertraut zu machen.

Eine physikalische Grole wird gemessen, indem man sie mit einer Einheit ver-
gleicht.

Fiir jede physikalische Grofle miissen Einheiten festgelegt werden. Das geschieht
durch internationale Ubereinkiinfte; denn die Geschichte zeigt, daB es unzweck-
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maBig ist, wenn in jedem Land andere Einheiten giiltig sind. Wir verwenden heute
das in der Deutschen Demokratischen Republik durch Verordnung vom 31. 5. 1967
festgelegte Internationale Einheitensystem. Nur dieses System darf in Physik und
Technik verwendet werden.

Wenn Sie eine physikalische GroBSe messen, so geben Sie das Ergebnis der Messung
als Vielfaches oder Bruchteil der Einheit an. Bestimmen Sie die Liange eines Korpers
mit 15 cm, so schreiben Sie I = 15 cm. Dabei ist ! das Symbol fiir die physikalische
GroBe, im vorliegenden Fall eine Lange, 15 die MaBzahl und cm die Einheit.
Allgemein schreibt man dafiir

=1
Hierin bedeutet
! die physikalische Grofle,

{l} die MaBzahl der physikalischen GrofBe,
[{] die Einheit der physikalischen Grofe.

Im Beispiel [ = 15 cm ergibt sich also: {I} = 15; [I] = cm.
Merken Sie sich:

Eine physikalische GroBe wird als Produkt aus einer MaBzahl und einer Eivheit
dargestellt.

Im obigen Beispiel hatte man die Linge auch in einer anderen Lingeneinheit —
z. B. in mm — messen konnen. Man hitte dann die Linge des Korpers mit 150 mm
angeben miissen. Die Wahl der Einheit beim Messen einer GroBe ist demnach willkiir-
lich. Allgemein wéihlt man eine solche Einheit, die zum Messen der jeweiligen GroSe
am giinstigsten ist, d. h. nicht zu kleine, aber auch nicht zu grofie Mafizahlen ergibt.
Wichtig ist, daB IThnen die verschiedenen dezimalen Einheiten, mit denen Sie eine
Grofle messen konnen, auch gelaufig sind.

Zur leichteren Unterscheidung hat man die dezimalen Vielfachen und Teile mit
folgenden feststehenden Vorsitzen und Kurzzeichen gekennzeichnet.

Tafel 1: Vorsidtze zur Bildung der dezimalenr Vielfachen und Teile

Kurzzeichen Vorsatz Bedeutung

T Tera 102 = 1000000000000 Einheiten
G Giga 109 = 1000000000 Einheiten
M Mega 106 = 1000000 Einheiten
k Kilo 108 = 1000 Einheiten
h Hekto 102 = 100 Einheiten
da Decka 10t = 10 Einheiten
d Dezi 1071 = 0,1 Einheiten
c Zenti 1072 = 0,01 Einheiten
m Milli 107 = 0,001 Einheiten
w Mikro 10~¢ = 0,000001 Einheiten
n Nano 107% = 0,000000001 Einheiten
P Pico 1012 = 0,000 000000001 Einheiten
f Femto 10715 = 0,000000000000001 Einheiten

a Atto 10718 0.000000000000000001 Einheiten
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In Tafel 1 ist auch vermerkt, wie man dic Teile und Vielfachen als Zehnerpotenzen
schreibt. In der Fachliteratur finden Sie fast ausnahmslos diese verkiirzte Schreib-
weise vor. Auch Sie werden — nach der Behandlung der Potenzgesetze in der Mathe-
matik — diese Schreibweise wegen ihrer vielen Vorteile anzuwenden lernen.

2.3. GrundgriBen der Meehanik und ihre Einheiten

In der Mechanik arbeitet man mit den drei Grundgréflen Linge, Zeit und Masse.
lusgesamt gibt es sechs Grundgrélien. Spiter werden Sie die drei weiteren Grund-
grolien (elektrische Stromstirke, Temperatur und Lichtstirke) kennenlernen. Alle ande-
ren Grofllen (z. B, Kraft, Geschwindigkeit) werden von den GrundgréBien abgeleitet.

2.3.1. Liinge
Die Grundeinheit ist das Meter (m).

An den Namen einiger Malle, wie Fuli und Elle. die heute allerdings veraltet sind.
ist zu erkennen. dald die Lingenmale ursprimglich von unserem Kérper abgenommen
worden sind.

Die erste Vereinheitlichung des MeBwesens haben wir der Franzosischen Revolution
zu verdanken. Tm Bt‘klwb(-n den Fortschritt der wissenschaftlichen ¥ntwicklung
und der Technik zu fordern. legte 1795 die [Pranzosische Nationalversammlung das
Meter als die Grundeinheit der Linge fest. Sie beschlof, ein natiirliches Mald ein-
zufiithren, das jederzeit wieder genau nachgebildet werden kénnte.

So wurde als Meter der zehnmillionste Teil des KErdmeridianabschnittes zwischen
Nordpol und Aquator festgelegt und diese Linge auf cinem Stab aus einer Platin-
Iridium-Legierung durch zwei Striche markicrt. Dieses ,,Urmeter'* gilt heute noch
fiir alle Linder, die sich dem Metersystem angeschlossen haben, als Lingeneinheit,
Iis wird in Paris aufbewahrt (Bild 1).

Line Kopie davon besitzt das Deutsche Amt fitr Mefwesen und Warenpriifung
(DAMW) der Deutschen Demokratischen Republik (Bild 2).

Bild 1. Querschnittsnnsicht dea Bild 2. Die Kopie des Meterprototyps beime Deutsehen Amt Fir Med-
Meterprototyps wesen und Warenpritfung

‘:l Prototyp (griech.) Urbild, Erstanfertigung
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Wie spitere Messungen ergaben, betrigt die Linge des Erdmeridianquadranten,
wenn man die Entfernung der Striche auf dem Urmeterstab als die Einheit Meter
beniitzt, in Wirklichkeit 10000856 m statt 10000000 m. Gegeniiber der urspriing-
lichen Festlegung ist also das heute noch benutzte Meter zu kurz geraten. Nachdem
man das festgestellt hatte. blieben zwei Méglichkeiten. Man hiitte die Definition,
beibehalten kénnen. dann hitten alle Meterstibe verlangert werden miissen (("bung ).
Das wire natiirlich sche umstindlich gewesen. Auflerdem miifite die Linge des Meters
bei jeder neuen, genaueren Erdvermessung wieder gedndert werden. Man wihlte
deshalb den anderen Weg, behielt die Entfernung der Striche auf dem Urmeterstab
als Langeneinheit Meter bei und édnderte die Definition. Es gilt heute:

Das Meter ist gleieh 1650763,73 Vakuum-Wellenliingen der Strahlung, die dem
Ubhergang zwischen den Niveaus 2p,, und 5 d, des Atoms Krypton 86 entspricht.

Vielfache und Teile des Meters werden mit den in Tafel 1 zusammengestellen Vor-
sdtzen bezeichnet.
In der Seefahrt wird noch benutzt:

1 sm = 1 Seemeile = 1832 m

Fiir Langenmessungen, bei denen mit freiem Auge abgelesen werden soll, verwendet
man BandmalBe, Stahlmafistibe und Gliedermalistibe (Schmiegen) (Bilder 3 bis 5).
Diese sind mit sogenannten Strichmalien verschen, . h., die GréBe ciner Einheit
wird dureh die Abstande der Teilstriche verkdrpert. Fiir Mefigerite dieser Art
wird Millimeterteilung bevorzugt. Bei guter Ansfithrung der Geriite und sorgfiltiger
Messung ist mit einer Ungenauigkeit von 4 0,25 mm bis 4+0.5 mm zu rechnen.

Um MebBfehler beim Ablesen zu ver-
meiden. soll die Teilung des Malistabes
an dem zu messenden Gegenstand mog-
lichst anliegen.

Wenn Sie dies nicht beachten, also ein
geringer Abstand zwischen Maflstab und
Gegenstand bestehen bleibt, so kann
Ihnen infolge von Schrigablesung ein

L4 3. Bandtoa b

Lild 4. Stalilmali



Bild 5, Glhicderuud

Parallazenjehler') unterlaufen. Er tritt dann ein, wenn beim Ablesen die Blickrich-
tung nicht senkrecht zu MalBstab und zu messender Linge ist (Bilder 6 und 7).

Blicken Sie deshally beim Messen immer senkrecht auf die Skale. Auch bei Zeiger-
ablesungen an MeBinstrumenten kann der Parallaxenfehler auftreten. Um ihn zu
vermeiden. fithrt man die Zeiger der Meflinstrumente als sogenannte . Messerzeiger

aus. Wie Bild 8 zeigt, erscheint ein
solcher Zeiger als kleiner Strich,
wenn das Instrament senkrecht

zur Melskale anvisiert wird. Ist #Frtkrarﬂrungen

der Zeiger flichenhaft zu selien ) ey Caalsck

(Bild 9), so blickt man schrig zur / ‘m richtig
Skale,dic Ablesungist dann fehler-

Hild 6
Eutstehnang der Parallase i Messen

Wil 7, Parnllexe wind vermibeden, woenn die Madi- Bild s, Der ZAeiger er-
tetlng aul dem zu messerlen Gegenstaml anlljegl sehvint als Strich, wenn

nn senkrecht zor Skale
_— Blickt: s tritt kein
L) parallaxis (gricch.) Abweichung Farallaxenfehler anf,

Bild 8, Der Xeiger er-
sehelnt als Fliche, wenn
man sehrig zur Skale
Wickt; die Ablesung Ist
fehlerliaft
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behaftet. Der Parallaxenfehler 1aBt sich auch durch Spiegelablesung verhindern, in-
dem die MeBskale auf spiegelndem Grund aufgetragen und beim Messen so auf die
Skale geblickt wird, daB sich der Zeiger und sein Spiegelbild decken.

Fiir genauere Langenmessungen benutzt man Feinmeligerite ; die bekanntesten sind
Mefllehre und Mel3schraube. Die meisten von IThnen werden diese Melgerite und ihre
Handhabung bereits kennen, deshalb wollen wir uns auf das Wesentlichste beschrin-
ken. Die Mefilehre ist zum Ablesen von Zehntelmillimetern mit einer Hilfsteilung.
Nonius'), ausgeriistet. Dieser ist auf dem verschiebbaren Schenkel der Mellehre
angebracht. Bei dem in den Bildern 10 und 11 dargestellten Nonius kommen auf
9 Skalenteile (9 mm) der Hauptteilung 10 Skalenteile der Noniusteilung, so daB ein
Skalenteil der Noniusteilung um 1/, mm kleiner ist als ein Skalenteil der Haupt-
teilung. Bei der Ablesung ergibt der Nullstrich der Noniusteilung die vollen Milli-
meter. Die Zehntelmillimeter gibt derjenige Teilstrich des Nonius an, der mit einem
Teilstrich der Hauptteilung zusammenfillt (Bild 11).

Die MeBschraube (Bild 12) gestattet Messungen bis auf Hundertstelmillimeter, Sie
besteht aus einer beweglichen Schraubenspindel, die zugleich als Griff dient, weiter-
hin aus einer festen Spindelmutter, dic an ihrem freien Einde als kriftiger Biigel aus-
gebildet ist. Auf diesem ist die fest stehende MeBtliche, der Ambofi, angebracht. Die
andere MeBfliche ist direkt mit dieser Spindel verbunden, die meist eine Steigung
von 0,5 mm besitzt und sich bei einer vollen Spindelumdrehung samt der MeBfliche
um 0,5mm in axialer Richtung verschiebt. Die ganzen bzw. halben Millimeter

Bild 10. MeBlehre

20 30 &0 70
0
zeigr 19,4 zeigh 62,7

Bild ll-‘ Nonius zeigt 19,4 baw, 62,7

Bild 12, Melzchranbe

1) Nach dem portugiesischen Mathematiker PEnro NiNEz (1492 bis 1577), latinisiert PETRUS
Nox1us, genannt
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Bild 13, Beispicle fir Ablesungen an elner
MeBschraube

werden an der Teilung auf dem fest
stehenden Schaftrohr abgelesen, die Einstellung Einstellung
Hundertstelmillimeter auf der Skale, die auf 19,97 auf 74,0

lings des Umfangs der Trommelhiilse

aufgetragen ist (Bild 13). Bei Verstellen der Trommel um einen Teilstrich verdndert
sich der Abstand zwischen den beiden Me$flichen um '/,,, mm. Der Anzeigebereich
der Meflschrauben umfaft gewdhnlich 25 mm. Das gilt auch fiir MeBschrauben
groBerer Mefiweite. Fir sehr groBe MeDweiten, sie werden bis zu einer MeBweite
von 3 m hergestellt, ordnet man den Ambol verstellbar an, um den Verwendungs-
bereich zu erweitern.

Will man feste Lingen von héochster Genauigkeit, sogenannte Léingennormale,
herstellen, so verwendet man hierzu Parallelendmafie (Bild 14). Sie sind meist von
quaderférmiger Gestalt und aus hochwertigem Stahl gefertigt. Die EndmafBe werden
in den Lingen von 0,5 mm bis 1000 mm hergestellt und lassen sich durch Aneinan-
derreihung von EinzelendmafBen zu jeder gewiinschten EndmalBkombination zu-
sammensetzen. Mit einem Satz von z. B. 45 Endmalflen lassen sich alle MafBe zwischen
3 und 200 mm in Stufen von je { um zusammenstellen. Ihre mit hoher Prizision
hergestellten planparallelen Melflichen stimmen so genau iiberein, dafl mehrere
aneinandergereihte Endmalfle von
selbst ancinanderhaften. Wegen
ihrer groBlen Genauigkeit bilden
sie seit langem die Grundlage des
Mefiwesens in der Fertigungs-
technik.

Bild 14. ParallelendmaGe

2.3.2, Zeit
Die Einheit der Zeit ist die Sekunde.
Als gesetzliche Definition gilt (gekiirzt):
Die Sckunde ist der 31556 925,9747. Teil des tropisehen Jahres 1900,

Unter dem tropischen Jahr wird die Zeit verstanden, die vergeht, bis die Sonne auf
ihrer scheinbaren Bahn zum selben Wendekreis zuriickkehrt.
Als Kurzzeichen fiir Sekunde gilt s (nicht sec oder Sek.!). Gréllere Zeiteinheiten sind

die Minute 1 min = 60s
dic Stunde 1 h') = 60min = 3600 s
' der Tag 1d?) =24 h = 1440 min = 86400 s

1I_]“\:cm. hora (lat.) die Stunde
%) von dies (lat., sprich: di es) der Tag

2 Studienmat. Physik
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Von Minute, Stunde und Tag dirfen dezimale Vielfache und Teile gemdll Tafel t
nicht gebildet werden.

Fiir die Zeit hat man das Symbolt (tempus, lat., Zeit) festgelegt. Damit es keine
Verwechslungen zwischen dem Symbol fiir eine Gréfle und der Abkiirzung fiir eine
Einheit geben kann, hat man beide drucktechnisch unterschieden. Die Symbole fiir
die physikalischen GréBen sind schrdg (kursiv) gedruckt, die Kurzzeichen fir die
Einheiten steil. Diesen Unterschied miissen Sie sich gut merken, um Verwechslungen
zu vermeiden.

2.3.3. Masso

Die Grole, die in der Physik eine Vorstellung dariiber vermittelt, wieviel Substanz
ein beliebiger Kérper enthilt, ist die Masse. Sie erhilt das Symbol m.

Die Einheit der Masse ist das Kilogramm (kg).

Die Masse von 1 kg wird durch ein Urkilogrammstiick verkdérpert, das aus Platin-
Iridium hergestellt ist und in Paris aufbewahrt wird. Die Kopie des Prototyps, die
wir in der Deutschen Demokratischen Republik besitzen, zeigt Bild 15.

Das Kilogramm ist dic Masse des internationalen Kilogramm-Prototyps.
Weitere gebriuchliche Masseeinheiten sind Tonne {t), Gramm (g) und Milligramm (mg).

Es gilt: 1t = 1000 kg
lg = 0,001kg
I mg = 0,000001 kg

Zur Messung der Masse eines IKérpers benutzt man Waagen mit einem Satz Wige-
stiicke.

Die Methode des Wigens besteht in einem Massenvergleich, d. h., man legt auf die
eine Waagschale den zu wigenden Kérper und auf die andere Waagschale so viele
Wigestiicke, bis der Waagebalken wieder die Gleichgewichtslage erreicht hat, die
er bereits im unbelasteten Zustand einnahm.

Bild 16 zeigt cine Analysenwaage, wie sie in physikalischen und chemischen Labo-

Bil 15
Kupie des
Wilngrananprolnt vy

Bild 16
Privzisionswaage
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ratorien vieler Betriebe und Institute benutzt wird, insbesondere dort, wo die
laufende Produktion mittels Analysen iiberwacht werden muf}, z. B. in Hiutten-
kombinaten, in Betrieben der Lebensmittelindustrie.

Mit Feinwaagen, wie sie unsere feinmechanische Industrie herstellt, lassen sich
Wigungen mit einer Ungenauigkeit von nur 0,01 mg ausfithren.

Mit der Masse kennen wir nunmehr die dritte GrundgréBe der Mechanik. Die drei
bisher erklirten GrundgroBen und Grundeinheiten reichen fiir die Mechanik aus.
Sie sind nachstehend noch einmal zusammengestellt :

physikalische Grofe: Liange (I) Zeit (t) Masse (m)
Grundeinheit : Meter (m) Sekunde (s) Kilogramm (kg)
2.4. Einige abgelcitete GroBen i

2.4.1. Fliche

Flachenteile werden iiberwiegend berechnet, weniger gemessen. Der Flacheninhalt
einer rechteckigen Flache wird bekanntlich als Produkt aus Linge ! und Breite b
bestimmt :

Ao =1

Ebenso wird Ihnen die Gleichung zur Berechnung der Kreisfliche geliufig sein:

mit d als Kreisdurchmesser.

In der Mathematik lernen Sie, wic man auch schiefwinklige Flichen mit mehr oder
weniger vielen Begrenzungsstrecken berechnet, indem man die Gesamtfliche in
Teilflichen zerlegt und deren Inhalt nach den elementaren Berechnungsformeln der
Planimetrie bestimmt.

Bei krummlinig oder sehr unregelmifBig begrenzten Flachen hilft man sich anders.
Um ihre GroBe zu ermitteln, iibertragt man die zu messende Fliche maBstablich auf
Millimeterpapier und zéhlt dann die innerhalb der Fliche liegenden Quadratmilli-
meter aus. Es gibt auch mechanische Flachenmefigerite, sogenannte Planimeter.

Die Einheit der Fliche A4 ist das Quadratmeter:
[4] =m?
Bekanntlich versteht man darunter den Flicheninhalt eines Quadrates, dessen

Seitenlinge 1 m betrigt.
Dezimale Vielfache der Flicheneinheit sind:

1 km? (Quadratkilometer) = 1000000 m?
1 ha (Hektar) = 10000 m?
1a (Ar) = 100 m?
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Dezimale Teile eines Quadratmeters sind :

1dm? = 0,01 m?
1ecm? = 0,0001 m?
1 mm? = 0,000001 m?

2.4.2, Yolumen

Der Raum, den ein Koérper einnimmt, heilt Volumen oder Rauminhalt. Ebenso
wie der Flicheninhalt ist auch das Volumen eine von der Linge abgeleitete Grofe.
Da eine Strecke nur eine Ausdehnung hat, wird sie als eindimensional®) bezeichnet.
Eine Fliche besitzt zwei Ausdehnungen (Linge und Breite), sie ist zweidimensional
und muf} deshalb durch zwei LingenmaBle meBbar sein. Der Raum schlieSlich ist
dreidimensional, er hat die Ausdehnungen Lénge, Breite und Hohe und ist deshalb
durch 3 LangenmalBe meBbar.

Die Volumina regelméBiger fester Kérper bestimmt man durch Berechnung mit
Hilfe der Gleichungen der Geometrie.

Fiir den Quader mit den Kantenlingen I, [, und ; gilt bekanntlich

Vo= L,
Sind die Kanten gleich 1ang, liegt also ein Wiirfel mit der Kantenlinge I vor, gilt
Vo=

Sehr oft wird auch die zur Berechnung von Prismen und Zylindern giiltige einfache
Gleichung gebraucht:

Volumen = Grundfliche mal Hoéhe
I = Ah

Auf weitere stereometrische Formeln wollen wir nicht eingehen. Wollen Sie das Volu-
men eines unregelmaBigen, nicht porésen Korpers bestimmen, so miissen Sie andere
Methoden anwenden. Sie beruhen darauf, dafl man den Koérper in
eine Fliissigkeit eintaucht und das durch ihn verdringte Flissigkeits-
volumen miBt; denn dieses ist gleich dem Kérpervolumen.

Bei der Mensur (Bild 17) bestimmt man den Flissigkeitsanstieg, den
der Korper beim Eintauchen verursacht. Die Skale auf dem MeB-
zylinder ist in Kubikzentimetern geeicht, sodall man beim Ablesen als
Differenz V, — V, das Volumen des eingetauchten Korpersin Kubik-
zentimetern erhilt.

Beim Uberlaufgefa (Bild 18) wird das Volumen der beim Eintauchen
iiberlaufenden Flissigkeitsmenge mit Hilfe eines MeBzylinders be-

[

Bild 17. MeBzylinder

1) demensio (lat.) Abmessung, Ausdehnung
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stimmt. Wichtig ist bei diesem MeBverfahren,
daB vor dem Eintauchen das Gefa bis zum
AbfluBirohrchen gefiillt ist. ==

Die Einheit des Volumens ist das Kubik-
meter (m3):

[V]=m?
Es ist das Volumen eines Wiirfels von 1 m

Seitenlinge. Hiufig gebrauchte dezimale Teile
eines Kubikmeters sind:

1 dm?® = 0,001 m3 A
1 ¢cm?® = 0,000001 m? Bild 18. Uberlaufgefal

Fiir 1 dm? schreibt man auch 11 (Liter).

Wir wollen das bisher Gelernte in drei einfachen Beispielen iiben:

Lehrbeispiel 1

Ein Kessel hat ein Fassungsvermogen von 1,5 m? und ist zur Halfte gefiillt.
a) Wieviel Liter,
b) Wieviel Hektoliter enthilt er?

Losung:
a) 1 m® = 1000 dm?® = 1000 |

Fir die Hilfte des Fassungsvermogens folgt dann:

¥ =220 =075 m? = 750 dm? = 750 1

b)1hl=1001; 750l = 7,5 hl

Lehrbeispiel 2

Auf einem Bogen (im Format A 4) Millimeterpapier ist das Schriftbild 18 em breit
und 28 ecm hoch. Wieviel Quadratmillimeter umfaf3t es?

Lésung:

Gegeben: b = 18 cm = 180 mm Gesucht: A4
k= 28 cm = 280 mm

Fiir das Rechteck gilt

A=hb; A= 280mm - 180 mm = 50400 mm?2.
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Lehrbeispiel 3

Ein GefiB soll 0,51 fassen. Wieviel Zentimeter hoch muB} es sein, wenn die recht-
eckige Grundfliche 3,5 cm breit und 1 dm lang ist?

Losung:

Gegeben: V = 0,51 = 500 cm? Gesucht: &
b =3,6cm
! =1dm =10cm

(Da kb in Zentimetern gesucht ist, rechnet man zweckmaBig die gegebenen GréBen
in Zentimeter um.)
Das Volumen eines Quaders ist
V = lbh.
Daraus folgt
' b= 500 cm?

h= 10cm - 3,5 cm

|4
b =143 cm.

Beachten Sie, daB die GroBen als Produkte aus Zahl und Einheit eingesetzt werden,
und daB sich die Einheiten wie die Zahlen kiirzen lassen.

2.4.3. Dichte

An dieser Stelle wollen wir auf die unterschiedliche Masse der einzelnen Korper ein-
gehen. Die Masse eines Gegenstandes hingt von zwei verschiedenen Faktoren ab.
Es kommt darauf an, wic grofl der Kérper ist und — was wir schon feststellten —aus
welchem Stoff er besteht. Es ist Thnen ja bekannt, daB z. B. eine Bleikugel eine
groBlere Masse hat als eine gleich groBe Holzkugel, und zwar deshalb, weil Blei in
seinem Gefiige bzw. Atomaufbau viel dichter gepackt ist als Holz.

Es ist fiir viele Zwecke unbedingt erforderlich, den relativen Massenunterschied der
verschiedenen Stoffe zahlenmiBig zu kennzeichnen, auch dann, wenn die Gegensténde
nicht — wie bei den Kugeln — gleich groQ}, sondern von unterschiedlichem Rauminhalt
sind. Um in jedem Falle ein eindeutiges Vergleichsmal zu bekommen, ermittelt man
den Quotienten aus Masse und Volumen und bezeichnet diese Materialkonstante als
Dichte mit dem Symbol g (rho):

Dichte = Masse/Volumen

o=m/V (1)

Unter der Dichte eines Korpers versteht man das Verhiltnis seiner Masse zu seinem
Volumen.
Einheit der Masse

Tinheit des Volumens °

Die Einheit der Dichte ergibt sich aus der Definition als

[m]
(vl

[e] =
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Am gebriuchlichsten ist die Einheit Kilogramm/Kubikdezimeter. Fir Gase ver-
wendet man hiufig die Einheit Kilogramm/Kubikmeter. Angenommen, ein stéhler-
nes Zahnrad habe eine Masse von 5,85 kg und ein Volumen von 0,75 dm?. Seine
Dichte betriige dann

o0 = m/I" = 5,85 kg/0,75 dm3? = 7,8 kg/dm?3.

Nun ist ein Tausendstel eines Kubikdezimeters ein Kubikzentimeter (cm3) und ein
Tausendstel eines Kilogramms ein Gramm (g). Sie kommen demnach zu dem zahlen-
miBig gleichen Ergebnis, wenn Sie die Masse in Gramm und das Volumen in Kubik-
zentimetern einsetzen. Die Dichte erhélt dann die Einheit Gramm/Kubikzentimeter.
SchlieBlich kann man noch die Masse in Tonnen (t) und das Volumen in Kubik-
metern (m®) einsetzen, wobei sich abermals derselbe Zahlenwert mit der Einheit
Tonne/Kubikmeter ergibt. Halten Sie also fest, dafi die Dichte folgende drei Ein-
heiten ohne Anderung des Zahlenwertes haben kann:

g/em?® oder kg/dm? oder t/m?3

Da hier nicht der Platz ist, die Dichte aller technisch wichtigen Stoffe wiederzu-
geben, sollen Thnen nur einige Beispiele einen kleinen Uberblick vermitteln.

Tafel 2: Dichte einiger Stoffe

k k
Stoff of o2, Stoff of 1.5;
Wasser 1 Quecksilber 13,6
Magnesium 1.7 Gold . 19,3
Aluminium 2.7 Fichtenholz 0,5
Eisen 7.2...7.8 Benzin 0,7
Kupfer 8.9 Granit 2,5
Blei 11.3 Scewasser 1,02

Die Masse eines Gegenstandes konnen Sie rechnerisch bestimmen, wenn Sie das
Volumen des Gegenstandes und die Dichte des Stoffes kennen, aus dem der Gegen-
stand besteht; denn nach Gleichung (1) ist m =oV.

Das folgende Lehrbeispiel ist insofern ein wenig schwieriger, als zwei Gleichungen
beriicksichtigt werden miissen. Wir losen das Problem zunichst allgemein, d. h.
wir rechnen nicht etwa das Volumen zahlenmifig aus. Die allgemeine Loésung des
Problems ist dann gefunden, wenn die gesuchte GroBe (im folgenden Beispiel die
Masse) in Abhéngigkeit von den gegebenen Gréflen (hier I, d und o) dargestellt ist.

Lehrbeispiel 4

Berechnen Sie die Masse von 73 m Kupferdraht von 3 mm Durchmesser, wenn die
Dichte des Kupfers 8,9 g/cm?® betrigt.
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Lésung:

Gegeben: I = 75m = 7500 cm Gesucht: m
d=3mm=03cm
¢ =89 g/em?

Nach (1) ist m = oV, wobei "= lji l

Dieser Wert fir 7 wird eingesetzt, und wir erhalten

omdl m— 8,9 g =-0,09cm?. 7500 cm

4’ em? -4 —4719¢

m=472kg.

Zusammenfassung

Die Physik ist die Wissenschaft vom Aufbau und von den Bewegungsformen der
Materie. Sie beschiftigt sich mit den Vorgingen in der unbelebten Natur, soweit
diese nicht auf chemischer Verdnderung der beteiligten Koérper beruhen.

Die drei GrundgréBen in der Mechanik sind Linge, Zeit und Masse; insgesamt gibt
es 6 GrundgroBen; die weiteren sind elektrische Stromstéirke, Temperatur und Licht-
stirke. Fiir die bisher behandelten Grundgréfen und die von ihnen abgeleiteten
Groflen gelten die folgenden Symbole und Einheiten :

GroBe Symbol Einheit

Lange, Weg l,s m, km, dm, ¢m, mm, pgm, nm
Zeit t s, min, h

Masse m kg, g, mg, ug, t

Fliache A m?, km?, ha, a, dm?, cm?, mm?
Volumen 14 m?, dm?, cm?, mm?3, |

Dichte 0 kg/m?, kg/dm3, g/em?, t/m?

Zur Lingenmessung dienen vorwiegend MefBgerite, die auf Strichmaflen beruhen.
Ihre gebriuchlichsten Ausfibrungsformen sind in der Reihenfolge zunehmender
Genauigkeit: Gliedermalstab, BandmaB, Stahlmaf, MeBlehre und MeBschraube.
Bei den Parallelendmaflen wird eine bestimmte Linge durch den Abstand ihrer
ebenen und zueinander parallelen Endflichen verkérpert. Mit ihnen 1Bt sich jedes
beliebige Langennormal in Abstufung von 0,001 mm herstellen. Die Bestimmung
von Flichen- und Rauminhalten fiihrt in einfachen Fiéllen auf Lingenmessungen
in Richtung ihrer Ausdehnungen zuriick. Das Volumen unregelmaBig begrenzter
Korper wird durch Abmessen des von ihnen verdringten Flussigkeitsvolumens
bestimmt. ’

Die Masse gibt die Substanzmenge eines Korpers an und wird durch Wigung
{(Waagen in verschiedenen Ausfithrungen) bestimmt.

Die Dichte ist der Quotient aus Masse und Volumen eines Korpers.
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Ubungen

1.

10.

11,

12.

13.

Uberlegen Sie sich, welche der folgenden Vorginge physikalischer und welche
chemischer Art sind:

a) Auflosen von Zucker in Wasser und die Entstehung des Zuckers in einer
Pflanze,

b) Erzeugung von Wirme durch Verbrennen von Holz oder durch Reibung,
¢) Das Rosten des Eisens und das Schmelzen von Schnee.

. Wie wird eine physikalische GroBe mathematisch wiedergegeben ?

. Bestimmen Sie die Dicke eines Blattchens Papier in Mikrometern, wenn 50

Bliattchen zusammen 1,2 mm dick sind.

. Geben Sie folgende Abmessungen in anderen Einheiten an:

a) 0,0146 dm in pm, b) 980 dm in km,
¢) 171 mm? in m?, d) 1,009 m2? in a,
e) 8003 cm? in m3, f) 3,07 lin mm?3.

g) 7700 dm? in m3,

. Um wieviel Mikrometer miilte das Meter verlingert werden, wenn man die ur-

spriingliche Definition des Meters als 10000000. Teil des Erdquadranten bei-
behalten wollte?

. Rechnen Sie folgende Zeitangaben in andere Einheiten um:

a) 12'/, hins, b) 99 minin h

. Welches Volumen hat der Wicklungsdraht eines Elektromagneten, wenn der

Querschnitt des Drahtes 0,25 mm? und seine Lange 48 m betragt?

. Die Ausstellungsfliche der Leipziger Messe wurde in der Zeit von 1946 bis 1967

von 26400 m? auf 355400 m? vergroflert. Wie lang wire zum Vergleich die Seite
eines Quadrates, das der GroBe des Flichenzuwachses der Ausstellungsfliche
entspricht ?

. Auf einem Drehautomaten sollen 2000 Schrauben angefertigt werden. Wie grof3

ist das Volumen des benétigten Stangenmaterials, wenn je Scheibe mit einem
Zylinderstiick von 0,283 cm? Querschnitt und 20 mm Lange kalkuliert wird?

Aus wieviel Quadratdezimetern Blech besteht eine Konservendose von 18 ecm
Hohe und 12 em Durchmesser ?

Aus einer rechtwinkligen Blechtafel von 4,5cm - 6,5 cm werden kreisrunde
Scheiben von 2cm Durchmesser ausgestanzt. Wieviel Quadratzentimeter
Abfall entstehen bei voller Ausnutzung des Bleches?

Wie groB} ist die Querschnittsfliche ciner Rasierklinge von 22 cm Breite und
80 um Dicke?

Eine Blechtafel von 2,5m - 8,2 m Grofle wird beiderseitig mit einer 0,03 mm
dicken Lackschicht iiberzogen. Wieviel Kubikzentimeter Lack werden benotigt?
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14. Von welehen Groflen ist die Dichte eines
Korpers abhingig?

15. Der Keramikkorper eines Schrigsitz-
ventils (Bild 19) hat die Masse 9,6 kg
und das Volumen 4 dm?® Wie groll ist
die Dichte des Hartporzellans?

16. Welche Masse hat eine 25 cm dicke
Mauer aus Ziegelstein (Dichte 1,8 g/em?),
die 4 m hoch und 10 m lang ist?

17. Welche Masse bhat eine Korkkugel von
2 m Durchmesger? (Dichte 0,25 g/cm?)

18. Ein Metallzylinder von 04 m Linge
und 7 em Durchmesser hat eine Masse

von 12 kg. Aus welchem Material besteht B,illld 19.  Schragsitzventil aus Hartpor-
erg Zellnm

3. Kinematik?!)

3.1. Gleichférmige, geradlinige Bewegung

Die gesamte Natur vom Gestirn bis zum Atom bildet einen Gesamtzusammenhang
von Korpern, die stindig aufeinander einwirken und dadurch auch fortwiahrend Ver-
dnderungen unterliegen. Das heiBt also, alle Kérper, ja selbst ihre kleinsten Bausteine,
die Atome, sind unauthérlich in Bewegung. In erweitertem Sinn versteht man unter
Bewegung nicht nur eine Ortsverinderung, also eine rein mechanische Bewegung,
sondern alle méglichen Bewegungsformen, wie z. B. auch biologische und gesell-
schaftliche Verinderungen; denn auch der Mensch und die Gesellschaft verindern
sich laufend, sie entwickeln sich weiter, d. h. aber, sie sind in Bewegung.

Die Materie — darunter verstehen wir alles, was auflerhalb unseres Bewultseins
wirklich existiert — ist ohne Bewegung undenkbar.

Die Bewegung ist die Daseinsweise der Materie.

Das gilt sinngemél auch fir alle physikalischen Prozesse.
Im folgenden wollen wir uns speziell mit der mechanischen Bewegung als der Orts-
verinderung befassen.

Sie werden vielleicht fragen: Gibl es nieht anch érper; die in Ruhe sind? Wir wollen
dariiber nachdenken. Wenn ein Erdtrabant startet, so verdndert er seinen Ort gegeniiber
der Iirde. Wir sagen: Ir bewegt sich, vorher war erin Ruhe. Dabei lassen wir vollig aufler
Betracht, dall auch die Erde sich dreht und auflerdem noch ihre Lage gegeniiber einem
dritten Karper, der Sonne, standig verindert. Sie sehen also, wir beziehen eine Bewegung
stets auf cinen Kérper, den wir fiir die betreffende Betrachtung als ruhend annehmen.
Man kann natiirlich auch angeben, wie schnell der Trabant sich gegeniiber irgendeinem

1) kinema (griech.) Bewegung; Kinematik = Bewegungslehre
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anderen Planeten bewegt. Das Ergebnis ist dann ein ganz anderes. Demnach ist jede
Bewegung nur eine relative (bezogene). Es hingt stets davon ab, auf welchen Beobach-
tungspunkt oder Koérper die Lageveridnderung eines anderen Korpers bezogen wird.
Der Kellner im D-Zug bewegt sich langsam gegenuber den mitfahrenden Fahrgisten,
er bewegt sich schr schnell gegeniiber einem Betrachter am Bahndamm.

Als ruhend bezeichnen wir einen Kérper dann, wenn zwischen ihm und dem Bezugs-
korper (fiir uns meistens die Erde) keine Ortsverdinderung eintritt, obgleich sich beide
Korper gegentiber einem dritten, das kann z. B. die Sonne sein, dennoch bewegen. Da
auch die Sonne und alle anderen Fixsternc nicht stillstehen, werden Sie begreifen, daf3
es nichts ohne Bewegung gibt.

Die Vielfalt der méglichen mechanischen Bewegungen sollen einige wenige Beispiele
veranschaulichen: Der voriibersausende Zug, das regelmiBig schwingende Pendel
einer Uhr, der Lauf der Gestirne am Himmel, das rhythmische Spiel der Gelenke
und Hebel einer modernen Buchdruckpresse usw. Die Reihe der Beispiele kénnen
Sie selbst nach Belieben verlingern. Wir wollen mit der einfachsten Bewegungsart be-
ginnen, mit der gleichférmig-geradlinigen Bewegung. Diese liegt vor, wenn sich ein
Koérper mit vollkommen gleichbleibender Geschwindigkeit in gerader Linie (gerade-
aus) bewegt.

3.1.1. Geschwindigkeit

Woran erkennen Sie iiberhaupt, dal z. B. ein Zug sich in Bewegung befindet? Sie
haben aufmerksam hingesehen und beobachtet, dall er sich anfangs innerhalb einer
bestimmten Strecke des Schienenweges befand und einige Zeit spiter innerhalb einer
anderen Strecke, kurz, er hat wihrend einer bestimmten Zeit einen gewissen Weg
zuriickgelegt. Sie erkennen, dall zwei GroBen dazu gehéren, um die Bewegung als
solche iberhaupt festzustellen: Weg und Zeit.

Eine photographische Momentaufnahme reicht hierzu beispielsweise nicht aus. Sie
gibt den Zug so wieder, als ob er stillsteht, nimlich dort, wo er sich in einem be-
stimmten Augenblick befunden hat. Mit der blolen Feststellung der Bewegung als
solcher ist Thnen aber meist noch nicht gedient. Sie mochten doch Vergleiche anstellen
und sich z. B. ein Urteil daritber bilden, welches von zwei Fahrzeugen das schnellere
ist, welches also die groBere Geschwindigkeit hat. Hierzu gibt es zwei Moglichkeiten :
entweder messen Sie eine bestimmte Strecke ab und messen nun die Zeit, die das
Fahrzeug zum Durchfahren dieser Strecke braucht (Fall 1), oder Sie stellen fest,
welche Strecke das Fahrzeug in einer bestimmten Zeit zuriicklegt (Fall 2).

Sie konnen leicht einsehen, daB die Geschwindigkeit des Fahrzeuges im ersten Falle
um so groBer ist, je kiirzer die Zeit ist, in der die festgelegte Strecke durchfahren
wurde. Denken Sie hier auch an den Sport, z. B. den 100-m-Lauf. Auch dort ist die
zu durchlaufende Strecke von vornherein festgelegt. Es siegt der Laufer, der die
Strecke in der kiirzesten Zeit bewaltigt, d. h., der die groBte Geschwindigkeit ent-
wickeln kann.

Andererseits ist im zweiten Falle verstindlich, da8 die Geschwindigkeit des Fahr-
zeuges am groBten ist, das in der vorgegebenen Zeit den grofiten Weg zuriicklegt.

Wir fassen zusammen :

1. Die Geschwindigkeit ist um so grofer, je kiirzer die Zeit ist, in der ein bestimmter
Weg zuriickgelegt wird.
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2. Die Geschwindigkeit ist um so gréfer, je langer der Weg ist, der in einer bestimm-
ten Zeit zuriickgelegt wird.

Mit anderen Worten:

1. Die Geschwindigkeit ist der Zeit indirekt proportional.
2. Die Geschwindigkeit ist dem Weg direkt proportional.

Beide Aussagen lassen sich in der folgenden Definition der Geschwindigkeit zu-
sammenfassen :

Die Geschwindigkeit eines gleichformig bewegten Korpers ist der Quotient aus
dem zuriickgelegten Weg und der dazu bendtigten Zeit:

Geschwindigkeit — Weg/Zeit (2a)

Es hat sich eingebiirgert, dem Weg anstelle des Symbols [, das allgemein fir die
Linge gebraucht wird, das Symbol s zu geben. Das Symbol fiir die Zeit ist Thnen
bereits bekannt, nimlich . Wir erhalten also folgende Gleichung fiir die Geschwin-

digkeit
v =8§/t (2)

wenn wir in (2a) die Symbole einsetzen.

Beachten Sie auch hier, daB die Symbole die physikalische Grofle, also das Pro-
dukt aus Zahl und Einheit, bedeuten. Das soll Ihnen noch an folgendem Beispiel
erldutert werden:

Wir berechnen die Geschwindigkeit eines Schnellzuges, der in 60 s eine Strecke (einen
Weg) von 1200 m zuriicklegt. Es gilt also

s = 1200 m und
t = 60s.

Aus (2) ergibt sich daher

v = 1200 m/60 s = 20 m/s.

Die Einheit Meter/Sekunde wird gelesen als Meter je Sekunde.

Sie erkennen bereits aus diesem einfachen Beispiel, daBl die Einheit des Ergebnisses
sich zwangslidufig aus der Rechnung ergibt, wenn Sie anstelle der Symbole die
GroBen, also die Produkte aus Zahl und Einheit, einsetzen.

Fir die Geschwindigkeit ist Thnen sicher die Einheit Kilometer je Stunde (km/h)
gelaufig. Wir wollen die Geschwindigkeit des Zuges auch in dieser Einheit ausrechnen.

Es gilt
1 1

im= ——Obﬁkm und 1 s=3—666h.
Damit wird
km/1000 20 - 3600 km

= ‘g = 20 Lo = A 72 km/
v =20m,/s =20 1000 I 72km/h.
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Sie konnen die hier beschriebene Umrechnung sehr einfach durchfithren, wenn Sie
sich folgende Beziehung merken

1im's =3,6 kmh,
bzw.

1km'h = 1 m’s.

3,6

In der Seefahrt ist auBerdem noch als Einheit der Geschwindigkeit der Knoten (kn)
zuldssig: 1 kn = 1 sm/h = 1,852 km/h.

Noch ein allgemeiner Hinweis zu den in diesem Lehrbrief vorkommenden Gleichun-
gen: Wie Thnen anhand der Gleichung (2) schon gezeigt wurde, kénnen Sie die einzel-
nen physikalischen Gro8en der Gleichung jeweils in allen gesetzlich zugelassenen Ein-
heiten angeben, z. B. den Weg s in Metern oder Kilometern u. a., ebenso konnen Sie
die Zeit f in Sekunden, Minuten oder Stunden ausdriicken. Sie werden beim Lésen von
Aufgaben diejenige Einheit bevorzugen, die auch das Endergebnis enthalten soll.

In unserem Beispiel wire also zu setzen

s =12km
1
= 0 h
Aus (2) folgt
2 km -
v = 7 kfrln 60 =T72km/h.

Sie erkennen schon, die Definitionsgleichungen geben nur an, in welcher allgemeinen
mathematischen GesetzméBigkeit die Grofen zueinander stehen.

Merken Sie sich:

Gleichungen, die nur physikalische GroBen enthalten und keine bestimmten Ein-
heiten vorschreiben, heilen Grofengleichungen.

Wir wollen nun die Gleichung (2) benutzen, um den zuriickgelegten Weg zu berech-
nen, wenn Zeit und Geschwindigkeit gegeben sind.

Dazu lésen wir (2) nach s auf und erhalten
s = vl.

An dem folgenden Beispiel sollen Sie auch lernen, wie man mit GroBengleichungen
umgeht:

Ein Lastkraftwagen fahrt mit einer Durchschnittsgeschwindigkeit von 36 km/h und
ist 40 min unterwegs. Welche Strecke hat er zuriickgelegt ¢

Es sind also gegeben

v = 36 km/h und

t = 40 min.
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Diese Groflen werden in s = ot eingesetzt, und es folgt
s = 36k%n -40 min

s — 36 km -40min
= )

Sowohl im Zihler als auch im Nenner stehen jetzt Einheiten der Zeit, im Zihler die
Einheit Minute und im Nenner die Einheit Stunde. Nicht nur mit gleichen, sondern
auch mit unterschiedlichen Einheiten ein und derselben physikalischen Grofle konnen
Sie wie mit Zahlen rechnen, Sie konnen sie auch kiirzen. Wie man dabei verfihrt,
zeigen die folgenden zwei Methoden. Nach einer von beiden sollen Sie kiinftig ar-
beiten.

1. Methode:

Da 1 h gleich 60 min ist, konnen Sie im Nenner der letzten Gleichung fiir die Stunde
auch 60 min setzen. Dann lassen sich die Einheiten Minute im Zihler und Nenner
kiirzen, und Sie erhalten

36 km - 40
s —

= %0 =24 km.

2. Methode:

Wir machen uns zunichst den Vorgang des Kiirzens an einem Zahlenbeispiel klar!
Gegeben sei der Bruch 4/,,. Wenn, wie in diesem Falle, der Nenner ein Vielfaches
des Zahlers ist, haben Sie sich zu iiberlegen, wievielmal die 4 in der 12 enthalten
ist. Das Ergebnis ist also !/;. Genauso gehen wir bei dem Bruch min/h vor. Auch hier
fragen wir, wievielmal die Minute in der Stunde enthalten ist. Wir finden

1 min i

th — 60
Die oben begonnene Rechnung kann nun zu Ende gefiihrt werden:

36 km . 40
= - =24k
s 60 4 kim

In ganz dhnlicher Weise, wie es dieses Beispiel gezeigt hat, kann man die Zeit berech-
nen, wenn Weg und Geschwindigkeit bekannt sind. Dazu mul} (2) nach ¢ aufgelost
werden :

t = sfv

Das Lehrbeispiel 6 behandelt diesen Fall.

Lehrbeispiel 5

Beim Durchfliegen der vorgeschriebenen Luftkorridore bendétigt das Verkehrsflug-
zeug ,, AN 24* der Interflug fir die Strecke Berlin — Dresden (rund 270 km) eine
Flugzeit von 50 min. Wie grof} ist seine Geschwindigkeit in Kilometern/Stunde
und Metern/Sekunde?
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Losung:
Gegeben: s = 270 km, { = 50 min Gesucht: v in km/h und m/s.
Nach (2) gilt .
v = 270 km 50 min = 27060 4 | min = 1 h/60);
50 h

v =324 km/h.

Soll die Geschwindigkeit in Metern/Sekunde herauskommen, so ist zu beachten,
daf
1km =1000m wund 1 min = 60s.

Es ist die Rechnung wie folgt zu fiihren:

270 - 1000 m

v = 270 km /50 min = ~50.60s — 90 m/s

Lehrbeispiel 6

Welche Zeit benotigt ein mit der Geschwindigkeit 42 km/h fahrender Kraftwagen,
um die Strecke 15 km zuriickzulegen ?

Lo6sung:
Gegeben: »=42km/h, s =15m Gesucht: ¢
Aus (2) folgt
P sy — 15mh
“ YT 4o km

Meter kann gegen Kilometer gekiirzt werden (m/km = 1/,4,) und 1h = 3600 s:

153600

=42 1000° =128

Lehrbeispiel 7

Welche Strecke legt der 10000-Tonnen-Frachter , . Frieden” der Deutschen Demo-
kratischen Republik, der mit einer Durchschnittsgeschwindigkeit von 16,4 kn fahrt,
in zweieinhalb Tagen zurtick ?

Lésung:

Gegeben: v =16,5kn = 16,5 sm/h = 16,5 1,852 km/h Gesucht: s
t=25d=60h

Aus (2) folgt

5 - 52 .
s:vt:lﬁ’o 1,8:).1;1krn 60h=1830km.
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3.1.2. Weg-Zeit- und Gesehwindigkeit-Zeit-Diagramm
der gleichférmigen Bewegung

Soweit es irgend geht, versucht man, physikalische Vorginge graphisch zu veran-
schaulichen. Sie kennen ja derartige Darstellungen schon, mit denen man vor allem
den zeitlichen Verlauf irgendwelcher verénderlicher Gréflen anschaulich macht. Die
Produktionskurve Ihres Betriebes zeigt jederzeit die bisherige Entwicklung und auch
den geplanten weiteren Verlauf der Giitererzeugung. Aus der Fieberkurve zieht der
Arzt wichtige Schliisse auf den Krankheitsverlauf. So kann nun auch der einfache,
gleichférmige Bewegungsvorgang, der sich ebenfalls in der Zeit abspielt, auf zwei
verschiedene Arten graphisch dargestellt werden.

3.1.2.1. Weg-Zcit-Diagramm

Hierzu zeichnen Sie sich zwei einander im rechten Winkel schneidende Geraden auf.
Man nennt sie die Achsen eines rechtwinkligen Koordinatensystems. Die horizontale
Gerade (auch Abszissenachse genannt) sei die Zeitachse (Bild 20). Auf ihr tragen Sie,
vom Nullpunkt ausgehend, die verstrichene Zeit — z. B. in Sekunden — ein. Auf der
senkrechten Achse (Ordinatenachse) geben Sie von unten nach oben den zuriick-
gelegten Weg, z. B. in Metern, an.

Uber die Art, wie man dic Achsen in einem Diagramm auszeichnet, bestehen Verein-
barungen. Wie aus Bild 13 hervorgeht, geschieht dies in Form eines Bruches. Im Ziahler
steht die abzubildende physikalische Gréf3e (kursive Symbole) und im Nenner die Einheit,
in der die Grofic gemessen worden ist (steile Symbole). Meist schreibt man diese Be-
zeichnung neben die Achsen, ebenso den Pfeil, der in die Richtung zunehmender positiver
MeBwerte weist. Dic Achsen selbst erhalten dann nur eine Teilung mit Maf3zahlen.

Soll nun z. B. die gemessene Grofle ¢ = 5 s auf der Zeitachse abgebildet werden, so setzen
Ste in der Achsenbezeichnung ¢/s an die Stelle von ¢t die gemessene GréBe 5 s ein:

ls = 5s/s=13

Das heiflt, die gemessene GroBe 5 s wird auf der Zeitachse durch die Strecke zwischen den
Mafzahlen 0 und 5 dargestellt.
Das Beispicl veranschaulicht sehr

deutlich, wic durch die Einfithrung 40+
der vereinbarten Achsenbezeich- 351
nung die MeBgrofBe .5 Sekunden®* T
und auch jede beliebige andere 307
GroBe auf exakt mathematische “IE 254
Weise in einem Diagramm als Strek- '
ke dargestellt werden kann. 401
p
Br———————
101 |
051 !
Bild 20. Weg-Zeit-Diagramm der T T ] T -
gleichformigen Bewegung 0 7 2 J 4 ) 6

T



3.1. Gleichformige, geradlinige Bewegung 33

Wie 148t sich nun die Geschwindigkeit graphisch wiedergeben? Wir gehen am besten
von einem einfachen Beispiel aus.

Ein Korper moge sich mit der Geschwindigkeit von 0,5 m/s bewegen. Wenn dieser
Korper die Nullmarke mit der Geschwindigkeit 0,5 m/s passiert, soll mit der Zeit-

messung begonnen werden (! = 0). Er wird dann nacheinander folgende Strecken
zuricklegen :

verflossene Zeit zuriickgelegter Weg
1s 0,5m

2s 1,0m

3s 1,56m

4s 20m

usw. usw.

.

Fir jedes dieser Zahlenpaare bestimmen Sie jetzt einen Punkt (z. B. P) im Koordi-
natensystem.

Hierzu errichten Sie in dem betreffenden Zeitpunkt eine Senkrechte auf der Zeit-
achse und in dem betreffenden Wegpunkt eine Senkrechte auf der Wegachse. Die
MaBzahl des Abstandes eines Punktes von der Horizontalachse (hier Zeitachse)
nennt man Ordinate des Punktes, und die MaBzah! seines Abstandes von der Vertikal-
achse (hier Wegachse) nennt man A4bszisse des Punktes. Sie konnen auch sagen:
Der Abstand des betreffenden Punktes von der Ordinatenachse sagt uns, wieviel
Zeit vergangen ist. und der Abstand des Punktes von der Abszissenachse gibt an,
wo sich der bewegte Korper zu dieser Zeit befindet.

Wenn Sie mehrere Wertepaare in das Diagramm eingezeichnet haben und die Punkte
miteinander verbinden, so erhalten Sie fiir das gewihlte Beispiel eine gerade Linie.
Man nennt sie die Weg-Zeit- Kurve und das ganze Bild das Weg-Zeut-Diagramm oder
auch kurz s.t-Diagramm. Das Wort ,,Kurve'‘ kennzeichnet also nicht immer eine
krumme Linie, sondern kann auch

durchaus eine gerade Linie be- c

deuten. 5 b
Uberlegen Sie noch einmal riick- } S,
blickend, weshalb diese Kurve T NS

eine gerade Linie sein muB}! Sie 4] |

werden ohne langes Nachdenken 8

den Grund darin finden, daB in
jeweils gleichen Zeitabschnitten
auch gleich grofie Wegstrecken (z. B. ]
in Bild 21 Kurve « in jeder Se- 2
kunde s, =0,33m) zuriickgelegt l
werden. Dies ist das eigentliche J
Merkmal einer gleichférmigen Be- 7
wegung. .

——— e —_—— —

§1

Bild 21. Darstellung von drei verschicdenen 0 l7 2 3 4 5 6
Geschwindigkeiten

3 Studicnmat., Physik
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Sehen Sie sich jetzt das Diagramm (Bild 21) ndher an.

Es enthilt mehrere verschieden steil ansteigende Linien. Was sollen diese wohl
bedeuten? Mit der Linie a wird dargestellt, daB der Kérper z. B. nach 3 Sekunden
eine Entfernung von 1 m erreicht, wihrend Linie b in der gleichen Zeit die bedeutend
grofere Strecke von 3 m angibt. Linie b stellt mithin eine Bewegung mit gréBerer
Geschwindigkeit dar. Am grofiten ist die Geschwindigkeit bei der Bewegung, die
durch die Linie ¢ dargestellt wird, nach ihr werden in 3 s sogar 4,5 m zuriickgelegt.

Sie erkennen daraus:

Je steiler die Weg-Zeit-Linie verliuft, desto gréfier ist die Geschwindigkeit des
dargestellten Bewegungsvorganges.

Eins haben alle diese gerade verlaufenden Weg-Zeit-Kurven gemeinsam: die Ge-
schwindigkeit bleibt im Laufe der fortschreitenden Zeit unverindert, konstant.
Besonders anschaulich wird das in dem folgenden Diagramm.

3.1.2.2, Geschwindigkeit-Zeit-Diagramm

Bei dem wvt-Diagramm (iibliche Kurzbezeichnung) ist die horizontale Achse des
Koordinatensystems die Zeitachse (¢-Achse). Auf der vertikalen Achse jedoch tragen
Sie anhand eines beliebig gewahlten Mallstabes die Geschwindigkeitswerte auf.
Diese Achse heifit »-Achse.

Wie mul} nun hier die Kurve einer gleichférmigen Bewegung verlaufen? Wenn die
Geschwindigkeit vom Anfang bis zum Ende der Beobachtung immer dieselbe bleibt,
dann gehort zu jedem Zeitpunkt ein und derselbe Wert der Geschwindigkeit. Die
Verbindungslinie aller Geschwindigkeitswerte ist dann eine Parallele zur ¢-Achse;
ihr Abstand von der Abszissenachse driickt den Wert der Geschwindigkeit aus
(Bild 22). Wollen Sie z. B. dic in Bild 21 durch die Kurve ¢ dargestellte Bewegung
mit der Geschwindigkeit v = 1,5 m/s in einem »,¢-Diagramm darstellen, so brauchen Sie
nur durch den Punkt 1,5 der lotrechten Achse eine Parallele zur ¢- Achse zu ziehen.
Das v,t-Diagramm gibt jedoch nicht nur iiber die Geschwindigkeit, sondern auch iiber
den Weg Aufschlufl. Betrachten wir vorerst noch einmal die Gleichung s = «t. Die
rechte Seite der Gleichung - das
Produkt v ¢ — entspricht dem Inhalt
einer rechteckigen Fliche mit den
Seiten v und ¢. In Bild 22 ist eine 5:
solche Rechteckfliche schraffiert

dargestellt. Sie ergibt sich aus den 44

Werten v =4,5m/s und ¢ = 6s. Die

Gleichung sagt aus, dafl dieses Pro- 3-

dukt gleich s ist, d.h. also, diese Fla-

che (unter der v-Linie) entspricht dem 2

zuriickgelegten Weg. 7]
0

Bild 22. Geschwindigkeit-Zeit-Diagramm der
gleichformigen Bewegung

6

—

|4
m/s

It
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Merken Sie sich:

Im v, t-Diagramm entspricht die aus den MaBzahlen von Geschwindigkeit und
Zeit gebildete Flache dem in der Zeit t zuriickgelegten Weg.

Zusammenfassung

Die Bewegung ist die allgemeine Eigenschaft der Materie; denn alle Korper befinden
sich in stindiger Verdnderung.

Bei einer gleichférmigen Bewegung werden in gleichen Zeitabstinden gleiche Wege
zuriickgelegt. Den Quotienten aus der zuriickgelegten Strecke und der zugehérigen
Zeit nennt man Geschwindigkeit.

Die Grundgleichung der gleichférmigen Bewegung ist v = s/t. Eine GroBe aus dieser
Gleichung 148t sich jeweils berechnen, wenn die beiden anderen bekannt sind. Die
gebriuchlichsten Einheiten der Geschwindigkeit sind Meter/Sekunde und Kilometer/
Stunde. Der Bewegungsvorgang wird durch das s, ¢-Diagramm anschaulich dar-
gestellt. Je steiler die Kurve dieses Diagramms verlduft, desto groBer ist die Ge-
schwindigkeit. Im v,¢t-Diagramm hingegen erscheint. ein gleichférmiger Bewegungs-
vorgang als Parallele zur Zeitachse, und zwar deshalb, weil sich die Geschwindigkeit
wihrend des Vorganges nicht dndert.

Ubungen

19. Ein Orkan hat eine Windgeschwindigkeit von 45 m/s. Rechnen Sie diese in Kilo-
meter/Stunde um.

20. Ein Kurzstreckenldufer legt 200 m in 26 s zuriick. Wie grof} ist seine Durchschnitts-
geschwindigkeit in Metern/Sekunde und Kilometern/Stunde?

21, Die Schallgeschwindigkeit betrigt in der Luft rund 340 m/s. Nach welcher Zeit
ist der Donner eines 5 km entfernten Gewitters zu héren?

22. Die Elbe hat im sachsischen Gebiet eine mittlere Geschwindigkeit von 0,8 m/s.
Welche Strecke legt eine auf dem Fluf3 treibende Zille (Frachtkahn) an einem
Tag zuriick ?

23. Ein Schnellzug fihrt 19.22 Uhr in der Station 4 (Kilometerstein 67,2 km) ab
und erreicht den Bahnhof B (Kilometerstein 156,3 km) 21.01 Uhr. Wie grof} ist
seine Durchschnittsgeschwindigkeit ?

24. Welche Geschwindigkeit hat eine Schwalbe, die 50 km in 15 min zuriicklegt,
a) in Metern/Sekunde, b) in Kilometern/Stunde?

25. Bambusrohr wichst in den Tropen mit einer Geschwindigkeit von 30 cm je Tag.
Welche Zeit benotigt es fiir 1 cm?

a) in Stunden, b) in Minuten

26. Welche durchschnittliche Geschwindigkeit in Metern/Sekunde hat der Kolben
eines Zweitaktmotors, wenn die Kurbelwelle 3500 Umdrehungen in der Minute aus-
fithrt und der Kolbenhub 60 mm betrigt?

3*
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27. Auf einer photographischen Aufnahme erscheint ein bei der Belichtungszeit von
/5 8 aufgenommenes Motorrad um !/; seiner Léinge (2,10 m) verwischt. Welche
Geschwindigkeit hatte das Motorrad?

28. Ein Behilter von 12 m3 Inhalt wird aus einem ZufluBrohr von 3 cm lichter
Weite gespeist, aus dem das Wasser mit einer Geschwindigkeit von 1,5 m/s
stromt. Wieviel Minuten dauert das Fiillen des Behilters?

3.2. Geradlinige, gleichmiiBig beschleunigte Bewegung

3.2.1. Beschleunigung und Verzigerung

Sie haben vorhin einen D-Zug in voller Fahrt betrachtet und angenommen, daf3 seine
Geschwindigkeit unterwegs immer die gleiche sei. Auch die iibrigen Aufgaben betra-
fen nur Fille, in denen die Geschwindigkeit konstant (gleichbleibend) war. Einmal
aber muf} der Zug vom Stillstand aus in Bewegung gekommen sein. Das sehen Sie am
besten auf dem Bahnsteig, wenn der Lokfiihrer den Abfahrauftrag erhalt. Der Zug
setzt sich langsam in Bewegung. Sie konnen bequem nebenhergehen. Seine Geschwin-
digkeit wird jedoch zusehends gréfier, sie nimmt von Sekunde zu Sekunde zu und
erreicht bald ihre volle Hohe. Man nennt diesen Vorgang eine beschleunigte Be-
wegung.

Das Umgekehrte dieses Vorganges spielt sich bei der Einfahrt des Zuges in einen
Bahnhof ab. Aus schneller Fahrt kommend, bleibt er nicht etwa mit einem Ruck
plotzlich stehen, sondern er vermindert bremsend seine Geschwindigkeit allméhlich
bis zum Stillstand. Man nennt dies eine verzogerte Bewegunyg.

Beschleunigungen und Verzégerungen von Fahrzeugen kénnen recht verschieden
sein. Vergleichen Sie einen langen Giiterzug mit einem Motorrad! Der Giiterzug fahrt
langsam an. Seine Beschleunigung ist offenbar gering. Das Motorrad hingegen er-
reicht in kurzer Zeit seine Hochstgeschwindigkeit; seine Beschleunigung wird also
groB sein. Wir wollen uns iiberlegen, welche physikalischen Gréfien die Beschleuni-
gung beeinflussen. Die Beschleunigung ist um so gréfler, je mehr sich die Geschwindig-
keit des Korpers dndert und je kiirzer die Zeit ist, in der diese Geschwindigkeits-
inderung erfolgt.

Wir stellen fest:

Die Beschleunigung ist der Geschwindigkeitsinderung direkt proportional, der
Zeit aber indirekt proportional.

Wir definieren daher:

Die Beschleunigung ist der Quotient aus der Geschwindigkeitsinderung und der
Zeit:

G i Y
a=-—7 3)

In dieser Gleichung ist v, die Geschwindigkeit am Ende und v, die Geschwindigkeit zu
Beginn des Beschleunigungsvorganges.
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Liegt eine Verzogerung vor, dann ist v, kleiner als »,, und Sie erhalten fiir ¢ einen
negativen Wert. Daraus erkennen Sie, dal die Verzoégerung nur eine negative Be-
schleunigung ist.

Besonders bemerkenswert ist die Einheit der Beschleunigung. Weil die Zeiteinheit
(s) im Nenner der Rechnung zweimal als Faktor auftritt und bekanntlich s . s = s?
ist, gilt:

Die Einheit der Beschleunigung ist Meter/Quadratsekunde.

Diese Einheit ist die gebriuchlichste Einheit der Beschleunigung. Es sind auch
andere Einheiten moglich, z. B. Zentimeter/Quadratsekunde.

Alle Einheiten der Beschleunigung sind Quotienten aus einer Lingeneinheit und dem
Quadrat einer Zeiteinheit. Man sagt daher:

Die Beschleunigung hat die Dimension Linge/Zeit?.

Oft ist bei einem Beschleunigungs- bzw. Bremsvorgang die Anfangs- bzw. End-
geschwindigkeit gleich Null, d. h., der Ko6rper wird entweder aus dem Ruhestand
heraus beschleunigt, oder er wird bis zum Stillstand abgebremst. In diesen Féllen
kann man eine vereinfachte Form der Gleichung (3) verwenden; denn die Geschwin-
digkeitszunahme bzw. -abnahme entspricht der End- bzw. Anfangsgeschwindigkeit.
Es ist dann

a=1v't ! 4)

Bei dieser Gleichung miissen Sie sich immer im klaren sein, daB das v etwas anderes
bedeutet als in der Gleichung fir die gleichférmige Bewegung, wo v eine gleichblei-
bende Geschwindigkeit war.

Hier, in Gleichung (4), wird also fiir v entweder die Endgeschwindigkeit (Beschleuni-
gung aus der Ruhelage) oder die Anfangsgeschwindigkeit (Verzogerung bis zum
Stillstand) eingesetzt.

Hierzu ein Beispiel:

Ein Kraftwagen fihrt mit einer Geschwindigkeit von 20 m/s. Plotzlich taucht ein
Hindernis auf. Der Fahrer tritt die Bremse und bringt das Fahrzeug innerhalb von 4 s
zum Stehen. Wie grof} ist die beim Bremsen aufgetretene Verzogerung?

Sie kénnen die Gleichung (4) benutzen, weil die Endgeschwindigkeit v, gleich Null ist.
Sie erhalten ’

20 m .
=ads =5m/s*.
Bei einer Rechnung mit Gleichung (3) hatten Sie — 5 m/s? erhalten; denn es liegt ja
eine Verzogerung vor. Sie merken, daf bei Verwendung der Gleichung (4) das Ergeb-
nis immer positiv ist. Verwechslungen sind aber nicht moéglich, denn schon aus den
Aufgaben geht ja hervor, ob die Geschwindigkeit gréfer oder kleiner wird.

Welche Beschleunigungs- und Verzogerungswerte im allgemeinen praktisch vor-
kommen, mége Thnen folgende Ubersicht zeigen:
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Tafel 3: Einige Durchschnittsheschleunigungen

Art der Beschleunigung a / I;
Anfahren von Giterziigen 0,08
Anfahren von Personenziugen 0,12
Anfahren der Berliner S-Bahn 0,55
Bremsen von Giterziigen 0,15
Bremsen von Personenzigen 0,30
Bremsen von Kraftfahrzeugen (gesetzliche Vorschrift

bei Héchstgeschwindigkeiten bis zu 100 km/h) 3,00

Was sagt Thnen z. B. die Angabe: Berliner S-Bahn 0,55 m/s2? In jeder Sekunde
nimmt die Geschwindigkeit um 0,55 m/s zu; denn nach (4) konnen Sie fir dieses
Beispiel auch schreiben

0,55 m/s
a=-"—--1",
S

Sie sehen z. B., worauf es beimn S-Bahn-Verkehr mit seinen vielen Haltestellen
ankommt. Eine recht grole Beschleunigung spart beim Anfahren Zeit, und das Fahr-
zeug hat auf der kurzen Fahrstrecke die Moglichkeit, seine Hochstgeschwindigkeit
auszunutzen. Bei einem schwerbeladenen Giiterzug mit langem Reiseweg spielt
dagegen die Beschleunigung keine wesentliche Rolle; sie ist daher hier nur sehr
gering. GroBe Verzégerungen bedeuten rasches Bremsen. Die fiir Kraftfahrzeuge an-
gegebene Zahl stammt aus der Kraftfahrzeugzulassungsordnung und ist ein Mindest-
wert bis Baujahr 1957, Besser ist es, wenn noch schirfer gebremst werden kann, wenn
also der Wert der Verzogerung noch groBer als 3 m/s? ist.

Aus der Definition der Beschleunigung erhalten Sie durch Umstellen:

Geschwindigkeitsinderung = Beschleunigung - Zeit.

Fir den Sonderfall, daB die Anfangs- bzw. Endgeschwindigkeit Null ist, erhalten
wir aus (4)

v =at.

Nach dieser Gleichung 148t sich die Endgeschwindigkeit v errechnen, die ein aus der
Ruhe bewegter Korper bei bekannter Beschleunigung @ nach Ablauf der Zeit ¢ hat.
Um dies nédher zu erlautern, greifen Sie aus der vorstehenden Ubersicht die fiir einen
Giiterzug angegebene durchschnittliche Beschleunigung heraus und fragen nach der
Geschwindigkeit, die der Zug 2 Minuten nach dem Anfabhren hat. Bevor Sie die
Zahlenwerte einsetzen, wandeln Sie zweckmiBigerweise die in Minuten gegebene
Zeit in Sekunden um. Sie erhalten also

0,08m-120s
P =
52

=9,6m/s.
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Beachten Sie, daf sich auch hier wieder Sekunde gegen Sekunde kiirzen lat. Nur
dadurch erhalten Sie im Ergebnis die richtige Einheit Meter/Sekunde. Soll die
Geschwindigkeit in Kilometern/Stunde angegeben werden, so wird wegen 1 m/s =
= 3,6 km/h

v = 9,6 - 3,6 km/h = 34.6 km/h.

Eine zweite Moglichkeit, die Grundgleichung ¢ = v/t umzuformen, ergibt ihre Auf-
lésung nach der Zeit ¢:

t = v/a.

Die Zeit ¢, die Sie hierbei erhalten, ist jene, die bei gegebener Beschleunigung a not-
wendig ist, um die Endgeschwindigkeit v zu erreichen.

Aus 3.2.1. wissen Sie tbrigens noch, dafl eine Verzdégerung rechnerisch genau wie
eine Beschleunigung zu behandeln ist. In den folgenden Beispielen sind zwei derartige
Fille angefiihrt.

Lehrbeispiel 8

Ein Kraftwagen bremst aus voller Fahrt zum Stillstand ab und bendtigt dazu 4,5 s.
Es wird eine Verzégerung von 5,15 m/s? angenommen. Wie grol war seine Ge-
schwindigkeit ?

Lésung:

Gegeben: t=4,5s Gesucht: v
a = 5,15 m/s?

Nach (4) ist
v=at= -5—’15-?2—2' 455 _ 232m’s.

In Kilometer/Stunde umgerechnet: v =232 mfs = 23,2. 3,6 km/h = 83,5 km/h

Lehrbeispiel 9

Ein Schnellzug hat eine Geschwindigkeit von 76 km/h. Wieviel Sekunden vor dem
Anhalten mufl mit dem Bremsen begonnen werden, wenn die Bremsverzogerung
0,4 m/s? betragt?

Losung:

Gegeben: v = 76 km/h Gesucht: ¢
a = 04m/s?

Aus (4) folgt
76 kms? 76 m s2

= hodm 365 0dm _ 2258
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3.2.2. Geschwindigkeit-Zeit-Diagramm der beschleunigten Bewegung

Nachdem in 3.1.2. lediglich die gleichformige Bewegung graphisch ausgewertet
worden ist, soll dies nun auch fiir die beschleunigte Bewegung erfolgen. Wir ver-
wenden hierzu ein Geschwindigkeit-Zeit-Diagramm, d. h., es wird die Geschwin-
digkeit in Abhdngigkeit von der Zeit dargestellt. Wir wéhlen als einfaches Beispiel
eine Beschleunigung von 0,6 m/s?. Die Anfangsgeschwindigkeit sei gleich Null.
Aus der Gleichung » = a ¢ erhalten wir am Ende der aufeinanderfolgenden Sekunden
die nachstehenden Wertepaare:

verflossene Zeit ¢ erreichte Geschwindigkeit v
0 0

1s 0,6 m/s

2s 1.2m/s

3s 1,8m/s

usw. usw.

Senkrecht iiber jedem Zeitpunkt tragen Sie die zu ihm gehoérige Geschwindigkeit ein
(Bild 23). Alle Punkte lassen sich dann leicht miteinander verbinden, denn sie liegen
alle auf einer schrig ansteigenden Geraden, die vom Nullpunkt ausgeht. Was darin
zum Ausdruck kommt, wird Thnen sofort klar sein: das gleichmifBige Anwachsen
der Geschwindigkeit. Bei einer grofleren oder kleineren Beschleunigung ergibt sich,
wie Sie sich leicht iiberzeugen koénnen, ebenfalls eine gerade Linie, nur im ersten
Fall steiler und im zweiten weniger steil ansteigend. Sie stellen mithin fest:

| Die Steigung im »,-Diagramm ist ein MaB fiir die Beschleunigung.

In Bild 24 sind drei solcher Kurven eingetragen. Sie sollen aber gleich einen Schritt
weitergehen und sehen, wie man sogar den Zahlenwert der Beschleunigung aus dem
Diagramm ermitteln kann. Noch besser ist es, wenn Sie das zundchst selbstindig
probieren und erst dann die folgende Beschreibung durchlesen, aus der Sie ersehen
konnen, ob Sie richtig gerechnet haben.

Kurve a: Von einem beliebigen Zeitpunkt — angenommen 5 s — gehen Sie senkrecht
nach oben und schneiden die Kurve ¢ im Punkt 4. Gehen Sie jetzt waagerecht zur
v-Achse hiniiber, so stoflen Sie 4
auf eine Geschwindigkeit von
1,2 m/s. Dies bedeutet: Nach
5 s betrug die Geschwindig- 1 3
keit 1,2 m/s. Folglich betrigt >|_2
die Beschleunigung nach Glei- E
chung (4) 2

a= 1,’2 .m,/S, =0,24m,s2.
5s

Bild 23. Geschwindigkeit-Zeit-Diagramm
einer gleichmaBig beschlcunigten Bewegung
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Bild 24. Darstellung von drei
verschicdenen Beschleunigungen 0 17 2 3 4

6 7

—_—

I
|
|
5

U~

Kurve b: Auch hier kénnen Sie von 5 s ausgehen, stolen senkrecht dariiber auf den
Punkt B der Kurve b, zu dem die Geschwindigkeit v = 4,15 m/s gehért. Sie erhalten
o= IOm/s

= =0,83m/s?.
5s 0,83 m;s

Kurve ¢: Hier miissen Sie von 2 s ausgehen, um Punkt C zu erreichen, und finden
v = 4,75 m/s. Daraus ergibt sich

a= 4’73 rSn/s = 2,38 m/s?.
. Anhand des wv¢-Diagramms koénnen Sie sich auch den Ablauf komplizierter Bewe-
gungsvorginge klarmachen. Sehen Sie sich Bild 25 an. Es ist hier die Fahrt eines
Straflenbahnwagens zwischen zwei Haltestellen in einem v,t-Diagramm dargestellt.
Was kommt hier zum Ausdruck? Sie erkennen, daBl die Geschwindigkeit von 4 bis B
gleichmaBig anwichst, und zwar mit einer Beschleunigung, die Sie aus dem Dia-
gramm in der bekannten Weise entnehmen kénnen. Von B bis C aber krummt sich
die Kurve; ihre Steigung wird immer geringer. Das bedeutet nach der vorhin gewon-
nenen Erkenntnis, dal} die

Beschleunigung nachlafit und C )

immer kleiner wird. Von I

Bild 25 F

Geschwindigkeit-Zeit-Diagramm 0= . y N N - e
der Bewegung einer Straflenbahn A 5 1075 20 25 30 35 40 45 50 55 60 65

L
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C bis D fihrt der Wagen mit gleichbleibender Geschwindigkeit, und von D bis F geht
die Geschwindigkeit wieder auf Null zuriick. Hier bremst nimlich der Fahrer, bis der
Wagen zum Stillstand kommt.

Aus dem geraden Kurvenstiick EF konnen Sie wieder die Bremsverzégerung ent-
nehmen.

Interessant sind hier die Ubergangsstellen BC und DE. Die Kriimmungen bedeuten,
daB an diesen Stellen die Beschleunigung ab- bzw. die Verzégerung zunimmt. In
diesem Falle ist also die beschleunigte bzw. verzdgerte Bewegung ungleichmiBig.
Deshalb sind auch die Gleichungen (3) und (4) hierfiir nicht anzuwenden.

Die in diesem Abschnitt behandelten Zusammenhinge sind fiir die kommenden
Abschnitte, wie iiberhaupt fiir die ganze Mechanik, von grundlegender Bedeutung.
Priagen Sie sich vor allem die Definitionen der Begriffe Beschleunigung und Ver-
zdgerung ein !

3.2.3. Weg-Zeit-Gesetz der gleichmiiBig beschleunigten Bewegung

Nachdem wir den mathematischen Zusammenhang zwischen Geschwindigkeit,
Beschleunigung und Zeit bei der gleichmaBig beschleunigten Bewegung untersucht
haben, interessiert uns die Frage, welcher Weg bei dieser Bewegung zuriickgelegt
wird.

Stellen Sie sich einen anfahrenden Personenzug vor. Nehmen Sie die Beschleunigung
mit « = 0,12 m/s? an, so benoétigt der Zug die Zeit t = 100 s, um eine Geschwindig-
keit von v = 12 m/s (= 43,2 km/h) zu erreichen. Der Weg, der in dieser Zeit zuriick-
gelegt wird, soll berechnet werden.

Zunéchst ist klar, daB} dieser Weg kleiner sein wird als der Weg, den der Zug in 100 s
zuriickgelegt hitte, wenn er bereits zu Beginn seine volle Geschwindigkeit gehabt
hatte. (Fiir diesen Fall der gleichformigen Bewegung erhielte man den zuriickgelegten
Weg nach der Gleichung s = v; s = 12m/s - 100 s = 1200 m.) In unserem Beispiel
ist die Geschwindigkeit zu Beginn der Bewegung v, = 0, sie wichst gleichméBig an
und erreicht schlieBlich nach ¢ = 100 s den Héchstwert v, = 12 m/s. Wir kénnen also
mit einer mittleren Geschwindigkeit ¢,;, = 6 m/s rechnen.

Allgemein gilt:

v+ Vs
-

=

Tm =

Aus der Mathematik ist Thnen bekannt, daBl man diesen Mittelwert als das arithme-
tische Mittel bezeichnet.

Fiir den Fall, dal3 die Bewegung aus dem Stillstand heraus erfolgt, ist v, = 0 und die
IEndgeschwindigkeit kann statt mit », einfach mit v bezeichnet werden. Dann gilt

Es ist die mittlere Geschwindigkeit gleich der Halfte der Endgeschwindigkeit. Der
Zug legt demzufolge auch nur die Hilfte des Weges zuriick, den er bei gleichférmiger
Bewegung (bei ,fliegendem Start) zuriickgelegt hatte. Es gilt demnach fiir die
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Bild 26. Geschwindigkeit-Zeit-Diagramm 2
einer glcichmiBig beschleunigten Bewegung
} 10
;|E
gleichmaBig beschleunigte Bewe- 81
gung ohne Anfangsgeschwindig-
keit (¢, = 0) . Vin
§ = ; vt. (5)
4
Unser Personenzug legt daher wih-
rend des Anfahrenseine Strecke von
600 m zuriick. (Rechnen Sie das 2
nach!)
Die Gleichung (5) wollen wir auch
noch aus dem v,{-Diagramm herlei- 0 A
- R 10 20 30 40 50 60 70 80 90 100
ten. Betrachten Sie hierzu Bild 26! t
Aus 3.1.2, wissen Sie: S

Im wt-Diagramm entspricht die aus den MaBzahlen von Geschwindigkeit und
Zeit gebildete Fliche dem in ter Zeit ¢ zuriickgelegten Weg.

Bei der gleichférmigen Bewegung war diese Fliche ein Rechteck. Bei der gleichmaBig
beschleunigten Bewegung jedoch ist die Flache ein Dreieck (in Bild 26 schraffiert).
Die Grundlinie dieses Dreiecks ist ¢, seine Hohe v, sein Flicheninhalt, der dem Weg
entspricht, daher

Dieses Irgebnis stimmt mit Gleichung (5) iberein.
In vielen Fillen sind zur Berechnung des Weges nur die Beschleunigung @ und die
Zeit t bekannt. Dann hat man zu beachten, daB nach (4)

r=at

ist. Setzt man diese Bezeichnung fir v in (5) ein, so erhilt man

s = ) att
Falit man ¢ - ¢ noch zu {2 zusammen, so folgt
s = ; at?. (6)

Wir wollen auch diese Gleichung auf das vorige Beispiel des anfahrenden Personen-
zugs anwenden. Mit ¢ = 0,12 m/s? und ¢ = 100 s erhalten wir
0,12 m 10000 s2

s=—?=600m
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Zum Schluf} soll noch eine Beziehung zwischen Weg s, Geschwindigkeit v und Be-
schleunigung « hergeleitet werden. Hierzu losen wir Gleichung (4) nach tauf:

% 1
§ =y v~ oder
s = v?2a.

Dieser Ausdruck, nach v aufgelost, ergibt

v = }2as. )

Lehrbeispiel 10

Beim Anfahren erhiilt eine elektrische Industrielokomotive von der Art, wie sie im
Braunkohlentagebau eingesetzt sind (Bild 27), die Beschleunigung 0,1 m/s2.

a) Nach wievicl Sekunden hat sie ihre volle Geschwindigkeit von 30 km/h erreicht?
b) Welche Strecke hat sie dann zuriickgelegt ?
Léosung:
Gegeben: a = 0,1 m/s? Gesucht: a) ¢
v = 30 km/h b) s
a) Fiir die gleichmiBig beschleunigte Bewegung aus der Ruhe heraus gilt (4)

30 km s? I ms®

t=7wvnt = B83.3 ..

T he0Am 36800 m e

Bild 27. Dic elektrische
Industriclokomotive zieht
clnen beladenen Kohlenzug
mit einer Deschleunigung
von 0,1 m/s?
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b) Zur Berechnung des Weges koénnte nun der in a) gewonnene Wert fiir ¢ heran-
gezogen werden. Ungenauigkeiten oder gar Fehler dieses Wertes werden dann aber
in die weitere Rechnung tibernommen. Deshalb ist es zweckméBiger, auf die
gegebenen Werte zurilickzugreifen, dabei ist (7) anzuwenden.

v?=2as /\

s =v%2a

_ 900 km?s® 900 m? g2
T ohe 04im 3,685 01m-2

=348 m

3.24. Freier Fall

Wohl die natirlichste einfache Bewegung ist der Fall. Jeder
sich selbst iiberlassene Korper fillt sogleich zu Boden, wenn
man ihn loslaBt oder seiner Stitze beraubt.

Lassen Sie einen schweren Stein und ein Blatt Papier aus glei-
cher Hohe zu Boden fallen, so stiirzt der Stein schnell, und das
Papier flattert langsam nach unten. Fallen also leichte Korper
langsamer als schwere?

Ballen Sie jetzt das Papier zu einer festen Kugel zusammen und
wiederholen Sie den Versuch. Beide Gegensténde schlagen dies-
mal gleichzeitig auf dem Boden auf. Weshalb das Papier im
ersten Falle hinter dem Stein zuriickblieb, ist offenkundig. Der
Luftwiderstand hemmte die Bewegung. Sie merken es noch viel
deutlicher, wenn Sie ein Blatt Papier weit fortwerfen wollen.
Es geht einfach nicht, weil die Luft der beabsichtigten Be-
wegung Widerstand leistet. Sie miiBten also die Luft bei den zur
Fallversuchen erst einmal beseitigen. Dann erst kann von einem ﬂfﬁ/mp ¢
wirklich freien Fall gesprochen werden. Fir diesen Zweck ver-
wendet man eine Fallréhre, ein langes Glasrohr, aus dem die
Luft ausgepumpt werden kann (Bild 28).

Innen befinden sich ein Pfennigstiick und eine Flaumfeder. Wenn man die Luft ent-
fernt hat und die Rohre rasch umwendet, stiirzt die Feder mit derselben Geschwin-
digkeit nach unten wie das Metallstiick. Das beweist:

——
-0

Bild 28. Ialirohre

| Im luftleeren Raum fallen alle Kérper gleich schnell.

Wie steht es nun mit der Fallgeschwindigkeit selbst? Leider geht die Fallbewegung
so rasch vor sich, daB man ohne Hilfsmittel nicht viel erkennen kann; aber etwas
sehr Wichtiges wissen Sie aus Ihrer tdglichen Erfahrung. Eine Porzellantasse, aus
1 cm Hohe fallengelassen, zerbricht bestimmt nicht, ebensowenig wie Sie sich beim
Sprung von einer FuBlbank ein Bein brechen werden. Gefahrlich wird der Sprung
erst aus groBerer Hohe, und von vernichtender Wirkung ist der Sturz von einem
Turm. Und weshalb? Allein die Endgeschwindigkeit ist ausschlaggebend. Es ist
also festzustellen:
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| Je groBer die Fallhohe, desto groBer die Fallgeschwindigkeit.

Nach einer sehr kurzen Fallstrecke ist die Geschwindigkeit nur sehr klein; mit
wachsender Hohe wird sie immer gréfer. Es ergibt sich daher der zwingende SchluB3:

| Der freie Fall stellt eine beschleunigte Bewegung dar.

Mit der Feststellung, dafl die Fallbewegung eine beschleunigte Bewegung ist, haben
Sie auch schon den Schliissel in der Hand, dem freien Fall rechnerisch beizukommen.
Sie brauchen nur noch eines zu wissen: Welchen Wert hat die beim freien Fall
auftretende Beschleunigung?

GaviLer hat sie um das Jahr 1590 zum ersten Male gemessen. Er wies nach, daB es
sich um eine konstante Beschleunigung handelt. Es ist die

N

Fallbeschleunigung g = 9,80665 m/s* ~ 9,81 m/s?

Diesen wichtigen Wert miissen Sie sich fest einpragen.

Wie Sie schen, wird er auch nicht mit dem sonst fir Beschleunigungen iiblichen
Buchstaben @, sondern seiner groBlen Bedeutung wegen mit dem besonderen Buch-
staben ¢ bezeichnet. Je nach der geographischen Lage weicht der jeweilige ortliche
Wert ein wenig von 9,81 m/s2 ab. Am Aquator betrigt die Fallbeschleunigung nur
9,78 m/s?, an den Polen dagegen 9,83 m/s?. Mit Hilfe der Fallbeschleunigung kénnen
Sie jetzt leicht ausrechnen, wie die Fallgeschwindigkeit zunimmt. Sie verwenden
hierzu einfach die Thnen bereits geldufige Gleichung (4) v = « ¢, die hier geschrieben
wird
v o= gt.

Danach nimmt die Endgeschwindigkeit folgende Werte an:

verflossene Zeit ¢ Endgeschwindigkeit v
0 0

1s 9,81 m/s

2s 19,62 m/s

3s 29,43 m/s

usw. usw.

Das kénnen Sie kurz zusammenfassen in dem Satz:
Die Fallgeschwindigkeit ist der Fallzeit proportional.

Sie sehen daraus, wie schnell die Geschwindigkeit eines fallenden Korpers anwichst.
Das liegt an dem groflen Wert, den die Fallbeschleunigung ¢ hat.

Fiir den freien Fall gelten die Gleichungen der gleichméBig beschleunigten Bewegung,
jedoch tritt an die Stelle der Beschleunigung a die Fallbeschleunigung ¢ und an die
Stelle des Weges s die Fallhohe 2. Dann erhalten Sie anstelle der Gleichungen (4)
bis (7) folgende Gleichungen:
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v=gt, (4a)
h= ; ot, (5a)
1, X
h = 2 gt*, (6a)
v =}2gh. (Ta)

Lchrbeispiel 11

Eine Eisenkugel fillt 3 s lang, ehe sie am Boden auftrifft. Aus welcher Hohe fallt sie
herab, und welche Endgeschwindigkeit erreicht sie dabei?

Loésung:

Gegeben: t=3s Gesucht: h,v

Wir verwenden (6a):

.9 g2
h___,l gt2=9’—81m 9s

5 T g g = 44,15 m

Die Berechnung der Endgeschwindigkeit erfolgt nach (4a):

v—gt—981, 35— 204ms

—_——

Lehrbeispiel 12
Mit; welcher Geschwindigkeit kommt ein aus 17 m Hohe fallender Gegenstand unten
an?
Losung:
Gegeben: Ak =17m Gesucht: v
Nach (7a) ist
v =29k = 2981 m/s? 17m = {334 m¥/s* = 18,3 m/s .

Lehrbeispiel 13

Ein Kraftwagen fahrt mit einer Geschwindigkeit von 40 km/h gegen eine Wand. Die
Wucht des Anstofles ist mit der vergleichbar, die auftreten wiirde, wenn der Wagen
aus einer gewissen Hohe herunterstiirzt. Welche wire die zugehorige Fallhohe?

Loésung:
Gegeben: v =40km/h Gesucht: &
Wir stellen (7a) nach 2 um:
. v2=2¢h
_ pajgg — A0k st 402mist oo

9ht.08lm 2.36%s2.98lm
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Zusammenfassung

Als Beschleunigung bezeichnet man das Verhiltnis der Geschwindigkeitsinderung
zur benétigten Zeit, a = 32—7—@1. Im w»t-Diagramm gibt die Steigung der Kurve die

Grofle der Beschleunigung an. Eine mit zunehmender Zeit fallende Kurve veran-
schaulicht eine Verzégerung. Aus dem Diagramm kann man auch die Zahlenwerte
von Geschwindigkeit, Beschleunigung und Zeit ersehen. Der Weg wird im v,t-Dia-
gramm durch die Fliche dargestellt, die von den beiden Achsen, der Geschwindig-
keitskurve und der Parallelen zur Ordinatenachse durch den Endwert fir ¢ begrenzt
wird.

Zwischen den 4 Verinderlichen der gleichmiBig beschleunigten Bewegung (Weg s,
Zeit t, Geschwindigkeit v und Beschleunigung @) bestehen 4 Gleichungen, von denen
jede 3 Verdnderliche enthilt:

S tv: s—lvt
¥y . A2 ?
s, t, a s L 2
[RZ =g at°,
2
8,1, @ : V= }/:72;:5'7,
Lv,a: v = al.

Diese Gleichungen gelten nur, wenn die Anfangsgeschwindigkeit des Koérpers gleich
Null ist.

Unter dem freien Fall versteht man den Fall im luftleeren Raum. Alle Kérper fallen
hier gleich schnell. Die Fallbewegung ist cine gleichméfig beschleunigte Bewegung.
Die Fallbeschleunigung hat den Wert g = 9,81 m/s2.

Ubungen

29, Welche Beschleunigung hat ein Fahrzeug, das innerhalb von 12 s nach dem
Anfahren eine Geschwindigkeit von

a) 25 km/h, b) 40 km/h, c¢) 65 km/h, erreicht?

30. Wie groB ist die Bremsverzogerung. wenn ein Fahrzeug innerhalb von 6 s aus den
genannten Geschwindigkeiten zum Stillstand abgebremst wird?

31. Mit einem Motorrad vom Typ MZ ES 250 ist innerhalb von 4,5 s nach dem Start
eine Geschwindigkeit von 60 km/h zu erreichen. Wie gro8 ist die mittlere Be-
schleunigung des Motorrades?

32. Welche Geschwindigkeit hat ein Personenzug 1,2 min nach dem Anfahren

a) in Metern/Sekunde, b) in Kilometern/Stunde?
(Verwenden Sie, wenn hier keine anderen Angaben gemacht sind, die Ubersicht
Tafel 3)

33. Eine Kugel rollt einen Abhang hinunter und kommt nach 8,5 s mit einer Ge-
schwindigkeit von 9,8m/s unten an. Welche Beschleunigung errechnen Sie
hieraus?
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34. Die wievielfache Zeit braucht beim Anfahren ein Personenzug im Vergleich zur
S-Bahn, um eine bestimmte Geschwindigkeit zu erreichen?

35. Welche Bremszeit ist erforderlich, wenn ein Fahrzeug aus einer Geschwindigkeit
von 60 km/h nach Zuriicklegen einer Bremsstrecke von 25 m anhalten soll?

36. Welche Geschwindigkeit erreicht ein Gegenstand beim freien Fall aus einer Hohe
von a) 1 em b) 2000 m? (Der Luftwiderstand wird nicht beriicksichtigt.)

37. Mit welcher Fallhohe wird beim freien Fall die Endgeschwindigkeit a) 1 m/s,
b) 100 km/h erreicht?

38. Ein Zug fihrt mit einer durchschnittlichen Beschleunigung von 0,2 m/s? an.
a) Wie lange braucht er, bis er 1000 m zuriickgelegt hat?
b) Welche Geschwindigkeit (in Kilometern/Stunde) hat er nach 1000 m erreicht ?

39. GariLir soll Fallversuche am schiefen Turm von Pisa durchgefithrt haben, dessen
Hohe 54,5 m betrigt. Welche Fallzeit und Endgeschwindigkeit errechnen Sie
far diese Hohe?

40. Die Aufschlaggeschwindigkeit eines Fallhammers von 80 cm Hub soll verdoppelt
werden. Welcher Hub ist erforderlich?

41. Ein Giterzug braucht fir die ersten 1000 m 200 s Anfahrzeit. Wie grof} sind seine
Beschleunigung und die erreichte Geschwindigkeit?

42, Aus einem undichten Wasserhahn tropft Wasser, alle 0,2 s ein Tropfen. Welchen
Abstand haben zwei aufeinanderfolgende Tropfen 0,5 s nach dem Abfallen des
ersten Tropfens?

3.3. Zusammensetzung cinfacher Bewegungen

3.3.1. Zusammensetzung paralleler Bewegungen

Es kann vorkommen, daB ein Korper zwei, drei oder noch mehr Bewegungen zu
gleicher Zeit ausfilhrt. Klingt das nicht zunédchst ein wenig unglaubhaft ? Denn wie
soll sich ein Gegenstand zugleich nach rechts und nach links bewegen oder sowohl
nach oben als nach unten? Geht das iiberhaupt?

Vielleicht sitzen Sie zuféllig in der Strafenbahn oder im Vorortzug, da Sie diese
Behauptung das erste Mal lesen. Gerade hier haben Sie die beste Gelegenheit, sie
selbst einmal zu iberprifen. Wahrend nidmlich der Wagen vorwirts seinem Ziel
entgegenfihrt, konnen Sie ruhig von Ihrem Platz aufstehen und nach vorn oder hin-
ten gehen. Sie konnen sich auch quer zur Fahrtrichtung auf die andere Seite des
Wagens begeben, genauso, als ob der Wagen stillstinde. Sie stellen mithin tat-
sachlich fest, daB sich die gleichzeitig stattfindenden Teilbewegungen eines Korpers
gegenseitig nicht im geringsten stéren. (Sie miissen dabei von den Schiittelbewegun-
gen des Wagens absehen.) So einfach diese Feststellung an sich ist, so wichtig ist sie
fiir die gesamte Mechanik. Man spricht hier vom Prinzip der ungestérten Superposition
der Teilbewegungen (Superposition = Uberlagerung).

4 Studienmat., Physik
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Wie sich diese Uberlagerung zweier Einzelbewegungen auswirkt, sollen Sie unserem
Beispiel entnehmen. Gehen Sie z. B. kurz vor der nichsten Haltestelle nach vorn,
um dort auszusteigen, so kommen Sie Ihrem Reiseziel entgegen. Sie kommen ein
wenig frither dort an, als wenn Sie hinten ausstiegen und sich erst nachher nach vorn
begiben. Ihre Gesamtgeschwindigkeit hat sich ein wenig erhéht; fiir den gleichen
Weg haben Sie weniger Zeit gebraucht. Ihr Korper besaB also zwei Teilgeschwindig-
keiten — sie sollen kurz »;, und v, genannt werden —, und diese haben sich offenbar
addiert, so dal} die

Geswmitgeschwindighkeit v = v, -+ v,
ist.

Sie kénnen auch sagen:

Bei gleicher Bewegungsrichtung ist die Gesamtgeschwindigkeit gleich der Summe
der Teilgeschwindigkeiten.

DaB bei entgegengesetzter Richtung der beiden Teilbewegungen die Differenz zu
bilden ist, kénnen Sie sich leicht vorstellen. Dabei kann es vorkommen, daB sich
fiir die Gesamtgeschwindigkeit Null oder sogar ein negativer Wert ergibt. Dies zeigt
folgendes Beispiel: In einem Flufl schwimmt ein Mann stromaufwirts. Er ist ein
guter Schwimmer und strengt sich michtig an. Dennoch ~ vom Ufer betrachtet —
bleibt er am sclben Fleck. Die Stromungsgeschwindigkeit des Wassers ist genau so
gro} wie die des Schwimmers. Wegen der gegenlidufigen Richtung heben sich beide
Geschwindigkeiten auf. In diesem Beispiel ist demnach

v, — vy, = 0.

Wenn die Stromungsgeschwindigkeit noch grofer ist, bewegt sich der Mann, vom
Ufer aus geschen, entgegengesetzt zur Schwimmrichtung; dies driickt sich mathe-
matisch in einer negativen Gesamtgeschwindigkeit aus.

3.3.2. Zusammensetzung von quer zueinander laufenden Bewegungen

An dieser Stelle sollen noch zwe1 oft vorkommende Ifachausdriicke erwiahnt werden.
Man bezeichnet die

Teilbewegungen als die Komponenten der Bewegung und die
Gesamibewegung als die resultierende Bewegung.

Das Beispiel des Schwimmers zeigt, dal} sich gleich grofie, entgegengesetzt gerichtcte
Bewegungen aufheben, d. h., die beiden Komponenten ergeben die Resultierende
Null. Wie sieht nun die Sache aus, wenn die beiden Bewegungskomponenten einen
rechten Winkel miteinander bilden? Ein einfaches Beispiel mége IThnen erldutern, wie
das gemeint ist: Ein Schiff bewege sich geradeaus. Gleichzeitig geht ein Fahrgast von
Steuerbord quer iiber das Deck nach Backbord. Da das Schiff vollkommen ruhig
fahrt, kann er diese Bewegung ungestort ausfithren, so als ob das Schiff stillstiinde.
Uberlegen Sie, was sich bei der Uberlagerung dieser beiden Bewegungen ergibt!

Bild 29 moége Thnen dabei helfen. Hier beobachten Sie den ganzen Vorgang aus der
Vogelperspektive von einem festen Standpunkt aus. Sie sehen, daB der Mann sich
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14 A’ B 5’
I
|
\\__ ___//
A —_—— - A A Al
Bild 29. Zusammensctzung zweier rechtwinklig zueinander Bild 30. Rechteck der Bewegungen

gerichteter Wegstrecken

von Punkt 4 aus zwar nach Punkt B in Bewegung setzt, jedoch infolge der Eigen-
bewegung des Schiffes nach Punkt B’ gerit. Die Linie A B’ ist sein wirklicher Weg,
und dieser verlduft schrig nach vorn.

Nunmehr wird die Zeichnung vervollstindigt (Bild 30).

Sie sehen jetzt, daB der Weg durch die Diagonale in dem Rechteck 44’B’B dar-
gestellt wird. Damit haben Sie den Lehrsatz gefunden:

Bei zwei rechtwinklig zueinander verlaufenden Bewegungen ist die Resultierende
des Weges gleich der Diagonalen des aus den beiden Wegkomponenten gebildeten
Rechtecks.

Nicht immer verlaufen die Teilbewegungen rechtwinklig zueinander. Nehmen Sie
z. B. an, der Mann geht schrig iiber das Deck. Wie Bild 31 angibt, geht er auf
dem Schiff von Punkt 4 nach C. Da sich auch das Schiff bewegt, erreicht er den
Punkt €. Dic Gesamtfigur stellt

“ . . 14

jetzt kein Rechteck, sondern ein [ ¢
] - o

Parallelogramm dar. Im ibrigen < >

dndert sich nichts weiter. Sie kon- ~__ -

nen als Ergebnis den Lehrsatz for- A Al

mulieren: Bild 31. Parallelogramm der Bewegungen “

Die Resultierende des Weges zweier beliebig zucinander verlaufender Bewegungen
ist gleich der Diagonalen des aus den beiden Wegkomponenten gebildeten Par-
allelogramms.

Da das Rechteck einen Sonderfall des Parallelogramms bildet, ist der fiir rechtwink-
lige Wege abgeleitete Lehrsatz in diesem Lehrsatz enthalten.

Dieser Lehrsatz gilt nicht nur fiir die Wege, sondern auch fiir andere einen Bewe-
gungsvorgang charakterisierende Gréfen, namlich fiir die Geschwindigkeiten und die
Beschleunigungen. Verallgemeinert bezeichnet man ihn als das

Gesetz vom Parallelogramm der Bewegungen:

Die Resultierende zweier beliebig zueinander verlaufenden Bewegungen ist gleich
der Diagonalen des aus den beiden Bewegungskomponenten gebildeten Parallelo-
gramms.

Dieses Gesetz ist sehr wichtig fiir die rechnerische bzw. zeichnerische Behandlung von
Bewegungsvorgingen. In den Bildern 30 und 31 ist das graphische Verfahren bereits
angewandt worden. Wie Sie aus ihnen entnehmen, sind dort die Teilwege AB und

4 *
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AA’ bzw. AC und A4’ durch Pfeile dargestellt. Mit einem derartigen Pfeil lassen
gich gleichzeitig zwei Angaben verbinden.

Erstens wird durch die Pfeilrichtung die Richtung des Weges (der Geschwindig-
keit, der Beschleunigung) festgelegt, zweitens bringt die Lange des Pfeiles den
Betrag der betreffenden Grée zum Ausdruck.

Physikalische GroBen, die — wie der Weg — erst durch Betrag und Richtung eindeutig
bestimmt sind, nennt man gerichtete oder vektorielle Grofen.

Merken Sie sich:

Vektorielle GroBen sind solche physikalischen GréBen, die durch Betrag und
Richtung eindeutig bestimmt sind. Auf sie ist der Parallelogrammsatz anwendbar.

In den folgenden Kapiteln werden Sie noch mehrere Gréen dieser Art kennenlernen.
Neben diesen vektoriellen Grofen bestehen noch die skalaren Gréfen. Zu ihrer Kenn-
zeichnung ist keine Richtungsangabe erforderlich. Zu ihnen gehdren u. a. die Zeit,
die Temperatur und die Masse, also alle die Gréfien, zu deren Bestimmung nur
die Angabe ihres Betrages erforderlich ist.

Wir wenden uns nun wieder dem Parallelogrammsatz zu und wollen durch eine
genaue maBstibliche Zeichnung nicht nur die Richtung, sondern auch den Betrag der
resulticrenden Geschwindigkeit ermitteln. Sie miissen dabei beriicksichtigen, dafl die
Genauigkeit zeichnerischer Losungen begrenzt ist; sie reicht aber in vielen Fillen fiir
praktische Aufgaben aus. Es ist am besten, wenn Sie die folgenden Lehrbeispiele mit
Bleistift und Papler mitskizzieren.

Lehrbeispiel 14

Ein Schiff faihrt mit einer Geschwindigkeit von 6 m/s geradeaus, wiahrend der Fahr-
gast mit einer Geschwindigkeit von 2 m/s quer tber das Deck geht. Welche Ge-
schwindigkeit hat der Mann tatsichlich, und welchen Winkel bildet seine Bewegungs-
richtung mit der des Schiffes? (Als MaBstab fir die Geschwindigkeit soll 1 cm A
1 m/s verwendet werden.)

Lésung:

Sie zeichnen ein Rechteck, dessen beide Seiten nach dem GeschwindigkeitsmaBstab
6 bzw. 2 cm lang sein miissen, legen die Diagonalen hinein und messen diese (Bild 32).
Sie erhalten 6,3 cm. Laut Geschwindig-
keitsmaQstab entspricht diese Strecke
einer Geschwindigkeit von 6,3 m/s. Mit
Ein dem Winkelmesser finden Sie den Win-
~ kel o= 18,5°.

Bild 32. Rechteck der Bewegungen
(Lehrbeispiel 14)

(=Y
]
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Lehrbeispiel 15

Ein Schwimmer hilt seine Richtung genau auf das gegeniiberliegende Ufer, wird aber
durch die Stromung unter einem Winkel von 30° fluBabwirts getrieben. Das Wasser
strémt mit einer Geschwindigkeit von 5 m/s. Wie groB ist die Geschwindigkeit des
Schwimmers bezogen auf das Ufer?

Lésung:

Sie sehen sich hier vor die Aufgabe gestellt, das Parallelogramm der Geschwindigkei-
ten zu konstruieren. In diesem Falle ist es wieder ein Rechteck, da der Schwimmer
rechtwinklig zum anderen Ufer strebt. Diesmal ist aber nur eine Seite angegeben und
der Winkel, den die Diagonale mit ihr bil-

det. Als gecigneten Mafistab wihlen Sie 4’ 8
fem A 1mfs.

Sie zeichnen also eine Strecke von 5 cm
Linge, tragen einen Winkel von 30° an
und erginzen die Figur zu einem Rechteck ¥
(Bild 33). Die zweite Seite ergibt sich beim
Abmessen zu etwa 2,9 cm und die Dia-
gonale zu etwa 5,8 cm. Letztere ergibt im
gewahlten MaBstab eine Geschwindigkeit 5
von 5,8 m/s. Wie schon angedeutet, kann

man die GroBe der Resultierenden auch  Bild 33. Rechteck der Bewegungen (Lehrbeispiel 15)
berechnen, und zwar mit Hilfe trigono-

metrischer Funktionen. Auf ihre Anwendung wollen wir aber im Rahmen des Vor-
bereitungskurses nicht weiter eingehen. Ohne Trigonometrie 1a8t sich nur der Sonder-
fall berechnen, daB die Komponenten senkrecht aufeinander stehen, also einen
rechten Winkel miteinander bilden.

Mit der graphischen Losungsmethode erhalten Sie in diesem Fall als Gesamtfigur ein
Rechteck (Bild 33). Wic Sie in dieser Figur sehen, ist die Resultierende vy zugleich
die Hypotenuse A B’ der beiden kongruenten Dreiecke A BB’ und 4 A’ B’, wihrend die
beiden Geschwindigkeiten v, und v,die Katheten 44’ und A4 Bsind. Von der Mathe-
matik her wissen Sie, dall man die Hypotenuse in einem rechtwinkligen Dreieck
mit dem pythagoreischen Lehrsatz berechnen kann.

R

o
(=)
o

44

|3

Damit haben Sie die rechnerische Losung gefunden:
vy = v} - 0%  oder
vn = Yol + 5.
Sind 2 Komponenten rechtwinklig zueinander gerichtet, so kann ihre Resultierende
mit dem Lehrsatz des PyTiacoras bestimmt werden.

Zusammenfassung

Zusammengesetzte Bewegungen verlaufen stets so, als finden sie einzeln nachein-
ander statt. Bei parallelen Bewegungen ist die Resultierende gleich der Summe bzw.
Differenz der Komponenten. Sind die Komponenten rechtwinklig oder schrig
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zueinander gerichtet, so ist die Resultierende gleich der Diagonalen des aus den
Komponenten gebildeten Parallelogramms. Der Parallelogrammsatz ist nur auf
vektorielle GroBen anwendbar. Darunter versteht man solche physikalische Gréfen,
die erst durch Betrag und Richtung eindeutig bestimmt sind. In der Bewegungslehre
sind dies Weg, Geschwindigkeit und Beschleunigung. GroéBen, die sich allein durch
ihren Betrag kennzeichnen lassen, heiflen skalare Grofen.

Ubungen
(Die Aufgaben sind anhand von maBstiblichen Skizzen zu lésen.)

43. Ein Personendampfer fahrt mit der Geschwindigkeit 5,5 m/s bei Mannheim den
Rhein aufwirts, wo die Stromung eine Geschwindigkeit von 5,4 km/h hat.

a) Mit welcher Geschwindigkeit kommt das Schiff vorwirts?
b) Welche Geschwindigkeit wiirde stromabwérts erreicht?

44. Ein Flugzeug fliegt einem starken Sturm entgegen. Es erreicht dabei eine Reise-
geschwindigkeit von 165 km/h. Welche Geschwindigkeit hat die Maschine bei
Windstille, wenn durch den Sturm die Geschwindigkeit um 21 m/s herabgesetzt
worden ist? "

45. Ein Segelflugzeug erhilt durch Aufwind eine senkrecht gerichtete Steiggeschwin-
digkeit. Es fliegt deshalb gegeniiber der Horizontalen unter einem Anstieg von
10°.

Mit welcher Geschwindigkeit wird es durch den Aufwind senkrecht nach oben
gehoben, wenn seine Fluggeschwindigkeit gegeniiber dem Erdboden 40 km/h be-
tragt?

46, Ein Korper fithrt zwei Bewegungen aus, die einen Winkel von 45° miteinander
einschlieBen. Bestimmen Sie Grofe und Richtung der Resultierenden fiir v, =
=5m/fs und v, = 8m/s. .

47. Ein Schwimmer strebt im rechten Winkel auf das 80 m entfernte andere Ufer
eines Flusses zu, wird aber um 45° abgetrieben. Er erreicht in 3 min das andere
Ufer. Wie stark ist die Stromung des Flusses?

3.4. Gleichférmige Drohbewegung (Rotation)

3.4.1. Drehzahl und Umlaufzeit

In der Technik sind Drehbewegungen besonders wichtig. Denken Sie z. B. an das
Schwungrad einer Dampfmaschine oder eines Dieselmotors, an Zahnrider oder an
den Propeller eines Flugzeuges!

Manche Korper drehen sich langsam, manche schnell. Mit solch allgemein gehaltenen
Ausdriicken ist dem Techniker jedoch nicht gedient.

Deshalb fithrt man eine neue physikalische GréBe ein, die Drehzahl ». Um die Dreh-
zahl (etwa eines Plattenspielers) zu bestimmen, zihlt man eine beliebige Anzahl (z)
von Umdrehungen ab, vielleicht 50 oder 100. Mit einer Stoppuhr stellt man die Zeit ¢
fest, die fir die z Umdrehungen bendétigt wird. Man definiert nun als Drehzahl den
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Quotienten aus einer beliebigen Anzahl von Umdrehungen und der dazu gehdrigen
Zeit:

n =zt (8)
Nehmen wir an, Sie messen bei dem Plattenspieler fir 100 Umdrehungen 133,5 s.
s ist also z = 100 und ¢ = 133,5 s. Die Drehzahl ergibt sich dann nach (8):

100
T 1335
10060

™= 1335 min

n =0,75s"! oder

—= 45 min~!

In diesem Beispiel sehen Sie die gebrduchlichsten Einheiten der Drehzahl (s~* und
min~?). Manchmal sehen Sie die Schreibweise U/min. Da U keine Einheit ist, wird
die Anzahl der Umdrehungen als reine Zahl gemessen, und als Einheit der Dreh-
zahl ergibt sich s™! oder min~2.

Ein weiteres MaB fir die Schnelligkeit einer Drehbewegung ist die Umlaufzeit 7.
Man versteht darunter die Zeit, die fiir einen Umlauf benotigt wird. Es ist daher die
Umlaufzeit T der Quotient aus der oben eingefiihrten Zeit ¢t und der Anzahl der
beobachteten Umdrehungen z

T =1tz. .
Fiir den oben betrachteten Plattenspieler ergibt sich daher die Umlaufzeit:

133,568 ... .
T =0~ 1385 s

Wenn Sie die beiden Beziehungen fiir die Drehzahl #» und die Umlaufzeit 7' verglei-
chen, so fallt Thnen auf, daB die eine Grée der Kehrwert der anderen ist, daB also
gilt:

Je groBer also die Umlaufzeit T ist, um so kleiner ist die Drehzahl # (und umgekehrt).
In der Uberschrift zu diesem Abschnitt lesen Sie iibrigens ,,gleichformige* Dreh-
bewegung. Was damit gemeint ist, werden Sie sich auch ohne weitschweifige Er-
lauterungen denken kénnen. Damit ist zum Ausdruck gebracht, dafl die Drehzahl
bei dem zu untersuchenden Vorgang immer gleich (konstant) bleibt.

Welche Drehzahlen im einzelnen praktisch vorkommen, entnehmen Sie der

Tafel 4: Einige Drehzahlen

roticrende Korper 7/min~!
Plattenspieler 33 oder 45
Rider eines Fahrrades (bei v = 15 km/h) 110
Schiffsschraube eines Dampfers 130

Motor einer Stra3enbahn in voller Fahrt 600
Dampfturbine 3000

Motor des PKW ,;Wartburg* 4200

Erdkugel 0,0007
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Wie man zu der letztgenannten Angabe kommt, zeigt Thnen folgende Rechnung.
Die Erde dreht sich bekanntlich in 24 h einmal um ihre Achse. Damit ist

1 1 s
"= z,"& = 2; H = E;-em‘ = 0,0007 min 1,
Um die Drehzahl irgendeines rotierenden Maschinenteils bequem messen zu kénnen,
gibt es sogenannte Drehzahlmesser oder Tourenzihler (Bild 34). Den nach auBen
gefithrten Antriebszapfen des Zihlwerks driickt man gegen die Welle, und zwar so,
daB er im Drehzentrum der Welle anliegt.

Der Zapfen macht dann die Umdrehungen mit, und ein Zeiger gibt die Drehzahl an.

3.4.2. Bahngeschwindigkeit

Die Drehzahl ist zwar ein Maf fiir die Schnelligkeit, mit der sich ein Koérper dreht,
stellt aber keine Geschwindigkeitsangabe in dem Sinne dar, wie Sie es bisher ge-
wohnt waren. Nach dem bisher Gelernten konnen Sie von einer Geschwindigkeit
nur dann reden, wenn Sie nachweisen kinnen, dall ein bestimmer Punkt des be-
treffenden Kérpers cinen bestimmten Weg in einer bestimmten Zeit zuriickgelegt
hat. Erst der Quotient aus Weg und Zeit liefert die tatsichliche Geschwindigkeit
cines Punktes.

Betrachten Sie hierzu eine belicbige rotierende Scheibe vom Durchmesser d.

Am einfachsten ist es zunichst, wenn Sie Thr Augenmerk auf cinen bestimmten
Punkt ihres Umfangs richten. Dieser durchlduft dann wihrend ciner Umdrehung
einen kreisférmigen Weg von der Linge nd; denn Sie wissen ja, dall man den Kreis-
umfang nach der Gleichung U = =d berechnet. Die Zeit, in der dieser Weg zuriick-
gelegt wird, ist die Umlaufzeit 7. Die Geschwin-

digkeit ist der Quotient aus Weg und Zeit, daher e s

v = md[T. (10a)

Fiihrt man nach (9) anstelle von 7' die Drehzahl
7 ein, 8o erhilt man:

v = mdn (10)

Gibt man die Drehzahl auf die Minute bezogen
und den Umfang in Metern an, so ergibt sich fiir
v die Einheit Meter/Minute. Sie ist in der Technik
recht gebriuchlich (z. B. Schnittgeschwindigkeit
beim Drehen usw.). Wollen Sie jedoch die Geschwin-
digkeit in Metern/Sekunde oder Kilometern je
Stunde angeben, so miissen Sie entsprechend um-
rechnen.

Iild 34. Drehzalilmesser (Tachometer)
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Bild 86, Die Kreisbahn des Punktes P, Ist kleiner
als die des Punktes P, »

Die eben errechnete Geschwindigkeit, mit
der sich ein Punkt des rotierenden Koérpers
auf seiner Kreisbahn bewegt, heilt Bahn-
geschwindigkeit. Dabei mull es sich nicht
um einen Punkt des Umfangs handeln,
sondern der betrachtete Punkt kann auch
weiter innen, d. h. nidher an der Achse, lie-
gen (Bild 35). P, liegt der Achse niher als
P,. Sie erkennen, daB fiir ihn der Bahnradius
7, kleiner ist. Daher muf} auch seine Kreis-
bahn kleiner sein, und Sic sehen ohne weite-
res ein, daf} bei ein und derselben Drehzahl auch seine Bahngeschwindigkeit v, kleiner
sein muB als bei einem auf dem dufleren Umfang liegenden Punkt P,.

Das ist wichtig: bei ein und derselben Drehzahl kénnen ganz verschiedene Bahn-
geschwindigkeiten herauskommen, je nachdem, ob der betrachtete Punkt néher
oder weiter von der Drehachse entfernt liegt. Die Bahngeschwindigkeit eines Punktes
auf dem dubBeren Kreisumfang wird auch als Umfangsgeschwindigkeit bezeichnet.

Je kleiner der Abstand eines Punktes von der Drehachse ist, um so kleiner ist
seine Bahngeschwindigkeit.

Halten Sie fest:

Die Bahngeschwindigkeit ist gleich dem Produkt aus Drehzahl und Kreisum-
fang (Kreisbahn).

Bevor weitergegangen wird, sollen Sie erst die folgenden Lehrbeispiele rechnen.

Lehrbeispiel 16

Welche Umfangsgeschwindigkeit hat die Schwungscheibe eines Motorrades, die sich
mit einer Drehzahl von 2400 min~! dreht und einen Durchmesser von 18 cm hat?

Loésung:
Gegeben: n = 2400 min™! Gesucht: v
d=018m

Aus (10) folgt
v = ndn = T 0’1.8..7.; 2,499 = ’M_ =72nmm/s = 22,6m/s.
min 60 s —_—

Lehrbeispiel 17

Diese Schwungscheibe sitzt auf einer Welle von 2 em Durchmesser. Welche Umfangs-
geschwindigkeit hat die Welle bei der gleichen Drehzahl]?
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Losung:

Gegeben: #n = 2400 min™! Gesucht: v
d=0,02m

Nach (10) ist
v o mdn= %9(230"; 24—00 =08 xm/s = 2,51 m/s.

Sie erkennen, daf die Umfangsgeschwindigkeit der Welle nur 1/, von der der Schwung-
scheibe betrigt, da sich die Durchmesser ebenfalls 1:9 verhalten.

Lehrbeispiel 18

Mit welcher Drehzahl rotieren die Réder eines mit der Geschwindigkeit von 60 km/h
fahrenden Motorrades? Der Raddurchmesser betragt 55 cm.

Losung:

Bei diesem Beispiel miissen Sie sich vorstellen, da wihrend des Fahrens der Rad-
umfang auf dem Boden abrollt (Bild 36). Eine einmalige Umdrehung des Rades
ergibt eine Fahrspur, deren Lange genau dem Radumfang entsprechen mufl. Daraus
geht hervor, daBl die geradlinig gerichtete Fahrgeschwindigkeit des Motorrades
gleich der Umfangsgeschwindigkeit seiner Rider sein mu8.

Gegeben: » = 60 km/h = 1 km/min Gesucht: n
d = 0,55m

Nach (10) ist
, 1 km 1000
n = 'v/nd = —

= =579 min"!.
mint-0,56m 0,55 xrmin ——

3.4.3. ‘Winkelgeschwindigkeit

Am Ende des vorigen Abschnittes hatten wir festgestellt, dall jeder Punkt eines
rotierenden Kérpers (etwa eines Schwungrades) eine andere Bahngeschwindigkeit
hat, vorausgesetzt, daB die Punkte nicht auf einer gemeinsamen Kreisbahn um-
laufen. Betrachten Sie hierzu Bild 37. In der gleichen Zeit, in der sich der Punkt
P, nach P’ bewegt, gelangt P, nach P;. P, legt in der gleichen Zeit einen gréBeren
Weg zuriick als P;; seine Bahngeschwindigkeit ist daher grofier. Beide Punkte
iiberstreichen aber in dieser Zeit den gleichen Winkel g.

An dieser Stelle erhebt sich die Frage, wie in der Physik zweckmafigerweise ein
Winkel festgelegt werden soll. Wir definieren:

| Der Winkel ist der Quotient aus dem Kreisbogen s und dem Radius r:

@ = s/r (11)
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Bild 36, Spur eines rollenden Rades wihrenil
elner Viertelumdrehung

BLiild 47, Deide Punkte (P, und Py legen in der-
selben Zeit denselben Winkel @ 2urick; sie halen
wleivelie Winkelgeschwindigkelt

—t

Damit ist der Winkel als Verhiiltnis zweier Lingen fest-
gelegt und wird als reine Zahl gemessen (Bild 38).

Fiir den Vollwinkel (im Gradmal 360°) ist demnach der
Kreisbogen s durch den Kreisumfang zu ersetzen: s =
2 wr. Somit wird der Vollwinkel )

g = 2nrir = 2n.

Fiir den gestreckten Winkel (180°) ergibt sich dann
Fild 38. Definition des

¢ = m",l’-r = =, Winkels: ¢ = s/r

Diese Art der Winkelmessung wird als Bogenmaf bezeichnet. Die folgende Tafel 5
gibt Thnen den Zusammenhang zwischen Bogenmafl und GradmaB fiir einige hiufig
vorkommende Fille.

Tafcl 5: Gradmal - Bogenmaf

Gradmal} 360°  270° 180"  90° 60° 45° 30° 1°

Bogemmall  2x 3nj2 = /2 w3 =w/4 =/6 /180

Das folgende Lehrbeispiel zeigt Ihnen, wie die Umrechnung bei beliebigen Winkeln
erfolgt. '
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Lehrbeispiel 19

a) Rechnen Sie 17° in das Bogenmaf} um,
b) rechnen Sie den Winkel 2 in das Gradmall um.

Loésung:
a) Aus der Tabelle ist zu entnehmen: 1° = 7/180; daher
177/180 = 0,29671,

b) Es kann von der Beziehung = = 180° ausgegangen werden. Division durch 7 und
Multiplikation mit 2 liefert

o
o 2:180° _ 14500,
T

Bemerkung: Das Bogenmal kann auch durch das angehidngte Kennzeichen rad
(Kurzzeichen fiir Radiant) kenntlich gemacht werden:

a) 17° = 0,2967 rad
b) 2rad = 114,6°

Nach diesen Erlduterungen wollen wir zur Drehbewegung zuriickkehren. Wir hatten
festgestellt, daf} alle Punkte eines rotierenden starren Koérpers in der gleichen Zeit
den gleichen Winkel tiberstreichen (Bild 37). Fiir alle Punkte ist daher der Quotient
aus dem Winkel und der Zeit gleich.

Dieser Quotient fiithrt die Bezelchnung Winkelgeschwindigkeit mit dem Symbol o
(sprich: omega): ;

= gt (12)

Betrachtet man eine volle Umdrehung, so ist der Drehwinkel q = 27, und die Zeit
ist gleich der Umlaufzeit T'. Dann ist

w = 2x|T.

Fihrt man anstelle der Umlaufzeit T nach (9) die Drehzahl n ein, so erhilt man die
wichtige Bezichung:

w = 2rn (13)

Abschlielend soll noch der Zusammenhang zwischen der Winkelgeschwindigkeit und
der frither behandelten Bahngeschwindigkeit untersucht werden. Fiithrt man in (10)
anstelle des Durchmessers den Radius ein, so erhilt man fiir die Bahngeschwindigkeit :

v = 2rrn

Ersetzt man in dieser Gleichung 27z nach (13) durch die Winkelgeschwindigkeit w,
so ergibt sich

v = wr. (14)
| Bahngeschwindigkeit = Winkelgeschwindigkeit mal Bahnradius
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Lehrbeispiel 20
Mit welcher Winkelgeschwindigkeit rotiert der Liufer eines Elektromotors, dessen
Drehzahl 3000 min~! betragt?
Losung:
Gegeben: n = 3000 min™! Gesucht: o
Nach (13) ist
2 - 3000 _2_1:-3000

— — j— = = -1,
w=2nn= min 608 100 /s = 314 s

Lehrbeispiel 21

Es sollen aus der in Lehrbeispiel 20 errechneten Winkelgeschwindigkeit die Bahn-
geschwindigkeiten folgender Punkte abgeleitet werden:

a) ein Punkt auf der Drehachse selbst,
b) ein Punkt auf der Welle (Durchmesser 12 mm),
c) ein Punkt auf dem Umfang des Laufers (Durchmesser 65 mm).

Losung:

Gegeben: « = 3143871 Gesucht: a) v,
r, =0 b) v,,
r, = 6 mm c) vy

ry = 32,6 mm
Es wird (14) zugrunde gelegt: v = w r
a) v, = 0. Ein Punkt der Drehachse hat keine Bahngeschwindigkeit.

14 - 5
b) vy = 814 ﬁQ;OQ,(’ m

) vy = HEOIRm gy

= 1,88m/s

Lehrbeispiel 22

Ein Rennwagen fihrt mit 120 km/h durch die halbkreisformige Kurve einer Renn-
bahn. Der Radius betrage 60 m. Mit welcher Winkelgeschwindigkeit durchfdhrt der
Kraftwagen seine Kreisbahn?
Gegeben: v = 120km/h Gesucht: o

r=60m

Es ist (14) nach @ umzustellen:

120ln _ 120m
h-60m  36s-60m

o =v/r= = 0,556 s~1
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Bild 39. Motorkettensige

Zusammenfassung

Die Schneliigkeit des Ablaufes einer Drehbewegung kann auf dreierlei Weise aus-
gedriickt werden: erstens durch Angabe der Drehzahl », zweitens durch die Bahn-
geschwindigkeit v, die Geschwindigkeit, mit der ein Punkt seine Kreisbahn durch-
laguft; drittens durch die Winkelgeschwindigkeit o, die man am einfachsten erhilt,
wenn man © durch r dividiert oder die Drehzahl mit 2z multipliziert,

Ubungen

48. Mit welcher Schnittgeschwindigkeit (in Metern/Minute) bewegt sich die Sidgekette
der Motorsiige in Bild 39? Das antreibende Kettenrad dreht sich mit 1770 min=?,
und sein Durchmesser betrigt 9 cm.

49. Das Transportband cines Gurtforderers (Bild 40) soll die Geschwindigkeit
1,68 m/s haben. Die Antricbstrommel dreht sich mit 65 min™, Wie grol mul}
der Trommeldurchmesser sein, damit die ange-
gebene Bandgeschwindigkeit zustande kommt?

50. Ein Schleifstein mit dem Durchmesser (0,9 m
hat einc Umfangsgeschwindigkeit von 7 m/s.
Wie groB ist die Winkelgeschwindigkeit des
Schleifsteins?

51. Welchen Durchmesser hat cine Kupplung mit

der Umfangsgeschwindigkeit 10 m/s und der
Winkelgeschwindigkeit 24 5717

52. lline Riemenscheibe mit dem Radius 40 em
rotiert mit einer Drehzahi von 300 min™!.

1ild 40, Gurkfirderer
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‘Bestimmen Sie
a) ihre Umfangsgeschwindigkeit,
b) ihre Winkelgeschwindigkeit.

53. Geben Sie die Winkelgeschwindigkeit einer Dampfturbinenwelle an, wenn diese
100 Umdrehungen in der Sekunde macht.

54. Ein Rad soll sich mit der Winkelgeschwindigkeit 100 s~ drehen.
a) Wie groB ist die Drehzahl des Rades?
b) In welchem Abstand von der Drehachse des Rades ist ein Mitnehmerbolzen an-
zubringen, wenn dieser die Geschwindigkeit 0,9 m/s haben soll?

55. Mit welcher Geschwindigkeit bewegt sich ein Punkt des Aquators infolge der Erd-
rotation (Erdradius 6378 km)?

4. Dynamik?)

Wihrend wir uns in Abschnitt 3. nur mit dem zeitlichen Ablauf der Bewegung be-
faBten, stellen wir jetzt, in der Dynamik, die Frage nach den Ursachen dieser Bewe-
gungen. Sie werden als Ursache von Bewegungsinderungen die Krifte kennenlernen.

4.1. Masse und Iraft

4.1.1. Trigheitsgesetz

Alle Kérper haben ecine gemeinsame Eigenschaft von grundlegender physikalischer
Bedeutung, die Sie selbst schon oft beobachtet haben:

Sie stehen in einem Zug oder einem Autobus. Beim plétzlichen Bremsen werden Sie
nach vorn geschleudert. IThr Korper hat das Bestreben, seinen Bewegungszustand
beizubehalten, er ist gegeniiber einer Verdnderung des Bewegungszustandes irdge.
Aus diesem Grunde ist es auch sehr gefahrlich, von einem fahrenden Fahrzeug
{StraBenbahn) abzuspringen.

Ein weiteres Beispiel:

Sie tahren mit dem Fahrrad. Wenn Sie aufhéren zu treten, bleibt das Rad nicht
etwa  sofort stehen, sondern es bewegt sich mit nahezu gleicher Geschwindigkeit
weiter.

Wir kommen zu dem Ergebnis:

Jeder Kirper ist trige.
Dieses Grundprinzip wurde erstmalig von GariLet (1564 bis 1642) erkannt und von
Nrwron?) (1643 bis 1727) prazisiert.

1) dynamis (griech.) Kraft
2) sprich etwa njutn (lkurzes )
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Das Trigheitsgesetz lautet:

Jeder Kéorper behilt seinen Bewegungszustand bei, solange keine Krifte auf ihn
etnwirken.

Man kann auch sagen:

Ursache jeder Bewegungsinderung ist eine Kraft.

Wir kommen nochmals auf das letzte Beispiel mit dem Radfahrer zuriick. Die Tat-
sache, daB die Geschwindigkeit doch kleiner wird, wenn man aufhért zu treten, ist
kein Argument gegen das Trigheitsgesetz, sondern ein weiterer Beweis dafiir. Wegen
der Reibung zwischen StraBle und Reifen, der Reibung in den Lagern und des Luft-
widerstandes ist die Bewegung durchaus nicht kriftefrei. Alle genannten Krifte wir-
ken der Bewegung cntgegen und dndern nach dem Tragheitsgesetz den Bewegungs-
zustand des Xorpers. Is findet eine verzogerte Bewegung statt.

Die Trigheit eines Kérpers wird quantitativ in der Masse erfaflt. Die Aussage
,,Jeder Koérper ist trige* ist daher gleichbedeutend mit ,,Jeder Kérper besitzt Masse*.
Wir kommen hierauf spiter noch zuriick,

4.1.2. Grundgesetz der Dynamik]

Wir wollen nun den mathematischen Zusammenhang zwischen den GréBen herstellen,
die im Tragheitsgesetz auftreten: Masse, Kraft und Beschleunigung.

Soll ein Gitterzug in Bewegung gesetzt werden, so ist die Beschleunigung von der
Kraft abhingig, die die Lokomotive aufbringen kann. Der Zug kann schneller in
Bewegung gesetzt werden, d. h., die Beschleunigung ist gréBer, wenn zwei Lokomo-
tiven ziehen, wenn also eine gréBere Kraft aufgewendet wird. Genaue Untersuchungen
zeigen, daf} eine Verdoppelung der Kraft eine Verdoppelung der Beschleunigung zur
Folge hat. Die Beschleunigung ist also bei gleichbleibender Masse der Kraft propor-
tional:

a~1T

Sie wissen weiter, dall es nicht nur von der Lokomotive abhingt, wie schnell ein Zug
anfahren kann, sondern ebenso von der Anzahl der Wagen wie auch davon, ob die
Wagen beladen sind oder nicht. Ein Schwerlastzug z. B. fihrt mit geringer Be-
schleunigung an, da er eine sehr grole Masse hat. Je grofler die Masse des zu be-
schleunigenden Zuges ist, um so kleiner ist die Beschleunigung. Genaue Untersu-
chungen zeigen, daBl bei halber Masse die Beschleunigung doppelt so gro8 ist. Die
Beschleunigung ist also bei gleichbleibender Kraft der Masse indirekt proportional:

a~1/m
FaBt man beide Aussagen zusammen, so erhilt man

a~Fim.
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Da die Beschleunigung von keinen anderen Grofen als von der Kraft und Masse ab-
hingt, kann
a=0cL (152)

m

geschrieben werden. Hierin ist C ein Proportionalititsfaktor. Man hat nun die
Einheiten der GroBen a, F und m so festgelegt (siehe 4.1.4.), dafl der Proportionali-
tatsfaktor gleich 1 ist, so daB sich (15a) vereinfacht zu

a=Iim
oder

| F-=ma (15)

|

Kraft = Masse mal Beschleunigung

Das ist das Grundgesetz der Dynamik, das von Isasc Newrton (1643 bis 1727) im
Jahre 1686 entdeckt wurde. Dieses Gesetz ist das wichtigste Gesetz der gesamten
klassischen Physik. Iis ist die mathematische Formulierung des Trigheitsgesetzes.
Aus (15a) erkennen Sie niamlich, daB aus

F =0 folgt a = 0.
Das bedeutet in Worten:
Ohne Kraft keine Beschleunigung.

Befindet sich also cin Kérper in Ruhe, so bleibt er in Ruhe; befindet er sich in Be-
wegung, so fithrt er wegen @ = 0 cine gleichférmige Bewegung aus. Soll der Kérper
beschleunigt werden, so ist dazu eine Kraft erforderlich, die proportional der Masse
und proportional der Beschleunigung ist.

Ein weiteres Beispiel soll Thnen das Grundgesetz der Dynamik erliutern: Zwei
gleich starke Motoren sind in zwei Kraftfahrzeugen verschiedener Masse eingebaut.
Der leichtere Wagen erreicht seinc Hochstgeschwindigkeit eher; seine Beschleunigung
ist groBer. Beim Bremsen ist er im gleichen Vorteil. Bei gleicher Bremskraft hat der
Wagen mit kleinerer Masse den kiirzeren Bremsweg. Sie erkennen daraus, wie vor-
teilhaft die Leichtbauweise fiir alle Verkehrsmittel ist. Auch die Deutsche Reichs-
bahn wendet bei Neukonstruktionen die Leichtbauweise an.

4,1.3. Gewicht

In 4.1.1. lernten Sie das Trigheitsgesetz kennen. Aus ihm geht hervor, dafl Bewe-
gungsinderungen eines Korpers nur durch die Einwirkung von Kriften auf diesen
Korper moglich sind. Wir wollen uns nun naher mit den Kraften beschiftigen.
Seit Isaac Newrox weil man, daB alle Korper — ganz gleich, woraus sie bestehen — sich
gegenseitig anziehen, daB also eine Kraft zwischen ihnen wirksam ist. Man nennt sie
die Massenanziehungskraft. Denken Sie bitte nicht an elektrische oder magnetische
Anziehungskrifte. Diese haben ganz andere Ursachen.

5 Studienmat., Physik
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Zwei gewdhnliche Steine, nebeneinandergehalten, zwei Apfel, ein Stiick Holz und ein
Stiick Eisen ziehen sich gegenseitig an. Sie werden es wohl zunédchst kaum glauben,
denn noch nie haben Sie etwas davon bemerken kénnen. In der Tat: Bei Gegen-
stinden von gewohnlicher GroBle ist die Massenanziehung duBerst gering. Erst mit
eigens dafir konstruierten, sehr empfindlichen Waagen 148t sich die Massenan-
ziehung in diesen Fillen nachweisen.

Anders wird die Sache aber, wenn die beiden Koérper sehr groB sind (oder wenigstens
einer von ihnen), denn nach Newrox ist die Anziehungskraft dem Produkt der beiden
Massen proportional. So iibt z. B. der Erdball mit seiner gigantischen Masse von
sechs Trilliarden Tonnen (6 - 10* kg) eine spiirbare Wirkung auf kleinere Gegenstéinde
aus. Auch der Mond und kiinstliche Satelliten werden von der Erde angezogen ; ebenso
die Erde selbst und die iibrigen Planeten von der noch gewaltigeren Anziehungskraft
der Sonne.

Die Massenanziehung nennt man mit einem Fremdwort auch Gravitation. Sie ist
also die. Ursache dafiir, dafl jeder Koérper im Bereich der Erde zum Erdmittelpunkt
hinstrebt. Sie verspiiren, dafl dies mit einer bestimmten Kraft geschieht. Man nennt
diese Kraft, mit der irgendein Kérper zum Erdmittelpunkt hingezogen wird, sein

Gewicht.

Merken Sie sich:

Das Gewicht cines Korpers ist die Kraft, mit der er von der Erde angezogen
wird.

Die Ursache des Gewichtes eines Korpers und damit zugleich des Fallens ist die
allgemeine Massenanziehung (Gravitation).

Sie ersehen daraus, daB das Gewicht dem Korper selbst nicht innewohnt. Es ist vicl-
mehr die Kraft, die zwischen zwei Kérpern wirkt.

Da das Gewicht eine Kraft ist, mull das dynamische Grundgesetz auch fiir das Ge-
wicht angewandt werden kénnen. Aus der Kinematik (3.2.4.2.) wissen Sie, dafl ein
frei fallender Korper auf der Erde in unseren Breiten die konstante Beschleunigung
g = 9,81 m/s? erfihrt. Setzt man in das dynamische Grundgesetz (15) anstelle der
Kraft F das Gewicht G und anstelle der Beschleunigung a die Fallbeschleunigung g,

so erhalt man

G =my l

Gewicht = Masse mal Fallbeschleunigung

(16)

Das Gewicht hingt also von zwei GroBen ab: erstens von der Masse des Korpers
(eine Verdoppelung der Masse hat auch eine Verdoppelung des Gewichts zur Folge),
zum anderen aber auch vom Ort, an dem man es bestimmt. Wie Thnen in 3.2.4.
mitgeteilt wurde, schwankt die Fallbeschleunigung auf der Erde zwischen 9,78 m/s?
und 9,83 m/s2. Das ist eine Folge der Erdabplattung und der Rotation der Erde um
ihre eigene Achse. Daher ist das Gewicht eines Kérpers am Aquator um 0,3 %, gerin-
ger als in Mitteleuropa, und an den Polen ist es 0,2 9, groBer.

Auch nimmt mit zunehmender Entfernung von der Erdoberfliche die Erdanziehung
ab; das Gewicht eines Korpers wird kleiner. Das Gewicht eines Koérpers ist dariiber
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hinaus auf jedem Himmelskorper verschieden. Der Mond hat eine geringere Masse als
die Erde. Daher betragt die Fallbeschleunigung auf dem Mond nur 1,62 m/s® und das
Gewicht eines Gegenstandes auf dem Mond nur etwa !/, des Gewichts auf der Erde.
Sie erkennen daraus, dafl das Gewicht eines Kaorpers verinderlich ist, wihrend seine
Masse konstant bleibt.

Die Relativititstheorie weist allerdings nach, daB dicse letztere Aussage nur fiir Kérper
gilt, deren Geschwindigkeit klein gegen die Lichtgesch windigkeit (300000km/s) ist. Hat
dic Geschwindigkeit eines Korpers die GroBenordnung der Lichtgeschwindigkeit, so wird
scine Masse merklich groGer.

4.1.4. Grundlagen des Internationalen Einheitensystems

Ehe Sie mit dem dynamischen Grundgesetz arbeiten kénnen, mufl noch die Frage der
Einheiten geklirt werden. Mafigebend ist in der Deutschen Demokratischen Repu-
blik die Verordnung iiber die physikalisch-technischen Einheiten vom 31. 5. 1967.
Auf Grund dieser Verordnung gibt das Deutsche Amt fiir MeBwesen und Waren-
prifung eine T'afel der gesetzlichen Einheiten heraus.

Das Einhcitensystem geht in der Mechanik von den drei Grundeinheiten Meter,
Sekunde und Kilogramm aus. Diese Einheiten wurden in 2.3. definiert.

Von diesen drei Grundeinheiten werden nun die Einheiten fiir alle GroBen, die in der
Mechanik vorkommen, abgeleitet. Eine Anzahl solcher abgeleiteter Einheiten ist
Thnen bereits bekannt,

z. B. Meter/Sckunde, Meter/Quadratsekunde.

Zunichst werden die kohédrente!) Einheiten gebildet. Man versteht darunter die-
jenigen, die ohne Zuhilfenahme von Umrechnungszahlen aus den Grundeinheiten
gebildet werden kénnen.

Wir erhalten die kohirente Krafteinheit, wenn wir in (15) die Grundeinheit der
Masse, das Kilogramm, und die Einheit der Beschleunigung, Meter/Quadratsekunde,
einsetzen. Die Krafteinheit ergibt zich dann zu

[#] = Kilogramm mal Meter/Quadratsckunde.

Diese Einheit fiihrt den Namen Newton (Kurzzeicher N).

Merken Sie sich:

Das Newton ist die Kraft, die einem Kérper mit der Masse 1 kg die Beschleunigung
1 m/s? erteilt:

IN = 1 kgm/st

Dadurch, daB die Krafteinheit Newton nach Gleichung (15a) unmittelbar aus den
Einheiten der Masse und der Beschleunigung abgeleitet wird, ist es moglich, die
Proportionalitit a« ~ F/m als Gleichung ¢ = F/m zu schreiben; denn durch dicse
Festlegung nimmt der Proportionalititsfaktor den Wert 1 an.

1) kohaerere (lat.) zusammenhingend

5%
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Zur Kontrolle brauchen Sie in
a=Fim

nur die Einheiten einzusetzen. Sie finden dann Gleichheit zwischen ¢ und F/m:

Im Schwerefeld der Erde erhalten alle Korper, wie Ihnen bekannt ist, die Fallbe-
schleunigung g = 9,81 m/s%. Dies ist ein abgerundeter Wert. Der Normwert der
Fallbeschleunigung betrigt 9,80665 m/s?. Setzt man diesen Wert in (15) ein und
behalt fiir die Masse die Einheit Kilogramm bei, so erhédlt man die Krafteinheit

[F] = 1 kg - 9,806 65 m/s?. 1))
Diese Einheit fithrt den Namen Kilopond (Kurzzeichen kp).

Merken Sie sich:

Das Kilopond ist die Kraft, die einem Koérper mit der Masse 1 kg die Beschleu-
nigung 9,80665 m/s? (Normwert der Fallbeschleunigung) erteilt.

1 kp = 9,80665 kg m/s? (1I)

Das Kilopond ist keine kohérente, sondern eine inkohirente Krafteinheit, d. h., das
Kilopond kann nicht unmittelbar aus den Grundeinheiten (Meter, Kilogramm und
Sekunde) gebildet werden, sondern nur mit Hilfe eines Umrechnungsfaktors.
Abgeleitetec Einheiten werden auf das Pond (p) bezogen: 1 Mp = 10° p = 10% kp,
1 mp = 10"%p = 107° kp.

Vergleichen Sie jetzt die Definition des Kilopond mit der des Newton, so finden Sie,
daBl das Kilopond 9,80665 (rund 10) mal so groB3 ist wie das Newton:

1kp = 9,80665 N (I1T)

Zur besseren Vorstellung der beiden Krafteinheiten merken Sie sich:

Ein Korper mit der Masse 1 kg hat ¢in Gewicht von 1 kp.
(Dies gilt genau nur beim Normwert der Fallbeschleunigung.)
Ein Koérper mit der Masse 0,1 kg hat ein Gewicht von etwa 1 N.

Eine Frage drangt sich nun auf:

Was bestimmen wir eigentlich, wenn wir einen Koérper wigen? Bestimmen wir seine
Masse oder sein Gewicht?

Das kommt darauf an, womit wir wigen. Nehmen wir eine Federwaage (Bild 41), so

ist die Verlingerung der Feder ein MaB fiir die wirkende Kraft, also fiir das Gewicht
des Korpers. Wagen wir den Koérper an einem Ort, an dem die Schwerkraft groBer ist als
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Bild 42, Balkenwange zur Masscbestimmung

Bild 41, Federwnage zur Gewichizbestimmung

normal, also das Gewicht des Koérpers groBer ist, so zeigt auch die Federwaage ein
groBeres Gewicht an.

Merken Sie sich also:

| Mit der Federwaage bestimmt man das Gewicht eines Kérpers.

Benutzen wir fiir die Wiigung dagegen eine Balkenwaage (Bild 42), so ist ihre Anzeige
vom Ort und damit von der Grofle der Erdanziehung unabhingig; denn diese wirkt
auf beiden Seiten, und ihre Verdnderung kann keine Wirkung auf das Gleichgewicht
der Waage haben. Damit wird IThnen klar, dal man mit einer Balkenwaage nur
Massen bestimmen kann, und zwar durch Vergleich einer unbekannten mit einer
bekannten Masse. Wenn auf einern Wigestiick also ,,1 kg*‘ steht, so ist das durchaus
in Ordnung, denn es hat die gleiche Masse wie das Urkilogrammstiick.

Sie kénnen festhalten:

Die Masse eines Korpers 1dBt sich mit einer Balkenwaage bestimmen.

4.1.5. Physikalische Bedeutung der Masse

In 2.1.6. fithrten wir die Masse zunichst als Stoffmenge (Substanzmenge) des Korpers
ein. In 4.1.1. und 4.1.3. lernten Sie zwei Eigenschaften aller Kérper kennen, nimlich
die, trdge und schwer zu sein.

»Die Korper sind trige* bedeutet, dafl kein Korper seinen Bewegungszustand
von selbst dndert ; um ihn zu verindern, mul eine Kraft auf den Korper einwirken.
»Die Korper sind schwer'* heilt, daB jeder Korper von der Erde angezogen wird.
Die Kraft, mit der das geschieht, nennen wir das Gewicht des Kérpers.

Der Begriff der Masse schliefit diese beiden Grundeigenschaften der Materie ein.
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Merken Sie sich:

Jeder Korper hat zwei Eigenschaften : Schwere und Trigheit. Beide Eigenschaften
werden im Begriff der Masse quantitativ erfalt.

Lehrbeispiel 23

Ein Kraftwagen mit einer Masse von 1200 kg wird aus der Geschwindigkeit von
45 km/h innerhalb von 8s bis zum Stillstand abgebremst. Welche Kraft mufl zum
Bremsen aufgewandt werden?

Lésung:

Gegeben: m = 1200 kg Gesucht: F
v, =45km/h = 125 m/s
v, =0
t =8s

Fiir das dynamische Grundgesetz (15) brauchen wir die Beschleunigung, die sich
nach (3) zu

Vg —
g=-2"—""1
1

ergibt. Dies setzen wir in (15) ein und erhalten

Vg —U
14

F=m

und mit den gegebenen Werten:
_ 1200k -(0—125ms)

F 8s
F-— —1875m/s? = —1875 N
Nach (I1I) gilt
1
IN=ggi kP

Setzen wir das ein, so erhalten wir:

1
F= —_1875. 9,61
Das Minuszeichen, das sich aus der Rechnung ergibt, bedeutet, daB die Kraft der
Bewegung entgegenwirkt, daB es sich also tatsdchlich um eine Bremskraft handelt.

kp = —190,5 kp

Lehrbeispiel 24
Ein Werkstiick mit einer Masse von 1200 kg hingt an einem Kran.

a) Mit welcher Kraft ist die Kette belastet?

b) Welche Belastung der Kette tritt auf, wenn das Werkstiick in 2s auf eine Geschwin-
digkeit von 0,8 m/s aufwirts beschleunigt werden soll?
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Lésung:

Gegeben: m = 1200 kg Gesucht: a) G
t =2s b) -Fges
v =0,8m/s

a) Die Kette wird mit dem Gewicht des Werkstiickes belastet: G = 1200 kp

b) Die Gesamtkraft F,,, setzt sich zusammen aus dem Gewicht ¢ und der Kraft ¥
infolge der Beschleunigung:

Fow=G + F
Fir ¢ und F gelten die Gleichungen (15) und (16). Dann wird
Fyy = mg + ma =m(g + a)
Die Beschleunigung a wird aus (4) errechnet:

Fpes = m (g + vft) = 1200 kg (9,81 m/s? 4+ 0,8 m/2 s?)

Py = 1200 kg - 10,21 m/s? — 12252 N = 13%?3 kp — 1250 kp

Zusammenfassung

Nach dem T'righeitsgesetz indert ein Korper seinen Bewegungszustand nur unter
Einwirkung einer Kraft.

Die Masse eines Korpers erfaBt seine Substanzmenge, seine Schwere und seine
Trigheit.

Nach dem Nrwroxschen Grundgesetz der Dynamik ist die Kraft F', die dem Korper
mit der Masse m die Beschleunigung a erteilt, gegeben durch ¥ = ma. Unter dem
Gewicht eines Korpers versteht man die Kraft, mit der der Koérper von der Erde
angezogen wird.

Dem Internationalen Einheitensystem liegen die Einheiten der Lange (das Meter),
der Zeit (die Sekunde) und der Masse (das Kilogramm) zugrunde.

Ubungen:

56. Welche Beschleunigung wird erreicht, wenn eine Lokomotive (40 t) einen Zug mit
10 Giiterwagen (je 25 t) mit einer Kraft von 2,5 Mp in Bewegung setzt?

57. Welche Bremskraft mufl ein Personenkraftwagen vom Typ ,,Wartburg® (Masse
1040 kg), der mit 4 Personen (je 70 kg) besetzt ist, mindestens aufbringen, wenn
die Straflenverkehrs-Zulassungsordnung fiir Kraftfahrzeuge mit einer Héchst-
geschwindigkeit tiber 100 km/h eine Bremsverzégerung von 5,0 m/s? vorschreibt ?

58, Ein Forderkorb mit der Masse 400 kg wird in einen Schacht hinabgelassen. Die

Bewegung sei gleichmiBig beschleunigt. In 12 s erreicht der Korb eine Tiefe von

60 m. Mit welcher Kraft wird das Foérderseil wihrend dieser Abwirtsbewegung
belastet ¢
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59. Ein Hammer von 2 kg wird mit einer Kraft von 3,5 kp 80 cm senkrecht nach
unten geschleudert. Mit welcher Endgeschwindigkeit kommt er unten an?

60. Wieviel Kilopond betrigt das Gewicht eines Kosmonauten von 80 kg auf dem
Mond?

4.2, Kraftwirkungen an ruhenden Korpern

4.2.1. Wirkung einer Kraft ~

Nachdem wir die dynamischen Wirkungen einer Kraft (Kraft ruft Bewegungs-
ianderungen hervor) untersucht haben, kommen wir in diesem Abschnitt zu den
statischen Wirkungen der Kraft.

Als Statik bezeichnet man das Teilgebiet der Mechanik, das sich mit dem Gleich-
gewicht der Kréfte, die auf einen Kérper einwirken, beschéftigt. Wie Sie in 4.2.3.
noch néher kennenlernen werden, ist ein Kérper dann im Gleichgewicht, wenn jeder
Kraft eine gleich groBe Kraft entgegenwirkt. Das duBlere Kennzeichen eines sta-
tischen Zustandes ist, dall der von auBlen beanspruchte Kérper seinen Standort
nicht verdndert. In Threr Umgebung kénnen Sie iiberall Beispiele dafiir finden, da
Krifte statisch wirken. Schon durch Thr Gewicht rufen Sie z. B. im FufB3boden, auf
dem Sie stehen, eine Gegenkraft hervor, die Threm Kérpergewicht das Gleichgewicht
hilt. Sie wird im FuBboden hervorgerufen, indem Ihr Gewicht diesen entweder
geringfiigig durchbiegt oder anderweitig verformt.

4.2.2, Kennzeichen ciner Kraft

Wir haben bisher noch nicht geklart, ob zur Kennzeichnung einer Kraft die Angabe
ihres Betrages allein ausreicht. Man sagt z. B.: Diese Lokomotive iibt eine Zugkraft
von 2500 kp aus. Mit dieser Feststellung verbindet sich zwangslaufig die Vorstellung,
daB die Lokomotive parallel zu den Schienen zieht. Wenn man eine Kraft vollstindig
beschreiben will, ist nicht nur ihr Betrag, sondern auch ihre Richiung anzugeben.

Die Kraft ist eine vektorielle GroBe. Sie wird eindeutig gekennzeichnet durch ihren
Betrag und ihre Richtung.

Es 1aBt sich somit auch cine Kraft zeichnerisch durch einen Pfeil darstellen, und
zwar derart, daf die Liange des Pfeils den Betrag der Kraft angibt und die Pfeilrich-
tung mit der Richtung der jeweiligen Kraft iibereinstimmt. Man wihlt die Lage des
Pfeils so, daBl er vom Angriffspunkt der Kraft ausgeht. Die Verlingerung des Pifeils
nach beiden Seiten heilt die Wirkungslinie der Kraft. Um zu wissen, wie grol die
gezeichnete Kraft sein soll, mul} der dazugehérige MaBstab angegeben werden: z. B.
1em A 1 kp oder 1 em A 250 kp, je nach den gegebenen Verhiltnissen.

Bild 43 zeigt Thnen den Umrif} irgendeines Kérpers und mehrere an ihm angreifende
Krifte, deren Betrige Sie hier sofort ablesen kénnen.

Wir wollen jetzt einmal annehmen, daBl an diesem Kérper nur die Kraft F = 10 kp
angreift, aber nicht, wic abgebildet, in der Mitte des Koérpers, sondern auflen an seiner
Oberfliche, im Bild an der UmriBlinie, jedoch in derselben Richtung und auf der-
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Bild 43. Verschiedene Krifte fM:Teme2,5kp
greifen an elnem Korper an

selben Wirkungslinie. Verdandert sich die Kraftwirkung, wenn man — wie hier — den
Angriffspunkt der Kraft in ihrer Wirkungslinie verschiebt? Wie die Erfahrung lehrt,
verdndert sie sich nicht. Ob eine Lokomotive einen Zug zieht oder schiebt, ist in
bezug auf die dadurch erzielte Wirkung nebensichlich, denn diese ist in beiden Fillen
die gleiche.

Es gilt also:

Eine an einem starren Korper angreifende Kraft kann in threr Wirkungslinie ver-
schoben werden, weil sich dadurch die Kraftwirkung nicht dndert.

4.2.3. Zusammensetzung von Kriften

4.2.3.1. Resultierende von Kriften in ciner Wirkungslinie

Da Sie jetzt wissen, wie eine Kraft graphisch dargestellt wird, werden Sie die folgen-
den Beispiele leichter verstehen. Stellen Sie sich zwei Krifte vor, die in gleicher Rich-
tung an einem Korper angreifen. Dies kénnten beispielsweise zwei Lokomotiven sein,
die gemeinsam einen Zug ziehen.

Die Gesamtkraft ist in diesem Fall — und dies bedarf wohl keiner niheren Begriindung
- gleich der Summe der beiden Einzelkrifte. Wenn man beide Krifte in entgegen-
gesetzter Richtung wirken 1a8t, z. B. beim Tauziehen, so ist die Gesamtkraft gleich
deren Differenz, denn die Wirkung der einen Kraft wird durch die andere zum Teil
ausgeglichen.

Bei den genannten Beispielen ist zu beachten: Beide Krafte liegen auf einer gemein-
samen Wirkungslinie. Das ist wichtig, denn wiirden die Krifte nebeneinander parallel
an einem Korper angreifen, dann kénnte die Folge eine Drehung sein.

Sie koénnen die gefundenen Tatsachen in folgenden Séitzen zusammenfassen:

Wenn zwei Kraftkomponenten auf einer gemeinsamen Wirkungslinie in gleicher
Richtung wirken, ist die Resultierende gleich der Summe der Komponenten.
Wirken die Komponenten entgegengerichtet, so ist die Resultierende gleich der
Differenz der Komponenten.

Nun kann aber der Fall eintreten, dal die beiden entgegengerichteten Krafte gleich
groB sind, beispielsweise je 5 kp. Bilden Sie nach dem_eben aufgestellten Satz die
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Ditferenz, so erhalten Sie 5 kp — 5 kp = 0, d. h. tiberhaupt keine Resultierende. Daf3
die beiden in einem Punkt angreifenden Krifte keine Wirkung hervorbringen
kénnen, ist wohl selbstverstindlich.

Man sagt auch:

Zwei gleich groBe, entgegengesetzt gerichtete Krifte, dic lings ein und derselben
Wirkungslinie angreifen, heben sich in ihrer Wirkung gegenseitig auf.

Einen solchen Zustand nennt man Gleichgewich. Umgekehrt kann man deshalb auch
sagen:

Im Gleichgewichtszustand ist Kraft gleich Gegenkraft. Der Kérper ist trotz an-
greifender Krifte in Ruhe.

Das ist sehr wichtig, und der Satz kann Ihnen betrichtlich dabei helfen, Verhiltnisse
klarzulegen, iiber die mancher ein wenig gedankenlos hinweggeht. Sie betrachten z, B.
den auf Threm Tisch liegenden Briefbeschwerer. Da er in Ruhe ist, wirken entweder
keine Krifte auf ihn ein oder die einwirkenden Krifte stehen im Gleichgewicht. Da
auf der Erde alle Kérper der Schwerkraft ausgesetzt sind, muB das letztere der Fall
sein. Es muf} also eine Gegenkraft da sein, die dem nach unten wirkenden Gewicht
das Gleichgewicht hilt. Wo aber ist diese Gegenkraft? Sie miissen sich vorstellen, daB
das Gewicht des Briefbeschwerers die Tischplatte ein wenig durchbiegt und dadurch
eine nach oben gerichtete Kraft entsteht (Bild 44). Denken Sie dabei zum Vergleich an
die Sehne eines gespannten Bogens. Hier sehen Sie es ganz deutlich: Die bogenspan-
nende Kraft des Schiitzen und die Kraft in der Sehne halten sich das Gleichgewicht.

] Spannkraft 2
~
é% ©:; )
[ = =
1
7kp Tkp
Bild 44. Kraft und Gegenkraft Bild 45. Spannkraft im Seil

Was tritt nun ein, wenn plétzlich die eine von den beiden Kriften, angenommen die
Armkraft des Schiitzen, wegfillt? Das Gleichgewicht ist sofort gest6rt, und die Sehne
schnellt nach vorn.

Betrachten Sie Bild 45! Links und rechts zieht an einem Faden je eine Kraft von 1 kp.
Mit welcher Kraft ist der Faden gespannt? Vielleicht wollen Sie sofort darauf ant-
worten : natiirlich ist der Faden mit 2 kp gespannt. Das ist aber grundsétzlich falsch;
denn Sie kénnen das Massestiick ohne weiteres beiseite lassen und den Faden statt
dessen an einem festen Gegenstand anbinden. Die Spannkraft betrigt nur 1 kp.
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4.2.3.2. Resulticrende von Kriiften mit verschiedenen Wirkungslinien

Sehr oft kommt es vor, dal zwei an einem Korper angreifende Krafte F, und F, einen
spitzen, rechten oder stumpfen Winkel miteinander bilden. Die Einzelkrifte einfach
algebraisch zu addieren bzw. zu subtrahieren, ist deshalb nicht zulissig, weil diese
nicht in einer gemeinsamen Wirkungslinie liegen. Krifte sind vektorielle GroSen,
deshalb miissen sie in der gleichen Weise, wie z. B. die Geschwindigkeiten, zusammen-
gesetzt werden. Das dort gefundene Prinzip der Zusammensetzung von Einzel-
vektoren ist ein allgemeingiiltiges Grundgesetz der Vektorrechnung, das auch hier
anzuwenden ist. '

Die Resultierende zweier aus verschiedenen Richtungen angreifender Krifte ist
gleich der Diagonalen des aus den beiden Komponenten gebildeten Parallelo-
gramms.

Aus den Teilen eines Metall-
baukastens konnen Sie leicht
die in Bild 46 gezeigte Vor-
richtung zusammenstellen,
die Thnen einen experimen-
tellen Beweis fiir die Richtig-
keit dieses Satzes liefert. Einc
Kraft F3 = 50 p hilt zwei
anderen Kriften F, = 30p
und F, =40 p das Gleich- k
gewicht. Bei M bildet die
Schnur von selbst einen rech-

ten Winkel. Hier denken Sie

sich aus den beiden Kompo-
nenten F, und F, ein Paralle-

logramm konstruiert, dessen h

gedachte Diagona,le die senk- Bild 46. Ermittlung der resultierenden Kraft

recht nach oben weisende

Resultierende darstellt. Deren Gréfle Fy ergibt sich nach dem Lehrsatz des Pytua-

Goras zu Fp = V302 p? + 40% p? = 50 p. Wiire diese Resultierende allein vorhanden,
so miilite der Faden nach oben schnellen. So aber wirkt die Gegenkraft F, und stellt
das Gleichgewicht her. Wenn der von den beiden Komponenten F, und F, einge-
schlossene Winkel nicht 90° betrigt, kann die Resultierende Fy nur mit Hilfe tri-
gonometrischer Funktionen berechnet werden. Sie koénnen auch die graphische
Losungsmethode anwenden, d. h. durch maBstébliche Zeichnung das Krafteparallelo-
gramm bilden. Sollen mehr als zwei Krifte in einer Ebene mit verschiedenen An-
griffspunkten und verschiedenen Richtungen zu einer Resultierenden zusammenge-
faBt werden, so verfahren Sie nach dem in Bild 47 gezeigten Losungsgang. Gesucht
ist die Resultierende von F;, ¥, und F, der Grofie und Richtung nach. F, und F, ver-
schieben Sie auf ihren Wirkungslinien bis zum gemeinsamen Schnittpunkt 4. Durch
Anwendung des Krifteparallelogramms finden Sie F'y,. Jetzt verschieben Sie ', und
F; auf ihren Wirkungslinien bis zum Schnittpunkt B und finden dort durch erneute

N \\[u\\\\ A\ NN

Ml
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Bild 47. Ermittlung der Resultierenden
mehrerer Einzelkrifte

Konstruktion des Krifteparalle-
logramms die gesuchte Resultie-
rende Fy. Das Krifteparallelo-
gramm bietet Thnen die Moglich-
keit, beliebig viele Krifte in der
Ebene zu einer Resultierenden
zusammenzufassen.

Lehrbeispiel 25

An einem Korper wirken auf einer gemeinsamen Wirkungslinie die Krifte F, = 6 kp,
"F, = 21 kp und F; = 43 kp und in entgegengesetzter Richtung die Krifte F, = 15kp,
F; = 3 kp und Fy = 18 kp. Wie groB ist die resultierende Kraft?

Loésung:

Um den Richtungssinn der Krifte zu kennzeichnen, versehen Sie diese mit Vor-
zeichen. Fiir die in entgegengesetzter Richtung wirkenden Krifte F,, F; und F, wird
das negative Vorzeichen gewahlt:

F,=—15kp, F;=-—3kp und Fy = —18kp

Die resultierende Kraft erhalten Sie, indem Sie die Summe der Einzelkrifte bilden.
Fo=F, + F,+ F, - F, + F, + F,
Fp=06kp + 21 kp +43kp —15kp — 3 kp -— 18 kp = 34 kp

Die resultierende Kraft Fp = 34 kp hat positiven Richtungssinn.

Lehrbeispiel 26

Die Krifte F, = 7 kp und F, = 10 kp bilden einen rechten Winkel. Welche GroBe
hat die resultierende Kraft Fp?

Loésung:

Da beide Krifte den Winkel 90° bilden, ergibt sich fiir die Resultierende

Lehrbeispiel 27

Dem Gewicht G = 600 kp des Forderkorbes auf Bild 48 hilt die Zugkraft F, des
Seiles das Gleichgewicht. Wie gro8 ist die Resultierende Fy dieser beiden Krifte,
wie verlauft die Wirkungslinie und welchen Winkel muf3 die Stiitze S des Geriistes
mit der Lotrechten bilden, wenn sie in Richtung der Resultierenden stehen soll?
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////////ﬁ W/)

Uild 48, Stahigeriist einer Firdermaschice ikl 40, Zur Ermittlung der Druckkraft in der Geriststiitze
einer I"rdermaschine

Losung:

Um Fy zu finden, miissen die beiden Komponenten t+ und F, lings ihrer Wirkungs-
linie big zum gemeinsamen Schnittpunkt verschoben werden. Is entsteht das in
Bild 49 angegebene malistiblich gezeichnete Krifteparallelogramm, Der verwendete
KriftemaBstab betrigt 1 kp £ 0,025 mm. Das Gewicht ¢ wird mithin durch einen
Pfeil von der Linge 15 mm dargestellt, ebenso die gleich groBe Seilkraft F,. Wegen
F, = @ ist ¥y dic Winkelhalbierende, die Wirkungslinie von Fy geht demzufolge
durch den Drehpunkt der Seilscheibe, Die Stiitze S mul dabei einen Winkel von
25° mit der Lotrechten bilden. Die Lange
der Diagonalen messen Sie in der Zeich-
nung zu 27,25 mm, dies entspricht einer
Resultierenden von etwa 1100 kp.

4.2.3.3. Resulticrende von parallelen
Kriiften h=fthf
Das Krifteparallelogramm versagt, wenn

Sie zwei parallele Krifte zu einer Resul-
tierenden zusammensctzen sollen. Eine

zeichnerische Methode, die zur Ermittlung [ L
der Resultierenden zweier paralleler Krifte i il a

dient, wird Thnen in Bild 50 gezeigh. Be- | %/ Fo?
trachten Sie dieses Bild. Verbinden Sie

die Angriffspunkte von F, und F, durch

Bild 60. Zusammensctzung zweler Krifte
21 einer Resultierenden
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eine Gerade. In dieser Verbindungslinie tragen Sie zwei Krifte # und —F” in den
Angriffspunkten von F; und F, an. Diese beiden in derselben Wirkungslinie liegenden
Krifte miissen gleich groB sein und von entgegengesetzter Richtung, damit sie sich
in ihrer Wirkung aufheben und somit im System keine Verinderung hervorrufen.
Thren Betrag konnen Sie nach Belieben wahlen. Die Krifte —F’ und F, werden
durch das Krifteparallelogramm zur Resultierenden Fg, und die Krifte  und F,
zur Resultierenden F'p, zusammengesetzt. Die resultierenden Krifte Fp; und Fp,
verschieben Sie lings ihrer Wirkungslinie nach riickwirts bis zum gemeinsamen
Schnittpunkt B und ermitteln schlieBlich mit Hilfe des Parallelogramms die resultie-
rende Kraft Fy.

Die Zeichnung lehrt nun folgendes:

Die Resultierende zweier paralleler Krifte ist gleich deren Summe und teilt
den Abstand der Wirkungslinien beider Krifte im umgekehrten Verhaltnis dieser
Krifte.

Fy/F, = bla

Beweis: Weil in Bild 50 einerscits die Dreiecke mit dem Winkel « und andererseits

die Dreiecke mit dem Winke' ” einander ahnlich sind, kdnnen Sie die Proportionen
bilden

F,/F" = BAja und F,/F’ = BA/b oder umgestellt
Fa =FBA wd Ip — F'BA.

Durch Gleichsetzen der linken Seiten der beiden Gleichungen erhalten Sie
Fia = Fypb

bzw. I /F, = bj/a, was zu beweisen war.

Lehrbeispiel 28

Zwei gleich gerichtete, parallele Krifte ¥, = 7 kp und F, = 3 kp haben einen Ab-
stand von I = 90 cm. Welchen Abstand hat die Resultierende Fy von F,?
Loésung:

Weil F, die groBere Kraft von beiden ist, muB die Resultierende Fp = F, + F, =
= 10 kp niher an F, liegen als an F,. Es gilt also, wenn « der Abstand von Fy zu
F, ist und | — 2 der Abstand von Fy zu F,,

£ b _l—=z

F,7a =z
Die groBe Kraft F, verhilt sich zur kleinen Kraft F, wie der grofe Abstand ! — =z
zum kleinen Abstand z. Man erhilt

Fio=F,(l—z)
2(Fy + F,) = F,l
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p— T
Fi+ F,
_ 3kp-90cm
T = 10kp = 27em

Fp hat einen Abstand von 27 em von F,.

Priifen Sie das Ergebnis mit Hilfe der in Bild 50 gezeigten graphischen Loésungs-
methode nach.

4.2.4. Zerlegung von Kriiften nach dem Parallelogrammsatz

Bisher wurde das Krifteparallelogramm nur fiir die Zusammensetzung von Einzel-
kriften benutzt. In der nun folgenden wichtigeren Anwendung besteht die Aufgabe
darin, eine gegebene Kraft in zwei Komponenten zu zerlegen.

In Bild 51 sehen Sie einen einfachen zweirddrigen Karren. Der Mann zieht — und dar-
auf kommt es besonders an — nicht etwa waagerecht geradeaus, sondern an der
Deichsel schrig nach oben. Seine Kraft ¥ mag dabei 12 kp betragen, d. h., er wendet
dieselbe Kraft auf, als hobe er einen Kérper von 12 kp Gewicht hoch. Was geschieht
nun dabei?

Q
5 (118
~
]
N
Fr=1Tkp
Bild 51. Die Zugkraft an cinem Karren Bild 52. Zerlegung einer Kraft in rechtwinklige

Komponenten. KraftcmaBstab: 1 em 2 2 kp

Es ist zweierlei: Zum ersten wird der Karren mit einer bestimmten Kraft F; vor-
wirts (d. h. in waagerechter Richtung) gezogen. Zum zweiten wirkt eine bestimmte
Kraft F, senkrecht nach oben, also dem Gewicht des Karrens entgegen. Sie konnen
sich ohne weiteres vorstellen, da anstelle der einen schrig wirkenden Zugkraft F
zwei einzelne Krifte in den besagten Richtungen wirken. Es fragt sich nur, wie grof}
diese beiden Krifte sind.

Nehmen Sie an, Sie hitten diese beiden Komponenten bereits gefunden. Dann miif3-
ten diese — wiederum nach dem Krifteparallelogramm zusammengesetzt — die schrige
Zugkraft F als Resultierende liefern: denn die beiden Komponenten und ihre Resul-
tierende miissen einander gleichwertig sein. Kurzum, Sie miissen dieses Mal von der
Diagonalen ausgehend das Parallelogramm zeichnen.

Durch die Pfeilspitze von F ziehen Sie nach Bild 52 die Parallelen zu den beiden
gegebenen Richtungen von F, und F,. Die Parallelen schneiden dann die entsprechen-
den Krifte F, und F, ab, die Sie nur noch auszumessen und in Kilopond umzurechnen
brauchen,
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Wenn Sie an die Losung einer derartigen Aufgabe herangehen, wird Thre Arbeit

zunichst darin bestehen, die Richtungen der beiden Komponenten zu ermitteln.

Denn ohne diese zu wissen, konnen Sie auch das Parallelogramm nicht konstruieren.
Doch sind diese Richtungen aus der Aufgabenstellung meist leicht zu erkennen.

Im Verlaufe des Studiums dieses

Lehrbriefes werden Sie sich auch

mit der sogenannten schiefen

c Ebene beschiftigen miissen. Hier-

unter versteht man jede schrig

zur Waagerechten geneigte Bahn,

b z. B. eine abschiissige StraBe.

Jeder auf einer solchen schiefen

A Ebene frei bewegliche Gegenstand

Q /<] gerit in Bewegung, weil einehang-

A 5 abwarts gerichtete Kraft auf ihn

W "einwirkt. Jeder Skildufer oder

Radfahrer weil, daBB er sehr auf

die Kraft achten muf3, mit welcher

Bild 53. Kraftc an der schicfen Ebene er hangabwirts gezogen wird. Wo-
her kommt aber diese Kraft?

Wie Sie wohl wissen, ist sie auf das Gewicht des Korpers zuriickzufithren. Doch wirkt

das Gewicht ja immer senkrecht nach unten und keineswegs in Richtung der schiefen

Ebene. Betrachten Sie Bild 53. Besser als viele Worte erklirt Thnen die Skizze, wie

sich das Gewicht G in zwei senkrecht zueinander gerichtete Teilkréifte zerlegt. Man

nennt diese Teilkrafte

1. Normalkraft Fy: senkrecht zur Bahn driickende Kraft,
2. Hangabtriebskraft Fyy: parallel zur Bahn hangabwirts ziehende Kraft.

Nachdem Sie die Richtungen dieser beiden Krifte erkannt haben, kénnen Sie mit
Hilfe des Krafteparallelogramms auch ihre Betrige finden. Bild 53 zeigt Thnen das.
Zwangslaufig ergibt sich dabei, dal die Normalkraft Fy stets kleiner als das Gewicht
G selbst ist. Lediglich in dem Sonderfall « = 0° ist Fy = G.

Vergleichen Sie jetzt das von den Kriften @, Fy und Fy gebildete schraffierte Drei-
eck mit dem Bahndreieck 4BC, so finden Sie in den beiden Dreiecken die gleichen
Winkel, womit sich herausstellt, daB diese beiden Dreiecke dhnlich sind. Daher lassen
sich (in ahnlichen Dreiecken stehen einander entsprechende Seiten im gleichen Ver-
haltnis) folgende Proportionen aufstellen:

Fy/G = hfl und hicraus der Hangabtrich | 'y = Ghjl = Gsin a | (17)

Fy/G = b/l und damit die Normalkralt ‘ Fy = Gbjl = Geos a ‘ (18)

Lehrbeispiel 29

Der in Bild 54 angegebene, an einer Mauer befestigte Wandarm trigt eine Masse von
2000 kg. Welche Krifte wirken im Zuganker Z und in der Strebe S?%
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Bild 54. Last am Wandarm

F, = 1120 kp

KM :
Teme 400kp

Bild 53. Lrmittlung der Krifte in Zuganker und Strebe

Loésung:

Es handelt sich hicr um die Aufgabe, cine Kraft von 2000 kp, die wie alle Gewichte
senkrecht nach unten wirkt, in zwei Komponenten zu zerlegen. Zuerst miissen Sie sich
iiber die Richtung dieser beiden Teilkréifte im klaren sein. Das ist insofern einfach, als
der Zuganker Z (wiec schon der Name sagt) gezogen wird und die in ihm wirkende
Kraft vom Punkt 4 aus nach rechts wirken mufl. Die Strebe S dagegen wird durch
die Last gedriickt, so dall dieser Kraftanteil in der Strebe nach links unten wirkt. Als
Maf}stab verwenden Sie 1 cm A 400 kp, so daf} sich F durch einen Pfeil von 5 cm
Lange zeichnen lif}t. Anstatt das zu konstruierende Parallelogramm in die gegebene
Zeichnung hineinzulegen, wo die Hilfslinien nur stéren wiirden, kénnen Sie es auf ein
besonderes Blatt Papier zeichnen. missen aber dabei die Winkel genau einhalten.
So ergeben sich, vom Punkt 4 ausgehend, 3 Strahlen, von denen zunédchst nur die
Lange der senkrecht nach unten gehenden Resultierenden (5 cm) angegeben werden
kann (Bild 55).

Ziehen Sie jetzt durch den Endpunkt dieses Pfeils die Parallelen zu den beiden ande-
ren Richtungen, so werden auf den freien Strahlen Stiicke von 5,8 cm bzw. 2,8 cm
Lange abgeschnitten, welche die beiden gesuchten Kraftkomponentgn darstellen.
Da { em A 400 kp, bedeutet dies fiir die Kraft Fg = 2320 kp und fur die Kraft
F, = 1120 kp.

Lehrbeispiel 30

Auf einer Stehleiter nach Bild 56 ruht obenauf (im Punkt A4) ein Kérper von 120 kg.
Wie verteilt sich sein Gewicht auf die beiden Schenkel der Leiter?

6 Studienmat. Physik
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~ A
Q, o
~ X,
@ =
(=%
S
w /
g
/
/
M2 A
Bild 56. Krifte an der Leiter Bild 57. Krifteparallelogramm (Lehrbeispiel 30)

Loésung:

Die in den Schenkeln auftretenden, laut Aufgabe zu ermittelnden Krafte wirken -
schrig nach unten. Als passenden Maflstab des zu zeichnenden Parallelogramms
(Bild 57) wihlen Sie 1 em A 20 kp.

Sie fangen wieder mit der Resultierenden an, also mit dem nach unten weisenden
Pfeil von 6 cm Linge, und ziehen dann die Wirkungslinien der beiden Kraftkompo-
nenten, deren Richtung Sie aus der Skizze 56 entnehmen (genaue Richtung ein-
halten). Die durch den Endpunkt von F gezogenen Parallelen schneiden zwei Strecken
ab, die den beiden Seitenkréiften von je 65 kp entsprechen.

Zusammenfassung

Die Kraft ist eine vektorielle GroBe, sie ist also durch ihren Betrag und ihre Richtung
festgelegt. Eine am starren Korper angreifende Kraft kann lings ihrer Wirkungs-
linie verschoben werden.

Mehrere Teilkrifte oder Komponenten kann man zu einer Ersatzkraft oder Resul-
tierenden zusammenfassen. Wirken die Komponenten in derselben Wirkungslinie, so
ergibt sich die Resultierende durch einfache Addition bzw. Subtraktion. Im Gleich-
gewicht ist Kraft gleich Gegenkraft. Bilden die Komponenten einen Winkel mit-
einander, der weder 0° noch 180° betrigt, so ist das Kréifteparallelogramm zu kon-
struieren, wobei sich die Resultierende als Diagonale ergibt. Die Resultierende zweier
paralleler Krifte teilt den Abstand zu beiden Kriften im umgekehrten Verhiltnis
ihrer Betrige.

Zur Zerlegung einer gegebenen Kraft in ihre Komponenten ist ebenfalls das Krafte-
parallelogramm anzuwenden, wobei die Richtungen der beiden Komponenten be-
kannt sein miissen. Die Berechnung von Kraften erfolgt bei Komponenten, die
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rechtwinklig zueinander verlaufen, mit Hilfe des pythagoreischen Lehrsatzes. In
vielen Fillen geniigt die graphische Methode; nach ihr wird die Bestimmung zeich-
nerisch anhand eines selbstgewihlten MaBstabes ausgefiihrt. Auf der schiefen Ebene
kann das Gewicht eines Korpers in die Normalkraft und den Hangabtrieb zerlegt
werden.

Ubungen A

61. Ermitteln Sie die Resultierende zweier I<rifte

von 500 kp bzw. 750 kp, die unter einem Winkel 7 0

von 35° in einem Punkt angreifen. Welchen 7
‘Winkel schlieBt diese Resultierende mit den bei-
den Seitenkraften ein? j
A
62. Welche Einzelkrifte wirken in dem in Bild 58 £
angegebenen Wandarm? a z

63. Ein senkrecht stehender Mast ist nach Bild 59
durch zwei Seile verspannt. In dem schragen Seil
herrscht eine Spannkraft von 85 kp. Mit welcher
Kraft strafft sich das waagerechte Seil, und welche
nach unten gerichtete Druckkraft entsteht da-
durch im Mast?

800 kg

Bild 58. Wandarm

64. An einem urspriinglich waagerecht gespannten Seil hingt eine Lampe (12 kg),
wodurch das Seil nach Bild 60 durchhingt. Welche Spannkraft entsteht dadurch
im Seil?

65. Ermitteln Sie graphisch die in den Streben 1 und 2 wirkenden Krifte F, und
F, (Bild 61). .

A
1
Y, A
S A
A
A
A
A
e
2, A
e
A
0% A, ]
Bild 59. Durch zwei Seile verspannter Mast ;
A
150° -~
Bild 60. StraBen- Bild 61. Zur Berechnung der Kréfte in der
leuchte Zug- und Druckstrebe

6*
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Bild 63. Belastetes Tragseil

L\ I Bild 62. Drei Krifte, die in
f F2

= cinem Punkt angreifen und
o in verschicdenen Richtungen 90°
’L.-? 135 wirken

66. Fiir die in Bild 62 angegebenen Krifte ist die Resul-
tierende zu bestimmen (graphische Lésung). F,= 50kp,
Fy, =30 kp, F; = 10 kp.

67. Zwei Krifte F, =70 kp und F,= 34 kp, deren Wir-
kungslinien einen Abstand von 2 m haben, wirken in
gleicher Richtung. Wie grofi ist ihre resultierende
Kraft, und wie weit ist die Kraft ', von der Resultie-
renden entfernt?

68. Lin Transportseil ist fiir eine Zugkraft von F = 3000 kp zugelassen. Kann es zum
Anhingen eines Behiélters von ¢ = 2600 kp verwendet werden, wenn nach Bild 63
die beiden Halften des Sciles einen Winkel von 90° bilden? Fiithren Sie die Nach-
priifung rechnerisch aus.

* G=2600kp

4.3. Hebel und Drehmoment

4.3.1. Zweiscitiger Hebel

Jeder um cine feste Achse drehbare starre Xorper kann als Hebel wirken. Die For-
men, in denen uns der Hebel im téiglichen Leben begegnet, sind mannigfaltig. Die
cinfachste ist die einer geraden Stange. Unabhéngig von seinen Formen ist am Hebel
immer wieder ein und dasselbe Gesetz wirksam. Um es zu finden, verfolgen Sie einmal
aufmerksam den folgenden Versuch.
Ein Stab sei in der Mitte drehbar befestigt, wie es in Bild 64 zu sehen ist. Links
und rechts von der Drehachse befindet sich je eine Halfte des Stabes. In gleichmé&fi-
gen Abstinden sind auf dem Stab Stifte ange-
P - U bracht, an die man Massestiicke hingen kann.
{ LaBt man, wie bei diesem Hebel, einzelne Krafte
. f sowohl links- als auch rechtsseitig von der Dreh-
|j achse wirken, so liegt ein zweiseitiger Hebel vor.
Man bezeichnet den Abstand von der Achse bis
zum Angriffspunkt der Kraft als Hebelarm. Um

Bild 64. Zum Hebelgesetz
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das beim Hebel giiltige Gesetz zu finden, wollen wir eine Versuchsreihe durchfiihren.
Hierzu hingen wir auf der linken Seite am Ende des Hebels ein Massestiick von
120 g (Gewicht 120 p) an. Die anderé Seite des Hebels soll so belastet werden, daf3
Gleichgewicht besteht. Dabei wollen wir fiir den Abstand der Aufhingung von der
Drehachse drei verschiedene Malle wihlen. Es zeigt sich, dall wir dann Massestiicke
verschiedener Grole anhdngen miissen.

Sie erhalten das Ergebnis:

linke Seite des Hebels rechte Seite des Hebels
Kraft Hebelarm Kraft Hebelarm
1.120p 30 cm 120 p 30 cm
2.120p 30 cm 240 p i5 em
3.120p 30 cm 480 p 7,5 em

Sie stellen fest, daf3 zur Herstellung des Gleichgewichts das rechtsseitig angehingte
Massestiick um so grofler sein mull, je kleiner der Abstand des Anhingepunktes
von der Achse ist.

Bilden Sie auf der rechten und linken Seite jeweils die Produkte aus Kraft und Hebel-
arm, so erhalten Sie jedesmal den Wert 3600 pcm. Verallgemeinert heil3t das: Das
Produkt aus Kraft und Hebelarm auf der linken Seite ist gleich dem Produkt aus
Kraft und Hebelarm auf der rechten Seite. Somit ergibt sich das Hebelgesetz in
vorldufiger Form:

Kraft mal Kraftarm = Last mal Lastarm
F\l, = F,l,

Die auf der einen Seite wirkende Kraft wird meist als Last bezeichnet, weil das Hebel-
gesetz beim Heben von Lasten eine grofle Rolle spielt. Beachten Sie aber, dafi die
Last nichts anderes als eine Kraft ist.

Auch der in Bild 65 gezeigte Hebel befindet sich im Gleichgewicht. Priifen Sie selbst
nach, daBl mit den im Bild 65 angegebenen Werten das Hebelgesetz erfillt wird, wenn
die Hebelstange selbst als gewichtslos betrach.-

tet wird. 17em gem
Eine praktische Anwendung des Hebelgesetzes t

bringt das néichste Beispiel. Nach Bild 66 soll ii:[
mit einem Hebelarm eine Last angehoben
werden, die 8 ecm vom Drehpunkt entfernt
héangt. Der Mann driickt am anderen 2,80 m |j50

langen Ende mit einer Kraft von 50 kp nach 9
unten. Mit Hilfe dieser Angaben und des Hebel-

759

Bild 65. Gleichgewicht am i\\'ciseitigen Hebel y4
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Bild 66. Anwendung des
zweiseitigen Hebels

gesetzes konnen Sie nun ausrechnen, wie groB die Last sein kann. Sie l6sen das
Hebelgesetz F, I, = F, I, nach der gesuchten Kraft auf und erhalten

_Fyl, 50kp-280em . __
I = 2. = T 8em = 1750 kp .

Sie ersehen aus diesem Beispiel, welch gewaltige Last eine einzelne Person zu be-
wiltigen vermag. Der beriihmte griechische Gelehrte ArcHIMEDES (222 v.u. Z.), der
einst das Hebelgesetz entdeckte, soll gesagt haben: ,,Gebt mir einen festen Punkt,
und ich werde die Welt aus ihren Angeln heben!*

An vielen kleinen Gegenstinden des Alltags finden Sie den zweiseitigen Hebel an-
gewandt. Die Kneifzange ist ein solches Beispiel. Auch die Schere gehért hierher; je
dicker das zu schneidende Material, desto weiter miissen Sie es in die Schere hinein-
schieben (groBe Kraftwirkung, wenn der Lastarm viel kiirzer als der Kraftarm ist)..
Sehen Sie sich auf Threm Arbeitsplatz um, so werden Sie dem Hebel immer wieder
begegnen.

4.3.2. Einseitiger Hebel

Nicht immer lat sich der Drehpunkt fiir einen Hebel so giinstig finden wie in Bild 66.
Zuweilen verschafft man sich den Drehpunkt durch einen geeigneten Klotz, den man
unterschiebt. Was aber tun Sie, wenn Sie nichts Geeignetes bei der Hand haben? Sie
werden es wahrscheinlich so machen, wie es Bild 67 zeigt, d. h. die Stange unter die
Last schieben und dann am anderen Ende anheben. Der Drehpunkt liegt jetzt am
Ende der Stange, dort, wo sie den Boden berithrt. Sie sehen Kraft und Last, vom
Drehpunkt aus betrachtet, auf dersel-
ben Seite wirken.

Darin unterscheidet sich der vorliegende
Fall von dem vorhergehenden. Man
spricht hier von einem einseitigen Hebel.

Bild 67. Eine Stange als einseitiger
Hebel benutzt
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160 |

Bild 68. Die Schiebkarre: ein Beisplel
fiir den einseitigen Hebel

Beachten Sie:

Beim zweiseittgen Hebel liegt der Dreh-
punkt zwischen den beiden angreifen-
den Kraften. .
Beim einseitigen Hebel wirken die
Krifte, vom Drehpunkt aus gesehen,
auf derselben Seite.

Genauer soll dies am Beispiel einer Schiebkarre studiert werden (Bild 68). Die Last
ruht in der angegebenen Entferung vom Drehpunkt (Radachse). Es soll die Kraft
berechnet werden, die am Ende der Handgriffe aufzuwenden ist, um die Last von
65 kp anzuheben. Das Eigengewicht der Xarre soll unberiicksichtigt bleiben.
Nach dem Hebelgesetz F,l, = F,l, ist

65 kp -0,45m

Fy=Fyly/l= P = 183 1kp.

Hier sehen Sie, daB man um so mehr Kraft spart, je niher die Last an die Drehachse
herangeschoben wird.

Wenn Sie nach praktischen Beispielen suchen, so sehen Sie sich einmal den Verschlull
einer Bierflasche an oder den Locher auf Threm Schreibtisch. Die GliedmaBen des
Menschen und die Tafelschere sind ebenfalls einseitige Hebel.

4.3.3. Drehmoment

Das Hebelgesetz konnen Sie aber auch in anderer Weise ausdriicken. Sie erkennen
namlich ohne weiteres, dafl stets die eine Kraft den Hebel links herum zu drehen ver-
sucht, die andere aber eine Rechtsdrehung hervorzurufen bestrebt ist. Infolge des
Gleichgewichts kommt aber keine der beiden Drehungen zustande — eben deshalb,
weil beide in entgegengesetzter Richtung wirken und sich gegenseitig aufheben. In
diesem Zusammenhang verwendet man nun einen Ausdruck, den man in der Technik
sehr oft gebraucht. Man sagt

Kraft mal Hebelarm = Drehmoment
Das Hebelgesetz lautet dann:

Ein Hebel ist dann im Gleichgewicht, wenn die links- und rechtsdrehenden
Momente einander gleich sind.

Bezeichnet man die linksdrehenden Momente (positiver Drehsinn) als positiv und die
rechtsdrehenden Momente als negativ, so gilt das Hebelgesetz:

Ein Hebel ist dann im Gleichgewicht, wenn die Summe der Drehmomente gleich
Null ist.
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Bild 69
Momentengleichgewicht
bei gleichen Kraften

Bild 70
Momentengleichgewicht
bei verschiedencn Kraften

Im Grunde genommen ist damit nichts Neues gesagt.
Es wird lediglich in diesem Merksatz die Moglichkeit von
Bewegungen angedeutet, die wegen des Gleichgewichts
nicht stattfinden kénnen.

Mit Hilfe dieses neuen Begriffs soll nun das Hebelgesetz auf ein Gebilde angewendet
werden, das nicht die gewohnte Gestalt eines Hebels besitzt. Bild 69 zeigt Ihnen
eine Scheibe, die sich leicht um ihren Mittelpunkt O drehen kann. Rechts und links
hangt an einem Faden je ein Massestiick von 50 g (Gewicht 50 p), womit die Scheibe
offenbar im Gleichgewicht ist. Weshalb?

Wenn Sie sich die gestrichelt angedeutete Linie in die Scheibe hineindenken, sehen
Sie ganz deutlich das Schema eines Hebels mit zwei gleich langen Armen von je 10 cm
Lange. Die Drehmomente betragen also rechts und links je 500 pem und heben sich
gegenseitig auf.

Jetzt wird das linke Massestiick durch ein solches von 80 g ersetzt. Sie beobachten,
daB sich die Scheibe ein Stiick linksherum dreht und dann in einer neuen Lage stehen-
bleibt (Bild 70).

Wie erkliren Sie sich das? Auf der linken Seite wird durch das Anhdngen des Masse-
stiickes das Drehmoment auf 80 p - 10 cm = 800 pem vergroBert. Das rechtsdrehende
Moment betragt (unter Berucksichtigung des Vorzeichens) nach wie vor —500 pem,
so daB sich als Summe ein Drehmoment von 300 pcm ergibt. Als Folge dieses Dreh-
moments bewegt sich die Scheibe. Aus der Tatsache, daBl sie nach kurzer Drehung
wieder ins Gleichgewicht kommt, schlieBen wir, daB} in der neuen Stellung die beiden
Drehmomente wieder entgegengesetzt gleich sind. Es fragt sich nun: Wie grof} sind
diese Drehmomente? Betrachten wir dazu die rechte Seite. Die Kraft betriagt auch in
der neuen Stellung 50 p. Allerdings hat sich der Aufhangefaden des Gewichtsstiickes
auf den Rand der Scheibe gelegt. Doch bedeutet dies keine Verdnderung gegeniiber
der urspriinglichen Lage. Sie konnten ja den Faden in A4 befestigen und das auf-
liegende Stiick abschneiden. Der Hebelarm ist also nach wie vor 0A4. Da das Dreh-
moment rechts somit unverindert den Betrag von 500 pcm hat, muf3 das Dreh-
moment in der neuen Lage auch auf der linken Seite 500 pcm betragen. Bei einer
Kraft von 80 p kann also der Hebelarm hier nur 500 pcm/80 p = 6,25 cm lang sein,
Eine Messung ergibt, dal3 die Strecke OB’ = [ gerade diese Lange hat und also hier
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der Hebelarm ist. OB’ steht senkrecht auf BB’, der Wirkungslinie der Kraft. Hieraus
ergibt sich die wichtige Schlufifolgerung:

Das Hebelgesetz in seiner urspriinglichen Form verlangt, daf die Wirkungslinie
der Kraft mit dem Hebelarm einen rechten Winkel bildet.

Um dieser Forderung immer entsprechen zu konnen, miissen Sie sich zunéchst einmal
von der Vorstellung frei machen, den Hebelarm als ein gegenstidndliches Gebilde zu
betrachten.

Priagen Sie sich ein:

Unter dem Hebelarm versteht man den senkrechten Abstand des Drehpunktes von
der Wirkungslinie der Kraft.

Mit dieser Definition des Hebelarmes kommen Sie auch zur richtigen Deutung des
vorliegenden Falles. Sie verlingern die Wirkungslinie der linken Kraft senkrecht
nach oben und fillen vom Drehpunkt aus das Lot auf diese Kraftrichtung. So sehen
Sie, wie das Gewicht von 80 p unter einem rechten Winkel an dem Arm OB’ angreift.
Sie mussen sich also merken:

Drehmoment ist gleich Kraft mal senkrechter Abstand
des Drehpunktes von der Wirkungslinie der Krajt

M = Fl (19)

Gemessen werden Drehmomente in Kilopondmetern, Pondzentimetern sowie in
anderen Einheiten, die sich als Produkt aus einer Krafteinheit und einer Langen-
einheit ergeben.

Was Sie soeben erfahren haben, ist fiir viele praktisch vorkommende Fille schr wich-
tig. Schon beim Besteigen Ihres Fahrrades machen Sie damit Bekanntschaft. Sie
lassen ndmlich mit Ihrem Ful} die Antriebskraft nicht etwa aufs Geratewohl gegen
die Pedale wirken, sondern entfalten gerade in dem Augenblick die grofite Kraft,
wenn die Tretkurbel waagerecht liegt. In diesem Fall ist das ausgeiibte Drehmoment
deswegen am grofiten, weil Kraftrichtung und Tretkurbel einen rechten Winkel bil-
den und deshalb der Hebelarm sein Maximum hat. Andererseits hat es gar keinen Sinn
zu driicken, wenn die Tretkurbel genau nach oben oder unten zeigt. Man bezeichnet
diese Lage als oberen bzw. unteren Totpunkt. Thnen wird nunmehr klargeworden sein,
weshalb im toten Punkt kein Drehmoment entstehen kann. Die Kraftrichtung lauft
durch den Drehpunkt selbst, so daBl der besagte Abstand des Drehpunktes von der
Kraftrichtung — also der Hebelarm — gleich Null ist.

4.3.4. Sehwerpunkt (Masscnmittelpunkt)

Nehmen Sie ein Lineal zur Hand und legen Sie es so auf den ausgestreckten Zeige-
finger, dal} es waagerecht und frei licgenbleibt. Genau in der Mitte liegt es auf. So
haben Sie wiederum einen Hebel vor sich, allerdings ohne zusatzlich anhingende
Massestiicke und ohne besonders in Erscheinung tretende Krifte (Bild 71).
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Bild 71. Unterhalb des Schwerpunktes
/ ' Y Y Y 9 unterstiitztes Lineal

Doch sind auch in diesem Falle Kriafte wirksam. Sie brauchen sich nur vorzustellen,
daB das Lineal aus lauter kleinen, gleich groBen Massestiickchen besteht. Alle Teil-
stiicke werden von der Erdanziehung senkrecht nach unten angezogen, links ebenso
wie rechts. Jedes einzelne Stiick liefert zusammen mit dem zugehorigen Abstand vom
Drehpunkt ein kleines Drehmoment, und zu jedem linksdrehenden Moment auf
der einen Seite gibt es ein gleich groBes rechtsdrehendes Moment auf der anderen.
Nach dem Hebelgesetz mufl dann das Lineal im Gleichgewicht sein.

Ein solches Gleichgewicht ergibt sich immer dann, wenn der Unterstiittzungspunkt
des Korpers senkrecht unter dem sogenannten Schwerpunkt liegt.

Fiir einen im Schwerpunkt unterstiitzten Korper hat die Summe der Einzelmomente,
die durch den EinfluB der Schwerkraft auftreten, den Wert Null, d. h. also, ganz
gleich in welcher Lage der Korper sich befindet, er ist immer im Gleichgewicht. Den
Schwerpunkt bezeichnet man auch als Massenmittelpunkt. In diesem Punkt kann
man sich das aus den Einzelgewichten ermittelte resultierende Gewicht angreifend
denken.

Merken Sie sich:

Der Schwerpunkt eines Korpers ist der Punkt, in dem man den Korper unter-
stiitzen muf}, damit er in jeder Lage im Gleichgewicht bleibt. Man kann sich
das Gewicht eines Korpers in seinem Schwerpunkt angreifend denken.

Derselbe Versuch 148t sich besonders leicht mit Gegenstinden durchfiihren, die eine
flichenhafte Form haben. Sie finden dann folgende Lagen des Schwerpunktes:

Form: Lage des Schwerpunkts:

Rechteck (Briefumschlag, Brett) Schnittpunkt der Diagonalen

Kreis (Schwungscheibe) Mittelpunkt des Kreises

Dreieck Schnittpunkt der Seitenhalbierenden

Die Bestimmung des Schwerpunktes anderer Flichenformen ist mathematisch gar
nicht so einfach, fiir viele Zwecke aber auch gar nicht nétig. Es gibt ein ganz einfaches
Verfahren, das Sie leicht selbst anwenden kénnen. Sie hingen die

aus Holz oder Karton geschnittene Fliche, die ein Modell des be- @y
treffenden Gegenstandes darstellt, an einem diinnen Faden auf '

und lassen sie frei herunterhingen (Bild 72). Ziehen Sie jetzt

einen Bleistiftstrich in der Verlingerung des Fadens, so erhalten

Sie eine sogenannte Schwerlinie. Dann wihlen Sie am Rande der

Flache einen neuen Aufhingepunkt und ziehen eine zweite Schwer-

linie. Im Schnittpunkt beider Linien liegt dann der Schwer-

punkt S.

Bild 72. Bestimmung d¢s Schwerpunkts einer Fliche |
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4.3.5. Arten des Gleichgewichts

Versuchen Sie einmal, eine Kugel auf eine nach oben gewolbte Fliche zu legen! Sie
werden viel Geduld aufwenden miissen. Wenn es endlich gelungen sein sollte, ist
dann die Kugel im Schwerpunkt unterstiitzt? Keineswegs; der Schwerpunkt liegt
genau iiber dem Unterstiitzungspunkt. Der Schwerpunkt hat aber immer das®
Bestreben, die tiefstmogliche Lage einzunehmen, d. h. er strebt, der Erdanziehung
folgend, nach unten. Man bezeichnet diesen Fall daher als

unsicheres oder labiles Gleichgewicht (Bild 73a). Befindet sich _-—n

ein Korper in diesem Gleichgewichtszustand, so geniigt schon

der kleinste Anstol, um den Korper davonrollen oder kippen

zu lassen. Er wird dann nie wieder von selbst in seine alte Lage a
zuriickkehren.

Als Gegenbeispiel legen Sie die Kugel nunmehr in eine ver-

tiefte Schale. Geben Sie ihr dann einen Stol, so wird sie zwar ~_

aus ihrer urspriinglichen Stellung geraten, aber nach einigem ’

Hin- und Herpendeln doch wieder in die alte Lage zuriick- W//
kehren. Dies bezeichnet man als sicheres oder stabiles Gleich- /

gewicht (Bild 73b). Hier bewegt sich der Schwerpunkt beim b

Anstoflen der Kugel nach oben. Das Bestreben des Schwer-
punktes, die tiefstmogliche Lage einzunehmen, fithrt jedoch

die Kugel wieder in die urspriingliche Gleichgewichtslage zu- W%m
riick. e

Endlich legen Sie die Kugel auf eine glatte waagerechte 1473, Die drei Gloich-
Tischplatte. Die Kugel bleibt in jeder beliebigen Lage ruhig gewichtsarten

liegen. Dieser Fall ist von dem vorigen insofern verschieden,

als nach einem AnstoBl die Kugel nicht wieder in die vorige Lage zuriickrollt, son-
dern in einer neuen Gleichgewichtslage verharrt. Es tritt keine Hohenverianderung
des Schwerpunktes ein. Man nennt dies das unbestimmite oder indifferente Gleichgewicht
(Bild 73c).

Bisher wurde immer nur von einer Kugel gesprochen. Doch kénnen Sie diese Betrach-
tungen auch auf andere Korper beziehen. Die an der Decke hingende Lampe hingt
stabil, weil sie nach jeder Irschiitterung in ihre senkrechte Lage zuriickkehrt. Der
vor lhnen liegende Fiillfederhalter ist im indifferenten Gleichgewicht, da er nach jeder
Verriickung bleibt, wo er ist. In welchem Gleichgewicht befindet sich ein Korper,
der eine ebene Grundfliche hat und mit dieser auf seiner Unterlage ruht? Diese
Frage ist von groBer praktischer Bedeutung, da von ihr die Standfestigkeit eines
Korpers abhingt. Ein Korper befindet sich im stabilen Gleichgewicht, solange eine
durch seinen Schwerpunkt gefillte Senkrechte in das Innere seiner Unterstiitzungs-
fliche fallt. Liegt der Schwerpunkt tief und ist die Unterstiitzungsfliche grof3, so
ist diese Bedingung auch bei starker Schraglage des Korpers noch erfiillt. Es hat dann
eine groBe Standfestigkeit.

Lehrbeispiel 31

Mit welcher Kraft kann der Dampf auf ein Sicherheitsventil (Bild 74) wirken, dessen
Arm mit 16 kp belastet ist? /, = 840 mm, [, = 70 mm.
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{
Lf)sung: L {; - et -
Gegeben: F, = 16 kp ' el u—
!, =840 mm
I, = 70 mm W 22 A
Gesucht : F2 Bild 74. Sicherheitsventil

Die Drehmomente miissen gleich sein; daher gilt
Fyly = Fyl,.

16 kp - _840 mm

Fy=Filijfly =200 o 5~ 192 kp.

Lehrbeispiel 32

An einem zweiseitigen Hebel hangen links zwei Massestiicke von je 150 g in Abstan-
den von 8 em und 12 em vom Drehpunkt. Auf der rechten Seite hingt im Abstand
von 15 em vom Drehpunkt ein Massestiick von 100 g. Welche Masse mul} im Abstand
10 em vom Drehpunkt angebracht werden, damit Gleichgewicht herrscht?

Lésung:
Gegeben: m, =150g [, = 8cm Gesucht : m,
my,=150g [, =12cm
my=100g I, =15cm
ly,=10cm

Als Krafte wirken die Gewichte (m g).
Die Gleichgewichtsbedingung am Hebel lautet M, = M ; daher

mygly + magly = mygly + mygl,
Nach Division durch g folgt daraus

myly + myly, — mgly
e

my =

Setzen Sie die gegebenen Werte ein, so erhalten Sie

_150g-8em +150g-12em —100g - 15¢cm
- ) t0em

—

my 50g.

Lehrbeispiel 33

Mit dem vom VEB Bodenbearbeitungsgerite Leipzig produzierten ,,Frontlader T 150%
koénnen Lasten mit einer Masse bis zu 500 kg gehoben werden (Bild 75).

Welche Gesamtkraft mul durch die beiden (in einer Blickrichtung liegenden) Druck-
zylinder in der angegebenen Lage (Bild 76) bei maximaler Beladung aufgebracht
werden, damit an der Beladegabel Gleichgewicht herrscht? Das Eigengewicht der
Gabel wird vernachldssigt.
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THld 75, ‘Fronthader 1T 150

Lésung:

Gegeben: Fy, = 500 kp
I, = 480 mm
[, = 2350 mm

Gesucht: F,

Der Frontlader ist ein cinseitiger Hebel, der um D geschwenkt wird. Die Gleichge-
wichtsbedingung lautet:

F, = Fy,

Daraus folgt

’ 300 kp - 2350
po=Tih 0N IO g yp .
1

480 mm

\-

o E 7\ Bild 76
5 E

/ Sehemun zur Bestimmung der

A angreifenden Momente
S . SN
2 _‘]_( )
7 | : )
\. / \. J
_ p=2soem ARSI

750cm
d5cm fm’b
] A *FO‘”{U
74
Bild 77, Skizae zu Lehebelspiel 34 ‘6 kp

A
Lehrbeispiel 34

Auf einer Kiste von 85 em Liinge liegt eine 1,50 m lange Eisenstange mit 34 kg Masse
(Bild 77), deren Enden gleich weit iiber die Kiste hinausragen.

Die Eisenstange scll

a) durch eine Druckkraft auf das rechte Ende angehoben werden (wobei sie sich um
den Punkt A dreht) oder
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b) durch eine Zugkraft am rechten Ende nach oben angehoben werden (wobei sie
sich um den Punkt B dreht).

Welche Krifte sind in den beiden Fillen aufzuwenden?

Losung: .
Gegeben: 21 = 150 cm Gesucht: a) F,
2s= 85cm b) F,
G = 34kp
a) Es handelt sich um einen zweiseitigen Hebel. Es ist
F,(l—s)=0Gs
Gs
Fi= l—s
_341-:p-42,5cm4 }
Fi=- “355em 44,5kp.
b) Es liegt ein einseitiger Hebel vor.
Die Momentgleichung lautet hier
F,(l+s)=Gs
_ Gs
P+
3 kp-425ecm
P e = 123kp.

Lehrbeispiel 35

Das Anheben des in Bild 78 angegebenen Stahldeckels von 25 kg Masse soll durch ein
Gegengewicht F erleichtert werden, das, an einem Seil ziehend, dem Gewicht des
Deckels gerade das Gleichgewicht halt. Wie grofl muf} die Kraft F sein?

Losung:

Zur Berechnung des erforderlichen Drehmo-
ments wird der Abstand ! benétigt. Da das
Dreieck AOB rechtwinklig und gleichschenklig
(wegen des Winkels 45°) ist, gilt nach dem Lehr-
satz des PYTHAGORAS

s = 1% 4 2,

2= 522,

T

= 1/2sll§.

Bild 78. Stahldeckel mit
Zugvorrichtung
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Das rechtsdrehende Moment ist daher
Fl =1, FsY2.

Das linksdrehende Moment ist G - 1/, s. Im Gleichgewichtsfall ist demnach
1, Fs V2 = 1/,Gs.

Nach Division durch !/, s erhalt man
F=GYy2=":6}2.

Sie erkennen, dall das Ergebnis unabhingig von s ist. Mit ¢ = 25 kp folgt

25 -1,4142
F= "_kBO'—

&~

—17,7kp.

Zusammenfassung

Beim zweiseitigen Hebel liegt der Drehpunkt zwischen Kraft und Last, beim ein-
seitigen Hebel wirken alle Krifte auf derselben Seite vom Drehpunkt.

Es herrscht Gleichgewicht, wenn die Summe der linksdrehenden Momente gleich der
Summe der rechtsdrebenden Momente ist. Unter dem Drehmoment wird das Produkt
aus der Kraft und dem (senkrechten!) Abstand ihrer Wirkungslinie vom Drehpunkt
verstanden.

Ein Kérper ist im Gleichgewicht, wenn er im Schwerpunkt unterstiitzt wird oder
wenn der Unterstiitzungs- bzw. Aufhiangepunkt genau unter bzw. tiber dem Schwer-
punkt liegt. Je nach dem Verhalten des Korpers nach einer Gleichgewichtsstérung
unterscheidet man das stabile, labile und indifferente Gleichgewicht.

Ubungen

69. An einem zweiseitigen Hebel wirken 18 cm links vom Drehpunkt 87 p und 26 cm
rechts vom Drehpunkt 55 p. Auf welcher Seite und in welcher Entfernung muf}
eine Kraft von 15 p wirken, wenn durch sie Gleichgewicht hergestellt werden soll?

70. Welches Drehmoment erzeugt eine Kraft von 18 kp, die 75 cm vom Drehpunl;t M
entfernt im Punkt F angreift und mit der Geraden MF einen Winkel von 60°
einschlie3t?

71. In welchem Gleichgewichtszustand befindet sich das Rad eines aufgebockten
Fahrrades, wenn sich das Ventil in die untere Lage einstellt?

72. Ein masselos zu denkender Stab von 60 cm Linge trigt an einem Ende ein Masse-
stiick von 30 g und an dem anderen Ende ein Massestiick von 80 g. Wo liegt
der Schwerpunkt des Stabes?

73. Wie groBl mul die Kraft Fg am nach unten ziehenden Seil mindestens sein,
damit das Moment des Sperrhebels bei einer Federkraft ¥ = 5 kp iiberwunden
wird (Bild 79)?
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74. Ein Winkelhebel, der um D drehbar ist, liegt bei B an einem Kontakt an. Wie
grof} ist die Druckkraft F'y, wenn F = 150 kp betriagt (Bild 80)?

Hinweis: Man kann das Hebelgesetz anwenden.

75. Der Blocksiulenkran in Bild 81
ist fr die Nutzlast 3.2 Mp be-
rechnet. Sein Ausleger wird in
der weitesten Ausladung — diese
betragt 22 m — durch F = 3 Mp
in senkrechter Richtung belastet.
Welche Zugkraft F, ist in der
Kolbenstange der hydraulischen
Verstelleinrichtung zu erzeugen,
damit der Ausleger im Gleichge-
wicht ist? Das Eigengewicht des
Auslegers ist in der Last bertick-

sichtigt. Die fiir die Berechnung Bild 79, sperre
erforderlichen MaBe sind Bild 82
zu entnehmen. 8
| fk
f= Y
= 0
S

50

Il 80, Kontakthebel

22000 mm

Bild &1, Portulkran T4l 822, Schemn zur Bestimmung der Drehmonmente
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|
*G=‘15kp

Bild 33. Spannrolle Bild 84. Konterringschliussel

76. Welche Spannkraft Fg wird durch den in Bild 83 dargestellten Seilspanner hervor-
gerufen? k = 70 cm, I = 25 cm.

77. Wie grof} sind die Krifte F, und F, an den Mitnehmerbolzen des in Bild 84 ge-
zeigten Konterringschliissels, wenn an ihm ein Moment von 7 kpm wirkt?

4.4, Druck und Reibung

4.4.1. Druck

Betrachten Sie ein schweres Fahrzeug, das auf weichen Untergrund geraten ist! Es
sinkt je nach Bodenbeschaffenheit mehr oder weniger tief ein. Doch hingt die Tiefe
des Findringens nicht nur von der Bodenbeschaffenheit ab, sondern es spielen dabei
noch zwei andere Faktoren eine ausschlaggebende Rolle: Einmal das Gewicht des
Fahrzeuges — je schwerer es ist, um so tiefer dringt es ein, zum anderen die Auflage-
flache — je groBer diese ist. um so weniger sinkt es ein.

Die physikalische GroBe, die beide Faktoren erfalBit, ist der Druck. Dieser Druck ist,
wie eben beschrieben, dem Gewicht, also der Kraft, direkt proportional, der Flache,
auf die die Kraft wirkt, jedoch indirekt proportional. Wir definieren daher als Druck
den Quotienten aus Kraft und Fliche.

Zur Berechnung des Druckes bringen wir ein Beispiel :

Ein quadratischer Pyramidenstumpf habe ein Gewicht von 8 kp. Die Grundfliche
sei ein Quadrat mit der Seitenldnge 6 cm. Steht der Stumpf auf der Grundfliche,
dann wirkt das Gewicht 8 kp auf eine Fliche von 36 cm2. Dreht man den Stumpf
um und stellt ihn auf die Deckflache, die cine Seitenlinge von 4 ecm haben soll, so
wirkt das Gewicht 8 kp auf cine Fliche von 16 em?. Auf 1 em? entfillt also im ersten
Fall der 36. Teil des Gesamtgewichts, im zweiten Fall der 16. Teil. Wir sagen, der
Druck p, ist im zweiten Fall groBer als der Druck p, im ersten Fall, obwohl die Kraft
(das Gewicht) in beiden Fillen dieselbe ist, ndmlich 8 kp betragt. '

Wir berechnen die beiden Driicke wie folgt:

8 kp :
=P 0,92 kp/em?
P1 = 36 ome 0,22 kp /em?,
_ 8kP _ o5kpem?
P2 = {gom? = 0,5 kp,/em?.

7 Studienmat. Physik
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Bild 85, Ermittlung der Druckkraft, die cin schrager Stiitzbalken
auf dic waagerechte Unterlage ausiibt

Als Einheiten fiir den Druck sind alle Einheiten zu-
lissig, die als Quotient einer Krafteinheit und einer
Fliacheneinheit gebildet werden. Wir kommen auf diese 3
Frage im niichsten Abschnitt zuriick. {

Bisher — auch in unseren Beispielen — haben wir still-
schweigend angenommen, daB} die Kraft auf eine waage-
rechte Unterlage wirkt, also senkrecht zur gedriicktén |
Fliche. Schon bei jeder bergan oder bergab filhrenden !!/E A
StraBe driickt das Gewicht des Fahrzeuges nicht mehr _ YA
senkrecht auf die Unterlage, und wenn man andere
Druckkrifte als nur das Gewicht beriicksichtigt, steht die Kraftrichtung nur selten
senkrecht zur gedriickten Fliche. Bild 85 zeigt Ihnen das fiir die Druckkraft F eines
Stiitzbalkens, die unter einem Winkel « auf die Auflagefliche driickt. Versuche
zeigen, daB in diesen Fillen nicht die gesamte Kraft F den Druck bestimmt, sondern
statt F immer nur die senkrecht zur gedriickten Fliche wirkende Komponente Fy
(siehe Bild 85), die sogenannte Normalkrajt, zur Berechnung des Druckes verwendet,
werden kann. In solchen Fillen mu83 man deshalb die Druckkraft ¥ zunichst nach
dem Parallelogrammsatz in zwei Komponenten zerlegen:

1. in die senkrecht zur Unterlage wirkende Normalkraft Fy,
2. in die parallel zur Unterlage gerichtete Tangentialkraft Fr.

Zur Berechnung des Druckes, der auf die Unterlage wirkt, wird nur die Normalkraft

verwendet.
Sie werden das ohne weitcres einsehen. Da die andere Komponente F; in waage-

rechter Richtung wirkt, kann sie auch keine Wirkung auf die Unterlage ausiiben.
Nunmehr kénnen wir auch eine allgemeingiiltige Definition fiir den Druck festlegen:

Unter Druck versteht man den Quotienten aus der Normalkraft und der Fliche,
auf die die Normalkraft einwirkt.

Als Gleichung schreibt man dies:

p="Fy/A (20)

SchlieBlich sei darauf hingewiesen, daf} auch flissige und gasformige Koérper Driicke
erzeugen konnen. Vom Luftdruck, dem alle Korper auf der Erde ausgesetzt sind,
merken wir wenig oder gar nichts. Den Luftdruck beachten Sie auch dann nicht,
wenn Sie z. B. den Druck in einem Dampfkessel oder einem Autoreifen mit dem
Druckmesser kontrollieren, denn dieser zeigt lediglich den tiber den Luftdruck hin-
ausgehenden Druck, d. h. den Uberdruck an. Fiir die Berechnung von Druckbehil-
tern und Anlagen braucht meist nur der Uberdruck beriicksichtigt zu werden (Lehr-
beispiel 37). DaB auch in Fliissigkeiten Driicke auftreten konnen, sei hier nur er-
withnt. Uber die GesetzmiBigkeiten des Druckes in Fliissigkeiten und Gasen werden
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Sie spater im Studium bei der Behandlung der Mechanik der Fliissigkeiten und der
Gase unterrichtet.

Zum SchlufB noch ein wichtiger Hinweis: Halten Sie die Begriffe Druck und Druck-
kraft scharf auseinander (anstelle von Druckkraft ist es besser, nur von Kraft zu
sprechen!) Es wird in der Umgangssprache hiufig das Wort Druck gebraucht, wo
eine Druckkraft gemeint ist.

Lehrbeispiel 36

Welchen Druck iibt eine Stinderbohrmaschine von 1,8 t Masse und 80 dm? Grund-
fliche auf den Fullboden aus?

Lésung:

Bekannt sind die Kraft F = 1,8 Mp und die Fliche 4 = 80 dm?2. Mit diesen GréBen
erhalten Sie nach Gleichung (20)

1,8Mp _ 1,8-1000kp _ 18kp

g =P e AVVVARD T _ o
P=Fld =i = 80 100 cm® —.80 em2 — 2222 kp/em®.

4.4.2, Druckeinheiten

In 4.4.1. war Thnen bercits gesagt worden, daf3 als Druckeinheiten alle Einheiten
in Frage kommen, die sich als Quotienten aus Kraft- und Flicheneinheiten bilden
lassen.

Wir beginnen mit der kohdrenten Druckeinheit. In 4.1.4. lernten Sie als kohérente
Krafteinheit das Newton kennen, das als 1 kg m/s? definiert ist. Als Flicheneinheit
benutzen wir das Quadratmeter und erhalten so die Druckeinheit

kg ms-2

1N/m? = 1= — =1kg/ms?. (IV)

Dieser Druck 1 N/m? ist sehr klein. Sie erinnern sich, daBl 1 N etwa gleich dem Ge-
wicht ist, das ein Massestiick von 100 g ausiibt. Wenn diese Kraft nun auf die grofie
Fliche von 1 Quadratmeter gleichmaBig verteilt wird, dann liegt ein Druck von
1 N/m? vor.

Eine groBere Druckeinheit ist das Bar (Kurzzeichen: bar):

1 bar = 165 N/m? = 100000 N/m? V)

Aus dem tdglichen Wetterbericht ist Thnen sicherlich der 1000. Teil dieser Einheit,
das Millibar, bekannt. In dieser Einheit wird meist der Luftdruck gemessen. 1 mbar
ist gleich 100 N/m?2.
Selbstverstindlich kann als Krafteinheit auch das Kilopond benutzt werden. Als
Fliacheneinheit wahlt man dazu meist das Quadratzentimeter. Der Zusammenhang
mit der kohirenten Einheit ist leicht zu finden:

9,80665 N

L kp/em? = (00t e = 98066,5 N/m
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Dieser Druck von 1 kp/em? ist anndhernd gleich dem Druck, den die Lufthiille der
Erde, die Atmosphire, auf die Erdoberfliche ausiibt. Deshalb bezeichnet man

1 kp/em? auch als technische Atmosphdre (Kurzzeichen: at).

Wir halten also fest:
1at = 1kp/em?® = 98066,5 N/m?

(V1)

Beim Vergleich von (V) und (VI) bemerken Sie, daB 1 at nahezu gleich 1 bar ist:

1 at = 0,980665 bar

Lehrbeispiel 37

Welche Kraft sucht den an ein T-Stiick angeschraubten Blindflansch (Bild 86) abzu-
heben, wenn durch das T-Stiick Dampf von 25 at Uberdruck geleitet wird?

Loésung:
Gegeben: p = 25at Gesucht: F
= 40 mm
Aus (20) folgt
F = pA

Als Fliche ist die Kreisfliche 4 = rd?/4 anzusetzen, so
daB sich ergibt

F = npd?/4 .

Mit den gegebenen Werten:

= -25 at - 1600 mm?* _ 100 = kp cm?

F : EE — 314 kp

Lehrbeispicl 38

Blindflansch

$40

Bild 86. T-Stiick mit Blind-
flansch

Im Wetterbericht wurde der Luftdruck mit 1018 mbar angegeben.

a) Rechnen Sie diesen Druck in technische Atmosphiren um.

b) Welche Kraft wirkt auf 1 m? der Erdoberfliche?

Loésung:
1,018 at .
a) 1018 mbar = 1,018 bar = 6;9”8'(7)6675' = 1,035 at
b) Gegeben: p = 1,035 at Gesucht: F
A=1m?
Nach F = p 4 ist
po L3R My as kp — 10,35 Mp .

cm?
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4.4.3. Haftreibung

Alle physikalischen Versuche der Mechanik werden durch eine niemals vermeidbare
FErscheinung beeintrichtigt, die Reibung. Um beispielsweise das Hebelgesetz zu
bestatigen, wurde nach Bild 64 an ecinen leicht drehbaren Stab beiderseits ein Masse-
stiick angehangt. Theoretisch geniigt bereits das Gewicht einer Miicke, das zusétzlich
auf einer Hebelseite wirkt, um den Hebel zum Umschlagen zu bringen. Im Versuch
wird trotzdem der Hebel in der waagerechten Lage verharren, weil zwischen Achse
und Lager Reibung vorhanden ist,

die erst bei gréBerer Belastung iber- £ F
. o ; R
wunden wird. Sie konnen sich das -=— T 2
Wesen der Reibung auf recht ein- 777
fache Weise durch folgenden Ver- /lG-F
such klarmachen. Ein Holzklotz von N

1,2 kp Gewicht liege auf einer waage-

rechten Tischplatte (Bild 87). An

einem Haken ist eine Schnur be- F
festigt, die iiber eine Rolle Jaufend
eine Waagschale tragt. Auf die Waag-
schale legen Sie nun einige Wige-
stiicke. Trotz der anhidngenden Last,
die als Zugkraft F waagerecht am
Holzklotz zieht, bewegt sich dieser nicht von der Stelle. Der Klotz haftet gleichsam
auf seiner Unterlage. Man sagt, dall seine Haftreibung groBler ist als die wirkende
Kraft und versteht unter Haftreibung eine Gegenkraft zur wirkenden Kraft F. Diese
Gegenkraft heillt Rewbungskraft Fg. Legen Sie vorsichtig noch mehr Wigestiicke zu.
Noch bei F = 790 p liegt. der Klotz ruhig da. Bei ¥ = 800 p rutscht der Klotz, dem
Zug von F folgend, iiber den Tisch. Das heilit aber, der Wert der Reibungskraft,
also der Haftreibung, liegt hier zwischen 790 p und 800 p.

Iis erhebt sich nun die Frage: Wovon ist die Grofie der Reibungskraft abhidngig, und
wie 1aBt sic sich berechnen? Es wire umstindlich, wollte man in jedem Einzelfall
die Reibungskraft durch Experimente feststellen.

Zur Beantwortung der Frage verdndern wir in der Versuchsanordnung von Bild 87
zundchst das Gewicht des Klotzes und bestimmen nun jeweils die Haftreibung. Da-
bei zeigt sich z. B., dal} sich bei Verdoppelung des Gewichtes der doppelte Wert fir
die Haftreibung ergibt, und ganz allgemein gilt:

Bild 87. Messung der Reibung

Die Reibungskraft ist proportional der Normalkraft:
Iy ~ Fy (21a)

Wir kippen den Klotz, so daB3 er hochkant und damit auf einer kleineren Fliche
steht. Einc erneute Bestimmung der Reibungskraft fithrt zu dem Ergebnis, dafl die
Reibungskraft von der Grofle der Auflagefliche nicht abhingt. Es ergibt sich dieselbe
Reibungskraft wie im ersten Versuch. Sie werden aber leicht einsehen, daf die Rei-
bungskraft von der Beschaffenheit der sich beriihrenden Flichen abhingt. Bei polier-
ten Flichen ist die Reibung kleiner als bei rauhen Flidchen.
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Der Proportionalitdtsfaktor, der noch eingefithrt werden mu8, damit aus der Propor-
tionalitdt (21a) eine Gleichung wird, erfafit diese Beschaffenheit rechnerisch. Er ist
eine Zahl, die vom Material beider Flachen, die aufeinander reiben, abhingt. Man
nennt diese Zahl die Haftreibungszahl oder den Haftretbungskoeffizienten und gibt
ihr das Symbol p,. Damit wird aus (21a):

Fp = poFy (21)

Die Bedeutung des Reibungskoeffizienten sehen Sie sehr anschaulich, wenn Sie (21)
nach y, auflosen:

ly = Fp[Fyx

Der Reibungskoeffizient u, ist also gleich dem Verhiltnis der Reibungskraft zur
Normalkraft; er gibt an, welcher Bruchteil der Normalkraft (bei waagerechter Unter-
lage des Gewichts) aufgebracht werden muB, um den Kérper in Bewegung zu setzen.
Im eingangs erwidhnten Beispiel war Fy = ¢ = 1,2 kp und Fy = 800 p. Der Haft-
reibungskoeffizient ist daher

800 p

#OZFR'FN=(2WP=O,67

Je groBer die Reibungszahl ist, um so groBer ist die Reibung. Die Reibungszahl ist
immer kleiner als 1; sie wird fiir bestimmte Fille durch Versuche bestimmt und in
Tabellenbiichern angegeben (siehe Tafeln 6 und 7). Die Zusammenfassung der Ver-
suchsergebnisse fiihrt zu den folgenden Merksitzen:

Die Reibungskraft ist parallel zur Gleitfliche und entgegengesetzt zur wirkenden
Kraft gerichtet. Sie hangt ab

1. von der Normalkraft, mit welcher der reibende Korper auf seine Unterlage
driickt und

2. von der Beschaffenheit der aufeinander gleitenden Oberflichen, ausgedriickt in
der Reibungszahl u,.

Sie hangt nicht ab von der GroBe der sich berithrenden Flichen.

Ein weiteres Beispiel:

Vor IThnen steht z. B. eine Kiste von 65 kp Gewicht. Um diese von der Stelle zu
riicken, mufl nach dem soeben Gesagten eine Reibungskraft von Fy = 0,67 - 65 kp =
= 43,6 kp tiberwunden werden. Sie miissen also eine Kraft von mindestens 43,6 kp
aufwenden.

Nebenbei mufl bemerkt werden, dal} diese Zahlen nur Richtwerte sind. Beispiels-
weise kann Holz ganz verschiedene Oberflichenbeschaffenheit aufweisen: roh, ge-
hobelt, poliert, es kann sich um weiches oder hartes Holz der verschiedensten Art
handeln usw. Kommt es darauf an, den genauen Wert zu haben, so mufl man die
Reibungszahl fiir den jeweils vorliegenden Fall experimentell ermitteln.
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Die Zahlen der Tafel 6 zeigen Thnen auch den groen Wert von Schmiermitteln; diese
setzen die Reibung betrachtlich herab. Sie erkennen aber auch die Gefahren, die sich
fiir jeden Kraftfahrer durch die Verlingerung des Bremsweges bei nasser Oberfliche
der Fahrbahn ergeben.

Tafel 6: Haft- und Gleitreibungszahlen

Material Haftreibung Gleitreibung s

Ho trocken geschmiert mit Wasser
Stahl/Stahl 0,15 0.1 0,009
Metall/Holz 0,6---0,5 0,5.--0,2 0,08-..0,02 0,25
Holz/Holz 0,65 0.4-.-0,2 0,16---0,04 0.25
Leder/Graugufl 0,56 0,28 0,12 0,38
Eisen/Eis 0,014

Kraftfahrzeug mit
blockierten Réadern

auf Pflaster 0.5 0.2
auf Asphalt 0.3 0.15
4.4.4. Gleit- und Rollreibung

InTafel 6 finden Sie neben den in 4.4.3. erklarten Haftreibungszahlen u, noch weitere,
die als Gleitreibungszahlen u bezeichnet sind. Es wird Ihnen auffallen, daB diese fiir die
einzelnen Stoffpaare stets kleiner sind als die entsprechenden Haftreibungszahlen.
Welche Bedeutung haben sie? Sie wissen aus Erfahrung, daf} es stets einen grofieren
Kraftaufwand erfordert, einen ruhenden Koérper in Bewegung zu setzen als ihn in
Bewegung zu halten. Das hat neben der Trigheit den Grund darin, daf} die Reibung
wahrend der Bewegung (wihrend des Gleitens) kleiner ist als beim Beginn der
Bewegung.

Wenn wir also die Reibungszahlen bestimmen, indem wir nicht einen ruhenden Koér-
per in Bewegung bringen, sondern einen bereits in Bewegung befindlichen Kérper in
Bewegung halten, so ergeben sich stets kleinere Werte. Man nennt die wiahrend der
Bewegung wirksame (kleinere) Reibung die Glettretbung, die entsprechenden Zahlen
die Gleitreibungszahlen. In vielen Fillen ist sie nur etwa halb so grol wie die ent-
sprechende Haftreibung. Auf das Beispiel mit der Kiste aus 4.4.3. angewandt, heilt
dies, daBl nur noch eine Zug- oder Schubkraft von 22 kp notwendig ist, um die Kiste
in Bewegung zu halten.

Noch kleinere Reibungszahlen ergeben sich, wenn die beiden Stoffe nicht aufeinander
gleiten, sondern aufeinander abrollen. Man spricht dann von der Rollreibung. Tafel 7
zeigt Thnen einige Werte und zugleich die grofle Bedeutung der rollenférmigen Auf-
lage bei allen Fahrzeugen, also der Rader. Bei der Rollreibung ist der Unterschied
zwischen der Reibung beim Anfahren und wihrend der Bewegung unerheblich.



104 4. Dynamik

Tafel 7: Rollreibungszahlen ur

StraBenbahn (Rillenschienen) . . . . . . 0.006
Eisenbahn . . . . . . . . . . . . . . 0,002
Fuhrwerk auf gutem Erdweg . 0,05
Fuhrwerk auf Asphalt . . . . . 0,015
Kraftwagen auf Pflaster 0,04
Kraftwagen auf Asphalt . . . . 0,033

Am kleinsten ist die Reibung bei Schienenfahrzeugen. Fiir einen Giiterzug von
40 Wagen mit je 20 t Ladung ergibt die Reibungszahl up = 0,002, dal3 eine Kraft von
nur 0,002 - 80000 kp = 1600 kp aufzuwenden ist, um auf waagerechter Strecke die
Rollreibung zu iiberwinden.

Lehrbeispiel 39

Welche Kraft ist nétig, um ein Fuhrwerk mit einem Gewicht von 1250 kp auf gutem,
waagerechtem Erdweg vorwirtszuziehen?

Losung:

Gegeben: Fy =G = 1250 kp Gesucht: Fy
- ur = 0,05 (nach Tafel 7)

Nach (21) ist

Iy = ugFy = 0,05 1250 kp = 62.5 kp.

Lehrbeispiel 40

Mit einer Zugmaschine soll ein auf der Strafle liegender, machtiger Eichenstamm vom
Gewicht 1350 kp weggezogen werden. Der Haftreibungskoeffizient ist uo, = 0.7, der
Gleitreibungskoeffizient betriagt x4 = 0,3.

a) Welche Haftreibung ist zu iiberwinden ?
b) Welche Gleitreibung muf} iiberwunden werden ?

¢) Mit welchem Gewicht mul} die Zugmaschine mindestens die antreibende Radachse
belasten, damit sie den Stamm iiberhaupt wegziehen kann? Hier ist von Ihnen die
Haftreibung zwischen den Gummirddern der Zugmaschine und dem Asphalt zu
beachten. Die Haftreibungszahl Gummi — Asphalt ist u, = 0,56.

Losung:
Gegeben: G = 1350 kp Gesucht a) F,
Moy = 0.7 b) F,
u=203 c) F,

Moz = 0,56
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a) Nach (21) ist mit Fy =/ und Fp = F,

F, Hodl == 0T L3S0 Lp oo D kp

b) Entsprechend ist

£y 08 1350 kp o=

105

¢) Der Haftreibungswiderstand der Zugmaschine mull mindestens gleich dem Haft-
widerstand des Bichenstammes sein. Dieser war £, Die zugehorige Normalkratt

wird nach (21) herechnet :

Fyo ot

945 kp

Fz e If-’u;! = (.56

Zusammenfassung

1690 kp

Unter dem Druck versteht man den Quotienten aus der Normalkraft und der Flache,
auf die die Kraft wirkt. Schrig auf die Grandfliche wirkende Kyifte sind in die
beiden Komponenten Normal- und Tangentialkraft zu zerlegen.

Die kohirente Drockeinheit ist 1 Nfm? = 1 kg/m &% Als inkohérente Druckeinheiten
lernten Sie  bisher das Bar und ie technische Atmosphiire (1 at = 1 kp/em?)

kennen,

Unter der Reibung falit man alle Krifte
zusammen. die die Bewegung eines Kér-
pers hemmen. Man unterscheidet Haft-,
Gleit- und Rollreibung. Die Reibangs-
kraft ist der Normalkraft proportional.
aber unabhingig von der Grolle der sich
berithrenden  Fliachen,  Die stoffliche
Beschaffenheit der Bervithrungstlichen
kommt in den Reibungskoceffizienten
zum Ausdruels.

Cbungen

78, Welchen Vortetl bieten Raupenfahr-
zenge !

7. Dic in Bild 88 gezeigte hydraulische
LFinstanderpresse erzeugt eine Prel3-
kraft von 160 Mp. Wie grol3 ist der
Pruck in technischen Atmosphiiren.

Bkl ~=, Hydranlische Einstinlerprosse
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der bei dieser Belastung auf ein Werkstiick von 160 cm? Auflagefliche erzeugt
wird ¢
80. Welche Kraft wirkt unter dem Druck von 3 at auf die Fliche von 1 m??

81. Wieviel Bar betrigt der Druck, den eine Ziegelmauer (Dichte 1,8 g/ecm?, Hohe 3 m,
Linge 15 m, Dicke 25 cm) auf den Baugrund ausiibt? .

82. Wie groB ist die Haftreibungszahl, wenn eine Kraft von 55 kp hinreicht, um einen
Gegenstand von 85 kp Gewicht auf waagerechtem Boden in Bewegung zu setzen?

83. Wie schwer darf gé/ Holzkiste sein, wenn sie auf nassem Holzboden durch eine
Kraft von 25 kp im Gleiten erhalten werden soll?

84. Auf der 120 cm? grofen Grundfliache eines Flachschiebers lastet ein Dampfiiber-
druck von 8 at. Welche Reibungszahl ergibt sich hierbei, wenn zur Bewegung des
Schiebers 105 kp erforderlich sind ?

4.5. Arbeit, Energie, Leistung

4.5.1. Mecchanische Arbeit

In den vorangegangenen Abschnitten haben Sie sich vorwiegend mit der Bestimmung
von Kraften beschiftigt. Wozu aber werden Krafte eingesetzt? Letzten Endes doch
immer, um mit ihrer Hilfe Arbeiten zu verrichten. Bei der Erwihnung des Wortes
Arbeit werden Sie sich an die tausendfaltigen Verrichtungen des werktatigen Menschen
erinnern, an groBe und schwere Maschinen, deren er sich dabei bedient.

Wenn Sie sich nun vom physikalischen Standpunkt aus mit der Arbeit beschiftigen
sollen, miissen Sie zunichst wissen, wie Sie die jeweils verrichtete Arbeit objektiv
messen konnen. Dabel erwarten Sie selbstverstandlich, daf3 das dabei verwendete
Maf fiir moglichst alle Arten von mechanischer Arbeit Anwendung finden kann. An-
gesichts der groflen Vielfalt von Arbeitsvorgingen scheint das auf den ersten Blick
schwierig zu sein. Und doch ist es recht einfach. Stets handelt es sich ndmlich darum,
dafl mit einer bestimmten Kraft ein bestimmter Weg zuriickgelegt wird. Je grofier
die Kraft F und je linger die bewiltigte Wegstrecke s ist, desto grofer ist die ver-
richtete Arbeit W. Damit ergibt sich zwangslaufig die wichtige Definition

Arbeit = Kraft mal Weg

W = Fs (22)

Angenommen, neben Thnen steht ein Eimer Wasser. Er soll eine Masse von 15 kg haben.
Um ihnin der Hand zu halten, miissen Sie eine Kraft von 15 kp aufwenden ; denn, wie
Sie wissen, stellt das Gewicht seinem Wesen nach eine Kraft dar. Heben Sie jetzt den
Eimer auf den Tisch, so legen Sie mit einer Kraft von 15 kp den Weg von 1,10 m
zuriick. Die dabei vollbrachte Arbeit berechnen Sie dann zu

W =13kp-11m = 16,5 kpm .
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Bei diesem Beispiel handelt es sich also um das Heben eines Kérpers. Statt der all-
gemeinen Ausdrucksweise Arbeit = Kraft - Weg konnen Sie in solchen Fillen auch
sagen:

Arbeit = Gewicht - Hohe

W==Gh (22 a)
bzw. W=mgh (22 b)

Falsch wire es aber, wenn Sie diese Berechnungsweise dort anwendeten, wo gar
keine Last gehoben wird. Sie wollen beispielsweise wissen, welche Arbeit erforderlich
ist, um einen 15 kp schweren Wagen 4 m weit zu ziehen. Die Armkraft, mit der Sie
in der Bewegungsrichtung des Wagens ziehen, soll 2 kp betragen.

Mit dieser Zugkraft iiberwinden Sie die Reibung. Die Arbeit betrigt hierbei

W=Fs=2kp-4m = 8kpm.
Sie haben gemerkt, worauf es ankommt:
Nur die Kraft, die in Richtung des Weges wirkt, verrichtet eine Arbeit.

Keinesfalls diirfen Sie fiir ' das Gewicht des Wagens einsetzen, denn sonst erhalten
Sie die Arbeit, die notig wire, um den Wagen um 4 m zu heben. Die Kraft, die in
Richtung des Weges wirkt, ist erheblich kleiner. Nur sie kommt fiir die Berechnung
der verrichteten Arbeit in Frage.

4.5.2. Arbeitseinheiten

In 4.5.1. wurde die Arbeit als Produkt aus Kraft und Weg definiert. Entsprechend
ergeben sich die Einheiten der Arbeit als Produkte aus Krafteinheiten und Weg-
(Langen-) Einheiten. Wir beginnen auch hier mit der kohdrenten Arbeitseinheit.
Sie wird gebildet aus der Krafteinheit Newton und der Lingeneinheit Meter. Wir
erhalten so die Arbeitseinheit Newtonmeter. Diese Einheit filhrt den Namen Joule!)
(Kurzzeichen: J).

Merken Sie sich:

Das Joule ist die Arbeit, die verrichtet wird, wenn mit der Kraft 1 Newton ein
Weg von 1 Meter zuriickgelegt wird.

1J =1Nm =1 kg m?/s? (VII)

Legt man als Krafteinheit das Kilopond zugrunde, so erhilt man, wie Sie bereits in
den beiden Zahlenbeispielen sahen, zwangslaufig die inkohidrente Arbeitseinheit Kilo-
pondmeter. Der Zusammenhang mit dem Joule (Newtonmeter) wird leicht her-
gestellt, wenn Sie (ITII) beachten. Multiplizieren Sie nidmlich beide Seiten dieser
Gleichung mit Meter, so folgt

1 kpm = 9,80665 Nm = 9,80665 J . (VIII)

1y PrescorT JOULE (spr. etwa djul), engl. Physiker, 1818 bis 1889
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Fiihrt man das Joule auf die Grundeinheiten Meter, Sekunde und Kilogramm zu-
riick (VII), so folgt

1 kpm = 9.80665 kg m?/s? .

4.5.3. Potentielle Energic

In 4.5.1. haben wir die Arbeit berechnet, die zum Heben eines Kérpers erforderlich
ist. Wir wollen nun tiber die Frage nachdenken, was aus der Arbeit, die zum Heben
des Korpers aufgewendet werden mulite, eigentlich geworden ist. Wodurch unter-
scheidet sich der neue Zustand des Koérpers vom fritheren?

Nehmen Sie an, es handle sich um eine groBere Menge Wasser, die in ein hochgelege-
nes Speicherbecken gepumpt wurde. AuBerlich ist dem Wasser zwar nichts Beson-
deres anzusehen, doch ist in ihm die Arbeit gespeichert, die beim Hochpumpen
aufgebracht werden multe. Man kann das Wasser durch ein Rohr wieder abflielen
und z. B. gegen das Laufrad einer Turbine stromen lassen. Die im Wasser gespei-
cherte Arbeit kommt dabei wieder zum Vorschein und kann nutzbringend verwertet
werden.

Wir bezeichnen dieses in einem Koérper enthaltene Arbeitsvermogen als Energie.

Mechanische Energie = Arbeitsvermégen eines Korpers

Manche Kraftwerke bedienen sich tatsichlich solcher Speicherbecken, mit denen
man Uberschiissige Energie gleichsam einlagern und in der Spitzenbelastungszeit
wieder entnehmen kann.

Ist die Energie dadurch entstanden, daf3 ein Koérper gehoben wurde, spricht man
insbesondere von potentieller Energie oder Energie der Lage:

Jeder Korper, der sich gegeniiber seiner Umgebung in hoherer Lage befindet,
enthdlt potentielle Energte.

Noch einige Beispiele fir die potentielle Energie: Lasten an einem Kran enthalten
grofle Fnergiemengen. Denken Sie ctwa an Grol3blockbauteile auf einer GroBbaustelle
oder Stahlblocke in einem Stahlwerk. Es ist deshalb nach den Arbeitsschutzbe-
stimmungen streng verboten, sich unter schwebenden Lasten aufzuhalten. Auflerdem
schreiben die Sicherheitsbestimmungen regelmifBige Uberwachung dieser Anlagen
vor. — Die Massestiicke an einer Standuhr miissen von Zeit zu Zeit hochgezogen wer-
den. Man fiithrt ihnen Energie zu, die sie im Laufe der Zeit wieder abgeben und die
dazu benutzt wird, die Uhr in Gang zu halten. Ein Blick auf die Massestiicke zeigt,
wic grol3 der Energievorrat noch ist.

Es ist nun klar, wie die potentielle Energie zu berechnen ist: Sie ist gleich der Arbeit,
die zum Heben des Koérpers aufgebracht werden muflte, nach (22b) also

Woo, = mgh (23)

4.5.4. Kinetische Energie

Vielleicht ist Ihnen bereits aufgefallen, daf8 die potentielle Energie niemals direkt
ausgeniitzt wird. Am Beispiel des Staubeckens wird das besonders deutlich. Ehe
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elektrische Energie gewonnen werden kann, mufl das Wasser durch ein Rohr mit
starkem Gefille der Turbine zugefiihrt werden. Im Fallrohr verliert das Wasser seine
potentielle Energie und erhilt mehr und mehr Bewegungsenergie oder kinetische
Energie.

Jeder bewegte Korper enthdlt kineltische Energie.

Wir wollen nun ausrechnen, wie grof3 die kinetische Energie ist, und bleiben bei
unserem Beispiel des Staubeckens. Die kinetische Energie entsteht aus der poten-
tiellen Energie, und ihr Betrag unten ist so grol wie der der potentiellen Energie
oben. Dieser ist nach (23)

Wy = mgh . 4
Aus (7a) ergibt sich

2
gh = 1'_) .

Setzen wir diesen Wert in (23) ein. so er-
halten wir

. 1 ;
" kin = 5 mp®

Wir haben jetzt W, statt W, geschrie-
ben, weil sich ja die potentielle Energie
auf dem Wege nach unten in kinetische
Energie verwandelt hat.

Sie erkennen aus (24), dall die Bewe-
gungsenergic eines Kérpers seiner Masse
proportional ist. Ein Leerzug hat weniger
kinetische Energie als cin Schwerlastzug,
der sich mit gleicher Geschwindigkeit be- Bkl 20, Falllwmmer (VER Schwermasehinenhan
wegt. Die Energie wiichst aber auch mit . Welnriel Raw Wilitan)

der Geschwindigkeit. genauer gesagt. mit

dem Quadrat der Geschwindigkeit. Wenn also die Geschwindigkeit eines Kérpers
verdreifacht wird, so steigt scine kinetische Inergie auf das Neunfache,

Zum Einschlagen grofler Pfihle verwendet man z. B. den Rammbir, einen schweren
Eisenkérper, den man langsam auf gréfiere Héhe anhebt und dann frei herabfallen
lafit. In GroBschmieden werden Fallhimmer eingesetzt (Bild 89).

Auch bei ihnen wird die potentielle Energie in kinetische Energie umgewandelt.

(24)

4.5.5. Energiesatz der Mechanik

Wir hatten im letzten Abschnitt schon festgestelit, dall sich die potentielle Energie
in kinetische Energie verwandelt. Diese Umwandlung erfolgt natiirlich auf der gan-
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Bitd 80. Energiesatz der Mechamik

— = >

zen Fallstrecke. In dem Malle, wie
potentielle Energie verschwindet,
wird die kinetische Energie grofer.
Bild 90 veranschaulicht diesen Vor-
gang. Bilden wir in beliebigen Ho-
hen die Summe aus potentieller und
kinetischer Energie, so finden wir,
dal} diese Summe konstant ist:

WDOL"‘ Wk]n — .[Vnu

(25)

Das ist der Energiesatz der Mechanik, der spater (vgl. 7.3.3.) noch zum Gesetz von
der Erhaltung der Energie erweitert werden wird.

Dieser Energiesatz erklirt das sogenannte Perpefuum mobile fir unmoglich.
Man versteht darunter eine Maschine, die mehr Energie abgibt als sie aufnimmt.
Viel Zeit ist frither aufgewendet worden, um derartige Maschinen zu konstruieren.
Nach dem Energiesatz sind solche Versuche zum Scheitern verurteilt.

Lehrbeispiel 41

Welche potentielle Energie enthilt ein Block von 2,5 t, der in einem Stahlwerk an
einem Kran in 4 m Hohe hingt?

Losung:
Gegeben: m = 2500 kg Gesucht: W,
h = 4m

Nach (23) ist Wy, = mgh; Wy = 2500 kg- 9,81 5 -4m
W oo, = 98100 J = 98,1 kJ

Lehrbeispiel 42

Ein Kraftwagen (Gesamtmasse 1,5t) hat eine Geschwindigkeit von 72 kmm/h. Wie
groB ist die Bremsstrecke auf Asphalt bei blockierten Radern?

Loésung:

Gegeben: m = 1500 kg Gesucht: s
v=  20m/s
u= 0,3 (nach Tafel 6)

Die kinetische Energie wird durch die Reibung vernichtet;
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Reibungsarbeit (Reibungskraft - Bremsweg) = kinetische Energie:
Fys = Wi,

Nach (21) ist mit Fy =m g
Fy = pmg .

Die kinetische Energie ist nach (24)

1
Wiin = 5 mo? .

2
In die Ausgangsgleichung eingesetzt, ergibt sich
1 2
umgs = 9 nwe .

Daraus folgt

8 = .
2ug

Beachten Sie, daBl das Ergebnis unabhingig von der Masse des Fahrzeugs ist.
Einsetzen der Werte:
400 m? 2
© T s0.03.08Im T 2
4.5.6. Schicfe Ebene

In Bild 91 wird ein schweres Fal} verladen. Die Kraft eines einzelnen Mannes reicht
nicht aus, die Last direkt auf den Wagen zu heben. Deshalb wird eine Schrotleiter
benutzt. Hierbei wird offenbar weniger Kraft benotigt als beim direkten Anheben.
Dies geht auch aus der in der Skizze eingetragenen Kraftzerlegung hervor, die zeigt,
daB die Hangabtriebskraft Fy wesentlich kleiner als das Gewicht @ ist.

Nach (17) gilt die Gleichung:
Fy = Ghil

Bild 91. Anwendung
der schiefcn Ebene
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Is soll nun die bewiltigte Arbeit berechnet werden. Dazu miissen Sie die Kraft Fy
mit dem zuriickgelegten Weg ! multiplizieren.

Sie erhalten

W= Fyl — @ ’l‘ I oder kiirzer W —Gh.

Was sagt Thnen dieses einfache Ergebnis? Die Arbeit, die aufzuwenden ist, um einen
Korper auf einc bestimmte Hohe zu heben, ist nur vom Gewicht ¢ des Korpers und
der Hohe & abhéngig. Sie ist gleich der Zunahme der potentiellen Energie. Hebt
man das Fall ohne Benutzung der schiefen Ebene auf den Wagen, wird die gleiche
Arbeit benotigt. Allerdings hitte man in diesem Fall die Kraft ¢ aufwenden miussen.
Sie sehen also: Die Verwendung der Schrotleiter fithrt zu einer Einsparung an Kraft,
aber nicht zu einer Einsparung an Arbeit.
Ohne Schrotleiter muf} eine grofle Kraft auf
kurzem Weg wirken, mit der Schrotleiter
mufl eine kleine Kraft auf langem Weg
wirken.

Was Sie hier gefunden haben, gilt fir alle
dhnlichen Vorrichtungen wund iiberhaupt
alle Maschinen. Auch der Hebel gehort hier-
her.

(O

Uberall gilt nach dem Energiesatz der Me-
chanik:

Bild 92. Intstehung ciner Schraubenlinie
An Arbeit kann nichts gespart werden.
Was man an Kraft spart, muBl man an Weg zusetzen.

Stellen Sie sich jetzt vor, die schiefe Ebene werde um eine Achse gewickelt (Bild 92).
Was aus der Hypotenuse der schiefen Ebene wird, ist unschwer zu erkennen: eine
Schraubenlinie. Die Schraube wirkt wie eine schiefe Ebene. Auch sie spart Kraft auf
Kosten des Weges. Viele Umdrehungen mufl man ausfithren, ehe sich die Backen einer
Schraubzwinge schlielen. Dafiir pressen sie sich mit um so groflerer Kraft aneinander.
Von der einfachen kleinen Befestigungsschraube bis zur Spindelpresse einer Maschi-
nenfabrik gibt es da die verschiedensten Anwendungsmoglichkeiten. Als schiefe
Ebene wirkt auch der Keil, den man z. B. zum Spalten eines derben Holzklotzes
verwenden kann. Zwar mull man oftmals zuschlagen und den Keil tief ins Holz
hineintreiben, ehe ein Spalt von nennenswerter Breite entsteht. Doch was kiimmert
uns der lange Weg, wenn es nur gelingt, den Klotz ohne allzu grole Kraftanwendung
zu zerteilen!

4.5.9. Rollen und Flaschenziige

Von den zahlreichen weiteren Moglichkeiten, groBe Kraftwirkung bei verhiltnis-
milig geringem Kraftaufwand zu erreichen, betrachten Sie nun noch die weit-
verbreiteten Rollen und Flaschenziige.

Bild 93 zeigt Thnen ein leicht drehbares Rad, das an einem Balken aufgehiangt ist.
Ein Seil lauft iiber eine Rolle am Rollenumfang, und an einem Seilende hangt der zu
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hebende Kérper mit dem Gewicht G. An dieser festen Rolle besteht Gleichgewicht,
wenn beiderseits die gleiche Kraft wirkt. Wollen Sie den Koérper um eine bestimmte
Strecke A heben, so miissen Sie am anderen Seilende mit der Kraft, die gleich dem
Gewicht ist, den gleichen Weg zuriicklegen. Mit der festen Rolle kénnen Sie dem-
nach keine Kraft sparen; denn sie dient letzten Endes nur dazu, die oftmals kérper-

Bild 93. Feste Rolle

8 Studienmat. Physik

schidigende und gefahrliche Arbeit des He-
bens durch sicheres und bequemes Ziehen zu
ersetzen.

Die Verbindung einer festen mit der losen
Rolle zeigt Thnen Bild 94. Das Seil schlingt
sich um beide Rollen. An der losen Rolle ist
der Korper mit dem Gewicht G befestigt.
Was ergibt sich nun, wenn man das freie
Ende des Seiles um ein bestimmtes Stiick A
nach unten zieht? Die lose Rolle hebt sich
dabei natiirlich mit —aber nur um die halbe
Strecke! Bei genauerem Zusehen werden Sie
das auch verstindlich finden, da sich die
Verkiirzung 4 des Seiles auf zwei Abschnitte
von je h/2 verteilt. Da der Kraftweg doppelt
so groB ist wie der Lastweg, braucht man

Ly

G
F=z

Bild 94. Lose Rolle Bild 95. Flaschenzug @
G
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zum Hochziehen der Last nur eine Kraft aufzuwenden, die halb so groB8 wie das
Gewicht des Korpers ist.

Eine weitere Verbesserung stellt der Flaschenzug (Bild 95) dar. Sie erkennen hier
zwei fest aufgehidngte und zwei in einer gemeinsamen Schere oder Flasche vereinigte
lose Rollen. Auch hier sind die Rollen von einem einzigen Seil umschlungen.

Um das Krafteverhiltnis zu finden, brauchen Sie nur die Seilabschnitte auf der
Lastseite abzuzdhlen. Jeder Abschnitt verkiirzt sich um ein Viertel des von der wir-
kenden Kraft F herausgezogenen Stiickes. Folglich ist nur eine Kraft erforderlich,
die gleich einem Viertel des Gewichtes des Korpers ist.

4.5.8. Leistung

Etwas haben Sie bei den Betrachtungen des letzten Kapitels vielleicht im stillen
vermifit. Nirgendwo war von der Zeit die Rede. Der unbefangene Anfinger pflegt
tatsdchlich meist zu fragen, ob es denn bei der Berechnung der Arbeit nicht auch
auf die Zeit ankomme, in welcher diese verrichtet wird. Damit verhilt es sich fol-
gendermallen: Sobald auller der Arbeit die bendtigte Zeit beriicksichtigt wird,
berechnet man die sogenannte Leistung. Sie miissen also Arbeit und Leistung
als grundverschiedene Begriffe streng auseinanderhalten. Ausdriicke der Umgangs-
sprache, wie ,,Arbeitsleistung, geleistete Arbeit und dergleichen, sind physikalisch
unkorrekt. Nehmen wir an, zwei Arbeiter vollbringen die gleiche Arbeit; sie beladen
jeder einen Wagen mit dem gleichen Fassungsvermdégen. Der eine Arbeiter ist mit
seiner Arbeit eher fertig als der andere. Er hat die groBere Leistung vollbracht.
Die Leistung ist um so gréer, je kiirzer die Zeit ist, die benotigt wird. Mit anderen
Worten: Die Leistung ist der Zeit indirekt proportional. Man definiert daher als
Leistung den Quotienten aus Arbeit und Zeit:

Leistung = Arbeit durch Zeit = Kraft mal Weg durch Zeit

Die Leistung wird mit dem Symbol P bezeichnet:

B — W/t — Fsjt (26)

Diese Gleichung 148t sich auch noch in etwas anderer Form schreiben. Nach (2) ist
der Quotient aus Weg und Zeit die Geschwindigkeit einer gleichférmigen Bewegung.
Fiir die Leistung kann also auch geschrieben werden

P =Fy, (26a)

4.5.9. Leistungseinhciten

Auf Grund der Definition der Leistung als Quotient aus Arbeit und Zeit erhilt man
die Leistungseinheiten als Quotienten aus Arbeits- und Zeiteinbeiten. Wir beginnen
wieder mit der kohidrenten Einheit. Sie ist der Quotient aus der Arbeitseinheit Joule
und der Zeiteinheit Sekunde. Diese Einheit wird Watt!) (Kurzzeichen: W) genannt.

1) James Warr, engl. Physiker, 1736 bis 1819
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Merken Sie sich:
1 Watt ist die Leistung 1 Joule/Sekunde
1W =1J/s=1Nm/s = 1 kg m?/s? (IX)

Geht man von der Arbeitseinheit Kilopondmeter aus, so 146t sich die Leistungseinheit
Kilopondmeter/Sekunde bilden. Den Zusammenhang mit der Einheit Watt stellen
wir her, indem wir beide Seiten der Gleichung (VIII) durch die Einheit Sekunde
dividieren:

1 kpm/s = 9,80665 J/s = 9,80665 W (X)

Die Beziehung zu den Grundeinheiten lautet:
1 kpm/s = 9,806 65 lig m?/s?

Frither war die gebrauchlichste Leistungseinheit die Pferdestirke (PS):
1 PS = 75 kpm/s

Von dieser Einheit kommt man jedoch immer mehr ab. Die Einheitenverordnung
legt fest, daB diese Einheit bis auf weiteres noch verwendet werden darf. Aus dieser
Formulierung erkennen Sie, dafl die Einheit Watt (bzw. Kilowatt) in nicht ferner
Zeit die Einheit PS verdringt haben wird.

Wiirden Sie sich selbst zutrauen, 1 kW zu leisten ? Sie konnen die Frage ohne weiteres
beantworten, wenn Sie sich einmal die Zeit nehmen, folgendes Experiment durch-
zufithren. Stellen Sie sich am Full Threr Haustreppe auf und eilen Sie auf ein gegebe-
nes Kommando, so rasch Sie kénnen, die Treppe hinauf. Oben, im 1. oder 2. Stock,
steht Thr Kollege mit einer Stoppuhr und stellt fest, wann Sie bei ihm ankommen.
Nehmen Sie an, es hitten sich dabei folgende Zahlen ergeben: Koérpergewicht 68 kp,
durchlaufener Hohenunterschied 8 m, gestoppte Zeit-7 s. Das ergibt nach (23)

p=98KP 8™ _ ng s — 78 kpmys. COUBLEWS _( ves kW
S 1 kpm

Sie sehen, nur unter groflen Anstrengungen, wie z. B. Sportiibungen (Hochsprung,
Gewichtheben u. a.), ist es dem Menschen moglich, eine kurze Zeit lang 1 kW zu
leisten.

4.5.10. Wirkungsgrad

Von besonderem Interesse ist es, die Leistung von Maschinen und Kraftanlagen zu
berechnen. Denken Sie z. B. an ein Wasserkraftwerk. Aus einem hochgelegenen Stau-
see wird durch Rohre den Turbinen das Wasser zugeleitet, das sie in Bewegung setzt.
Die Leistung, die das Wasser den Turbinen zufiihrt, 146t sich berechnen (Lehrbei-
spiel 43). Wir geben dieser zugefiihrten Leistung, die man auch als indizierte Leistung
bezeichnet, das Symbol P, .

Auch ohne den komplizierten Mechanismus einer modernen Wasserturbine zu kennen,
kénnen Sie sich leicht vorstellen, daB ein Teil der zugefiihrten Energie zur Uber-

8*
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windung der Reibung und fiir andere Verluste aufgewandt werden mull. Das konnen
sein: die Reibung innerhalb der Strémung, die Bildung kleiner Wasserwirbel, die
Reibung in der Maschine selbst und in ihren Steuerorganen. All das ist so kompliziert,
daB man es am besten gar nicht erst zu berechnen versucht. Es ist vielmehr einfacher,
die von der Maschine tatsdchlich gelieferte Leistung mit besonderen Vorrichtungen
zu messen. Was dabei gemessen wird, nennt man die effektive oder abgegebene Leistung
P,,, oder noch deutlicher Nutzleistung, weil es sich um jenen Leistungsanteil handelt,
der tatsiachlich nutzbringend verwertet werden kann. Die Nutzleistung P,, wird
auf jeden Fall geringer sein als P,;. Natirlich wird sich jeder Ingenieur freuen,
wenn es ihm gelingt, die Verluste moglichst klein zu halten und mithin P, méglichst
nahe an P, heranzubringen. Damit sich mit einem Blick tibersehen 14Bt, in welchem
Verhiltnis P,, und P,, zueinander stehen, driickt man das Verhéltnis der effektiven
(abgegebenen) zur indizierten (zugefiithrten) Leistung durch eine Zahl aus, die man
den Wirkungsgrad n') nennt:

n= Pab/qu (27)

Je geringer die Verluste in einer Maschine sind, desto kleiner wird der Unterschied
der beiden Leistungen und desto mehr nihert sich der Wirkungsgrad dem Wert 1,
der jedoch nie erreicht wird. Bei Wasserturbinen rechnet man je nach den Betriebs-
verhiltnissen mit 7 = 0,8 bis 0,9. Dafiir konnen Sie auch sagen 80 bis 90 %,.

Lehrbeispiel 43

Aus einem Stausee werden der Turbine in der Minute 16 m?® Wasser bei einem Gefille
von 24 m zugefithrt. Der Wirkungsgrad betrigt 859,. Welche Leistung wird abge-
geben?

Lésung:

Gegeben: m = 16000 kg Gesucht: P,
h =24m
t =60s
7n = 0,85

Nach (23) und (26) errechnet sich die zugefithrte Leistung
P,, = mght.

Dieser Wert wird in (27) eingesetzt:
n= P uht/ mgh’
und die Gleichung nach P, aufgeldst:

PAb = ﬂ"‘gh/t,

0,85.16000kg - 9,81 m .24 m

Puw= 60s-s?

= 53400 W = 53,4 kW

1) sprich: eta
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Lehrbeispiel 44

Fiir eine Pumpe steht ein Antriebsmotor mit einer effektiven Leistung von 4,8 kW
zur Verfiigung. Wieviel Wasser kann mit ihr in der Minute auf eine Hohe von 18,4 m
gepumpt werden, wenn der Wirkungsgrad der Anlage 65 %, betragt?

Lésung:

Die vom Motor abgegebene Leistung ist der gleich, die der Pumpe zugefiihrt wird.

Gegeben: P, = 48kW Gesucht: m
t=160s
h=184m
n = 0,65

Nach (23) und (26) ist die abgegebene Leistung
P,, = mghjt.
" Dieser Ausdruck ist in (27) einzusetzen:
n = mghjt I’;,
Auflosung nach m:
m = qtLyaigh
Einsetzen der Werte:

0,65 - 60 s - 4800 Ws?
T ToRim fsdm L0ke

Die Umrechnung der Einheiten erfolgte nach (IX).
Die Masse von 1040 kg Wasser entspricht einem Volumen von 1,04 m3.

Lehrbeispiel 45

Welche Fahrleistung (in Kilowatt) hat eine Lokomotive a ufzubringen, die mit 1500kp
Zugkraft einen Zug bei 90 km/h Geschwindigkeit zieht?

Losung:

Die Zugkraft wird hier zur Uberwindung des Luftwiderstandes und der Reibung der
Réder benotigt; denn der Zug soll sich gleichférmig, d. h. mit konstanter Geschwin-
digkeit, bewegen.
Gegeben: F = 1500 kp Gesucht: P

v = 90 km/h
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Nach (26a) ist

P Fo— 1500 kp -90m 1500 .90 . 9,81 kW

3,6s = 3,6 - 1000

P =368kW.

Zusammenfassung

Die Arbeit ist gleich dem Produkt aus dem Weg und der in der Wegrichtung wirken-
den Kraft. Beim Heben eines Korpers berechnet sie sich als Produkt aus Gewicht
und Hohe.

Energie ist das Arbeitsvermdgen eines Korpers. Mechanische Energie kann potentielle
Energie (Energie der Lage) oder kinetische Energie (Bewegungsenergie) sein. Die
Energien kénnen ineinander umgewandelt werden, aber nicht spurlos verschwinden.
Der Zweck der einfachen Maschinen (Hebel, schiefe Ebene, Schraube, Keil, Rolle und
Flaschenzug) ist es, groBe Lasten mit geringem Kraftaufwand zu bewegen. Dabei
wird jedoch an Arbeit nichts gespart.

Die Leistung ist der Quotient aus Arbeit und Zeit. Unter dem Wirkungsgrad versteht
man den Quotienten aus der abgegebenen und der zugefithrten Leistung. Er ist stets
kleiner als 1.

Ubungen

85. 3 m® Wasser sollen auf eine Héhe von 5 m gepumpt werden. Welche Arbeit ist
erforderlich?

86. Die Foérdermaschine eines Bergwerks hebt einen Forderkorb von 8600 kg Ge-
samtmasse und verrichtet dabei eine Arbeit von 2752000 kpm. Wie tief ist der
Schacht?

87. Welche Arbeit wird von einem Arbeiter verrichtet, der 30 Gegenstande von je

15 kg Masse in beliebiger Zeit 1,5m hoch hebt und dabei den Schwerpunkt
seines Korpers jedesmal um 40 em Hohendifferenz verlagert ? (Kérpermasse 60 kg)

88. Eine Wasserleitung liefert bei einem Gefélle von 65 m je Minute 182 1. Welche theo-
retische Leistung in Kilopondmeter/Sekunde und Kilowatt ergibt sich daraus?

89. Ein Personenkraftwagen hat eine Geschwindigkeit von 36 km/h. Er rutscht
beim Bremsen 20 m iiber das nasse Pflaster. Berechnen Sie die Reibungszabhl.

90. Welchen Wirkungsgrad hat eine Maschine, die bei einer Nutzleistung von 9 kW
eine Antriebsleistung von 1100 kpm/s benotigt?

91. Ein Flaschenzug hat einen Wirkungsgrad von 92 %, und wird mit 1,8 kW ange-
trieben. Welche Nutzleistung steht zur Verfiigung?

92. Eine Feuerspritze mit Motorantrieb wirft in der Minute 1700 | Wasser auf 32 m
Hohe. Wie groB ist die Leistung?

93. Bei Erdarbeiten schiebt ein Arbeiter eine mit Erde beladene Kipplore unter einem
Kraftaufwand von 40 kp mit einer Geschwindigkeit von 0,2m/s auf waage-
rechter Bahn 120 m vorwarts. Wie grof3 ist

a) die verrichtete Arbeit, b) die Leistung?
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Lild 06. Mictenzndeckgerit

Das Schwungrad einer Dampfmaschine hat 3800 mm Durchinesser und macht je
Minute 90 Umdrchungen. Die durch den Riemen auf den Radumfang {ibertragene
IKvaft betrigt 270 kp. Wie grof ist die Leistung der Maschine?

5. Ein Elektromotor mit ciner Leistung von 7.5 kW lduft mit 1050 min~!.

Welchen Durchmesser mull scine Riemenseheibe erhalten. damit der Riemen
eine Umfangskraft von 50 kp iibertrigt !

Zum Antrieb cines Mictenzudeckgerites (Bild 96), wic es von den LPG cingesetzt
wird, steht die Leistung 30 S zur Verfiigung. Wie grofi ist die Wurfkraft des
Quirls in Mitte der Schaufelflichen, wenn der Abstand von der Drehachse des
Quirls bis Mitte Schaufelfliche 470 mm betrigt und der Quirl mit einer Drehzahl
von 125 min™ umliuft ?

. Eine Kranwinde hebt c¢in Werkstiick von 3t in 1 min 4,5 m hoch. Der Antriebs-

motor gibt 5 kKW an die Winde ab. Wie grofi ist der Wirkungsgrad?



KALORIK?

In diesem zweiten Teil des Studienmaterials wollen wir Sie mit einigen Grund-
begriffen der Warmelehre vertraut machen. Zwei physikalische Gro8en sind es, die
im Mittelpunkt unserer Betrachtungen stehen werden : Temperatur und Wirmemenge.
Diese beiden Begriffe miissen Sie immer gut auseinanderhalten.

b. Temperatur

5.1. Was versteht man unter Temperatur ?

Wenn Sie einen Korper berithren, haben Sie in jedem Fall eine Temperaturempfin-
dung. Sie bezeichnen einen Korper als kalt, kiithl, lauwarm, warm oder hei3. Aller-
dings arbeitet unser Temperatursinn nicht sehr zuverldssig. Zu verschiedenen Zeiten
empfinden wir gleiche Temperaturen ganz verschieden. Eine Lufttemperatur von
etwa 10°C empfinden wir an einem Wintertag als warm; an einem Sommertag
hingegen als ausgesprochen kiih]. Es kann sogar vorkommen, daf3 wir ein und dieselbe
Temperatur zur gleichen Zeit als warm wnd als kalt empfinden. Sie kénnen den fol-
genden Versuch selbst ausfiihren. Nehmen Sie drei Gefidfle mit Wasser. In einem
GefiB befindet sich kaltes Wasser, in einem heies Wasser und im dritten Wasser
von mittlerer Temperatur. Tauchen Sie nun eine Hand in das kalte Wasser, die
andere Hand in das heile Wasser und bringen Sie anschlieBend beide Hinde gemein-
sam in das Wasser mittlerer Temperatur. Die Hand, diec aus dem heien Wasser
kommt, empfindet dieses Wasser als kalt, die andere Hand empfindet das gleiche
Wagsser als heil. Wir kénnen mit unserem Wérmesinn im wesentlichen nur Tempera-
turunterschiede wahrnehmen.

Zusammenfassend 148t sich feststellen:

Die Temperatur ist der Warmezustand eines Korpers.

H.2. Temperaturmessung

Zur Temperaturmessung lassen sich alle Vorginge benutzen, die eindeutig von der
Temperatur abhingen. Am bekanntesten sind die Fliissigkeitsthermometer. Sie
werden im téiglichen Leben am haufigsten verwendet (Zimmerthermometer, Bade-

>1)7 éo;lﬁr (lat.) Warmeo
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thermometer, Fieberthermometer usw.). Sie beruhen auf der Eigenschaft der Fliissig-
keiten, sich bei Temperaturerhohung auszudehnen. Wie Thnen bekannt ist, sind die
Thermometer in Cersivs!)-Grade geteilt. Der Ceisiusskale liegen zwei Temperatur-
festpunkte zugrunde. Die Temperatur des schmelzenden Eises wird mit 0°C, die
Temperatur des siedenden Wassers mit 100°C festgesetzt. Zwischen diesen beiden
Temperaturfestpunkten (Fundamentalpunkten) liegt die Fundamentalstrecke, die
in 100 gleiche Teile eingeteilt wird. Auf diese Weise entsteht die Temperatureinheit,
der Grad Celsius. Im Laufe Thres Studiums werden Sie dariiber Genaueres erfahren.
Zu beachten ist noth, dafl Temperaturen in Grad Celsius (Kurzzeichen °C), Tempera-
turdifferenzen hingegen nur in Grad (Kurzzeichen grd) angegeben werden. Zwischen
den beiden Temperaturen 10°C und 60°C besteht also eine Temperaturdifferenz
von 50 grd.

5.3. Verhalten der Korper bei Temperaturinderung

5.3.1. Ausdehnung fester Korper

Im allgemeinen dehnen sich feste Kdrper bei Temperaturerhéhung nach allen Seiten
hin gleichmaBig aus. Es findet also eine VergroBerung simtlicher Liangen und damit
auch eine VergroBerung des Volumens statt.

5.3.1.1, Lingeninderung fester Korper

Die Langenidnderung wird besonders bei solchen Koérpern (Schienen, Trigern,
Drihten, Rohren usw.) beobachtet, die eine grofe Linge besitzen. Da wir uns einen
solchen Korper, etwa ein Rohr, aus sehr vielen Einzelstiicken gleicher Linge zusam-
mengesetzt denken kénnen, und sich jedes dieser Teilstiicke bei einer gewissen Tem-
peraturerhhung um den gleichen Betrag ausdehnt, so erhalten wir bei doppelter
Linge die doppelte Ausdehnung, bei zehnfacher Linge die zehnfache Ausdehnung:
Die Langenanderung A! ist der Ausgangsldnge I, des Kérpers proportional :

Al ~1,

Krhohen wir nun die Temperatur schrittweise, so stellen wir fest, daBl die Lingen-
anderung auch der Temperaturdnderung proportional ist:

Al ~ 4t

SchlieBlich beobachten wir, daB sich Stibe gleicher Liange, die jedoch aus verschiedenem
Material bestehen, bei gleicher Temperaturinderung verschieden stark ausdehnen.
Die Lingeninderung hingt also vom Material ab.

Fassen wir nun die drei Ergebnisse zusammen, so konnen wir schreiben

Al = ey At (28)

1} AnpErs CELsius (1701 bis 1744), schwedischer Astronom
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Hierin ist der Proportionalititsfaktor «, der Liangenausdehnungskoeffizient, ein
Materialwert. Die Einheit von o erhalten wir, wenn wir (28) nach « auflésen und
die bekannten Einheiten der iibrigen Grofien einsetzen:

A m -
1= 7147} = mgra = &7

In Tafel 8 sind die Lingenausdehnungskoeffizienten fiir einige Stoffe zusammen-
gestellt. Da die Ausdehnungskoeffizienten temperaturabhingig sind, wird in jedem
Falle die Bezugstemperatur oder der Temperaturbereich angegeben, fiir den die
Werte gelten.

Tafel 8: Lingenausdehnungskoeffizienten
zwischen 0°C und 100°C

Stoff afgrd™! Stoff «/grd!

Porzellan 0.000005 Kupfer 0,000017
Jenaer Glas 0,000006 Messing 0,000019
Glas 0,000010 Aluminium 0,000023
Gulleisen 0,000010 Blei 0,000028
Beton 0,000012 Zink 0,000036
Stahl 0.000012 PVC 0,000080

Wir wollen nun die Linge berechnen, die der Kérper nach der Temperaturanderung
besitzt. Wie aus Bild 97 ersichtlich ist, ergibt sich die neue Linge [, als Summe
aus der alten Lénge I, und der Lingenianderung 4i:

L, =1 -+ 4l (28a)
Setzen wir nun Al aus (28) ein, so erhalten wir

=1, + al,dt. ) Al
Klammern wir noch I, aus, so folgt l;

L=10L 1 + adt). (28b)  Bild 97. Langenausdehnung

Lehrbeispiel 46

Um welchen Betrag éndert sich die Lange eines Dampfrohres aus Stahl, das bei
20°C genau 6 m lang ist, wenn Dampf von 120°C hindurchstromt ?
Lésung:
Gegeben: [, =6m Gesucht: Al
At = 100 grd
« = 0,000012 grd~! (nach Tafel 8)
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Nach (28) ist

Alzalldt:O,OOOOH-ﬁm-lOOgrd

=0,0072m = 7,2mm .
grd

Lehrbeispiel 47

Wie lang ist eine Freileitung aus Kupfer bei einer Temperatur von 35°C, wenn sie
bei 10°C genau 300,00 m lang ist?
Loésung: p

Gegeben: [, = 300 m Gesucht: [, 7
At = 25 grd
« = 0,000017 grd~! (nach Tafel 8)

Nach (28D) ist
I =1, (1 +adt) = 300m (1 o 0000017 25 gff-i)
. grd

= 300 m (1 + 0,000425) = 300 - 1,000425 m = Z—

= 300.1275 m ~ 300.13 m. Bild 98. Bimetallstreifen

Die Langenausdehnung mufl immer beachtet werden, wennmit gréBeren Temperatur-
schwankungen zu rechnen ist, also bei Briickentriagern, Dampfleitungsrohren, Frei-
leitungen usw. Auch die Thnen bekannten Stahlbetonkonstruktionen sind nur még-
lich, weil Stahl und Beton den gleichen Ausdehnungskoeffizienten haben. Wire
das nicht der Fall, dann wirden Spannungen auftreten, die zu Zerstérungen fithren
konnten.

Die verschieden grofle Ausdehnung zweier Metalle wird im Bimetallstreifen ausge-
nutzt. Hierbei werden zwei verschiedene Metalle aufeinandergewalzt oder -genietet
(Bild 98). Wird ein solcher Bimetallstreifen erwirmt, so krimmt er sich. In Bild 98
ist das Metall mit dem groferen Ausdehnungskoeffizienten schraffiert gezeichnet.
Derartige Bimetallstreifen werden als elektrische Schaltelemente in Heillwasser-
speichern, automatischen Feueralarmanlagen usw. benutzt. Wird eine bestimmte
Temperatur iberschritten, so wird ein Stromkreis automatisch unterbrochen oder
geschlossen.

5.3.1.2, Volumeniinderung fester Korper

Wir hatten bereits in der Einleitung zu diesem Abschnitt darauf hingewiesen, dal
mit einer VergroBerung der Abmessungen eines Korpers auch eine Volumenver-
groflerung verbunden ist. Diese Volumenidnderung ist vor allem bei GefiBlen be-
deutungsvoll.

Hier gilt der Satz:

Hohlkérper dehnen sich in gleicher Weise aus wie massive Korper aus dem
gleichen Material.
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Fiir die Volumenanderung gilt eine d4hnliche Beziechung wie fiir die Lingeninderung.
Die Volumendnderung AV ist namlich proportional dem Anfangsvolumen V, und
der Temperaturinderung At. Als Proportionalititsfaktor wird hier der Raum-
ausdehnungskoeffizient y eingefithrt:

AV = yV. At (29)

Das neue Volumen V, ergibt sich als Summe aus dem Anfangsvolumen V, und der
Volumenanderung 4V :

V,=V, + 4V (29.)
Mit (29) folgt
Vy, = Vi (1 + pde). (29b)

Es ist leicht einzusehen, daB bei einem Korper, bei dem die Léngenzunahme groB ist,
auch die Volumendnderung grof sein wird. Das fihrt uns auf die Frage, ob nicht
zwischen dem Léngen- und dem Raumausdehnungskoeffizienten ein mathema-
tischer Zusammenhang besteht. Dieser Zusammenhang soll nun hergeleitet werden.
Wir betrachten einen Wiirfel mit der Kantenlidnge !,, der bei der Temperatur ¢, ein
Volumen ¥V, hat. Wird die Temperatur dieses Wiirfels von ¢, auf ¢, erh6ht, so ver-
grofert sich die Kantenlinge auf 7, und das Volumen auf V,. Es gelten folgende
Beziehungen:

Vv, =1
V=8

Zwischen I, und I, besteht die Gleichung (28b):
L=1 1+ ad)
Setzen wir diesen Ausdruck in die Gleichung fiir V, ein, so erhalten wir
V=081 + adt)> =V, (1 + adt)®.
Wenden wir fiir die 3. Potenz der Klammer die Ihnen bekannte Gleichung
(@4 bP = a® + 3a2b L 3ab® + b?
an, so folgt weiter
V, = V(1 + 3adt + 32422 - >4t%).
Nun wissen Sie, daB es sich bei o: um sehr kleine Werte handelt. Um so kleiner sind

aber die Werte fiir o2 und «?. Sie kénnen daher vernachlissigt werden. Wir setzen
also

V,=Vy(1 + 3adt). (29¢)

Vergleichen wir nun diesen Ausdruck mit (29b), so finden wir den gesuchten Zusam-
menhang zwischen den beiden Ausdehnungskoeffizienten :

y = 3a (39)
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Es ist wegen dieser Gleichung auch nicht nétig, die Raumausdehnungskoeffi-
zienten der festen Korper zu tabellieren, da man diese Werte leicht aus den Lingen-
ausdehnungskoeffizienten (Tafel 8) berechnen kann.

Lehrbeispiel 48

Ein Stahlkessel hat bei 10°C ein Volumen von 12 m3. Welches Volumen hat dieser
Kessel, wenn er mit Dampf von 360°C gefiillt ist? Der mittlere Ausdehnungskoeffi-
zient betrigt in diesem Temperaturbereich 0,000014 grd 1.
Lésung:
Gegeben: V, = 12m3 Gesucht: V,

At = 350 grd

o = 0,000014 grd~!
Nach (29c¢) ist

V, = Vi(l +3ady

—— 3.0,000014 - 350 grd
Vy = 12m? (1 F AT )

V, = 12m3. 1,0147 = 12,18 m?.

5.3.2. Ausdehnung von Fliissigkeiten

Auch Flissigkeiten dehnen sich beim Erwirmen aus. Man kann das leicht fest-
stellen, indem man auf einen vollkommen mit Wasser gefiillten Rundkolben ein Glas-
rohr aufsetzt (Bild 99). Je mehr die Temperatur des Wassers erh6ht wird, um so
hoher steigt das Wasser in dem Glasrohr.

Die Volumenanderung der Flissigkeiten wird durch die-
selbe Gleichung beschrieben wie die Volumenanderung der
festen Korper:

AV = pV, 4t (29)
bzw.
=1, (1 + p4¢) (29Db)

Die Raumausdehnungskoeffizienten der Fliissigkeiten
sind in Tafel 9 zusammengestellt. Wir stellen fest, daB
diese Ausdehnungskoeffizienten etwa 10- bis 100mal so
groB sind wie die Raumausdehnungskoeffizienten der
festen Korper. Das Volumen der Flissigkeiten ist in viel
starkerem MaBe temperaturabhingig als das der festen
Korper.

Bild 99. Volumenausdehnung
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Tafel 9: Raumausdehnungskocifizienien von Fliissigkeiten

bei 18 °C
Flissigkeit y/grd=! Flissigkeit v/grd~!
Ather 0,00162 Petroleum 0,00096
Methylalkohol  0.00119 Glyzerin 0,00049
Benzol 0,001 06 Quecksilber 0,00018
Terpentinél 0,00097 Wasser 0.00018

Lehrbeispiel 49

Wieviel Benzol mufl bei 20°C getankt werden, damit bei 5°C 5000 1 abgegeben
werden konnen?

Lésung:

Gegeben: ¥V, = 50001 ' Gesucht: V,
At =15 grd

= 0,001 06 grd~! (nach Tafel 9)

N

/

Nach (29b) ist
0,00106 - 15 grd
grd )

o= 171 (1 + A8) — 50001 (1 40
V= 50001 - 1,0159 — 5080 1.

Sie erkennen, daB sich bei Flissigkeiten schon geringe Temperaturdifferenzen stark
auswirken.

5.3.3. Verhalten der Gase bei Temperaturinderung

Gase unterscheiden sich von den Fliissigkeiten dadurch, daB sie kein bestimmtes
Volumen besitzen. Das Volumen eines Gases hiangt ab vom Druck, der auf das Gas
ausgeiibt wird. Gase lassen sich also zusammenpressen (komprimieren); man nennt
sie daher kompressibel. Wenn wir die Temperatur eines Gases erhdhen, so kann sich
entweder das Volumen vergroBern, wenn wir den Druck konstant halten, oder es
kann sich der Druck erhohen, wenn das Volumen konstant bleibt. Diese Fille sollen
nun im einzelnen untersucht werden.

5.3.3.1. Druck und Volumen cines Gases

Wir wollen zundchst von irgendwelchen Temperaturdnderungen absehen und den
Zusammenhang zwischen Druck und Volumen einer abgeschlossenen Gasmenge
untersuchen. Wie Thnen bekannt ist, erreicht man z. B. in einer Fahrradluftpumpe
eine Vergroferung des Drucks dadurch, dal man das Volumen der eingeschlossenen
Luftmenge verkleinert. Auch in den Ihnen bekannten Stahlflaschen fiir Druckluft,
Sauerstoff usw. werden Gase unter hohem Druck eingeschlossen. Bei der Entspannung
tritt eine VolumenvergroBerung ein. Daraus ist zu erkennen : Je kleiner das Volumen,
um so héher der Druck.
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1, ftat // 473
Bild 100. BOYLE- 051, Zat // //

MaRIOTTESches 0251, 4at
Gesetz

a) b) ¢)

Wir betrachten folgenden Versuch:

In einem Behilter ist 1 | Gas unter einem Druck von 1 at eingeschlossen (Bild 100a).
Verringert man das Volumen auf 0,51, so steigt der Druck auf 2at (Bild 100b).
Wird das Volumen auf 0,251 verkleinert, dann erhoht sich der Druck auf 4 at (Bild
100¢).

Bilden wir in allen drei Fillen das Produkt aus Druck und Volumen, so erhalten

wir
pVy=1l-1at =1lat,

P12
V3, =0251-4at =11lat.

=051.-2at = 11lat,

Daraus ist zu entnehmen: Das Produkt aus Druck und Volumen ist konstant. Das
ist der Inhalt des Gesetzes von BoyLE!) und MARIOTIE?):

Unter der Voraussetzung der konstanten Temperatur ist das Produkt aus Druck
und Volumen einer abgeschlossenen Gasmenge konstant.

21V = PV, (31)

Lehrbeispiel 50

Wieviel Sauerstoff unter normalem Druck (1 at) 148t sich einer Stahlflasche entneh-
men, in der 40 | Sauerstoff unter einem Druck von 150 at eingeschlossen sind?

Losung:

Gegeben: V, =401 Gesucht: V,
p, = 150 at
P, = 1at

1) RosertT BoYLE (1626 bis 1691), engl. Physiker
2) EpmMe MariorTe (1620 bis 1684), franz. Physiker
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Aus (31) folgt
V,= 2148 = 150 ab-401 =60001=6m3.
P2 1 at

Hierbei ist natiirlich zu bedenken, daB 40 1 Sauerstoff in der Flasche zuriickbleiben.

5.3.3.2. Ausdehnung der Gase bei konstantem Druck

Wir schlieBen das Gas in einen Behilter ein, der durch einen beweglichen Kolben
abgeschlossen wird (Bild 101). Dadurch wird der Druck konstant gehalten, so wie
etwa in dem Thnen bekannten Gasometer eines Gaswerks. Erhéhen wir nun die
Temperatur des Gases, so vergroflert sich das Volumen. Auch fiir das Volumen des
Gases bestehen die gleichen Abhingigkeiten wie fiir feste Kor-
per und fiir Fliissigkeiten. Es gilt auch hier (29b):

Vo=V (1 -+ ydt) (29Db)
Fiir alle Gase gilt jedoch der Ausdehnungskoeffizient
1

Dieser Wert bezieht sich auf die Temperatur 0°C.
Bei konstantem Druck dehnt sich jedes Gas bei Erwirmung i

um 1 grd um 1/,,; seines Volumens bei 0°C aus.

Wenn aber die Ausgangstemperatur ¢, = 0°C ist, so stimmt die
Temperaturdifferenz At mit der Endtemperatur ¢ iiberein.

Beispiel: ¢, = 0°C, ¢t = 20°C, 4t = 20 grd.

Bezeichnen wir nun das Volumen des Gases bei 0°C mit V, und das Volumen bei der
Temperatur ¢ mit ¥V, , so erhalten wir anstelle von (29b)

Bild 101. Ausdehnung
eines Gases bei
konstantem Druck

Vi=Vo{1 + ). (32)
. 1 . .
Setzen wir nun y = 57315 grd O so folgt weiter

1
Vi= Vo (1 + 273,15 grd t) )
Bringen wir die 1 auf den Hauptnenner 273,15 grd, so ergibt sich

273,15 grd + ¢ (32a)

Vi=Vo T o7315grd

Diese Beziehung 1a8t sich nun wesentlich vereinfachen, wenn wir eine neue Tempera-
turskale, die KerLvin1)-Skale, einfithren, deren Nullpunkt um 273,15 grd ,,nach
unten** verschoben ist. Der Nullpunkt dieser Skale liegt also bei einer Cersiys-Tem-
peratur von—273,15°C.

1y Wirriam TraoMsoN (Lord KeLvin, 1824 bis 1907), engl. Physiker
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Der Grad Kelvin ist der 273,16te Teil der thermodynamischen Kelvin-
Temperatur des Tripelpunktes von reinem Wasser.

Wir bezeichnen die KEeLvin-Temperatur mit dem Symbol 7', wahrend wir fiir die CeL-

sius-Temperatur ¢ beibehalten. Die Cersivs-Temperatur ¢, = 0°C entspricht dann

einer KeLvin-Temperatur 7T, = 273,15°K (Bild 102). .

Allgemein 148t sich jede Crisius-Temperatur ¢ iiber t°C 7/°K

die Gleichung 200 4 473,15 _4_
T — 273,15 grd 1 ¢ (33) '

in die KrLvix-Temperatur 7' umrechnen. Damit wird

aus (32a) T 100 + 37315 1
Ve=To g -

Fiir die Volumen ¥V, und V, bei zwei verschiedenen

Temperaturen 7', und 7T, gilt damit 0 + 27315 T
, , T
Vi=T, T;
und
po_ 1 Te -100 + 17315+
2 0 TO
Dividieren wir beide Seiten der beiden Gleichungen
durcheinander, so erhalten wir —200 4 7375 j_
-[/-2 Tg
SE= R (34)
Vv T 1
oot o735 L 0 L
Das ist das 1. Gesetz von Gay-Lussacl): Bild 102. Temperaturskalen

Die Volumina einer abgeschlossenen Gasmenge verhalten sich bei konstantem
Druck wie die zugehérigen Kervix-Temperaturen.

Lehrbeispiel 51

3 m?® Luft werden von 20°C auf 80°C erwirmt. Welches Volumen nimmt die Luft
dann ein?

Loésung:

Gegeben: V, =3 m? Gesucht: V,
T, = 293°K
T, = 353°K

1) Josern Louis Gay-Lussac (1778 bis 1850), franz. Physiker

9 Studienmat. Physik
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Aus (34) folgt
y._ VaTs _3m® 353 °K

srte i 3
T, 293 °K 3,61 m

5.3.3.3. Drucksteigerung bei konstantem Volumen

Wir schlieBen jetzt das Gas in einen Behilter ein, dessen Volumen unveranderlich
ist. Bin Manometer zeigt den Druck an. Erhohen wir nun die Temperatur des Gases,
so stellen wir fest:

Bei konstantem Volumen erhoht sich der Druck des Gases bei Erwirmung um
1 grd um '/,;, seines Volumens bei 0°C.

Der Druck eines Gases bei konstantem Volumen folgt also einem &hnlichen Gesetz
wie das Volumen des (Gases bei konstantem Druck. Wir kénnen die gleichen Uber-
legungen wie im vorigen Abschnitt anstellen und erhalten

P2 T,
= -, 35
P T, (35)
Das ist das 2. Gesetz von Gay-Lussac:

Die Driicke einer abgeschlossenen Gasmenge verhalten sich bei konstantem
Volumen wie die zugehorigen Kervin-Temperaturen.

Lehrbeispiel 52

3 m? Luft stehen unter einem Druck von 1 at und haben eine Temperatur von 27°C.
Auf welche Temperatur mufl die Luft erhitzt werden, damit der Druck auf 1,7 at
ansteigt?

Losung:

Gegeben: V =3 m? Gesucht: T,
p, = 1at
p, = 1,7at
T, = 300°K

Nach (35) ist
— 1 P2 _ oK 2
Ty = 1, 22 =300 K S
Daraus folgt nach (33)
ty = T,— 273 grd = 237°C.

L7236 10 K.

5.3.3.4. Zustandsgleichung

Wir fassen zunichst den Inhalt der letzten drei Abschnitte zasammen. In 5.3.3.1.
untersuchten wir den Zusammenhang zwischen Druck und Volumen bei konstanter
Temperatur und fanden

PV =p.V. (T = konst). (31)
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In 5.3.3.2. fanden wir die Beziehung zwischen Volumen und Temperatur bei kon-
stantem Druck. Die dort abgeleitete Gleichung (34) kann auch geschrieben werden
als
Vi Ve .
T, ", (p = konst) . (34)
In 5.3.3.3. schlieBlich lernten wir die Gleichung zwischen Druck und Temperatur
bei konstantem Volumen kennen. (35) kann auch in der Form

P P2 . S
T, T, (} konst) (35)

dargestellt werden.

Es erhebt sich nun die Frage, ob nicht eine Temperaturanderung eine Druckinderung
und eine Volumeninderung zur Folge haben kann. Das ist tatsichlich der Fall.
Diese allgemeine Zustandsinderung wird durch eine Gleichung erfaflt, die wir
als Zustandsgleichung bezeichnen. Wir wollen diese Gleichung im Rahmen dieses
Vorbereitungsmaterials nicht herleiten. Das sei Ihrem kiinftigen Studium tiberlassen.
Wir wollen nur die Frage stellen: Wie miiite eine Gleichung aussehen, die die Glei-
chungen (31), (34) und (35) als Sonderfille enthialt? Diese Gleichung lautet:

PV, P2 Vy |
T, . T, ; (36)

Uberzeugen Sie sich davon, daf3
fir T, = T, die Gleichung (31),
fir p, = p, die Gleichung (34),
fir V, = V, die Gleichung (35)
entsteht.

Lehrbeispiel 53

Eine Druckluftflasche (40 1) wird bei einer Temperatur von 27°C mit Druckluft von
150 at gefiillt, Wieviel Kubikmeter Druckluft konnen bei 12°C der Flasche entnom-
men werden, wenn der Luftdruck 1 at betragt?

Loésung:
Gegeben: V, =401 Gesucht: V,
T, = 300°K
p, = 150 at
T, = 285°K
p,=1at

9*
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Aus (36) folgt
V. = prsz . 150 at - 401 -285 °K

PS— = = 3
P = 80K 1ol 57001 = 5,7m?.

Hiervon bleiben 40 | Luft in der Flasche zuriick.

Zusammenfassung

Temperatur ist der Warmezustand eines Kérpers. Zur Temperaturmessung lassen
sich alle Vorginge benutzen, die eindeutig von der Temperatur abhidngen. Die be-
kanntesten Thermometer sind die Flussigkeitsthermometer.

Zur Definition der Cersius-Skale dienen die Temperatur des schmelzenden Eises
(0°C) und die Temperatur des siedenden Wassers (100°C). In der Physik und in der
Technik verwendet man hiufig die KeLvin-Skale. Man erhilt den Zahlenwert der
KeLvin-Temperatur eines Korpers, indem man zum Zahlenwert der Cevrsius-
Temperatur 273,15 addiert. Der KurLvin-Grad ist dem Cersius-Grad gleich, nur der
Nullpunkt der KeLvin-Skale ist um 273,15 grd verschoben. Temperaturdifferenzen
werden in Grad (grd) gemessen.

Im allgemeinen dehnen sich feste Korper und Flissigkeiten bei Temperaturerhohung
aus. Die Lingenanderung fester Kérper hingt ab vom Lingenausdehnungskoeffi-
zienten, der Ausgangslinge und der Temperaturdifferenz. Die Volumenidnderung
von festen Korpern und von Flissigkeiten hangt ab vom Raumausdehnungs-
koeffizienten, dem Ausgangsvolumen und der Temperaturdifferenz. Der Raum-
ausdehnungskoeffizient ist gleich dem dreifachen Lingenausdehnungskoeffizienten.
Der Zustand eines Gases wird durch sein Volumen, seinen Druck und seine Tempera-
tur bestimmt. Andert man eine dieser drei GroBen, so dndert sich mindestens auch
eine der beiden anderen. In jedem Falle gilt die Zustandsgleichung.

Ubungen:

98. Die 1956 in Betrieb genommene Elbbriicke in Riesa hat eine Linge von 346 m.
Welche Lingeninderung der Stahltriger mufB} beriicksichtigt werden, wenn
Sommertemperaturen bis 30°C und Wintertemperaturen bis —15°C erwartet
werden ?

99. Ein Messingrohr ist bei 20°C 242,37 mm lang. Leitet man Wasserdampf von
100°C durch das Rohr, so betrigt seine Linge 242,79 mm. Berechnen Sie daraus
den Lingenausdehnungskoeffizienten von Messing.

100. Ein Gefa aus Jenaer Glas fafit bei 20°C genau 1000 cm3. Berechnen Sie das
_ Fassungsvermogen bei 90°C.
101. Bei 32°C werden 50 | Methylalkohol abgemessen. Wie grol3 ist das Volumen des
Methylalkohols bei 14°C? )
102. Welcher Druck ist erforderlich, um Stickstoff, der bei 2 at ein Volumen von
0,9 m? einnimmt, auf 20 | zusammenzupressen ?%

103. Bei welcher Temperatur nehmen 800 | Luft (bei 20°C}) ein Volumen von 1,5 m?
ein?
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104. Welcher Druck ist erforderlich, um Luft, die bei 15°C unter einem Druck von
1,1 at steht, auf 150°C zu erwérmen?

105. Im Dieselmotor wird durch Kompression von Luft die Entziindungstemperatur
des Dieselkraftstoffs erreicht. Auf welches Volumen miissen 8 1 Luft, die bei einer
Temperatur von 40°C unter einem Druck von 1 at stehen, komprimiert werden,
wenn bei einem Druck von 40 at eine Temperatur von 700°C erreicht werden
soll? '

6. Wirmemenge (Wirmecenergie)

6.1. ‘Was versteht man unter Wirmemenge?

Wir haben bisher nur von der Temperatur gesprochen. Wir lernten die Temperatur
als die Grofe kennen, die den Warmezustand eines Korpers kennzeichnet. Haben Sie
aber schon einmal tiber die Frage nachgedacht, weshalb man mit einer Heillwasser-
heizung ein ganzes Zimmer heizen kann, obwohl das Wasser nur eine Temperatur
von etwa 70 bis 80°C hat, und weshalb man das Zimmer nicht mit einer Kerze
erwirmen kann, deren Temperatur doch viel hoher ist? Es kommt hier offenbar
nicht auf die Temperatur allein an, sondern auf eine andere Grofle, die wir jetzt
kennenlernen wollen, auf die Warmemenge. Das Wasser filhrt dem Zimmer eine groBe
Warmemenge zu, wahrend die Kerze eben nur eine sehr kleine Warmemenge abgeben
kann, die zur Erwirmung des Zimmers nicht ausreicht.

Eine bestimmte Wéirmemenge miissen wir auch dem Wasser zufiihren, das wir auf
dem Gasherd oder der elektrischen Heizplatte erwirmen. Die notwendige Wérme-
menge hingt, wie Sie leicht einsehen, zunichst von der Masse des Wassers ab (eine
kleinere Menge Wasser erwarmt sich schneller als eine grofie) und davon, bis zu
welcher Temperatur das Wasser erwirmt werden soll, also von der Temperatur-
differenz.

6.2. Einheit der Wirmemenge

Wairmeenergie 148t sich aus mechanischer Energie gewinnen. Sie brauchen nur einmal
kraftig Thre Hande zu reiben, um diese Behauptung zu bestétigen. Uberall dort, wo
Reibung auftritt, entsteht Wirme; die Reibungsarbeit wird in Warmeenergie um-
gewandelt. Es wundert ugs daher nicht, dall die Wiarmeenergie in den gleichen
Einheiten wie die mechanische Energie (vgl. 4.5.2. bis 4.5.5.) gemessen werden kann,
also in Joule oder Kilopondmeter. Bevorzugt wird jedoch heute noch die Kalorie
(Kurzzeichen: cal):

1 cal = 4,1868 J (XI)

Eine Warmemenge von 1 cal entsteht also, wenn eine Reibungsarbeit von 4,1868 J
aufgebracht wird. In der Praxis rechnet man sehr oft mit der Kilokalorie:

1 keal = 4186,8J
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6.3. Spezifische Wirmekapazitit

Am Schluff von 6.1. hatten wir festgestellt, dafl die Warmemenge (der wir das Sym-
bol @ geben wollen) von der Masse des zu erwarmenden Korpers und von der Tempe- '
raturdifferenz abhingt, die erreicht werden soll. Quantitative Versuche zeigen,
daB die Warmemenge diesen beiden Groflen proportional ist:

Q ~ mAt

Erwirmt man Korper gleicher Masse um die gleiche Temperaturdifferenz, so stellt
man fest, daB man dennoch verschiedene Wirmemengen aufbringen mul3, wenn die
Korper aus verschiedenem Material bestehen. Wir miissen also noch einen Propor-
tionalitdtsfaktor einfithren, der vom Material abhidngt. Diesen Proportionalitits-
faktor nennen wir spezifische Wdrmekapazitit und geben ihm das Symbol ¢. Damit
erhalten wir

Q =cmAt (37

Wir finden die Einheit von ¢, wenn wir (37) nach ¢ auflésen und die uns bekannten
Einheiten [@] = keal, [m] = kg und [4¢] = grd einsetzen:

keal cal
1= kg gra ( gard)

In Tafel 10 sind die spezifischen Wirmekapazititen fir einige Stoffe zusammenge-
stellt. Sie erkennen, daBl Wasser eine sebr groBe spezifische Wirmekapazitdt hat.
Das bedeutet, da8 es sehr groBer Wiarmemengen bedarf, um die Temperatur des
Wassers zu erhohen. Am Strand haben Sie sicher schon die Beobachtung gemacht,
daB der Sand viel héhere Temperaturen annimmt als das Wasser. Andererseits gibt
das Wasser bei seiner Abkiihlung auch groe Wiarmemengen ab. (Denken Sie auch
an das eingangs erwahnte Beispiel mit der HeiBwasserheizung und der Kerze.) Das
Wasser ist also ein idealer Warmespeicher. In der Natur wirken grolle Wassermengen
temperaturausgleichend. Vergleichen Sie das Klima Englands mit dem Sibiriens.

Tafel 10: Spezifische Wiirmekapazititen von festen Kirpern und Fliissigkeiten

keal L. . lkcal
Stoff c kg grd Flassigkeit kg grd
Eis 0,50 Wasser 1,00
Aluminium 0,21 Alkohol 0,67
Schamotte, Glas 0,20 Petroleum 0,50
Porzellan 0,19 Maschinenol 0,46
Stahl ~ 0,11 Glyzerin 0,33
Kupfer, Messing 0,092 flissiges Eisen 0,17

Blei 0,031 Quecksilber 0,033
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Lehrbeispiel 54

Welche Wiarmemenge ist erforderlich, um 101 Wasser von-10°C auf 90°C zu er-
wirmen ?

Lo6sung:
Gegeben: m = 10 kg Gesucht: ¢
At = 80 grd
¢ = 1 keal/kg grd (nach Tafel 10)

Nach (37) ist

Q = omAr — L keal-10kg-80grd

kg grd = 800 kcal .

Zusammenfassung

Um die Temperatur eines Koérpers zu erhohen, mufl jhm Wirme zugefiihrt werden.
Diese Wirmemenge hingt ab von der Masse des Korpers, seiner spezifischen Warme-
kapazitit und der Temperaturdifferenz. Die Warmemenge ist eine Form der Energie
und wird in Joule oder Kalorien gemessen.

Ubungen

106. Wieviel Glyzerin von 20°C kann man mit 150 kcal auf 60°C erwiarmen?

107, Welche Temperaturerhohung kann durch Zufuhr von je 10 kecal bei 2 kg Wasser
und bei 2 kg Quecksilber erreicht werden?

108. Wieviel Kilokalorien miissen die Bremsen eines Kraftwagens von 5t Gesamt-
masse aufnehmen, wenn das Fahrzeug aus einer Geschwindigkeit von 60 km/h
bis zum Stillstand abgebremst wird ?
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In diesem Teil des Studienmaterials sollen Sie sich mit einigen Grundbegriffen der
Elektrik vertraut machen. Die Elektrizitit ist aus unserem Leben heute gar nicht
mehr wegzudenken. Sie ist uns im Haushalt genauso unentbehrlich wie in der Indu-
strie und im Verkehr. Wir kénnen es uns ersparen, die einzelnen Anwendungsgebiete
aufzuzihlen. Der Bedarf an elektrischer Energie ist in den letzten Jahren stark
gestiegen, so dal} weitere Kraftwerke gebaut werden.

Auf eine Schwierigkeit soll gleich am Anfang hingewiesen werden. Wahrend niamlich
in der Mechanik alle Vorginge sichtbar und daher ,,anschaulich‘‘ waren, ist dies in der
Elektrik nicht der Fall. Wir kénnen den elektrischen Strom nur an seinen Wirkungen
erkennen ; sehen konnen wir ihn nicht. Deshalb werden wir hin und wieder gendétigt
sein, uns Modellvorstellungen zu machen, mit deren Hilfe bestimmte Erscheinungen
erklart werden konnen.

7. Gleichstrom
7.1. Stromleitung in metallischen Leitern
7.1.1. Elektron und clektrische Elementarladung

Die wichtigsten Trager der Elektrizitat sind die Elektronen. Diese Elektronen sind
Thnen als Bestandteile der Atome bekannt. Die Masse des Elektrons ist sehr klein.
Sie betragt nur ctwa !/, der Masse des Wasserstoffatoms, namlich 9,1 - 1073 kg,
Jedes Elektron besitzt die gleiche elektrische Ladung, die man als Elementarladung
bezeichnet. Diese Elementarladung stellt gewissermalBen das Atom?!) der Elektrizitit
dar. Dieser Ausdruck ,,Atom der Elektrizitat* ist natirlich nur in ibertragenem
Sinne gemeint: So wie das Atom das kleinste Teilchen eines Elements darstellt, so
ist das Elektron der Triger der kleinsten Elektrizitatsmenge.

Neben den Elektronen gibt es auch noch andere Ladungstriager, z. B. die Protonen.
Sie bilden den Atomkern. Um nun die beiden Ladungen voneinander unterscheiden
zu koénnen, hat man die Ladung des Protons als positiv, die des Elektrons als negativ
bezeichnet. Von unserem heutigen Standpunkt aus ist es bedauerlich, daB gerade die
Elektronen, die wichtigsten Ladungstriger, das negative Zeichen erhielten. Diese
Festlegung erfolgte 1778, als die Bedeutung der Elektronen noch nicht iibersehen
werden konnte.

1) atomos (griech.) unteilbar
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Die Einheit fir die elektrische Ladung (Symbol @), auch Elektrizitdtsmenge genannt,
ist das Coulomb?!) (Kurzzeichen C). Das Coulomb ist eine abgeleitete Einheit, seine
Definition wird noch gegeben werden. Die Ladung des Elektrons, die elektrische
Elementarladung, betrigt '

e, = 1,602.10"1 C,

7.1.2. Elektrischer Strom

In den Metallen gibt es frei bewegliche Elektronen. Normalerweise fiithren sie ganz
unregelmaBige Bewegungen aus. Erst unter gewissen Voraussetzungen — wenn eine
elektrische Spannung angelegt wird — wandern sie alle in einer Richtung. In dieser
Richtung wird die Klektrizitit transportiert: Es fliet ein elektrischer Strom. Dieser
Strom ist um so grofler, je mehr Elektronen flieen, je grofler also die transportierte
Elektrizititsmenge @ ist. Aullerdem spielt die Zeit eine Rolle. Sie werden verstehen,
daB die Stromstirke (Symbol I) um so groBer ist, je kirzer die Zeit ist, in der eine
bestimmte Elektrizititsmenge durch den Querschnitt (etwa eines Drahtes) flielit.
Wir fassen zusammen: '

Dic Stromstédrke ist der transportierten Elektrizititsmenge direkt proportional,
der Zeit hingegen indirekt proportional.

Wir definieren als Stromstirke den Quotienten aus der Elektrizitdtsmenge (der
von den Elektronen transportierten Ladung) und der Zeit:

I=Q (38)

Aus der Definition (38) ergibt sich als Einheit fir die Stromstéirke Coulomb/Sekunde
(C/s). Diese Einheit filhrt den Namen Ampere2) (Kurzzeichen A). Aus dieser Be-
ziehung folgt andererseits:

1C=1As (XII)

Die Stromstirkeeinheit Ampere ist die vierte Grundeinheit des Systems der physi-
kalisch-technischen Einheiten. Sie 18t sich also nicht aus anderen Einheiten ableiten.
Thre Definition kann Ihnen allerdings im Rahmen dieses Vorbereitungslehrganges
noch nicht gegeben werden.

Lehrbeispiel 55

Wieviel Elektronen miissen in einer Sekunde durch den Querschnitt eines Drahtes
flieBen, wenn die Stromstirke 50 mA betragen soll?

Losung

Gegeben: I = 50mA Gesucht: z
t=1s

1) CHarLEs AvcusTe DE CovLoMB (1736 bis 1806), franz. Physiker
2) ANpRE MARIE AMPERE (1775 bis 1836), franz. Physiker
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Nach (38) ist
@ = It.

Andererseits ist die Elektrizitdtsmenge ein Vielfaches der elektrischen Elementar-
ladung e,:
Q = z¢

Aus beiden Beziehungen folgt
2z = Itfe,.
Einsetzen der gegebenen Werte:

_ 50.10%A -1s

i, . 4017
T 71,6.10 2 C 343107

Zusammenfassung

Die wichtigsten Ladungstrager sind die Elektronen. Sie sind negativ geladen mit der
elektrischen Elementarladung e, = 1,6 - 1071* C. Die Stromstarke ist der Quotient
aus Elektrizititsmenge und Zeit.

7.2, Gleichstromkreis

7.2.1. Spannung

In 7.1.2. war schon darauf hingewiesen worden, dafl zum FlieBen eines Stromes eine
Spannung vorhanden sein mull. Machen wir uns das an einem Vergleich klar. Wir
denken uns ein Rohr, das mit Wasser gefillt ist. In dem Rohr kann das Wasser
nur dann flieBen, wenn dafiir gesorgt wird, daB auf der einen Seite immer Wasser
nachgeliefert wird, wahrend auf der anderen Seite das Wasser ungehindert abflieBen
mull. Ganz &hnlich liegen nun die Verhéltnisse auch in einem Metall. Wir hatten
friiher schon festgestellt, daBl normalerweise die Elektronen vollkommen unregel-
méafBige Bewegungen ausfiihren. Wenn man jedoch dafiir sorgt, daB auf der einen
Seite des Drahtes immer Elektroneniiberschufl, am anderen Ende immer Elektronen-
mangel herrscht, dann bewegen sich die Elektronen in einer Richtung, nimlich
von der Stelle des Elektroneniiberschusses nach der Stelle des Elektronenmangels
hin. Eine Anlage, die an dem einen Ende die Elektronen ,,absaugt* und auf der
anderen Seite wieder in den Draht ,hineinpumpt®, heilt Spannungsquelle. Als
Spannungsquellen sind Thnen bekannt: die Taschenlampenbatterie, der Akkumulator
(Bild 103), die Dynamomaschine. Die Spannungsquelle, die wir am hiufigsten ver-
wenden, ist die Steckdose des Lichtnetzes, die letzten Endes mit den Klemmen einer
Dynamomaschine verbunden ist.

Die Einheit firr die elektrische Spannung ist das Volt!) (Kurzzeichen V). Die Defini-
tion fir diese Einheit kann noch nicht gegeben werden. Das Symbol fiir die Spannung
ist U.

1) ALESSANDRO VOLTA (1745 bis 1827), ital. Physiker
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Bild 103, Akkwmnlator il 104, Voltmeter
Merken Sie sich:
| Die elektrische Spannung treibt den Strom an. Ihre Einheit ist das Volt.
Zur Messung der elektrischen Spannung dienen Spannungsmesser (Voltmeter,

Bild 104).
Eine Ubersichit tiber gebriuchliche Spannungen gibt Thnen Tafel 11.

Tafei 11: Gebriinchliche Spannungen in V

Galvanische Flemente 1..-1.5
Bleiakkumulator jo Zolle 2
Netzspannung fur Liclhit und Haushaltgerite  110...220
Spannung fie  Kraftstrom® 380
StraBenbahn 550
Denische Reichsbalin 15000
Hoclispannungsfernleitungen bis 440000
7.2.2. Ntromstiirke

Nachdem Sie im letzten Abschnitt die elektrische Spannung kennengelernt haben,
soll in diesem Abschnitt noch einiges iiber den elektrischen Strom nachgetragen
werden. Sie wissen nun, dal} die Spannungsquelle die Elektronen, also den elektri-
schen Strom, antreibt. Eine Spannungsquelle erzeugt nicht etwa die Elektronen;
denn sie sind von vornherein vorhanden. Eine Spannungsquelle kann in den Strom-
kveis nicht mehr Elektronen hineinpumpen, als ihr auf der anderen Seite wieder zu-
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Bild 105. Modell ciner Spannungsquelle

Pumpe

flieen; unterwegs konnen keine Elektronen verloren-
gehen oder entstehen. Eine Modellvorstellung soll Thnen —\_ —
Bild 105 geben. Sie verstehen nun folgenden Satz:

In einem einfachen Stromkreis herrscht an jeder Stelle die gleiche Stromstarke.

Auch die Spannungsquelle wird von dem gleichen Strom durchflossen. Wir sprechen
daher auch nicht mehr von einer Stromquelle, wie es frither iblich war. Der Strom
entspringt nicht in der Spannungsquelle, er wird von ihr nur angetrieben, so wie
etwa ein Zahnrad eine endlose Kette antreibt (deren Anfang und Ende verbunden
sind). Es soll nun die Stromrichtung festgelegt werden. Jede Spannungsquelle hat
zwel Pole. Der Minuspol ist dic Stelle des Elektroneniiberschusses; hier ist negative
elektrische Ladung angesammelt. Am Pluspol herrscht Mangel an Elektronen, also an
negativer elektrischer Ladung. Die Elektronen flieBen selbstverstindlich auBerhalb
der Spannungsquelle von der Stelle des Elektroneniiberschusses (dem Minuspol) nach
der Stelle des Elektronenmangels (dem Pluspol). Ehe noch der Mechanismus der
Stromleitung in Metallen bekannt war, hat man jedoch die entgegengesetzte Richtung
willkiirlich als Stromrichtung festgesetzt. Wir bezeichnen diese Richtung heute
meist als technische Stromrichtung. Die technische Stromrichtung ist die Richtung,
in der sich positive Ladungstriger bewegen wiirden. Da aber Elektronen negative
Ladungstriager sind, bewegen sie sich der technischen Strom-

richtung entgegen. —®——

R
Wir merken uns also: TI
Der Strom flieBt vom Pluspol der Spannungsquelle durch die t
Leitung zum Minuspol der Spannungsquelle. + -
)
In Bild 106 ist der einfache Stromkreis, der hier aus einer Span-  Bild 106. Einfacher

nungquelle und einer Lampe besteht, dargestellt. Strowkreis

Zum Messen der Stromstirke dienen Strommesser (Amperemeter, Bild 107). Ein
Vielfachmefgerdt, das sowohl zur Spannungsmessung als auch zur Stromstirkemes-
sung verwendet werden kann, zcigt Thnen Bild 108. An dem Drehschalter wird der
gewiinschte Mef3bereich eingestellt. Auf dem Bild sehen Sie die MeBbereiche 1,5 V
bis 600 V Gleich- oder Wechselspannung und 1.5 mA bis 6 A Gleich- oder Wechsel-
strom.

Tafel 12 bringt Ihnen einige Beispiele gebrduchlicher Stromstéirken.

Tafel 12: Grofenordnungen der Stromstirke in A

Glithlampen (220 V, 25 W...100 W) 0,25--.0,5
Kochplatten, Tauchsieder 2...5
StraB3enbahnmotor etwa 150

Starkstromleitungen mehrere 100
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Bild 107, Amperemeter Bild 10A Vielfachmelrerat

7.2.3. Widerstand

In den letzten beiden Abschnitten sind Ihnen zwel wichtige Grolen der Elektrik
erliutert worden: Spannung U7 und Stromstirke J. Milit man Spannung und Strom-
stirke in cinem cinfachen Stromkreiz, so stellt man fest, dal eine Verdoppelung der
Spannung auch ecine Verdoppelung der Stromstiirke zur IFolge hat. Verringert man
die Spannung, ctwa auf dic Hilfte, so sinkt auch die Stromstirke auf die Halfte
ihres urspriinglichen Wertes, Sie erkennen:

Die Stromstirke ist der Spannung proportional.
I~ 1

Soll aus dieser Proportionalitiit eine Gleiehung werden, so mull cin Proportionalitits-
faktor cingefithrt werden:

| U= ..'1’[—‘ (39

Dieser Proportionalitiatsfalitor R heillt elektrischer Widerstand. Tr hangt von den
Abmessungen und dem Material des Drahtes ab. I35 ist das Verdienst von G. 8. Oumy,
diese Proportionalitit von Strom und Spannung erkannt zu haben. Man bezcichnet
daher dic Gleichung (39) als das Onysche Gesefz.

Das Ounvsche Gesetz in der Form

R=UI (39a)

1} Greore Simox Omy (1789 bis 1854), deutscher Physiker
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ist Definitionsgleichung fiir den elektrischen Widerstand. Uber diese Gleichung wird
auch die Einheit fiir den Widerstand festgelegt. Setzen Sie nimlich in diese Gleichung
die Einheiten der Spannung (Volt) und der Stromstirke (Ampere) ein, so erhalten
Sie

[R] = Volt/Ampecre.

Diese Einheit fithrt den Namen Ohm (Kurzzeichen ).
10=1V/A (XI1I)
In Worten:

1 Ohm ist der Widerstand eines Leiters, durch den bei einer Spannung von 1 Volt
ein Strom von 1 A flie3t.

Bild 109 zeigt Thnen die Strom-Spannungs-Kennlinie eines Verbrauchers. Diese
Kennlinie ist eine Gerade durch den Koordinatenursprung. Sie erkennen auch an
dieser graphischen Darstellung die Proportionalitdt zwischen Strom und Spannung.
Es wurde bereits darauf hingewiesen, da8

der Widerstand von den Abmessungen und w0

dem Material des Drahtes abhingt. T 301
Wir wollen nun diese Abhéngigkeit genauer
untersuchen. Es zeigt sich, daB der Wider-
stand der Lange ! des Drahtes proportional
ist, eine Verdopplung der Lange des Drah- ——
tes also eine Verdoppelung des Widerstandes 020 30 40
zur Folge hat:

<lq

Bild 109. Strom-Spnnnfmgs-Kcnnliuie
R~

Legt man zwei Drihte mit gleichem Querschnitt parallel zueinander, dann kénnen
durch diese zwei Drihte doppelt so viele Elektronen hindurchgehen wie durch einen
Draht. Dasselbe kénnen Sie aber erreichen, wenn Sie einen Draht nehmen, der den
doppelten Querschnitt hat. Da durch ihn die Elektronen , 1leichter* hindurchgehen,
bietet er ihnen den geringeren Widerstand. Je grofer also der Querschnitt des Drah-
tes, um so geringer der Widerstand. Genaue Messungen zeigen: Der Widerstand
ist der Querschnittsfliche 4 indirekt proportional:

R ~1/4

Beide Proportionalititen werden zu einer Gleichung zusammengefaft; der Propor-
tionalitiatsfaktor o heit spezifischer Widerstand und ist materialabhingig:

R =olj4 (40)

Wir fassen zusammen :

Der Widerstand eines Leiters ist der Lange des Leiters direkt, seinem Querschnitt
indirekt proportional; er hingt vom Material des Leiters ab.
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Die Einheit von o erhalten Sie, wenn Sie (40) nach ¢ auflésen und die Einheiten
einsetzen:

[o] = [R][A)/[]] = Q mm?*/m

Die Einheit des spezifischen Widerstandes [¢] = Q mm?/m hat man aus prak-
tischen Erwiagungen heraus so festgelegt, obgleich die Einheiten fiir die Lange und
die Fliche nicht zusammenpassen.

Die Tafel 13 bringt Thnen die spezifischen Widerstinde einiger Stoffe.
Wenn Sie Tafel 13 betrachten, so fallt Thnen auf, daf drei Gruppen von Stoffen nach
der GréBenordnung des spezifischen Widerstandes unterschieden werden kénnen:

1. Elektrische Leiter (Metalle, Kohlenstoff, aber auch wafirige Losungen),
2. Nichtleiter oder Isolatoren (Marmor bis Bernstein),
3. Halbleiter (z. B. Germanium).

Im Vergleich zu den Stoffen der Gruppe 1 und 2 haben Halbleiter die besondere
Eigenschaft, daB sich ihr spezifischer Widerstand erheblich verindern 1a8t, z. B. bei
manchen Halbleitern durch Lichteinwirkung.

Tafecl 13: Spezifischer Widerstand ¢ bei 20°C?)

2 2
Stoff 0 / @ mm? Stoff 0 / Qmm?
m m
Silber 0,016 Graphit 20---100
Kupfer 0,017 Marmor 1013...1015
Aluminium 0,027 Glas 1017
Eisen 0,1 Porzellan 1018
Konstantan 0,50 Quarzglas 1022
Manganin 0,43 Bernstein ~>1022
Quecksilber 0,95 Germanium 6-10°

Bei den Leitern unterscheidet man noch

Leiter I. Klasse: solche, die sich bei Stromdu;‘chgang chemisch nicht verindern
(Metalle),

Leiter IT. Klasse: solche, die sich bei Stromdurchgang chemisch verandern (leit-
fahige wiBrige Losungen und Schmelzen).

Im folgenden beschreiben wir Thnen kurz einige technische Ausfiithrungsformen von
‘Widerstéinden.

Schiebewiderstand :
Auf ein Keramikrohr ist ein Widerstandsdraht aufgewickelt. Als Berﬁhrul}gsschutz

1) Der Widerstand éndert sich mit der Temperatur
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Bild 114, Schichewiderstand

dient ein Gitter, das den Widerstand umgibt. Ein Schleifkontakt ermoglicht es,
die Grofle des Widerstandes zu verindern (Bild 110).

Schichtwiderstand :

Auf einem Keramikkéorper befindet sich eine Glanzkohleschicht. Derartige Wider-
stinde werden z. B. in Rundfunkgerite cingebaut (Bild 111).

Prazisionsuiderstand :

Diese Widerstinde werden meist ais sog. Dekadenwiderstinde ausgefiihrt. Durch
einen Drehschalter kann man wahlweise z, B. die Werte 1 €. 2 (. 3 Q bis 10 Q oder
10 Q bis 100 C usw. einschalten (Bild 112).

Dild 111, Schichtwiderstand

Dild 112, Prazisionswiderstand
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Beachten Sie, dafl die Bezeichnung Widerstand in doppelter Bedeutung gebraucht
wird. Man bezeichnet als Widerstand einmal die Eigenschaft eines Korpers, sich dem
Stromdurchgang zu widersetzen, also die oben eingefiihrte physikalische Gréfe, zum
anderen aber auch Gerdte, die einen bestimmten Widerstand besitzen und dadurch
die Stromstirke in einem Stromkreis vermindern.

Lehrbeispiel 56
Welchen Widerstand hat ein Kupferdraht von 0,75 mm?. Querschnitt und 5 m
Linge?
Losung:
Gegeben: A = 0,75 mm? Gesucht: R

l=5m

¢ = 0,017 Q mm?/m
Nach (40) ist

0,017 Q mm?2 - §m

R=olid= o e = 0130

Lehrbeispiel 57

Ein Widerstand von 3,6 kQ besteht aus Manganindraht mit einem Durchmesser von
0,1 mm. Wieviel Meter Draht enthalt er?

Loésung:

Gegeben: R = 3600 Q Gesucht: !
d = 0,1 mm
0 =043 Qmm?/m

In (40) ist 4 = 7 d%/4 einzusetzen:

3600 Q 7 - 0,0l mm?2m

4.0430mm:  —om.

l=R=d*4p=

Lehrbeispiel 58

Ein Draht von 1,25 mm? Querschnitt hat eine Linge von 10 m. Sein Widerstand
wird zu 4 Q gemessen. Aus welchem Material konnte der Draht bestehen?

Loésung:
Alus (40) folgt

1 2
0= RA,’l=4Q ,25 mm'

10 m

= 0,5 Q mm?/m .

Nach Tafel 13 kénnte der Draht aus Konstantan bestehen.

10 Studienmat, Physik
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Lehrbeispiel 59

Welcher Strom fliet, wenn an den Widerstand in Lehrbeispiel 57 eine Spannung von
220 V gelegt wird?

Loésung:

Gegeben: R = 3600 Q Gesucht: I
U=220V

Nach (39) ist
1 =U/R = 220 V/3600 Q = 0,061 A = 61 mA.

Lehrbeispiel 60

Wieviel Meter Konstantandraht (0,75 mm?) befinden sich auf einer Spule, wenn bei
einer Spannung von 12 V ein Strom von 0,3 A flieBt?

Losung:
Gegeben: ¢ = 0,5 Q mm?/m Gesucht: !
A = 0,75 mm?
U=12V
I=03A
Aus (40) folgt
! = RAJo.

Der Widerstand folgt aus dem Onyschen Gesetz (39):
R =U/I

Damit wird
L 12V . 0,75 mm? m
P=Udile = G436 50mm: = 0m-

Bei der Ausrechnung wurde (XIII) verwendet.

Zusammenfassung

Die wichtigsten GréBen des einfachen Stromkreises sind Spannung, Stromstirke und
Widerstand.

Die Spannung treibt die Elektronen an; sie wird in Volt gemessen. Im einfachen
Stromkreis herrscht an jeder Stelle die gleiche Stromstéirke; ihre Einheit ist das
Ampere.

Der elektrische Widerstand wird in Ohm gemessen. Er hdngt ab von der Lange, dem
Querschnitt und dem Material des Leiters. Stoffe mit sehr groflem Widerstand
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heiflen Nichtleiter (Isolatoren). Zwischen Leitern und Nichtleitern stehen die Halb-
leiter.

Spannung, Stromstirke und Widerstand sind durch das Ounvsche Gesetz verkniipft.

Ubungen

109. Welchen Widerstand hat eine Kupferleitung von 4 mm Durchmesser und 400 m
Linge?

110. Aus welchem Material besteht ein Draht von 2 mm Durchmesser und 100 m
Lange, der einen Widerstand von 0,86 Q hat?

111. Geben Sie den spezifischen Widerstand von Porzellan in Ohm - Meter an.
(Diese Einheit ist besonders fir Isolatoren iiblich.)

112. Welchen Widerstand hat eine Glithlampe, durch die bei 220 V ein Strom von
0,27 A flieB3t?

113. Welche Spannung ist erforderlich, um durch einen Eisendraht von 1,2 mm?
Querschnitt und 120 m Lénge einen Strom von t A zu treiben?

114. Welcher Strom kann durch einen Porzellanwiirfel von 1 cm Kantenlinge

flieBen, wenn an zwei gegeniiberliegende Flichen eine Spannung von 200 kV
angelegt wird?

7.3. Arbeit und Leistung im Gleichstromkreis

7.3.1. Elektrische Leistung

Wie Thnen wihrend Ihres Studiums noch begriindet werden wird, hingt die elektri-
sche Leistung ab von der Spannung, die an einen Verbraucher gelegt wird, und von
der Stromstirke, die durch diesen Verbraucher flie8t. Sie werden einsehen, daf} die
Leistung eines Elektromotors um so grofler ist, je hoher die Spannung und je grofer
die Stromstarke ist. Man definiert daher als elektrische Leistung das Produkt aus
Spannung und Stromstéirke :

Leistung = Spannung mal Stromstérke

P=UI (41)

Mit dieser Gleichung kann nun auch die Einheit Volt, die in 7.2.1. eingefithrt wurde,
definiert werden. Aus der Mechanik ist Thnen nidmlich die Leistungseinheit Watt
bekannt. Die Einheit der Stromstirke ist das Ampere, eine Grundeinheit. Lést man
(41) nach U auf, so erhilt man

U= P/
Setzt man in diese Beziehung die genannten Einheiten ein, so folgt

1 Volt = 1 Watt/Ampere
1V =1W/A (X1V)

10*
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Das heillt also, 1 V. Spannung liegt vor, wenn ein Strom von 1 A Stirke eine Lei-
stung von 1 W ergibt.

Wie Thnen im Lehrbeispiel 61 gezeigt wird, kénnen Sie die Gleichung (41) verwenden,
um aus der Leistung und der Spannung die Stromstéirke zu berechnen. Das ist wich-
tig, denn es erlaubt zu beurteilen, ob fur ein bestimmtes Gerit die Sicherung aus-
reicht.

Lehrbeispiel 61
Kann ein Heizofen mit einer Leistung von 1,5 kW an ein 220-V-Netz angeschlossen
werden, das mit einer 6-A-Sicherung (griin) abgesichert ist?
Losung:
Gegeben: U =220V Gesucht: [
P = 1500 W
Aus (41) folgt
I =P/U=1500 W/220 V = 6,8 A.

Die Sicherung miiBite, falls der Leitungsquerschnitt es zuldBt, gegen eine 10-A-
Sicherung (rot) ausgetauscht werden.

Lehrbeispiel 62

Wie gro8 ist die Leistung, wenn ein Widerstand von 44 Q an eine Spannnungsquelle
von 110 V angeschlossen wird ?

Loésung:
Gegeben: R =44 Q Gesucht: P
U=110V

In (41) wird I benétigt. I ist nach (39) zu berechnen.

P=UIlI=U?R=1102V2/44 Q = 275 W

Zur Umrechnung der Einheiten wurden (XIII) und (XIV) benutzt.

Lehrbeispiel 63
Ein Gleichstromgenerator fiir 220 V soll mit 3,6 kW belastet werden. Wie groB mufl
der Belastungswiderstand sein?
Losung:
Gegeben: U =220V Gesucht: R
P = 3600 W
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Nach (39) ist
R=U/I

I folgt aus (41) zu
I=7rTU

Daher wird
R = U2 = 2200 V3600 W = 13.4 Q,

Lehrbeispiel 64

Ein Widerstand von 10 Q wird von einem Strom von 8 A durchflossen. Welche Lei-
stung nimmt er auf?

Lo6sung:
Gegeben: R =10Q Gesucht: P
I=8A

In (41) wird U benotigt. U folgt aus (39).

P=Ul=RI2=100Q-64 A> = 640 W

7.3.2, Elektrische Arbeit (Energie)

Wie Thnen aus der Mechanik bekannt ist, besteht zwischen Arbeit und Leistung die
Beziehung (26)

P=Wwt
Lost man diese Gleichung nach der Arbeit W auf, so erhilt man
W= rt

Wir haben also nur die Leistung mit der Zeit zu multiplizieren, wenn wir die elek-
trische Arbeit suchen. Beachten wir noch die Gleichung (41), die wir fir die elek-
trische Leistung aufgestellt hatten, so erhalten wir

W="Ult (42)

Die elektrische Arbeit hingt ab von Spannung, Stromstarke und Zeit. Allen drei Gro-
Ben ist sie proportional.

Als Arbeitseinheit wird wie in der Mechanik
(W] =J = Ws

verwendet. Allerdings ist die Wattsekunde eine sehr kleine Arbeitseinheit. Sehr oft
verwendet man daher die grofere Einheit Kilowattstunde.
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Rechnen Sie nach, daB gilt:

1 kWh = 3600000 Ws

Zum Messen der elektrischen Energie dienen die Zihler. Die elektrische Energie
miissen wir dem VEB Energieversorgung bezahlen. Im Haushalt kostet eine Kilo-
wattstunde 0,08 M.

Lehrbeispiel 65

Was kostet der Betrieb eines Kiihlschrankes (120 W) monatlich, wenn man annimmt,
daf} er tdglich 10 h in Betrieb ist?

Lésung:
Gegeben: P =120 W Gesucht: Kosten K
t=30-10h
= 0,08 M/kWh

Nach (26) ist W = P ¢. Die Kosten ergeben sich zu K =k W.

Damit wird

0,08 M - 120 W - 300 h
" . _ 77’77 L R — <)
K=kPt= LkWh 288 M .

Lehrbeispiel 66

Welche Energie kann ein Akkumulator liefern, der eine Elektrizititsmenge von 60 Ah
bei einer Spannung von 6 V speichert?

Loésung: s
Gegeben: @ = 60 Ah Gesucht: W

U=6V
Aus (38) und (42) folgt .

W=UQ =6V-060Ah = 360 Wh = 0.36 kWh

Lehrbeispiel 67
Wie lange kann eine Glithlampe von 40 W gebrannt werden, ehe eine Kilowattstunde,
die fiir 0,08 M geliefert wird, verbraucht ist ?
Loésung:
Gegeben: P =40W Gesucht: ¢
W =1kWh
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Nach (26) ist

= W;P = 1000 Wh/40 W = 25 h

7.3.3. Energicumwandlungen — Energiesatz

In 4.5.3. filhrten wir den Energiebegriff ein und lernten die beiden Formen mecha-
nischer Energie kennen. In der Kalorik trat dann die Wirmeenergie auf, in der
Elektrik die elektrische Energie. Es gibt jedoch auch noch andere Energiearten
(z. B. Strahlungsenergie, Kernenergie), auf die wir aber im Rahmen dieser Ein-
fithrung nicht eingehen konnen.

Wir haben bereits darauf hingewiesen, dafl es moglich ist, mechanische Energie in
Wirme zu verwandeln. Auch elektrische Energie kann aus mechanischer Energie
gewonnen werden. Das geschieht in Generatoren (Dynamomaschinen). Motoren haben
hingegen die Aufgabe, glektrische Energie in mechanische Energie umzuwandeln.
Allerdings treten bei diesen Umwandlungen Verluste auf, so daB der Wirkungsgrad
(vgl. 4.5.10.) immer kleiner als 1 ist. Was ist nun die Ursache dieser Verluste?
Hauptsichlich handelt es sich um Reibungsverluste. Sie wissen, dafl durch Reibung
mechanische Energie in Wiarme verwandelt wird. Bei einer vollstindigen Energie-
bilanz mufl aber auch diese Warme beriicksichtigt werden. Dann stellt man fest,
daB bei jedem physikalischen Vorgang genau so viel Energie abgegeben wird, wie
insgesamt aufgewendet wurde. Mit anderen Worten:

| Energie kann weder aus nichts gewonnen werden, noch kann sie vernichtet werden.
Es kann nur cine Energicform in eine andere Energieform umgewandelt werden.

Das ist der Inhalt des allgemeinen Energiesatzes, der eines der wichtigsten Prin-
zipien der Physik darstellt. Die Erkenntnis des Energieprinzips verdanken wir
Juries Rosert Maver!) (1842). Der Energiesatz kann allgemein auch so formuliert
werden: Der gesamte Energievorrat des Weltalls ist konstant.

Lehrbeispiel 68

Wieviel Kilowatt gibt ein Gleichstrommotor (220 V, 12,5 A) ab, wenn sein Wir-
kungsgrad 85 %, betrigt ?

Lésung:

Gegeben: U =220V Gesucht: P,
I=125A
n =085

Nach (27) gilt

I)Bh = 771):.. -

Ly Jurivs RoBerT Maver (1814 bis 1879), Arzt in Heilbronn
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P,, folgt aus (41). Damit wird

Py =nUI =085-220V . 12,5 A = 2,34 kW,

Lehrbeispiel 69

Ein Personenaufzug wird von einem 220-V-Gleichstrommotor angetrieben. 10 Personen
(je 70 kg) werden in 30 s 20 m hoch gehoben. Das Gewicht der Kabine wird durch ein
Gegengewicht ausgeglichen. Der Wirkungsgrad des Aufzuges ist 609, der des
Motors 85 9%,.

a) Welche Leistung muf} der Motor abgeben?

b) Welchen Strom nimmt der Motor auf?

¢) Wie groB ist der Gesamtwirkungsgrad?

Loésung:
Gegeben: U =220V h=20m Gesucht: a) P,,
m = 700 kg m = 0,85 b) 1
t=230s 7, = 0,6 c)y

Der Motor nimmt die elektrische Leistung P,, auf, er gibt die Leistung P,, ab.
Diese Leistung ist gleichzeitig die vom Aufzug aufgenommene. Der Aufzug gibt die
Leistung P, ab.

a) Nach (27) gilt
Ny = Precn/Pay
und nach (23) und (26)
Poeen = mghit.
Damit wird
700 kg - 9,81 m - 20m

P, = mghmt = - 0630582 T 7,64 kW .

b) Auch hier wird zweckmifig vom Wirkungsgrad ausgegangen. Es gilt
m = I)ab/qu
mit P,, = UI. Es folgt

7640 W

I=PumU = o5 9307

=41 A.

¢) Der Gesamtwirkungsgrad ist gleich dem Produkt der einzelnen Wirkungsgrade:

n=mn, = 0,85-0,6 = 0,51 = 519,
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Zusammenfassung

Die elektrische Leistung ist das Produkt aus Spannung und Stromstirke. Die Ein-
heit der Leistung ist das Watt.

Die elektrische Arbeit ist das Produkt aus Spanhung, Stromstirke und Zeit. Sie wird
in Wattsekunden (Joule) oder Kilowattstunden gemessen.

Der allgemeine Energiesatz ist eine Erweiterung des Energiesatzes der Mechanik.
Danach kann Energie weder gewonnen werden noch verlorengehen. Die Energien
kénnen nur ineinander umgewandelt werden. Generatoren verwandeln mechanische
Energie in elektrische, Motoren wandeln elektrische Energie in mechanische um.

Ubungen

115. Welche Stromstirke nimmt eine Glihlampe (220 V, 60 W) auf?

116. Berechnen Sie den Widerstand einer Heizspirale aus Chromnickeldraht (220 V,
750 W).

117. Welche Leistung nimmt ein Heizwiderstand, der die Aufschrift 220 V — 3 kW
tragt, auf, wenn man an ihn eine Spannung von 110 V legt?

118. Bei elektrischer Raumheizung werden fiir jedes Kubikmeter Luft 80 W gerech-
net. Ein Zimmer von 3,8 m Linge, 3,5 m Breite und 2,4 m Hoéhe soll elektrisch
beheizt werden.

a) Welche Leistung muBl der Heizkérper haben?

b) Wie hoch sind die monatlichen Kosten, wenn tdglich 5 h geheizt wird und
0,08 M/kWh zu zahlen sind ?

119. Ein Kilowattstundenzihler tragt die Aufschrift 1200/kWh.
Welche Leistung hat eine Kochplatte, wenn am Zahler in 60 s 16 Umdrehungen
des Ankers gezihlt werden?

120. Wie grofl ist der Wirkungsgrad eines 12-kW-Gleichstrommotors fir 120 V,
wenn er bei Vollast einen Strom von 115 A aufnimmt?

121. Im Pumpspeicherwerk Niederwartha bei Dresden sind 1 Million Kubikmeter
Wasser in einer Héhe von 144 m gespeichert. Welche Leistung kann das Werk in
der Spitzenbelastungszeit abgeben, wenn das Wasser in 4,5h in das untere
Speicherbecken lauft und der Wirkungsgrad 90 9%, betragt?

122, Ein besetzter Straflenbahnwagen hat insgesamt eine Masse von 10t und ble-
wegt sich gleichférmig mit einer Geschwindigkeit von 24 km/h. Welche Strom-
stirke mul} der 550-V-Motor aufnehmen, um den Wagen in dieser Geschwindig-

keit zu halten? Der Wirkungsgrad betrage 85 %,; der Luftwiderstand soll ver-
nachlassigt werden.

123. Ein Tauchsieder (220 V, 750 W) erwirmt in 10 min 1,5 | Wasser von 12 °C auf
80 °C.

Wie groB ist der Wirkungsgrad?

124. Was hat man unter ,,Energieerzeugung’‘ zu verstehen?



OPTIK

In diesem letzten Teil des Studienmaterials Physik wollen wir noch einige Gesetze
der Optik kennenlernen. Optik ist die Lehre vom Licht. In Ihrem spateren Studium
werden Sie erfahren, daBl das sichtbare Licht zu den elektromagnetischen Wellen
gehoért. Von dieser Wellennatur des Lichts wollen wir im Rahmen dieser Einfiihrung
absehen und uns auf die geometrische Optik oder Strahlenoptik beschrinken.

8. Geometrische Optik

8.1. Ausbreitung des Lichts

Wenn Sie einmal in einem finsteren Raum gestanden und das Licht, das durch eine
schmale Offnung (etwa ein Schliisselloch) einfiel, gesehen haben, so sind Sie zu einer
wesentlichen Erkenntnis gekommen:

| Das Licht breitet sich geradlinig aus.

Wir denken uns nun ein ganz enges Lichtbiindel, dessen Breite wir vernachlassigen
kénnen. Ein solches Lichtbiindel bezeichnen wir als Lichistrahl. Von einer punkt-
formigen Lichtquelle gehen Strahlen nach allen Richtungen aus. Auch jeder Korper,
der von einer Lichtquelle angestrahlt wird, sendet Lichtstrahlen aus.

Das Licht breitet sich mit einer sehr grollen Geschwindigkeit aus. Man hat durch
verschiedenartige Versuche feststellen konnen:

Die Lichtgeschwindigkeit betrigt im Vakuum

¢=299793km/s

Auch fiir Luft gilt ndherungsweise

¢ = 300000 km/s = 3 - 168 m/s.

In den iibrigen Stoffen ist die Ausbreitungsgeschwindigkeit kleiner.
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8.2. Reflexion

8.2.1. Reflexionsgesetz

Trifft ein Lichtstrahl eine glatte Fliache. so wird er zuriickgeworfen, reflektiert. Dabei
gilt das Reflexionsgesetz:

Einfallender Strahl. Einfallslot und reflektierter Strahl liegen in einer Ebene.
Der Reflexionswinkel ist gleich dem Einfallswinkel.

Unter dem Einfallslot versteht man die Senkrechte, die auf der reflektierenden Fliache
in dem Punkt errichtet wird, in dem der Lichtstrahl diese Fliche trifft. Einfalls-
winkel ¢ und Reflexionswinkel ¢ 7 werden gegen das Lot gemessen (Bild 113).

P ¢

Bild 113, Reflexionsgesetz Bild 114, Diffuse Reflexion

Fiallt Licht, das wir uns als ein Biindel paralleler Lichtstrahlen vorstellen, auf eine
rauhe Oberfliche, so gilt fiir jeden einzelnen Lichtstrahl das Reflexionsgesetz. Da
aber fiir jeden Lichtstrahl das Einfallslot eine andere Lage hat, wird jeder Lichtstrahl
in eine andere Richtung reflektiert. Man spricht von einer diffusen Reflexion des
Strahlenbiindels (Bild 114). Diffuse Reflexion findet an allen Oberflichen statt, in
denen wir uns nicht ..spiegeln* kénnen.

8.2.2. Ebener Spiegel

Wenn wir uns im Spiegel betrachten, so haben wir den Eindruck, daf3 unser Bild ,,im
Spiegel’‘, d. h. hinter dem Spiegel, entsteht. Selbstverstiandlich kénnen die Licht-
strahlen den Spiegel nicht durchdringen. Wir kénnen daher das Bild hinter dem
Spiegel nicht etwa auf einem Bildschirm auffangen. Man nennt ein solches Bild
virtuelll). Die Entstehung des virtuellen Bildes machen wir uns anhand von Bild 115
klar. Von einem Punkt P des Gegenstands gehen Lichtstrahlen aus. Wir verfolgen
den Verlauf zweier Lichtstrahlen, die in A, und 4, auf den ebenen Spiegel auftreffen.
Sie werden nach dem Reflexionsgesetz reflektiert. Die reflektierten Strahlen laufen
immer weiter auseinander, sie divergieren?). so dall in Strahlrichtung keine Ver-
1y wirtuell (lat., frz.) scheinbar

2) divergere (lat.) auseinandergehen



p P/ Bild 115. Der ebenc Spiegel erzeugt ein virtuelles Bild
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Bild 116. Spiegelschrift

einigung moglich ist. Die Strahlen scheinen von einem Punkt P’ her zu kommen,
der hinter dem Spiegel liegt. Das ist der zum Dingpunkt P gehorige Bildpunkt P’.
Fithren wir die gleiche Konstruktion fiir die iibrigen Bildpunkte durch, so erhalten
wir das virtuelle Bild B des Gegenstands ¢, von dem zu Beginn dieses Abschnitts
die Rede war. Das Bild ist so groB3 wie der Gegenstand. Es ist seitenverkehrt. Davon
konnen wir uns iiberzeugen, wenn wir eine Schrift im Spiegel betrachten. Wir spre-
chen dann von Spiegelschrift (Bild 116).

8.2.3. Sphiirische Spiegel

8.2.3.1. Hohlspiegel (Konkavspicgel)

Wir betrachten nun das Bild, das durch Reflexion im Hohlspiegel entsteht. Der
‘sphirische!) Hohlspiegel ist Teil einer Kugelfliche mit dem Kriimmungsradius r. Die
Verbindungslinie zwischen Kriimmungsmittelpunkt M und Spiegelmitte (Scheitel-
punkt S) heillt optische Achse.

Wir wissen, dafl von allen Punkten cines sichtbaren Gegenstandes Lichtstrahlen nach
allen Richtungen ausgesandt werden. Zur Bildkonstruktion wéhlen wir einige Strah-
len aus, deren Verlauf wir nun verfolgen wollen.

Parallelstrahlen sind solche, die parallel zur optischen Achse auf den Spiegel treffen
(Bild 117). Ein solcher Strahl soll den Spiegel im Punkt .D erreichen. Das Einfallslot
ist die Linie M D. Nach dem Reflexionsgesetz ist < ¢ = - ¢’. Der reflektierte Strahl
schneidet die optische Achse in F. Bei M tritt nochmals ¢ auf (Wechselwinkel an
geschnittenen Parallelen). Daher ist das Dreicck MFD gleichschenklig: MF = FD.
Setzen wir grundsitzlich voraus, daf3 der

einfallende Strahl méglichst nahe der opti-

schen Achse einfallt, so ist F.D ~ FS, und 0

damit MF = FS. Der Punkt F halbiert
(72 opt Achse
1
M F h)
a1 e T Lo =1/

RBild 117. Die Brennweite ist gleich dem halben

Kriimmungsradius r
L

1) sphairos (griech.) kugelférmig
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3 ~a
Bild 118. Parallelstrahlen werden durch den Brenn- T~
punkt reflektiert (1), Brennpunktstrahlen werden ~.
nach Reflexion zu Parallelstrahlen (2), Scheitelstrah- ~. ~
len werden symmetrisch zur optischen Achse reflek- 7 —— =
tiert (3), Hauptstrahlen werden in sich selbst reflek- 2 ~— ° ~~.
tiert (4) b T — e
A —— - —
M F Tl
. L ~——
also die Strecke M S und heil3t Brenn- -
punkt. Alle Strahlen, die parallel zur P

optischen Achse einfallen, und die nicht

zu weit von der optischen Achse ent-

fernt sind, werden nach der Reflexion

im Hohlspiegel im Brennpunkt F vereinigt (Bild 118, Strahl 1). Die Strecke FS
heiBt Brennweite f. Sie ist gleich dem halben Krimmungsradius des Spiegels:

f=r2 (43)

Parallelstrahlen werden nach Reflexion im Brennpunkt vereinigt. Die Brennweite
ist gleich dem halben Krimmungsradius.

Da jeder Strahlengang umkehrbar ist, werden Strahlen, die iiber den Brennpunkt den
Spiegel erreichen, parallel zur optischen Achse reflektiert (Bild 118, Strahl 2):

| Brennpunktstrahlen werden nach Reflexion zu Parallelstrahlen.

Fiir Strahlen, die den Hohlspiegel im Scheitel S erreichen, ist die optische Achse das'
Einfallslot. Diese Strahlen werden daher symmetrisch zur optischen Achse reflek-
tiert (Bild 118, Strahl 3):

| Scheitelstrahlen werden symmetrisch zur optischen Achse reflektiert.

SchlieBlich sind noch die Strahlen von Interesse, die iiber den Krimmungsmittel-
punkt den Spiegel erreichen. Sie fallen senkrecht auf den Spiegel (¢ = 0) und werden
daher in sich selbst reflektiert (Bild 118, Strahl 4):

| Hauptstrahlen werden in sich selbst reflektiert.

Wir wollen nun das Bild konstruieren, das der Hohlspiegel von einem Gegenstand
erzeugt. Die Art des Bildes hingt davon ab, an welcher Stelle sich der Gegenstand G
befindet. Wir wollen ihn zunichst auflerhalb der doppelten Brennweite, d. h. links
von M, aufstellen (Bild 119). Von den unendlich vielen Strahlen, die von der Spitze
des Gegenstandes ausgehen, betrachten wir zwei, deren Verlauf wir kennen. Dort, wo
sich die beiden Strahlen wieder vereinigen, haben wir die Spitze des Bildes B zu
suchen. Zur Bildkonstruktion ziehen wir einen Parallelstrahl (1) heran, der durch
den Brennpunkt reflektiert wird, und einen Scheitelstrahl (2), der symmetrisch zur
optischen Achse den Spiegel verlat. Das Bild B entsteht, wie die Konstruktion
zeigt, zwischen M und F'; es ist verkleinert und umgekehrt. Bringen wir an die Stelle,
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Bild 119. Bildkonstruktion beim Hohlspicgel Bild 120. Zur Ableitung der Abbildungsglciéhung

an der das Bild entsteht, einen Bildschirm (eine Mattscheibe), so sehen wir auf dem
Schirm ein Bild des Gegenstands. Weil das Bild auf einem Schirm aufgefangen werden
kann, ist es ein reelles Bild. Den Abstand des Gegenstands vom Spiegel bezeichnen
wir als Gegenstandsweite g, den Abstand des Bildes vom Spiegel als Bildweite b (Bild
119). Da die beiden schraffierten Dreiecke dihnlich sind, besteht die folgende Pro-
portion zwischen Gegenstandsgrofie ¢, Gegenstandsweite ¢, BildgroBe B und Bild-
weite b:

B b

P (44)
Das Verhaltnis B/G heiBt Abbildungsmafstab.
Wir wollen nun die Abbildungsgleichung, die mathematische Beziehung zwischen ¢,
b und f herleiten. Wir betrachten hierzu Bild 120. Sie finden Gegenstand und Bild
an den gleichen Stellen wie in Bild 119, nur haben wir jetzt neben dem Parallelstrahl
einen Brennpunktstrahl zur Bildkonstruktion herangezogen. In Bild 120 sind zwei
andere Dreiecke schraffiert, die ebenfalls dhnlich sind. Folgende Proportion ergibt
sich aus der Ahnlichkeit:

B

G g—f
Beachten wir (44), so folgt

b /

g g—f
oder als Produktgleichung

bg—f =gf
bg -—bf = gf

Beide Seiten der Gleichung werden durch b g f dividiert:
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oder

’{ S ,11; = ~;7 (45)

Qe

Das ist die Abbildungsgleichung.

Lehrbeispiel 70

Ein Hohlspiegel hat einen Krimmungsradius von 60 cm. 80 cm vor dem Spiegel steht
ein 5 cm hoher Gegenstand. An welcher Stelle und in welcher Grofle erscheint das
Bild?

Losung:

Gegeben: = 30 cm [nach (43)] Gesucht: b, B
g =80 cm
G= 5cm

Aus (45) folgt
gf _ 80em-30cm

Em e e T =4
iy 50 om 8 em

Die BildgroBe folgt aus (44):

B:——b—G: }-8--95117-501n:30m
g 80 em —_—
In Ubung 126 sollen Sie selbst das Bild konstruieren, das entsteht, wenn der Gegen-
stand zwischen M und F gestellt wird.

Allgemein 148t sich sagen:

Steht der Gegenstand auBerhalb der Brennweite eines Hohlspiegels, so entsteht
ein reelles, umgekehrtes Bild, das vergroBert oder verkleinert sein kann.

Wir wollen jetzt den Fall betrachten,
daB der Gegenstand noch weiter an den _
Spiegel herangeriickt wird, namlich zwi- P 1
schen F und S (Bild 121). Sie erkennen, -

daB die reflektierten Strahlen divergie- /o 8
ren. Es liegt also ein dhnlicher Fall vor // I
wie beim ebenen Spiegel. Wir haben G / I
die reflektierten Strahlen riickwirts zu |
verlingern und erhalten im Schnitt- 7 F S

punkt die Spitze des virtuellen Bildes:

Bild 121. Virtuelles Bild fiir g < f
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Steht der Gegenstand innerhalb der Brennweite eines Hohlspiegels, so entsteht
ein virtuelles, aufrechtes, vergrofertes Bild.

8.2.3.2, Wolbspiegel (Konvexspicgel)

Fiir die Bildkonstruktion beim Wolbspiegel gelten dhnliche Gesetze wie fiir die Bild-
konstruktion beim Hohlspiegel (Bild 122): Wahrend beim Hohlspiegel Parallel-
strahlen nach Reflexion im Brennpunkt vereinigt werden, werden sie beim Wolb-
spiegel zerstreut. Verlingert man die reflektierten Strahlen riickwirts, so schneiden

~
RN
~——— P -33uF M
Ky — ==
— T
,_.-——’/7;
P
—
Fvd
/ -~ 7
~

Bild 122, Zerstreuungspunkt beim Wolbspiegel Bild 123, Der Wolbspicgel erzeugt virtuelle Bilder

sich die riickwirtigen Verlingerungen im Zerstreuungspunkt F. Als Mittelpunkt-
strahlen (Hauptstrahlen) haben wir beim Wélbspiegel solche Strahlen zu betrachten,
die nach dem Kriimmungsmittelpunkt des Spiegels gerichtet sind. Sie werden in sich
selbst reflektiert. Die Bildkonstruktion ist in Bild 123 durchgefiihrt. Da sich die riick-
wirtigen Verlingerungen der reflektierten Strahlen hinter dem Spiegel schneiden,
kann das Bild nur virtuell sein. Allgemein gilt (unabhéngig von der Gegenstands-

weite):

| Der Walbspiegel erzeugt ein virtuelles, aufrechtes, verkleinertes Bild.

Es gelten die Gleichungen (43), (44) und (45), nur nimmt die Brennweite beim Wolb-
spiegel negative Werte an.

| Die Brennweite des Wolbspiegels ist negativ.

Lehrbeispiel 71

Ein Wolbspiegel hat einen Kriimmungsradius von 1 m. 2 m vor dem Spiegel steht ein
0,5 m hoher Gegenstand. An welcher Stelle und in welcher GréBe erscheint das

Bild ?
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Losung:
Gegeben: = —05m ) Gesucht: b, B
g= 2 m
G= 05 m
Aus (45) folgt
_ 9/  2m(—05m) 1
b= T tm—(—05m)  —zsm T —m
Negative Werte fir b deuten auf virtuelle Bilder; das Bild entsteht hinfer dem
Spiegel.
Die BildgroBe folgt aus (44):
B=la_ :‘2’4’?-0,5m= —0dm
g 2m -
8.3. Brechung
8.3.1. Brechungsgesetz

Wenn ein Lichtstrahl aus einem Stoff in einen anderen Stoff iibergeht, so wird er
beim Durchgang durch die Grenzfliche aus seiner Richtung abgelenkt; er wird
gebrochen (Bild 124). Breitet sich das Licht im Stoff 1
mit der Geschwindigkeit ¢, und im Stoff 2 mit der Ge-
schwindigkeit ¢, aus, so gilt folgende Beziehung:

¢
:l':;; - g‘ —n 46)

. 7/ / 7 //
Der Stoff, in dem sich das Licht mit der groBeren Ge- / 7 3 /Cz
TR0

schwindigkeit ausbreitet, heilt optisch diinneres Medium; -~ v
der Stoff, fiir den die kleinere Lichtgeschwindigkeit gilt,
heilit optisch dichteres Medium. Bild 124. Brechungsgesetz

Beim Ubergang vom optisch diinneren zum optisch dichteren Medium wird der
Strahl zum Lot hin gebrochen.

Beim Ubergang vom optisch dichteren zum optisch diinneren Medium wird der
Strahl vom Lot weg gebrochen.

Das Verhiltnis n der Ausbreitungsgeschwindigkeiten heillt Brechzahl (Brechungs-
index).

Tafel 14: Einige Brechzahlen (gegen Luft)

Stoff n Stoff ”
Diamant 2,4 Schwefelkohlenstoff 1,6
Glas 1,5 Wasser 1,33

11 Studienmat. Physik
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Lehrbeispiel 72

Ein Lichtstrahl fallt unter einem Winkel von 40° auf eine Wasserfliche.

a) Wie groB ist der Brechungswinkel ? '
b) Wie gro8 ist die Lichtgeschwindigkeit in Wasser?

Loésung:

Gegeben: o« = 40° Gesucht: 5, ¢,
¢, =3-10°m/s
n = 1,33 = 4/3

a) Aus (46) folgt

sin f =04 9:@‘%?47@ — 048209; B — 28°49’.

b) Aus (46) folgt auch

8.3.2. Totalreflexion

Wir betrachten den Ubergang eines Lichtstrahls aus dem optisch dichteren in das
optisch diinnere Medium (Bild 125). Wir vergréfern den Einfallswinkel § und stellen
fest, daB nach (46) auch der Brechungswinkel « grofler wird. Bei einem bestimmten
Winkel f, liegt der ausfallende Strahlin der Grenzfliche der beiden Medien (« = 90°).
Wird der Winkel 8 noch weiter vergroflert, so findet iiberhaupt keine Brechung mehr
statt; die Grenzfliche wirkt wie ein Spiegel; der Strahl wird tofalreflektiert. Der
Winkel f,, bei dem die Brechung in Totalreflexion iibergeht, heilt Grenzwinkel
der Totalreflexion. Dieser Grenzwinkel kann aus (46) berechnet werden, indem man
B =P, und o = 90°, also sin « = 1 setzt:

sin 8, = 1 47) \J
90°
,’ V%
35 M ; P v
e, % %Z/%ﬂ 7
Z , TN

8.3.3. Prisma

Unter einem optischen Prisma versteht man eine Dreikantsaule, die in der Regel aus
Glas besteht. Durch das Prisma wird ein Lichtstrahl aus seiner Richtung abgelenkt
(Bild 126). Die GroBe des Ablenkwinkels ¢ hangt sowohl vom Einfallswinkel als
auch von der Lage der beiden Flichen des Prismas, die vom Lichtstrahl durchsetzt
werden, ab. Diese beiden Flichen bilden miteinander den Winkel v, den brechenden
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i

Bild 126. Der Strahl wird von der brechenden Bild 127, Zur Berechnung des Gesamtablenkungswinkels
Kante weg gebrochen

Winkel; sie schneiden sich in der brechenden Kante (Kante bei w, in die Zeichenebene
hinein verlaufend). Aus Bild 126 ist zu erkennen:

Der Lichtstrahl wird beim Durchgang durch das Prisma von der brechenden
Kante weg gebrochen.

Voraussetzung ist natiirlich, daBl das Prisma von einem optisch diinneren Medium
umgeben ist.
Der Gesamtablenkungswinkel ¢ 148t sich anhand von Bild 127 berechnen:

Zunichst ist festzustellen, daB die beiden Einfallslote miteinander ebenfalls den
Winkel « bilden (Schenkel stehen paarweise aufeinander senkrecht). Es gelten
folgende Beziehungen :

1 = b

M b+ ' Satz vom Aullenwinkel des Dreiecks
2 p=0+71]

3 =

@) @ =0+Fl o eitelwinkel

) d=1+7]

Wir setzen o aus (3) und 7 aus (4) in (2) ein:
p=c—f+0—y=a4+6—B+7y)
Mit (1) ergibt sich schlieBlich

pg=a+ 56— w. (48)

8.3.4. Linsen

Neben Prismen sind vor allem Linsen Hauptbestandteile aller optischen Instrumente.
Linsen sind Glaskorper, deren Flichen konvez (erhaben) oder konkav (hohl) sein
konnen. Die Oberflichen der Linsen sind Teile von Kugelflichen. Bild 128 zeigt die
verschiedenen Ausfiihrungsformen.

11*
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7 2 ﬁ 4 5 6
bikonvex plankonvex konkavkonvex bikonkav  plankonkav konvexkonkav Bild 128, Linsenarten
hd
konvex konkav

Linsen, die in der Mitte dicker sind als am Rand, wirken als Sammellinsen (1...3);
solche, die in der Mitte diinner sind als am Rand, wirken als Zerstreuungslinsen
4...6).

8.3.4.1. Sammellinsen

Fiir die Bildkonstruktion gelten, dhnlich wie fiir die Spiegel, Sitze, die Ihnen nun
ohne weiteres verstindlich sein werden. Betrachten Sie hierzu Bild 129.

Parallelstrahlen (1) werden im Brennpunkt vereinigt.

Strahlen, die iiber den Brennpunkt die Linse erreichen (2), werden parallel

gerichtet.

Hauptstrahlen (3) — Strahlen nach dem Mittelpunkt der Linse — werden nicht
| abgelenkt.

, /\

3 l 'E\s

Bild 129. Parallelstrahlen werden im Brennpunkt vereinigt (1), Bild 130. Strahlenverlauf im Innern
Brennpunktstrahlen werden parallel gerichtet (2), Hauptstrahlen der Linse
werden nicht abgelenkt (3)

Wihrend die Brechung selbstverstindlich an den Grenzflichen beim Eintritt in die
Linse und beim Austritt aus der Linse erfolgt, zeichnen wir in der geometrischen
Optik den einfallenden Strahl bis zur Mittelebene der Linse und tun so, als ob die
Brechung an der Mittelebene erfolge (Bild 130). Der konstruierte Strahl stimmt daher
nur auflerhalb der Linse mit dem tatsichlichen iiberein. Wir zeichnen, da wir uns
nur fiir den Strahlenverlauf auBerhalb der Linse interessieren, meist nur die Mittel-
ebene der Linse und ihre beiden Brennpunkte ¥ und F”.

Der Abbildungsma@istab der Linse ergibt sich aus der Konstruktion nach Bild 131
(Parallelstrahl, Hauptstrahl). Die schraffierten Dreiecke sind &dhnlich. Daher gilt

i= (49)
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Linse
G 6
F F
L +
F F
4
- b
Linse g-f f b
g

Bild 131. Bildkonstruktion bei der Sammellinse Bild 132, Zur Ableitung der Abbildungsgleichung

Das Verhiltnis B/G! heillt Abbildungsmafstab. Ziehen wir zur Bildkonstruktion einen
Hauptstrahl und einen Brennpunktstrahl heran, so ergibt sich Bild 132. Auch hier
sind die schraffierten Dreiecke dhnlich. Es ist daher

B_ J (.Y
G -g—~/<_" y)'
Daraus folgt (rechnen Sie nach) die Abbildungsgleichung

+

1
—. 0
] (50)

1
g

Stellen wir zunichst den Gegenstand auBerhalb der Brennweite auf und fiithren die
Konstruktion nach Bild 132 durch. Wir stellen fest:

Steht der Gegenstand auflerhalb der Brennweite einer Sammellinse, so entsteht
ein reelles, umgekehrtes Bild, das vergréfiert oder verkleinert sein kann.

Riicken wir den Gegenstand zwi-
schen Brennpunkt und Scheitel, so ~
vereinigen sich die gebrochenen
Strahlen nicht mehr; es ergibt sich
also ein virtuelles Bild im Schnitt- B
punkt der riickwirtigen Verlinge-
rungen der gebrochenen Strahlen F 9 F!
(Bild 133): ; g

O

Linse
<
Rs
NN
|
I
|
1

~
~

Bild 133. Virtuelles Bild fiir g < f
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Steht der Gegenstand innerhalb der Brennweite einer Sammellinse, so entsteht ein
virtuelles, aufrechtes, vergroBertes Bild.

Diese Tatsache wird bei der Lupe ausgenutzt.

Lehrbeispiel 73

Wie groB muB die Gegenstandsweite sein, damit das virtuelle Bild, das eine Sammel-
linse mit einer Brennweite von 40 cm erzeugt, mit einer Bildweite von 40 cm und
einem AbbildungsmaBstab 2:1 entsteht?

Lésung:

Gegeben: f=40cm Gesucht: g
b = —40 cm (virtuelles Bild; Bild im Dingraum)
B|G =2

Aus (50) folgt

_ b4 _ —40em-Ocm _,,
9= p—f~ T40em —ddem :

Linse
8.3.4.2. Zerstreuungslinsen

Ahnlich wie der Wolbspiegel liefert

die Zerstreuungslinse nur virtuelle —
Bilder, unabhingig davon, wo sich [} s/
der Gegenstand befindet (Bild 134).
Parallelstrahlen werden so zerstreut, === -—
als ob sie vom Zerstreuungspunkt F 18 S~
herkimen. Die Brennweite der Zer- V 1 ~.
streuungslinie ist negativ. F F'

Die Zerstreuungslinse liefert vir-
tuelle, aufrechte und verkleinerte
Bilder. Bild 134. Die Zerstreuungslinse erzeugt virtuelle Bilder

Zusammenfassung

Das Licht breitet sich im Vakuum (ndherungsweise auch in Luft) mit einer Ge-
schwindigkeit von 3-10°m/s aus. Im Stoff ist die Ausbreitungsgeschwindigkeit
kleiner.

Wird ein Lichtstrahl an einer Fliche reflektiert, so bilden einfallender und reflek-
tierter Strahl mit dem Einfallslot gleiche Winkel.

Der ebene und der Wolbspiegel erzeugen virtuelle Bilder. Diese kénnen nicht auf
einem Schirm aufgefangen werden.

Der Hohlspiegel liefert reelle Bilder fir g > f, virtuelle Bilder fiir ¢ < f.

Beim Ubergang von einem Medium in das andere erfolgt eine Brechung des Licht-
strahls. Dabei verhalten sich die Sinus der Winkel gegen das Lot wie die Ausbrei-
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tungsgeschwindigkeiten. Besonders wichtig ist die Brechung von Lichtstrahlen im
Prisma und in Linsen.

Konvexlinsen sind Sammellinsen ; sie erzeugen reelle Bilder fiir g > f, virtuelle Bilder
fir g < f.

Konkavlinsen sind Zerstreuungslinsen; sie erzeugen grundsitzlich virtuelle Bilder.

Ubungen:

125.

126.

127.

128.

129.

130.

Wie lange braucht das Licht von der Sonne zur Erde? Die mittlere Entfernung
der Erde von der Sonne betragt 1,5 - 10° km.

Konstruieren Sie das Bild eines Gegenstandes, der zwischen dem Kriimmungs-
mittelpunkt und dem Brennpunkt eines Hohlspiegels steht.

Stellen Sie den Gegenstand in den Brennpunkt eines Hohlspiegels und ver-
suchen Sie die Bildkonstruktion. Was stellen Sie fest?

Wie groB ist die Brennweite eines Hohlspiegels, wenn das Bild eines Gegenstands
40 cm vor dem Spiegel im Malstab 1:3 erscheint?

Wie groB ist der Grenzwinkel der Totalreflexion fiir den Ubergang Wasser—
Luft?

Wo muB ein Gegenstand aufgestellt werden, damit eine Sammellinse von ihm
ein Bild im AbbildungsmafBstab 1:1 erzeugt?

Bei welchen Gegenstandsweiten ergeben sich verkleinerte Bilder?
Bei welchen Gegenstandsweiten ergeben sich vergroBerte Bilder?
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1. a) Auflésen von Zucker: physikalisch, da nach dem Verdunsten des Wassers
der Zucker unverindert wieder erscheint.

Zucker in der Pflanze: wird chemisch aus Kohlendioxid und Wasser gebil-

det.
b) Wérme durch Ver- chemisch, weil sich die Substanz des Holzes verin-
brennen von Holz: dert.
Wirme durch physikalisch, da kein Stoff dabei verindert wird.
Reibung:
¢) Rosten: chemisch, da sich das Eisen vollstindig verindert.

Schmelzen von Schnee: physikalisch, da der Schnee zuvor Wasser war und zu
Wasser wird.

2. Eine physikalische GroBe wird als Produkt aus MaBzahl und Einheit wieder-
gegeben. '

3. Die Dicke eines Blattchens sei d:
50d = 1,2 mm = 1200 pm
d = 1200 pm /50 = 24 pm

4. a) 1460 pm, b) 0.098 km, c¢) 0,000171 m?,
d) 0,01009 a, e) 0,008003 m?, f) 3070000 mm?,
g) 7,7 md.

. Das Meter miiite um 85,6 um verlingert werden (vgl. 2.3.1.)
.a) 44100 s, b) 1,65 h.

. Seitenldnge : 574 m

5
6
7. V=A41=0,0025cm?. 4800 cm = 12 cm?
8
9

V=41In= 0,283 cm?. 20 mm .- 2000 =
= 0,00283 dm? . 0,2 dm - 2000 =
= 1,132 dm?3
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10.

11.

12.
13.
14.

15.
16.

17.

18.

19.
20.
21.
22.

23.

Der Zylindermantel, die Boden- und die Deckelfliche ergeben zusammen 9,05 dm?

Blech.

Wenn Sie von der Fliche der Blechtafel
die Fliche der moglichen 6 Stanzteile
abziehen, ist der Abfall

A4 =22mm - 0,08 mm = 1,76 mm?

29,25 cm?
18,85 cm?
10,40 cm?

V =2-250cm - 820 cm - 0,003 cm = 1230 em3 (= 1,23 1)

Die Dichte hingt vom Volumen und von der Masse eines Kérpers bzw. einer
Stoffmenge ab (0 = m/V). )

o =m|V = 9,6 kg/4 dm?® = 2,4 kg/dm?

Gegeben: b =25cm = 0,25m

h =4m
! =10m
e_

1,8 g/em? = 1800 kg/m?
10m-0,25m -4 m -1800 kg

Gesucht: m

m = glbh = o = 18000 kg =$
Gegeben: r=1m Gesucht: m
"0 = 0,25 g/em3 = 250 kg/m?
m= % nrdg = fi‘-ﬁ-g%'f_‘:’(lkﬁ — 1047 kg
Gegeben: ! =04m Gesucht: ¢
d="Tcm = 0,07m
m = 12 kg
4-12 kg

0 =m/V = 4m/nd?l =

7-0,0040m® . 0,4 m’

Der Korper besteht vermutlich aus Stahl.
v=45-3,6km/h = 162 km/h

v=¢/t =200m/26s =7, 7Tm/s = 7,7 3,6 km/h = 27,7 km/h

t=s/v=5000ms/340m = 14,7s ~ 155

s=uvl

=w}3 —08m. 24 3600 — 69,1 km

Gegeben: s = 89,1 km
t = 99 min = 99 h/60

V=

8/t =

89,1 km -60
9h

= 54 km/h

Gesucht: v

= 7800 kg/m? == 7,8 kg/dm?
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24.

25.

26.

27.

28.

29.

30.

31.

32.

v =8t
. 50.1000m
a) v = 50 km/15 min = 15760 ~ 56 m/s,
b) » = 50 km/0,25 h = 200 km/h.
t=sfv

lem-2¢h
30 em

Gegeben: s =2-3500-0,06m
t=1min =60s

, 2.3500.0,06 m
VESIE="T T 60

Gegeben: s =2,10m/5
1
~30°

210m -
2, ;ES_?'Q — 12,6 m/s ~ 45,3 km/h

a) t=-

3

= 7m;,:

12

v=8/t=

Gegeben: V = 12m?

d =3cm

v=15m/fs
Esist V/t = Aljt = Av = Z d%.
Daraus folgt
t=4Vjmdto— g 'igg‘,gﬁ = %O;’Lﬂg

Gegeben: t=12s

a) v = 25km/h

b)v =40km/h

¢) v =65km/h
a=vft
a) a= 215;;"}1 = igizzn‘s—s — 0,58 m/s?,
b) @ = 0,93 m/s?, ¢)a = 1,50 m/s%.
@ = 1,16 m/s?, b) @ = 1,85 m/s?,
_60m
36s-45s
Gegeben: a = 0,12 m/s®

t=12min =72s

0,12m-72s
b=
S

a=v[t= - = 3,7m/s?

=8.6m/s = 31 kim/h

.=0,8h, b) ¢t =48 min.

Gesucht: v

Gesucht: v

Gesucht: ¢

= 189 min.

Gesucht: a

c)a = 3,0 m/s2.

Gesucht: v
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33.
34.

35.

36.

317.

38.

39.

40.

a=v/t=98m/85s.5s=1,15m/s?

Fir die zu erzielende Endgeschwindigkeit gilt nach (3) fiir den Personenzug
v, = a, t, und fir die S-Bahn v, = a,{,. Da die Endgeschwindigkeit in beiden
Fallen gleich groB sein soll, ist v; = v, = v, d. h., Sie konnen auch die Aus-
driicke fir die Endgeschwindigkeiten einander gleichsetzen:

a, t, = ayty
0,55 m/s? .
Daraus folgt ¢, /t, = ayja, = 70;1—2—1—11/:2— = 4,58.
t, = 4,581,
Der Personenzug benétigt rund die 4,6fache Zeit.
Gegeben: v = 60 km/h Gesucht: ¢
s =25m
Aus (5) folgt
t=2s/v = 2-25m-36s =3s,

“60m

Fir den freien Fall gilt nach (7a)
a)v=1Y2gh =12.981m/s* 0,0lm = 0,44 m/s,  b)v =198 m/s.

Aus (7a):
1 m?s?
— 29y — .. R 5 — —
a) h =22¢g = 279,81 m s? 0,051 m = 5,1 em, b) h=394m.
a) Aus (6) folgt:

o

/9710000 52
/21000 m
—V2s/a= |/ 222020 100 s
t V'S/ ] 0,2m a

b) nach (7) ist

v=1Y2as= V2 02 “;;ﬂ’gfl‘ — 20mys = 72km/h .

a) Aus (6a) folgt:

b) nach (7a) ist
v = ]/Eh = ]/w:zﬂn = 32,7m/s.
Gegeben: &, = 80cm Gesucht: &,
Vplvy = 2
Nach (7a) ist
v} = 2gh, und v} = 2 gh,
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41.

42,

43.

44.

45.

46.

47.

Daraus folgt durch Division der beiden Gleichungen

v3/vi = hofhy, also hy = hy (vy/v,)%

Einsetzen der Werte:
hy=80cm-4=320m

a) Aus (6) folgt
2.1000 m
— 9g/t2 = 27 M 05 m/s?
a = 2s/t 40000 52 0,05 m/s2,
b) aus (5) folgt
. 2.1000m oo
v =28/t = 2005 = 10 m/s = 36 km/h 3

Gegeben: t, = 0,5s

tb=03s (dadt=1t —1¢=025s)

Nach (6a) ist
hi=19t und hy =398
Daraus folgt
Ah=1)g (5] —13) =29 (0 + ta) (81 — 1)

_981m.08s-0,2s
B 2 52

4h = 0,78 m

a)5,5mfs =55 3,6 km/h =19,8km/h
v = (19,8 — 5,4) km/h = 14,4 km/h,

b) v = (19,8 4 5,4) km/h = 25,2 km/h.
2imfs =21-3,6km/h = 75,6 km/h

165 km/h = v, — 75,6 km/h
v, = (165 + 75,6) km/h = 240,6 km/h

Wenn Sie die lange Seite des Rechtecks 40 mm lang zeichnen, miBt die kurze

Gesucht: Ak = h, — b,

Y

Seite 7,2 mm. Daher die Steiggeschwindigkeit 7,2 km/h.

Die Diagonale des maBstablich gezeichneten Parallelogramms miBt 12 cm, dies
entspricht einer Geschwindigkeit von 12 m/s. Sie bildet mit den Komponenten

einen Winkel von 17° bzw. 28°.

Das Parallelogramm der Bewegungen ist in diesem Falle ein Quadrat. Die Teil-
bewegungen verlaufen beide innerhalb von 3 min. Die Stréomung legt in 3 min

80 m zuriick, d. h.
v =80m/180s = 0,44 m/s.
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48.

49.

51.

52.

53.

54.

56.

0,09m . w1770

v = ndn=
: min

= 500 m/min

Gegeben: v = 1,68 m/s Gesucht: d
n = 65/min

Aus (10) folgt

1,68 m min _ 1,68 .60

d=v/tn = w65 nﬁgvm:0,49m.
. Gegeben: d =0,9m Gesucht: o
v =Tm/s

Nach (14) ist
m = vfr = 2v/d = 14m/0.9ms =15,6s7!

Gegeben: v = 10m/s Gesucht: d
o =24s"1
Nach (14) ist
d = wjw = ﬂ;%zﬁ —0,83m.
Gegeben: r = 40 cm Gesucht: a)v
% = 300 min~! = 57! b) »

Nach (10) ist

2-.40cm-5

a) v=27mn ="t = 12,6 m/s,
bh) w=2mm= %ES'-.'5— =314s"!
w=2rn = 2r '5102 = 628571

a)n = w/2 % = 100/2 =s = 16 57! = 955 min"?,

b)r =vjo =0,9m-s/100 s = 0,9 cm.

. Gegeben: ¢ = 6378 km Gesucht: v

T=24h
Aus (9) und (10) ergibt sich
276370 km _ 2r - 6370m

v=2nr/T ="~ —- = 55915

i — 464 m/s.

Haben Sie bemerkt, daB im Zihler der Erdumfang (2 = r = 40000 km) steht?

Gegeben: m = 290t Gesucht: o
F =25Mp
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Aus (15) folgt
25-1°kp  2,5.981kgm

a=F/m= 95109 kg 290kgs® 0,085 m/s*.
57. Gegeben: m = 1320 kg Gesucht: F
@ = 5 m/s?

Nach (15) ist

F=ma= "3R8 2T _ 5500 N — 673 kp.
58. Gegeben: m = 400 kg Gesucht: F
s§= 60m
t= 12s
Aus (6) folgt @ = 2 s/t2. Dies ist in (15) einzusetzen:
F =2ms/t?

Diese Kraft wirkt dem Gewicht G = m g des Férderkorbes entgegen. Fir die ge-
suchte Kraft ergibt sich daher

Foee =m (g —2s/8),
Foee=400kg (9,81 m/s? — L’,,s,, ) = 400 kg (9,81 —0,83) m/s?,
F.., = 3590 N = 366 kp.

59. Gegeben: m = 2 kg Gesucht: v
F=35kp
s =80cm
Nach (7) ist
v=1V2a s,

worin sich a aus
a=(F 4+ G)m
ergibt. Damit wird schlieBlich

2.5,5kp -0,8m / m?
L0 KP UOM 1/44.981
] S g l 44981

o — Y2 E TG om —
v = 6,56 m/s.
' 60. Gegeben : m = 80 kg Gesucht: Gy
Jmond = 1,62 nl/S2 (Vgl. 4.1.3)

Nach (16) ist
Groond = ™ Jmona = 30 kg - 1,62 m/s? = 130 N = 13,2 kp.
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L

61.
62.

63.

64.
65.

66.

67.

68.

69.

Resultierende Fy = 1200 kp. Die Winkel sind 21° bzw. 14°.

Zugkraft in der Aufhingung 1: 1245 kp
Druckkraft in der Stiitze 2: 953kp

Senkrechte Druckkraft auf den Mast: 74 kp
Zugkraft im waagerechten Seil: 42,5 kp

Spannkraft in den beiden Seilen je 23,2 kp

In 1 wirkt eine Zugkraft, in 2 eine Druckkraft (Bild 135).
G=F =F,=060kp

SO

FRges

<N

f

Bild 135. Losung der Ubung 63 Bild 136. Losung der Ubung 66

Sie ermitteln die Resultierende Fg, aus 2 gegebenen Kréften und dann aus Fp,
und der dritten gegebenen Kraft die Resultierende Fp,., (Bild 136).

FRges = 478:5 kp

Die resultierende Kraft betriagt 104 kp, sie ist nach der Beziehung
z/(2m — z) = F,/F, von der Kraft ¥, 0,65 m entfernt.

In diesem Fall ist das Krafteparallelogramm ein Quadrat mit der Diagonalen G.
Nach dem Lehrsatz des Pyrtnacoras erhalten Sie

G2 =F2 4+ F?, da F, = F, ist, wird G2 = 2F?,
F,=G/J2 = f Y2 = 1300 kp - 1,41 = 1840 kp,

Da das Seil nur mit 1840 kp gespannt wird, liegt die Belastung unter dem zu-
lassigen Wert.

Gegeben: [, = 18 cm F,=87p Gesucht: [,
l, = 26 cm F,=55p
F,=15p
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F.l, = F,l, + Fyl,

_ Rl ——le% _87p-18em—55p - 26 cm

7, 5p = 9,07 em

Iy

Die Kraft muB auf der rechten Seite wirken.

70. Aus einer mafBstiblichen Skizze finden Sie den Abstand des Drehpunktes von der
Kraftrichtung. Er betragt 65 cm. Drehmoment = 18 kp - 0,65 m = 11,7 kpm.

71. Es befindet sich im stabilen Gleichgewicht.

72. Gegeben: I = 60cm Gesucht: [,
m, =30g
m, =80¢g -
mygly=mygly L+1,=1

myl, = my (I —1))

ms

L= e -1 l, = 43,6 cm
my + my e
73. Gegeben: F = 5 kp ¢ =12 cm Gesucht: Fg
r, =19 cm r,= 6cm

r; = 2,4 cm
Das durch den Sperrhebel hervorgerufene Haltemoment ist
M= Fa.
Es ruft am Umfang des Sperrades eine Kraft
Mr, = Falr,
hervor. Am Sperrad wirkt daher ein Moment
Fa

— Ty .
Y

Die Kraft Fy muB ein gleich grofles Moment aufbringen:
Fyry=Faryr

Daraus folgt

5kp-12cm -6em
Fs=TFan/nrs = gem 5iem — LO0P
74. Gegeben: F = 150 p Gesucht: Fg
a=>5cm; b=1cm

Momentengleichung:

Feb=Fa



Antworten und Lésungen 177

Daraus
Fy=Fafb = 15—0190;1‘:’ 0 750p
75. Gegeben: F = 3 Mp Gesucht: F,
L= 22m
l,= 245m
Nach dem Hebelgesetz gilt
Fl,=F;1;
daraus
Fy=FlLjl, = 31";’5;# = 26,9 Mp
76. Gegeben: G = 15 kp Gesucht: F
k="T70cm
= 25 cm

Die Summe der rechtsdrehenden Momente ist gleich dem linksdrehenden Moment:

Fl+Fl=Gk;

daraus
F=GFE2I, F =21kp
77. Gegeben: M = 7 kpm Gesucht: F
= 0,085 m
M=2Fdi2=Fd;
= _ Tkpm _
F=M|d= 0.085m — 82,5 kp

78. Das Gewicht des Fahrzeugs verteilt sich auf eine groBere Flache.

., 160000 kp
9. p—Fid=— P — 1000 at

80. F = 30000 kp = 30 Mp

81.p =GJ/A = mglb = oV g/lb = glbhg/lb = phg

p_1800kg-3m-9,81m

s = 53000 N/m? = 0,53 bar
m?s

Sie erkennen, daB das Ergebnis unabhingig von Liange und Breite der Mauer
ist.

82. Nach (21) ist
p = Fy|Fy = 55 kp/85 kp = 0,65

12 Studienmat., Physik
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83. Nach Tafel 6 ist u gleich 0,25
Nach (21) ist Fy = Fp/p = 25 kp/0,25 = 100 kp; m = 100 kg

84. Gegeben: A4 = 120 cm? Gesucht: u
p = 8 at = 8 kp/em?
Fy =105 kp

Nach (20) ist die Normalkraft Fy = p4
Damit ist nach (21)
105 kp cm?

_ ) — e iinis) Pl
o= FuiFy = Fa/pd= g1 iog ome — 21

85. W = mgh = 3000 kg - 9,81 m/s?- 5m = 147000J = 147 kJ

W =Gh =3000kp-5m = 15000 kpm = 15Mpm

86. Nach (22a):

2752000 kpm
=TG- e 320m
87. Gegeben: 2z =30 Gesucht: W
m, = 15 kg hy=15m
m, = 60 kg hy; =04m

Nach (22 b):

W = zmgh, 4 2myg by = g2z (mh, + Mmohy,)

W=981m/s?.30(15kg-1,5m + 60 kg - 0,4m) = 13700 J = M
Nach (22a) erhilt man

W =2z (G, + Gphy) =30 (15kp-1,5m 4+ 60kp - 0,4 m) = 1395 kpm = 1,4 Mp

182kp -65m

88. P =Ghjt =-—-"- 60's - =197 kpm/s
., 182kp-98tm.65m . .o )
P = mgh/t=—"-— .60s = 1935 W = 1,94 kW
89. Gegeben: v = 10 m/s Gesucht: u
§ =20m

Die kinetische Energie ist gleich der Reibungsarbeit:

Zm}—z—— mgs; daraus =
9 T HMGS; #—Qg‘;
100 m? s?

K= 5 98im 20msr — 2200
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90.

91.

92.

93.

94.

95.

96.

97.

98.

. 9 kW 9000 W
Nach (27) st n = Pu/Puu = f150%0mrs — 1700 9,81 W — 200k
n = 80,49,
P, =nP,, =092.18kW = 1,66 kW
P = mghlt
p_170ke 981m 32m _ o450y gorw
60 s s2
Gegeben: F = 40 kp Gesucht:a) W
v=102m/s b) P
s =120m

a) Nach (22): W = Fs = 40 kp - 120 m = 4800 kpm,

b) nach (26a): P=Fv=40kp-02m/s =8.981 W =785W.

Gegeben: d = 3,8 m Gesucht: P
7 = 90 min~1
F =270 kp

Nach (26a)ist P = Fo.

Nach (10): v = wdn

Damit wird P = Frdn.

270kp-7-38m-90  270.7.3,8.90.9,81
60s 60

P =47500 W = 47,56 kW

P= w

Das Ergebnis von Ubung 94 wird aufgeldst nach d:
7,5kW -60s 7500 kpm - 60 s

— P/ = ORW OvE VP RPTLOYS
@ = P/Fzn 50kp - - 1050 ~ 981 s.x.50kp - 1050 0,279 m

. 1000
<Im lotzten Ausdruck ist nach (X) 1 kW = 981 kpm/s gesetzt.)

Die Beziehung aus Ubung 94/95 wird nach F aufgelost:

. 22KW.60s _ 22000kpm-60s
F=Pjdzn=gi m = 155 —081s.004m r.125~ o0 kP

Fs _5000kp-4,5m

n = -P'ab /qu = ZPZ = '—5"EWEO s = 9,81 . 4,5/60 = 0,736 = 73,6 (%)
Gegeben: [, = 346m Gesucht: Al
At = 45 grd

¢ = 0,000012 grd-!
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Nach (28):
Al = alldt=0,000012-346m-4ogrd — 0487 m
grd
99. Gegeben: [, = 242,37 mm Gesucht: «
Al = 0,42 mm
At = 80 grd
Aus (28):
al 0,42 mm . ; _
“= A~ 223 mm 80 grd _ ooo0022 grdy
100. Gegeben: ¥V, = 1000 cm? Gesucht: V,
At = 70 grd

& = 0,000006 grd~!

Nach (29c¢):
¥y = 17 (1 -+ 3adt) -+ 1000 cm? (1 + @999%3@)

V, = 1000 - 1,00126 cm?® = 1001,3 cm3

101. Gegeben: V, = 501 Gesucht: V,
At = —18 grd
y = 0,00119 grd~!
Nach (29a):
Vo= Ty (1 + 340 =50l<1 —
V,=501. (1 —0,02142)
V,=150-0978581=4891

0,00119- 18 grd
grd_‘“—)

102. Gegeben: p, = 2at Gesucht: p,
V,=09m3
V, = 0,02 m?

Aus (31) folgt
_PVi_ 2at-09m?

Pe= Ty T o0eme T 200t
103. Gegeben: V; = 0,8 m3 Gesucht: T,
T, = 293°K
V,=1,5m?

Aus (34) folgt
VT,  1,5m’- 293 °K
V1 o 0,8 m?

T, = — 549 °K; ¢, = 276°C.
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104. Gegeben: p, = 1,1 at
T,=288°K
T, = 423°K
Aus (35) folgt
T, 118t-423°K

Py = A 288 °K = 1,62 at .
105. Gegeben: V, =81
T, =313°K
p,=1at
, = 973°K
p, = 40 at

Aus (36) folgt
VT, 1at-81.973 °K

V, = =
T.ps 313 °K - 40 at
106. Gegeben: § = 150 keal
At = 40 grd

¢ = 0,33 keal/kg grd (nac
Aus (37) folgt

m— @ 180kealkg grd
Tcdt 0,33 keal -40grd

Gesucht: p,

Gesucht: V,

=06211.

Gesucht: m

h Tafel 10)

=11,4kg.

107. Gegeben: @ = 10 kcal Gesucht: At
m = 2 kg
¢, = 1 keal/kg grd
¢, = 0,031 keal/kg grd
Aus (37) folgt
A=<
cm
L _ 10 kcal kg grd _
Wasser: At = “Tkoal 2kg 5grd
. _ 10kcalkg grd _ _
Blei: At, = 0,031 keal . 2kg 161 grd
108. Gegeben: m = 5000 kg Gesucht: Q

’U'—iom
= g5 M/

Q= Wen = 5 m?

5000 kg - 3600 m? 5000 - 3600

@= 2.12,96s2  2.12,96 4187

kecal = 165 keal
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109. Gegeben: d = 4 mm Gesucht: B
1 =400m
= 0,017 Q mm?/m
Nach (40) ist mit 4 = wd?*/4
_ol4 _0,017Qmm?.400m -4

B=ler=" rmifmm: 2=
110. Gegeben: d = 2 mm Gesucht: o
l=100m
R =10,86 Q

Aus der in Ubung 109 abgeleiteten Beziehung folgt

0,86 Q - - 4 mm?
= 2 —_ oo L — 2
0= Rl =" g 027 Qo

Nach Tafel 13 handelt es sich vermutlich um Aluminium.

111. R = 10" Q mm?/m = 108 :—31 10-m? = 1012Qm

112, Gegeben: U =220V Gesucht: R
I=027A
Nach (39) ist
R=U|I=220V/0,27 A = 814 Q.

113. Gegeben: 4 = 1,2 mm? Gesucht: U
1=120m
o = 0,1 Qmm?/m
I=1A

Aus (39) und (40) folgt
01Qmm2.-1A-120m

U= ollid = s — = 10V,
114. Gegeben: I =1cm Gesucht: I
A =1 cm?
o =102 Qm (nach Ubung 111)
U =200kV
Nach der Beziehung aus Ubung 113 ist
- . 2
T—UAj =210V dem® o 4o a_21aA.

102Qm -1 cm
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115. Gegeben: U =220V Gesucht: I
P=60W

Nach (41) ist
I =P/U=60W/220V = 0,273 A.
116. Gegeben: U = 220V Gesucht: R
P=1750W
Aus (39) und (41) folgt
R = U%/P = 48400 V*/750 W = 64,5 Q.

117. Gegeben: U, =220V Gesucht: P,
P, =3kW
U,=110V

Der Widerstand ist als konstant anzunehmen. Dann ist (3. Lésung Ubung 116)
R = U%/P, = U}/ P,.

Daraus folgt

P, = P, (U,/U,)? =3 kW (110 V/220 V)2 = 0,75 kW,

Die Leistung ist dem Quadrat der Spannung proportional; daher sinkt sie bei
halber Spannung auf ein Viertel.

118. Gegeben: V=38-35-24md Gesucht: a) P
P/V = 80 W/m? b) K
t=30-5h

% = 0,08 M/kWh
P . 80W.38.35.24m°

a) P = St 2S00 955 kW,
b) aus K = kW und W = Pt folgt
K — kPt — O@M"zlfvsvll{qw’ié()fh — 30,60 M.
119. Gegeben: n = 1200/kWh Gesucht: P
t=260s
z=16

Die Drehzahl des Zahlers (n) ist hier der Quotient aus einer Anzahl (z) Um-
drehungen und einer elektrischen Arbeit (W = Pt): '

n = z/Pt. Daraus folgt

16 kWh
P =z/nt = 1200760s — 0,8kW.
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120. Gegeben: P,; = 12 kW Gesucht: 7
U=120V
I=115A
Nach (27) und (41) ist
1= PulPr= PofUT = i W 097
121. Gegeben: V = 10°m? Gesucht: P,
o = 10% kg/m3
h=144m
t=45h
n =209

Nach (22b), (26) und (1) ist

P,, = mghjt = oVgh|t

Nach (27) ergibt sich

__neVgh _0,9-10°kg - 10°m’®. 9,81 m - 144m

Pay=nPu =" m?4,5- 3600 s 82
P,,=1785MW
122. Gegeben: m = 10t Gesucht: I
v = 24 km/h = g_“‘ﬁ 24 m/s
U=1550V
n =085

g = 0,006 (nach Tafel 7)
Aus (21) und (26a) folgt
P,, = umgv, da als Kraft die Reibungskraft anzusetzen ist.
Nach (31) ist
P, =UI
Sétzt man diese Werte in (27) ein, so folgt
0,006 .10t kg - 9,81 m - 24 m

I=pmgo/Un = =0y 0a5st 365~ oA
123. Gegeben: P = 750 W Gesucht:
t =1600s
A9 = 68 grd (Temperatur ¢ zur Unterscheidung von der Zeit ¢)
m = 1,5 kg

¢ = 1cal/ggrd
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Nach (27) mit (26) und (37):

__cmAdd

n="p; 3 7=95%

124. Nach dem Energiesatz kann Energie nicht erzeugt werden. Wenn man dennoch
von Energieerzeugung spricht, meint man die Gewinnung nutzbarer Energie aus
natiirlichen Energiequellen.

125. Gegeben: s = 1,5. 104 m Gesucht: ¢
¢c=3-10"m/s
Aus (2) folgt mit v = ¢
e 15100 m
s 3.-10°ms-?

t =8min20s

t= =0,5-1035 =500s.

126. Losung siehe Bild 137

£ /

Bild 137. Losung der Ubung 126 Bild 138. Losung der Uhung 127

127. Losung siehe Bild 138
Die gebrochenen Strahlen verlaufen parallel; es entsteht daher kein Bild.

128. Gegeben: b=40cm Gesucht: f
B|G = 1]3
Aus (44) folgt zunichst

G
g=1>=t B (*).
Aus (45) ergibt sich
by

,=_~

b+yg
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129.

130.

Mit (*) erhalten wir

= Gy~ Bb-faz Bb = iocm =30cm
B(1+5) ¢! 3*!
Gegeben: n = 1,33 = 4/3 (Tafel 14) Gesucht: i,
Nach (47) ist
sin B, = 711 - z =075, B, = 48,6°
Gegeben: B/G =1 Gesucht: ¢

Aus B/G = 1 folgt nach (49)
blg =1,alsob =g.

Damit wird aus (50):

Der AbbildungsmaBstab wird kleiner, wenn & kleiner wird. Dann mul} aber
nach (50) ¢ groBer werden. Verkleinerte Bilder entstehen also, wenn sich der

Gegenstand auflerhalb der doppelten Brennweite befindet:
B|G <1 fir g > 2f

Der AbbildungsmaBstab wird gréBer, wenn b grofler wird. Dann mull aber
nach (50) g kleiner werden. VergroBerte Bilder entstehen also, wenn sich der
Gegenstand zwischen einfacher und doppelter Brennweite befindet:

B/G > 1 fir 2f>g>f
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Bedeutung der Symbole
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Beschleunigung
Fliche

Basis der schiefen Ebene
Bildweite

BildgrsBe

spezifische Wirmekapazitit
Lichtgeschwindigkeit
Durchmesser
Brennweite

Kraft
Fallbeschleunigung
Gegenstandsweite
Gewicht
Gegenstandsgrofle
Hohe

Stromstérke

Lénge

Masse

Drehmoment
Drehzahl

Brechzahl

Druck

Leistung
Wirmemenge

Ladung
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Radius

elektrischer Widerstand
Weg

Zeit
CeLsivs-Temperatur
Umnlaufzeit
Kevvin-Temperatur
Spannung
Geschwindigkeit
Volumen

Arbeit, Energie
Anzahl

Winkel

Langenausdehnungskoeffizient

Brechungswinkel
Raumausdehnungskoeffizient
Ausfallwinkel beim Prisma
Dichte

spezifischer elektrischer Wider-

stand
Winkelgeschwindigkeit
brechender Winkel
Reibungskoeffizient
‘Wirkungsgrad

Winkel



Zusammenstellung der Einheiten

Nr. Grofle Einheit Beziehungen
(Kurzzeichen) zu anderen Einheiten
Liinge m
Zeit 8
Masse kg
Geschwindigkeit m/s 1m/s = 3,6 km/h
Beschleunigung m/s?
Drehzahl s1 1872 = 60 min™!
Winkelgeschwindigkeit s™!
I Kraft N 1N = 1 kg m/s?
I kp 1 kp = 9,806 65 kg m/s?
I 1kp = 9,80665 N
v Druck N/m? 1 N/m?* = 1kg/ms?
v bar 1 bar = 100000 N/m?
VI at 1at = 1 kp/em? =
= 98066,5 N/m?
VII Arbeit, Energie J 1J =1Ws=1Nm =
= 1 kg m?/s?
VIII kpm 1 kpm = 9,80665 Nm =
= 9,80665J
X Leistung W 1w =1J/s=1Nm/s =
= 1 kg m?/s?
X kpm/s 1kpm/s = 9,80665J/s =
= 9,806656 W
Temperatur °K
°C
Wéirmemenge J 1J =1Ws=1Nm
= 1 kg m?/s?
XI cal 1 cal = 4,1868 J
Stromstiirke A
XII Ladung C 1C =1As
XIII Widerstand Q 1Q =1V/A =1W/A?
XIv Spannung v i1v =1W/A



Zusammenstellung der Gleichungen

Gleichung Nr. Gleichung Seite
1 Dichte e =m/V 22
2 Geschwindigkeit bei der gleichférmigen
Bewegl%ng v = s/t 28
3 Beschleunigung a UZ—? Y 38
4 Beschleunigung aus der Ruhe =ft 37
51\ Weg bei der gleichméBig beschleunigten (s =1/, vt 43
6 Bewegung aus der Ruhe s = 1/, at? 43
7 Endgeschwindigkeit bei der gleichméafig
beschleunigten Bewegung aus der Ruhe v = }/E 44
8\ fn =zt 55
9 Drehzahl \n — 1T 55
10 Bahngeschwindigkeit v = ndn 56
11 Definition des Winkels P = 8fr 58
ig} Winkelgeschwindigkeit { © ok 8
14 Bahngeschwindigkeit v = 60
15 Grundgesetz der Dynamik F  =ma 65
16 Gewicht G = mg 66
17 Hangabtriebskraft auf der schiefen Ebene Fy =Gh/l=
= @sine 80
18 Normalkraft Fy =Gbfl =
= Gcosa 80
19 Drehmoment M =PFl 89
20 Druck P = Fy/A 98
21 Reibungskraft Fgp =p,Fy 102
22 Arbeit W =PFs 106
23 Potientielle Energie Woo = mgh 108
24 Kinetische Energie Wen = Yamo? 109
25 Energiesatz der Mechanik Wostt+ Wan = Wies 110
26 Leistung P =Wh=
= Fsft 114
27 Wirkungsgrad 7 = P, /P,, 116
28 Léngendnderung fester Korper Al =l 46 121
29 Volumeninderung bei festen Korpern
und Fliissigkeiten 4V =yV a4t 124
30 Raumausdehnungskoeffizient y = 3a 124
31 Gesetz von BoYLE und MARIOTTE 21V, = oV, 127
32 Volumenausdehnung der Gase Ve =7V,
(1 + y¢t) 128
33 KeLvin-Temperatur und Cersius-Temperatur T =27315grd
+ ¢ 129
34 1. Gesetz von Gay-Lussac —II; = g:—z 129
1 1
35 2. Gesetz von Gay-Lussac P _ Te 130

Pl_ T,



Gleichung Nr. Gleichung Seite
36 Zustandsgleichung p_,‘l,Vl _P2Va g
1 T,
37 Wairmemenge Q = cmdt 134
38 Stromstérke und Ladung 1 = Q/t 137
39 OnMsches Gesetz U = RI 141
40 Ohmscher Widerstand R = olf4 142
41 Elektrische Leistung P =UI 147
42 Elektrische Arbeit w = Ult 149
43 Brennweite des Hohlspiegels / = r/2 157
44 AbbildungsmafBstab beim Hohlspiegel B/G = bfg 158
45 _Abbildungsgleichung beim Hohlspiegel % + = % 159
sSina (2]
46 Brechungsgesetz sinf ¢ n 161
47 Grenzwinkel der Totalreflexion sinf, = 1/n 162
48 Gesamtablenkung beim Prisma @ = a4+
d—ow 163
49 Abbildungsmafstab der Linse B/G = bjg 164
50 Abbildungsgleichung der Linse % +5 = % 165









