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Vorwort

Der vorliegende Baustein ist als erster des Lehrwerks Grundlagen der Technischen Mechanik
erschienen. Seine Verwendung als Studienliteratur ist z. B. fiir Ingenieurschulen der Ver-
arbeitungs- und Elektrotechnik, des wissenschaftlichen Geritebaues und fiir die Ausbildung
von Ingenieurpiadagogen gedacht.

Dieser breite Nutzerkreis verlangte die Beriicksichtigung einiger Lehrprogramme, um nach
Inhalt und Umfang dem Lehrfach Technische Mechanik geeignete Studienliteratur fiir das
Direkt-, Fern- und Abendstudium zur Verfiigung zu stellen. Der gewihlte Titel des ersten
Bandes Elementare Statik bezieht sich nicht in erster Linie auf vereinfachte Darstellungen,
sondern auf theoretische und inhaltliche Konzeptionen bei der Vermittlung und Festigung
elementar notwendiger Grundlagen der Statik. Auf diese Grundlagen sollen sich die
anschlieBenden Binde Elementare Festkorperbeanspruchung und Kinematik - Kinetik
stiitzen, damit die Studenten ihr erworbenes Wissen und Konnen im gesamten Lehrfach
anwenden und vertiefen kdnnen.

Mit den neuen Elementen der Wissensvermittlung wurde die Aneignungs- und Fihigkeits-
stufe des Lernprozesses weiter vertieft. Dem Lernenden wird gezeigt, wie man vom tech-
nischen Gebilde zum Modell der Statik, zam Strukturbild kommt und wie man das Struktur-
bild mit den Eigenschaften der Kraftwirkungslinien, die als Belastung und durch Stiitz-
symbole vorgegeben sind, bearbeitet. Die Lehrpraxis hat gezeigt, daB damit eine bessere
Aufbereitung statischer Aufgaben bis zur Anwendung der zeichnerischen oder rechnerischen
Losungsverfahren moglich ist. Diese Modellierung schlie3t, je nach Erkenntnisstand, eine
weitgehende Kontrolle der Ubereinstimmung zwischen Theorie und Praxis, zwischen
Strukturbild und technischem Gebilde ein.

Zeichnerische Losungen haben hohen Bildungscharakter. Hier erarbeitet sich der Lernende
das Kriftesystem mit seinen zur Losungsdurchfithrung notwendigen Hilfskriften. Die
rechnerische Losung wird mit ihren Bestandteilen, statisches Krifte- oder statisches
Momentengleichgewicht, direkt angesprochen. Hier werden Kontrollrechnungen, Kréfte-
bilanzen eingeschlossen, um Teilergebnisse auf ihre Zuverlidssigkeit oder auf Fehler und
Schwichen zu iiberpriifen. Bereits diese Tatigkeitsmerkmale fithren den Studenten in die
Arbeitsweise der Praxis ein.

Die algorithmischen Ubersichten im Anlagenteil verfolgen das Ziel, problemorientiert in
Aufgabenkomplexe und in ihre Zusammenhinge einzufiihren. Sie sollen zum systema-
tischen Durchdringen des Losungsweges anregen.

Der Lehrstoff enthélt schrittweise Lehrbeispiele » und als Empfehlungen Ubungshinweise m,
die drucktechnisch durch spezielle Randmarken gekennzeichnet sind. Da der Lernende
nicht nur Aufgaben I6sen soll, sondern auch die Motive praktischer Aufgabenstellungen



erfassen mufB, wurden hier technische bzw. technisch-okonomische Gesichtspunkte ein-
geflochten. Wichtige Formeln und Merksitze werden durch @ hervorgehoben.
Mit den Ubungen im Anlagenteil und riickkoppelnd auch zu den Lehrbeispielen kann man
das eigene Wissen und Konnen iiberpriifen oder sich wiederholend auf Leistungskontrollen
vorbereiten. Verfasser und Verlag hoffen, da3 mit dem vorliegenden Lehrbuch ein erfolg-
reiches Studium der wichtigsten Grundlagen zur Statik moglich ist. Fiir kritische Hinweise
zur Verbesserung des Inhaltes und seiner Darstellungen sind wir dankbar.

Federfiihrender und Verlag
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Einfiihrung in die
Technische Mechanik

Fragen zur Technischen Mechanik wurden bereits im Lehrfach Physik beriihrt. Die Physik
untersucht den Bewegungszustand eines Korpers, der durch duBlere Krifte beeinflult wird.
Sie stellt hierzu GesetzméaBigkeiten als Lehrsitze, Axiome, Hypothesen auf und beschreibt
sie mit Funktions- oder Bestimmungsgleichungen bzw. mit grafischen Darstellungen.

Die Technische Mechanik erweitert diese physikalischen Erkenntnisse auf technische
Anwendungsbereiche. Sie entwickelt fiir die in der Technik verwendeten Objekte (tech-
nische Gebilde) geeignete Untersuchungsverfahren. Dadurch hilft sie dem Ingenieur, seine
praxisbezogenen Aufgaben mit mathematisch-naturwissenschaftlichen Methoden zu 16sen
und auch technisch-6konomisch zu beurteilen.

Der kausale Zusammenhang zwischen

Kraft ——————— Korper —————— Bewegung

Wirkungsbedingung
Ursache Wirkung

schlieBt Korper aller Aggregatzustinde (fest, fliissig, gasformig) ein. Die Technische Me-
chanik muB auch diesen Unterscheidungsmerkmalen Rechnung tragen. Dadurch entstand
ein sehr groBes Lehrgebiet, das aus Griinden der ZweckmiBigkeit unterteilt wurde. Wir
wollen uns mit dieser Gliederung nicht weiter beschiftigen, sondern nur erwihnen, daB
Lehrbereiche zur Untersuchung plastischer, fliissiger, gasformiger Stoffe ihre eigenen und
spezifischen GesetzmiBigkeiten haben.

® Wir beschrdnken uns auf technische Gebilde aus festen Werkstoffen.

Kraft und Bewegung, Ursache und Wirkung, fithren zur Beanspruchung des technischen
Gebildes. Es dndert seine Gestalt, in ihm treten Spannungen auf. Diese Beanspruchung
entsteht durch Krifte auf das technische Gebilde, durch dessen Belastung.

Den Bewegungszustand gliedern wir in zwei Formen:

1. Es tritt keine Beschleunigung oder Verzdgerung (a = 0) auf. Krifte wirken dann bei
konstanter Geschwindigkeit (v = konst.) oder im Ruhezustand (v = 0). Diese kinematische
Voraussetzung gehort zur Statik.

2. Der Bewegungszustand verlduft beschleunigt oder verzogert (a % 0); seine Geschwindig-
keitsinderungen sind zeitabhingig. In diese Vorginge konnen wir auch technische Schwin-
gungen einbeziehen. Die Untersuchung solcher Kriftewirkungen gehort zur Kinetik.



Erst nachdem Belastungsfragen geklirt sind, kann man die Beanspruchung eines festen
Korpers, seine Formdnderung und seine Spannungsaufnahme, ermitteln. Unzuldssige Ver-
formungen beeintrichtigen die Funktion des Bauteiles, und hohe Spannungen kénnen im
Grenzfall seinen Bruch herbeifiihren.

Nach den Forderungen der Lehrprogramme gliedert sich demnach diese Studienliteratur
zur Technischen Mechanik in die Hauptteile

Elementare Statik
Elementare Festkdrperbeanspruchung
Kinematik — Kinetik.

Wir wollen mit dem ersten beginnen.
Zuvor jedoch ein notwendiger Hinweis zu den verwendeten Einheiten. Das Internationale
Einheitensystem (SI) enthélt fiir mechanische GrofBen folgende Basiseinheiten:

fiir die Linge das Meter m
fiir die Masse das Kilogramm kg
fiir die Zeit die Sekunde s

Dezimale Vielfache oder Teile davon sind zuldssig und fiir die Technik oft zweckmiBig.
Daraus lassen sich die nachfolgenden Groéfen und ihre Einheiten ableiten.

GrofBe Einheit

Kraft N (Newton) = kgms=2

Druck, Spannung Nm~2 oder Nmm~2 = MPa (Megapascal)
Geschwindigkeit ms~?!

Beschleunigung ms~2

10



Grundbegriffe

1.1. Krifte
1.1.1. Kennzeichnung der Krifte

Nach ihren Wirkungen und nach dem Ort ihres Auftretens lassen sich Krifte in Aktions-
und Reaktionskrifte sowie in duBlere und innere Kréifte einteilen.

Befassen wir uns zuerst mit den dufleren Kriften, also mit den Kriften am Korper.
Hierzu ein Beispiel. Die Scheibe (Bild 1) ist nach dem Prinzip einer Spannvorrichtung gegen
das Prisma fest einzuspannen. Zu diesem Zweck wirkt in 4 die Druckkraft F. Sie greift
aktiv an der Scheibe an und belastet sie. Daher bezeichnet man F als Aktionskraft oder als

Bild 1. Belastung der
Korper: Scheibe und
Prisma

Bild 2. Aktions- und
Reaktionskrdfte an
der Scheibe e

Belastung. Da die Scheibe sich nicht bewegen soll (durch das Prisma ist eine feste Anlage
vorhanden), gibt es auf Grund der geometrischen Gestaltung beider Korper gemeinsame
Beriithrungspunkte, Kontaktstellen B und C. Hier entstehen, verursacht durch F, die
Krifte Fj und F/. Vom Prisma aus wirken auf die Scheibe Gegenkrifte Fs, F¢ (Bild 2).
Sie haben widerstrebenden Charakter, wirken zur Belastung F reaktiv auf die Scheibe und
stiitzen sie. Man bezeichnet sie als Reaktionskrifte, auch als Stiitzreaktionen.

Da die feste Einspannung der Scheibe ihre Bewegung ausschlicBt, stellt sich in dem Kréfte-
system F, Fg, F¢ statisches Gleichgewicht ein.

Nun zu den inneren Kriften, zu den Kriften in ein und demselben Kdorper.

Innere Krifte lassen sich mit gedachten Schnitten veranschaulichen. Zu diesem Zweck
trennt man die Scheibe nach Bild 3 in zwei Teile und trdgt ldngs der Schnittlinien innere
Krifte, Schnittkrifte Fs, an. Sie miissen, auf Grund des festen Zusammenhangs der Korper-
teilchen, reaktiv zu den duBeren Kriften wirken. Man bezeichnet sie als Schnittreaktionen.

11



Belastungen und Stiitzkrifte wirken am Kérper. Fiir die abgeschnittenen Teile nehmen sie
den Charakter aktiver Krifte ein. Auch fiir jeden Korperteil gilt das Wechselwirkungsgesetz
der Krifte: Aktion = Reaktion. Daher miissen sich sowohl F und Fs als auch Fg, F¢ mit Fg
im statischen Gleichgewicht befinden. Das gilt auch fiir die Schnittkrifte selbst.

Je nach Aufgabenstellung muf3 man zwischen Stiitz- und Schnittreaktionen unterscheiden.

® Stiitzreaktionen wirken am Korper (duBere Krifte).

Schnittreaktionen wirken im (gedacht geschnittenen) Korper. Sie gehoren zu den inneren
Kriften.

1.1.2, Darstellung der Krifte

Krifte werden von ihrem Angriffspunkt aus als gerichtete GréBen, als Vektoren, abgebildet.
Sie haben demnach eine Wirkungslinie, einen Wirkungssinn und einen Betr:.g (Bild 4).
Die Wirkungslinie einer Kraft geht durch den Kraft-Angriffspunkt und kennzeichnet den
Verlauf der Kraftrichtung.

Man kann sich zur Festlegung des Richtungswinkels « z. B. auf ein rechtwinkliges Koordi-
natensystem beziehen.

Der Wirkungssinn einer Kraft muBl mit der eingezeichneten Pfeilspitze iibereinstimmen.
Nach Bild 1 wurde damit die Wirkung einer Druckkraft auf die Scheibe angegeben.

Bild 3. Auflere Krifte und Schnittkrifte Bild 4. Darstellung einer Kraft

® Kiraftvektoren darf man lidngs ihrer Wirkungslinie verschieben.

Praktisch muB jedoch ihr Angriffspunkt zum Korper gehoren oder durch eine feste Ver-
bindung (z. B. durch einen Stab) mit ihm gesichert sein (Bild 5).

+F__~

/

WTKUHW
==

Bild 5. Verschiebung einer Kraft ldngs ihrer Wirkungslinie

12



Der Betrag einer Kraft wird durch die maBstabsgetreue Linge des Kraftvektors (maBstib-
liche Kraftstrecke) abgebildet. Wir vereinbaren fiir alle maBstiblichen Abbildungen die
Proportion

Abbildungsgrofe

wirkliche Grofle

und daher speziell fiir den Krdftemafistab

M. — Linge des Kraftvektors auf der Zeichnung
P Betrag der Kraft

Beispiel:
Eine Kraft von 50 N soll als Vektor mit 50 mm Liange gezeichnet werden. In diesem Fall betrigt
der KriftemaBstab

M. = 50 mm 1 mm
F7"50N = N
1.1.3. Kriftezusammensetzung, Kriftezerlegung; statisches Kriftegleichgewicht

Krdfteparallelogramm

® Krifte lassen sich zur Resultierenden (resultierende Kraftwirkung mehrerer Krifte)
zusammenfassen oder in ihre Komponenten zerlegen.

Ermittlung der Resultierenden

Fiir zwei Krifte, die einen gemeinsamen Angriffspunkt (Schnittpunkt ihrer Wirkungs-
linien) haben, kann man mit dem Kréifteparallelogramm ihre Resultierende zeichnerisch
bestimmen (Bild 6). Die Resultierende Fy oder die Einzelkrifte F,, F, zusammen ergeben

Bild 6. Krifteparallelogramm

eine gleiche Kraftwirkung; denn alle drei Krifte haben einen gemeinsamen Angriffspunkt.
Es sei schon hier darauf hingewiesen, daf3 sich auf diese grafische Addition viele zeichnerische

Losungen der Statik griinden.
Rechnerisch findet man den Betrag der Resultierenden nach dem Cosinussatz zu

Fp =/ F? + F} — 2F\F, cos (180° — «)
[ FR=\/F12+F22+2F1F2(:OS“ (I)




und die Richtung ihrer Wirkungslinie (Winkel og) nach dem Sinussatz aus

sin &R _ Fz
sin (180° — o) Fy
zu
. F; F, .
® sin og = T: sin (180° — &) = F: sin o 2

Beispiele zu verschiedenen Richtungswinkeln fiir die Einzelkrifte (Variation des Winkels «)
1. 90° < o < 180° (Bild 7.1)

Im zweiten Quadranten wird der Cosinus des Winkels « negativ. Die Resultierende betrigt dann mit
dem absoluten Winkelwert

Frx = ~/F2+4 F?—2F,F; cos
Sie kann dem Betrag nach kleiner als die groBte Einzelkraft werden.

2.0 = 180° (Bild 7.2)
Fiir diesen Fall wird cos 180° = —1 und damit

Fe=+/Fi + F§—2FF,=\/(F,—F)* =F,—F,
Die Resultierende entspricht der Differenz beider Einzelkrifte.

3. & = 360° (Bild 7.3)
Hier ergibt sich mit cos 360° = -1 die Resultierende zu

Fa=+F}+ F2 4+ 2F,F,=J(F,+ F,)*=F, + F,

Die Resultierende entspricht der Summe beider Einzelkrifte. Das gleiche Ergebnis erhalten wir mit
o = 0°

4. oo = 90° (Bild 7.4)

Da cos 90° = 0, erhalten wir

Fo=/F} + F}

Die Resultierende wird nach Pythagoras als Hypotenuse eines rechtwinkligen Dreieckes
berechnet. Diese besondere Lage ist fiir rechnerische Losungen sehr vorteilhaft, weil man
sich auf die geometrischen Eigenschaften eines rechtwinkligen Dreieckes beziehen kann.

=r ’ Bild 7.3
Fr

Bild 7.4

Bild 7. Beispiele zum Krdfteparallelogramm
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Zerlegung einer Kraft in ihre Komponenten

Eine Kraft 148t sich zeichnerisch eindeutig in zwei Krifte zerlegen, wenn ihre Wirkungs-
linien vorgegeben sind. Wir konstruieren nach Bild 8 mit Parallelen zu den Wirkungs-
linien 1.1 und 1.2 das zugehorige Krifteparallelogramm und begrenzen damit auf ihnen
die Komponenten F; ; sowie F; .

o~
-~
5|
2|
S
]
=

Bild 8. Zerlegung einer Kraft in zwei Komponenten

Statisches Krdiftegleichgewicht

® Zwei Krifte befinden sich im Gleichgewicht, wenn sie eine gemeinsame Wirkungs-
linie haben, entgegengesetzt gerichtet und gleich groB sind (Bild 9). Ihre gegenseitigen Wir-
kungen heben sich auf (Wechselwirkungsgesetz).

Drei Krifte befinden sich im Gleichgewicht, wenn daher die dritte Kraft F; die Wirkung
der Resultierenden aus F; und F, aufhebt (Bild 10).

~
F .~
F
~
Bild 9. Zum Gleichgewicht fiir zwei Krdfte Bild 10. Zum Gleichgewicht fiir drei Krifte
Krafteck

Die Krifteparallelogramme enthalten zwei identische Kraftecke (Bild 11). Daher geniigt
es, die Krafte mit jeweils nur einem Dreieck, dem Krafteck, abzubilden. Sie erkennen weiter-
hin,_daB man die Einzelkrifte eines gemeinsamen Angriffspunktes in beliebiger Folge

f

NN
N

F
Bild 11. Krafteparallelogramm 2 / F,
und Kraftecke A A ¢

A G



aneinanderfiigen kann. In beiden Fillen wird die gleiche Resultierende nach der Vektor-
addition Fg = F, + F; = F; + F, gefunden. Fiir drei Krifte (Bild 12) kann man z. B.
wahlweise ihre Resultierende mit den gezeichneten Kraftecken ermitteln. Wir wihlen einen
KraftemaBstab, beginnen mit F,;, schliefen F, und schlieBlich F; an. Die Verbindung vom
Anfangs- bis zum Endpunkt des Kriftezuges entspricht der resultierenden Kraftwirkung
nach Fp = F; + F, + F;. Im zweiten Fall wurde mit F, begonnen, dann F; angefiigt
und schlieBlich F,. Die Vektoraddition lautet dann Fg = F; + F; + F,. Da Summanden
vertauschbar sind, miissen beide Ergebnisse iibereinstimmen.

&
' 3
by Bild 12. Resultierende
e fiir drei Krdfte
f3
A

Fiir n Krifte erweitern wir die Gleichung und schreiben
Fr=F, +F,+ -+ F,

oder in der allgemeinen Form (i = 1, ..., n)

e FR =‘Z' F[ (3)
=1

Jede Gleichgewichtskraft hebt die Wirkung der Resultierenden auf. Fiir diesen Zustand
muf daher ein geschlossenes Krafteck mit fortlaufendem Umfahrungssinn entstehen. Der
Korper nach Bild 13, dessen Krifte einen gemeinsamen Schnittpunkt haben, befindet sich
im statischen Gleichgewicht. Das Krafteck ist geschlossen. Die Resultierende wird zu Null.
Wir erhalten damit als Bedingung fiir das statische Kriftegleichgewicht

n
® Fr=> F,=0 4
i=1
F3
y
4 k | A
-
A By (Fyy)
xr
AAN + >
Fix X
Bild 13. Gleichgewichtskraft fiir drei Krifte Bild 14. Kraft und ihre Komponen-
ten im rechtwinkligen Koordinaten-
system

16



Rechtwinklige Kraftecke

Die geometrischen Zusammenhénge fiir rechtwinklige Dreiecke lassen sich auf rechnerische
Losungen der Statik vorteilhaft anwenden, wenn als Bezugsbasis ein rechtwinkliges Koordi-
natensystem gewihlt wird. Nach Bild 14 betragen die Komponenten der Kraft F,

(aus sin «; = Fy,/F;) = F;, = F; sinoy

(aus cos &; = Fy,/F;) = Fy, = F; cos &,

und die Resultierende F; aus den Komponenten F,, Fj,
F, =/F? + F2,

Diese Grundaufgaben, Zerlegung einer Kraft in ihre Komponenten, Zusammenfassung
der Komponenten zu ihrer Resultierenden, muf3 man beherrschen.
Wir wenden sie auf zwei Krifte mit gemeinsamem Angriffspunkt in 4 an (Bilder 15, 16).

Bild 15. Komponenten-
“darstellung fiir
zwei Krdfte

Fry = F1y + Fzy

Bild 16.

Zur rechnerischen
Ermittlung der
Resultierenden

X

Der Ursprung des rechtwinkligen Koordinatensystems wird dem Angriffspunkt der Krifte
zugeordnet. Nach Bild 15 gilt fiir die Komponenten

auf der Abszissenachse: F;, = F; cos «;
F,, = F, cos «,
auf der Ordinatenachse: F;, = F; sin &,
F,, = F,sin x,
und fiir die resultierende Wirkung
in x-Richtung: Frx = F;; + F>, = Fy cos oy + F, cOs &,
in y-Richtung: Fgy = F;, + F,, = Fysina; + F, sin &,

Diese Gleichungen lassen sich fiir » Krifte (i = 1, ..., n) erweitern.
n
[ ] FRx=2Ex=F1x+F2.\'+"'+an (5)
i=1
n
[ ] FRyZ‘:ZFIy=F1y+F2y+'“_}'Fny (6)
i=1
Der Betrag fiir die Resultierende ergibt sich nach Bild 16 zu
. Fo=+/F%, + F3, %)
und ihr Richtungswinkel nach der Tangensfunktion zu
F
™ tan og = T:Zr (8)
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Beziiglich des rechtwinkligen Koordinatensystems fiihrt die Beziehung fiir das statische

n
Kriftegleichgewicht Fr = > F; = 0 nach Gl. (4) auf die Gleichungen
i=1

n

[ ] ‘21F1x=0=F1x+F2x+"’+an (9)
n

° 12 Fy=0=F,,+ F+ -+ F, (10)
=1

Man spricht von einem statischen Kréiftegleichgewicht in horizontaler und vertikaler
Richtung.

1.1.4. Zeichnerische und rechnerische Elementaraufgaben

»  Lehrbeispiel 1

Durch Seile werden zwei Krifte tibertragen: F; = 300 N, F, = 500 N; Schnittwinkel ihrer Wir-
kungslinien o = 60°. Mit dem Krifteparallelogramm ist zeichnerisch und rechnerisch ihre resultie-
rende Wirkung zu ermitteln.

Zeichnerische Losung (Bild 17):

Wir wihlen zur zeichnerischen Darstellung der beiden Kraftvektoren den KriftemaBstab

My = 10 mm/100 N und haben daher die Krifte mit den Langen (F;> = 30 mm, {F,)» = 50 mm

zu begrenzen. Das Krifteparallelogramm ergibt (fg) = 70 mm. Daher betrdgt die Resultierende
10 mm 100 N :

Fy = (F)/Me = 70 mm/-7oo== = 70 mm (m) = 700 N.

Die Bilder zu den grafischen Losungen haben aus drucktechnischen Griinden eine MafBstabsleiste.

Mit ihr kann man durch Ausmessen die Ergebnisse sofort bestimmen.

Das Krifteparallelogramm fithrt auf den Richtungswinkel ag = 38°.

Ad
0 10 200 300 400 500 600 700
[ 1 . 1 1 1 1 J
KriftemaBstab in N

Bild 17. Krdfteparallelogramm zur zeichnerischen Losung nach Lehrbeispiel 1

Rechnerische Losung :
Betrag der Resultierenden nach Gl. (1)
Fx = \/F% + F? + 2F,F, cos «
=100N+/32+52+2-3:5-0,5
— 100N ~/9 + 25 + 15 = 100 N \/49 = 700 N
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Richtungswinkel nach Gl. (2)

sin og = ?2 sin o
R
F. 500 N
sin o = - sin 60° = oo 0,866 = 0,62 = g = 38,2°
R

er Richtungswinkel wurde mit dem Rechenstab ermittelt. Dort kann man sofort die Winkelgrade
ablesen; zusdtzliche Umrechnungstabellen sind hier nicht notwendig. Vergleicht man die Ergebnisse,
dann ist festzustellen, da3 die zeichnerisch gefundenen mit den. rechnerischen ijbereinstimmen.

»  Lehrbeispiel 2

Die Aufgabe nach Lehrbeispiel 1 ist rechnerisch iiber Komponenten im rechtwinkligen Koordinaten-
system zu losen.

Losung:
Wir decken nach Bild 18 die x-Achse mit der Wirkungslinie fiir F;.
Betrag der Resultierenden

Komponenten in x-Richtung nach Gl. (5)
FRx = Fl + sz = Fl + Fz cos 60°
= 300N + 500N-0,5= 550N

Komponente in y-Richtung nach Gl. (6)
Fg, = F, sin 60° = 500 N - 0,866 = 433 N
Resultierende nach Gl. (7)
Fa = \/Fhe + F&, = 100N /5,52 + 4,332
= 100 N /30,25 + 18,75 = 100 N /49

=700 N
Richtungswinkel der Resultierenden nach Gl. (8)
¢ Fry 433 N 38.2°
= = e— =
R = T T 350N SRT %

Bild 18. Zur rechnerischen
Losung nach Lehrbeispiel 2

»  Lehrbeispiel 3

Einen gemeinsamen Schnittpunkt besitzen nach Bild 19 die eingezeichneten Krifte F, =20N,
F, = 40N, F; =25N. Ihre Richtungswinkel (gemeinsame Bezugslinie) betragen o; = 10°,
oy = 70°. a3 = 300°. Gesucht sind nach dem Krafteckverfahren die Resultierende Fy und die
Gleichgewichtskraft F,. AnschlieBend soll die Resultierende rechnerisch ermittelt werden.



Zeichnerische Losung (Bild 19.1):

Zuerst zeichnet man den Strukturplan, also von dem gemeinsamen Angriffspunkt aus die drei
Kraftrichtungen mit den Winkeln x; = 10°, &, = 70° und «3 = 300°. Dann ist ein KriaftemaBstab
zu wihlen, um die drei Vektoren (parallel zu ihren Wirkungslinien) mafBstabsgetreu abbilden zu
konnen. Hier wurde mit F; begonnen und F,, F; angefiigt. Die Verbindung vom Anfang bis zum

X
F
£
F
K 4
f
d Bild 19.1
Zeichnerische Losung
0 1 210 3,0 4]0 5[0 zu Lehrbeispiel 3

KriftemaBstab in N

Ende des Kriftezuges entspricht der Resultierenden. Man mif3t die Vektorlinge ab, rechnet mit dem
KriftemaBstab um und erhdlt Fy = 50 N. Weiterhin 148t sich der Richtungswinkel ausmessen.
Er betragt og = 22°.

Die Gleichgewichtskraft mufl den Kréftezug mit fortlaufender Vektorenfolge schlieffien. Daher
erhilt F, den zu Fy entgegengesetzten Vektorenpfeil. Die absoluten Betrige beider sind gleich
groB. Ubertragt man die Gleichgewichtskraft in den Strukturplan dann wirkt sie am Angriffspunkt
unter dem Winkel

ag = (180° + 22°) = 202°
Rechnerische Losung (in Ubereinstimmung mit Bild 19.2):

Enthalten die Gln. (5) und (6) zur Ermittlung der Resultierenden n}ehrere Summanden, dann 1d6t
sich die Rechnung auch tabellarisch durchfithren. Wir fassen daher wie folgt zusammen:

Kraft Betrag Winkel Komponenten

Nr. F,inN o« in® in x-Richtung in y-Richtung
F;, = Fycosx,; Fiy = Fysinoy
in N in N

1 20 10 +19,7 + 3,48-

2 40 70 +13,65 +37,6

3 25 300 +12,5 —21,65

3 - - +45,85 +19,43
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Bemerkungen zum Inhalt der Tabelle: Die Betrige fiir die Komponenten lassen sich sofort auf dem
Rechenstab ablesen. Wir stellen zu diesem Zweck auf den Skalen fiir die Winkelfunktionen die
Sinus- oder Cosinuswerte ein und multiplizieren mit dem Betrag der Kraft. Das zugehorige Vor-
zeichen muB mit dem Vorzeichen der Winkelfunktion im entsprechenden Quadranten iiberein-
stimmen. Der Winkel &«; = 10°, 1. Zeile, liegt im 1. Quadranten. Dafiir sind die Sinus- und Cosinus-
werte positiv. Der Winkel a3 = 300°, 3. Zeile, liegt hingegen im 4. Quadranten. In diesem Fall

ty
Fay f
/
/
/
/
/
/
7 i i
l.;y‘ ——T -
\ E3X 5x FTXv T *7
\
Ix 3y ‘ \
f3 Bild 19.2. Rechnerische Losung nach
{ Lehrbeispiel 3
—y M

nimmt die Cosinusfunktion einen positiven, die Sinusfunktion dagegen einen negativen Wert an.
Demzufolge erhilt die Komponente Fs, = F3 cosx3 ein positives Vorzeichen; die Komponente
F3, = F; sin «3 hingegen eih negatives Vorzeichen.

Die Summenbetrige der Tabelle sind wie folgt weiter zu verarbeiten:

Betrag der Resultierenden nach Gl. (7)
Fa=~/F&x + F&, = 10N /4,592 + 1,94 = 49,8 N
Richtungswinkel der Resultierenden nach GI. (8)

Fy +19,43 N
AnoR=F = IS 8N

Das positive Vorzeichen weist darauf hin, daB der Richtungswinkel fiir die Resultierende im 1. oder
3. Quadranten liegt. Da beide Komponenten positiv sind, kommt hier der 1. Quadrant in Frage.
Wir lesen unmittelbar auf dem Rechenstab ag = 23° ab.

Die rechnerisch gefundenen Werte stimmen mit den zeichnerisch ermittelten iiberein. Rechnung
und Zeichnung konnen zur Kontrolle wichtiger Ergebnisse notwendig sein. Zeichnerische Ergebnisse
weichen oft von den rechnerisch ermittelten geringfiigig ab. Hier wirken vielfach 'subjektive Ein-
flisse (Zeichenungenauigkeit u.a.). Damit filhren die rechnerischen Verfahren augenscheinlich
zu - verfeinerten Ergebnissen. Bei technischen Aufgabenstellungen gehen jedoch vielfach fundierte
Erfahrungswertc in den Losungsweg ein, so daB in den meisten Fillen die mit grafischen Verfahren
erreichbare Genauigkeit geniigt. Ergebnisse aus zeichnerischen Verfahren haben den groBen Vor-
teil, daB Stellenfehler kaum auftreten kénnen. Das ist aber sehr wichtig.

B Ubungen 1 bis 5
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1.2. Momente

1.2.1. Kennzeichnung der Momente

Nach dem Gegenwirkungsprinzip besteht fiirzwei Krifte statisches Kraftegleichgewicht, wenn
beide eine gemeinsame Wirkungslinie haben, gleich gro und entgegengesetzt gerichtet
sind. Diesen bekannten Sachverhalt zeigt nochmals Bild 20. VerldBt jedoch eine der beiden

/‘
'%

Bild 20. Zum statischen v
Kriftegleichgewichr Y

— /
Krifte durch Drehung ihrer Wirkungslinie um den Winkel § die gemeinsame Richtung,
dann entsteht eine resultierende Kraft. Das statische Gleichgewicht ist gestort. Es wird erst
durch eine dritte Kraft F; = —Fy wieder herbeigefiihrt.

Krdiftepaar — statisches Moment

Es ist aber auch der Fall denkbar, daB die Kraft nicht durch Drehung ihres Vektors die
gemeinsame Wirkungslinie verldBt, sondern durch eine Parallelverschiebung um den
Abstand a (Bild 21). Dann entstehen zwei parallele Wirkungslinien mit gleich grofen und
entgegengesetzt gerichteten Kriften. Man spricht von einem Kriftepaar. Kriftepaare

Bild 21. Krdftepaar und statisches Momentengleichgewicht

bewirken eine Drehung am Kérper. Das im Bild 21 eingezeichnete Kriftepaar wird den
Korper im Uhrzeigersinn drehen; es entsteht ein statisches Moment vom Betrag M, = Fa.
Es kann nur durch ein gleich grofes Gegenmoment M, (gleicher Betrag, jedoch entgegen-
gesetzte Drehwirkung) aufgehoben werden. Erst dann dndert der Korper seinen Bewegungs-
zustand nicht. Er unterliegt nun dem statischen Momentengleichgewicht.

Moment aus Kraft und Hebclarm

Sie haben sicher schon einmal eine Schraubenmutter fest angezogen. Dann wissen Sie auch,
daB man mit lingeren Mutterschliisseln die gleiche Schraubenverbindung kréftiger anziehen
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<ann. Anders ausgedriickt: Mit der Anzugskraft um die Liangsachse der Schraube wurde
=in Moment aus Kraft und Hebelarm erzeugt. Es vergroBert sich (siehe Bild 22) mit zuneh-
~endem Hebelarm. Ist dieses Moment ein anderes als das des Kriftepaares? Bei genauerer

strachtung des vollstindigen Kréftezustandes nicht; denn reine Drehungen im Sinne

_,?;;__‘?__ i

32id 22. Moment aus Kraft
~nd Hebelarm

|t
B JF 1 ot

|

Bild 24. Moment der Einzelkrafte und Moment der
3ild 23. Bezugspunkte fiir Momente Resultierenden

szatischer Momente sind nur méglich, wenn auch statisches Kraftegleichgewicht herrscht.
Die hierzu notwendige gleich grofle Gegenkraft tritt nimlich bei diesem Vorgang quer zur
Schraubenachse auf.

s orzeichenregel

“_nterschiedliche Drehrichtungen statischer Momente verlangen die Vereinbarung einer Vorzeichen-
-2gel. Man hat sich auf den mathematisch positiven Drehsinn festgelegt. Demnach erhalten Momente
zin positives Vorzeichen, wenn ihre Drehrichtung der Quadrantenfolge des rechtwinkligen Koordi-
~atensystems entspricht. Damit ist nach Bild 21 dem Kréftepaar ein negatives und dem Moment
=it Drehrichtungspfeil angedeutet) ein positives Vorzeichen zuzuordnen.

Bezugspunkte fiir Momente

Sezugspunkte fiir Momente miissen nicht immer auf der Wirkungslinie der Gegenkraft
zngenommen werden. Im Bild 23 liegt der Bezugspunkt (Drehpunkt A) auBerhalb des
Nriftepaares. Beide Krifte haben Hebelarme (senkrechte Entfernung zur Wirkungslinie).
Dadurch entstehen Momente.

M,= —Fr+ Fla+r)
= —Fr+ Fa+ Fr= Fa

Dieser mathematische Ausdruck ist aber identisch mit der Wirkung des Kréftepaares
‘lein. Man sieht an dieser kleinen Rechnung, daB Bezugspunkte fiir Momente frei wihlbar
sind.
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1.2.2. Statische Momente

Statische Momente entstehen durch mehrere Krifte, deren zugehorige Hebelarme vom
gleichen Bezugspunkt aus gemessen werden miissen. Die beiden Krifte F; und F, (Bild 24,
Seite 23) haben beziiglich 4 Hebelarme a, und a,. Es entsteht ein Gesamtmoment

M, = —F,a, — Fa,

FaBt man die beiden Krifte zur Resultierenden zusammen, dann betrigt das Moment aus
der Resultierenden Fr mit ihrem Hebelarm ag

MA = ‘—FRaR

Diese resultierende Wirkung ist sicher gleichbedeutend mit der der Teilkrifte. Man spricht
vom Satz der statischen Momente:

® Das statische Moment der Resultierenden ist gleich der algebraischen Summe der
statischen Momente aus den Einzelkriften.

Diese Aussage 148t sich fiir i Momente (i = 1, ..., n) wie folgt mathematisch formulieren:
Frag = Fia, 4+ F,a, + -+ + F,a-

n
) Frag = Y. Fa, 11
i=1
1.2.3. Parallelverschiebung einer Kraft

Das Kriftepaar, zwei gleich groBe Krifte, entgegengesetzt gerichtet und mit parallelen
Wirkungslinien, ergibt ein statisches Moment. Parallele Lagednderungen der Kraftwirkungs-
linien miissen demnach zu Momentendnderungen fithren. Betrachten wir hierzu Bild 25.
Die Konsole wird (1. Belastungslage) durch die Kraft F im Abstand a, belastet. Verschiebt
man diese Belastung parallel nach rechts bis zum Abstand a, (2. Belastungslage), dann hat
sich am vertikalen Kréftezustand nichts geindert. Die Momentenwirkung auf den Stidnder
ist jedoch groBer geworden; die Standsicherheit kann gefahrdet sein. Wie 148t sich diese
Momenteninderung allgemein darstellen? Wir tragen nach Bild 25 in die neue Lage, parallel

AJ] F 1. Belastungslage

L ]

Toay 02-0¢
92 Bild 25. Zur parallelen
A £ 2 Belastungstage Lagedinderung einer Kraft
r ” ]
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zu F, zwei Hilfskrifte ein. Ihre Betrage entsprechen der Belastung (F = Fy; = Fy,). Da-
Zurch dndert sich an der Gesamtbelastung nichts; denn beide Hilfskréfte heben sich gegen-
seitig auf. Die Wirkung dieser drei Krifte 146t sich nun wie folgt analysieren: Fy, kenn-
zeichnet die Belastung F in der zweiten Belastungslage. Die beiden iibrigen Krifte F und
Fy. ergeben ein Kriftepaar und damit ein statisches Moment vom Betrag M = F(a, — ay).
Soll der gesamte Gleichgewichtszustand am Korper erhalten bleiben, dann miissen wir den
durch Parallelverschiebung der Kraft entstandenen Momentenzuwachs kompensieren,
d. h., wir miissen ein Gegenmoment vom gleichen Betrag hinzufiigen (Bild 26).

TF f/
7 R=20N

F g% e

T N'F{02‘01)

F

) H
o
S
%
‘ \
Bild 26. Zur Parallelverschiebung e
einer Kraft \
Ve
57
/\/b/{FR //
Bild 27. Zu Lehrbeispiel 4 >

a 2 4.0 qo

L 2 1 1

KraftemaBstab in N

ap = 16,6 mm
Fe = 49N

1.2.4. Zeichnerische und rechnerische Elementaraufgaben

»  Lehrbeispiel 4

Die Krifte F; und F, (Bild 27) haben beziiglich O statische Momente. Gesucht ist das statische
Moment der Resultierenden. Lage und GrofBle der Resultierenden sind zeichnerisch zu ermitteln.

Losung:

Wir zeichnen mit den beiden Kriften, gemeinsamer Schnittpunkt I, das Krifteparallelogramm.
Es ergibt sich Fg = 49 N. Vom Bezugspunkt O aus 148t sich ihr Hebelarm ag = 16,6 mm abmessen.
Das Moment der Einzelkrifte mufl dem Moment der Resultierenden entsprechen.

Moment der Einzelkrafte um O:

2M0= —Fia; — Foa; = —20N-+20mm — 40 N+ 10 mm
X My = —800 Nmm
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Moment der Resultierenden um O (aus zeichnerischen Zwischenwerten):
Mo = —Fyag = —49 N - 16,6 mm = —813 Nmm
Beide Momente, soweit man das zeichnerisch ermitteln kann, stimmen iiberein.

»  Lehrbeispiel 5

Fiir die vier Krifte nach Bild 28 soll der Hebelarm der Resultierenden rechnerisch ermittelt werden.

y Fr=20N
F=40N
F=20N
1) & F, = 40N
S
) -1/:1 B |
R | V4
) 1 ra
10 F
XR
|
40
+V 30
—h———é——————~; Bild 28. Zu Lehrbeispiel 5
UR !
il | .
u
.QT {F, BoAr
3
|
Fel
vy
Lésung

Wir beziehen uns auf ein rechtwinkliges Koordinatensystem.
Summe der Momente um O (Ursprung des x,y-Koordinatensystems) ‘durch die Krifte F; bis Fy:

EMo= —Fixy — Fy; — F3x3 + Fuya
= —20N-10mm — 40N-20mm — 20 N-40.mm + 40 N - 10 mm
= —1800 Nmm -+ 400 Nmm = — 1400 Nmm
Moment der Resultierenden um O:
Mp = —Fgxp

Die hier fehlende Resultierende ist aus der Wirkung ihrer Einzelkrifte zu ermitteln. In horizontaler
Richtung heben sich die beiden Krifte F, und F, auf. Die Resultierende kann daher nur die ein-
gezeichnete vertikale Lage einnehmen. Ihr Betrag entspricht der Summe beider Einzelkrifte, so daB
Fr = F; + F3 = 40 N wird. Nach dem Satz der statischen Momente — GI. (11) - entspricht das
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Moment der Resultierenden der algebraischen Summe aus den Einzelmomenten. Daher folgt

_ > M, . 1400 Nmm e
TR 4N _-o°mm

XR

Der Hebelarm fiir die Resultierende 148t sich auch mit einem anderen Bezugspunkt ermitteln. Wir
wihlen zu diesem Zweck ein neues Koordinatensystem (x4, v) mit Ursprung im Schnittpunkt I der
beiden Krifte F;, F,. Dadurch entfillt fiir sie die Momentenwirkung, die Rechnung wird kiirzer.
Summe der Momente um I (Ursprung des #,v-Koordinatensystems) durch die Krifte F3, Fy:

XM= —Fus; — Fuo,, = —20N-30mm— 40 N . 10 mm
= —1000 Nmm
Moment der Resultierenden um I:
M; = —Frug

Am Kriftezustand hat sich durch die Wahl des neuen Bezugspunktes nichts gedindert. Es bleibt
bei Fg = 40 N (vertikale Richtung). Damit wird

_ IM; _ 1000Nmm _
T S

Beide Hebelarme (xg = 35 mm und #g = 25 mm) bestimmen die gleiche Lage der Resultierenden;
denn es ist
xgp = 10 mm + wg = 35 mm

m  Ubungen 6 und 7

1.3. Freimachen, Schneiden, Uberlagern

Freimachen oder Schneiden fester Korper sind Arbeitstechniken der Technischen Mechanik
zur Aufbereitung ihrer Aufgaben. Wir miissen aus dem gesamten und oft umfangreichen
technischen Gebilde, also aus einer Maschine oder aus einem Gerit, den einzelnen Unter-
suchungsgegenstand herauslosen und dort den statischen Kriftezustand eintragen. Dann
erst lassen sich mit den bewidhrten Arbeitsmethoden der Statik die gesuchten duBleren oder
inneren Krifte, die Krifte an oder in Tragelementen, Maschinen- oder Bauteilen bestim-
men.

Freimachen
zur Kennzeichnung der Kréfte am Korper.

Aus der festen Verbindung des technischen Gebildes ist derjenige Korper vereinzelt heraus-
zuzeichnen, fiir den die Stiitzreaktionen ermittelt werden sollen. Dann sind die Beriihrungs-
stellen mit den benachbarten Korpern zu kennzeichnen. Hier trigt man alle Krifte so an,
wie sie auf den vereinzelten Korper einwirken.

Beispiel: Die Walze (Bild 29) liegt in einem Prisma auf dem Arbeitstisch. Wir wollen den Krifte-
zustand an der Walze kennzeichnen. Die Walze, als Untersuchungsgegenstand, ist von ihrer Um-
gebung zu l6sen. An ihr tragen wir die Berithrungs- oder Kontaktstellen 4, B zum Nachbark6rper
2in (Bild 29.1). Nun sind alle Kréfte einzuzeichnen, die auf die Walze cinwirken. Das sind als
Belastung deren Eigengewicht G = mg (vertikale Wirkungslinie durch den Massenmittelpunkt)
und als Stitzeeaktionen die Stlizkrédfte F, Fg. Dadurch entsteht Bild 29.2.
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Soll das Prisma freigemacht werden, dann ist dieser Korper vereinzelt herauszuzeichnen. Das Prisma
wird in (1) und (2) von der Walze sowie in C und D vom Arbeitstisch beriihrt (Bild 29.3). Hier tragen
wir die Belastungen F;, F, sowie die Stiitzkrifte F¢, Fp an. Nach dem Gegenwirkungsprinzip ist
F1=FAundF2=FB.

Walze Bild 30. Schneiden:
Krdfte im Korper (Seil)
Prisma
17

7777777 7777, 7
Arbeitstisch

Bild 29. Freimachen::
Krdfte an den Korpern e ==

Bild 29.1

(1) \/?2)
Bild 30.1

Bild 29.2 ———

Bild 29.3 B — Bild 30.2

Schneiden
zur Kennzeichnung der Krifte im Korper.

Aus dem technischen Gebilde ist die feste Verbindung desjenigen Kérpers durch Schnitte
zu trennen, fiir den die Schnittreaktionen ermittelt werden sollen. Am abgetrennten Korper
sind alle Krifte so einzutragen, wie sie auf ihn einwirken.

Beispiel: Ein Kran soll Rohre transportieren. Das Rohr ist mit dem Tragelement Seil am Kranhaken
befestigt (Bild 30). Wir wollen zur Ermittlung der Seilkrifte den zugehdrigen Kriftezustand kenn-
zeichnen. Zu diesem Zweck muB3 man die Seilstrange schneiden (Bild 30.1) und dann Krifte ein-
tragen. Das sind die Belastung des Seiles durch das Rohrgewicht G = mg und die Schnittkrifte
Fs,, Fs, in den beiden Seilstrangen. Dadurch entsteht Bild 30.2.

Das Losungsprinzip Uberlagern wird auf umfangreichere Aufgaben angewendet, deren

Ergebnisse sich nicht sofort mit den elementaren Arbeitsverfahren der Statik finden lassen.
Man teilt zu diesem Zweck die gesamte Kréafteanordnung am Korper in geeignete einfache
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Teilwirkungen auf, ermittelt diese und faBt sie wirkungsgerecht zusammen. Dieser Lsungs-
weg wird auch als lineare Superposition bezeichnet und in der Statik z. B. bei Gelenk-
trdgern angewendet. Mit diesem Hinweis wollen wir uns hier begniigen.

s Ubungen 8 bis 10

1.4. Das technische Gebilde als Modell

1.4.1. Modellentwicklungen

Die mechanischen Eigenschaften fester Korper sind im speziellen technischen Fall an-das
rechnische Gebilde, also an die Eigenschaften einer Maschine, einer Baugruppe oder eines.
Bauteiles gebunden.

Bei statischen Aufgaben haben wir unter der Bedingung konstanter Geschwindigkeit
‘einschlieBlich Ruhezusiand) liberwiegend Krifte zu ermitteln, die das technische Gebilde
belasten und stiitzen. Diese Krifte sind jedoch nicht unmittelbar sichtbar. Wir wissen nur,
daf} sie aufgenommen und iibertragen werden.

Das Gewicht eines Bauteiles kann in die technische Zeichnung als senkrecht nach unten
wirkender Vektor eingetragen werden. Seine Wirkungslinie geht durch den Schwerpunkt
hindurch. Damit machen wir diese Kraft sichtbar. Wir zeichnen ihre Lage (im Schwerpunkt
des K6rpers), ihre Wirkung (vertikale Wirkungslinie) und ihren Wirkungssinn (Pfeilrichtung
nach unten). Diese Darstellung einer Kraft nach Ort (auch Angriffspunkt), Wirkungslinie
und Wirkungssinn geniigt vorerst. Ein bestimmter Betrag ist damit noch- nicht festgelegt;
Zenn die Linge des Vektors wird auf seiner Wirkungslinie nicht maBstiblich gezeichnet.
Weitere Krifte stellt man in gleicher Weise dar. Thr Wirkungsort ist durch die Beriihrung
~enachbarter Bauteile gegeben. Hier werden Krifte libertragen, das technische Gebilde

selastet oder gestiitzt.

Hierzu ein Beispiel.

3ild 31 zeigt als technisches Gebilde einen Lampentrdger, der das Gewicht der Beleuchtungs-
sinrichtung — gekennzeichnet durch G; - aufzunehmen hat. Auch das Gewicht G, des Schwenk-
zrmes, das in seinem Schwerpunkt wirkt, soll beriicksichtigt werden. Damit kennen wir die Belastung
Zes technischen Gebildes. Wo treten die Stiitzkrifte auf? Der Lampentrager ist in 4 und B, fest
=nd drehbar mit der Sidule verbunden. Dort befinden sich seine Beriihrungsstellen zum Nachbar-
xSrper. Wir machen ihn hier frei und tragen Krifte ein, die die vereinzelte Baugruppe stiitzen. (Man
«ann gedanklich bei 4 und B; den Lampentrager mit beiden Hénden stiitzen und die dabei auf-
-uwendenden Krifte sinngemif als Vektoren in das Bild eintragen.)

Hierzu folgende Uberlegungen:

..In A ist der Schwenkarm drehbar gelagert, jedoch fest mit der Sdule verbunden. Hier sind
Drehungen moglich, aber keine vertikalen und horizontalen Lagednderungen. Die resultierende
Suiitzkraft F, konnte schrdg nach links oben wirken. Ihre genaue Richtung ist noch unbekannt.
Dabher trigt man einstweilen ihre beiden Komponenten Fy, und F, ein.

2. In B, ist eine Stiitze befestigt, die die gesamte Einrichtung in ihrer Gleichgewichtslage halt. Der
Schwenkarm wiirde sonst durch die beiden Gewichtsfliisse um 4 nach unten drehen. Diese Stiitze
:nthilt eine hydraulisch wirkende Riickstelleinrichtung, um jede notwendige Lage der Beleuchtungs-
sinrichtung zu stabilisieren. Nach Zeichnung nimmt sie den Richtungswinkel « ein. Da Bauteil B
zn seinen beiden Enden drehbar gelagert ist und der Hydraulikkolben mit seiner Kolbenstange
zinwandfrei aus- und einfahren soll, darf nur in Bauteil-Langsrichtung eine Stiitzkraft wirken. Man
~ezeichnet solche Stiitzeinrichtungen als Pendelstiitzen. Ihre Richtungen stimmen mit der Wir-
<ungslinie iiberein. Wir konnen den Vektor fir Fp einzeichnen.
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Bild 31. Technisches Gebilde: Lampentrdiger

31.1. Freigemachtes technisches Gebilde
31.2. Strukturbild
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In allen Fillen muBten wir uns fiir einen Wirkungssinn der Stiitzreaktionen entscheiden.
Es wurden Pfeilrichtungen eingetragen, die der notwendigen Stiitzwirkung entsprechen
konnen. Erst die zeichnerische oder rechnerische Losung wird uns den tatsidchlichen Wir-
kungssinn liefern und damit die getroffenen Festlegungen bestitigen oder negieren. Der
Lernende, dem die Eintragung der Kraftpfeile am Anfang sicher nicht leicht fillt, kann
keinen absoluten Fehler machen. Er arbeitet sich aber bereits mit diesen Festlegungen und
Annahmen in die Aufgabe ein und wird in zunehmendem MaBe eine bessere Ubereinstim-
mung zwischen angenommener und tatsichlicher Pfeilrichtung erreichen. Einwandfrei
sind jedoch Wirkungsort und -linie der Stiitzkrifte festzulegen.

Das freigemachte technische Gebilde nach Bild 31.1 enthélt noch Einzelheiten der Bauteil-
formen, die fiir statische Aufgaben nicht notwendig sind. Wir dringen erst mit ihren Ab-
straktionsformen zum Kern der Aufgabenstellung ,,Darstellung der Krifteanordnung
zwischen Belastung und Stiitzung* vor. Daher erfaBBt das Strukturbild (Bild 31.2) nur noch
wesentliche Elemente: die Belastungen, Symbole fiir das Festlager und fiir die Pendelstiitze
sowie feste Verbindungen zwischen ihnen. Solche Modelldarstellungen realisieren eine
Vielfalt konkreter technischer Gebilde. Sie haben sich als Ausgangspunkt fiir die Losungs-
verfahren der Statik gut geeignet.

Fassen wir zusammen:

Das Strukturbild der Statik (hier fiir den Lampentriger) beriicksichtigt folgende Gesichts-
punkte:

1. Die geometrischen Eigenschaften des technischen Gebildes (Lingen a, d, hy, h, und
Winkel «); )

2. die wirkende Belastung (Gewichte G, und G, mit ihren Abstinden d und c);

3. die Abstiitzung (Festlager 4 und Pendelstiitze B)

Im Festlager wirkt F, . Hier ist nur ein Punkt ihrer Wirkungslinie bekannt. Die Eigenschaften
dieses Lagers werden durch zwei Komponenten F,,, F,, angegeben. In Richtung der Pendel-
stiitze B wirkt Fp;

4. die abstrahierten Bauteilformen (Feste Verbindungselemente zwischen Belastung und
Stiitzung).

Zu den geometrischen Eigenschaften eines mechanischen Modells der Statik ist noch eine
wichtige Festlegung zu treffen.

Belastete Bauteile verformen sich., Dadurch entstehen geringfiigige Lageabweichungen,
die von allen Kriften, also auch von den Stiitzkréften, abhingig sind. Da letztere erst.er-
mittelt werden miissen, sind wir im Rahmen der Statik auch noch nicht in der Lage, diese
geometrischen Anderungen im voraus zu bestimmen.

e Die Kennzeichnung ,fester Korper* schlieBt im Rahmen der Statik den absolut
..starren Korper* ein, der durch Krifte keine Formédnderungen erhélt.

Ein weiteres Beispiel:

Bild 32 zeigt eine Forderbriicke mit Laufkran. Als Belastungen wirken G; (unmittelbare Last-
zufnahme), G, (Eigengewicht des Laufkranes) und F, (Eigengewicht des schweren Briickentrigers).
“Wir wollen die Stiitzkrifte der Forderbriicke kennzeichnen. Die linke Stiitze ist als Pendelstiitze
zusgebildet, da sie oben und unten gelenkig verbunden ist. Dort wirkt F,. Die rechte Stiitze ist oben
starr und biegesteif mit dem Briickentrager verbunden. Dadurch wurde der’ Trager als Halbrahmen
zusgebildet. Unten befindet sich die gelenkige Verbindung zum Fundament. Das Festlager wirkt
~it seinen Stiitzkomponenten Fg,, Fp,.

Jir betrachten das Strukturbild mit seinen abstrahierten Bauteilformen (Bild 32.1).
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Belastungen

Last- und Eigengewichte G, G,, F, mit ihren Abstanden a, b, c.

Zur Kennzeichnung der Masseverteilung des Briickentragers wurden Streckenlasten g, , g, (Belastun-
gen je Lingeneinheit) eingetragen. Beide wirken mit ihrer Stirke (Intensitit) iiber die zugehdrige
Lastverteilungsstrecke. Ihr resultierender Betrag F, ergibt sich aus dem Fliacheninhalt der gezeich-
neten Lastverteilung. Ihr Angriffspunkt befindet sich im Schwerpunkt dieser Fliche.

Stiitzreaktionen

Pendelstiitze A, drehbar an beiden Enden gelagert, Stiitzkraft F,,. Festlager B mit den beiden Stiitz-
komponenten Fg,, Fp,.
Abstand der beiden vertikalen Stiitzkrifte mit /.

Bauteilabstraktionen
Trager mit biegesteifer Ecke. Abstand d von B bis zur Schwerlinie des Mittelstiickes. Die Lénge der

Pendelstiitze ist fiir die Ermittlung der Stiitzkraft unbedeutend; denn die mit ihr vorgegebene verti-
kale Wirkungslinie wird durch die Stiitzweite / bestimmt.

Diese Aufgabe 14Bt sich auch noch anders modellieren. Wir wollen davon ausgehen, daB3
die Belastungen G;, G, iiber die Radkrifte des Laufkranes iibertragen werden. Dann mufB
man gedanklich den Laufkran von der Briicke l6sen und an den vorher gemeinsamen

G,
50;7wer//mb
i |
I - OT:
Fq
l /
o‘—, “° Bild 32. Schematische Darstellung
Pendelstit zum technischen Gebilde:
naeisinze Forderbriicke mit Laufkran
J_/-.':s'.f//tlge_/' F
Bx
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-
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Biegesteife
Vg Foke
a . b c
) © Bild 32.1. Strukturbild zur
~Pendelstitze Forderbriicke mit
A _J B By Gewichtsbelastung
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A %' ! Festlager Fay
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Beriihrungsstellen, den Ridern, seine Stiitzkrifte eintragen. Das so vereinzelte technische
Gebilde zeigt Bild 32.2.

Belastungen G, und G,, Abstinde e und f. Stiitzkrifte an den Riddern F,; und Fp; mit
dem Achsabstand /;.

Nach dem Gegenwirkungsprinzip wirken diese Stiitzkréfte belastend auf die Forderbriicke.
Man muB daher hier nun F,, und Fg, entgegengesetzt wirkend als Belastungen antragen

& a1 Schwerlinie
/
B j_]_ _ 1
. F,
Bild 32.2. Schematische Darstellung q
des freigemachten Laufkranes uni i _l
der freigemachten Forderbriicke > ©

und die zugehorigen Abstinde A, l,, i festlegen. Damit entsteht ein neues Strukturbild
/Bild 32.3), das die unmittelbare Belastung durch den Laufkran enthilt. An der Situation
der Stiitzkrifte hat sich nichts gedndert, denn es ist leicht einzusehen, daB3 im ersten Fall

o For F

Bild 32.3. Strukturbild zur
Forderbriicke mit Radlasten

]
- e
f ’ fy

1%y

Belastung nach Bild 32) die Forderbriicke die direkten Arbeitslasten und im zweiten Fall
Belastung nach Bild 32.2) die aus den Arbeitslasten entstehenden Radlasten aufzunechmen
hat,

3 AK, Blementare Statik 33



Ein weiteres Beispiel:

Bild 33 zeigt einen Ausschnitt von der linken Lagerung
einer Trommel. Die Konstruktion sieht einen fest einge-
prefiten Lagerbolzen vor. Fiir diesen Lagerbolzen ist das
Strukturbild zu zeichnen. Die Belastung der Trommel ver-
ursacht im Gehéuselager eine Stiitzkraft. Wir wollen sie
mit F bezeichnen. Vereinzelt man den Bolzen und trigt die
auf ihn einwirkenden Krifte ein, dann entsteht zunéchst
fir ihn die Belastung aus F mit dem Hebelarm / bis zum
Rand der Trommel. In der Trommelnabe ist der Bolzen fest
eingespannt. Er wird dort gestiitzt. Welche Stiitzreaktionen
miissen die einwandfreie Funktion dieses Bauteiles garan-
tieren? Wir nehmen an, daB lings der festen Finspannung
Krifte wirken, die an den Rindern der Trommelnabe am
groBten sind und von dort aus linear abnehmen. Zu dieser
Festlegung eine Zwischenbemerkung: Annahmen iiber Last-
verteilungen gewinnt man anschaulich durch Formanderungs-
betrachtungen mit Gummimodellen. In diesem Fall denkt
man sich den starren Bolzen in eine Gummitrommel ein-
gespannt. Die Belastung F wird dann die Nabe der Trommel
verformen. Diese Formidnderungen sind an ihrem inneren
und #duBerern Rand am grofiten und nehmen von dort aus
ab. Da wir aber in der Statik den starren Korper, also auch
starr wirkende Verbindungselemente voraussetzen, miissen
zugehorige Krifte mogliche Forménderungen wieder riick-
gingig machen. Wir geben dafiir die Lastverteilung an
(Bild 33.1). Ihre resultierende Kraft wirkt im Schwerpunkt
der Lastverteilung, hier im Schwerpunkt der beiden Dreiecks-
flichen. Dadurch erhilt man die beiden Stiitzkrifte F,, Fp
fiir den freigemachten Bolzen nach Bild 33.2. Das ist aber
noch nicht das Strukturbild mit den notwendigen Bauteil-
abstraktionen, denn die ausgefiihrten Durchmesser d; und d,
werden bei dieser Aufgabe nicht benstigt. Wir verzichten
darauf und zeichnen einen fest eingespannten Trager mit der
Belastung F und mit den Stiitzkriften F,, Fp innerhalb der
festen Einspannung (Bild 33.3). In vielen Fillen wird diese
Krifteanordnung noch weiter vereinfacht, um Krifte und
Momente als Stiitzreaktionen einer festen Einspannung zu
kennzeichnen. Die Belastung des einseitig fest eingespannten
Tragers (Strukturbild 33.4) besteht aus zwei Teilen, aus der
Vertikalbelastung F und aus dem Belastungsmoment M = Fl.
Beide Wirkungen sind von der Einspannung aufzunehmen.
Daher muB zu F eine gleich groBe Gegenkraft, die Einspann-
kraft Fg, wirksam werden und zum Belastungsmoment ein
gleich groBes Gegenmoment, das Einspannmoment Mg.

m  Ubungen 11 und 12

Bild 33. Technisches Gebilde zum Lagerbolzen einer Trommel
Bild 33.1. Krafteverteilung in der Nabe

Bild 33.2. Belastung und Stiitzkrdfte am Lagerbolzen

Bild 33.3. Strukturbild des Lagerbolzens mit Belastung und
Stiitzkraften

Bild 33.4. Strukturbild des Lagerbolzens mit Belastung, °
Einspannkraft und Einspannmoment
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Zum AbschluB dieses Abschnittes noch ein Beispiel zur Entwicklung rdumlicher Struktur-
bilder.

Bild 34 zeigt, raumlich skizziert, eine Welle mit Seiltrommel und ihrem Antriebsrad. Durch
das Heben der Last entsteht im Seil die Seilkraft Fy. Diesen Arbeitswiderstand hat der
Antriebsmotor aufzubringen. Er wirkt iiber Zahnradgetriebe auf die Welle der Seiltrommel.

FU
F
¢ Bild 34 N4
|  Schematische Darstellung y R
zur Seiltrommelwelle
Bild 34.1
Raumliches Strukturbild
£
y fa 4"
—
Bild 34.2. Strukturbild fs <
der y,z-Ebene bz 4 8L
?
;AE Z F”
a b c
Bild 34.3. Strukturbild Fax by
der x,z-Ebene faz A 8
A K
Ax
arb C
1
X9

Hier befindet sich das letzte Zahnrad. Die Konstruktion sieht dafiit eine Schrigverzahnung
vor. Eine solche Verzahnungsgeometrie bedingt drei Zahnkraftkomponenten: Umfangs-
kraft F,, Radialkraft F; und Axialkraft F,. Alle vier Belastungskrifte, die wir als gegeben
voraussetzen, sind von den Lagern der Welle aufzunehmen. Hier wird das technische Gebilde
gestiitzt.

Durch die Axialkraft F, konnte die Welle axial verschoben werden. Diese Tendenz ist von
einem Lager zu verhindern, Die Skizze deutet an, dal3 Lager 4 die Welle axial sichern soll.
Hier befindet sich demnach das Festlager. Das zweite Lager, hier Lager B, muf3 dann axiale
Verschiebungen zulassen, damit sich z. B. die mit der Belastung und durch Temperatur-
einwirkungen verbundenen Forminderungen in axialer Richtung ungehindert ausbilden
konnen. Man bezeichnet solche Lager als Loslager.



Dem réaumlichen Strukturbild (Bild 34.1) wird ein rdumliches Koordinatensystem zugeord-
net. Sein Ursprung befindet sich im Festlager 4. Man erkennt folgende Modellelemente:

Festlager A zur Stiitzung in den drei Koordinatenrichtungen. Hier konnen demnach drei
Stiitzkomponenten wirksam werden.

Loslager B zur Stiitzung in zwei Koordinatenrichtungen, das aber eine ungehinderte Ver-
schiebung in z-Richtung zuldBt. Dieses Lagersymbol erhélt daher parallel zur z-Richtung
einen Doppelstrich. Stiitzkrifte konnen nur senkrecht dazu aufgenommen werden.
Belastung durch Fs am Trommelradius R und durch die Zahnkrifte F,, F;, F, am Zahnrad-
radius r.

Bauteilabstraktionen als einfache, starr wirkende Verbindungen zwischen Belastung und
Lagerung. Hauptverbindung ldngs der Wellenachse und Nebenverbindungen zur Seil-
kraft Fs sowie zu den Zahnkraftkomponenten. Diese Stiicke sind biegesteif mit dem Haupt-
triger verbunden. Wir geben diese Eigenschaft durch die eingezeichneten Verstirkungen
an.

Riumliche Strukturbilder sind fiir den Lernenden noch nicht geniigend aufbereitet. Man
bedient sich daher nun der Methode des technischen Zeichnens und bildet rdumliche Dar-
stellungen in zugeordneten Ebenen als AufriB8, Grundri3, Seitenri3 ab. Zur Kennzeichnung
der Stiitzkréfte geniigt bei dieser Aufgabe je ein Strukturbild fiir die Vertikal- und Ho-
rizontalebene. Sie entsprechen dem Auf- und Grundril3.

Strukturbild der Vertikalebene (v,z-Ebene) nach Bild 34.2:

Belastungen: Seilkraft Fs, Zahnkraftkomponenten F;, F,.

Die Umfangskraft wirkt in x-Richtung. Sie kann hier nicht als pfeilgerichtete Strecke
abgebildet werden.

Lagerung : Festlager A mit den Stiitzkraftkomponenten F,., F,,.

Loslager B nur mit der Stiitzkraftkomponente Fp,. In z-Richtung kann durch die freie
Beweglichkeit dieses Lagers keine Stiitzkraft wirken.

Bauteilabstraktionen: Abgewinkelter Trager mit biegesteifer Ecke von A bis zu den Flanken
des Zahnrades.

Strukturbild der Horizontalebene (x,z-Ebene) nach Bild 34.3:

Belastungen: Zahnkraftkomponenten F,, F,. Radial- und Seilkraft wirken senkrecht zur
Ebene. Sie lassen sich hier nicht als pfeilgerichtete Strecke eintragen.

Lagerung: Festlager A mit Axialkraft F,; und Radialkraft F;.

Loslager mit der Radialkraft Fj,.

Bauteilabstraktionen: Lingsverbindung vom Festlager bis zum Zahnrad.

Auch dieses Beispiel zeigt deutlich, wie klar und anschaulich die gesamte Krafteanordnung
des technischen Gebildes mit dem Strukturbild wird. Die Belastungen sind als Arbeits-
widerstinde gegeben oder ohne besonderen Aufwand zu ermitteln. Fiir die Stiitzkrifte
wurden Stiitz- oder Lagersymbole vereinbart. Man muB sie, wie auch andere schematisierte
Darstellungen der Technik, nach festgelegten Eigenschaften beurteilen konnen. Wir stel-
len sie in Bild 35 zusammen.

®  Pendelstiitzen und Loslager gewihrleisten eine ungehinderte Drehung der angeschlos-
senen Bauteile sowie ihre Verschiebung senkrecht zur Stiitzrichtung. Diese Lageinderungen
werden durch Krifte nicht aufgenommen. Die Wirkungslinie der Stiitzkraft stimmt mit der
Pendelstiitzeinrichtung iiberein. Beim Loslagersymbol verlduft die Kraftrichtung senkrecht
zur Auflage.
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@  Festlager gewidhrleisten nur eine ungehinderte Drehung der angeschlossenen Bauteile.
Verschiebungen sind ausgeschlossen. Von der resultierenden Kraftwirkungslinie kennen
wir nur einen Punkt, den Angriffspunkt. Wir geben von dort aus zwei Komponenten an.
Bei der Darstellung eines Festlagers durch zwei Pendelstiitzen sind mit ihnen zwei Wir-
kungslinien vorgegeben.

Pendelstitze, Loslager

Fa
—( | -
)
-
§ {A
Fa
( y
/ 90°

Festlager

Bild 35. Stitzsymbole in den Strukturbildern

@  Feste Einspannungen lassen weder Drehungen noch Verschiebungen der angeschlos-
senen Bauteile zu. In der festen Einspannung wirken drei Krifte, die Einspannkrifte und
ein Einspannmoment erzeugen miissen. Diese identische Ersatzlosung geniigt, wenn die
Stiitzverhiltnisse in der Einspannung nicht niher untersucht werden sollen.

® Ubungi3
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1.4.2. Modellbearbeitungen

Mit der Entwicklung statischer Modelle wurden Krifteanordnungen sichtbar gemacht,
die das technische Gebilde belasten und stiitzen. Dazu enthilt das Strukturbild Belastungs-
angaben, Stiitzsymbole mit vereinbarten Stiitzreaktionen und notwendige Bauteilabstrak-
tionen, um fiir die weitere Bearbeitung dieser Aufgaben nur noch wichtige, wesentliche
Merkmale zu erhalten. Praxis (technische Gebilde) und Theorie (Strukturbild) miissen
iibereinstimmen. Falsche Ubertragungen fiihren zu Fehlentscheidungen, weil sie nicht mehr
die objektive Realitat widerspiegeln.

Zur Ermittlung der gesuchten Krifte sind weitere Eigenschaften der gesamten Kréfte-
anordnung zu suchen. Dazu muf3 der Bearbeiter das Modell noch weiter durchdringen.
Je griindlicher das geschieht, desto besser wird er in der Lage sein, mit einer 6konomisch
vertretbaren Arbeitsweise zum Ziel zu kommen. Jede oberflichliche Betrachtung hingegen
fiihrt selten zum Endergebnis. Sie enthilt oft die Gefahr, in der Aufgabe steckenzubleiben.

Systematische Krifteanordnungen nach dem Strukturbild fiihren fir Kréfte in der Ebene
zu folgenden Einteilungsgesichtspunkten:

s Bild 36. Zum zentralen /
™~ F Krdftesystem der Ebene . /
~N A Np
i A
T X -
f £ - N X
; N Bild 37. Zum allgemeinen
/' I N Kriftesystem der Ebene £
f3 .
/ AN

/ AN

® Zentrales Krdftesystem (Bild 36)

Samtliche Kraftwirkungslinien schneiden sich in einem Punkt. Es liegt ein Kriftebiischel
vor.

®  Alilgemeines Krdftesystem (Bild 37)

Alle Kraftwirkungslinien schneiden sich nicht in einem Punkt. Es handelt sich um eine
Kriftegruppe.

Konzentrieren wir uns daher nun auf die Kraftwirkungslinien im Strukturbild. Wir legen
fiir unsere Arbeitsweise fest:

® Den gemeinsamen Schnittpunkt, die Vereinigung der Kraftwirkungslinien, nennen wir
Wirkungsknoten. '

Das zentrale Kriftesystem — nur ein gemeinsamer Schnittpunkt — enthdlt daher nur einen
Wirkungsknoten. Beim allgemeinen Kriftesystem der Ebene lassen sich hingegen mehrere
Wirkungsknoten konstruieren. Trotzdem gibt es beim zentralen Kriftesystem zwei unter-
schiedliche Aufgabensituationen.
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Hierzu die beiden Beispiele:

<. Bild 38 (Ausschnitt aus Bild 32) zeigt die durch Seilschnitte herausgetrennte Rolle. Die Seilrolle
st drehbar gelagert; Verschiebungen sind nicht moglich. Welche Kraft hat das Festlager A4 auf-
—unehmen? Wir bearbeiten das Modell. Nur drei Krifte wirken insgesamt an der Rolle, die beiden
Scilkréfte Fg = G4 und die Stiitzkraft F,. Das miiBite ein zentrales Kriftesystem werden. Wir arbeiten
it den Kraftwirkungslinien. Die beiden Seilkréfte schneiden sich im Wirkungsknoten 1. Die dritte
Kraft hat als Lager- oder Stiitzkraft ihren Angriffspunkt in A. Thre Wirkungslinie ist scheinbar
aoch unbekannt. Statisches Kriftegleichgewicht liegt jedoch dann vor, wenn sich alle drei Krifte
:n einem Punkt schneiden. Daher bestimmen die beiden Punkte, Kraftangriffspunkt 4 und Wirkungs-
xnoten I, die Wirkungslinie fiir F,. Erst durch diese Konstruktion erkennt man das zentrale Krifte-
svstem mit Wirkungsknoten.

2. Bild 39 (ebenfalls ein Ausschnitt aus Bild 32) zeigt die angehidngte Last. Wir schneiden das Hub-
s2il und stellen zuerst fest, daB nach dem Gegenwirkungsprinzip die Schnittkraft (Seilkraft) Fs
3em angehingten Gewicht G, entspricht. Das Seil oder die Kette um den Transportbehilter wird
aach dessen MaBen gespreizt. Wir schneiden beide Seilstringe und tragen die Schnittkrifte Fy,,
Fs, ein. Insgesamt ‘Wirken auch bei dieser Aufgabe drei Krifte. Ihr gemeinsamer Schnittpunkt ist
‘edoch mit dem Strukturbild schon gegeben. Das ist im Gegensatz zur Aufgabe nach Bild 38 eine
vereinfachte Situation, die wir besonders ansprechen wollen.

01 - I":g
A t Gy=Fs
% 6= Fs
7 I 7
., 1 2
— Fs1 fsz
|7 .
1 G
Bild 38 Bild 39. Zentrales. Krdftesystem
N G =Fs Zentrales Kriftesystem mit Strukturknoten
Z mit Wirkungsknoten

=n

® Der mit dem Strukturbild bereits bekannte Schnittpunkt von Kraftwirkungslinien
wird Strukturknoten genannt.

Das zentrale Kriftesystem ist bei einer solchen Aufgabenstellung schon gegeben.

Das allgemeine Kriftesystem der Ebene regt schon durch die Bezeichnung ,,allgemein®
zum weiteren Durchdenken der Kriftegruppe an. Die Vielfalt solcher Aufgaben 148t sicher
zwei, drei und mehr Schnittpunkte zu. Zwei Strukturbilder sollen das verdeutlichen.
Bild 40 zeigt einen durch F belasteten Triger mit seinen drei Pendelstiitzen a, b, c. Welches
Kriftesystem liegt vor?

Die Kraftwirkungslinie fiir F ist gegeben. Pendelstiitzen kénnen nur Krifte in ihren Rich-
tungen aufnehmen. F,, F,, F, stimmen mit ihnen iiberein. Wir suchen oder konstruieren
gemeinsame Schnittpunkte. Lagerstelle B ist zugleich Schnittpunkt der beiden Krifte F,
und F,. Hier liegt ein Strukturknoten vor. Lagerstelle 4 enthilt nur eine Wirkungslinie,
die von F,. Sie kann aber mit der Wirkungslinie von Fin I geschnitten-werden. Hier befindet
sich ein Wirkungsknoten. Weitere Kraftwirkungslinien gibt es nicht. Das bearbeitete Struk-
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turbild enthilt zwei Schnittpunkte. Daher gehort diese Aufgabe zum allgemeinen Krifte-
system mit je einem Struktur- und Wirkungsknoten.

Hinweis: Zwei Schnittpunkte erhédlt man auch durch F, mit F, (Strukturknoten in 4) sowie durch F
mit F, (Wirkungsknoten auf der verlidngerten Pendelstiitze b). Die vorher festgelegte Einordnung
dieser Aufgabe wird dadurch nicht beeintrichtigt, auch nicht das nachfolgende Losungsverfahren.

————— Wirkungslinien fiir die
[ Hilfskrdfte
Bild 40. Allgemeines Krdiftesystem mit je einem Bild 41. Allgemeines Krdftesystem mit zwei
Struktur- und Wirkungsknoten Wirkungs- und einem Strukturknoten

Die Aufgabe nach Bild 41 14Bt keine zwei Schnittpunkte zu, weil F und F, parallel zuein-
ander gerichtet sind. Wir werden aber spdter noch zeigen, daB in diesem Fall durch das
Eintragen weiterer Wirkungslinien fiir angenommene Hilfskrifte die drei eingezeichneten
Schnittpunkte — Strukturknoten B, Wirkungsknoten 7 und II - entstehen. Ein solches
Losungsverfahren liegt allen Krifteanordnungen zugrunde, deren Wirkungslinien sich
nicht in einem oder in zwei Schnittpunkten vereinigen lassen.

m Ubungen 14 und 15
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Zeichnerische
und rechnerische Arbeitsverfahren
fiir Krifte in der Ebene

2.1. Zentrales Kriiftesystem

Die Grundbegriffe in Abschn. 1.1. setzten den gemeinsamen Schnittpunkt aller Kraft-
wirkungslinien und damit das zentrale Kriftesystem voraus. Wir konnen hier diesen Lehr-
stoff weitgehendst wiederholen.

2.1.1. Zusammensetzen und Zerlegen von Kriften

2.1.1.1. Zeichnerisches Verfahren — Krafteck

Zeichnerisch lassen sich Krifte zu ihrer Resultierenden zusammenfassen oder eine Kraft
in ihre Komponenten zerlegen. Wir beziehen uns auf das Krafteckverfahren und zeichnen
parallel zu den gegebenen Wirkungslinien mafistabgerecht Kraftvektoren als pfeilgerichtete
Strecken. Die Resultierende entspricht dem Verbindungsvektor von Anfang bis zum Ende
der Vektorenfolge. Bei der Komponentenermittlung mufl man den umgekehrten Weg gehen.
Hier ist eine Kraft und damit die Resultierende der beiden Komponenten gegeben. Wir
legen durch ihren Anfangs- und Endpunkt je eine der beiden Wirkungslinien und begrenzen
mit dem gefundenen Schnittpunkt die gesuchten Kraftvektoren.

0 W B B 4 N

o
N
NN

Bild 42. Zur zeichnerischen t
Losung nach Lehrbeispiel 6
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»  Lehrbeispiel 6

Vier Krifte wirken nach Bild 42. Gesucht ist ihre Resultierende. AnschlieBend ist die Resultierende
in ihre vertikale (y-Richtung) und horizontale (x-Richtung) Komponente zu zerlegen.

Losung:

Wir zeichnen mit den gegebenen Richtungswinkeln die Wirkungslinien und parallel dazu die Vek-
torenfolge nach den gegebenen Betrigen (KriftemaBstab wihlen!). Die Zeichnung liefert Fg = SO N

und &g = 277°. Wenn man z. B. mit My = 1 mm/N arbeitet, dann ergibt sich zuerst {FR) =5cm
und damit ein Betrag Fp = (Fr)/MF = 50 mm/(1 mm/N) = 50 N.

Hinweis: Die Vektoren kdnnen in beliebiger Folge aneinander gereiht werden. Das Ergebnis wird
dadurch nicht beeintrichtigt.

Mit der Bedingung ,,vertikale und horizontale Komponenten* sind Wirkungslinien fiir die Kraft-
zerlegung gegeben. Wir legen z. B. an den Anfangspunkt ven Fy eine vertikale Wirkungslinie und
an ihren Endpunkt eine horizontale Wirkungslinie. Ihr Schnittpunkt begrenzt beide Krifte. Die
Pfeile sind so einzutragen, daB sie den Weg vom Anfang bis zum Ende der Resultierenden beschrei-
ben. Wir messen ab und erhalten Fr, = 49,5 N; Fg, = 6,5 N.

2.1.1.2. Rechnerisches Verfahren

Rechnerisch beziehen wir uns auf die geometrischen Zusammenhinge bei rechtwinkligen
Dreiecken. Man ordnet dem gemeinsamen Schnittpunkt den Ursprung eines rechtwinkligen
Koordinatensystems zu, rechnet mit Kréften bzw. deren Komponenten in diesen Richtungen
und wendet zur Ermittlung der Resultierenden die Gin. (5) bis (8) aus 1.1.3. an. In diesen
Rechnungen ist die Methode der Kraftzerlegung enthalten.

»  Lehrbeispiel 7

Die Aufgabe nach Lehrbeispiel 6 ist rechnerisch auszufiihren.

Lésung:

Wir beziehen uns auf Bild 43, das im vollstindigen Koordinatensystem die Komponenten enthilt,

‘und rechnen diesmal mit spitzen Winkeln. Dadurch betragen die Komponenten der Krifte (Rech-
nungen mit dem Rechenstab)

in x-Richtung: F;, = F; = 50N; F,, = F,cos45°=212N
F3x= F3c0830°= 346N
F4y = F,sin30° =30N

in y-Richtung: Fy, = 0; F;, = F,sin45° = F,, = 21,2N
F3, = F35in30° = 20N
Fy, = F4c0830°= 52N

Nach Bild 43 liegen diese Komponenten auf positiven oder negativen Koordinatenrichtungen. Wir
beachten dies und schreiben analog den Gln. (5) und (6)

Fpx= +Fy + Fox— F3x— Fyx
=+4+50N+212N—(34,64+30) N= 4+71,2N—64,6 N

= 46,6 N (Das Pluszeichen gibt an, daB die x-Imeponente der Resultierenden
auf der positiven x-Achse liegt.)

Fry = +Fyy— F3y— Fyy = +21,2N— (20 + 52) N = —50,8 N

(Das Minuszeichen weist darauf hin, dal die y-Komponente der Resultierenden auf der negativen
y-Achse liegt.)
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Positive x-Komponente und negative y-Komponente legen die Richtung der Resultierenden fiir
den 4. Quadranten fest.

Betrag der Resultierenden nach Gl. (7):

Fo = \/F& + F2, =10 N /0,66 + 508> = 51,2 N
Richtungswinkel der Resultierenden von der negativen y-Achse aus (Bild 43) mit den Absolutbetrigen
der Komponenten )

L —— e — ees ! = °

tan ooy Fay 508N 0,...= ap =74
Das entspricht einem Winkel von der positiven x-Achse aus und nach der Quadrantenfolge
ap = (270° + ap) = 277,4°.
Zeichnerisch und rechnerisch gefundene Ergebnisse stimmen weitestgehend iiberein.

ty
k 4
By
- }/_:” l&x JZ/<5§ Frx .
Bild 43. Zur rechnerischen _X : % // Fx  F +X -X i +X
Ljsung nach Lehrbeispiel 7 e // Fay a:,'& -\4'/
| ALY |
{V_F“, /'/-?y J /.;?
I
V-y
-y

2.1.2. Gleichgewicht am Korper

in der Statik werden fast durchweg Gleichgewichtszustinde technischer Gebilde untersucht,
Aufgaben zur Kraftzerlegung und zur Ermittlung der Resultierenden haben vorbereitenden
Charakter. Auch hier kénnen wir die Erkenntnisse des Grundlagenabschnittes fiir Krifte
znwenden. Wir wissen bereits, daBl zeichnerisch der Gleichgewichtszustand durch ein
zeschlossenes Krafteck mit fortlaufender Vektorenfolge herbeigefiihrt wird und daB rech-
aerisch nach den GlIn. (9) und (10) statisches Kriftegleichgewicht in horizontaler und
vertikaler Richtung vorhanden sein mufB. Diese GesetzmafBigkeiten sind nun auf technische
Gebilde anzuwenden. )

2.1.2.1. Zeichnerische Losung — geschlossenes Krafteck

Die zeichnerische Losung beginnt mit dem Strukturplan; denn das Strukturbild des tech-
zischen Gebildes ist maBstablich zu entwerfen. Wir brauchen dazu den

Langen auf der Zeichnung
Lingen des technischen Gebildes

Langenmafistab M, =
Danach ist das Krafteck (Kriftemafstab My annehmen!), geschlossener Zustand, fort-

iaufende Vektorenfolge, zur Festlegung des statischen Gleichgewichtes zwischen Belastung
und Stiitzung zu zeichnen. ’
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»  Lehrbeispiel 8

Der Laufkran nach Bild 32 transportiert Behilter. Durch die Abmessungen des Behélters nehmen die
angehingten Seile den Spreizwinkel « = 60° ein (Bild 44). Welche Zugkrifte haben die Seile auf-
zunehmen?

Losung:

Wir schneiden zuerst das Hubseil. In ihm tritt nach dem Gegenwirkungsprinzip die Kraft Fs = G
auf. Dann sind zwei Schnitte im Anhingeseil notwendig, um den Strukturplan mit dem Struktur-
knoten 4 zu zeichnen. Das nun folgende geschlossene Krafteck mit fortlaufender Vektorenfolge
Gleichgewichtszustand der drei Krifte mit gemeinsamem Schnittpunkt, fithrt auf Fy; = F;, = 0,58 G.
Die gefundenen Pfeilrichtungen stimmen mit denen des Strukturplanes iiberein. Sie wirken, wie
angenommen, als Zugkrifte.

fs
A fs
/.'
Fz Fs1 5
30930
¢ Fsz

‘L:S'

Bild 44. Strukturplan und
Krafteck zu Lehrbeispiel 8

fo

»  Lehrbeispiel 9

Der Transportbehilter ist breiter. Dafiir stehen aber nur wenig lingere Anhingeseile zur Ver-
fiigung. Bei ihnen betrigt der Spreizwinkel o = 120° (Bild 45). Wie groB sind nun die Seilkrifte?

Losung:

Mit den geidnderten Wirkungslinien erhilt man Fs; = Fg, = G. Wir erkennen daraus, daB stirker
gespreizte Anhéngeseile grofere Krifte aufnehmen miissen, die die angehdngte Last {ibersteigen
koénnen. Achtung beim innerbetrieblichen Transport!

fs
F
4 s 2
2

e
4 L Bild 45. Strukturplan und
oS Fs=G Fr Krafteck zu Lehrbeispiel 9

G

»  Lehrbeispiel 10

Die Masseverteilung im Transportbehilter ist ungleichmiBig, so dal3 er geneigt am Hubseil hingt
(Bild 46). Wir setzen o; = 60° und &, = 30° voraus. Welche Krifte im Anhéngeseil treten auf?

Losung:
Die zeichnerische Losung nach Bild 46 ergibt F5; = 0,5G; Fs, = 0,87G.

44



Bild 46. Strukturplan und
Krafteck zu Lehrbeispiel 10

»  Lehrbeispiel 11

Die vier Krifte nach Lehrbeispiel 6 sind als Belastung von zwei Streben (Pendelstiitzen) aufzunehmen.
Welche Stiitzkriéfte treten in 4 und B auf (Bild 47)?

Losung:

Wir schneiden die Pendelstiitzen und zeichnen den Strukturplan. Gemeinsamer Schnittpunkt im
Strukturknoten 4. Das zugehorige Krafteck entsteht zuerst aus den Belastungen F; --- F4 und wird
mit Wirkungslinien parallel zu den Richtungen der Pendelstiitzen geschlossen. Man muB8 also z. B.
Richtung 4 an das Ende des Kriftezuges und Richtung B an dessen Anfang legen. Beide Wirkungs-
linien ergeben einen Schnittpunkt, der die Vektorenlingen begrenzt. Wir finden F, = +31 N;
Fy = +32 N. Beide Stiitzkrifte sind Zugkrifte (4-Zeichen), da ihre Pfeilrichtungen mit Zug-
Schnittkréften tibereinstimmen. .

Hinweis: Die Wirkungslinien der Stiitzkrifte kann man auch in der anderen Folge, Wirkungslinie B
an das Ende und Wirkungslinie A an den Anfang des Kriftezuges F; --- F4, antragen. Das Ergebnis
wird dadurch nicht beeintrachtigt.

Strukturplon

9 0 20 N4

F=5N oy = 0°
£
B = 30N a, = 45° s,
F = 40N az = 210° L
F - 60N @, = 240° s fH
Fy =+ 31N Krafiplan :
Fy =+ 32N Krofteck

I
Bild 47. Skizze des technischen Gebildes, Strukturplan und Kraftplan (Krafteck) zu Lehrbeispiel 11
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»  Lehrbeispiel 12

Mit dem skizzierten Knotenblech (Bild 48) sind drei Stibe durch Schweifien zu verbinden. Im Stab 7
wirkt die Zugkraft Fg; = 20 kN. Welche Krifte in den Stidben 2, 3 gewihrleisten statisches Gleich-
gewicht?

Lésung:

Da das zentrale Kréftesystem noch nicht sichtbar ist, konstruieren wir durch Verlidngerung der
Wirkungslinien den Wirkungsknoten I. (Die drei Krifte miissen sich in einem Punkt schneiden,
sonst treten zusétzliche Momente auf.) Dann kann das Krafteck gezeichnet werden. Es ergibt sich

Fy, = +16,6kN; Fs = +10,2kN.
fs3
S
20 kN Y N1 &
o 2
fs2
0 5 10

0 15 20K

fs1
F:Sy
: Fs2

Bild 48. Skizze des technischen Gebildes, Strukturplan und Krafteck zu Lehrbeispiel 12

4 a1
A4, ﬁ.r,
/
Fg
S /e '
/ A ¢
AN/B
Bild 49. Zeichnerische Losungen
£z
7

For Stab 2

1 ?%F zu Lehrbeispiel 13
‘ [\

@n
N
RN
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»  Lehrbeispiel 13

Das Gewicht G einer Tiir (ﬁild 49) ist von ihren Lagern aufzunehmen. Wir wollen zwei Fille unter-
suchen. Imversten Teil der Aufgabe soll das Tiirband oben vertikales Spiel zur Tiirangel haben und
im zweiten Teil der Aufgabe unten. Welche Stiitzkrifte miissen wirken?

Losung:

Die Bedingung vertikales Spiel wird von einem Loslager erfiillt. Es ist in den Strukturplan so ein-
zuzeichnen, damit in senkrechter Richtung keine Kréfte wirken konnen. Nun tragen wir die Stiitz-
kraft fiir das Loslager ein. Sie fithrt mit G auf den jeweiligen Wirkungsknoten I. Hier liegt auch der
Schnittpunkt fiir die Stiitzkraft des. Festlagers. Das zentrale Kraftesystem liegt vor. Das zugehéorige
Krafteck ist zu zeichnen.

m Ubungen 16 und 17

2.1.2.2. Rechnerische Losung — statisches Kriftegleichgewicht

Fiir die rechnerische Losung stehen aus Abschn. 1.1.3. die beiden Gln. (9) und (10) zur
Formulierung des statischen Kraftegleichgewichts in horizontaler und vertikaler Richtung
zur Verfiigung. Natiirlich kann man auch das Krafteck der zeichnerischen Losung geo-
metrisch erfassen, so daB in einfachen Fillen die Losung schneller anfillt. Der Bearbeiter
muB entscheiden, welche Losung rationeller ist.

»  Lehrbeispiel 14
Die Seilkrifte nach den Lehrbeispielen 8, 9 sind rechnerisch zu ermitteln.

Losung:

Die zeichnerische Losung fiihrte auf gleichschenklige Kraftecke. Man kann sie nach Bild 50 in zwei
identisch rechtwinklige Dreiecke verwandeln und mit ihnen die Bestimmungsgleichung formu-
lieren:

« G/2 b For = Fop = G
Sy = F, W Fs1= 52 = 2 cos «/2
Damit erhdlt man
. N G
beix = 60°: Fs)—Fsz— 2 cos 30° = 1 — =0,58G
2-—4/3
2
. o G G
beiox = 120°: Fsy = F5, = T o0s60° — i = G;
2>

also gleiche Ergebnisse wie bei der zeichnerischen Losung.

»  Lehrbeispiel 15
Es soll auch die Aufgabe nach Lehrbeispiel 10 rechnerisch gelost werden.

Losung:

Wenn man die zeichnerische Lésung nach Bild 46 betrachtet, dann kann das Krafteck wohl auch,
in zwei rechtwinklige Dreiecke zerlegt werden. Sie sind aber nicht symmetrisch. In solchen Fillen
ist die allgemeine Losungsmethode, Anwendung der Gleichungen fiir das statische Kriftegleich-
gewicht, geeigneter. Dazu muB man sich auf eine skizzenhafte Aufbereitung des Strukturbildes, auf
die Strukturskizze, fir diese Aufgabe nach Bild 51, beziehen. Sie enthilt alle Krifte bzw. deren
Komponenten in Koordinatenrichtungen.
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Rechnungen mit statischen Gleichgewichtsbedingungen kommen hiufig vor. Daher wurden

fiir den Lésungsansatz folgende Symbole eingefiihrt:
n

® Gleichungen fiir das vertikale Kriftegleichgewicht Z F,, = 0 erhalten einen verti-
kalen Pfeil 1
und Gleichungen fiir das horizontale Kriéftegleichgewicht Z F;, = 0 einen horizontalen

Pfeil —. i=
ty
N ES 2‘% 2 ’€5‘1
T /
-x Fsox Fsx  +x For
N fs=
0 Fs
/ 0 \{7 Bild 50. Strukturskizze und Krafteck zu
Ky (\—‘ Fsty Lehrbeispiel 14
Jpe
K 1%
Bild 51. Strukturskizze zu Lehrbeispiel 15
7Y

Wir lesen aus der vorliegenden Strukturskizze fiir das statische Kriftegleichgewicht fol gende
Gleichungen:

0 +G — Fs1y — Fs2y =0
+ G — Fs; cos 60° — Fs; cos 30° =0

1 1 =
+G——2'Fs1—?\/3f§2=0

- _Fs2x+FSIx=o
—Fsz sin 30° + F51 sin 60°.= 0
1

1 -
—7F52+?\/3Fs1=0

Diese Gleichungen stellen das mathematische Gleichungssystem zur Ermittlung der beiden

Unbekannten dar. Man kann z.B. aus der zweiten Gleichung Fs, = \/ 3 Fs, ermitteln und
diesen Wert in die erste Gleichung einsetzen. Dann wird

1 1 =,
+G—E"st—"2—\/3(\/3st)=0

Fsy (% + -%) =G oder Fs; = 0,5G
und damit

Faa=+/3Fs =\/§§= 0,866G
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Hinweis: Der Strukturplan zu Lehrbeispiel 13 enthilt keinen Richtungswinkel fiir die Kraft im
Festlager. Natiirlich konnte man ihn mit den angegebenen MaBen berechnen. Das setzt aber eine
zeichnerische Aufbereitung solcher Aufgaben, die einen Wirkungsknoten enthalten, voraus. Ein-
gebiirgert hat sich jedoch die teilweise Rechnung mit dem statischen Momentengleichgewicht

n

2 M; = 0. Diese rechnerische Losung wird beim allgemeinen Kriftesystem angewendet. Wir
i=1

werden sie uns dort erarbeiten und iiben. Hier nur der prinzipielle Lésungsweg.

Nach der Strukturskizze (Bild 52) ist anzusetzen:

Statisches Momentengleichgewicht um B (Ursprung des Koordinatensystems):

b E .
+FAa—Gb=0 bzw. FA—_—-—a-G i—%ﬁ‘z—
Die Stiitzkraft des Loslagers wurde ermittelt.
Nun statisches Kriftegleichgewicht: S| £
B
— | —Fu+ Fpz=0 oder Fp,=F, 4
ZN
4 +Fg,—G=0 bzw. Fp, =G - L_T’
—_ Fa,
Resultierende Kraft im Festlager Fp = \/ F3. + F3, 6
m  Ubungen 18 bis 20 Bild 52. Strukturskizze zur

rechnerischen Ermittlung der
Stiitzkrdfte einer Tiir

2.1.3. Gleichgewicht fiir Korpersysteme

Die Verbindung einiger Stibe zur Aufnahnie von Belastungen fiihrt zu Korpeisystemen mit
Strukturknoten. In der Praxis findet man zugehorige technische Gebilde als Stabwerke,
Fachwerke (z. B. Verstrebungen von Dachbindern oder bei Wanddrehkranen). Die ein-
zelnen Stédbe sind hier oft fest miteinander verschweifl3t oder vernietet. Trotzdem wird in
allen Fillen eine gelenkige Verbindung vorausgesetzt. Dadurch haben die Stibe nur Zug-
oder Druckkrifte aufzunehmen. ’

Aufbereitung der zeichnerischen Losung:

Die zeichnerische Losung beginnt mit dem Strukturplan. Bild 53 zeigt ein Stabwerk, das
die Belastung F aufzunehmen hat. Diese Belastung wird unmittelbar von zwei Seilen ge-
halten, die an beiden Enden zu je zwei Pendelstiitzen fithrén. Die Geometrie der Stabver-
bindungen I ... 6 stimmt mit den Wirkungslinien der zugehorigen Stabkrifte Fy, ... Fsq
iiberein. Man erkennt ihre Strukturknoten I, II und III. Dadurch 148t sich das Korper-
system in drei Teilsysteme zerlegen.

Strukturknoten I: Seile 1 und 2 schneiden. Belastung F ist im statischen Gleichgewicht
mit Fs; und Fs,. Die Wirkungslinien sind bekannt. Wir zeichnen das zugehorige Krafteck
(Kraftfolge nach angegebenem Umlaufsinn) und erhalten damit die Vektoren fiir Fs;, Fs,.
Thre Pfeilrichtungen sind in den Strukturplan zu iibertragen.

Strukturknoten II: Seil 1 und Pendelstiitzen 3, 4 schneiden. Nach dem Gegenwirkungs-
prinzip muB3 am Strukturknoten die nun bekannte Seilkraft Fs, als Zugkraft vorausgesetzt
werden. Die Wirkungslinien fiir Fs;, Fs, sind bekannt. Krafteck nach eingetragener Stab-
folge konstruieren. Wir erhalten Fgi, Fsq. Ihre Pfeilrichtungen sind in den Strukturplan
einzutragen.

Strukturknoten III: Seil 2 und Pendelstiitzen 5, 6 schneiden. Statisches Kriftegleichgewicht
im Seil 2 verlangt die eingetragene Pfeilrichtung fiir Fs, (aus dem Ergebnis des Krafteckes
fiir Strukturknoten I). Die Wirkungslinien fiir Fss, Fs¢ sind bekannt. Wir beachten die
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einheitliche Stabfolge (von der gegebenen Kraft aus im Uhrzeigersinn) und zeichnen das
Krafteck. Nun konnen auch die letzten Kraftpfeile in den Strukturplan iibertragen werden.

Bis auf die zwingend vorgeschriebene Stabfolge zur Zeichnung der Kraftecke ist hier nichts
Neues vermittelt worden. Wenn man aber z. B. die Kraftecke ausschneiden und so zusam-

Strukturknotern Strukturplane Krafiplane: Cremonaplon

43
I 6
4 F
AN K
N6
I

Bild 53. Losungsschritte zum Cremona-Plan
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menkleben wiirde, daB sich gleiche Kraftvektoren decken, dann entsteht ein Gesamtkraft-
plan, der Cremona-Plan (Luigi Cremona, 1830 bis 1903: Ausarbeitung zur Fachwerktheorie).
Dieses Verfahren ist rationell, weil doppelt gezeichnete Vektoren nur einmal gezeichnet
werden miissen. Aus Griinden der Ubersichtlichkeit und des sicheren Abmessens der Kraft-
strecken erhilt der Cremona-Plan keine Kraftpfeile. Sie sind bei seiner Erarbeitung schritt-
weise in den Strukturplan einzutragen.

»  Lehrbeispiel 16
Bild 54 zeigt den Strukturplan fiir einen einfachen Wanddrehkran, der maximal mit F = 20 kN
belastet werden soll. Gesucht sind die Stabkrifte in den Stiben I bis 5 sowie die Stiitzkrifte in 4
und B.

o3m

Bild 54. Strukturplan fiir den
Wanddrehkran nach Lehrbeispiel 16

3m

Lésung nach Bild 55:

Zuerst ermitteln wir die Stiitzkréfte. F, mit F schneiden sich im Wirkungsknoten 1. Richtung B-I
ist Wirkungslinie von Fg. Der Cremona-Plan wird mit dem zugehorigen Krafteck begonnen. Nach
der vorgegebenen Arbeitsfolge fligen wir an F zuerst Fp, dann F, an. Die gefundenen Vektoren
kann man abmessen und in die vorbereitete Stabtafel eintragen. Eine Umrechnung mit dem Krifte-
mabBstab ergibt den Betrag der Kraft.

Zur schrittweisen Ermittlung der Stabkrdfte:

Man kann immer nur eine bekannte Kraft mit zwei unbekannten Kriften zum Krafteck zusammen-
fassen. Hier konnte mit Strukturknoten I/ begonnen werden, aber auch mit Strukturknoten B.
Wir beginnen mit II. Nach der vereinbarten Arbeitsfolge entsteht ein Krafteck aus F mit 2 und 1.
Geschlossenes Krafteck und fortlaufende Vektorenfolge erfordern die eingetragenen Kraftpfeile.
Diese Schnittkréifte (Schnitte rund um den Strukturknoten I7) wirken auf die Schnittfliche bzw. von
ihr weg. Daher ist Fs, eine Druckkraft (negatives Vorzeichen in der Stabtafel) und Fs; eine Zug-
kraft (positives Vorzeichen in der Stabtafel). Man spricht analog von Zug- oder Druckstiben.
Zur Kennzeichnung der Gegenkraft im gleichen Stab sind nun die entsprechenden Kraftpfeile ein-
zutragen.

Wir bearbeiten Strukturknoten III. Bekannt ist Fg,; unbekannt die Krifte in den Stiben 4 und 3.
Die Kraftstrecke 2...2 des Cremona-Planes ist mit diesen Kraftrichtungen zum Krafteck zu ver-
vollstindigen. Fortlaufender Umfahrungssinn (Pfeilrichtung fiir 2 am Knoten I7I ist nunmehr
bekannt) fiihrt zu den eingezeichneten Kraftpfeilen. Fs4 und Fg3 sind Druckkrifte. Gegenpfeile im
gleichen Stab eintragen. Nun fehlt fiir das statische Kraftegleichgewicht am Strukturknoten 4 nur
noch Stabkraft 5. Wir beginnen im Cremona-Plan mit allen bekannten Kriften, also mit F, ; fahren
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die Kraftstrecke I...1 ab, dann 3...3 und erginzen das Krafteck mit einer Wirkungslinie parallel
zu Stab 5 bis zum Anfang des gesamten Kriiftezuges, also bis zum Anfang von F,. Nach diesem
Umfahrungssinn ist der Pfeil fiir Fss einzutragen.

Strukturplan
24m |
! Arbeilsfolge

F=20kN fir Stabschnitte

1.2m

Krafiplan
Cremonaplan
J
4/ |5
NI
F
7 < 5 2
7 -
B/
Stiitzkrifte: F4, = +16kN |
Fy = —25kN Fay
Fp, = —16kN. :
Fsy = —20kN I
|
Stabtafel: Stab | <(F;) Mg F, |
i in mm inkN 4 |
F |
1 55 +27,5 2
2 | 1,5 40mm 3875 0 T T T T T T T ‘F—’J
3 | 26 —13 bx
4 |68 KN _3y
Bild 55. Strukturplan, Cremona-Plan
5 20 +10 und Stabtafel zu Lehrbeispiel 16

Der Kraftplan ist fertig. Wir kdnnen noch das schon vorhandene Krafteck zum Strukturknoten B
kontrollieren. Es ist geschlossen und stimmt mit den Gegenpfeilen der Stabe 5, 4 iiberein. Alle
abgemessenen Kraftstrecken sind in die Stabtafel einzutragen, mit dem gemeinsamen KréftemaBstab
zu dividieren und als Kraftbetrige auszuweisen.

m  Ubung2l

Zusammenfassung

Das zentrale Kriftesystem setzt den gemeinsamen Schnittpunkt aller Kraftwirkungslinien
voraus. Im technischen Gebilde kann dieser Schnittpunkt durch die Anordnung von Seil-
oder gelenkigen Stabverbindungen gegeben sein. Das Strukturbild enthdlt dann einen
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Strukturknoten. Um ihn schneiden wir die angeschlossenen Verbindungselemente und tragen
Schnittkrifte an. Dadurch wird das Kriftebiischel sichtbar.

Die Bedingungen fiir dessen statischen Gleichgewichtszustand lassen sich zeichnerisch und
rechnerisch ermitteln.

Zur zeichnerischen L6sung gehoren genau maBstdbliche Darstellungen, der Strukturplan
und das geschlossene Krafteck mit fortlaufender Vektorenfolge. Die rechnerische Losung
setzt eine aufbereitete Strukturskizze mit Kriften bzw. deren Komponenten in einem
rechtwinkligen Koordinatensystem, Ursprung im Strukturknoten, voraus. Nach dieser
Abbildung sind die beiden Gleichungen fiir das statische Kriftegleichgewicht in beiden
Koordinatenrichtungen aufzustellen. Aus diessm Gleichungssystem erhdlt man die
gesuchten GroBen.

Enthilt das Strukturbild keinen Strukturknoten, dann ist trotzdem ein zentrales Krifte-
system nicht auszuschlieBen. In diesem Fall ist das. Strukturbild mit den bekannten Wir-
kungsbedingungen fiir die Krifte so lange zu bearbeiten, bis der Wirkungsknoten vorliegt.
Erst dann ist die zeichnerische Lésung moglich.

Die rechnerische Losung solcher Aufgaben wird oft nach den Bedingungen des aligemeinen
Kriftesystems durchgefiihrt; denn die Lage des Wirkungsknotens im Koordinatensystem
miifte erst ermittelt werden.

Sollte man bei dieser Losungsaufbereitung erkennen, daB die Kraftwirkungslinien keinen
gemeinsamen Schnittpunkt haben kénnen, dann ist die Aufgabe hier nicht 16sbar. Es liegt
ein allgemeines Kraftesystem vor, das wir in den nachfolgenden Abschnitten untersuchen
werden.

Als Zusammenfassung fiir viele Aufgaben kann die algorithmische Darstellung nach
Anlage A 1 (Ubersichts- und Losungsalgorithmus zur Ermittlung der Stiitz- oder Stab-
krifte beim zentralen Kréftesystem) dienlich sein. Mit solchen problemorientierten Dar-,
stelluhgen werden in logischer Folge Hauptschritte der Aufgabenlosung als Bearbeitungs-
oder Entscheidungsaktivititen angegeben. Sie enthalten auch die Moglichkeit, nach person-
lichen Bediirfnissen weitere, subjektiv verfeinerte Losungsschritte einzutragen.

Diese Anlagen enthalten nach TGL 22451 einige Symbole:

Symbole
Beginn und Ende der Aufgabenlsung Start, Stop .
Ein- und AusgangsgréBen nach Nr. 1, 9, 17
Entscheidungsaktivititen mit den
Ausgingen j (ja) und n (nein) nach Nr. 2, 4, 13
Bearbeitungsaktivitidten nach Nr. 3, 5, 6, ...

Zur Aufgabenstellung gehort das Modell der Statik, im vorliegenden Fall das Strukturbild
zum zentralen Kréftesystem. Nun ist zu entscheiden, ob die Aufgabe zeichneristh oder
rechnerisch geldst werden soll.

Zur zeichnerischen Losung (Ausgang j):

— Anfertigung des Strukturplanes, eine maBstibliche Zeichnung zum Strukturbild der
Aufgabenstellung.

— Mit dieser Zeichnung erhilt man Kenntnis dariiber, ob der gemeinsame Schnittpunkt-
zller Kraftwirkungslinien schon vorliegt. Ist das der Fall (Ausgang j), dann 148t sich sofort
Zas zugehorige Krafteck zeichnen. Wir erhalten die gesuchten Vektoren, tragen die ge-
‘undenen Kraftpfeile in den Strukturplan ein und rechnen die Kraftstrecken in Kraft-
cetrdge um.
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— SchlieBlich fassen wir die gesuchten GroBen zusammen (Nr. 9) und beurteilen die Ergeb-
nisse. Die Aufgabe ist gelGst.
Ist der gemeinsame Schnittpunkt noch nicht vorhanden, dann liegt ein zentrales Krifte-
system mit Wirkungsknoten vor. Dieser Wirkungsknoten und die fehlende Wirkungslinie
fiir die Stiitzkraft des Festlagers sind zu konstruieren. Erst dann kann man mit dem Losungs-
schritt Nr. 6 weiter arbeiten.

Die rechnerische Losung beginnt mit Nr. 12. Ihre Durchfiihrung 148t sich in dhnlicher
Weise aus der Darstellung lesen.

Stab- oder Fachwerke lassen sich als Korpersysteme mit Strukturknoten in diesen Abschnitt
einordnen. Vorausgesetzt werden Belastungsanordnungen und gelenkig miteinander ver-
bundene Stibe, in denen nur Zug- oder Druckkrifte wirken kdnnen. Nach Bestimmung
der Krifte am komplexen technischen Gebilde, den Stiitzkriften, sind die inneren Krifte,
die Stabkrifte, zu ermitteln. Analoge Aufgaben dieses Abschnittes lassen sich nach Bearbei-
tungsaktivititen zeichnerisch mit dem Cremona-Plan 15sen. Eine algorithmische Darstellung
hierzu zeigt Anlage A 2.

2.2 Allgemeines Kriftesystem

2.2.1. Zusammensetzen und Zerlegen von Kriften

2.2.1.1. Zeichnerische Verfahren — Seileck, Hilfskrifte

Die Wirkungslinien einer Kriftegruppe lassen sich nicht zu einem Schnittpunkt zusammen-
fassen. Wir miissen uns weitere zeichnerische Arbeitsverfahren erarbeiten, die sich fiir
Aufgaben mit zwei oder mehreren Wirkungsknoten eignen. Betrachten Sie hierzu Bild 56.
Von den vier an der Scheibe wirkenden Kriften lassen sich je zwei zu einem Schnittpunkt
vereinigen. Dadurch entstehen die beiden Wirkungsknoten 7 und 7.

—_— — F
/ \ 4
L N
F y gl /
= A
T Bild 56. Schrittweise Ermittlung der

Resultierenden fiir vier Krdfte mit
zwei Schnittpunkten

Wir stellen uns die Aufgabe, die Resultierende der vier Kriifte zu ermitteln. In einfachster
Weise gelingt das durch eine schrittweise Konstruktion der Krafteparallelogramme. F; und
F, am Wirkungsknoten 7 liefern die Resultierende Fg;. Am Wirkungsknoten II werden die
Krifte Fs und F, zu Fgr; zusammengefat. Die Wirkungslinien der Resultierenden schneiden
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sich im Wirkungsknoten III. Trigt man von dort aus die resultierenden Vektoren an, dann
wird mit dem dritten Kréfteparallelogramm die gesamte Resultierende Fr gefunden. Sie
ersetzt die Kriftegruppe F; ... F,. Dieses soeben beschriebene Verfahren versagt, wenn die
Wirkungslinien der zusammenzufassenden Krifte parallel verlaufen oder wenn die Schnitt-

Bild 57. Entwicklungsplan zum
Kraft- und Seileckverfahren

punkte zeichnerisch ungiinstig zu ermitteln sind. In solchen Fillen kann durch Hilfskrifte
die gewiinschte Losung gefunden werden.

Wir wollen dieses Verfahren an einem Beispiel (Bild 57) erldutern. Fiir die Kriftegruppe
F; ... F; soll ihre Resultierende Fy schrittweise mit Krifteparallelogrammen ermittelt
~erden. Den gegebenen Kriften fiigen wir Hilfskrifte Fy; so binzu, daB sich diese gegenseitig
aufheben. Sie sind gleich groB3 entgegengesetzt gerichtet und liegen auf einer Wirkungs-
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linie. Wir fassen zusammen:

Fy mit F; am Wirkungsknoten I zu Fg;
Fy; mit F, am Wirkungsknoten II zu Fgy;
Fgpr mit F; am Wirkungsknoten 117 zu Fypyy
Fgyr mit Fy am Wirkungsknoten IV zu Fy

Diese Arbeitsweise ist zeitraubend und fiir umfangreiche Kriftegruppen in zunehmendem
Mafe uniibersichtlich. Deshalb wenden wir uns einem neuen Verfahren zu. Wir 16sen den
Entwicklungsplan (Bild 57) nach seinen Hauptbestandteilen, dem Kraft- und Seileck,
auf. Schichtet man die schraffierten Dreiecke so aneinander, daB sich gleiche Vektoren
tiberdecken, dann entsteht als Kraftplan das Krafteck. Die Vektoren der Hilfskrifte und
die der Zwischenresultierenden schneiden sich in einem Punkt, dem Pol, und werden Pol-
strahlen genannt. Kiinftig werden diese Polstrahlen mit Zahlen 0, 1, 2, 3 ... bezeichnet.
Zur Konstruktion des Wirkungsknotens 7V, als Punkt der gesuchten Wirkungslinie fiir Fg,
sind nun noch in den Strukturplan die Wirkungslinien dieser Vektoren mit ihrem gemein-
samen Schnittpunkt konstruktiv festzulegen. Analog zum Kraftplan erhalten diese die
Bezeichnung ¢, 1, 2/, 3’ ... Das Seileck ist fertig.

Die Bezeichnung ,,Seileck* hingt mit folgender Uberlegung zusammen: Stellen Sie sich ein fest
gespanntes Gummiseil, eingespannt an ‘den schraffierten Stellen, vor. Die an den Wirkungsknoten
angehingten Belastungen F,, F,, F; wiirden das Gummiseil in der gezeichneten Weise absenken und
knicken. Im Seil treten Spannkrifte auf, die den Kraftlinien 0, I, 2, 3 des Kraftecks entsprechen.

Wir fassen nach Bild 57 die Kraft- und Seileckkonstruktion zusammen:

1. Zuerst wird das Krafteck gezeichnet.

KriftemaBstab mg, Vektoren Fy, F,, F3 und nach Annahme eines Pols die Polstrahlen 0, I, 2, 3.
Der Vektor fiir die gesuchte Resultierende ergibt sich als Vektorsumme aus den einzelnen Belastun-
gen. Wir kennen jedoch noch nicht die Lage seiner Wirkungslinie. )

2. Das Seileck, zur Konstruktion eines Punktes der Wirkungslinie von Fp (Wirkungsknoten IV),
entsteht mit der parallelen Ubertragung aller Polstrahlen.

Wir nehmen den Wirkungsknoten I auf der Wirkungslinie von F; beliebig an und vereinigen dort
die Scilstrahlen 0’ mit I’, denn diese drei Wirkungslinien geh6ren zu den Kraftvektoren Fy, 0 und 1
im zugehorigen Teilkrafteck. Seilstrahl /7 ist mit der Wirkungslinie von F, zu schneiden. Dadurch
ergibt sich der Wirkungsknoten 1I zwangsliufig, weil auch Kraftvektor I zum Teilkrafteck F,- I, 2
gehort. Wir legen durch I die Wirkungslinie 2° und haben sie nach dem zugehorigen Teilkrafteck
mit der Wirkungslinie von F; zu schneiden. Dadurch entsteht IIT als Schnittpunkt von 2” und F;.
Hier muB auch als dritte Kraft 3’ schneiden. SchlieBlich findet man den Schnittpunkt IV durch
Schnitt der Seilstrahlen 0” und 3’, weil das zugehorige Teilkrafteck aus 0, 3, Fy besteht.

m  Ubung 22

Bild 58 zeigt, wie man eine gegebene Kraft in drei Komponenten, deren Wirkungslinien
bekannt sind und sich in zwei Schnittpunkten schneiden, zerlegt.

Wir zerlegen die Kraft F; am Wirkungsknoten 7 in F, und eine Hilfskraft Fy. Ihre Richtung
wihlen wir so, daB auch eine Zerlegung am Wirkungsknoten I7 méglich wird. Die Wir-
kungslinie der Hilfskraft muB demnach der Verbindungsgeraden zwischen 7 und II ent-
sprechen. Fy; kann dadurch am Wirkungsknoten 17 in F; und F, zerlegt werden.

2.2.1.2. Rechnerisches Verfahren

Auf die Ermittlung der Resultierenden im allgemeinen Kraiftesystem soll an dieser Stelle
nicht noch einmal eingegangen werden. Wir verweisen in diesem Zusammenhang auf die
Gln. (5), (6), (7), (8), (11) im Abschnitt 1.
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2.2.2. Gleichgewicht am Korper

Kriftegruppen am Korper befinden sich im Gleichgewicht, wenn die Summe ihrer Kompo-
nenten in zueinander senkrechten Richtungen und die Summe ihrer Momente gleich Null
sind. Diese Gleichgewichtsbedingungen spielen in der Statik eine wichtige Rolle. Die folgen-
den Ausfiihrungen sollen das veranschaulichen.

2+ .
Bild 58. Zerlegung einer — . I /
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2.2.2.1. Zeichnerische Losungen — Culmann-Verfahren, Kraft- und Seileckverfahren

Die Scheibe nach Bild 59, belastet durch Fj, soll durch drei weitere Krifte mit vorgegebenen
Wirkungslinien in das statische Gleichgewicht gebracht werden. Die Wirkungslinien der
insgesamt vier Krifte schneiden sich in I und II. Gleichgewicht erhalten wir dann, wenn
diese vier Krifte ein geschlossenes Krafteck ergeben. Um das Krafteck zeichnen zu kdnnen,
bendtigen wir zunidchst Hilfskrifte, die das Gleichgewicht nicht storen.

Nach Culmann findet man ihre Wirkungslinie, wenn man die beiden Schnittpunkte durch
eine Gerade (Culmannsche Gerade) verbindet (Karl Culmann, 1821 bis 1887: Ausarbeitungen
zur grafischen Statik). Nun stellen wir das Gleichgewicht am Wirkungsknoten I zwischen
F,, einer Kraft in Richtung 2 und der Hilfskraft auf der Verbindungsgeraden her. Wir
erhalten Krafteck I. Am Wirkungsknoten II wird nun Gleichgewicht mit der Gegenkraft
— Fy; und Kriften in den Richtungen 3, 4 hergestellt. Das ergibt Krafteck II. Zeichnet man
beide Kraftecke als Doppelkrafteck (L Fy liberlagert), so ergibt sich das gesuchte geschlos-
sene Krafteck mit fortlaufender Vektorfolge. Wir erkennen, dafl die Hilfskrifte + Fy
und —Fy duBerlich nicht in Erscheinung treten, da sie sich gegenseitig aufheben.

8

7
Bild 60. Losungsbeispiele zum Verfahren nach Culmann

Bild 60 zeigt zwei Anwendungen fiir die zeichnerische Lésung. Der mit F belastete Trager
soll durch drei Pendelstiitzen abgestiitzt werden. Gesucht sind ihre Stiitzkrifte. In den
Strukturplan konnen wir die Wirkungslinien der insgesamt vier Krifte eintragen. Die
Wirkungslinie fiir F ist unmittelbar gegeben. In den Richtungen der Pendelstiitzen
treten F,, Fp, Fc auf. Wenn es gelingt, diese vier Wirkungslinien in insgesamt zwei Schnitt-
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punkten zu vereinigen, dann liegt ein Beispiel vor, dessen zeichnerische Lésung Sie kennen.
Wir geben zwei Losungsvarianten an, die zum gleichen Ergebnis fithren. Im ersten Fall
wurde F mit Fp zum Schnitt gebracht (Wirkungsknoten 7) und dann F, mit F (Wirkungs-
knoten IT). Im zweiten Fall schneiden sich die Wirkungslinien von F und F¢ in I und die
von F, und Fy in II.

»  Lehrbeispiel 17

Bild 61 zeigt eine Scheibe vom Gewicht G. Das Gewicht der Scheibe soll durch drei Tangential-
pendelstiitzen statisch aufgenommen werden. Gesucht sind zeichnerisch die Krifte in den Pendel-
stiitzen.

Losung (Bild 61.1)

Das Doppelkrafteck fiihrt auf Fy = 3 G, Fg = G und Fo = 1 G.

an

N

Bild 61. Zeichnerische Losung zu Lehrbeispiel 17 Bild61.1
m  Ubungen 23 bis 25

Nun zum statischen Gleichgewicht beim Kraft- und Seileckverfahren. Wir schlieBen an
das Beispiel nach Bild 57 an und stellen uns die Aufgabe, mittels Stiitzkréften das statische
Gleichgewicht am Korper herzustellen, Bild 62 enthilt zur Vereinfachung der Darstellung
nur die Resultierende Fy der Kriftegruppe. Mit ihr, den Polstrahlen 0, 3 und mit den beiden
Stiitzkriften F, (im Festlager), Fs (in der Pendelstiitze), sind zwei Kraftecke zu zeichnen.

Bild 62. Schluflinie und Stiitzkrdfte beim Kraft- und Seileckverfahren
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Dazu benétigen wir einen weiteren Polstrahl s, parallel zur SchluBlinie s” aus der Seileck-
konstruktion. Dann geh6rt zum Wirkungsknoten B’ das Krafteck s, 3, Fs und zum Struktur-
knoten A das Krafteck 0, s, F,. Die Stiitzreaktionen sind gefunden. Die Konstruktion der
SchluBlinie ist nach Bild 62 einfach zu erkennen. Man beachte bei der Ubertragung der
Polstrahlen vom Krifteplan in den Strukturplan, dal entweder der erste oder der letzte
Polstrahl durch den Strukturknoten A (Festlager) gezogen werden muBl; denn von der
gesuchten Wirkungslinie fiir F, ist zunichst nur ein Punkt bekannt. Die Wirkungslinie
fiir Fp ist hingegen gegeben (Pendelstiitze) und liefert mit 3° den Wirkungsknoiten B’.

® Die SchluBlinie entspricht der Verbindungsgeraden von Struktur- und Wirkungsknoten.

Als zusammenfassende Wiederholung zur zeichnerischen Ermittlung von Stiitzreaktionen
betrachten wir das nachfolgende Lehrbeispiel.

»  Lehrbeispiel 18

Bild 63 zeigt einen schrig angeordneten Triger, der mit F;, F, parallel belastet wird. Zur Ermittlung
der Stiitzkrifte ist das Kraft- und Seileckverfahren anzuwenden; denn die gesamte Kraftegruppe aus
Belastungen und Stiitzreaktionen kann weder zu einem noch zu zwei Schnittpunkten zusammen-
gefaBit werden. Wir beginnen das Krafteck mit F;, F, und nach Annahme eines Poles mit den Pol-
strahlen 0, I und 2. Dann sind im Strukturplan die Wirkungslinien dieser Krifte zugehorig zu
schneiden, d. h., wir zeichnen das Seileck. Betrachten wir die Stiitzsymbole, dann gibt uns Fest-
lager A mit seinem Strukturknoten einen Punkt der Wirkungslinie fiir F4 an. Daher ist Polstrahl 0

p 7
tanoc-j

Bild 63. Strukturplan, Kraft- und Seileck zu Lehrbeispiel 18

parallel bis zum Schnitt mit 4 zu verschieben. Wir erhalten den Seilstrahl 0’. Polstrahl 0 ist im sta-
tischen Gleichgewicht mit F, und mit Polstrahl 1; also miissen sich 0’, I’ auf der Wirkungslinie
von F; schneiden. In zugehoriger Weise gilt das auch fiir F,. Hier herrscht nach Krafteck statisches
Gleichgewicht zwischen 1, 2 und F,. Bis hierher enthilt das zeichnerische Verfahren Schaittpunkte
fir die Krifte F,, F; und F,. Verldngert man Seilstrahl 2’ bis zum Schnitt mit der Wirkungslinie
von Fg, dann ergibt sich Wirkungsknoten B’. Die Verbindungsgerade: Strukturknoten — Wirkungs-
knoten fiihrt zur SchluBlinie s”. Sie ist mit paralleler Richtung durch den Pol zu zeichnen: Polstrahl s.
Da sich in B’ die Wirkungslinien der drei Krifte 2’, s und Fp schneiden, mufBl mit der bekannten
Wirkungslinie von Fp das zugehérige Krafteck mit fortlaufender Vektorfolge gezeichnet werden.
Damit erhilt auch der Polstrahl s seine Linge. Beide Polstrahlen, s und 0, sind durch F, zu einem
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Krafteck zu verbinden. Erst zuletzt erhalten wir Richtung und GroBe der Stiitzkraft fiir das Fest-
lager. Die Pfeile fiir die Belastungs- und Stiitzvektoren haben einer umlaufenden Vektorenfolge
zu entsprechen. Im Krafteck folgen nach F,, F, die Stitzvektoren Fg, F,.

»  Lehrbeispiel 19

Der Triger nach Bild 64 entspricht z. B. einer Welle, durch 4 und B zweifach gelagert und iiber
zwei Zahnrader mit 2F, F belastet. Fiir die Lager und Zahnrider sind verschiedene Anordnungen
moglich. In den ersten beiden Fallen befinden sich. die Zahnrader zwischen den Lagern, geindert

Variante 1

Variante 2 2F J F

b
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/|
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A \\
|
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Variante 3 A ' L

7/
A
@ |

-

Variante 4

Bild 64. Zeichnerische Losungen zu Lehrbeispiel 19
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wurde die Lagerkonstruktion (Festlager links oder rechts). Im dritten Fall vertauschen wir Fest-
lager mit Zahnrad und bei der vierten Anordnung schlielich die beiden Zahnrdder. Gesucht sind
fiir jeden Fall die Stiitzreaktionen zur Auswahl der Wailzlager.

Wichtige Gesichtspunkte zur zeichnerischen Losung:

Da nur vertikale Belastungen vorhanden sind, kdnnen sich die Stiitzkrifte in den ersten beiden
Anordnungen nicht unterscheiden. Die Seileckkonstruktion ist jeweils im Strukturknoten zu
beginnen; im ersten Fall in 4 und im zweiten Fall in B. Grundsétzlich fingt man dort mit dem ersten
oder letzten Polstrahl an. Im ersten Beispiel iibertragen wir als ersten Polstrahl 0 zum Seilstrahl 0’
und im zweiten Beispiel den Polstrahl 2 zum Seilstrahl 2’. Die Stiitzreaktionen F,, Fg unterscheiden
sich nicht voneinander. Hier konnen gleiche Wilzlager eingesetzt werden.

Die letzten beiden Varianten fithren zu recht unterschiedlich groflen Lagerreaktionen. Auch hier
beginnt die Seileckkonstruktion jeweils im Strukturknoten B. Das Seileck wurde mit 2" begonnen.
Die zeichnerische Losung zur letzten Variante bestitigt die nach Strukturplan angenommene Vek-
torenrichtung fiir F, nicht. F,4 wirkt entgegengesetzt. Die Stiitzreaktion Fg wird groBer als die Summe
der gesamten Belastung. Hier ist ein ungerechtfertigt hoher Aufwand zum Nutzen, die Belastungen
abzustiitzen, erforderlich. Die gefundene entgegengesetzte Stiitzreaktion F, ist einleuchtend; denn
mit 2F rechts vom Lager B besteht die Tendenz, den Tréger vom Lager 4 abzuheben.

»  Lehrbeispiel 20

Auch mit der Aufgabe nach Bild 65, Seite 63, wollen wir die GroBe der Stiitzreaktionen bei gednder-
ten Wirkungsbedingungen durch die Lagerkonstruktionen ermitteln und einschatzen.

Gegeben ist ein Teilrahmen als Triger, belastet mit F unter 15° zur Horizontalen und mit F
als Vertikalbelastung sowie durch Fest- und Loslager abgestiitzt. Der Unterschied zwischen beiden
Aufgaben besteht in der Vertauschung beider Lagertypen.

Wichtige Gesichtspunkte zur zeichnerischen Losung:

Im ersten Beispiel fiihrt das Loslager A zur Wirkungslinie der Stiitzreaktion F,. Festlager mit
Strukturknoten B legt den Anfang fiir die Polstrahlen-Ubertragung fest. Wir beginnen dort mit 2’
und finden auf der Wirkungslinie von F, den Wirkungsknoten A’. SchluBlinie zwischen Strui:tur-
und Wirkungsknoten (B... A"). Entsprechend der Wirkungslinie von F, finden wir zwischen 0
und s im Krafteck den Vektor fir F,. Zum geschlossenen Kriftezug gehort noch die Kraft Fj.
Sie bildet ein Dreieck mit 2 und s; denn im Strukturknoten B schneiden sich die Wirkungslinien
von.2’, s’ mit Fg.

Beim zweiten Beispiel miissen wir im Strukturknoten A4 beginnen. Wir iibertragen dort den Pol-
strahl 0 zum Seilstrahl 0’ und finden schlieBlich auf der vorgegebenen Wirkungslinie fiir Fg den
Wirkungsknoten B’. Parallel zur Wirkungslinie fiir Fp liegt im Krafteck zwischen 2 und s der Stiitz-
vektor Fp und dann nach Grofle und Richtung der Stiitzvektor F, (analog zum Strukturknoten 4

zwischen 0 und s).
Vergleicht man die Stiitzreaktionen miteinander, dann miiite man die Lager nach der zweiten
Variante konstruktiv festlegen. Hier treten kleinere Stiitzkréfte auf.

Auch dieses Lehrbeispiel zeigt Thnen, wie man durch Variation einer Aufgabe zu einem
kleinen Aufwand, hier kleinen Stiitzreaktionen, kommen kann. Wir haben zugleich mit
diesen Optimierungsgesichtspunkten ein Leichtbauprinzip angesprochen.

m  Ubungen 26 bis 28

2.2.2.2. Rechnerische Losung — statisches Kriifte- und Momentengleichgewicht

Zur Formulierung des statischen Gleichgewichtes stehen uns drei Gleichungen, die Glei-
chung fiir das statische Momentengleichgewicht und die beiden Gleichungen fiir das statische
Kriftegleichgewicht in vertikaler und horizontaler Richtung, zur Verfiigung.
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Symbolische Schreibweise

>M =0 G (Bezugspunkt)
ZF,=0 t
S F.=0 -
Wir beginnen allgemein mit Gleichungen fiir das statische Momentengleichgewicht und

verwenden eine Gleichung fiir das statische Kriftegleichgewicht fiir Kontrollrechnungen,
Kriftebilanzen, um die rechnerisch gefundenen Werte weitgehendst abzusichern.

Variante 1

Varionte 2

Bild 65. Zeichnerische Losungen zu Lehrbeispiel 20

63



Hierzu einige Anwendungen.

»  Lehrbeispiel 21

Bild 66 zeigt fiir den Trager die bereits aufbereitete Strukturskizze mit den Vertikalbelastungen
und den Stiitzkomponenten. Durch die bekannte Wirkungslinie fiir Fp betragen dort die Kom-
ponenten:
1 1 -
Fax=7Fs» Fay="2"\/3Fx
Ljsung:

Statisches Momentengleichgewicht um den Drehpunkt A:
1 - 1
(4 | —Fa—F2a+~ V3 Fala+ - Faa =0

Wir driicken mit dieser Gleichung aus, daB beziiglich 4 gleichsinnig und entgegengesetzt drehende
Momente wirken.

Krifte, die beziiglich 4 im Uhrzeigersinn wirken, erhalten ein negatives Vorzeichen und diejenigen,
die entgegen dem Uhrzeigersinn wirken, ein positives Vorzeichen. Als Hebelarme sind immer die
senkrechten Abstinde der Wirkungslinien vom Bezugspunkt aus einzusetzen.

AN
s \} 1295 Fy 1
7/2,5\ 8 fona =3
>
S
Bild 66. Strukturskizze
.zu Lehrbeispiel 21
a a a
Obige Gleichung l6sen wir nach Fg auf.
F 3F 3
B=T] - = 73,098
- (v/3+1)
Fy=097F

Statisches Momentengleichgewicht um B:
(B | Fa+ F2a+ Fysa— Fgy3a=0

Diese Gleichung enthilt noch zwei Unbekannte und ist zunichst nicht 16sbar.
Wir arbeiten daher mit einer Gleichung fiir das statische Kriftegleichgewicht weiter.

Statisches Kraftegleichgewicht in horizontaler Richtung:

1
- FAI—?'FB:O

1
Fur= —Z-FB = 0,485F
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Mit

F,. = 0,485F
erhilt man

1

Fyy = T F-3,485 =1,162F
Nun steht noch eine Gleichung fiir das statische Kraftegleichgewicht zur Verfiigung. Wir wollen
diese zur Kontrollrechnung verwenden und stellen eine Kriftebilanz auf.

t Fay+ Fgy = 2F

1,162F 2F
0,84 F N
2,002F 2F

Die Kontrolle ist erfiillt. Abweichungen sind mit dem Runden rechnerischer Werte zu begriinden.
Gesamtreaktion F,:

Fy=/FZ + F3, = F\/0,4852 + 1,162* = 1,26F

»  Lehrbeispiel 22

Zum Lehrbeispiel 19 sollen die Stiitzreaktionen rechnerisch ermittelt werden. Wir verwenden
dazu die aufbereiteten Strukturskizzen nach Bild 67.

y
"‘Zy . 2F F )
Py 1 \ | P Variante 1
’ Fa
a a a
1
2F J/:By F
Bild 67. Strukturskizzen zu A i fox_|p ) Variante 2
Lehrbeispiel 22 > %
fa a a a
|
F
A A A8 [ Vononte 3
g 7 4
fa
a aq a
f ™

5 AK, Elementare Statik 65



Losung:.

Variante 1:
4
G4 —2Fa—F2a-+_F330=0=>FB=?F
5
B Fa+2F2a-—-FA,3a=0=’F4,=?F
Vertikale Kriftebilanz
t | Fap+ Fa=2F+F
5 F 3F
3
4 F
3
3F 3F Kontrollrechnung erfiillt

Variante 2:

@]

G4

—F,2a+ 2Fa—Fa=0
1
FA=?F
—2Fa+ Fgy2a— F3a=0

F, = 2,5F

Vertikale Kriftebilanz

T

Variante 3:

Fgy+ F, = 3F
2,5F 3F
0,5F

3,0F ° 3F Kontrollrechnung erfiillt

@ —Fa + Fgy2a—2F3a=0
Fay = 3,5F

CB —F,2a+ Fa—2Fa=0
Fy=—0,5F

Das negative Vorzeichen weist darauf hin, daB die Stiitzreaktion F, entgegen unserer Annahme wirkt
Mit dieser Vorzeichenkorrektur fiithren wir die vertikale Kriftebilanz durch.

t Fgy=—F,+ F+ 2F
3,5F — (—0,5F)
3,0F
3,5F 3,5F Kriftebilanz erfiillt

» Lehrbeispiel 23
Nach den qualitativen Einschdtzungen der zeichnerischen Losung zu Lehrbeispiel 20 wollen wir

das Urteil quantitativ belegen.
Aufbereitete Strukturskizzen nach Bild 68.
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Variante 1
Fcos 15° = 0,966 F
Fay Fsin 15° = 0,259 F
F
I| 8 '.
{ Fax
o
§ 0966F
BT Yoasr
S
R A
4
7
Bild 68. Strukturskizzen a a
zu Lehrbeispiel 23 Variante 2
f3
Fl W, A727z2r
N\
B
1272 F "
4
S} L.SD
K 0966 F
75#" z YozssF
[N FA y
Lo. : - 4
osung: For
Variante 1: ’
CB -+Fa + 0,966Fa—0,259F2a— F,2a=0
1
Fuy = F(1 + 0,966 —0,518) = 0,724F
G + 0,966Fa— Fa + Fgy2a =0
1
Fpy= 5 F(1 —0,966) = 0,017F
- | +0,966F— Fg, =0
Fg, = 0,966F
Vertikale Kriftebilanz
+ | Fy+ Fpy= F—0,259F
0,724F 0,741F
0,017F
0,741F 0,741F  Kontrollrechnung erfiillt

Fy = \/F3, + F%, = F+/0,966 + 0,0172 = 0,966F



Variante 2:
1 - 1 =
(A4 | —0,966Fa—Fa+ /2 Fa2a + >~/2 F32a=0
1,966
Fp = —"—= F=0,695F
24/2
l -
~ | —Fax+ 0.966F —— V2E=0
Fax = 0,966F — 0,492F = 0,474F
(B | +Fa+0,966Fa— 0,259F 2a — F,,2a— Fyz2a =0
mit F,, = 0,474F
1
Fay = 5 F(1 + 0,966 — 0,518 — 0,948) = 0,25F
Vertikale Kriftebilanz

1 -
t | Fy+ 7\/2 Fg = F—0,259F

0,25F 0,741F
0,492F
0,742F 0,741F Kontrolirechnung erfiillt

Fy=/F2, + Fi, = F+/0,474* + 0,252 = 0,54F
Fassen wir die Ergebnisse zusammen:
1. Variante F,= 0,724F; Fg= 0,966F
2. Variante F,= 0,54F; Fz= 0,695F
Die Rechnung bestitigt, da8 durch geinderte Anordnung der Stiitzelemente Variante 2 kleinere
Stiitzreaktionen erfordert.

»  Lehrbeispiel 24

Bisher hatten wir Stiitzreaktionen ermittelt, die nur Einzelkrifte als wirkende Belastung auf-
zunehmen hatten. Der Rahmen nach Bild 69 soll hingegen Streckenlasten tragen. Entlang seiner
Hohe wird er gleichméBig horizontal belastet. Die Streckenlast hat hier eine unverdnderliche Inten-
sitdt vom Betrag ¢, = 200 N/m. Uber seine Breite wird eine linear ansteigende Belastungsverteilung
vorausgesetzt. Die Belastung nimmt von Null bis zum Wert g, = 200 N/m gleichméBig zu. Diese
oder andere Belastungsverteilungen ersetzt man durch ihre resultierende Belastung F,. Sie wirkt
im Schwerpunkt und entspricht dem Flicheninhalt der Belastungsfliche. Fiir dieses Beispiel
erhalten wir die Einzelkrifte Fp; = ¢, -2m = 200 N/m -2 m = 400 N (aus der Rechteckfliche),
Fp2=%q;:3m=1%-200 N/m -3 m = 300 N (Dreieckfliche).

Den Schwerpunkt der resultierenden Kraftwirkungslinien finden wir beim Rechteck als Schnitt-
punkt der Diagonalen, beim Dreieck als Schnittpunkt der Seitenhalbierenden (siehe Anlage A 5).

Ermittlung der Stitzreaktionen:
CA —ql'lm—F,2'2m+F,'3m=0

1 .
Fg= -g?n—(400 Nm + 600 Nm) = 333 N

g Fqy = Fj = 400N
(B Fq2’1m+Fql’lm—F“'Zm—FA,'3m=0

1
Fy= —3Tn—(300 + 400 — 800) Nm = —33 N
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Das negative Vorzeichen weist darauf hin, daB F,, entgegen der eingezeichneten Richtung wirkt.
Kontrollrechnung: Vertikale Kriftebilanz nach Strukturskizze

+ F4y + Fg=F,

— 33N 300N
+333N

300N 300N Kriftebilanz erfullt

m  Ubung 29 bis 35

SIS

3m

Biid 69. Strukturskizzen zu
Lehrbeispiel 24

h

\
|

im

f
7y

Zusammenfassung

Beim allgemeinen Kriftesystem schneiden sich die Kraftwirkungslinien nicht in einem
Punkt. Die Kriftegruppe kann Verschiebungen und Drehungen am technischen Gebilde ver-
ursachen. Deshalb sind hier die Grundlagen aus den Abschnitten ,,Krifte und ,,Momente*
anzuwenden. )

Zeichnerische Losungen beziehen sich auf den elementaren Sachverhalt, daBl beim statischen
Gleichgewicht Krifte. einen gemeinsamen Schnittpunkt und ein geschlossenes Krafteck
mit fortlaufender Vektorenfolge haben miissen. Da das mit den gegebenen und gesuchten
Kraften nicht sofort moglich ist, muBl man Hilfskrifte einfiihren. Dadurch entsteht schritt-
weise das Kraft- und Seileck. Beim Krafteck zeichnet man zu den vorhandenen Kriften
je zwei Hilfskrifte, die sich alle im Pol schneiden. Das Seileck ist dann so zu konstruieren-
daB sich die zu einem Dreieck gehdrenden Kraftvektoren in einem Punkt,-dem Wirkungs-
knoten, schneiden.
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Rechnerische Losungen sind mit den Gleichungen des statischen Krifte- und Momenten-
gleichgewichtes durchzufiihren. Bei dieser Rechnung empfiehlt es sich, eine Gleichung
des statischen Kriftegleichgewichtes als Kriftebilanz zu verwenden, um die Ergebnisse
zu kontrollieren.

Hauptschritte der Losung wurden auch hier algorithmisch (Anlage A 3) zusammen-
gestellt.

Bei einigen Aufgaben schneiden sich alle Wirkungslinien nur in zwei Punkten. Hier ist die
Anwendung des Kraft- und Seileckverfahrens nicht notwendig. Man 16st zeichnerisch nach
Culmann. Die beiden Schnittpunkte (oft Wirkungsknoten) werden durch eine Kraftlinie
(die Culmannsche Gerade) verbunden. Auf ihr wirken, entgegengesetzt gerichtet, die beiden
Hilfskrifte. Mit den zwei Schnittpunkten und ihren zugehérigen Kriften entstehen zwei
Kraftecke (das Doppelkrafteck) mit fortlaufender Vektorenfolge.

Die zusammenfassende Darstellung aller Arbeitsverfahren fiir Kréifte in der Ebene enthilt
Anlage A 4.
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Rechnerische Arbeitsverfahren
fiir Krifte im Raum

3.1. Kennzeichnungen fiir Krifte im Raum

Zur Kennzeichnung einer Kraft Fim Raum legen wir ein ridumliches rechtwinkliges Koordi-
natensystem mit den Achsen x, y, z fest (Bild 70). Die Kraft F ist dann als Raumdiagonale
eines Quaders darstellbar. Beziiglich der drei aufeinander senkrecht stehenden Koordinaten-
achsen ergeben sich Komponenten F,, F,, F;.

Bild 70.1 Bild 70.3
F £
yA y , y y Y
2 2
y y
X ! z
X
zZ
X >
K Bild 70.2
z J
Fz

Bild 70. Komponenten einer raumlich wirkenden Kraft
Bild 70.1. ... 70.3. Darstellung in zugeordneten Ebenen

Den Betrag der Kraft findet man nach Pythagoras
° F=\/F>+ F2 + F? (12)

Ein riumliches Kriftebiischel ersetzt man zunidchst durch seine resultierenden Kom-
ponenten.

[ FRx = 2 F(x (13)
i=1

[ ) Fry = 121 F, (14)

° Fp, = 121 F,, (15)
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Mit ihnen erhilt man den Betrag der Resultierenden zu
° Fn=</F},+ F3,+ F&, (16)

Krifte und ihre Abstinde von den Achsen des gewihlten Koordinatensystems ergeben
statische Momente. Sie betragen z. B. mit den Komponenten nach Bild 70

um die x-Achse (Bild 70.3)
>M,=—Fy+ Fyz
um die y-Achse (Bild 70.2)
> My, = —F,x + F,z
um die z-Achse (Bild 70.1)
2 M, = —Fy+ Fx
Diese Momente konnte man als Komponenten des resultierenden Momentes vom Betrag
My =/(E M) + (Z M,))* + (T M)

darstellen.

3.2. Gleichgewichtsbedingungen

Das statische Gleichgewicht einer riumlichen Kriftegruppe verlangt sowohl statisches
Kriftegleichgewicht als auch statisches Momentengleichgewicht. Das ist dann der Fall,
wenn die resultierenden Komponenten der Krifte und Momente zu Null werden. Demnach
sind sechs Gleichgewichtsbedingungen zu beachten.

) > Fix =0 an ) > Mi;=0 (20)
i=1 i=1
n n
Y ;21 F, =0 18) ° ;;1 M, = (2D
n n
o 2 F. =0 19 ° > M.=0 22)
=1 =1
3.3. Anwendung auf ein technisches Gebilde

Technische Anwendungsfille fithren oft auf ein rdumliches Strukturbild. In 1.4. wurde
die Entwicklung eines rdumlichen Strukturbildes dargestellt und gezeigt, daB eine Zerlegung
in zwei ebene Strukturbilder méglich ist. Zur Bearbeitung raumlicher Kriftesysteme bedarf
es deshalb keiner besonderen Arbeitsverfahren. Wir wenden die Arbeitsverfahren fiir
Krifte in der Ebene in zwei senkrechten Ebenen an.

»  Lehrbeispiel 25

Am Seil der im Bild 71 dargestellten Winde hédngt eine Last von 800 N, die gleichmiBig gehoben
wird. Zu ermitteln sind mit

a =350 mm r =300 mm F, = 04F,

b= 450 mm R=150mm F,=0,3F,

¢ = 200 mm
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die Krafte F,, F,, F, am Antriebsrad und die Stiitzreaktionen in den Lagern. (Die Bestimmungs-
gleichungen fiir F, und F, wurden fiir diese Aufgabe festgelegt. Sie gelten nicht allgemein.)

F
Bild71.2 ¥y o §'
¥
Fs <
fr "
. ’:By
a b c
A Fu
faz A 3 &
}.&: % fa
AX
arb c
Xy Bild 71.3
Bild 7]. Skizzen des technischen Gebildes und Strukturskizzen

Bild71.1 zu Lehrbeispiel 25

Losung:

Statisches Momentengleichgewicht beziiglich der W’ellenachse (Bild 71.1)

Fr—FR=0
Fo= Fs = 800N o™ _ 400N
BT T 300mm

F,=03-400N= 120N
F, =04-400N =160 N

Gleichgewicht in der Vertikalebene (y, z-Ebene, Bild 71.2):

G4 | —Fa+ Fgfla+b)+ Fr—F(a+b+c)=0
800 N - 350 mm —120 N - 300 mm + 160 N - 1000 mm
By = 800 mm
Fgy = 505N

(B | —Fula+b)+ Fb+ Fr—Fc=0
" 800 N - 450 mm -+ 120 N - 300 mm — 160 N - 200 mm
= 800 mm
F, = 455N
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Kontrollrechnung :

ty Fy+ Fpy=F,+ F,
455N 800 N
505N 160 N
960 N 960 N -
Z | Fie=F,=120N
Gleichgewicht in der Horizontalebene (x; z-Ebene, Bild 71.3):
G4 | —Fsxla+b)+ Fa+b+c)=0
400N - 1000 mm
Bx = 800 mm
Fg, =500 N
GB | —Fula+b)+ Fc=0
400 N - 200 mm
Fax= 360 om
Fu = 100N
Kontrollrechnung :
1y | Fax+ F,= Fpx
100N S00 N
400 N
500 N 500 N

Im Festlager A wirken
die Axialkraft F,, = 120N,

die Radialkraft F, = /F%, + F%, = 100/1> + 4,55* N
F, = 466N

und im Loslager B

die Radialkraft Fy = «/F3, + F3, = 100/5% + 5,05> N
Fg =T10N

W  Ubungen 36 bis 38
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Anwendung und Vertiefung
der Arbeitsverfahren

4.1. Schwerpunktsermittlungen

Bei einigen Aufgaben der Technischen Mechanik mufl man die Lage des Schwerpunktes
kennen. Kann beispielsweise der Anteil des Eigengewichtes einer Konstruktion an der
statischen Belastung nicht vernachlissigt werden, so ist die Kenntnis des Kérperschwer-
punktes als Angriffspunkt des Gesamtgewichtes von Bedeutung. Spannungsermittlungen
bei Biegung beziehen sich auf den Flichenschwerpunkt, und der Linienschwerpunkt wird
bei der Konstruktion von Schneidwerkzeugen benétigt.

Bild 72. Korper mit Teilgewichten zur Er-
mittlung seines Schwerpunktes

Wir gehen zunichst nochmals auf die bereits bekannte Definition des Schwerpunktes ein.
Jeder Korper unterliegt der Erdanziehungskraft (Schwerkraft). Sie wirkt in seinem Schwer-
punkt. Um ihn zu ermitteln, zerlegt man den Korper in kleine Teile vom Gewicht 4G
(Bild 72) und wendet den Satz der statischen Momente an:

[ ] st = Z AG;X‘ (23)
i=1

° Gy, = Y, 4Gy, (24)
i=1

[ ] GZS = Z AG;Z( (25)
i=1
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Hierin sind
Xs, Vs, 2s die Koordinaten des Gesamtschwerpunktes;

Xt, Y1, z; Koordinaten des Schwerpunktes der einzelnen Gewichitsteile.

4.1.1. Korper-, Flichen- und Linienschwerpunkt

Bei konstanter Fallbeschleunigung g und Dichte ¢ erhilt man die Schwerpunktkoordinaten

eines Korpers aus dessen Volumenanteilen 4¥;. Wir schreiben zu diesem Zweck

4G, = og 4V,
und
G =o9gV

Dann lautet GI. (23)
Vxs= > x,4V,,
I=1

aufgelost nach der Koordinate fiir den Volumenschwerpunkt

AVix

[ J Xs = ———-Z V‘ !

In gleicher Weise entsteht aus den Gin. (24), (25)
4Viy

o b= _Z__V_‘_‘_
aV,z

[ Zs = ———2 V' !

Fiir Korper mit konstanter Dicke d gilt
AVy= 4A4id und V= Ad

Wir gelangen damit zu den Schwerpunktkoordinaten einer Fliche

, ZAA,X[
[ ] Xy = ———————
A
4A,y
o J = _Z_:_ZL

Die z-Koordinate verschwindet (Bild 73).
Yy

Flachenschwerpunktes
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Denkt man sich eine Fliche zur Linie zusammengeschrumpft, so sind die Teilflichen 44,
in Linienstlicke 4/; iibergegangen. Wir erhalten fiir die Koordinaten des Linienschwer-
punktes

Al
o X = .Z_I_x a1
Al
. ye = _Z_Iy_ 32)
4.1.2. Bestimmung des Schwerpunktes mit dem Verfahren der Statik

Die Ermittlung des Schwerpunktes entspricht im Prinzip der analogen Aufgabe, die Lage
einer resultierenden Kraft zu suchen. Flichen- und Linienschwerpunkte geometrischer
Grundfiguren sind bekannt. Eine ausgewidhlte Zusammenstellung enthélt Anlage A 5. Bei
zusammengesetzten Flichen und Linienziigen rechnet man unter Bezugnahme auf die
Gln. (29) bis (32) tabellarisch.

4.1.3. Anwendung auf den Flichenschwerpunkt

» Lehrbeispiel 26
Fir die Fléchebnach Bild 74 sind die Koordinaten des Schwerpunktes rechnerisch zu ermitteln.

y

i
1y
‘oi m’\« .
i Y, >
R L
A
20_i X
90

Bild 74. Fldache zu Lehrbeispiel 26
Losung:
Die dargestellte Fliche enthdlt als Grundfiguren das Dreieck und den Kreis. Dreieck sei Teil-

fliche 1, Kreis Teilfliche 2. Beim Summieren miissen die Anteile fiir die Kreisfliche negative Vor-
zeichen erhalten. Das Koordinatensystem legen wir an die Kanten der Dreiecksfliche.

i 4 4; Xy Vi 4 Apx, 4 Ay,
incm? incm in cm incm®  incm?®

1 270 3 2 81,0 54,0
—2 3,14 2 2 —6,28 —6,28
) 23,86 — < 74,72 47,72

Koordinaten des Flichenschwerpunktes nach Gln. (29) und (30):
x4 A‘X‘ _ 74,72

Xs = = =386 cm'= 3,13cm
_Tday _ 42
Y= T4 T 7386 cmT Al
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»  Lehrbeispiel 27

Fiir den, Tréigerquerschnitt (Bild 75), der aus Rechtecken und standardisierten Winkelprofilen
(TGL 0-1028) besteht, ist der Flichenschwerpunkt rechnerisch zu ermitteln.

Losung:

Die Schwerpunktslagen fiir beide Profile entnehmen wir TGL-Blittern oder Taschenbiichern.
Bild 75.2 gibt die MaBe an. Aus Symmetriegriinden deckt sich diesmal die y-Achse mit der vertikalen

y _._1._5
h A= 48cm?
i
W 170
: 3
M Jﬁ
1 —1  Bild75.1 "
M %
o %
S § Bild75.2 %
J 50
! 2
f/ L 50x50%5 . Bild 75. Querschnitt zu Lehrbeispiel 27
<
)
VL £
X
, 200 J
I

Schwerachse des Querschnittes. Dadurch eriibrigt sich die Berechnung von x,. Symmetrieachsen
sind stets Schwerachsen. Bei mehrfach symmetrischen Flichen liegt demnach der Schwerpunkt im
Schnittpunkt ihrer Symmetrieachsen. Die symmetrisch angeordneten Winkelprofile konnen rech-
nerisch zusammengefal3t werden.

i 4 A4; W a4 Ayy
incm? incm in cm3
1 29 15,5 449,5
2 9,6 2,4 23,04
3 20 0,5 10,0
b)) 58.6 — 482,54
X4 Ay, 482,54

Vs = 1 = 55,6 cm = 8,2cm
Die zeichnerische Losung entspricht der Bestimmung der Lage einer Resultierenden mittels Seileck-
konstruktion. Ebenso wie bei der rechnerischen Lésung wird die Fliche in Teilflichen aufgeteilt,
deren Flicheninhalte man Vektoren zuordnet, die den jeweiligen Flichen proportional sind. In
einer dem Krafteck analogen Vektorenfolge entsteht der resultierende Vektor fiir die Gesamtflache.
Die Schwerpunktslage der Teilflichen ist Angriffspunkt zugehoriger Vektoren. Dadurch entsteht
das Seileck mit der resultierenden Schwerpunktslage. Bei asymmetrischen Flichen muB man das
Verfahren zweimal durchfiithren, um mit zwei Schwerachsen den Schwerpunkt der Fliche zu finden.
Es empfiehlt sich, die Flichenvektoren vertikal und horizontal abzubilden.
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»  Lehrbeispiel 28
Fiir die Querschnittsfliche (Bild 76) ist der Schwerpunkt zeichnerisch zu bestimmen.

Losung:
Die Eintaiiung erfolgt in drei Flichen A4;, A,, 43, von denen Flicheninhalt und Schwerpunktslagen
bekannt sind.

A = 3 cm?
Ay = 8 cm?
= 6 cm?

Zur Darstellung der Vektoren verwenden wir einen FlichenmaBstab M. Die Vektoren, vertikal
und horizontal wirkend angenommen, kénnen in einer Figur dargestellt werden. Durch die zwei-

Ay Az 43
Y >
7
0 I
A7{y I I
0
17
0 7 4 0 gom
A, 3
Y
3
Az

Bild 76. Zur zeichnerischen Losung nach Lehrbeispiel 28

malige Anwendung der Kraft- und Seileckkonstruktion ergeben sich die Wirkungslinien der Resul-
tierenden in vertikaler und horizontaler Richtung. Ihr Schnittpunkt ist der gesuchte Schwerpunkt.

Die zeichnerische Losung fiihrt auf

xs=29cm und y,=19cm

m Ubung 39 bis 44
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4.2, Standsicherheit

Freistehende Korper konnen durch &duBere Krifte gekippt werden. Eine Korperkante
ist dabei Kippkante.-Der im Bild 77 dargestellte Korper kippt moglicherweise um die
Korperkante a ... b. Die duBeren Krifte und das Eigengewicht bilden beziiglich der Kipp-
kante statische Momente. Diese Momente wirken entweder dem Kippen entgegen oder
verursachen es. Die Summe der das Kippen verursachenden Momente fiihrt zum Kipp-
moment My und die Summe der gegen das Kippen wirkenden Momente zum Standmoment
Ms,. Setzt man beide ins Verhiltnis, dann ergibt sich die Standsicherheit S.

_ My
M

Das fiihrt zu folgenden Kriterien:

) S (33)

S > 1 Kippen ist ausgeschlossen, der Korper, das technische Gebilde steht
mit Sicherheit

S = 1 instabiler Grenzfall
S <1 Korper kippt

fe |
a . b
i ¢ v
b
e
D Js. 2

Bild 77. Prinzipdarstellung zur Stand- Bild 78. Zu Lehrbeispiel 29
sicherheit

»  Lehrbeispiel 29
Fiir den Turmdrehkran (Bild 78) ist die Nutzlast F fir S = 2 zu ermitteln. Das Gegengewicht
G, = 30 kN und das Eigengewicht G; = 100 kN sind bekannt.
Losung:
Mit den Hebelarmen a = 8 m, b = 20 m und ¢ = 2 m erhilt man beziiglich der Kippkante:
My = Fb
Mg, = Gic + Gaa
in Gl. (33) eingesetzt

G10+G20
S= Fb
Gic + Gaa 100kN-2m+30kN'8m_
Fe—g—= 2-20m = 11kN
m  Ubung45
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4.3. Reibung

4.3.1. Grundlagen fiir Reibkrifte nach Coulomb

Bewegt sich der Korper auf einer geneigten Ebene (Bild 79) nicht, dann befindet er sich
im statischen Gleichgewicht. Das ist natiirlich nur méglich, wenn die in x-Richtung wir--
kende Komponente des Gewichtes G sin « durch eine Gegenkraft aufgehoben wird. Diese
Kraft existiert. Sie wirkt als Reibkraft in der Beriihrungsebene beider Kérper und betrigt
nach Coulomb (Charles Augustin de Coulomb, 1736 bis 1806: Untersuchungen iiber die
Reibung):

° Fp = poFy 34)
Fr Reibkraft
Mo Reibungszahl der Haftreibung

Fn  Normalstiitzkraft

Wir unterscheiden zwischen Haft- und Gleitreibung. Bei der Haftreibung ist die Relativ-
geschwindigkeit zwischen beiden Beriihrungsflichen gleich Null, wihrend sie bei der
Gleitreibung verschieden von Null ist. Zur Kennzeichnung der Haftreibung wird die Rei-
bungszahl mit dem Index O versehen. Reibungsfaktoren u bzw. u, sind durch physikalische
Versuche bekannt (Werte nach Anlage A 6). Sie beriicksichtigen nur niherungsweise die
Reihungsverhiltnisse zwischen beiden Korpern, weil diese Faktoren nur von der Werk-
stoffpaarung und von ihrer Oberflichenbeeinflussung -~ trocken oder geschmiert — an-
gegeben werden. Man kann mit ihnen z. B. nicht den Oberflichenzustand, die Rauheit
der Oberfliche oder weitere Schmiermitteleigenschaften, wie Viskosititsinderungen bei
verschiedenen Temperaturen, erfassen. Fiir die Festlegung der Reibkrifte ist zu beachten:

® Reibkrifte

wirken zwischen den sich beriihrenden Korpern,
sind der angestrebten Bewegungsrichtung entgegengesetzt (Hemmwirkung)
und neben u bzw. u, von der Normalstiitzkraft abhingig.

Diese Zusammenhinge wollen wir veranschaulichen.
Wir fragen, wann der Korper auf geneigter Bahn gleitet. Das Gewicht G zerlegen wir in
die beiden Komponenten G sin « und G cos «. Die in x-Richtung wirkende Komponente

Bild 79
Zum Prinzip
der Gleitreibung

Bild 80
Strukturskizze zur
Ermittlung des Stotzkraf?
Reibungswinkels in Normalrichtung

6 AK, Elementare Statik 81



ist bestrebt, den Korper abwarts zu bewegen. Senkrecht zur Bahn wirkt G cos « als Normal-
belastung. Wir finden in Ubereinstimmung mit dem statischen Kriftegleichgewicht in
y-Richtung die Normalstiitzkraft zu Fy = G cos «. Fiir das statische Kriftegleichgewicht
in Gleitrichtung sind die beiden Krifte Gsin« und Fg = u,Fy zu betrachten. Wird der
Neigungswinkel verdndert, so entsteht ein Grenzzustand zwischen Haften und Gleiten.
Er ist durch « = g, gekennzeichnet. Hierfiir gilt nach Bild 80:

x | —Gsingg + uoFy =10
- —Gsin gy + oG cosgy =0
Daraus folgt
sin gg
€OS g¢

= tan gy = Ko

® Die Reibungszahl x4, entspricht dem Tangens des Reibwinkels go.

Die GroBe des Gewichtes ist fiir diesen Vorgang bedeutungslos. Ebenso gilt fiir die gleichfor-
mige Abwirtsbewegung u = tan ¢o. Da erfahrungsgemif die Reibungszahlen fiir eine gleich-
formige Bewegung kleiner sind als die Haftreibungszahlen, muf3 die Bahnneigung nach Einlei-
tung der Bewegung sofort bis auf ¢ verringert werden, um eine Beschleunigung auszuschlieBen.

4.3.1.1. Rechnerische Losungen mit dem statischen Kriftegleichgewicht

Ein Korper auf geneigter Ebene soll durch eine Haltekraft gleichférmig abwirts bewegt
werden. Wenn die Winkel « und g (Bild 81), das Gewicht G des Korpers und die Reibungs-

Bild 81
Strukturskizze zur
Ermittlung der
Haltekraft.

zahl p bekannt sind, dann 148t sich die Haltekraft F bestmmen. Zur Kennzeichnung der
moéglichen Abwirtsbewegung wird die Geschwindigkeitsrichtung v in die Strukturskizze
eingetragen. Die Reibkraft wirkt ihr entgegen.

Statisches Kriftegleichgewicht nach Strukturskizze:

—>x| —Gsina + uFy + Fcosf=0
yt| —Gcosa + Fy+ Fsinf=0

Die zweite Gleichung wird nach Fy aufgelost.
Fy = Gcosa— Fsinp
Dieses Ergebnis setzen wir in die erste Gleichung ein:

—Gsinx + uGecosoe — uFsin B+ Fcosf =0
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und erhalten
sin &« — p Ccos &

Bei einer gleichformigen Aufwirtsbewegung haben wir nach Strukturskizze (Bild 82) wie
folgt zu schreiben:

—>x | Fcosp— Gsinax — uFy=0
yt | FsinB+ Fyx—Gcosax =0

Daraus folgt:

Fy= Gcosax — Fsin 8
und

sin o« + p cos &
° F= —— - . 36
cos,B+;¢sinﬁG (36)

Bild 82. Strukturskizze zur gleichformigen Aufwartsbewegung

»  Lehrbeispiel 30

Der Gleitkérper vom Gewicht G; (Bild 83) soll sich in jeder Lage im Ruhezustand befinden. Welche
GréBe muB das Ausgleichsgewicht G, haben, wenn die Reibung an der Rolle  unberiicksichtigt
bleibt? ¢

Gegeben: Gy =10N, po=02, «=60°

Bild 83. Zu Lehrbeispiel 30 Bild 83.1 Bild 83.2

6% 83



Losung:
G, verhindert die Abwdrtsbewegung von G, (Bild 83.1).

- Xx —Gysinae 4+ Gz1 + poFn=0
»t Fy—Gicosa =0= Fy= G, cos«;
eingesetzt in
=X —G;sina + G3; + 4Gy cosax =0
G321 = Gy (sin & — pp cos &) = 10 N(0,866 — 0,2 - 0,5)
G;; = 1,66 N

G, verhindert die Aufwdrtsbewegung (Bild 83.2)
Es ist sofort zu erkennen, daB sich hier lediglich die Richtung der Reibkraft dndert. Man erhilt

G2 = Gy (sin &« + yo cos &) = 10 N(0,866 + 0,2 - 0,5)
G2z = 9,66 N

Wir wihlen G, = 8,5 N. Damit gilt
Gy <Gz <Gz

Der Korper vom Gewicht G; wird mit Sicherheit im Ruhezustand gehalten.

4.3.1.2. Zeichnerische Losungen mit der Widerstandskraft

Mit der Reibkraft (Bild 84.1) und der Normalstiitzkraft entsteht als Resultierende die
Widerstandskraft Fy. Sie ist nach der Beziehung

Fro soFn
[ tangp = —— = ——— = 37
Qo Fn Fu Ko @37

um den Reibwinkel o, entgegen der Bewegungsrichtung (Hemmwirkung) aus der Normal-
stiitzkraft-Richtung geneigt.

Fiir den Grenzzustand zwischen Haften und Gleiten (Bild 84.2) muB G mit Fy eine gemein-
same Wirkungslinie haben. Das Krafteck besteht fiir diesen Sonderfall nur aus zwei Kriften
und kennzeichnet das statische Kriftegleichgewicht durch Aktions- und Reaktionskraft,
durch Gewicht und reibungsbedingte Hemmwirkung der Widerstandskraft Fy .

Fy
4
v
Bild 84. Zur Festlegung der
Widerstandskraft
Gy G
Normal-
Nchtung — \  Bild 84.1 Bild 84.2
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»  Lehrbeispiel 31

Bild 85 zeigt eine Konsole, reibungsbehaftet mit der Siule verbunden. Welche Kraft Fist aufzuwenden,
um das Gewicht gleichférmig zu heben? Reibungszahl u = 1/5. Gesucht ist zeichnerisch das Ver-
h#ltnis Nutzen zu Aufwand, d. h. das Verhéltnis der Last zur Aufzugskraft.

Normale in A
/9“/ Normale in B
S
F Fus §
A
SR

@

o d—

) | Normalein 8
*y
G
£ wA
9 Normale in A

Bild 85. Zur zeichnerischen Losung nach Lehrbeispiel 31
Lésung:

Die Konsole wird an der Sdule gestiitzt, Stiitzstellen 4, B. Dort wirken Normal- und Reibkrifte.
Die Widerstandskrifte, als Resultierende aus beiden, sind aus der Normalstiitzrichtung entgegen
der Aufzugsbewegung um den Reibwinkel ¢ zu drehen. Wir verwenden zur Konstruktion der Wir-
kungslinie von Fy das Kathetenverhiltnis nach der Tangensfunktion x4 = tan, in diesem Fall,
Reibungszahl u = 1/5, das Verhiltnis 1: 5. Diese Widerstandskrifte sind in 4 und B als Fy, und
Fwg in den Strukturplan einzutragen. Wir kennen nun die Wirkungslinien von vier Kréften, die sich
zu zwei Schnittpunkten vereinigen lassen. Die zeichnerische Losung nach Culmann ergibt bei
angenommenem G den Vektor fiir F. Wir finden als Verhiltnis der Belastung zur Aufzugskraft
G 7

F~ 8
a Ubung 46 bis 49

4.3.2. Technische Anwendungen

4.3.2.1. Gleiten oder Kippen

Ein Gleitkérper vom Gewicht G (Bild 86) soll auf seiner Unterlage verschoben werden.
Die hierzu erforderliche Kraft kann man mit dem statischen Kriftegleichgewicht

F— Fr=0 oder ,F= uFy= uG
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ermitteln. Bei ungiinstigem Kraftangriff besteht jedoch die Gefahr des Kippens. Deshalb
ist eine Untersuchung auf Standsicherheit angebracht. In vorliegendem Fall erhalten wir
mit dem Standmoment

a
M, = G-E
und dem Kippmoment

My = Fh = uGh
fiir die Standsicherheit den Ausdruck
Mse Ga _ a
My 2uGh 2uh

Danach ist die Standsicherheit der Linge a direkt, der Reibungszahl x und der Angriffs-
hohe 7 umgekehrt proportional. Zu ihrer Erh6hung kann man sowohl a vergrofern als
auch die Kraftangriffshohe / verkleinern.

S=

a

fr————— |
F ;
< . ,
1 G Kippkante  Bild 86. Prinzipdarstellung zur
e Standsicherheit beim Gleiten
I F’,/ LS
A 1 4

»  Lehrbeispiel 32

Der Korper nach Bild 86, Gewicht G = 400 N, Linge seiner Korperkante a = 600 mm, soll glei-
tend (v = 0,2) verschoben werden. Gesucht sind Verschiebekraft F und maximale Angriffshohe 7,
damit die konstante Bewegung gerade noch méglich ist.

Losung:

Zur Verschiebung auf der waagerechten Unterlage bendtigt man die Kraft
F=uG=0,2-4900N=80N

Fiir den Grenzfall, Standsicherheit S = 1, ergibt sich mit

a
S=l==u
eine Angriffshohe von
a 600 mm
h= '-2—'“—= m—-= 1500 mm.

Um die Kippgefahr mit Sicherheit auszuschlieBen, muB A kleiner als 1,5 m sein, Bei groBeren Werten
kippt der Korper, er gleitet nicht.

4.3.2.2, Reibung in Keilnuten

Die Stiitzkraft Fz der Prismenfithrung (Bild 87) kann nicht sofort als Normalstiitzkraft
zur Ermittlung von Reibkriften herangezogen werden, weil sie nicht normal zur Gleitfliche
gerichtet ist. In solchen Fillen muB3 man bei symmetrischer Prismenfithrung Fz mit dem
doppelten Offnungswinkel 26 in Normalstiitzkrifte umrechnen.
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Das zugehorige Krafteck liefert die Beziehung

Fp
Fy= ———
N 2 sin 8
Als Summe der Reibkrifte in beiden Ebenen der Flanken wird dann
2Fg Fg

F=p2h=n 2sind ! sind
Vielfach rechnet man bei Prismenfiihrung die Tabellenwerte fiir » nach der Beziehung
u o= si: 3 um. Dann steht fiir obigen Ausdruck

Fy = u'Fp

Bei kleinem Offnungswinkel erhsht sich demnach die Reibkraft, so daB die erzielte Fiihrungs-
wirkung durch eine Erhéhung der Reibungsverluste erkauft wird. Andererseits nutzt-man
diese Erkenntnis z. B. bei der Kraftiibertragung durch Riementrieb aus. GréBere Umfangs-
krifte lassen sich mit Keilriemen (nicht mit Flachriemen) iibertragen.

F Bild 87
Zur Reibung

in Prismen-
Sfiihrungen -
Bild89 | a
Schematische !
Darstellung )

Bild 88 der Bremsein- G
\ Zur Reibung an richtung nach ' )
Ma i Backenkremsen Lehrbeispiel 33 l

4.3.2.3. Reibung an Backenbremsen

Bremsbacken sind mit der Kraft F gegen das drehende Rad zu driicken. Dadurch entsteht
zwischen Bremsbacken und Radoberfliche eine Reibkraft. Sie wirkt der Drehrichtung des
Rades entgegen (Bild 88). Statisches Momentengleichgewicht um die Drehachse des Rades
ergibt das Bremsmoment

° My = Fyr (3%

»  Lehrbeispiel 33

Mit welcher Kraft F mu am Hebel der Bremseinrichtung nach Bild 89 gedriickt werden, um ein
gleichformiges Absenken der Last G zu ermoglichen? Gegebene GroBen: r; = 600 mm,
r; = 150 mm, a = 1500 mm, b = 300 mm, ¢ = 100 mm, z = 0,4, G = 3000 N.
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Losung:

Wir machen die Bremsscheibe und den Bremshebel frei und erhalten Strukturskizzen nach den
Bildern 90.1 und 90.2. Nun lassen sich fiir beide die statischen Gleichgewichtsbedingungen formu-
lieren.

Statisches Momentengleichgewicht fiir die Scheibe (Bild 90.1):

CO G"z—Fer-‘-'—"o

fiir den Hebel (Bild 90.2):
(A | Fa—Fyb—Fpe=0

r ¥
2 hb—G—2¢c=0
ury r

Fa—G

Daraus entsteht

()
F=G —+4c
uw

ria

150 mm ( 300 mm

F = 3000 N 6 tom - 1500 mm 0.4

+ lOOmm)
F=425N

Wird der Hebel konstruktiv so gestaltet, daBl die Wirkungslinie von Fr den Drehpunkt 4 schneidet
(Bild 90.3), dann verringert sich die Druckkraft F.

(A | Fa—Fgb=0

b rzb
F= FN -_—=
a uria
150 mm - 300
F= 3000 N o _ 375N

0,4 - 600 mm * 1500 mm

i Bild 90.2
\ A F
Al O
7 b
a
e
+ Bild 90. Zur rechnerischen
C=0 Losung nach Lehrbeispiel 33
G .
AF
Bild 90.3
Bild 90.1 b
a
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4.3.2.4. Reibung an Schrauben

Eine Schraube mit Flachgewinde soll das Gewicht G heben oder senken (Bild 91). Wir
wollen dazu das erforderliche Drehmoment M bestimmen. Die Abwicklung eines Gewinde-
ganges entspricht einer geneigten Ebene mit der Grundlinie =d> und der Hohe P. Bei

G

ﬁ,‘
D

Bild 91.2
i
fr

%y A’& F Q

Bild 91. Prinzipskizzen zur
Reibung an Schrauben

( Flachgewinde) F L 5

\

I
~— dz.'ll.'

M I -

Drehung der Spindel bewegt sich demnach die Last G wie auf einer geneigten Bahn. Dadurch

wirken die Krifte nach Bild 91.2 und das Drehmoment M = Fﬁz—

Nach Gl. (35) Abschn. 4.3.1.1., wird mit f = —a 2
sin @ — u cos «
cos & + u sin &

, so wird

- . i 1
Setzt man fiir 4 = tan ¢ und erweitert mit
cos o

tan x — tan ¢

F=G—m————
1 4 tan g tan &

bzw. mit dem Additionstheorem fiir Tangens
F= Gtan(x — 9)
Das Drehmoment zum Senker der Last betrdgt daher

d;

d.
=7=Gtan(oc—g)72

oder fiir das Heben der Last G
d.
M = Gtan (x + @)?’
Ist bei groBer Reibung ¢ > «, dann ist beim Senkvorgang ein Moment aufzuwenden. Das

ist z. B. beim Spindel-Wagenheber der Fall. Hier mufl die Schraubenspindel bei jeder
Hubhohe sicher halten. Solche Schrauben sind selbsthemmend.

m  Ubung 50
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4.3.2.5. Ubertragung yon Antriebsmomenten durcn Reibrider

Das horizontale Tellerrad des Reibradgetriebes (Bild 92) wird durch die Feder gegen das
vertikale Reibrad gedriickt. Dadurch entstehen reibungsbedingte Momente, die ohne
Schlupf tibertragen werden sollen. Wir miissen daher mit den Koeffizienten der Haftreibung
rechnen. Das Moment fiir das Tellerrad 148t sich nach Bild 92.2 wie folgt bestimmen:
Die Feder wirkt mit jhrer Kraft Fr auf das Tellerrad und erzeugt vom Reibrad her die
gleich groBe Reaktionskraft Fy. Da sie senkrecht zum Beriihrungsradius a wirkt, entsteht
dort die Reibkraft

Fr = poFy
Statisches Momentengleichgewicht fiihrt fiir das Tellerrad zum gesuchten Drehmoment
M = /lQF].-a

Dieses Moment wichst linear mit dem Reibkreisradius a. Zu kleine Ubertragungsradien
sind daher nicht zweckmiBig.

|
w 0 w n
b .
| w— ]
4
73
Bild 92.2
7
l 6
Bild 92. Prinzipskizzen zur Reibung an Reibrddern Bild 93. Prinzipskizze zur Seil- oder
Bandreibung
4.3.3. Seil- und Bandreibung

Die am Seil oder Band wirkende Zugkraft F (Bild 93) soll iiber den feststehenden Zylinder
das Gewicht G heben. Da das Seil iiber den Zylinder gleitet, entsteht entgegen dieser Bewegung
eine Reibkraft Fr. Die Zugkraft F mufl beide, Gewicht und Reibkraft, iiberwinden. Bei
kleinen Geschwindigkeiten (Fliehkréfte ausgeschlossen) rechnet man nach Ewler mit der
Seilreibungsgleichung

° F=Get* (39)
e Eulersche Zahl e = 2,72 (Basis der natiirlichen Logarithmen)
# Reibungszahl der Gleitreibung
o« Umschlingungswinkel im Bogenmaf3

(Werte fiir Seilreibungsfaktoren e** nach Anlage A 7)
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Wird hingegen die Last mit konstanter Geschwindigkeit abwér(s bewegt, so wird ein Teil
von ihr durch die Reibkraft aufgenommen. Es muB3 F < G sein. In diesem Fall ist in
Gl. (39) x durch —pu zu ersetzen.

° F=Ge#e (40)

Die Eulersche Beziehung der Seilreibung ist auch dann giiltig, wenn die Scheibe das Seil
mitnimmt. Dann unterstiitzt in Drehrichtung die Reibkraft den Hub- oder Senkvorgang.

»  Lehrbeispiel 34

Eine Last vom Gewicht G soll durch Bremsscheibe und -hebel (Bild 94.1) gleichférmig gesenkt werden.
Wie groB muB F sein, wenn G = 2000 N, 4 = 0,5, a = 2R = 600 mm, r = 150 mm, b = 1500 mm
gegeben sind?

-

Bremsband

—
Bild 94.1 b

I

@~
Q
Bild 94. Zu Lehrbeispiel 34 f
2

o

-

sz 1 1 ‘ Fs1
Fsz 6 ‘ Fs1 \F
4 A \
k 4 a
Bild 94.2 o

Losung:

Schnitte durch das Bremsband (Bild 94.2) trennen das technische Gebilde in zwei Teile (Trommel
sowie Hebel mit Bremsband). In Drehrichtung will die Reibkraft das Bremsband mitnehmen. Daher
ist Fs, groBer als Fg;.

Dafiir 148t sich schreiben:

Fs, = Fgy ek
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Statisches Momentengleichgewicht fiir die Trommel:
Go —Gr— F53R+ F;oR=0 oder
—Gr—F53R+ F5;e#*R=0
r
RE*—1)
Statisches Momentengleichgewicht fiir den Hebel:
GA Fsja— Fb=0

bzw. Fs 1= G

a
F=Fs 5
In diese Gleichung setzen wir den Ausdruck fiir Fg; ein und erhalten
F=G-a—L 1 — 2000 N 600 mm + 150 mm . 1 — 100N
b R et*—1 1500 mm - 300 mm 5—1
m  Ubung 51
4.3.4. Rollreibung

Rollreibung fiihrt zu kleineren Reibungswiderstinden als Gleitreibung. Wir stellen uns
eine Rolle vor und betrachten die Deformation der Rollbahn (Bild 95). Es entsteht eine
seitlich versetzte Berithrungsfliche. Senkrecht zu ihr wirkt die Widerstandskraft Fy. Ihre
Komponenten sind Fy (Normalkraft) und Fr (Tangentialkraft). Da die Normalkraft Fy
um den Hebelarm der Rollreibung fin Bewegungsrichtung versetzt wirkt, entsteht als Hemm-
wirkung das Reibmoment

M = Fnf= Gf
Die zur Bewegung notwendige Vorschubkraft F ergibt sich aus dem statischen Momenten-
gleichgewicht um 0 zu

Fr—Gf=0

] F= Gé (41)

(Hebelarme der Rollreibung s. Anlage A 8)

Bild 95. Prinzipskizze zur Rollreibung Bild 96. Strukturskizze zu Lehrbeispiel 35
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»  Lehrbeispiel 35

Welche Haltekraft F ist erforderlich, wenn die Walze nach Bild 96 mit konstanter Geschwindigkeit
abwirts rollen soll?

Losung:
Fiir das Momentengleichgewicht um 0 folgt:
G0 | Gsinar—Gcosaf—Fr=0

F=G (sina——--rLcosa)
Beim Sonderfall F = 0 rollt die Walze nur durch ihr Eigengewicht. Man erhilt dann

0=G(sina——ricosoc>

oder
sin f
= tanx = —
cos r
bzw.
f=rtano

Mit dieser Gleichung 148t sich der Hebelarm der Rollreibung f auch experimentell bestimmen.

m Ubung 52

4.4. Gleichgewicht fiir Kiirpers.ysteme

Es gibt Koérpersysteme, bei denen man nicht sofort die gesuchten Stiitzreaktionen mit den
drei statischen Gleichgewichtsbedingungen ermitteln kann. Das ist z. B. fiir den Gelenk-
trager (Strukturbild 97) der Fall. Hier gibt es zwei Festlager, die durch das Gelenk not-
wendig sind. Als Stiitzreaktionen wirken sowohl in A als auch in B zwei Stiitzkraftkompo-
nenten. Da fiir die rechnerische Losung nur drei statische Gleichgewichtsbedingungen zur

Trdger I
7 Fay
B Fgx
Gelenk

Bild 97. Gelenktrager
Trﬁgerf

Verfiigung stehen, ist ihre Ermittlung scheinbar nicht moglich. Man miiite den Gelenk-
trager statisch unbestimmten Systemen zuordnen. Das ist jedoch nicht richtig, denn das
vorhandene Verbindungsgelenk G iibertragt keine Momente und fiihrt das Korpersystem
auf zwei Teilsysteme, die statisch bestimmt sind, zuriick. Durch Trennung im Gelenk
erhalten wir zwei Trager mit je zwei Stiitzkraftkomponenten (duBere Krifte) und zwei
Schnittkraftkomponenten (innere Krifte). Schnittkrifte sind nach dem Wechselwirkungs-
gesetz gleich groB, so daB fiir den Gelenktriger insgesamt nur sechs Krifte zu ermitteln
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sind. Diese sechs Krifte beziehen sich auf zwei Teilaufgaben.

Der Gelenktriger ist mit seinen zwei Teilsystemen durch Anwendung von zwei mal drei
Gleichgewichtsbedingungen statisch bestimmt:

Die Ermittlung der Stiitzkréfte fiir beide Festlager ist moglich.

Auch das Korpersystem nach Strukturbild 98 hat zwei Festlager und ein Loslager. Die
gesuchten fiinf Stiitzkraftkomponenten sind mit drei Gleichgewichtsbedingungen nicht
ermittelbar. Wir erkennen aber einen Verbindungsstab. In ihm wirken wechselseitig Schnitt-
krifte Fp. Schneidet man dort, dann entstehen zwei Teilsysteme.

\Fa

h

. !
Bild 98. Statisch bestimmtes ' ﬂ(!’o
Korpersystem P

Teilsystem I

Teilsystem I mit Festlager (zwei Stiitzkraft-Komponenten) und im Sinne einer Pendelstiitze
mit einer Stiitzkraft Fp,. Alle drei lassen sich rechnerisch ermitteln.

Teilsystem II wird durch die bekannte Kraft Fj, belastet. Mit den Belastungen F;, Fp kann
man nun auch die gesuchten Stiitzkrifte F,,, F,,, Fc ermitteln.

Durch Trennung des Verbindungsstabes entstehen auch hier zwei statisch bestimmte Teil-
aufgaben mit zwei mal dpei gesuchten GroBen.

® Korpersysteme, deren Anzahl duBerer Stiitzreaktionen nicht ganzzahlig durch drei
teilbar ist, muBl man demnach durch geeignete Schnitte in ihre Teilsysteme zerlegen. Dadurch
erhdlt man statisch bestimmte Teilaufgaben. Ihre rechnerische Ldsung ist mit den drei
Gleichgewichtsbedingungen moglich.

Es ist zweckmaéBig, alle Stiitz- und Schnittkrifte in das Strukturbild einzutragen und Teil-
systeme so festzulegen, daB jeweils drei gesuchte GréBen vorhanden sind. Gelingt das nicht,
dann ist das Korpersystem statisch unbestimmt. Die Stiitz- und Schnittreaktionen lassen
sich mit den Verfahren der Statik nicht 15sen.

Als Hinweis das Beispiel nach Bild 99. Hier kann man durch die feste Einspannung bei A
insgesamt sieben Stiitz- und Schnittreaktionen abzihlen. Diese Anzahl gesuchter Gré8en ist
nicht ganzzahlig durch drei teilbar. Es liegt ein statisch unbestimmtes Kérpersystem vor.

Bild 99. Statisch unbestimmtes
Korpersystem
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»  Lehrbeispiel 36

Fiir das Tragwerk (Bild 100), telastet mit g = £ und F, sind die Stiitzkréfte zeichnerisch und rech-
nerisch zu ermitteln. a

Losungsaufbereitung (Bild 100.1):

A und B sind Festlager. Hier wirken zwei Stiitzkraftkomponenten. C ist als Pendelstiitze ausgebildet.
In ihr tritt Fe auf. Zu ermitteln wiren demnach insgesamt fiinf Stiitzkrifte. Schneidet man den
Stab 2, dann fiihrt das zu den beiden Teilsystemen

1. Tréger mit konstanter Streckenlast; Festlager und Pendelstiitze, Stiitzkrifte F,, Fyy und Fs,
2. Scheibe, belastet mit F und Fs,; Festlager und Pendelstiitze, Stiitzkréfte Fgy, Fg, und F¢
Die Aufgabe 148t sich zeichnerisch und rechnerisch 16sen.

Bild 100.1

Bild 100. Tragwerk zu Lehrbeispie] 36

Za

Zeichnerische Losung (Bild 101, Seite 96):

Resultierende Streckenlast F, = 2F des Trégers und Stiitzkraft Fs, fithren auf den Wirkungs-
knoten 7. Damit wird die Wirkungslinie fir F4 bekannt.

Das Krafteck fiihrt auf Fy; = F4 = 1,4F

Belastung F und Fs, = 1,4F der Scheibe (Eigengewicht vernachléssigt) ergeben mit dem Seileck-
verfahren die Stiitzkréifte Fp und Fc.

Rechnerische Losung (Bild 102, Seite 96):
Trager (Bild 102.1)

(A4 | +2Fa—3+/2F,2a=0
Fs; = FJ2 = 1,414F
Der gleichmiBig belastete Trager wird durch Vertikalkomponenten symmetrisch gestiitzt. Daher
ist
t Fu:‘}\/iFsz:F
~ | —4v2Fa+Fu=0; Fu=3V2Fa=F
Resultierende Stiitzkraft in A

Fu=/Fi: + F&, = /2 F= 1,414F
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Strukturpldne

Krafipldne
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Fsg= P4 = 14F
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Bild 101. Zur zeichnerischen Losung nach Lehrbeispiel 36
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Bild 102.1 Bild 102.2 - 1
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-

Bild 102. Zur rechnerischen Losung nach Lehrbeispiel 36
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Scheibe (Bild 102.2)
(B | FA+3V2F2a—Fa=0
Fo=F(1+/2)=2,414F
t | =32 F—F+ Fgy= 0= Fy, = 1,707F
(c | $V2Fa+4/2F2a+ Fa— Fa— Fpa =0
Fas = F(3+/2 +4/2) = 2121F

Kontrollrechnung mit horizontaler Kriftebilanz

— | 42 F L Fo=F+ Fy,

0,707F F
2,414F 2,121F
3,121F 3,121F Kontrollrechnung erfiilit

Resultierende Stitzkraft in B

Fp = /F3, + F2, = F+/2,1212 + 1,7072
Fy= F~/741 = 212F

Die rechnerischen Ergebnisse stimmen mit den zeichnerischen iiberein.

»  Lehrbeispiel 37

Die Aufgabe nach Bild 103 enthilt zwei Tréger, je mit einer Einzellast belastet, die gelenkig mit-
einander verbunden sind. Insgesamt liegen drei Gelenke vor; die beiden Gelenke der Festlager und
das Verbindungsgelenk G. Man spricht daher auch von einem Dreigelenkbogen. Zu bestimmen sind
zeichnerisch und rechnerisch die Stiitzkrifte.

2a

Bild 103. Gelenktrager zu Lehrbeispiel 37

4a 2a 2a

Losung:
Zeichnerische Losung (Bild 104):

Aufgaben, bei denen die drei Gelenke nicht auf einer Geraden liegen, werden in einfache Teil-
aufgaben zerlegt, deren Ergebnisse man iiberlagert (lineare Superposition). Zu diesem Zweck ent-
fernt man je eine Belastung (oder die Resultierende einer Belastungsgruppe) von den durch das
Gelenk G verbundenen Tragern. Das fiihrt auf zwei Trager mit je einem Festlager und je einer Pendel,
stiitze (Bilder 104.1 und 104.2). Im ersten Fall ist der Triger mit F; belastet. Er wird durch A4,
.und durch die Pendelstiitze B; gestiitzt. Im zweiten Fall erkennen wir den durch F, belasteten Tréger-
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sein Festlager B, und seine Pendelstiitze 4,. Dafiir sind die Kraftecke zu zeichnen. Das gesamte
Ergebnis der Stiitzkrifte entsteht durch Zusammenfassung der bisher gefundenen Stiitzkomponenten
(Bild 104.3).

FimF=F

Y

Bild 104.1

5]

Bild 104 .3
E.=15F Bild 104. Zur zeichnerischen
A ! Lésung nach Lehrbeispiel 37
Fg=09F
0 F 2F
= | f

Rechnerische Losung (Bild 105):

Der rechnerischen Losung liegen zwei Strukturskizzen zugrunde, die durch Gelenktrennung ent-
stehen.

Statisches Momentengleichgewicht um beide Festlagerknoten

A +Fgy,4a— Fgx 2a— F6a =0
GB +F3a+ Fgy4a+ Fgx4a=0

Mit diesem Gleichungssystem ermitteln wir die Komponenten der Gelenkkraft.
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Beide Gleichungen sind zu subtrahieren. Dadurch entsteht

—9F— 6Fgx =10
3
F63=—7F

Diesen Betrag eingesetzt, liefert
3
Fg,= vy F

Statisches Krdftegleichgewicht

3
nd Fyy +Fox=0 =>FAx=—FGx=7F
1
Fpx— F—Fgx=0= Fy, = F+ch=—7F
1
+ FA,+FG,—-F=0=>FA,=—F0,+F=—4-
3
FBy_-FGy=0 =FBy—FGy=TF
4a 2a F-F
S)
6
N foy
] A
Fax A,
bay
Bild 105. Zur rechnerischen
Losung nach Lehrbeispiel 37
Resultierende der Stitzkrafte
Fo=~Fit Foy= 6 + 12 = T \/31= 1,50F

Fy=\Fhe+ F}, = 7 +/22 + 33 = T \/13=09F
Resultierende der Gelenkkraft

Fo=+/F%, + F3,= TVE+3= T\/45 = 1,68F
m  Ubung 53

™

99



Literaturhinweise

Lehr- und Fachbiicher

[1] Autorenkollektiv: Technische Mechanik fiir Ingenieurschulen, Bd. I, 7. Aufl. Leipzig: VEB
Fachbuchverlag 1974 !

[2] Géldner, H., und F. HolzweiBig: Leitfaden der Technischen Mechanik, 8. Aufl. Leipzig: VEB
Fachbuchverlag 1984

Nachschlagebiicher, Wissensspeicher

[1] Autorenkollektiv: Das Grundwissen des Ingenieurs, 10. Aufl. Leipzig: VEB Fachbuchverlag
1981

{2] Beckert, M. (Herausgeber): Wissensspeicher fiir Technologen, Technische Mechanik - Werk-
stoffe — Werkstoffpriifung, 1. Aufl. Leipzig: VEB Fachbuchverlag 1970

(3] Winkler, J., und H. Aurich: Nachschlagebiicher fiir Grundlagenfacher - Technische Mechanik,
3. Aufl. Leipzig: VEB Fachbuchverlag 1985

100



ANHANG

Ubungsaufgaben
Loésungen zu den Ubungsaufgaben
Anlagen



Ubungsaufgaben

. Ermitteln Sie rechnerisch und zeichnerisch die Resultierende der beiden Krifte im Bild U 1.

2. Ermitteln Sie zeichnerisch und rechnerisch diejenige Kraft F3, die mit den senkrecht zueinander-
stehenden Kriften F; = 4,2 N; F, = 3,6 N im Gleichgewicht steht.

3. Ein Korper der Masse m = 5 kg befindet sich auf einer geneigten Ebene (Bild U 3). Berechnen
Sie die GrofBe der Komponenten seines Gewichtes, die senkrecht und parallel zur Neigungs-
ebene gerichtet sind.

4. Uber Rolle und Seil wird nach Bild U 4 eine Masse vom Gewicht G mit konstanter Geschwin-

digkeit bewegt. Die Konstruktion des Kranes ist so gestaltet, daB die Seilrichtung oben 30°

gegeniiber der Horizontalen betrdgt. Kraft im Seil und Gewicht sind (Reibung vernachlissigt)
nach dem Gegenwirkungsprinzip gleich groB. Beide haben in I ihren Schnittpunkt.

—

7

[ |

F=20N

30°

Fy = 40N 12°

Bild U 1 Bild U 3 Bild U 4

Gesucht sind:

4.1. die Kennzeichnung der Krifte (Tabelle ankreuzen) fiir das Seil und fiir die Rolle,

4.2, die resultierende Belastung Fy fiir die Rolle (Krifteparallelogramm),

4.3, die von den Lagern der Rolle aufzunehmende Kraft F,, (Krafteck),

4.4. die Belastung der Rolle Fy, wenn das Seil oben horizontal gerichtet ist (Krafteck).
5.Nach Bild U5 wirken (gemeinsamer Schnittpunkt) vier Krifte: F; = 10N; F, =20N;

F3; =40N; F, = 10N; o; = 0°; &, = 50°; o3 = 120°; x4, = 210°. Gesucht ist zeichnerisch

(Krafteck) und rechnerisch (Tabelle anwenden) ihre Resultierende Fg.
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AuBere Innere Aktions- Reaktions-
Kraft Kraft kraft kraft

fiir das Seil

G
Fs

fiir die Rolle

G
Fs
Fy

6. Beim Bohren hat die Platte (Bild U 6) drei gleich groBe Momente M = 2000 Nmm aufzuneh-
men. Die dadurch verursachte Drehung ist durch zwei Befestigungsstifte aufzuheben. Wie grof3
sind die Reaktionskrifte F an den Stiften?

7. Fir die zwei Krifte F;, F, Bild U 7) ist die Summe ihrer statischen Momente
7.1. aus den Kriften F;, F,,

7.2. aus ihren Komponenten
zu errechnen.

8. Ein Werkstiick / wurde in der skizzierten Schraubzwinge 2 festgeklemmt (Bild U 8). Machen
Sie das Werkstiick, die Gewindespindel und den Biigel der Schraubzwinge frei.

F
M —_—
D S
M N
Y L
Bild U 5 Bild U6
=100 F
y F =20N 4
K =30N
b a, =20mm
Gl __Fy N3V a2 =30mm —
SN
'L7-X /:?_X ]
x R N
=3 B
° y° *
0] x X
1 .
2
.Xz
X2
Bild U7 Bild U 8

9. Die Vorrichtung zum Pressen von Proben fiir Heizwertuntersuchungen in einer kalorimetrischen
Bombe zeigt Bild U 9. Die Probesubstanz I wird durch Stempel 2 und Hiilse 3, unten durch
Kegel 4 verschlossen, zu einem Brikett gepreft. Eine Gewindespindel 6 im Joch 5 erzeugt die
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Stempelkraft. Joch und Grundplatte 7 sind durch Stehbolzen 8 miteinander verbunden. Kegel 4
ruht im Teller 9. Beide werden nach dem Pressen entfernt und das Brikett aus der Hiilse ge-
driickt.
9.1. Machen Sie die Teile 2, 4, 5, 6, 7 und 8 frei.
9.2. Schneiden Sie Teil 8 und tragen Sie die inneren Krifte an.
9.3. Kennzeichnen Sie die Krifte als Aktions- und Reaktionskrifte in einer von Ihnen entwickel-
ten Tabelle.

10. Bei dem Kegelreibradgetriebe nach Bild U 10 wird der Kegel I durch die Feder 2 fest gegen das
Reibrad 3 gedriickt. Zeichnen Sie das Kegelrad mit Welle auf und tragen Sie fiir die Ruhestellung
die am Kegel und in den Lagern 4 und B auftretenden Krifte an.

Bild U9 Bild U 10

11 Eine Kontaktfeder (Bild U 11) ist bei 4 fest eingespannt. Durch Einschalten des Elektro-
magneten M wird der Kontakt K geschlossen. Tragen Sie die an der Kontaktfeder auftretenden
Krifte sowie die bei A auftretenden Reaktionen an.

12. Bild U 12 zeigt den FuBhebel zum Bedienen eines Gestinges (bei C angelenkt). Er ist bei A4
gelagert und wird durch die Zugfeder in der gezeichneten Ruhestellung gehalten.

12.1. Zeichnen Sie das Strukturbild des Hebels in der Ruhestellung,
12.2. bei Auftreten einer Bedienkraft Fg.

Y, [1 ]
- ]
AA I
K
=R
Bild U 11 3

Bild U 12
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13. Die skizzenhafte Darstellung eines zweistufigen Getriebes zeigt Bild U 13. Der Antrieb erfolgt
tuber Welle 1. Die Welle II mit den Réadern 2 und 3 ist Zwischenwelle, die die Momenteniiber-

tragung auf Welle 1/l ermoglicht.

Machen Sie sich das Funktionsprinzip des Getriebes klar (Drehrichtung und Drehzahl der

Wellen).

Machen Sie die einzelnen Wellen mit den Riddern unter Annahme geradverzahnter Zahnrider
frei (in perspektivischer Darstellung).

Ermitteln Sie daraus die Strukturbilder der Wellen in den einzelnen Ebenen.

Bild U 13

14. Der Hebel I des dargestellten Kippsprungwerkes (Bild U 14) kippt bei Betdtigung des in der
Halterung 2 gefithrten Spanners 3 nach links von D nach C. Machen Sie fiir die gezeichnete
Ruhelage Bauteile I und 3 sowie die Feder frei.
Entscheiden Sie, welche Kraftesysteme fiir die Teile I und 3 vorliegen.

Bild U 14

2
SO\

% ;
il >
——— It
QA i Jil'fb‘
N Z
\ 4 ¢
\ %
\ A

25

15. Der Antrieb einer Maschine soll iiber einen Riementrieb so erfolgen, dal die Riemenscheibe 2
von der Scheibe I angetrieben wird (Bild U 15).

Bild U 15

7

C

600

400

w?
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Der Riemen wird dabei von der Rolle 3 gespannt. Die Rolle 3 ist zu diesem Zweck an einem
Schwenkhebel angebracht, der an einem Ende die Masse m trigt und am anderen Ende in C
gelagert ist. Machen Sie den Hebel sowie die Riemenscheiben / und 2 frei.
Geben Sie die im Riemen wirkenden Krifte an.
Entscheiden Sie, welche Kriftesysteme im einzelnen vorliegen.

16. Fiir den in Ubung 15 skizzierten Riementrieb ist zeichnerisch die Riemenspannkraft zu ermitteln,
wenn die am Hebel angebrachte Masse m = 20 kg betrigt.

17.Im Bild U 17 ist eine Mdglichkeit gezeigt, ein Werkstiick mittels Keil, Rolle und Hebel zu
spannen.
Ermitteln Sie unter Vernachldssigung der auftretenden Reibung die am Keil wirkende Kraft Fy,
wenn durch die skizzierte Anordnung am Werkstiick eine Spannkraft von 300 N erzeugt werden
soll (gesucht ist die zeichnerische Losung).

F
200 ’
100 ?1
ﬂ% ~ Ky
_ ] 15° T
|
: ul o
2 4
Bild U 17 Bild U 18

18. An einem Winkelhebel (Bild U 18) greift die Kraft F; = 250 N unter derm Winkel o; = 25° an.
Ermitteln Sie mit /; = 250 mm und /, = 400 mm fiir die Gleichgewichtslage
18.1. zeichnerisch,
18.2. rechnerisch
die am Winkelhebel angreifende Kraft F, sowie die im Lager auftretende Stiitzreaktion.

19. Fiir das in Ubung 14 dargestellte Kippsprungwerk soll zeichnerisch und rechnerisch die am
Punkt D auftretende Kraft ermittelt werden, wenn die Federkraft Fr = 5 N betrigt.

20. Bild U 20 zeigt eine Kniehebelanordnung, die zum Spannen von Werkstiicken ve' wendet werden
kann.
Bestimmen Sie rechnerisch diejenige Kraft, die am Kolben K wirken muB}, um am Werkstiick
eine Spannkraft von 500 N zu erzeugen (/; = 300 mm, /, == 295,5 mm).

2/ "

X3

4|+
—|F

77, Bild U 20
F. Werkstuick

,

//222222:/,

21. An dem in Bild U 21 dargestellten Fachwerks-Ausleger soll eine Kraft von 2 kN angreifen.
Bestimmen Sie die Stiitzkréfte in 4 und B sowie die Stabkrifte.

22. Fiir die im Bild U 22 dargestelite Welle ist das Gesamtgewicht und dessen Angriffspunkt zu
ermitteln.
Zerlegen Sie die Welle in einzelne Abschnitte und berechnen Sie deren Gewicht
(0 = 7,85 kg dm=3). Ermitteln Sie den Angriffspunkt des Gesamtgewichtes als Resultierende
der einzelnen Gewichte mit dem Seileckverfahren.
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23, Ein Schlitten der Masse m = 20 kg ist nach Bild U 23 auf Kugeln gelagert.

Ermitteln Sie mit Hilfe des Culmann-Verfahrens die Stiitzkrdfte durch sein Eigengewicht
(g~ 10 m/s?).

24. Eine Scheibe vom Gewicht G = 300 N ist an drei Pendelstiben befestigt (Bild U 24). Sie wird
weiterhin durch F = 500 N unter « = 45° belastet. Ermitteln Sie die Stiitzkrifte (@ = 500 mm;
b = 250 mm).

25. Ein Gleitstein vom Gewicht G = 20 N soll in der skizzierten Fithrung (Bild U 25) horizontal’
verschoben werden. Er wird mit der Federkraft Fr = 25 N seitlith belastet. Zur Berechnung der
Reibkrifte in 4, Bund C werden die an den Berithrungsflichen zwischen Gleitstein und Fiihrung
auftretenden Normalkrifte benotigt. Ermitteln Sie Fy,4, Fug, Fne zeichnerisch.

5

FY

3000

Bild U 21

5000

R

5
989
T
|
9100
l
959
)i
I
|
T

665

Bild U 23
7
P .Y
[\
l/"(‘ - ST N
L 3 . ! 83 C
: i
ie N 2
§>A . '*
N L _ Bild U 24 Bild U 25
} a

26. Der im Bild U 26 dargestellte Taster / arbeitet folgendermaBen: In der Ruhestellung liegt der
Taster durch die Feder 2, die eine Federkraft von 2,0 N ausiibt, am Anschlag B an. Bei Betitigung
mit Fy dreht er sich um A4 (kleiner Winkel) und driickt mit Bolzen C auf Schwenkhebel 3.
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27.

Durch die zeichnerische Losung ist folgendes zu ermitteln:

26.1. fiir die Ruhestellung die Stiitzkrifte in 4 und B,
26.2. die Betitigungskraft Fr; fir den Augenblick, wenn der Taster von B abhebt. Wie groB ist

dabei F4?
26.3. die Krifte in A und C, wenn Fr, gegeniiber Zustand 26.2. verdoppelt wird (Annahme:
Fr vergroBert sich unwesentlich). .
Bestimmen Sie zeichnerisch die in den Lagern 4 und B auftretenden Stiitzreaktionen fiir den
mit Bild U 27 dargestellten Trager.
(F; = 300N, .F, = 300N, &, = 30°, @ = 250 mm, ¢ = 0,4 Nmm~™!)

20

1

.Bild U 26 Bild U 27

28.

29.
. Fur den Winkelhebel in Aufgabe 18 ist rechnerisch die Kraft F, sowie tiber ihre Komponenten

31.
32.
33.
34.
35.

36.

37.

Fiir den in Ubung 12 dargestellten Hebel sind fiir eine Federkraft Fr = 50 N zeichnerisch zu
bestimmen:

28.1. die in der Ruhestellung am Lager 4 und im Gestinge auftretenden Krifte.

28.2. die beim Bedienen mit einer Bedienkraft Fg = 200 N im Lager 4 und im Gestdnge auf-
tretenden Krifte.

Uberpriifen Sie durch Rechnung die in Ubung 26 ermittelten zeichnerischen Werte.

die Lagerkraft F, zu bestimmen. )
Ermitteln Sie rechnerisch unter Vernachlissigung der Reibung die am Keil und im Lager B
wirkenden Krifte aus Aufgabe 17.

Die Aufgabe 24 ist rechnerisch zu 13sen.

Firr das in Ubung 10 dargestellte Kegelreibradgetriebe sind fiir die beiden Endstellungen des
Reibrades die in den Lagern 4 und B sowie die auf das Reibrad wirkenden Krifte rechnerisch
zu ermitteln (/; = 30 mm; /, = 40 mm; /3 = 120 mm; D = 60 mm; Fg = 250 N; . = 40°).
Ermitteln Sie fiir den in Ubung 27 dargestellten Trager rechnerisch die Stiitzkrifte.

Bild U 35 zeigt eine Federgelenk-Geradfiihrung. Ermitteln Sie fiir / = 40 mm; F = 0,40 N
die an einer Feder auftretenden Stiitzreaktionen.

Das in Ubung 13 skizzierte Getriebe soll mit einem Antriebsmoment von 200 Nm getricben
werden. Bestimmen Sie das am Abtrieb auftretende Moment sowie die in den Lagern der Wellen
auftretenden Stiitzkréfte unter Vernachldssigung der Radialkrifte.

Teilkreisdurchmesser der Rider: dy; = 80 mm; dy, = 160 mm; do; = 80 mm; dps = 120 mm;
Lingen: @ = 120 mm; b = 160 mm; ¢ = 400 mm.

Mit dem in Bild U 37 skizzierten Hebelsystem wird im Punkt C eine Kraft von Fo = 200 N
erzeugt. Dazu ist am Bedienhebel eine Handkraft Fy; = 150 N notwendig.

Ermitteln Sie die notwendige Gliedlinge des Hebels E... F sowie die bei Betitigung des Hebel-
systems in 4 und B auftretenden Stiitzkrafte.
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Bild U 35

v L.
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33,65
Bild U 38 Bild U 39
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38. Das Tellerreibradgetriebe nach Bild U 38 arbeitet mit einer AnpreBkraft zwischen Teller und
Reibrad von Fy = 30 N. Dabei entsteht am Reibrad die Umfangskraft F, = 12 N. Das Dreh-
moment wird iiber eine Kegelreibkupplung abgegeben, die mit einer Anprefkraft von Fx = 40 N

-.arbeitet.
Ermitteln Sie fiir diesen Zustand die. Stiitzkrifte in 4 und B sowie deren Richtungswinkel.

39. Fiir das mit Bild U 39 skizzierte Teil sind
39.1. der Schwerpunkt der die Flache begrenzenden Linie,

~~39.2. der Flichenschwerpunkt rechnerisch zu ermitteln.

40f.\Bestimmen Sie rechnerisch fiir das in Bild U 40 dargestellte Teil den Linienschwerpunkt.

41. Um das in Bild U 41 dargestelite Teil auszuschneiden, wird fiir die Lage des Schnittstempel-
Einspannzapfens der Linienschwerpunkt benotigt.

Ermitteln Sie dessen Lage rechnerisch.
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42. Bild U 42 zeigt einen Winkelquerschnitt mit zwei Bohrungen. Mit dem Seileckverfahren ist die
Lage des Flichenschwerpunktes zu ermitteln.
Uberpriifen Sie das gefundene Ergebnis rechnerisch.

43. Fiir den im Bild U 43 dargestellten Querschnitt ist die Lage des Flachenschwerpunktes rech-
nerisch gesucht. = S6xb

10 N

I L2753

o0 S+ 761 9855

I N = 906

™
N I ~ L40-25-3
4 Bild U 42 Bild U43Y | | TeL 5554
25
40 o = 86x4

44, Bild U 44 zeigt ¢in bis zur Hilfte mit Quecksilber gefiilltes Glasréhrchen. In der dargestellten
Stellung werden durch das Quecksilber die beiden am Ende angebrachten Kontakte geschlossen.
Beim Offnen der Kontakte kippt das Rohrchen um o = 30°.

Ermitteln Sie das notwendige Riickstellmoment M,, um wieder die Ausgangsstellung zu er-
reichen.

45. Prismatische Teile nach Bild U 45 sollen iiber eine geneigte Ebene von einem Arbeitsplatz
zum anderen transportiert werden. Welchen Neigungswinkel darf digse Ebene hochstens haben,

um ein Kippen der Teile auszuschlieBen? 30
b

S %
Bild U 44 Bild U45 |o 7
e

46.1. Welche Kraft ist notwendig, um in der skizzierten Fithrung (Bild U 46) den Stab I mit
v = konst. nach oben zu bewegen? (Federkraft Fr = 10 N; u = 0,12; m; = 0,5 kg).

46.2. Uberpriifen Sie, ob der Stab I firr uo = 0,2 von selbst in Ruhe verharrt. Wenn nicht,
geben Sie an, um welche Wegldnge s die Schraube nachgezogen werden mufl (Federkon-
stante ¢ = 20 N/cm).

47. Der im Bild U 47 dargestellte Fliehkraftbremsregler arbeitet folgendermafen:

Bei Rotation bewegen sich die beiden Massen m; = m, = 10 g durch die Fliehkraft nach

auBlen, so daB iiber das Gestinge mit Bremsscheibe / die Feder 2 zusammengedriickt wird. Der

Regler beginnt zu arbeiten, wenn die Bremsscheibe an den Anschldgen 3 anliegt.

Iy =10mm; /3 =30mm;
d =20mm; dg= 50mm;
u =0,4; c¢c=1,5Nmm-! (Federkonstante)

47.1. Ermitteln Sie diejenige Drehzahl, bei der der Regler zu arbeiten beginnt.
47.2. Welches Bremsmoment tritt auf, wenn der Regler mit der 1,5fachen Drehzahl wie unter
47.1. arbeitet?
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48. Zum Abbremsen der Welle / wird die in Bild U 48 dargestelite Hebelanordnung benutzt. Die
Kraft F wirkt auf den Winkelhebel 5. Dieser ist iiber das Zugband C... D mit dem Hebel 4 ver-
bunden, der iiber Bremsbeldge 3 auf den Teller 2 wirkt.

Welches Bremsmoment tritt am Teller 2 auf, wenn am Winkelhebel 5 eine Kraft von 25 N
wirkt? u = 0,6; /; = 50 mm; /, =100 mm; /3 = 40 mm; /; = 30 mm; /s = 50 mm.

7
——
\
-

.

NN
<

de
[
I
>
P
L] g
ch

S|

N

7 3
Bild U 47

%
g

Bild U 46

120

Bild U 48 ) Bild U 49

49. Zum Schwenken des bei A4 gelagerten Teils 7 um die Horizontale (kleine Winkel) benutzt man
einen Feintrieb (Bild U 49). Die Hubbewegung der Spindelmutter 2 wird iiber Winkelhebel 3
und Hebel 4 iibertragen, der durch 4 Schrauben mit Teil I verbunden ist.
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50.

Ermitteln Sie fiir Schwenkbewegungen nach oben und unten die Krifte in den Stiften 5 und 6.

Gewicht Teil 1 G =40N

Federkraft am Hebel Fr =05N

Reibmoment im Lager A Mz, = 3 Nmm

Reibmoment im Lager B Mpz =1 Nmm

Die Drehvorrichtung (Bild U 50) besteht aus einer Grundplatte 1, die auf die Planscheibe der

Drehmaschine gespannt wird. Das Werkstiick 2 wird durch die Vorsteckscheibe 3 und die

Spannschraube 4 so gespannt, daB zwischen Grundplatte und Werkstiick ReibschluB} entsteht.

Da die mit dem Bearbeitungszeichen gekennzeichnete Fliche durch Lingsdrehen bearbeitet

werden soll, wirkt die Hauptschnittkraft von 90 N als Umfangskraft.

50.1. Ermitteln Sie die Spannkraft in der Schraube, um das Drehteil mit 2facher Sicherheit zu
spannen (1o = 0,2).

50.2. Bestimmen Sie das zum Anziehen und Losen der Mutter (Sechskantmutter M 12 TGL 0-934)
notwendige Moment (¢ = 0,12; zo = 0,2).

51. Bestimmen Sie fiir den in Ubung 15 dargestellten Riementrieb das maximal iibertragbare Dreh-
moment, wenn folgende Daten bekannt sind:
Durchmesser Rad 7 D; = 100 mm
Durchmesser Rad 2 D, = 200 mm
Spannkraft im Riemen Fg; = 600 N
Reibungszahl uo = 0,4
52. Fiir die in Ubung 17 gezeigte Moglichkeit, Werkstiicke zu spannen, wurde bei der Berechnung
der am Keil wirkenden Kraft die Reibung vernachlissigt. Ermitteln Sie unter Beachtung der
Reibkrifte die zum Spannen und Losen notwendige Keilkraft Fy:
"Radius der Rolle bei C r =10mm
Hebelarm der Rollreibung f = 0,2 mm
Reibungszahlen u =0,11; po =02
Kraft an der Rolle aus U 31
53.Im Bild U 53 ist ein Ubertragungsmechanismus dargestellt. Der Antrieb erfolgt iiber eine
Kurvenscheibe 2 und Rollenhebel 1. Uber Zwischenhebel 3 wird das Gestiinge 4 betitigt.
Welche Federkraft muBl wirken, damit in dieser Stellung an der Kurvenscheibe eine AnpreB-
kraft von 0,5 N entsteht und im Gestidnge Fgq = 1,2 N?
Gesucht ist die zeichnerische Losung.
AVAVAS Siies
R 7
7 -
NN
S !
| i Bild U 53
he i
|

Bild U 50




Losungen zu den Ubungsaufgaben

1. Rechnerische Losung

Fa=~/F3+ F2—2F,F, cosa = 31,2 N

F, .
sinog = F’.sm o = ag = 29,4°
R

Zeichnerische Losung Bild LU 1
2. Zeichnerische Losung Bild LU 2
Rechnerische Lésung: |F3| = |Fy| = \/F§ + F2=553N

F.

tanog = F—’ ; op=40,6° und oz =220,6°
1

3. Losung siehe Bild LU 3

Komponente senkrecht zur geneigten Ebene G - cos x = 46,1 N
Komponente parallel zur geneigten Ebene G -sina = 16,8 N

fr = 31N EE——————— R
g 30° 2 /ﬂ
F=55N 7
13-220" Ve

Bild LU 3 Bild LU 2

4, AuBere Innere Aktions- Reaktions-
Kraft Kraft kraft kraft

fur das Seil

4.1. Fs X X

fiir die Rolle

G X X
Fs X X
42....44.
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fa
G
G
RN
BildLU4
F c FR=726 = 14146
6
5

Kraft Betrag Winkel Komponenten
i F,inN o in ° F,= F,cosx;in N F, = F;sinx;in N
1 10 0 +10 0
2 20 50 +12,85 +15,32
3 40 120 —20 +34,64
4 10 210 — 8,66 —5
% — ‘ —_ — 5,81 444,96

Fa = /F&s + F&, = 10N'1/0,5812 1+ 4,496% = 45,3 N

nach Gl. (8)
Fg, +44,96
tanog = 7; = 'T,Sl = —7,7 (2. Quadrant)

og = (180 — 82,6)° = 97,4°

Bild LU 5
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Bei Verwendung spitzer Winkel wird die Rechnung mit dem Rechenstab einfacher.

Fry  +44,96
(2. Quadrant) = op = 7,4° und ag = (90 + 7,4)° = 97,4°
6. Belastung durch M, = 3M = 6000 Nmm

Reaktionsmoment durch das Kriftepaar M = Fa
Statisches Momentengleichgewicht erfordert

Mg, 6000 Nmm

F= a 100 mm = 60N

7. Summe der statischen Momente um O fiir die Kréfte F; und F;
7.1. 2 My = Fia; + Foa;, = +20N 20 mm + 30 N - 30 mm
= 41300 Nmm
7.2. Komponenten:
Fy,= F;cos30°=17,32N
F;, = F;sin30° = 10N

Fay = F3 cos 60° = 15 N
F,, = F,sin 60° = 25,98 N
Hebelarme (als Koordinaten):
x; = a; cos 60° = 10 mm
y1 = ay sin 60° = 17,32 mm
X3 = ap cos 30° = 25,98 mm
¥y2 = a, sin 30° = 15 mm
Summe der statischen Momente (Bezugspunkt 0) fiir die Komponenten:
I Mo = Fizy1 + Fipxy + Faxyz + Foyxs
= +(17,32-17,32 + 10-10 + 1515
+ 25,98 -25,98) Nmm = +1300 Nmm

Beide Ergebnisse stimmen iiberein.

8. Losung Bild LU 8

BildLU 8

8*
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9. Losung 9.1. und 9.2. Bild LU 9 (Krifte in fortlaufender Folge numeriert)

9.3. Kraft F;,  Aktionskraft Reaktionskraft Wechselwirkung
fur Teil fiir Teil
1 5 - |Fy| = |Fs
2 - 5 F| = |Fy,|
3 - 5 F3| = |Fy,|
4 - 7 Fy| = |Fyol
5 - 7 Fs| = |F13|
6 7 - Fs| = le
7 7 - Fi| = |Fao|
8 6 - Fg| = |F|
9 - 6 Fy| = |Fi4]
10 8 - Fio| = |F4|
11 8 - Fiil = |Fyl
12 8 - FlZl = F3|
13 8 - Fi3| = F5|
14 2 - Fia| = |Fs|
15 - 2 Fys| = |F6|
16 4 - Fi6| = |Fys|
17 - 4 Fyq| = |Fyg|
18 9 - Fig| = |Fy4
19 - 9 Fyo| = |Fe|
20 - 9 Fpol = F7|
Fa
45 ﬁb G ==
] !
L L It L ‘}"_5
! | { 1 ’
F2 l £ 1
5——11 fs £s hs
|
fﬁ fs I 1’:5 ke
l | \ T T r 4
7 [
NS - - 7.
l F-; F;o Fu i K ,:78
Fe Fo
Bild LU 9
10. Losung Bild LU 10
11. Losung Bild LU 11

. Losung Bild LU 13.1
Strukturbilder Bild LU 13 2
. Losung Bild LU 14

. Losung Bild LU 12.1 und Bild LU 12.2

Teil 1: Ebenes zentrales Kriftesystem mit Wirkungsknoten

(Schnittpunkt von Fg und Fp)

Teil 3: Ebenes allgemeines Kraftesystem
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Fg ] 4
Fa Fu Fx
™S Bild LU 10 Bild LU 11
300
10 100 X 1T
T T 73
| 8! S
P Fe
g 2 5
A 8
|
§i 8
b Bild LU 12.1 Bild LU 12.2
e

'VAnrr.

Bild LU 13.1

15. Lésung Bild LU 15
Hebel: Ebenes zentrales Kraftesystem mit Wirkungsknoten 7
(Schnittpunkt von F3 und G)
Rad 1: Allgemeines Kréftesystem
Rad 2: Zentrales Kriftesystem mit Wirkungsknoten 1/
(Schnittpunkt von Fs; und Fs;)
Oberer Riemenausschnitt: Zentrales Kraftesystem mit Strukturknoten
16. Nach Bild LU 16 wird zuerst die Kraft F; ermittelt und dann die Zugkraft im Riemen:
Fs; = 590N
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y,z- Ebene xz- Ebene

y } z
Fay Fur fay ; Fax ‘ Fox
Welle I A 8 A %f
. a . ’ a Frl ’
Z
J Fur Fuz ~ 15-1 LFDX
weler € ! 0 ¢ ‘ '%0
£ 2 0 b 7 £ a /_}2 b T
(8% Foy Cx
|
{LFEY Fuz ,-;-'y fr2 {
wellem £ F £ ‘ d
” b A 1 ’ b 4
&X - 7 Fx
C C
1
Bild LU 13.2

Bild LU 14

Bild LU 15
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17. Losung Bild LU 17
Nach Konstruktion des Wirkungsknotens I ist F¢ zu bestimmen. Dann wird Fe (Wirkungs-
knoten II) in die Komponenten Fy (Normalkraft zur Keilauflage) und Fx (Keilkraft) zerlegt.

Es wird Fx = 80 N.

18.1. Losung Bild LU 18.1.: F, = 230N, F, = 140N
18.2. Aus den geometrischen Beziehungen des Strukturplanes erhilt man

11 - 12 tan o,

tano, = L 3 o =9,02°
600 , 50
400
X |
fe %
\\ 75 |
\\ [
\ \
<\
N
Bild LU 16 \\ \ |
\| 0 0 200 30 40 N 600
\\ ] | S 1 1 1 1 J
A
A
e | w
16
{
fsp
BildLU 17 Fa
0 100 200 00 N 500
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Strukturskizze Bild LU 18.2 liefert
- I Fycosox; —F cosoe, =0
4 Fysino; + Fysinacy,—F, =0
F4 = 229,4N, F, = 141,5 N (Ubereinstimmung mit zeichnerischer Losung)

h
2
Bild LU 18.1
100 200 N 300
1 1 J
y
£ sinags F£;5in acq
j4
Fa
- ~
T
Fcosocy Yxa |1 Fcos o X Bild LU 18.2
1%

19. Zeichnerische Losung nach Bild LU 19: Fp = 1,7 N 75
Fiir die rechnerische Losung ist nach Strukturbild tan & = ? Damit wird
Fp = Fetanx = 1,7 N.

'/i E Fp
5..
N

Fe
4—
oc F J 1
2 -
\| Bild LU 19
AN -
75 . e
£ % FD ]
125 0

20. Nach Strukturbild U 20 und mit Kraftecken fiir die Strukturknoten (Bild LU 20) wird

l
COSo = — => 0 = 9,93°
I

FK = 2Fs sina =175 N



21. Losung Bild LU 21

Stabtabelle (mit den Angaben der Stiitzkrafte):

Stab FD My F
. . cm . kN
Incm in kN mn
F, 10,6 5,3
Fp 5,0 10,0
1 1,1 +0,55
2 11,1 2 —5,55
3 4,3 +2,15
4 6,6 +3,3
5 6,0 +3,0
6 3,0 —1,5
7 72 —3,6
Krafteck fir 5
Strukturknoten A i
F i
1T
Fse
Krofteck fiir
Strukturknoten B
fs 1000 2000 mm 3000
9 \ o - 1
= %
s Fx Bild LU 21

Bild LU 20
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.22. Losung Bild LU 22

Allgemein ist G = Algg. Damit G; = Gg = 142N; G, = G, = 38,8 N; G5 = 90,8 N;

Gs = 632N

Gesamtgewicht G = 260 N. Schwerpunkt befindet sich 315 mm vom linken Wellenende.

\.ﬁ.ﬁu_*@,,_%l?s._ .

g 100 200 3('70 mm 400

L L It

r

Losung nach Bild LU 23
=75N, F31=F32=90N

A I
a? ST
]|F/s/ s| |/
7

0 100
1

100 200 N 300
N 1 1 |

N

200
)

24. Losung nach Bild LU 24

Fa=350N, Fz=500N, Fc=150N
25. Losung nach Bild LU 25

Faa=29N, Fyp=24N, Fy=10,5N

26. Losung 26.1 nach Bild LU 26.1: F;, = 1,0N, F = 1,0 N;
Losung 26.2 nach Bild LU 26.2: Fry = 0,5N, F, = 1,5N;
Losung 26.3 nach Bild LU 26.3: F;, = 1,75N; Fc =10N
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v/ Pl
Bild LU 24 WS
“CoMe
500 .

e
/\500 G . ————
A —\—— P ———— F.—. FNB
F,],}S T o
e e S 87 }
Fuo /\\ SIS
1~ | d
\
FH - C — \ |
Bild LU 25 £ £
70 H NC
! =
70

20 N 30

AT S N S S St Y 'Y

27. Losung nach Bild LU 27 fithrt auf F, = 860, Fz = 470N.
(Fp wirkt nach Krafteck entgegen der im Strukturbild angenommenen, vorausgesetzten Richtung.)
28. Losung 28.1 nach Bild LU 28.1: F, == 72 N; Fr = 22 N;
Lésung 28.2 nach Bild LU 28.2: F, == 260 N Fo=120N
29. 29.1: Strukturskizze Bild LU 29.1
(A | —Fe-10+F5-20=0=F,=10N
4+ | R—F—F,=0=F,=10N
29.2: Strukturskizze Bild LU 29.2
G4
t Fp—Fy—F,=0=>F,=15N
29.3: Strukturskizze (Bild LU 29.3) mit
Feyx = Fe cos 30° = 0,866F¢
F¢y = F¢sin 30° = 0,5F,
G4 —Fcy 40 — Fz+ 10+ Fr,°40=0
Fc=10N
- Fy+ Fox =0= F,, = —0,866* 1,0 N = —0,866 N
t Fey+ Fay+ Fe— Fra=0= F4y=—15N

F,= /0,866 + 1,52 N = 1,73 N
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Bild LU 26.1

-
c b
20

fa Bild LU 26.2

|

A (4
g 0‘,5 17 N 2
Bild LU 26.3
Bild LU 27
500 mm 1000
\ 5

0.
124 0 10 20 0 N %




S
8
Bild LU 28.1
Ko
Fa
Bild LU 28.2
/L,-r = ZN Fr,
8 A £
2 B F

s 70;3/, Bild LU 29.1 Bild LU 29.2 \ A

@ 20 54 10 77872

40 7

Frp=2Fny £ F=250N

Ty
£ 'Y Aze
a9%c Jé - S Fix
FO( 4 FAX ‘LQ
% LA 7 A
40 y —> Fax
Fd 400 '
Bild LU 29.3 Bild LU 30 Fay
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30. Strukturskizze (Bild LU 30) mit
Fy, = Fycos 25° = 226,6 N
Fiy = F, sin 25° = 106 N
gA —Fx,"25+ F,-40=0=F, = 141,6 N
— Fiyy+ Fyx=0= F,, = —226,6 N
t | Fyy+ Fy—F,= 0=>F,, =359 N
Fy =2294N
31. Strukturskizze Bild LU 31
(B :| —Fsp-100 + Fgy+100 = 0 = F¢, = Fg, = 300 N
Fey
cos 15°
Fo, = Fcsin15°= 80,5 N
~ | Fae—Fex=0=> Fp = 805N
4 | Ry Fay+ Fop=0=> Fpy=—600N

Lagerkraft Fg = 100 N \/ 0,8052 + 62 = 605N
Keilkraft Fx = Fex = 80,5 N (siehe auch Zusammenhénge im Krafteck Bild LU 17)

Fc= =31IN

By ey K F fe
“D
8 3 C
) 2
; &
Bild LU 31 BIdLU 32 TG
4
A
500
32. St i i = F. =
Strukturskizze LU 32 mit F, = F, = 353,5 N G- 200N
GA | Fo*5+F25—(F+6-25=0 F = 500 N

Fe=150N
~ | Fy—F,—=0=F,= F,=3535N
C | F+6G)25+F25—F;-5=0
Fp=503,5N
Kontrollrechnung
t | BB+ F=F+G
503,5 N 353,5N
150,0 N 300,0 N

653,5N \ 653,5 N Vertikale Kriftebilanz erfillt

33. Strukturskizze Bild LU 33
linke Schaltstellung:

F3x

sin20° 730N

- FF—F3.‘=0=>F3;=250N; Fy =

Fs, = Fs cos 20° = 685 N

G4 F3'3—F3;°3—Fp-12=0=>Fg=109N
+ —F4—Fg+ F3=0=F,= 576N
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rechte Schaltstellung:

D
CA F3,'8—F3,[7—(13—12—11)tan20°]—175-12=0

Fg=433N
T —FA‘—FB+F3y=O=>FA=254N
2a £
Ay
fa
gLy A
20 bax
)
Aunl
RNy
Bild LU 33 30° B
Bild LU 34 0 “2x >
34. Strukturskizze Bild LU 34 4a - Fa
= 2ga = 200N, F; = 300N, F,; = 260N, F,, = 150 N
G4 +F,2a+ Fia+ Fyja+ Fz4a+ Fg4a=0
Fg = —472,3 N (wirkt entgegen dem eingetragenen Vektor)
ind Fyy+ For =0= F4y = —F;, = —260N
(wirkt entgegen dem eingetragenen Vektor)
(B | —Fxy3a+ Fy5a—Fy,4a— Fy,4a+ F,6a=0
F, =8225N
Kontrollrechnung
+ Fq+Fl—"F2y=FAy+FB
200 N 822,5N
300 N —472,3 N
—150N
350 N 350,2 N Vertikale Kriftebilanz erfiillt
Fo= 100N /2,67 + 8,23 = 863 N
35. Durch die feste Einspannung wirken (Bild LU 35) folgende Stiitzreaktionen:
F . F
CE +Mg — 5 ! = 0 = Einspannmoment Mz = 8 Nmm Vi ——-—r
F 1
- 53— FkF=0 => Einspannkraft Fg = 0,20 N |
i
36. Nach Bild LU 13.1 l
Umfangskrifte . |
Statisches Momentengleichgewicht ., Bild LU 35 T
um Wellenachse I | —Mane. + Fay —;—‘— =0= F,; =5-10°N = 5kN ~ Mg
do2 dos

um Wellenachse II | +F,, - —Fae—5—=0
Faz = 10°N = 10kN
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Abtriebsmoment mit dem statischen Momentengleichgewicht um die

d,
Wellenachse III Mayyy, = Fy2 %% — 6-10° Nmm = 600 Nm

Lagerkrafte

2

Welle J nach Bild LU 36.1

@
T

E,la—FBc=0 =>FB = 1500 N
Fyy—F4—Fg=0=F,=3500N

Welle II nach Bild LU 36.2

cc
T

Fpc— Fyia— Fyy(c— b) = 0 = Fp = 7500 N
Fo+ Fp—F1—F;=0 = F=7500N

Welle JII nach Bild LU 36.3

F,2(c — b) — Frc = 0 => Fr = 6000 N
F,—Fg—Fr=0 = Fg=4000N

7 fo
Fur l r"
4 1 ;
f z a : 7
¢ | BildLU 36.1 8
/'217 {‘FUZ @
: AR b D 0
ch_‘ c ‘—‘ﬁ F, Bild LU 36.2
-1 20
1

Fe pluz Fe
£ F A a lF

§ . b Bild LU 36.3 77" ~

= e
0 c
560 1
B0 250 F,
P4

. 4 Bild LU 37.1

Fax fae |
X
vy fe

1 V4
—>  Bid LU 37.2
120, Z
350

fay Fay

37. Gliedlinge des Hebels E ... F (Bild LU 37.1)

CD FE'14_Fc"35=0 =>'FE=500N

(Wellenachse Fy+ 500 mm — Fga = 0 => a = 150 mm
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Lagerkrifte fiir die Welle (Bild LU 37.2)

xzEbene: A | Fa+5—Fps-35=0 = Fp, = 214N
XT FAx_FBx+FH=O =>FAx= 64 N
y,z-Ebene: (A4 | Fgy-3,5— Fg-1,2=0= Fz, = 171,4N

»n Fyy+ Fgy— Fg=10

Radialkriéfte in den Lagern

F,=100N \/0,642 +3,292=1335N

Fp = 100N /2,142 + 1,7142 = 274 N

= F4y = 328,6 N

38. Umfangs- und Normalkraft am Reibrad stehen senkrecht zueinander. Man kann sie zur
Resultierenden zusammenfassen und mit ihr die radialen Stiitzkréifte ermitteln.

Fa=+/F?+ F3=323N
Radiale Stiitzkrifte

CA FR'4O—FB|-'65=0=FB[=ZON
1 Fgy+ Fpp—Fr=0 =F,=123N

Vom Festlager ist axial noch die Kupplungskraft aufzunehmen, so daf

Fa=Fc=40N

betragt.
Richtung der Resultierenden
F,
tanog = F—: = op=218°

gegeniiber vertikaler Ebene geneigt

39, Fiir ein Koordinatensystem nach Bild LU 39 erhilt man:

i

39.1: i A Xis Yis Iixy hiyis
in mm in mm in mm in mm? in mm?
1 16,33 8,17 5 133,4 81,65
2 20 25 0 500,0 -
3 33,65 16,83 —5 566,3 —168,25
4 15,71 —3,18 0 —50,0 -
p 85,69 - - 1149,7 —86,6
] 1149,7 mm? 13.42 86,6 mm? — 101
=850 mm o =T GO mm
yi ¥i
4 ! :
BidLU 39 —{ /7 N\t
\__ N\ AN 3 e
] 3 1

9 AK, Elementare Statik
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39.2: i Ay Xis Yis Apxgs Ayis

in mm? inmm inmm in mm3 in mm3
1 39,3 —2,12 0 —83,3 -
2 163,3 8,17 0 1334,2 -
3 86,6 22,1 —1,67 1913,9 —144,6
T 2892 - - 3164,8 —144,6
_ 31648 mm? -1 14456 mm?3 — 05
%= 2892mm? 0 m = TR0 mm . o T®
40. Mit dem Ursprung des Koordinatensystems in B erhilt man:
xs=—1,65a ys=1,65a
41. Ursprung des Koordinatensystems im Mittelpunkt der Bohrung:
xs = 12,6 mm Vs = —4.,05 mm
42, Zeichnerische Losung nach Bild LU 42:
xs=—15mm ys = 10mm
}I
75
IN ¢
%3 NONE I )
U/ N i
3 x
7 | l Bild LU 42
N i |
(4N 2.
N RS :
g - .
(Z 19‘ 2'0 mm 4'0 (l7 7(?0 2{70 30¢ mm* 500
43, ys = 43,6 mm

44, Nach Bild LU 44 sind zunichst die Schwerpunktkoordinaten fiir den Quecksilberkorper (Halb-
kuge!l und abgeschrigter Kreiszylinder) zu ermitteln.

i Vi Xis Vs XV YisVi
in mm?® in mm in mm in mm* in mm*
Halb- 3
kugel ~ 26L67|gr = —1875 | - 0 —490.6 -
h 1 tan?a 1 _ tana

abge- 1963, | — 4 —,2 = —p2 = 3 .
schrgter 5 + 3 r 7 12,88 y r 2 —0,433 | 25277 850,2
Kreis-
zylinder

2225,17 | - - - 24786,4 —850,2

X, = 1,14mm y, = —0,382 mm
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Riickstellmoment mit ¢ = 13,55 kg/dm3:
M, = Vog cos &(25 mm — x;) — Vg sin xy, = 3,5 Nmm

45. Der Grenzfall, Standsicherheit § = 1, entspricht dem statischen Momentengleichgewicht um
die Kippkante.

Nach Bild LU 45 wird
A | xymgcosa— yymgsinx =0

Fiir das Prisma ist x; = y; (man iiberzeuge sich durch Rechnung), so daf3

=1=tanax = < 45°

. sinx
sinx = cosx oder
cos &

Bild LU 44

Bila LU 45

46. 46.1: Aufwirtsbewegung durch F (Bild LU 46)
t | F—G—Fry— Fpo—Fr3 =0
Mit Fry = uFr; Fro = uFg/2; Frs = uFg/2
wird F= G + 2uFe = F= 7,3 N
46.2: Abwirtsbewegung ohne Haltekraft (Bild LU 46)
l FRolq‘FRoz'*'FRoB—G:o

Mit Fror = toFF = Froz + Fros
wird G = 2uoFt = Ft = 123N > Fr = 10N

Stab kann durch Reibkrifte allein nicht gehalten werden. Die Druckfeder ist nach-
Zuspannen.

(Fgs— Fy) = cs = Nachstellweg s = 1,15 mm

47. 47.1: Prinzipskizzen nach Bild LU 47.1:
Fr

2cos

Fliehkraft (nach Krafteck)

Kraft im Gestinge Fs =

Fou = 2Fesi 2FF sin o
B s S = T s

FFI = FF tan «
(mit Federkonstante und -weg) Fr; = c/; tan
(durch Winkelgeschwindigkeit) Fr; = mro?

. T . CIl tano
Winkelgeschwindigkeit w = —
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€
o« _~

Bild LU 47.1

o

ik

120

S

/

Fss

Bild LU 49.1
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I

Bild LU 46

o

Fa
A .
_-4-! fs F
’ S
Fs -
_>7\,<,\./ Fe
e N
Fs
Bild LU 47.2
l
F
B o
£ ‘ By Bild LU 48
7 | =
? F
1Fﬂl 7
Nk" 2
S WK e
h F B
5 1 - = ]F
F N 55
S5 %
Fre foo
Bild LU 49.2



Geometrische Beziehungen aus Bild U 47
L

e
Ccos ¢ = —————— => x = 33,6°
I

d
r=7+lzsincx=26,6mm

Winkelgeschwindigkeit » = 193,6 s~

Drehzahl
o

n=—=130,8s"! = 1850 min~?!
27
47.2: Prinzipskizzen nach Bild LU 47.2:
Bremsmoment M= Fgdgr = uFndr
Normalkraft an jedem Anschlag Fy = 4 (2Fg cos &« — Fg)

Stangenkraft nach Krafteck und mit den vorgegebenen GréBen:

Ff mr(1,5w)?
T 2sinx 2sina

’
)

Bremsmoment M = 186,6 Nmm

48. Skizzen nach Bild LU 48
125
CB FDI4—F15=O=>FD=TN

CE | —Fols + Fe(l— ) =0

,

1 5
—_— = —9
Fr 5 (25 3 40) N=278N

F,
Reibmoment Mg = uFnly = p TF A

=0,6-13,9N-50 mm = 417 Nmm
49. 49.1: Schwenken nach oben (Bild LU 49.1):

CA —G 25— Mg, + Fg-90 + F56-120=0
Fs¢ = 7,98 N

CB +F55'l5—MRB—F55'12=0
Fss = 6,45N

49.2: Schwenken nach unten (Bild LU 49.2):

CA —_6'25+MRA+FF.90+F56.120:0
Fs6= 793N

CB —Fg6+12 4 Fs5° 15 + Mgp =
Fys = 6,28 N

50. 50.1: Umfangskraft an der Reibfliche
F,, - 100 mm = F,; - 90 mm = F;; = 100 N

Die Schraube soll mit 2facher Sicherheit spannen.
Reibkraft ERZ = F“z = ‘quNz

Fu. ., 100N

Schraubenkraft Fy = 2 Fy, = 2 P 2 = 1000 N
0

’

10 AKX, Elementare Statik

133



50.2: Reibung am Gewinde sowie zwischen Mutter und Unterlage (Bild LU 50).
Anziehen der Schraubenverbindung (analog Heben einer Last)
s+d
4

d
M= Fytan (¢ + ¢) =+ Fsu

Schraubenkraft Fs = 1000 N
d
Gewinde M 12: P = 1,75 mm; Tz = 543 mm

tan & — P _ 1,75
2nd,)2 | 2m- 5,43
o« =29°
Spitzengewinde mit 26 = 60°; Umrechnung des Reibungswinkels
tang’ = p’ = —uo_ o2
cos 30 0,866
o =19°

Mutter M 12 TGL 0-934: d = 12 mm, s = 19 mm

31
M, = 1000 N (tan 10,8°-5,43 + 0,12 —) mm

4
M, =197 Nm
Losen der Schraubenverbindung (analog Senken einer Last; jedoch mit ug)

d. s +d
My = Fgtan (0o — &) Tz + Fspo—3—
tangh = ph = —or = %2

o =Ho = "5530° 0,866

go=13°

31
My, = 1000 N (tan 10,1°- 543 40,2 —4-) mm
My = 2,52 Nm

51. Krifte am Rad 1:
Fy, = Fs; e#% (Nach Anlage A 7: €%4™ = 3,5)
F5;, = 2100 N
Maximal iibertragbares Drehmoment

D,
Mimax = (FSZ_FSI)T= 150 Nm

154>
2 2 ‘
¢
Anziehen Losen Vie
VG J, &
X Vi G—QL—— E
Fe [4
(%Y
2 F (o
fe By fe Fx
3 t Fx ' Fn

Bild LU 50 Bild LU 52
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52. In Ubereinstimmung mit Bild LU 52

Anziehen:

—- Fcsin15° 4+ Frecos 15° + Fr— Fg =0

4 —Fccos 15° 4 Fpesin15° + Fy =0
Mit Fpe == (f/r) Ec und Fg = uFy wird Fx = 119N
Losen:

- Fcsin15°— Frecos 15°— Fg + Fx =0

4 —Fccos 15°— Fycsin15° 4+ Fy =10

Mit Fyc = (f/r) Fc und Fg == puoFy wird Fx = —14,1 N
(Achtung: Der Keil ist nicht selbsthemmend! Er 16st sich schon, wenn eine Kraft in Spann-
richtung von 14,1 N wirkt. Man sollte den Keilwinkel verringern.)

53, Zeichnerische Losung nach Bild LU 53

Fe=1715N

e

P

S
/e
»Nn

Bild LU 53
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Slrukturbild zum statischen
Gleichgewicht im zentralen
Ardftesystem

Anlage A 1

2 \ 1 2
C Zeichnerische Losung ) Rechnerische Ldsung
j — — — —
Rechn. Ldsung Lg B/ Stukturknoten
nach allg. - liegt vor 2
Krdftesystem | -
3 —_— J
Strukturplon anfertigen %
Strukturskizze anfertigen
und aufbereifen
4 - ; 70 - . Koordinatensystem mit
Gemeinsamer Schnitipunkt Jchnittounkt ist ;
aller /(mftw/rkungs//eﬁen o Wirkungsknoten %5/;;””9 im Struktur-
ist vorhanden 2 oien
- Krifte bzw. Komponen-
J ten in Koordinaten -
1 nichtungen
5 7 Wirkungsknoten 9
[ Schnitipunkt ist Srukturknoten 1 und Wirkungs -
linie konstru -
feren
7.
] 5 Gleichungen fiir
6 das statische
Krafteck zeichnen Krftegleichgewicht
7
Krafipfeile in den Struk- 16 - -
turplon dbertragen Lésung des Gleichungs -
Systems zur Ermittlung
1 der Unbekannten
8 Umrechnung der
Vektoren in
Kraftbetrage 7

A

Stiitzkrdfte Stabkrdfte als
2ug - oder Druckkrdfte
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Stitzkrdfte, Stabkrifte als
ug - oder Druckkrifte




&

Anlage A 2

! Strukturbild zum Stab - oder Fachwerk

z L Zeichnerische Ldsung mit dem Cremonaplan

J [ Strukturplan anfertigen T

Wirkungsknoten u. Kraftwirkungslinie fiir
-Belastung und Stitzkrdfte konstruieren

4 r Vektorenfolge zur Krafleckarordnung festlegen

!

6 —
Krafteck zum stat. Gleichgewicht om Korpersysiem

7 .

Kraftecke fiir jeden Strukturknoten als Cremonc -

plon zeichnen und schriftweise die Krafipreile

in den Strukturplan eintragen

g L Stabtabelle vorbereiten ]

9

Kraftstrecken eintragen und mit dem ge -
meinsamen KrdftemadBstab umrechner

I

|
t

Vorzeichen fir die Stabkrdfte festlegen

l

Tabelle fiir Stabkrdfte Stitzkrdfte
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&

Strukturbild zum statischen
Gleichgewicht im allgemeinen
Kriftesystem

N

Anlage A 3

7

Zeichn. Ldsung ¢
\ ot )

J

r
l ngukrurplan

Krafteck mit Be/aslz)n S -
vektoren , Pol und Pol -
strahlen beginnen

Seileck :

Im Strukturknoten des Fest-
lagers beginnen. Schiul3 -
linie zwischen Struktur-und
Wirkungsknoten

l

SchluBlinie als Polstrahl
in das Krafteck dbertragen

Stiitzkraft mit bekannter
Wirkungslinie den Polstrah-
len zuordnen

!

Krafteck durch Stiitzkraft
des Festlagers schlieBen

Umreciinung der Vektorer -
strecken in KraftgroBen
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0 Stuitzkrdfte

Rechn. Losung

1

Strukturskizze mit Krdften,

nach Koordinatensystem.

Stat, Momentengieichge -
wicht um beide Strukturknoten
(auch um Wirkungsknoten )

Stat. Krdftegieichgewicht
fiir eine Koordinaten -

A

Math. Operationen zur
Ermittlung der Stitzkrdfte

Kontrollrechrung erfiillt 2 \
Krdftebilanz fir cie noch
nicht verwendete Kocrding-'

J

/4
Komponenten
T
Y

13

Tichtung

1

%
]
5 !

n
tenrichtung
76

Komponenten der Stiizkrdfte
zur Resultierenden zusarnmen-
fassen

Statzkrdfte




Anlage A 4:
Zeichnerische und rech;ierische Arbeitsverfahren fiir Kriifte in der Ebene

Fir die Anwendung des jeweiligen Arbeitsverfahrens ist es entscheidend zu wissen, ob sich die
Krifte in einem Punkt schneiden (zentrales Kraftesystem mit Kréftebiischel) oder ob einige Schnitt-
punkte erst konstruiert werden miissen (allgemeines Kraftesystem mit Kraftegruppe). Dieser Sach-
verhalt kennzeichnet die Unterschiedsmerkmale der beiden Kriftesysteme.

Schnittpunkte der Kraftwirkungslinien wurden mit Wirkungsknoten bezeichnet. Er wird zum Struk-
turknoten, wenn dieser Schnittpunkt durch Krifte und Bauteilabstraktionen geometrisch gegeben
ist. Dringt man bis zu den ursidchlichen Wirkungsbedingungen vor, dann ist man auch berechtigt,
die im technischen Gebilde enthaltenen Kriftesysteme nach ihrer Anzahl Schnittpunkte (Knoten)
als Knotensysteme anzusprechen.

Dadurch entsteht folgende Zuordnung:

Kriftesystem Knotensystem Schnittpunkte / (Verfahren)
Zentrales Elementares Nur ein Schnittpunkt
Kriftesystem Einknotensystem - als Strukturknoten

(Krafteck, statisches Kraftegleichgewicht)
- als Wirkungsknoten
(Krafteck, statisches Krifte- und
Momentengleichgewicht)
Komplexes Komplexes technisches Gebilde (Stab- oder
Einknotensystem Fachwerk), bestehend aus Elementen mit je einem
Schnittpunkt als Strukturknoten.
(Cremona-Verfahren, Schnittverfahren nach Ritter*)
Allgemeines Zweiknotensystem Zwei Schnittpunkte als Wirkungsknoten; einer davon
Kriftesystem kann Strukturknoten sein.
(Culmann-Verfahren mit Doppel-Krafteck, statisches
Krifte- und Momentengleichgewicht)
Drei- und Drei und mehr Schnittpunkte als Wirkungsknoten;
Mehrknotensysteme einer davon kann Strukturknoten sein.
(Kraft- und Seileckverfahren, statisches Krifte-
und Momentengleichgewicht)

Auf diese detaillierten Arbeitsgrundlagen bezieht sich die algorithmische Darstellung fir alle
Arbeitsverfahren der Ebene nach Anlage A4 4.

* Schnittverfahren nach Ritter siehe [3]
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Anlage A8 : Schwerpunkislagen

Ha"cﬁenscﬁive/puhkr
Rechteck Schniftpunkt | Dreieck ° Schnittpunkt der
A=0bh derDiagonalen ~Lop Seitenhalbierenden
2 / >
/ SLo
N
N .
SN =i
N T’
b P
. o 2 » . _X.2
Kreissektor s A 36 0071“ I Halbkreis A=Zr
1
AN
| ) &R
l \7
.Trapez Schnitipunkt der beiden
b | I Schwerlinien
A= (a;+a,) / | i ¢
/ N}
/|
/
/ bN]N
I S / // o
o /
7,
) ‘
o/ A
N 1/ b (2a:ta;
S) } // 1 ar;tap
|/
b
Linienschwerpunkt
Kreisbogen (=b=ra rad | Halbkreis l=b=mr
: |
I<————>
' N |
YT
\\(gy e
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N i
_ - e
b 3600 2r ; S=2rsin > :




Anlage ‘A 6: Reibungszahlen der Gleitreibung (Richtwerte)

Werkstoffpaarung Flachenzustand Mo u
Stahl/Stahl trocken 0,15---0,3 0,06---0,12
geschmiert 0,11 0,01
Stahl/Grauguf3 trocken 0,18.--0,2 0,16---0,2
geschmiert 0,1 0,01
Stahl/Bronze trocken 0,18---0,2 0,16---0,2
GrauguB/Graugufl trocken 0,3 0,15.-.0,22
Metall/Holz trocken 05 ---0,6 0,2 ---0,5
geschmiert 0,1 0,03-.- 0,08
geschmiert mit Wasser - 0,22--- 0,26
Leder/Holz trocken 0,47 0,27
Holz/Holz trocken 0,57---0,65 0,3 ---0,5
’ geschmiert 0,2 0,04---0,16
geschmiert mit Wasser 0,7 0,25
Leder/Metall trocken 0,6 0,25---0,3
geschmiert 0,2 0,12---0,14
geschmiert mit Wasser 0,6 0,28 --- 0,38
Stahl/Eis - 0,027 0,014
Gummireifen/Fahrbahn trocken 0,7 0,3 ---0,5
mit Wasser - 0,15-.-0,2

Umrechnung der Reibungszahlen
bei symmetrischer Prismenfiihrung,
Offnungswinkel 20

Beispiel: Keilriemenscheibe

Mo
sin d

o =
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Anlage A 7: Seilreibungsfaktoren
40
30
a5
20 /
4045
//
/ 04
// //
0 as 035
8 8 A A - -3\
3,
° /// /// 03 3§
§ 6 N A A 4 A% N
% 5 / 1/ P // e 025 §’
5 - // 1R
X 4 v /J 53
g /// ) ~ 02
3 3 '/ /1 L // —
/A,// - ] 015
L—1
///,’ ; A - — a1
P/ S
Z f i L | —
"
7
0° 90° 180° 270° J360°
b 774 T g-ﬂ 2
Berifirungswinkel oc
Anlage A 8: Hebelarme der Rollreibung (Richtwerte)
fin mm
GrauguB/Stahl 0,5
Stahl/Stahl 0,5
Schienenfahrzeuge
Raéder auf trockener Fahrbahn 0,5
Hebezeuge
je nach Fahrbahnbeschaffenheit 0,5-.-1,0
Wilzlager 0,005 --- 0,01
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AuBere Krifte 11
Aktionskrifte 11

allgemeines Kréftesystem der Ebene 38, 54

— — des Raumes 72
Algorithmus

-, allgemeines Kriftesystem 138
~, Cremona-Verfahren 137

-, Losungstibersicht 140

-, zentrales Kraftesystem 136
Axialkraft 35

Bandreibung 90
Bauteil-abstraktionen 32
—~formen, abstrahierte 31
Belastungen 11, 32
Beriihrungspunkte 11

Cremona-Plan 51
Culmann-Verfahren 58

Doppelkrafteck 58
Dreigelenkbogen 97
Drei- und Mehrknotensysteme 139

Einknotensystem, elementares 139
-, komplexes 139

Fachwerk 49

feste Einspannung 37
Festlager 31, 37
Fliachenschwerpunkt 76
Forménderungen 31, 34
Freimachen 27

Gegenkrifte 11
Gegenwirkungsprinzip 44
Gelenkkraft 98

Sachwortverzeichnis

Gelenktriager 93, 97
Gleichgewicht am Korper 43
Gleichgewichtskraft 16
Gleitreibung 81

Haftreibung 81
Hebelarm 64

- der Rollreibung 92, 144
Hilfskrifte 25, 55

Innere Krifte 11

Kippmoment 80
Korperschwerpunkt 76
Kontaktstellen 11
Kontrollrechnung 63
Krifte, duBere 11
-, innere 11
—-bilanz 63
—-biischel, ebenes 38, 53
— —, rdumliches 71
—-gleichgewicht 11, 16, 48
—-gruppe, ebene 38, 54
- —, rdumliche 72
—-mafstab 13, 43
—-paar 22
—-parallelogramm 13, 18
~-system 11

, ailgemeines 38, 54
- —, mit Strukturknoten 54
- —, raumliches 72
- -, zentrales 38
--zustand, statischer 27
Kraft, Zerlegung in Komponenten 15, 19
--eck 15, 17, 41, 43
~-richtung 12
~-vektoren 12
Kraft- und Seileckverfahren 56
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LingenmaBstab 43
Lagersymbole 36
Lastverteilung 34
Linienschwerpunkt 76
Loslager 35, 36

Modell, mechanisches 31
—-bearbeitung 38
—-entwicklungen 29
Momente 22

-, Bezugspunkte fir 23
-, statische 24

-, Vorzeichenregel fiir 23

Pendelstiitze 29, 31, 36
Pol 55, 56
~-strahlen 56

Radialkraft 35, 74
Reaktionskrifte 11
Reibkrifte nach Coulomb 81
Reibung 81

Reibungsfaktoren, Gleitreibung 143

-, Seilreibung 144

—-winkel 84

—-zahlen, Gleitreibung 81, 143
— -, Seilreibung 144
Resultierende 13
Richtungswinkel 12, 19
Rollreibung 92

SchluBlinie 60

Schneiden 27

Schnitt-krafte 11

—--reaktionen 11, 12
Schwerpunkts-ermittlungen 75
—-lagen 142 )

146

Seileck 56

~-Verfahren 5¢

Seilreibung nach Euler 90
Seilreibungsfaktoren 90
Stab-folge 50

—-krifte 51

—-tafel 50

Stand-moment 80
—-sicherheit 80, 86

statisches Gleichgewicht 11
- Kriftegleichgewicht 15, 18
- Moment 22

— Momentengleichgewicht 62
Streckenlast 68

Struktur-bild 31, 35, 38
—-knoten 39

—-plan 45

—-skizze 47

Stiitz-reaktionen 11, 32
—-symbole 36

Symbole zu den Gleichgewichtsbedingungen 63

Technisches Gebilde 27, 29
Tragwerk 49

Uberlagern 27
Umfangskraft 35

Wechselwirkungsgesetz 12, 15
Widerstandskraft bei Gleitreibung 84
Wirkungs-linie der Krifte 12
—-knoten 38

—-sinn der Krifte 12

Zentrales Kriftesystem der Ebene 38, 41
—~ — des Raumes 71
Zweiknotensystem 139
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Lehr- und Arbeitsbuch aus der Reihe
Grundlagen der Technischen Mechanik

Verbindlich fiir Studenten einiger Grund-
studienrichtungen, wie

Elektroingenieurwesen  Holztechnik
Energietechnik Landtechnik
Gastechnik Textiltechnik

sowie fiir Ingenieurpadagogen,
ferner zur Wiederholung des Lehrstoffes und
zur Vorbereitung auf Priifungen

Hauptabschnitte

Grundbegriffe

Modellentwicklungen und
Modellbearbeitungen

Zeichnerische und rechnerische Arbeitsver-
fahren fiir Kréfte in der Ebene oder im Raum

Anwendungen und Vertiefungen:

Schwerpunktsermittlungen
Standsicherheit

Reibung

Hinweis auf Korpersysteme

Anhang mit algorithmischen Zusammenfassun-
gen zur Forderung des Ubersichtswissens

Spezielle Markierungen im Text

@ Formeln und Merksitze
» Lehrbeispiele
B Ubungshinweise



