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VORWORT

Die ersten wahrscheinlichkeitstheoretischen Untersuchungen wurden be-
reits vor mehr als 300 Jakren durchgefiihrt. Sie bezogen sich damals auf
Gliicksspiele. Dieser Untersuchungsgegenstand iiberwiegt auch heute noch
in verschiedenen Verdffentlichungen. Das kann sehr leicht zu dem Urtesl
verleiten, die Erkenntnisse hdtten wenig praktischen Wert.

Die Wahrscheinlichkeitsrechnung ist aber in Wirklichkeit fiir die ver-
schiedensten wissenschaftlichen Disziplinen unentbehrlich geworden. Ein
bedeutender Teil der theoretischen Physik bedient sich der Erkenntnisse
der Wahrscheinlichkeitstheorie. Auch im Bereich der Okonomie zeichnet
sich eine solche Entwicklung ab. Das neue konomische System der Pla-
nung und Leitung der Volkswirtschaft erfordert, alle Planungsaufgaben
nach wissenschaftlichen Erkenntnissen zu losen. Dazu gehort, wichiige
okonomische Entscheidungen soweit wie moglich durch komplexe Berech-
nungen zu begriinden. Seit mehreren Jahren wird der Anwendung der
Mathematik erhihte Aufmerksamkeit gewidmet. Das Interesse galt zu-
nichst solchen Methoden, die erst vm Laufe des letzten Jahrzehnts bekannt
geworden sind. Dies gult beispielsweise fir die lineare und nichtlineare
Optimierung. Daneben gibt es jedoch zahlreiche Aufgaben, die mit Hilfe
der Wahrscheinlichkeitsrechnung gelost werden kinnen. Im Versiche-
rungswesen bedient man sich ihrer bereits verkdltnismafig lange. Auch
die Stichprobentheorie — und in diesem Zusammenhang speziell die sta-
tustesche Qualititskontrolle — fufen auf den Erkenntnissen der Wahr-
scheinlichkeitsrechnung.

Es sind stindig neue Gebiete hinzugekommen. So setzt beispielswerse die
optimale Lagerhaltung fiir Reparaturteile wahrscheinlichkeitstheoretische
Uberlegungen voraus. Es ist an die Theorie der Massenbedienung und an
die Theorie der Spiele zu denken. Wihrend die Theorie der Massen-
bedienung, insbesondere ihre Anwendung bet Warteschlangenmodellen,
schon heute fiir die sozialistische Wirtschaft erheblichen Nutzen hat, bedarf
die Anwendung der Theorie der Spiele noch weiterer Untersuchungen.

Bei richtigem Einsatz derartiger Berechnungen konnen erhebliche mate-
rielle und finanzielle Mittel evngespart werden. Der erfolgreiche Gebrauch
derartiger Verfahren wird leider dadurch verzigert, daff insbesondere die
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Okonomen nur unzureichende mathematische Vorkenntwisse besiizen. Um
diese Liicke zu schliefen, wurde an verschiedenen Hochschulen und Fakul-
titen ein postgraduales Studium eingerichtet. An der Ingenieurdkonomi-
schen Fakultdt der Universitit Rostock wurden in diesem Rahmen unter
anderem Fragen der Wahrscheinlichkeitsrechnung behandelt. Diese Vor-
aussetzungen bildeten den Grundstock fiir die vorliegende Verdffentlichung.
Damit soll dve Mdoglichkest geboten werden, einen gréfieren Interessenten-
kreis zu informieren. Auferdem ist diese Arbeit als Lehrmaterial fiir die
Anetgnung vertiefter mathematischer Kenntnisse gedacht.

Es wurde Wert darauf gelegt, moglichst viele 6konomische Beispiele aus-
zuwdhlen. Bei den einleitenden Betrachtungen erwies es sich jedoch aus
methodischen Griinden als zweckmdfig, einige Fille zu behandeln, die
Gliicksspiele betreffen. Die mathematische Problematik lgft sich auf diese
Weise besser erldutern.

Allen Kollegen, die uns bei der Gestaltung des Manuskripts beraten haben,
sei herzlich gedankt. Insbesondere danken wir Herrn Dr. Johannes Behr

und Herrn Dipl. math. Kurt Briinecke sowie Herrn Dipl. oec. Helmut
Michael.

DIE VERFASSER
Rostock, 1. Oktober 1964



1. Zufsllige Ereignisse

1.1.  Gegenstand der Wahrscheinlichkeitsrechnung

Die Wahrscheinlichkeitsrechnung ist ein Teilgebiet der Mathematik, das die
GesetzmiBigkeiten im Bereich zufdlliger Erscheinungen oder Ereignisse unter-
sucht.

Zufillige Ereignisse sind beispielsweise die Ergebnisse beim Spiel mit
einem Wiirfel. Es bleibt dem Zafall iiberlassen, ob bei einem Wurf 1, 2, 3,
4, 5 oder 6 Augen erzielt werden. Dabei ist noch keine GesetzmiBigkeit zu
erkennen. Ein anderer Sachverhalt ergibt sich jedoch, wenn in groBerer Zahl
mit demselben Wiirfel gewiirfelt wird. Dann lassen sich Aussagen gewinnen,
mit welcher Hiufigkeit die einzelnen Augenzahlen erzielt werden.

Zufillige Erscheinungen und GesetzméBigkeiten schliefen sich nicht aus,
sondern bilden eine dialektische Einheit. Werfen wir eine Miinze in die Hohe,
dann fillt sie auf Grund des objektiven Wirkens des Schwerefelds der Erde
auf den Boden. Das Fallen des Geldstiicks auf den Boden ist also gesetzmiBig.
Dagegen ist es zufillig, ob die am Boden liegende Miinze mit der Zahl-Seite
oder mit der Wappen-Seite nach oben zeigt (Wir schlieBen bei dieser Uber-
legung den Fall aus, dal die Miinze hochgekantet steht!). Wir haben es hier
also mit den zufélligen Ereignissen ,Zahl’ und ,Wappen® zu tun. Das not-
wendige (gesetzmiBige) Fallen des Geldstiicks auf den Boden ist untrennbar
mit dem Eintreten eines der beiden zuféilligen Ereignisse verbunden. Fiihren
wir eine Serie von Wiirfen mit ein und demselben Geldstiick durch und
beobachten wir jeweils den Ausgang der angestellten ,Versuche‘, dann ergeben
sich gewisse Aussagen iiber das Wesen der zufélligen Ereignisse ,Zahl’ und
,Wappen®.

Wie die vorstehenden Beispiele zeigen, interessieren uns neben den Einzel-
ereignissen besonders Serien von Einzelereignissen. Zu diesem Zweck fithren
wir den Begriff der Massenerscheinung ein. Unter einer Massenerscheinung
verstehen wir einen solchen Vorgang, der in einer Gesamtheit stattfindet,
die aus einer groBen Anzahl von gleichberechtigten Ereignissen unter ein
und demselben Komplex von Bedingungen besteht. So sind das mehrmalige
Wiirfeln mit einem Wiirfel, das mehrfache Werfen mit einer Miinze und die
Massenproduktion einer bestimmten Erzeugnisart einige Beispiele fiir Massen-
erscheinungen. Fithren wir Versuche aus und analysieren die Resultate der
einzelnen Versuche, so erhalten wir AufschluB iiber das Wesen der be-
treffenden Massenerscheinung.

Somit untersucht die Wahrscheinlichkeitsrechnung die GesetzmiBigkeiten
von Massenerscheinungen.



1.2.  Der Begriff der Wahrscheinlichkeit — Der Additionssatz

Wir bezeichnen im folgenden zufillige Ereignisse einer Massenerscheinung
mit groBen lateinischen Buchstaben (zuweilen mit Indizes aus der Menge
der natiirlichen Zahlen). So seien zum Beispiel Z und W die Ereignisse ,,Zahl*
und ,,Wappen® beim Werfen mit einer Miinze. Die beim Wiirfeln mit einem
Wiirfel moglichen zufilligen Ereignisse konnen wir mit 4,, 4,, 45, 4,, 4
und A4¢ bezeichnen; dabei bedeutet allgemein 4; (k=1, 2, 3, 4, 5, 6) das
zufillige Ereignis ,,k-Augen bei einem Wurf mit einem Wiirfel*.

Wir fithren nun einige grundlegende Begriffe ein. Zunichst definieren wir
das dem beliebigen Ereignis 4 entgegengesetzte oder komplementire Ereignis 4.
Das Ereignis A tritt genau dann ein, wenn das Ereignis 4 nicht stattfindet.
Ist 4 das Ereignis ,,das Erzeugnis ist normgerecht, dann bedeutet 4 das
Ereignis ,,das Erzeugnis ist nicht normgerecht*. Das komplementire Ereignis
zu dem Ereignis 4 ist offensichtlich 4 selbst, d. k es gilt

A=4

‘Wir lernen jetzt Verkniipfungen von Ereignissen kennen, d. h. Operationen
mit Ereignissen, die zwei oder mehreren Ereignissen ein eindeutig bestimmtes
Ereignis zuordnen. Zunichst erliutern wir die ,,dddition” zweier Ereignisse
A und B. Wir sagen: das Ereignis 4 + B tritt ein, wenn mindestens eines
der beiden Ereignisse eintritt und nennen 4 4 B die Summe der Ereignisse
A und B. Zur Verdeutlichung dieses Begriffs betrachten wir die Massen-
erscheinung Wiirfeln mit einem Wiirfel. Verwenden wir die oben eingefiihrten
Bezeichnungen, dann bedeutet 4, 4 4, das Ereignis ,,h6chstens zwei Augen®
und 4, + A, das Ereignis ,,wenigstens 5 Augen. Die Summe von mehr als
zwei Ereignissen erklirt sich sukzessiv aus der oben eingefiihrten Summe von
zwei Ereignissen. So ist zum Beispiel 4, + 4, + 4; 4 4, 4+ A4, das Ereig-
nis ,,keine sechs Augen‘‘ und damit identisch mit 44; in diesem Fall gilt also
die Ereignis-Gleichung

A+ Ay + Ay + A, + Ay = 4.

Wir fiihren nun die ,,Multtplikation” zweter Ereignisse A und B ein. Wir
sagen: das Ereignis 4 B tritt ein, wenn die beiden Ereignisse 4 und B zugleich
eintreten und nennen 4B das Produkt der Ereignisse 4 und B. Zur Verdeut-
lichung dieses Begriffes betrachten wir die Massenerscheinung Wiirfeln mit
zwel Wiirfeln. Mit den oben benutzten Bezeichnungen stellt dann 4, 4, das
Ereignis ,,der eine Wiirfel zeigt ein Auge und der andere Wiirfel zeigt zwei
Augen‘ dar. Das Produkt von mehr als zwei Ereignissen ergibt sich sukzessiv
aus dem Produkt von zwei Ereignissen. So bedeutet 4,4, 4, das Ereignis
,,alle drei Wiirfel zeigen jeweils ein Auge® bei einem Wurf mit drei Wiirfeln.

Wir nennen ein Ereignis unmdglich oder ausgeschlossen, wenn es in der
betreffenden Massenerscheinung nicht eintreten kann. So ist das Ereignis
,,10 Augen bei einem Wurf mit einem Wiirfel** unméglich. Ein Ereignis heifit
dagegen sicher, wenn es stets in der betreffenden Massenerscheinung eintritt.
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Beispielsweise ist das Ereignis ,,weniger als 7 Augen bei einem Wurf mit
cinem Wiirfel* ein sicheres Ereignis. Bezeichnen wir das unmégliche Ereignis
mit U, das sichere mit S und ein beliebiges Ereignis mit 4, dann gilt fiir die
betreffende Massenerscheinung?!

A+ A=8, AA=U, A8S=4, AU=T

sowie S = U und U = 8. Die vorstehenden Relationen lassen sich durch
einfache Uberlegungen beweisen.

Nach diesen notwendigen Vorbereitungen kliren wir den grundlegenden
Begriff der Wahrscheinlichkeit.

1.2.1. Die statistische Definition der Wahrscheinlichkest

Wir betrachten eine bestimmte Massenerscheinung und in ihr ein gewisses
zufilliges Ereignis A. Wir fithren # Versuche aus und beobachten dabei n 4mal
das Auftreten des Ereignisses 4. Dann bezeichnen wir den Quotienten

b (4) =24 (L1)

als die relative Hdaufigkest fiir das Auftreten von Ereignis 4 innerhalb der
durchgefiihrten Versuchsreihe.

Nehmen wir zum Beispiel als Massenerscheinung das Wiirfeln (mit einem
Wiirfel) und als 4 das Ereignis 4,. Wir fiihren eine Serie von # = 100 Wiir-
fen durch und mdgen dabei 19mal (n, = 19) unser Ereignis 4 feststellen.
Dann gilt fiir die relative Hiufigkeit von 4

19

hﬂ (A) = klOU (A) == TOT) = 0,19 .

Wegen 0 < ny < n gilt offenbar fiir jede relative Haufigkeit

0<hy(4) <1 |- (1.2)

Wegen der Zufilligkeit der Ereignisse ist k, (4) keine stabile GroBe. Des-
halb liefern Versuchsreihen gleichen Umfangs n unterschiedliche Werte fiir
74 uud gemdB (1.1) verschiedene relative Haufigkeiten fiir ein und dasselbe
Ereignis 4. Diesen Sachverhalt erliutern wir in der Stichprobentheorie
ausfiihrlicher.

Die nachstehende Tabelle mége die letzten Bemerkungen am Beispiel der
Massenerscheinung Wiirfeln (mit einem Wiirfel) und des Ereignisses 4 = 4,
verdeutlichen.

1 Der Querstrich iiber einem Ereignissymbol gibt den Ubergang zum entgegengesetzten Ereignis an.
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NT. Anzahl der Anzahl des Eintretens Relative Héufigkeit

d Wi von 4 von 4
Sorie wie "4 by, (4)
1 100 19 0,19
2 100 14 0,14
3 100 15 0,15
4 100 17 0,17

Bei zunehmender Zahl der Versuche stabilisiert sich jedoch die GroBe &, (4),
das heiBt 4, (A4) ndhert sich einem festen Wert, wenn die Anzahl n der Ver-
suche geniigend gro8 gewdhlt wird. Diesen festen Wert bezeichnen wir als
die Wahrscheinlichkeit P (A) fiir das Auftreten des Ereignisses 4. Wir
schreiben daher

P(4)=lim &, (4) |. (1.3)

n—> Q0

Das ist die statistische Definition der Wahrscheinlichkeit fiir das Auftreten
des Ereignisses 4. Sie erméglicht prinzipiell, Wahrscheinlichkeiten statistisch
zu erfassen.

Betrachten wir einen regelmiBigen Wiirfel mit homogener Dichte, so
erwarten wir fiir die Ereignisse 4; (¢ = 1, 2, . . ., 6) die Wahrscheinlichkeiten

P(d)=5(i=12...,6).

Die sechs Ereignisse 4,, ..., 44 besitzen also dieselbe Wahrscheinlichkeit,
daher nennen wir sie gleichwahrscheinlich. Aus der statistischen Definition
(1.3) und der Beziehung (1.2) folgt

0< PA)<I |- (1.4)

Die Wahrscheinlichkeit fiir das Auftreten eines Ereignisses (oder kurz: die
Wabhrscheinlichkeit eines Ereignisses) ist demzufolge eine Zahl aus dem ab-
geschlossenen Intervall [0,1]. Fiir das sichere Ereignis S gilt definitionsgema

P =1] (1.5)

Ist S = A4, 4+ 4, + ...+ A4gdas Ereignis , eine der Zahlen 1 bis 6 bei einem
‘Wurf mit einem Wiirfel”, so ist in der Tat P (S) = 1. Fiir das unmégliche
Ereignis U gilt definitionsgemi

P(U)=0 |. (1.6)

Ist U das Ereignis ,,mindestens 7 Augen bei einem Wurf mit einem Wiirfel®,
so wird wirklich P (U) = 0. Aus P (4) = 0 folgt aber keineswegs 4 = U.
Sei zum Beispiel bei einer Giitekontrolle das Ereignis 4 der Anfall von Aus-
schuB. In einem Betrieb wird fiir das Ereignis 4 die Wahrscheinlichkeit
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P (4) = 0 angegeben. Es darf nun nicht gefolgert werden, daf in dem Betrieb
Ausschufl ausgeschlossen ist. P (4) = O bedeutet lediglich, daB die relative
Hiufigkeit von Ausschuf} sehr klein (nahe bei null) ist.

Nennen wir ein Ereignis 4 selten, wenn P (4) = 0 ist, dann ist im obigen
Beispiel Ausschu8 ein seltenes, aber kein unmogliches Ereignis.

Nachdem wir die Wahrscheinlichkeit fiir das Auftreten eines Ereignisses
auf statistischem Wege bestimmt haben, untersuchen wir nun die Frage
,»Wie groB ist die Wahrscheinlichkeit einer Summe von Ereignissen, wenn die
Wahrscheinlichkeiten der einzelnen Ereignisse bekannt sind?“. Zu diesem
Zweck betrachten wir zunichst unvertrigliche Ereignisse, das heiBit solche
Ereignisse, die sich paarweise ausschliefen. Sind 4 und B beispielsweise un-
vertriglich, dann gilt offenbar P (4B) = 0, denn das gleichzeitige Auftreten
beider Ereignisse ist ausgeschlossen.

Bei der Einstufung der Qualitit von Erzeugnissen gibt es die vier mog-
lichen Ereignisse @, = ,,Giitezeichen @“; @, = ,,Giitezeichen 1; @, = ,,Gii-
tezeichen 2 und @,= ,,ohne Giitezeichen. Diese Ereignisse sind unver-
triglich, denn es ist unmoglich, daf3 ein Erzeugnis mehreren Qualitdtsstufen
gleichzeitig angehort.

Ist schliefilich 4 ein beliebiges Ereignis und bedeutet A das zugehérige
komplementire (entgegengesetzte) Ereignis, dann sind 4 und A4 offensicht-
lich unvertraglich.

Um die oben aufgeworfene Frage fiir unvertragliche Ereignisse zu beant-
worten, bedienen wir uns folgenden Beispiels: In verschiedenen Betrieben
des Schiffbaus werden zur Qualititsiiberwachung der Fertigung Giitenoten
fiir die einzelnen Arbeitsginge erteilt. Die beste Note ist die 1, die schlechteste
die 4. Da keine Zwischennoten zugelassen sind, haben wir es hier mit den
unvertriglichen Ereignissen N;=,der Arbeitsgang erhilt die Note ¢
(s =1, 2, 3, 4) zu tun. Nach Einstufung aller » Arbeiten eines Monats ergeben
sich folgende relative Haufigkeiten %, (IV,) fiir die Ereignisse N, (1 = 1,2, 3,4):

b, (V) = 0,30, h, (N,) = 0,52, h, (N3) = 0,15, h, (N,) = 0,03

Die relative Héufigkeit fiir das Ereignis N, 4 N,, das heilt die relative
Haufigkeit fiir das Ereignis ,,ein Erzeugnis wird nach der Giitenote 1 oder 2
beurteilt” ist demzufolge 0,30 + 0,52 oder 0,82. Allgemein gilt fiir zwei un-
vertrigliche Ereignisse 4 und B die Beziehung

h (4 + B) =y (4) + b (B) |- (1.7)

Fiihren wir den Grenziibergang n — co durch, so ergibt sich auf Grund der
statistischen Definition der Wahrscheinlichkeit der Additionssatz fiir die
Wahrscheinlichkeiten zweier unvertréglicher Ereignisse 4 und B zu

P4+ B)=P(4)+ P(B) |- (1.8)

Mit zwei Beispielen belegen wir den vorstehenden Sachverhalt. Bedeuten
A; und 4, die schon mehrfach erwihnten Ereignisse beim Wiirfeln mit einem
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normierten Wiirfel (vergleiche oben), dann ist zunéchst P (4, = P (4,) = —(1? .

Ferner ergibt sich fiir 4, 4+ 4,, das heilt fiir das Ereignis ,,hochstens zwei
Augen bei einem Wurf“ nach Regel (1.8) die Wahrscheinlichkeit
1 1 1
P(Al +A2) = P‘(A]_) + P(Az) = ‘6—+F=§ .
Ein Betrieb stellt Walzblech in Langen zu 10 m her. Die Wahrscheinlich-
keiten fiir die Ereignisse 4 = ,,fehlerloses Blech® und B=,,Blech hat genau
einen Fehler betragen P (4) = 0,85 und P (B) = 0,09. Das Ereignis 4 4+ B,

némlich das Ereignis ,,Blech hat nicht mehr als einen Fehler besitzt damit
die Wahrscheinlichkeit

P(A+ B)= P(4) + P(B)= 0,85 + 0,09 = 0,94 .

Die Aussage (1.8) 148t sich auf induktivem Wege zu dem allgemeinen Add:-
teonssatz der Wahrscheinlichkeiten unvertriglicher Ereignisse erweitern, den
wir durch den folgenden Satz ausdriicken.

Satz 1.1: Die Wahrscheinlichkeit fiir die Summe von endlich oder abzéhl-
bar unendlich vielen unvertriglichen Ereignissen 4,, 4,, ... 4, ... ist
gleich der Summe der Wahrscheinlichkeiten der Einzelereignisse 4, , . .. 4,
das heif3t, es besteht der Zusammenhang?!

k k
P(_ZlAi) = _Z'IP(Ai) ‘ (1.9)

Zu dem vorstehenden Satz geben wir abschlieBend zwei Beispiele:

Wir betrachten zunichst den Verkauf von Herrenschuhen in einem be-
stimmten Schuhgeschift. Fiir die Nachfrage nach den einzelnen GroBen-
klassen k; sind folgende Wahrscheinlichkeiten bekannt:

Nr. 7 GroBenklasse K, i ‘Wahrscheinlichkeit P ( K i )
1 6 0,02
2 61/, 0,06
3 7 0,08
4 71, 0,10
5 8 0,14
6 81/, 0,14
7 9 0,16
8 91/, 0,12
9 10 0,08

10 10/, 0,04
11 11 0,02
12 111 / 2 0,02
13 12 0,02

1 Ist & = 0o, dann muB die rechte Seite in (1.9) konvergent sein.
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Am Lager befinden sich nur noch Schuhe der Grofien 6, 61/,, 7 und 7%/,.
Wie grof} ist die Wahrscheinlichkeit dafiir, dal die Wiinsche eines beliebigen
Kiufers, der in diesem Schuhgeschift einkaufen méchte, befriedigt werden
konnen? Gesucht ist offenbar die Wahrscheinlichkeit fiir das Ereignis
K, + K, + K; 4+ K,. Nach Satz 1.1 erhalten wir diese zu

P(K1+K2+K3+K4)=P(K1)+P(K2)+P(K3)+P(K4)=O,26-

Fiir das zweite Beispiel betrachten wir wieder die Massenerscheinung Wiirfeln
mit einem normierten Wiirfel und berechnen die Wahrscheinlichkeiten fiir
die Ereignisse 4 =4, + 43+ 4; und B=A4, 4+ 4,4+ 4, + 4,. Das
erste Ereignis 4 ist das Ereignis ,,ungerade Augenzahl bei einem Wurf®, das
zweite Ereignis B ist dquivalent dem Ereignis ,nicht mehr als 4 Augen bei
einem Wurf*. Nach Satz 1.1 ergibt sich fast von selbst das Ergebnis zu

Pd)=y, P(B =

Wir fragen nun nach der Wahrscheinlichkeit fiir das Ereignis 4 4+ B. Wen-
den wir auf 4 + B den Additionssatz an, so wird
1 1 7
P (44 B) =g +t3=%"
Das Ergebnis ist offenbar sinnlos, da eine Wahrscheinlichkeit nie die Zahl 1
ibertrifft. Wir gelangen zu dem richtigen Resultat, wenn wir bedenken, da3
4 + B gleich dem Ereignis ,,keine'6 Augen bei einem Wurf® ist. Daher wird

P(A4 B)=P(4,+... 4+ 4;) = % . Die Anwendung des Satzes 1.1 zur

Berechnung von P (4 + B) fithrte zu einem falschen Ergebnis, weil 4 und B
vertriglich sind, denn eine ungerade Augenzahl kann auch kleiner als 5 sein.
Damit sind die Voraussetzungen des obigen Satzes verletzt. Diese Uber-
legung zeigt, dal die Unvertriglichkeit der Ereignisse im Satz 1.1 eine not-
wendige Voraussetzung ist.

1.2.2. Die axiomatische Definition der Wahrscheinlichkeit

Im téglichen Sprachgebrauch hat der Begriff der Wahrscheinlichkeit keine
genaue Bedeutung. Bisweilen wird zum Ausdruck gebracht, da8 ein zufilliges
Ereignis mit 50 Prozent Wahrscheinlichkeit eintrifft. Solche Bewertungs-
zahlen sind meist nur gefihlsméBig angegeben. Da aber die Wahrscheinlich-
keitsrechnung eben mit diesem zentralen Begriff operiert, mufl'die Wahr-
scheinlichkeit als Bewertungszahl fiir Ereignisse priziser gefallt werden, als
es bisher geschehen ist.

Zu diesem Zweck geben wir im folgenden die Begriffsbestimmung von
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KOLMOGOROFF [1]'. Diese Definition besteht aus einem sogenannten
Axiomensystem, das die Wahrscheinlichkeit eines Ereignisses mittels ihrer
Eigenschaften erklirt.

1. Axiom: Jedem zufilligen Ereignis 4 ist eine bestimmte nicht negative
Zahl P (A) zugeordnet. Diese Zahl heiit die Wahrscheinlichkeit fiir das
Ereignis 4.

2. Axiom: Die Wahrscheinlichkeit des sicheren Ereignisses S ist 1.

3. Axiom: Fiir unvertréigliche Ereignisse 4,, 4,, . .. gilt

P(Ay+Ay+..)=P(4d)+ P(dy) + ...

Die bei der obigen axiomatischen Definition aufgetretenen Eigenschaften
des Wahrscheinlichkeitsbegriffs sind uns schon aus dem vorangegangenen
Abschnitt geldufig. Alle anderen Eigenschaften dieses Begriffs lassen sich aus
den drei Axiomen herleiten. Damit beinhalten diese Axiome das Minimum
an Forderungen, die wir an einen verniinftigen Begriff der Wahrscheinlichkeit
als Bewertungszahl fiir zuféllige Ereignisse stellen miissen.

Wir leiten nun aus den Axiomen weitere, zum Teil bereits bekannte Aussagen
iiber Wahrscheinlichkeiten ab.

Satz 1.2: Fiir das komplementire Ereignis 4 eines Ereignisses 4 gilt

[Pay=1—P () |. (1.10)

Beweis: 4 und A sind unvertriglich. Ferner gilt 4 + A = 8. Nach Axiom 2.

ist dann P (4 + A) = 1. Wegen Ax10m 3 folgt weiter P (4) + P (d) =1
oder die Behauptung.

Satz 1.3: Das unmégliche Ereignis U hat die Wahrscheinlichkeit 0.

Beweis: Aus Satz 1.2 folgt mit 4 =8 und A = S= U sofort P(U)=1— P(S).
Nun ist aber P (S) = 1 nach Axiom 2. Damit ist alles bewiesen.

Satz 1.4: Fiir jedes Ereignis 4 besteht die Beziehung

0<PU)<1

Beweis: Nach Axiom 1 ist zuniichst 0 < P (4). Wir zeigen nun P(4) <1
indirekt. Wire nimlich P (4) > 1, dann wiirde gemiB Satz1.2 P (4) =1 —.
P (4) < 0 folgen. Dann wire aber A ein Ereignis mit negativer Wahrschein-
lichkeit; dieser Umstand widerspricht der Aussage des Axioms 1. Folglich
mufl P (fi) < 1 sein.

Wir betrachten nun gewisse Ereignisse 4,, 4, . . ., 4; einer Massenerschei-
nung. Wirsagen: Die Ereignisse 4, , . . ., 4; bilden ein vollstindiges System von
Ereignissen, wenn bei jedem Versuch genau eines der Ereignisse 4, ..., 4;
als Ausgang eintreten muf. Ein vollstindiges System von Ereignissen ist
damit ein System unvertraglicher Ereignisse.

1 gziffern in eckigen Klammern verweisen auf das Literaturverzeichnis am SchluB dieses Buches.
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Beispiele fiir vollstdndige Systeme von Ereignissen lassen sich leicht an-
veben. 4 und A bilden stets ein solches System. Ferner die Ereignisse 4,,
Ay, ..., Ag beim Wiirfeln mit einem Wiirfel, die Ereignisse K, K,, ... K,
heim Kauf von Herrenschuhen, die Ereignisse @, . . ., @, bei der Qualitéts-
cinstufung von Erzeugnissen und schlielich die Ereignisse Ny, ..., N, bei
der Benotung vbn Arbeitsgingen.

Wir verallgemeinen nun Satz 1.2. zu
Satz 1.5: Bilden 4,, 4,, . . ., 4; ein vollstindiges System von Ereignissen,
so gilt

S Pd)=1 | (1.11)

K

Beweis: Definitionsgemal ist zundchst 2 4; = S. Weiter sind die Ereig-
i=1

nisse 4; (1 =1,2,..., k) paarweise unvertriglich. Daher folgt aus den

Axiomen 2 und 3 unmittelbar die Behauptung.

1.2.3. Dre klassische Definition der Wahrscheinlichkeit

Wir nennen ein System von Ereignissen 4,, 4,, ..., 4, ein System von
Chancen, wenn fiir alle diese Ereignisse die gleiche Mdoglichkeit besteht, bei
einem Versuch als Ergebnis zu erscheinen. Wir geben ein vollstindiges (im
Sinne von 1.2.2) System von Chancen vor und betrachten ein beliebiges
Ereignis 4 in der betreffenden Massenerscheinung. LaBt sich 4 als Summe
von genau m Chancen des Systems 4,, ..., 4, darstellen, dann besagt die
klassische Definition fiiv die Wahrscheinlichkeit P (4) von A4 einfach

P)="2 (1.12)

oder in Worten: Die Wahrscheinlichkeit fiir das Eintreten des Ereignisses 4
ist gleich dem Verhéltnis aus der Anzahl der fiir 4 giinstigen Chancen und
der Anzahl der Gesamtchancen (moglichen Chancen fiir 4) [2].

Erldutern wir den Sachverhalt an einem Beispiel. Wir betrachten abermals
die Massenerscheinung Wiirfeln, aber diesmal mit 4 normierten Wiirfeln und
fragen nach der Wahrscheinlichkeit fiir das Ereignis 4 = ,,genau 7 Augen
bei einem Wurf . Aus der Kombinatorik ist bekannt, daB die Anzahl der
verschiedenen Kombinationen von ¢ Elementen zur j-ten Klasse mit Wieder-

holung (i + ; o 1) betrigt. Demzufolge gibt es bei einem Wurf mit 4 nor-

mierten Wiirfeln (wegen ¢ = 6 und j = 4) genau Z = 126 verschiedene

gleichmogliche Ausginge. Unser vollstindiges System von Chancen besteht
also aus 126 Chancen, das heilt es ist n = 126. Fiir das Ereignis 4 kommen
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offenbar nur die Ereignisse 4, = ,,1 4141445 4,=,14+1+2+4 3“
und 43==,,1 + 2 + 2 4 2° in Frage, das heit es gilt 4 = 4, + 4, + 4.
Unser Ereignis 4 148t sich damit als Summe von genau 3 Chancen darstellen.
GemdB obiger Definition (1.12) erhalten wir

1
126 T a2’
Wir zeigen nun, dafl unser statistischer Wahrscheinlichkeitsbegriff unter den

hier erforderlichen Einschrankungen mit dem klassischen Begriff identisch
ist. Das vollstdndige System von Chancen ist ein vollstindiges System gleich-

Wahrscheinlicher Ereignisse. Wegen Z’ A;=8 und P(S)=1 wird

P(4) =

_S_,‘ P (4;) = 1. Nun ist aber wegen der Gleichwahrscheinlichkeit
i=1
P (4,)) =...= P(4,) und daher

PA)=— G=1,2...,m).

Ist 4 die Summe von m der Ereignisse 4,, ..., 4,, dann ergibt sich fiir
P (A4) nach Satz 1.1 die Summe von m Einzelwahrscheinlichkeiten, die alle

gleich — sind. Mithin folgt

PA) =m- =",
n o
das ist aber gerade die Bezichung (1.12).

Der klassischen Definition gebiihrt in zweifacher Hinsicht Kritik. Einmal
geht sie von der Gleichméglichkeit bestimmter Elementarereignisse aus und
liefert nur fiir solche Ereignisse Wahrscheinlichkeiten, die eine Darstellung
als Summe dieser Elementarereignisse zulassen. Zum anderen setzt die
Gleichméglichkeit die Endlichkeit des Systems der Chancen (Elementar-
ereignisse) voraus. Es gibt aber in der Praxis vollstindige Systeme von un-
endlich vielen Elementarereignissen, so daf auch diese Einengung des Wahr-
scheinlichkeitsbegriffs nicht gerechtfertigt erscheint.

Wir haben in diesem Abschnitt drei Definitionen fiir den Begriff der
Wahrscheinlichkeit eines Ereignisses kennengelernt. Vom mathematischen
Standpunkt aus ist der zweiten, also der axiomatischen Definition der
Vorrang zu geben, da diese Begriffsbestimmung die Grundlage der modernen
Theorie der Wahrscheinlichkeitsrechnung bildet. Die zweite Definition hat
jedoch den Nachteil, da8 sie eine direkte (unmittelbare) Erfassung (Berech-
nung) von Wahrscheinlichkeiten realer Ereignisse nicht zuldBt. Wir kénnen
gemif dieser Definition lediglich mittelbar — auf dem Wege iiber bereits
ermittelte Wahrscheinlichkeiten — Wahrscheinlichkeiten praktischer Er-
eignisse erfassen, indem wir die aus der axiomatischen Begriffsbestimmung
resultierenden — und oben zum Teil hergeleiteten — Regeln anwenden.
Die klassische Definition 148t dagegen die Ermittlung von Wahrschein-
lichkeiten (iiber die entsprechenden relativen Haufigkeiten) zu. GemaB (1.3)
tiihrt dieser Weg jedoch nur zu einem Néherungswert fiir die gesuchte Wahr-
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scheinlichkeit, dessen Genauigkeit durch die Stichprobentheorie angegeben
wird. Unter den erforderlichen Voraussetzungen ergeben sich die Wahrschein-
lichkeiten nach der klassischen Definition numerisch exakt, wobei die Kom-
binatorik erfolgreiche Anwendung findet. Auf Grund ihres eingeschrinkten
Giiltigkeitsbereiches verwenden wir die klassische Definition im folgenden
jedoch nur selten. Wir verwenden deshalb vorwiegend die statistische Defi-
nition der Wahrscheinlichkeit [2].

1.3.  Der Multiplikationssatz
1.3.1. Der Begriff der bedingten Wahrscheinlichkeit

Um den Begriff der bedingten Wahrscheinlichkeit zu prigen, gehen wir von
einem Beispiel aus: In einem Betrieb werden Damenstriimpfe hergestellt.
Fiir den Betrieb ist das Ereignis 4 = ,,ein Strumpf gehort zur 1. Wahl* von
groBem Interesse. Dieses Ereignis 4 kann nun unter verschiedenen Bedin-
gungen eintreten, einmal unter der Bedingung B,= ,,alle hergestellten
Striimpfe werden betrachtet”, zum anderen unter der Bedingung B, = ,,nur
die brauchbaren Striimpfe werden betrachtet“. Die Grofle P (4), das heiit
die Wahrscheinlichkeit des Ereignisses 4 ist offenbar abhingig (,,bedingt*)
von der Bedingung B; bzw. B,. Es gibt also in diesem Zusammenhang keine
GroBe P (A) schlechthin, sondern nur in Abhéingigkeit von einer der Bedin-
gungen. Diesen Sachverhalt deuten wir durch die Schreibweise P B, (4) und

P32 (4) an. Wir nennen diese Wahrscheinlichkeiten bedingé. Zwischen den
hierangegebenen bedingten Wahrscheinlichkeiten besteht offenbardie Relation
Pg, (4) = Pa, (4) ;

das Gleichheitszeichen gilt genau dann, wenn der Betrieb keinen Ausschu
produziert.

Im Grunde genommen ist jede Wahrscheinlichkeit bedingt, da ein Ereignis
stets unter gewissen Bedingungen stattfindet. Wir wollen die Wahrschein-
lichkeit eines Ereignisses nichtbedingt oder umbedingt nennen, wenn das
Ereignis unter einem breiten und bestéindigen Komplex von Bedingungen
auftritt, fiir die wir uns nicht besonders interessieren.

Um zu weiteren Erkenntnissen zu gelangen, verweilen wir noch bei dem
letzten Beispiel. Wir betrachten die Ereignisse K;= ,.ein Strumpf gehért
zur ¢-ten Giiteklasse” (¢ =1, 2, 3, 4) und K;* = ,ein brauchbarer Strumpf
gehort zur j-ten Wahl® (j = 1, 2, 3); dabei soll es im Betrieb die 4 Qualitéits-
stufen (Giiteklassen) ,,I. Wahl*, ,,II. Wahl®, III. Wahl“,, und ,,Ausschuf3*
geben. Gelten zum Beispiel fiir die K; (¢ = 1,2, 3,4) die relativen Haufigkeiten

hy = 0,70; hy = 0,15; hy = 0,10; h, = 0,05,
dann betragen die relativen Héufigkeiten fiir die Ereignisse K;* (j = 1, 2, 3)

=010 e 0I5 0,10,
1 =005’ ™ ~ 095" 0.95
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Offenbar besteht h; < b;* (j = 1, 2, 3). Dagegen ist aber
It .

=i i =1,23) )
was unmittelbar einzusehen ist. Das heit: Beim Ubergang vom System der
Ereignisse K; (1 = 1, 2, 3, 4) zu dem System der Ereignisse K;* (j = 1, 2, 3)
andern sich zwar die relativen Héufigkeiten der in beiden Systemen vorhan-
denen Ereignisse; der Quotient der relativen Héaufigkeiten jeweils zweier
dieser Ereignisse bleibt aber bei diesem Ubergang unverindert.

Wir gehen nun vermoge der statistischen Definition der Wahrscheinlich-
keit von den relativen Haufigkeiten zu den entsprechenden Wahrscheinlich-
keiten iiber; dann ergibt sich wegen der Tatsache, dafl K; = K;* (1 =1, 2, 3)
unter der Bedingung B = ,,der Strumpf ist verwendungsfdhig® ist, aus (*)
sofort

Pp (Ky) _ P (Ky)
Pp(K;) P (Kj)

G,§j=1,23)

Die voranstehenden Uberlegungen verallgemeinern wir nun. Gegegen sei ein
vollstindiges System von Ereignissen 4,, 4,, ..., 4,,, ..., 4,. Wir verengen
dieses System, das heifit, wir verdndern die Bedingungen so, dafl gewisse
Ereignisse dieses Systems unter den neuen Bedingungen unméglich werden.
Durch Hinzunahme der Bedingung B zum urspriinglichen Komplex mégen
die Ereignisse 4,, 1, ..., 4, des obigen Systems unméglich werden. Dem-
zufolge gilt
Pp(dm 1) =...= Pp(4,)=0.

Unter den neuen Bedingungen erhalten wir dann das vollstdndige System
4., ..., 4, mit Pz (4,)+ ...+ Pg(4,)=1und

Pp (4;) _ P (4
Pg (4;) P (4

G,7=1,2...,m)| (1.13)

Wir betrachten hierzu ein Beispiel. Bei der Massenerscheinung ,, Wiirfeln mit
einem normierten Wiirfel“ haben wir bekanntlich das vollstindige System

4., 4,5, ..., dgmit P (4;)= —fl;— (k=1,2,...6). Unter der Bedingung B=
»,gerade Augenzahl bei einem Wurf* ergibt sich das neue vollstindige System
4,,4,, A mit den bedingten Wahrscheinlichkeiten P (4;) =%(l = 2,4,6).
Die Beziehung (1.13) hat hier die Form
Pp (4i) _ P (4y)
Pp(4;) P (4))

die offenbar richtig ist.

Wir leiten nun die Formel fiir die bedingte Wahrscheinlichkeit ab. Zuvor
behandeln wir folgendes Beispiel: In zwei Werken werden Glithlampen her-
gestellt; im ersten Werk gehoren 80 Prozent, im zweiten nur 75 Prozent der
Lampen zur Giiteklasse 1.

(i) ': = 23 43 6) )
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Die im Handel erhiltlichen Glithlampen entstammen zu 60 Prozent dem
zweiten und zu 40 Prozent dem ersten Werk. Wie grof ist die bedingte Wahr-
ncheinlichkeit dafiir, eine Lampe des ersten Werkes zu kaufen, falls diese zur
(liiteklasse 1 gehort?

Ks handelt sich bei dieser Aufgabe um die Ereignisse 4 = ,,Die Lampe
stammt aus dem ersten Werk* und B= ,,die Lampe gehort zur Giiteklasse 1
wowie um die bedingte Wahrscheinlichkeit Py (4), die wir wie folgt gewinnen :
Von 100 Lampen sind im Mittel 40 aus dem ersten und 60 aus dem zweiten
Werk. Unter diesen 40 bzw. 60 Glilhlampen sind durchschnittlich 32 bzw.
15 von der Giiteklasse 1. Folglich sind unter 100 Lampen im Mittel 32 4-
45 = 77 von der Giiteklasse 1 und davon 32 aus dem ersten Werk. Nach der
statistischen Definition erhalten wir dann das Ergebnis

32
Pp(4)= o = 0,416.
Etwa 41,6 Prozent der zur Giiteklasse 1 gehorigen Glihlampen stammen
also aus dem ersten Werk.

Wir leiten nun eine allgemeine Formel ab. Zu diesem Zweck betrachten
wir zwel verschiedene Ereignisse 4 und B (mit P (B) 5= 0) und konstruieren
das System 4B, AB, B das vollstandig ist. Denn bei jedem Versuch tritt
entweder B oder B auf, weiter tritt B entweder mit 4 oder mit 4 auf. Wir

verengen nun dieses System durch den AusschluBl des Ereignisses B, d. h.
wir stellen die zusdtzliche Bedingung, daf§ B eintritt. Dann ergibt sich das
verengte System 4 B, 4B mit den (durch B) bedingten Wahrscheinlichkeiten
Py (4B) und Py (AB). Wegen der Relation (1.13) gilt

P (AB) _ Pp(4B)
P(4B) Pp(4B)

oder P(AB) + P(AB) Pgp(AB) + Pg(4B)
P (AB) - Py (AB)

Nun ist aber AB 4+ AB = B, so daf}

P(B)  Pp(B)
P(4B)  Pgp(dB)

bleibt. GeméB der Definition fiir die bedingte Wahrscheinlichkeit eines Ereig-
nisses ergeben sich weiter die Vereinfachungen Pz (B) =1 und Py (4B)
= Py (A4). Damit haben wir schon die Formel fiir die bedingte Wahrschein-
lichkeit oder Satz 1.6: Die bedingte Wahrscheinlichkeit Py (A4) berechnet sich
nach der Formel

P (4B)

Py (d) = 5z » (P(B+0) (1.14)

aus den unbedingten Wahrscheinlichkeiten P (4B) und P (B).
Wir haben schon in vorstehenden Beispielen bedingte Wahrscheinlich-
keiten berechnet, die wir nun nach der Regel (1.14) bestimmen. Im letzten
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Beispiel (mit den Lampen) erhalten wir wegen P (4 B) = 0,32 und P (B) =0,77
sofort das Ergebnis Py (4) = g% = 0,416. Im vorangegangenen Wiirfel-

1
2

beispiel gelten wegen P (4, B) = P(4, B)=P (4, B) = % und P(B)=

die unsschon geldufigen Werte Pp (4,) = Pp(d4,) = Pp(4y) = ;_ .

1.3.2. Der Multiplikationssatz

Die Formel (1.14) dient in der Praxis meist dazu, die Wahrscheinlichkeit
P (AB) aus den (aus der jeweiligen Aufgabenstellung her bekannten) Werten
fiir die Wahrscheinlichkeiten P (B) und Py (4) zu berechnen. Multiplizieren
wir (1.14) mit P (B) = 0 und vertauschen wir in der so erhaltenen Beziehung
die Rollen von 4 und B, dann ergibt sich wegen 4B = BA insgesamt der
Multiplikationssatz fiir die Wahrscheinlichkeiten der gemeinsam auftreten-
den Ereignisse 4 und B zu

P(AB)= P(4)- P, (B)= P (B)- Pg(4) (1.15)

oder

Satz 1.7: Die Wahrscheinlichkeit fiir das gemeinsame Auftreten zweier Ereig-
nisse ist gleich der Wahrscheinlichkeit des einen Ereignisses multipliziert mit
der (bedingten) Wahrscheinlichkeit des anderen Ereignisses unter der Voraus-
setzung, daB das erste Ereignis bereits stattgefunden hat.

Die Formel (1.15) gilt im Vergleich zu (1.14) auch fiir P (B) = O und (4 und
B vertauscht) P (4) = 0.

Erldutern wir nun den Multiplikationssatz an zwei Beispielen. Zunéchst
betrachten wir einen Betrieb, in dem 96 Prozent der hergestellten Erzeugnisse
absatzfihig sind. Von jeweils 100 absatzfihigen Erzeugnissen gehdren im
Mittel 75 zur Sorte 1. Wie grof ist die Wahrscheinlichkeit dafiir, daB ein im
Betrieb hergestelltes Erzeugnis zur Sorte 1 gehort? Wir haben hier die Ereig-
nisse 4 = ,,das Erzeugnis ist absatzfahig” und B = ,,das Erzeugnis gehort
zur Sorte 1° mit P (4) = 0,96 und P, (B) = 0,75. Aus dem ersten Teil der
Gleichung (1.15) erhalten wir das Ergebnis fiir P (4B) zu

P (4B) = 0,96 - 0,75 = 0,72.

Nun die zweite Aufgabe. Ein Fiinftel aller Kunden, die einen Industrieladen
aufsuchen, begibt sich in die Schuhabteilung. Im Durchschnitt kaufen 55 Pro-
zent dieser Kunden in dieser Abteilung Damenschuhe. Wie grof ist die Wahr-
scheinlichkeit dafiir, daB ein Kunde, der den Laden betritt, in der Schuh-
abteilung Damenschuhe kauft? Analog zur ersten Aufgabe liegen die Ereig-
nisse 4 = ,,ein Kunde besucht die Schuhabteilung” und B = ,,ein Kunde
kauft Damenschuhe® mit P (4) = 0,20 und P4 (B) = 0,55 vor. Die gesuchte
GroBe P (AB) wird vermoge (1.15)

P(AB)=0,20-0,55 = 0,11.
20



Wir spezifizieren nun den Satz 1.7. Zu diesem Zweck fithren wir einen neuen
Begriff ein. Wir betrachten zwei Ereignisse 4 und B, deren Wahrscheinlich-
keiten = O sind, und nennen B unabhingig von A, wenn B in keiner Weise
durch das Ereignis 4 beeinfluit wird, wenn also P, (B) = P (B) gilt. Ist
nun B unabhingig von 4, so offenbar auch 4 unabhingig von B; denn aus
den rechtsseitigen Gleichungen von (1.15) folgt wegen P, (B) = P (B) =0
sofort P (A4) = Pp(4) und damit die Unabhingigkeit des Ereignisses 4
von B.

Sind nun 4 und B voneinander unabhéngig, d. h. bestehen die Relationen
P (4) = Pz (4) und P (B) = P, (B), so ergibt sich aus (1.15) der Mults-
plikationssatz fiir die Wahrscheinlichkeiten der gemeinsam auftretenden und
voneinander unabhéingigen Ereignisse 4 und B zu

P(4B)= P (A4)- P (B) (1.16)

Satz 1.8: Die Wahrscheinlichkeit fiir das gemeinsame Auftreten zweier von-
einander unabhéngiger Ereignisse ist gleich dem Produkt der Wahrschein-
lichkeiten der einzelnen Ereignisse.

Induktiv 148t sich das vorstehende Ergebnis verallgemeinern zum

Satz 1.9: 8ind 4,, ..., 4, paarweise voneinander unabhingige Ereignisse,
dann gilt fiir das gemeinsame Auftreten dieser » Ereignisse!

P (4ydy ... 4) = I P(4)) |- (1.17)

Wir geben nun zwei Beispiele. Das erste entnehmen wir der Arbeit [3]. Ein
Arbeiter bedient drei Webstiihle, die unabhiingig voneinander arbeiten. Die
Wahrscheinlichkeit dafiir, dal ein Webstuhl im Laufe einer Stunde die Auf-
merksamkeit eines Arbeiters nicht erfordert, ist bekannt und zwar 0,9 fiir
den- ersten, 0,8 fiir den zweiten und 0,85 fiir den dritten. Wie groB ist die
Wahrscheinlichkeit dafiir, daBl im Laufe einer Stunde keiner der drei Web-
stiihle die Wartung durch den Arbeiter beansprucht? Ist 4, das Ereignis
,,der i-te Webstuhl arbeitet im Laufe einer Stunde ungestort™ (: =1, 2, 3),
dann lauten die zugehorigen Wahrscheinlichkeiten P (4,) = 0,9, P (4,) =
0,8 und P (4;) = 0,85. Die gesuchte GroBle P (4, 4, 4;) ergibt sich nach
(1.17) fiir n = 3 zu

P(d, 4,45 =09-08-0,85 = 0,612.

Nun zum zweiten Beispiel. Statistische Untersuchungen innerhalb eines Be-
triebes haben ergeben, daB wihrend einer bestimmten Zeitspanne die Elektro-
motoren zum Antrieb der Werkzeugmaschinen nur mit einer Wahrschein-
lichkeit von 40 Prozent in Betrieb sind. Wir betrachten zwei dieser Motoren
und stellen folgende Fragen (immer bezogen auf die erwahnte Zeitspanne).

1 Ist » = 0o, dann muB die rechte Seite von (1.17) konvergent sein!
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a) Wie grof} ist die Wahrscheinlichkeit p, dafiir, dafl beide Motoren gleich-
zeitig arbeiten?

b) Wie groB ist die Wahrscheinlichkeit p, dafiir, daB mindestens einer der
beiden Motoren in Betrieb ist?

c) Wie groB ist die Wahrscheinlichkeit p; dafiir, daf beide Motoren still
stehen? '

d) Wie groB ist die Wahrscheinlichkeit p, dafiir, daB nur einer der beiden
Motoren arbeitet?

Wir fiihren die Bezeichnungen 4 = ,,der erste Motor arbeitet und B =

,,der zweite Motor arbeitet ein. Dann gilt zunichst P (4) = P (B) = 0,4.

Die beiden Motoren sollen unabhéngig voneinander in Betrieb sein. Die Ereig-

nisse 4 und B sind also voneinander unabhingig. Weiter benutzen wir fol-

genden Sachverhalt, den wir im Anschlufl an dieses Beispiel beweisen: Sind

4 und B unabhiingig voneinander, dann auch die Paare 4 und B, Aund B

sowie 4 und B. Nun sind wir in der Lage, die GroBen p; (+ =1, 2, 3, 4) der

Reihe nach zu berechnen; dabei wenden wir den Satz 1.8 an. Zunichst ist

py=P(4B)=0,4-04=0,16.

Betrachten wir das Ereignis C = ,,genau ein Motor arbeitet, dann gilt
offenbar p, = P (C + AB) oder wegen der Unvertriglichkeit von C und 4B
nach dem Satz 1.1 (Additionssatz) p, = P (C) 4+ P (4AB). P (4B) ist bereits
zu 0,16 ermittelt, bleibt also noch P (C) zu berechnen. Nun kénnen wir aber
schreiben ¢ = AB + AB oder wieder nach Satz 1.1 P (C) = P (4B) +
P (4B). Wenden wir auf beide Glieder der rechten Seite der letzten Gleichung
Satz 1.8 mit P (4) = P (B) = 0,4 und P (4) = P (B) = 0,6 an, dann ergibt
sich P (C) = 0,48 und damit schlieBlich p, = %8 4+ 0,16 = 0,64. Die dritte
GroBe p, erhalten wir sofort zu py= P (4B)=0,6 - 0,6 = 0,36 unter
Beachtung von Satz 1.8. Die letzte Wahrscheinlichkeit p, wurde bereits zu
Py = 0,48 ermittelt, denn es besteht die Beziehung p, = P (C). Die Frage
b) hitten wir auch so beantworten konnen: Offenbarist p, =1 — P (4B) =
0,64; denn es arbeitet genau dann mindestens ein Motor, wenn nicht beide
stillstehen.

Nachtriglich beweisen wir den
Satz 1.10: Sind 4 und B voneinander unabhiingig, so auch die Paare 4 und B,
4 und B sowie 4 und B.

Beweis: Wegen der Voraussetzung knnen wir
P(B)=P,(By=1—P,(B)

schreiben ; andererseits ist P (B) = 1 — P (B). Folglich gilt P(B)= P, (B).

Damit ist der erste Teil des Satzes bewiesen. Der zweite Teil wird ganz ent-

sprechend behandelt. Wir wenden uns dem letzten Fall zu. Auf Grund des

schon bewiesenen Teils des vorliegenden Satzesist P (4) = Pg(4) = Pg(4)

Daher folgt aus P(A)=1—P(4)=1—Pz(4d)=1—(1— Pz (4) =

Pz (A) kurzerhand die Behauptung P (4) = Pz (4).

Wir geben nun noch eine Verallgemeinerung der letzten Aussage an.
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Natz 1.11: Sind die Ereignisse 4,, 4,, . . ., 4,, paarweise voneinander unab-
In"mg‘lg, so auch die Ereignisse A, Ay, .. -, 4, 4i 4+ 4y

dabei ist ¢, %5, ..., 9, eine beliebige Permutation der Zahlen 1, 2, ...,
und 0 = m < n.

1.3.3.  Folgerungen aus dem Multiplikationssatz

Wir betrachten die paarweise voneinander unabhéngigen Ereignisse 44, . . .,

4,. Dann sind nach Satz 1.11 auch die Ereignisse A4;, ..., 4, paarweise
voneinander unabhingig. Das Ereignis 4 = 4, 4 ... 4+ 4, (,,mindestens
eines der Ereignisse 4,,..., 4,) besitzt offenbar das entgegengesetzte

Ereignis A = A, 4, . .. A, (,,keines der Ereignisse 4,, . . ., 4,°). Mithin gilt
P, +...+4)=1—P(4,...4)

Wenden wir auf die rechts stehende Wahrscheinlichkeit P (A4; 4, . .. 4,)
den Satz 1.9 an, so erhalten wir den Addstionssatz fiir die Wahrscheinlich-
keiten voneinander unabhingiger Ereignisse zu

Pdy+ 4yt .+ ) =1— T (1—P(4)) | (L18)

oder den

Satz1.12: Die Wahrscheinlichkeit fiir das Auftreten irgendeines Ereignisses
einer Menge paarweise voneinander unabhéngiger Ereignisse ergibt sich,
indem die Zahl 1 um das Produkt der Wahrscheinlichkeiten aller Komple-
mentirereignisse der betrachteten Menge vermindert wird.!

Fiir n = 2 spezialisiert sich (1.18) zu

P(A+B)=1—[1—P(4)]-[1—P(B)]
oderzu  P(44 B)y= P(4)+ P (B)— P(4B) (1.19)

Sind die Ereignisse 4 und B unvertréglich, d. h. gilt P(4B) =0, dann
ergibt sich aus (1.19) die uns schon bekannte Formel (1.8).

Wir betrachten nun zur Erlduterung der vorstehenden Aussagen zwei
Beispiele. Das erste Beispiel handelt von zwei unabhingig voneinander
arbeitenden Aggregaten Gy und @, eines Betriebes. Durch umfangreiche
Untersuchungen ist festgestellt worden, dafl im Laufe einer Woche die Wahr-
scheinlichkeit fiir den Ausfall von &, 0,3 und von G, 0,2 betrigt. Wie grof§
ist nun die Wahrscheinlichkeit dafiir, dafl mindestens ein Aggregat im Laufe
einer Woche ausfillt? Wir setzen 4; = ,,das Aggregat G; fillt in der Woche
aus® (¢ = 1,2) und haben P (4,) = 0,3, P (4,) = 0,2. Die Ereignisse 4, und
4, sind voneinander unabhéngig, so dal nach (1.17) fiir n = 2 folgt P (4, 4,)
= 0,06. Wenden wir nun die Formel (1.18) fiir n = 2 (oder (1.19)!) an, so

1 UmfaBt die in Rede stehende Menge unendlich viele Elemente, dann muB das unendliche Produks
in (1.18) konvergent sein.
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erhalten wir das gesuchte Ergebnis zu P (4, + 4,) = 0,3 4+ 0,2 — 0,06 =
0,44. In 44 Prozent aller Fille erhdlt mindestens ein Aggregat im Laufe einer
‘Woche einen Defekt.

Das zweite Beispiel handelt von einem normierten Wiirfel. p; sei die Wahr-
scheinlichkeit dafiir, mit einem Wiirfel bei 4 Wiirfen eine ,,6 zu wiirfeln;
P, sei dagegen die Wahrscheinlichkeit dafiir, mit zwei Wiirfeln bei 24 Wiirfen
mindestens eine ,,doppelte 6 zu erzielen. Welche der Wahrscheinlichkeiten
p; (2 =1, 2) ist die groBere?

Wir fithren die Bezeichnungen E; = ,,beim 4-ten Wurf mit einem Wiirfel
eine ,,6” (1 =1, 2, 3, 4) und Z; = ,,beim j-ten Wurf mit 2 Wiirfeln eine

doppelte ,,6” (=1, 2, ..., 24) ein. Klar ist P (E;) = % (t=1, 2 3, 4).
Daher erhalten wir gemaB (1.18) fiir n = 4

1\4
p1=P(E1+E2+E3+E4)=1-—(I—F) ~ 0516 .

Ganz analog berechnen wir p,. Nach dem Multiplikationssatz (1.16) ergibt

sich zunichst P (Z;) = —(13— . % = % (j=1,2... 24). Wenden wir wieder

(1.18) fiir » = 24 an, so folgt schon

1\24
p2=P(Z1+...—|—Z24)=1——-(1—%> ~ 0,491

Die erste der ermittelten Wahrscheinlichkeiten ist also die groBere.
‘Wir ziehen nun eine weitere Folgerung aus dem Multiplikationssatz.

Gegeben sei zu diesem Zweck ein vollstindiges System von Ereignissen
Ay, 4y, ..., 4, und ein beliebiges Ereignis B. Wir fragen nach der Wahr-
scheinlichkeit fiir das Auftreten des Ereignisses B schlechthin, d. h. unab-
hingig davon, mit welchem der 4; (i =1, 2, . . ., n). Diese Wahrscheinlich-
keit nennen wir die totale oder die vollstindige Wahrscheinlichkest fiir das
Ereignis B. Wir leiten jetzt eine Formel fiir diese GroBe P (B) ab. Zunichst
gilt auf Grund des Satzes 1.1

P(B)=P(4,B+...+4,B)= 2 P(4;B)

t=1
und weiter nach dem Satz 1.7
n
P(B)= 3 P(4)P,(B) | (1.20)
4 =

Satz 1.13: Die vollstindige oder totale Wahrscheinlichkeit fiir das Ereignis B
beziiglich des vollsténdigen Systems 4., ..., 4, berechnet sich nach der
Formel (1.20).
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Wir erldutern den Sachverhalt wieder an zwei Beispielen. Zunéchst ein
Beispiel aus der Landwirtschaft: Fiir die Aussaat von Weizen wird ein Ge-
menge von vier Sorten S; (s = 1, 2, 3, 4) mit den Anteilen 96 Prozent, 1 Pro-
zent, 2 Prozent und 1 Prozent verwendet. Die Wahrscheinlichkeit dafiir,
daB aus einem Korn der Sorte S; (i = 1, 2, 3, 4) eine Ahre mit mindestens
H0 Kornern wird, sei der Reihe nach p, = 0,5, p, = 0,15, p3 = 0,2 und p, =
0,05. Wie groB ist die Wahrscheinlichkeit dafiir, daB aus einem beliebigen
Korn des Gemenges eine Ahre mit mindestens 50 Kornern wird? Wir setzen
A;= ,,ein Korn gehért zur Sorte S, (1 =1, 2, 3, 4) und B = ,,das Korn
wird zu einer Ahre mit mindestens 50 Kérnern*. Die Ereignisse 4, . . ., 4,
bilden ein vollstindiges System mit den einzelnen Wahrscheinlichkeiten
P(4,)=096, P(4,)=0,01, P(4;)=0,02 und P (4,) = 0,01. Weiter
sind uns die bedingten Wahrscheinlichkeiten P4, (B) = 0,5, P4, (B) = 0,15,
P4, (B) = 0,20 und P4, (B) = 0,05 bekannt. Die Regel (1.20) liefert dann
das Ergebnis zu P (B) = 0,486. Zu dem Ereignis B gehort damit die totale
Wahrscheinlichkeit von 48,6 Prozent (vgl. [3]).

Das zweite Beispiel stammt aus dem Handel. In der Abteilung Damen-
konfektion eines Kaufhauses wird nach langjihrigen Erfahrungen folgendes
Sortiment gefiihrt:

Anteil am Gesamt- Anderungswahr-
GroBenklasse sortiment scheinlichkeiten
grob (g) 0,26 0,18
mittel (m) 0,44 0,10
klein (k) 0,30 0,15

Des weiteren ist bekannt, mit welcher Wahrscheinlichkeit nach dem Verkauf
Anderungen am Kleidungsstiick notwendig sind. Die betreffenden Werte
sind in der letzten Spalte des obigen Schemas angegeben. Von Interesse ist
die Wahrscheinlichkeit dafiir, dal beim Verkauf eines beliebigen Kleidungs-
stiickes eine Anderung erforderlich ist! Wir betrachten die Ereignisse 4; =
. Kleidungsstiick gehort zur ¢-ten GroBenklasse” (¢ =1, 2, 3) und B= ,,am
Kleidungsstiick sind Anderungen notig”. Die Ereignisse 4; (¢ =1, 2, 3)
bilden ein vollstdndiges System von Ereignissen mit den Wahrscheinlich-
keiten P (4,) = 0,26, P (4,) = 0,44 und P (43) = 0,30. Ferner sind die
bedingten Wahrscheinlichkeiten P4, (B) = 0,18, P4, (B) = 0,10 und
P, (B) = 0,15 bekannt. Die vollstindige Wahrscheinlichkeit fiir B ergibt
sich dann aus (1.20) zu

P (B)=0,26-0,18 + 0,44 - 0,10 4 0,30 - 0,15 == 0,136.

Wir ziehen nun die letzte Folgerung aus dem Multiplikationssatz: Gegeben
sei wieder ein vollstindiges System von Ereignissen 4,, 4,, .. ., 4, und ein
beliebiges Ereignis B. Aus der Gleichung (1.15) folgt

P(B)-Pp(d)=P(4) P, (B)(i=1,2...,n).
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Ersetzen wir nun im letzten Ausdruck P (B) durch die rechte Seite von (1.20),
so erhalten wir das Theorem von BAYES:

Pyd) =LA P B) ;9. 4y

;21 P (4)) Pay (B)

i (1.21)

das in der Praxis hiufig Anwendung findet. Damit erhalten wir den
Satz 1.14: Die bedingte Wahrscheinlichkeit eines zu einem vollstdndigen
System gehorigen Ereignisses in bezug auf cin beliebiges Ereignis wird nach
der BAYESschen Regel (1.21) ermittelt.

Belegen wir den vorstehenden Satz mit einem Beispiel aus der Industrie:
In einem Betrieb seien 96 Prozent aller Erzeugnisse normgerecht. Bei der
Giitekontrolle wird ein Kontrollsystem benutzt, das 98 Prozent der norm-
gerechten Erzeugnisse als normgerecht und 95 Prozent nicht normgerechten
Erzeugnisse als nicht normgerecht erkennt. Um eine grofere Genauigkeit zu
erzielen, werden alle Erzeugnisse nach dem obigen Verfahren doppelt gepriift.
Wie groB ist die Wahrscheinlichkeit dafiir, daB ein bei der doppelten Kon-
trolle als normgerecht ausgewiesenes Erzeugnis in der Tat der Norm geniigt?
Die Ereignisse 4, = ,,Erzeugnis ist normgerecht” und 4, = , Erzeugnis
geniigt nicht der Norm® bilden ein vollstindiges System mit den Wahr-
scheinlichkeiten P (4,) = 0,96 und P (4,) = 0,04. Weiter betrachten wir
die Ereignisse C; = ,,normgerechtes Erzeugnis wird als normgerecht ange-
sehen und C = ,,nicht normgerechtes Erzeugnis wird als normgerecht aus-
gewiesen mit P (C;) = 0,98 und P (C,) =1 — 0,95 = 0,05. Von besonde-
rem Interesse ist das Ereignis B = ,,Erzeugnis besteht die doppelte Kon-
trolle‘. Gesucht ist die bedingte Wahrscheinlichkeit Py (4,). Zunichst be-
rechnen wir auf Grund der Relation (1.16) die bedingten Wahrscheinlich-
keiten P4, (B) = 0,98% und P4, (B) = 0,05%, denn die beiden auszufiihren-
den Kontrollen sind unabhéngig voneinander. Fiir die gesuchte Wahrschein-
lichkeit P (A4,) folgt dann aus (1.21)

. 0,96 - 0,982
0,960,982 + 0,040,052

Py (4, ~ 0,9999 .

Wird also das oben charakterisierte Kontrollverfahren angewendet, dann ist
damit zu rechnen, daBl von 10000 fiir normgerecht befundenen Erzeugnissen
lediglich ein Erzeugnis der Norm nicht entspricht.

1.4.  Vermischte Aufgaben nebst Lésungen

14.1. Aufgaben

1. Wie grof ist die Wahrscheinlichkeit dafiir, mit vier normierten Wiirfeln
bei einem Wurf 10 Augen zu erzielen?
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2.

3.

Wie grof} ist die Wahrscheinlichkeit dafiir, mit zwei Wiirfeln bei einem
‘Waurf mindestens 7 Augen zu wiirfeln?

In einem Ort gibt es drei Industrieliden, die normgerechte Gliithlampen
mit der relativen Héufigkeit 0,90, 0,80 bzw. 0,85 zum Kauf anbieten. Die
Kéufer suchen diese Liden mit der Wahrscheinlichkeit 0,40, 0,35 bzw.
0,25 beim Kauf einer Glithlampe auf. Wie gro8 ist die Wahrscheinlichkeit
dafiir, daB ein Kaufer bei einem Kauf im angegebenen Ort eine norm-
gerechte Gliihlampe erhilt?

. Von zwei unabhingigen Ereignissen ist bekannt, daB das erste mit der

Wahrscheinlichkeit 0,4 und das zweite mit der Wahrscheinlichkeit 0,7
auftritt.

a) Mit welcher Wahrscheinlichkeit p, tritt mindestens eines der Ereignisse
ein?

b) Mit welcher Wahrscheinlichkeit p, bzw. p tritt nur das erste bzw. nur
das zweite Ereignis ein?

¢) Mit welcher Wahrscheinlichkeit p, treten beide gemeinsam auf?

d) Mit welcher Wahrscheinlichkeit p, ereignet sich keines der beiden
Ereignisse?

. Wie groB ist in der letzten Aufgabe des Abschnittes 1.3.3. die Wahrschein-

lichkeit dafiir, daB ein beliebiges Erzeugnis die doppelte Kontrolle besteht?

14.2. Losung der Aufgaben

1.

Zur Berechnung der Wahrscheinlichkeit des Ereignisses 4 = ,,10 Augen
bei einem Wurf mit 4 Wiirfeln“ gehen wir wie auf Seite 20 vor. Ein Wurf
mit 4 Wiirfeln hat n = 126 gleich mogliche Ausginge (Anzahl der Kom-

binationen von 6 Elementen zur 4. Klasse mit Wiederholung = (6 + i_ 1)
= (2 ) = 126). Lediglich n = 8 Ausginge sind fiir das Ereignis 4 giinstig,
namlich
A;=,6+2+14+1%  A;=,44+2+ 242
Ay=,5+34+14+1%  Ag=,4+44+1415
Ay=,54+2+241% A4, =,3+3+3+1%
A,=,4+3+241°% dg=,3+3 42+ 29
so daf3
8
4= 2 4,
=1

besteht. GemilB der klassischen Definition (1.12) haben wir damit das
Resultat
m
P (4) = =

8
26 ~ 0,0635 .
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2.

28

Ist 4 das Ereignis ,,mindestens 7 Augen bei einem Wurf mit zwei Wiir-
feln®, dann gilt 4 = ,,héchstens 6 Augen bei einem Wurf mit zwei Wiir-
feln“. Wir berechnen P (A4) analog zu der vorstehenden Aufgabe. Ein
Wurf mit 2 Wiirfeln hat n = 21 gleichméogliche Ausginge (Anzahl der
Kombinationen von 6 Elementen zur 2. Klasse mit Wiederholung =

(6 + Z_ 1) = (; ) = 21). Nur m = 9 dieser Ereignisse sind fiir 4 giinstig,
niamlich

Al = ”1 + 1“’ A4 = 7:2 + 2“, A7 = ”1 + 5

‘A2 == ”1 + 2“’ A5 = ”1 + 4“, As = ”2 "I- 4“,

As =,,1 4+ 3%, AG =,2+ 3¢, Av =,3+ 3%,
so daB

_ 9

A= 3 4

=1

gilt. Aus (1.12) folgt dann
- m 9
P(4) = =g ~ 0429,
Die gesuchte Wahrscheinlichkeit ist damit zu
P(4) =~ 1— 0,429 = 0,571
gefunden.

. Wir konstatieren zunichst die Ereignisse 4; = ,,der Kunde sucht den

t-ten Laden auf (s =1, 2, 3) mit den Wahrscheinlichkeiten P (4,) =
0,40, P (4,) = 0,35 und P (45) = 0,25. Diese drei Ereignisse bilden offen-
bar ein vollstindiges System. Uns interessiert das Ereignis B ,,der Kunde
erhilt eine normgerechte Gliihlampe®. Bekannt sind die bedingten Wahr-
scheinlichkeiten

P4, (B) = 0,90, P4, (B)= 0,80, P4,(B)=10,85.
Durch Anwendung des Satzes 1.13 erhalten wir das Ergebnis
P (B)= 0,40 - 0,90 + 0,35 - 0,80 + 0,25 - 0,85 =~ 0,853 .

. Wir bezeichnen die in Rede stehenden Ereignisse mit 4 und B.

Dann gilt zunédchst P (4) = 0,4 und P (B) = 0,7.
a) Fiir p, erhalten wir gemaf (1.19) und Satz 1.8
p,=P(4+ B)=04+0,7—0,28 = 0,82
b,) Beziiglich p, ergibt sich aus Satz 1.8
p,= P(AB)= P (4) P(B)=04-0,3=0,12.
b,) Entsprechend wird
p3= P(AB)= P(A) P(B)= 0,6 -0,7 = 0,42



<

¢) Wir wenden wiederum Satz 1.8 an und erhalten
| Pa=p(AB)=p(4)-p(B)=04-0,7=0,28
d) Nochmalige Anwendung von Satz 1.8 liefert
ps= P(AB)= P(4)- P(B)=0,6-0,3=0,18

. Wir notieren zunichst die Ereignisse 4, = ,,ein normgerechtes Erzeugnis

besteht die doppelte Kontrolle” und 4, = ,,ein nicht normgerechtes
Erzeugnis besteht die doppelte Kontrolle* mit den Wahrscheinlichkeiten
p (4) = 0,96 und p (4,) = 0,04, die ein vollstindiges System darstellen.
Von Interesse ist das Ereignis B = ,,ein beliebiges Erzeugnis besteht die
doppelte Kontrolle”. Bekannt sind die bedingten Wahrscheinlichkeiten
P,y (B)=0,982 und P,, (B) = 0,052 Der Satz 1.13 liefert nun das
Ergebnis

P (B) = 0,96 - 0,982 + 0,04 - 0,052 ~ 0,922 .
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2. Zufallsgréflen und deren Verteilungen

2.1.  Begriff der Zufallsgrofie

Wir betrachten Massenerscheinungen, deren Einzelerscheinungen die Eigen-
schaft haben, daB sie durch eine gewisse ZahlengroBe charakterisiert werden
konnen. Diese Griofle kann verschiedenartig sein. Beim Wiirfeln ist sie die
Augenzahl, bei der Uberpriifung von Maschinenteilen, die auf Drehmaschinen
bearbeitet werden, deren Durchmesser. Diese GréBe spiegelt zwar in irgend-
einer Weise das Resultat des betreffenden Versuchs, das Ergebnis der betref-
fenden Beobachtung wider, dndert sich jedoch von Versuch zu Versuch, von
Beobachtung zu Beobachtung auf Grund vielfiltiger zufilliger Einfliisse;
sie kann alle moglichen Werte annehmen. Eine solche Grofe nennen wir
Zufallsgrofle oder -variable der zugehérigen Massenerscheinung. Um Aussagen
iber zufillige GroBen herleiten zu kénnen, miissen wir ihre Verteilung, d. h.
die moglichen Werte der Zufallsvariablen sowie die einzelnen Wahrschein-
lichkeiten kennen, mit der diese moglichen Werte angenommen werden.

Die erwihnten Beispiele lassen schon zwei verschiedenartige Typen von
ZufallsgroBen (und damit auch von Verteilungen) erkennen: die diskreten
und die stetigen. Wir nennen eine Zufallsgrofe diskret, wenn sie nur endlich
oder abzihlbar unendlich viele Werte der reellen Zahlengeraden annehmen
kann. Die Zufallsvariable beim Wiirfeln ist diskret. Es kommen nur die gan-
zen Zahlen 1, 2, ..., 6 in Betracht. Demgegeniiber heilt eine Zufallsgréfle
kontinuierlich oder stetig, wenn sie jeden Wert eines bestimmten Intervalls
der reellen Zahlengeraden annehmen kann. Der Durchmesser von Dreh-
teilen ist eine stetige zufillige Variable. Handelt es sich etwa um Bolzen mit
der durchschnittlichen Stirke von 10 mm, so sind alle Werte beispielsweise
zwischen 9,8 und 10,2 mm fiir den Durchmesser denkbar.

2.2.  Diskrete Verteilungen

2.2.1. Verteilungstabelle und Verteilungsfunktion

Wir betrachten eine diskrete ZufallsgroBe  mit den moglichen Werten z,,

%y, -« ., Ty; ohne Beschrankung der Allgemeinheit kénnen wir z; < 2, <. ..

< x, annehmen. Die Zufallsvariable  moge den Wert z; (¢ =1,2.,.. ., n)

mit der Wahrscheinlichkeit p; (1 =1, 2, . . ., n) annehmen; es soll also gelten
p=Pr=x)(t=12,...,n).

Das Verzeichnis

T T Xy Xy ... Ty
Pl PP Py - P

(2.1)
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heilt die Verteilungstabelle der diskreten Zufallsgrofe x. Da x,, ..., x, alle
maoglichen Werte von x umfassen, miissen die Ereignisse ,,# = #; (1 =1, 2,

.., n) ein vollstandiges System bilden, esmuBalsop, + p, + ... +p, =1
sein. Die Verteilungstabelle (2.1) gibt praktisch an, wie die Zufallsgrofe =
auf die moglichen Werte ,,verteilt ist.

Wir geben nun zwei Beispiele. Bei der Massenerscheinung Wiirfeln mit
cinem normierten Wiirfel betrachten wir die diskrete Zufallsgrofie x = Augen-
zahl nach einem Wurf. Zu dieser Variablen gehért offenbar die Verteilungs-
tabelle

In einem Betrieb werden die hergestellten Erzeugnisse in der Hinsicht auf
ihre Qualitdt untersucht, dal zu jedem Erzeugnis die Anzahl seiner Fehler
angegeben wird. Diese Anzahl z der Erzeugnisfehler ist offenbar eine diskrete
Zufallsvariable. Ist etwa bekannt daB 90 Prozent der Erzeugnisse keinen,
8 Prozent einen und 2 Prozent zwei Fehler aufweisen, dann ergibt sich fiir
diese Zufallsgrofle = die Verteilungstabelle

z| O 1 2
p | 0,9 0,08 0,02

Die Verteilungstabelle (2.1) kann auch graphisch dargestellt werden. Tragen
wir auf der x-Achse die Werte w,, z,, . . ., , der Zufallsvariablen « ab, auf
der y-Achse die entsprechenden Wahrscheinlichkeiten p,, p,, ..., p, und
verbinden wir benachbarte der so erhaltenen Punkte (z ,p), dann ergibt sich
ein Streckenzug oder Wakrscheinlichkeitsdiagramm. In den angefiihrten Bei-
spielen (x = Augenzahl, © = Anzahl der Fehler) erhalten wir die Wahr-
scheinlichkeitsdiagramme

09

X o L X
0 1 2

Abb. 1 Diagramm der Augenzahl Abb. 2 Diagramm der Fehleranzahl

Wir nennen denjenigen Wert der ZufallsgroBe = den wakrscheinlichsten Wert,
zu dem die grofte Wahrscheinlichkeit gehort, dem also der hochste Punkt
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des Wahrscheinlichkeitsdiagramms entspricht. Dieser Wert braucht nicht
eindeutig zu sein.

In unserem ersten Beispiel gibt es keinen wahrscheinlichsten Wert der
Zufallsvariablen = Augenzahl; alle sechs Werte sind hier gleichwahrschein-
lich. Im zweiten Beispiel besitzt die ZufallsgroBe = Anzahl der Fehler den
wahrscheinlichsten Wert « = 0.

Wir betrachten wieder eine allgemeine diskrete ZufallsgroBe x mit der
Verteilungstabelle (2.1). Wir nennen die Funktion

F(g) =Pz 9 (2.2)

die Verteilungsfunktion der diskreten Zufallsgréfe x; F(E) gibt die Wahr-
scheinlichkeit dafiir an, daB die Zufallsvariable z einen kleineren Wert als &
annimmt. Es gilt nun der

Satz 2.1: Die Verteilungsfunktion (2.2) der diskreten ZufallsgréBe « mit der
Verteilungstabelle (2.1) hat die Gestalt

0, wenn —o0<EéEZL ;s
k

F(¢) = iglpi,wennzk<5§xk+1 k=1,2,...,n—1); (2.3)
1, wennz, < & <00

Beweis: F (£) = 0 fiir £ < «, ist klar, da @, der kleinste Wert der Zufalls-
groBe x ist und demzufolge ,,z < 2, ein unmogliches Ereignis darstellt. Im
zweiten Fall ist definitionsgemaB F (§) = P (,,o = ,, + ... +,,, 2= 2"
oder nach dem Additionssatz (1.9) weiter F (§) = p; + . . . + p;. SchlieBlich
ist noch F (§) = 1 fiir £ > =z, da =, der gréBte zuféllige Wert ist und damit
das Ereignis ,,# = x," sicher ist.

Das Bild der Verteilungsfunktion F (&) heiBt die Verteilungskurve der dis-
kreten Zufallsgrofe z. Im allgemeinen Fall (2.1) hat die Verteilungskurve
folgende Gestalt

Fé)
L] i
—6Pn
o
p————5p 1
(8
| Ps
) PZ
AP1 I 1 1 1 f
TP T X, Xn

Abb. 3 Verteilungskurve einer diskreten Zufallsgréfe
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Die Verteilungskurve einer diskreten ZufallsgroBe ist also eine nicht fallende
Treppenfunktion, d. h. eine stiickweise konstante Funktion, die an den Stel-
len z; (+ =1, ..., n) endliche Spriinge macht und stets zwischen den Ordi-
natenwerten O und 1 bleibt. Die mit () hervorgehobenen Punkte in der gra-
phischen Darstellung der Verteilungsfunktion stellen die Werte der Ver-
teilungsfunktion an den Stellen x,, ..., z, dar. In unseren Beispielen
erhalten wir die Verteilungskurven

F§)
F(é) 1+ —,5
—_—
1+ —
—
—
—
—
L& 1 1 L I l E —J, 1 L §
0 1 2 3 L 5 & ° 0 1
Abb. 4 Verteilungskurve zu Abb. 1 Abb. 5 Verterlungskurve zu Abb. 2

Anhand der ersten Darstellung kénnen wir unmittelbar feststellen, mit wel-
cher Wahrscheinlichkeit das Ereignis ,,3 < z < 5“ (,,mindestens 3, aber
weniger als 5 Augen zu wiirfeln‘‘) eintritt. Wir haben lediglich die Differenz
F(5)—F(3)= o —3 — = zu bilden. Das Ergebnis ist offenbar richtig,
da P(3S0<5)=P(,o=5 +,0=49= ¢ + &= git.
Ganz allgemein besteht folgender Zusammenhang:

Satz 2.2: Die Wahrscheinlichkeit dafiir, daB gine diskrete Zufallsvariable z
mit der Verteilungsfunktion F (&) einen Wert annimmt, der mindestens a
und kleiner als b (a < b) ist, ergibt sich zu F (b) — F (a), d. h.

Pa<z<by=F(@®) —F(a) |. (2.4)

Beweis: Das uns interessierende Ereignis B = ,,a = z < b* ist zunichst das
Produkt der voneinander unabhéngigen Ereignisse 4= ,,0 < ¢* und B=
»& < b, also E = 4 - B. Nach der Formel (1.19) erhalten wir demzufolge

P(E)=P(4B)=P(4) + P(B)—P(4+1b) *)

Wegen (2.2) ist nun P(B)=F (b) und P(4)=1— P(4)=1—F (a).
Weiter ist das Ereignis 4 + B sicher, da jeder mogliche Wert der Zufalls-
groBe x nicht kleiner als @ oder kleiner als b ist, mithin folgt P (4 + B) = 1.
Insgesamt ergibt sich dann aus (*)

P(E)=1—F(@)+F@b)—1=F@®) —F(a).

Damit ist der Satz bewiesen.
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Auf dem bewiesenen Satz beruht die Bedeutung der Verteilungsfunktion
F (&). Ist F (£) bekannt, dann lassen sich die Wahrscheinlichkeiten der Art
P (a = = < b) berechnen. Ist nun die Funktion F (&) tabelliert, dann ergibt
sich die gesuchte Wahrscheinlichkeit durch die einfache Differenzbildung
F (b) — F(a). Liegt dagegen F (&) in Form der Verteilungskurve vor, dann
kann die gesuchte Wahrscheinlichkeit unmittelbar abgesteckt werden.

2.2.2. Der Erwartungswert einer diskreten Zufallsgrife

Wir betrachten wieder eine allgemeine ZufallsgroBe « mit der Verteilungstafel
(2.1). Wir denken uns N Versuche ausgefiihrt, bei denen die Variable z genau
N;mal den Wert o; (¢ =1, 2, . . ., n) annimmt; offenbar ist N; + N, + ...
+ N, = N. Fiir grole Werte von N stellen die Quotienten % (:=12,...,n)
gemidB der statistischen Definition (1.3) die Wahrscheinlichkeiten p;
(z=1,2,...,n)dar. Bilden wir nun die Summe aller N beobachteten Werte,
dann ergibt sich wegen N; = N,. (1 =1, 2, .. ., n) der Ausdruck

n n
2 Nya=N 3 z;p;.
i=1 i=1

Als Erwartungswert oder Mittelwert E (x) der diskreten ZufallsgréBe = mit
der Verteilungstabelle (2.1) fithren wir die GroBe?

E (z) = i§1 x; p; (2.5)

¢in, die dem durchschnittlichen Wert der Ergebnisse in einer groen Versuchs-
serie entspricht.
Der Erwartungswert der Augenzahl z bei einem Wurf mit einem nor-
mierten Wiirfel hat geméf (2.5) den Wert
2

E@)=g(+2+3+4+5+6)=5=35.

Bei einer grofien Anzahl von Wiirfen ergeben sich demzufolge pro Wurf
durchschnittlich 3,5 Augen.

Wir leiten nun eine Reihe von Eigenschaften her, die eine diskrete Zufalls-
groBe mit der Verteilungstabelle (2.1) besitzt. Als Vorbereitung dazu benoti-
gen wir den
Satz 2.3: Besitzt die diskrete ZufallsgroBle « die Verteilungstabelle (2.1) und
ist f (x) eine eindeutige Funktion in z, dann besteht fiir z = f () die Ver-
teilungstabelle

2|2 Z...2
P | P Pa---Pn
mitz;=1f(x;) ¢=1,2,...,n).

1 Ist » = 00, dann muB die rechte Seite in (2.6) konvergent sein.
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Beweis: Sind =, ..., z, die moglichen Werte der Variablen , so besitzt
die ZufallsgroBe z die moglichen Werte 2, 2,,. .., 2, mit z; = f (z;) (¢ =
1,2,...,n). Die Ereignisse ,,# = ;" und ,,z = 2;* sind offenbar gleichwahr-
scheinlich ; damit ist der Satz bewiesen.

Satz 2.4: Der Erwartungswert einer diskreten Zufallsgrofie hat die Eigen-
schaft

E(az+B)=ak (2) + B

-

(2.6)

wobei o und {8 beliebige Konstante sind.
Beweis: Wir setzen z=f(2) = o« + [ und erhalten aus Satz 2.3 und
Definition (2.5)
n n n n n
E@= 2 zp= 3 agp+ 3 fpi=¢ 3 oip+B 3 p
=1 t=1 t=1 i=1 t=1
=aE() +8.

Dabei ist die Vollstindigkeitsrelation p; + p, + ...+ p, = 1 benutzt
worden.

Satz 2.5: Der Erwartungswert des Quadrates einer diskreten ZufallsgroBe ist
groBer als das Quadrat des Erwarturgswertes dieser ZufallsgroBe

E()>B@ | (2.7)

Beweis: Nach Satz 2.3 und Gleichung (2.5) gilt zunéchst

n ~ n
E(@@) =3 %p, E@)= 3 z2p;
i=1 t=1
‘Wir bilden

2E*(2)=2E(2) - E(2)=2E(2)- 2 xyp;= 2 2E (2);p;
i=1 i=1

und weiter
n

E? (x) = E?(x) - le; =3 E*(2)p;
i= t=1

und erhalten damit

n

E (2?) — E? (2) = E (2%) — 2 E? (2) + E? () = X (5;—E(2))%*p;; (2.8)
i=1

die letzte Summe ist aber positiv, da sie aus positiven Summanden besteht.
Damit folgt die Behauptung

E(22) — E2(2) > 0.
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Satz 2.6: Der Erwartungswert fiir die Summe zweier diskreter ZufallsgroBen
ist gleich der Summe der Erwartungswerte der einzelnen ZufallsgroBen, es
gilt also die Beziehung

E(z+y)=E(@)+E(y |- (2.9)

Beweis: Neben der ZufallsgroBe = mit der Tabelle (2.1) betrachten wir noch
eine ‘diskrete Variable y mit der Verteilungstabelle

y]?h?/z'-'ym.
9] ¢ 9 - qm

Neben den Ereignissen X; = ,,z = %, (¢t =1,2,...,n) und y; = ,,y = y;*
(j =1, 2, ..., m)interessieren uns die zusammengesetzten Ereignisse S;; =
X, +Y; (i=1,2,...,n;j=1,2, ..., m) mit den Wahrscheinlichkeiten
Py =s; (=12, ..., n;j=12, ..., m). Die zuletzt erwidhnten
Wahrscheinlichkeiten erfiillen wegen

XiY1+'~‘+XiYm=X'i(i=1’2""’n)} (210
XY 4... +XY=Y(G=12..,m) it
die Relationen
n m
.218,5"= q; (] = 1, 2, . ey m), .218,57' = DP; ('I/ = 1, 2, .. ey n) . (2.11)
1= 1=
Bilden wir nun
n m
E@+y)= 2 2 (2,4 y)855
i=1j=1

so ergibt sich unter Beachtung von (2.11) gerade die Behauptung (2.9). Der
Satz 2.6 148t sich verallgemeinern zum

Satz 2.7: Der Erwartungswert einer Summe von beliebig vielen diskreten
Zufallsvariablen ist gleich der Summe der Erwartungswerte der einzelnen
ZufallsgroBen:

E@+ty+zt+..)=E@+E@+E@+... |- (2.12)

‘Wir leiten nun noch eine Eigenschaft des Erwartungswertes diskreter Zufalls-
groBen ab.

Saiz 2.8: Der Erwartungswert des Produktes zweier voneinander unabhéingi-
ger diskreter Zufallsvariablen ist gleich dem Produkt der Erwartungswerte
der einzelnen Zufallsgrofen:

E(@-y)=E(2)-E(y |. (2.13)
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Bewets: Wir kniipfen an die Bezeichnungen beim Beweis des Satzes 2.6 an
und betrachten die Ereignisse T;; = X; Y, (¢ =1,2,.. ,n;j=1,2,...,m)
mit den Wahrscheinlichkeiten t,, g 0=1,2, ..., n; i=1,2,...,m)
(wegen (1.16)!). GemaB (2.5) erhalten wir nun das Ergebnis

Ea)=3 3« (_%1 %%) (,51 yi%’) = E(z)-E(y).

i=1j5=1

Auch diese Aussage 148t sich erweitern zum

Satz 2.9: Der Erwartungswert eines Produktes beliebig vieler paarweise von-
cinander unabhingiger diskreter Zufallsvariablen ist gleich dem Produkt der
Erwartungswerte der einzelnen Zufallsgréfen:

E(x-y-z-..)=E(x)-E(y)-E(2)... (2.14)

Nun betrachten wir einige Beispiele. Zunichst denken wir uns einen ,falschen’
Wiirfel mit der Verteilungstabelle

fiir die Augenzahl z bei einem Wurf. Fiir den diesbeziiglichen Mittelwert
erhalten wir E (z) = 11—2 14+6+3-+4+164+10+46)= 4—2 = 3,5. Wir haben

hier also denselben Erwartungswert wie im Normalfall. Dennoch unterschei-
den sich beide Verteilungen offensichtlich; die Verteilung im Normalfall hat
keinen wahrscheinlichsten Wert, die hier behandelte Verteilung besitzt als
einzigen wahrscheinlichsten Wert « = 4. Schon diese Uberlegungen demon-
strieren, daBl der Erwartungswert einer diskreten Zufallsvariablen die zuge-
hérige Verteilung nicht ausreichend beschreibt. Gegeben seien nun zwei nor-
mierte Wiirfel, und wir betrachten als diskrete Zufallsvariable die Summe
bzw. das Produkt der Augenzahlen der einzelnen Wiirfel nach einem Wurf.
Bezeichnen wir mit  bzw. y die Augenzahl des einen bzw. des anderen
Wiirfels nach einem Wurf, dann interessiert uns die Zufallsgrofie = + y bzw.
z - y. Fiir die erste Zufallsvariable ergibt sich nach (2.9) der Erwartungswert

Er+y) =2 +%=1.

Im Mittel werden also bei jedem Wurf mit zwei Wiirfen 7 Augen erzielt.
Beachten wir schlieBlich noch die Tatsache, daf z und y unabhiingig von-
einander sind, dann folgt aus (2.13) fiir den Erwartungswert von z - y der
Wert

E(ay) =25 2 =122,
Im Mittel belduft sich also das Produkt der Augenzahlen der beiden Wiirfel
nach einem Wurf auf 12,25.
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SchlieBlich betrachten wir noch zwei voneinander unabhingige diskrete
ZufallsgroBen z bzw. y mit den Verteilungstabellen

x| 5 2 4 yl 7 9
p|06 01 03 q]08 02

Wie grofl sind die Erwartungswerte E (x), E (y), E (z + y) und E (zy)?
‘Wir erhalten zuniichst nach (2.5)

E(r)=5-06+4+2-01+44-03=144,
E(y)y=17-0,84+9-0,2 = T4

Fiir die ZufallsgroBe = 4 y erhalten wir gemif (2.9)
E(x+y)=E(x) +Ey)=44+74=118.

Beachten wir noch die Unabhéngigkeit der Variablen z und y voneinander,
so ergibt sich aus (2.13) ohne viel Rechnung

E(zy) = E(2) - E (y) = 4,4 - 7,4 = 32.56.

2.2.3. Drie Strewung einer diskreten Zufallsgrofe

‘Wir haben bereits an einem Beispiel gezeigt, daB der Erwartungswert einer
diskreten Zufallsvariablen nicht ausreicht, die betreffende Verteilung voll-
stindig zu charakterisieren. Wir wollen diesen Sachverhalt nun verdeutlichen.
Zu diesem Zweck betrachten wir zwei diskrete Zufallsgrofen = und y, denen
die Verteilungstabellen

z| 8 10 12 y| 2 10 15
p| L 11 gl L1 1
6 2 3 6 2 3

entsprechen. Fiir die zugehorigen Erwartungswerte gilt
31
E(@)=E @)=

Beide diskrete Verteilungen haben also denselben Erwartungswert. Wir er-
kennen aber unmittelbar, da8 die erste Verteilung ,,besser ist als die zweite.
Die Verteilung der Variablen z ,,streut ndmlich nicht so sehr wie die Ver-
teilung der ZufallsgroBe y; die 2-Werte liegen nur in dem Intervall [8, 12],
die Werte der Variablen y dagegen in dem viel gro8eren Bereich [2, 15].
‘Wir suchen nun ein Ma8 fiir die eben erwihnte ,,Streuung® einer diskreten
Zufallsvariablen. Zu diesem Zweck sei eine diskrete ZufallsgréBe x allgemein
gegeben. Wir konnten versuchen, als Ma hierfiir den Erwartungswert der
ZufallsgréBe z = z— E (), also der Abweichung der Variablen 2 von deren
Erwartungswert zu nehmen. Das ist aber nicht méglich, da dieser Wert nach
Satz 2.4 stets verschwindet, d. h. fiir alle diskreten Verteilungen gleich ist.
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Dagegen ist es prinzipiell méglich, als MaB fiir die ,,Streuung® einer Zufalls-
grofe x den Mittelwert der Zufallsvariablen z = | z — E (2)! anzusehen.
Wir verzichten jedoch darauf, da das Operieren mit absoluten Betrigen um-
stindlich ist.

Wir betrachten eine diskrete Zufallsgro8e z mit der Verteilungstabelle (2.1).
Wir fassen nun die Zufallsvariable z = [z — E (z)]? ins Auge, die die Qua-
drate der moglichen Abweichungen z;— E (z) 1 =1, 2, . . ., n) der Zufalls-
groBe z von deren Erwartungswert E (z) mit den Wahrscheinlichkeiten p;
(t=1,2, ..., n) annimmt. Gemif (2.5) ist dann

o ()= E(—E@P) = 2 [a—E@Pp | (19

der Erwartungswert fiir die diskrete ZufallsgroBe z = [z — E (x)]2. Die Grofe
02 heiBlt die Streuung der diskreten Zufallsvariablen x. Auf Grund der Defini-
tion (2.15) ist 02 in der Tat ein MaB fiir die oben charakterisierte Streuung
einer diskreten Verteilung. Berechnen wir die Streuungen der beiden letzten
konkreten Verteilungen, so erhalten wir im ersten Fall

a2 (z) = 1,89
und im zweiten
o2 (y) = 18,89.
lV)Vil.'tast;;hen also, daB die erste Verteilung eine kleinere Streuung als die zweite
€eS1UZT.

Aus (2.15) geht hervor, daBl ¢2 (x) eine nichtnegative Zahl ist. Anstelle o2
wird in der Praxis hiufig die positive Wurzel aus der Streuung, d. h. die GroBe

o (2) = V 2 —E@P (2.16)

benutzt, die die Namen mittlere quadratische Abweichung, Standardabweichung
und Streuungsmaf der betreffenden Verteilung trigt. Die Grofle o () hat
gegeniiber o2 () den Vorteil, dal o () dieselbe Dimension wie die Zufalls-
gréBe z besitzt.

In unseren beiden Beispielen ergeben sich gemiB (2.16) die Streuungsmafe
o (z) = 1,37 und o (y) = 4,34

Wir leiten nunmehr einige Eigenschaften der Streuung einer diskreten
Zufallsvariablen her. Zunichst beweisen wir den

Satz 2.10: Fiir die Streuung einer diskreten ZufallsgroBe z gilt die Formel

0% (r) = E (2?) — E? () |. (2.17)

Bewets: Die Formel (2.17) ergibt sich unmittelbar aus (2.16) in Verbindung
mit der Relation (2.8). Sie wird hiufig in der Praxis benutzt.
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‘Wir berechnen nun nach der Regel (2.17) die Streuung o () der diskreten
Zufallsgr6Be x = Augenzahl bei einem Wurf mit einem normierten Wiirfel.

Wir haben schon im Abschnitt 2.22 die GréBe E (z) = — erm.lttelt Wir

benétigen zur Anwendung der Formel (2.17) noch E (22). Aus der Verteilungs-
tabelle

|l49162536
1 1 1 I 1
6 6 6 6 6

fiir die GroBe xz? ergibt sich
E(?) =g (4243242454 6)=2
Nunmehr liefert die Regel (2.17)

91 21\2 35

2 (p) = (22} 29,
o*(2) = 5 (6) =13

Wir geben nun zwei weitere Sitze beziiglich der Streuung.

Satz 2.11: Die Streuung einer diskreten ZufallsgroBe z hat die Eigenschaft

02 (az) = a2e? (x) (2.18)

mit o als beliebiger Konstante.

Beweis: Wir setzen z = ax = f (z). Dann folgt aus den Sitzen 2.3 und 2.6
sowle aus (2.15)

n n -
*()= 3 [—E@Pp=0o 3 [5,— E ()P p; = o’0” (a).
i=1 i=1
Satz 2.12: Die Streuung fiir die Summe zweier voneinander unabhingiger

diskreter Zufallsvariablen ist gleich der Summe der Streuung der einzelnen
Zufallsgrofen:

o® (¢ + y) = o® (z) + 0>(9) |. (2.19)

Beweis: Wir betrachten die ZufallsgréBe z = x + y. Wenden wir Satz 2.10
auf z an, so erhalten wir

0% (2) = E () — E® (2) = E (¢ + 2 oy + y*) — [E (= + y).
Beachten wir die Sitze 2.7 und 2.8 sowie nochmals Satz 2.10, so wird

0® (2) = E (2°) — E? (2) + E (4*) — E® (y) = 0® (2) + 0> (9)
Den vorstehenden Satz konnen wir noch allgemeiner aussprechen:

Satz 2.13: Die Streuung fiir die Summe beliebig vieler paarweise voneinander
unabbingiger diskreter ZufallsgréBen ist gleich der Summe der Streuungen
der einzelnen Zufallsvariablen:

?(zt+y+z+..)=02(x)+ 02 (y)+02(2) + ... |.(2.20)
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Bevor wir einen weiteren Satz herleiten, betrachten wir ein Beispiell [3].
liin gewisser Mechanismus soll aus 9 Einzelteilen montiert werden, die alle
auf einer Achse fest aneinander angebracht wurden. Die Linge z® (1 = 1,
2, ..., 9) jedes Einzelteils ist eine Zufallsvariable. Diese ZufallsgréBen sind
offenbar unabhéngig voneinander. Die entsprechenden Erwartungswerte bzw.
Streuungsmafe seien E (z®) =10 em bzw. ¢ (z®)=0,2cm (:=1,2,...,9).
Wie groB sind die Parameter E (z) und o () der Lange = der Kette dieser 9
aneinander montierten Einzelteile? Zunichst wird nach Satz 2.7

9
E(z)= 3 E(2P)=90cm.
i=1
Aus Satz 2.13 folgt weiter

]/ 3 o (a®) = )/9.004 — 06.
=1

Ist also die Streuung der Einzelteillinge 2 Prozent des zugehérigen Erwar-
tungswertes, dann betrigt die Streuung der Kettenlinge nur noch 2/, Prozent
des zugehorigen Erwartungswertes. Die an diesem Beispiel beobachtete Ver-
ringerung der zum Erwartungswert relativen Streuung bei der Addition von
zufélligen GroBen spielt bei der Montage von Prizisionsinstrumenten eine
wichtige Rolle.

‘Wir beweisen nun den

Satz 2.14: Fiir jede diskrete Zufallsvariable z gilt die 7TSCHEBYSCHEFF-
sche Ungleichung (Streuungsungleichung)

P(la—E@|<pz1-20 | (2.21)

dabei erfiillt die Konstante y die Bedingungy = o ().

Beweis: Wir betrachten die Zufallsgrofe « mit der Verteilungstabelle (2.1)
und schitzen die Wahrscheinlichkeit fiir das Ereignis 4 = |,,# — E (z)| 2y*
nach oben ab.

Zu diesem Zweck lassen wir in dem Ausdruck (2.15) diejenigen Glieder fort,
fiir die [z; — E (#)]* £ y2 oder |a; — E ()| < vy besteht. Bezeichnen wir mit
>* die Summe iiber die verbleibenden Glieder in (2.15), die also dem Betrag
nach = y?2 sind, so folgt

0o®(2) 2 3* [z; — E (2)Pp; Zv* Z* p;
Wegen 3*p; = P (A) haben wir damit die Abschidtzung
(4) ==

1 Die in diesem Beispiel vorkommenden ZufallsgroSen sind zwar nicht diskret, sondern konti--
nuierlich. Das tut aber nichts zur Sache, da die Streuung einer kontinuierlichen Zufallsvariable
dieselben Eigenschaften aufweist, die wir bisher beieiner diskreten Zufallsverinderlichen kennen-
gelernt haben (Vgl. hierzu Satz 2.24).
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Gehen wir nun zum Ereignis A= ,,lz — E (z)| < y* liber, dann ergibt sich
die behauptete Ungleichung (2.21). Die Einschrinkungy = o () ist erforder-
lich, damit die rechte Seite der Ungleichung (2.21) nicht negativ wird.

Wir behandeln nun zwei Beispiele: In einer Ziindholzfabrik werden die
Ziindholzschachteln automatisch abgepackt. Die Anzahl der in einer Schachtel
enthaltenen Holzer ist offenbar eine diskrete Zufallsvariable, die die Vertei-
lungstabelle

x| 57 58 59 60 61 62 63

pl 0,05 0,10 0,15 0,40 0,15 0,10 0,05

besitzt.

Der Erwartungswert oder Mittelwert der Anzahl der Hélzer pro Schachtel
betrigt gemiB der Formel (2.5) E (z) = 60 (das ist auch aus Symmetrie-
griinden klar!). Fiir die Streuung folgt nach (2.15) ¢% (z) = 2. Wie gro8 ist
nun die Wahrscheinlichkeit p, dafiir, daB die tatsichliche Anzahl z der Hol-
zer in einer Schachtel um-weniger als 3 vom Mittelwert E (z) = 60 abweicht?
‘Wenden wir die TSCHEB Y SCHEFFsche Ungleichung (2.21) an, so erhalten
wir (mity = 3)

2 1
Po=P(|z——E(x)|<3)gl_,9_=§_

Die gesuchte Wahrscheinlichkeit betrigt also mindestens —g- = 0,78. Der obi-
gen Verteilungstabelle entnehmen wir den genauen Wert
P, = 0,10 4 0,15 4 0,40 4 0,15 4 0,10 = 0,90 ;
denn es gilt
P(lz — E (2)l <8)= P(z=>58) 4+ P (z=>59) + P (x=60) +
+ P(x=061) + P(x=162).

Die Streuungsungleichung liefert also eine grobe Abschitzung fiir die GroBe p,.

In einem Betrieb, der Kugeln (z. B. fiir Kugellager) herstellt, werden die
gefertigten Kugeln maschinell abgepackt. Die Anzahl x der Kugeln pro
Packung ist eine diskrete ZufallsgroBe. Statistische Untersuchungen ergaben
die Parameter E (z) = 10000 und o2 (z) = 100; die Verteilungstabelle der
Zufallsvariablen ist nicht bekannt. Gesucht ist nun die Wahrscheinlichkeit
dafiir, daB die wahre Kugelanzahl in einer Packung um weniger als 50 vom
Sollwert = Mittelwert abweicht? Auf Grund der Beziehung (2.21) erhalten
wir sogleich die Antwort auf diese Frage zu

100
Pllz— E (2)| <50] = 1 — 5o = 0,96.
Wir kénnen demzufolge damit rechnen, daB nur in 4 Prozent aller Packungen
die Anzahl der Kugeln um mehr als 50 vom Sollwert abweicht.

Die im Satz 2.14 hergeleitete Ungleichung (2.21) wird in der Praxis hiufig
benutzt. Sie ermoglicht die niherungsweise Berechnung von Wahrschein-

lichkeiten dafiir, daB die diskrete ZufallsgréBe einem um ihren Mittelwert
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symmetrisch liegenden Intervall angehért oder nicht. Die TSCHEBY-
SCHEFFsche Ungleichung wird insbesondere dann angewendet, wenn die
Verteilungstabelle der Zufallsgrofe nicht bekannt ist, aber die Parameter E
und ¢ vorliegen (vgl. letztes Beispiel!).

Wir schlieBen nun die allgemeinen Bemerkungen iiber diskrete Zufalls-
grofBen ab. Prinzipiell kénnen wir uns diskrete Verteilungen der verschieden-
sten Formen vorstellen.

Im nun folgenden Paragraphen lernen wir die binomische Verteilung ken-
nen, die fiir praktische Belange von Bedeutung ist und als Prototyp einer
diskreten Verteilung angesehen werden kann. Im Paragraphen 2.4 verall-
gemeinern wir diese Verteilung zu der Poissonschen Verteilung, die in der
Theorie der Massenbedingung (vgl. Kapitel 4) eine fundamentale Rolle spielt.

2.3.  Die binomische Verteilung

Wir beginnen unsere Betrachtungen mit zwei praktischen Fragen. In einem
Betrieb sind 96 Prozent der hergestellten Erzeugnisse normgerecht. Wie gro3
ist die Wahrscheinlichkeit p, dafiir, daB in einer Packung von 10 Erzeug-
nissen alle normgerecht sind? — In einer Abteilung eines Industriebetriebes
ist der Wasserverbrauch an einem Tage zu 75 Prozent normal. Wie gro8 ist
die Wahrscheinlichkeit p, dafiir, daB innerhalb einer Woche (6 Tage) der
Wasserverbrauch nur an drei Tagen normal ist?

Beide Fragen beriihren einen Sachverhalt, den wir nun ganz allgemein an
dem Urnenschema von BERNOULLI charakterisieren: Eine Urne mit
schwarzen und weilen Kugeln ist gegeben. Mit p bzw. ¢ = 1 — p bezeichnen
wir die Wahrscheinlichkeit dafiir, daB eine aufs Geratewohl gezogene Kugel
weil} bzw. schwarz ist. Es werden » zufillige Ziehungen vorgenommen, d. h.,
es werden der Reihe nach aufs Geratewohl » Kugeln ausgewihlt. Die Anzahl
z der dabei gezogenen weilen Kugeln ist offenbar eine diskrete Zufallsvariable
mit den moglichen Werten 0, 1, 2, . . ., n — 1, n. Wie groB ist nun die Wahr-
scheinlichkeit P, (z) dafiir, daBl wir bei # zufilligen Ziehungen genau z weille
(und damit n — x schwarze) Kugeln erhalten?

Um die aufgeworfene Frage zu beantworten, setzten wir die Unabhéingig-
keit der einzelnen Ziehungen voraus. Diese Voraussetzung ist offenbar erfiillt,
wenn die Anzahl der schwarzen und weiBlen Kugeln in der Urne sehr gro8 ist.
Aber auch bei geringer Kugelanzahl kann diese Annahme eingehalten werden,
wenn Ziehungen mit Zuriicklegung erfolgen, d. h., wenn nach jeder Ziehung
die ausgewahlte Kugel in die Urne zuriickgelegt wird. Sprechen wir im fol-
genden von Ziehungen, so sind damit stets unabhéngige zufillige Ziehungen
gemeint. Wir berechnen nun die Wahrscheinlichkeit P, (x) fiir das Ereignis
A = ,,x weiBe und n — x schwarze Kugeln bei n Ziehungen®. Aus der Kom-
binatorik ist bekannt, daB z weile und n — = schwarze Kugeln genau

m = (7;) Permutationen 4,, 4,, .. ., 4,, zulassen, so daf3
A=A,+/12+...+Am;m=(:) (2.29)
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gilt. Die Ereignisse 4,, . . ., 4,, sind unvertriglich und gleichwahrscheinlich;
nach Satz 1.9 (unabhéngige Ziehungen) erhalten wir fiiralle 4; (s = 1,2, . . .,
m) die gleiche Wahrscheinlichkeit zu -

P(d))=P(dy)=...=P(4,)=p*¢""7. (2.23)
Aus (2.22) und (2.23) folgt gemiB Satz 1.1

m
Py(e)=PlA)= 3 p*q" 7= (Z)p’ ¢
i=1
oder der
Satz 2.15: Die Wahrscheinlichkeit P, (z) dafiir, dal sich bei n Ziehungen

weille Kugeln ergeben, berechnet sich nach der BERNOULLIschen Formel

‘ P, (z) = (:) P2 (z = 0,1, ..., n) ll (2.24)

Wir sind nun in der Lage, die eingangs gestellten Fragen zu beantworten.
Im ersten Fall ist n =10, p = 0,96 (¢ = 0,04) und z = 10; daher folgt
aus (2.24)

py = Py, (10) = (ig) 0,061 - 0,040 — 0,665 .

Im zweiten Beispiel ergibt sich wegen n = 6, p = 0,75 (¢ = 0,25) und # = 3
ganz analog gemal (2.24)

o= P® = (3) (3) - () =012

In Verbindung mit der BERNOULLIschen Formel (2.24) definieren wir nun
als binomische oder BERNOULLIsche Verteilung diejenige Verteilung, die
zu der diskreten ZufallsgroBe 2 mit der Verteilungstabelle

Wert ‘ 0 1 2 ...,

(2.25)
Wahrscheinlichkeit | P,(0) P,(1) Py(@) .... P,n)

gehort. Die binomische Verteilung hingt also von den Parametern » und p:
mit n >0 ganzund 0 = p =1 ab.
Wir zeigen, daBl die Tabelle (2.25) die Vollstindigkeitsrelation

n
> P, (x)=1 (2.26).
m=0
erfiillt. Beachten wir den binomischen Satz
5 (m)am b =@ + by
m =0
so erhalten wir die Behauptung (2.26)

n

2 Pyln) = 20(:)1’” Fr=@+9" =1

=
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Als binomische oder BERNOU LLIsche Verteilungsfunktion fiilhren wir die
Ifunktion

B,(§) =Pz <9 =x§E P, (z) (2.27)

cin, die — wie im allgemeinen Fall einer diskreten Verteilung (vgl. Abschnitt
3.21) — die Wahrscheinlichkeit dafiir angibt, daB die ZufallsgroBe x einen
klcineren Wert als & annimmt. B, (£) bedeutet demzufolge die Wahrschein-
lichkeit dafiir, daB bei n Ziehungen weniger als & Kugeln weill sind. Wir
betrachten nun als Beispiel die BERNOULLIsche Verteilung mit den Para-
metern # = 6 und p = 0,75. Die Verteilungstabelle (2.25) lautet dann

Wert | o 1 2 3 4 5 6
Wahrschein. | 1 18 135 540 1215 1458 1729
lichkeit | 4096 4006 4096 4096 4096 4096 4096

Das zugehorige Wahrscheinlichkeitsdiagramm hat die Form

Pg {x)
05

@ | 1 1 1 1
1 2 3 L 5 6 X
Abb. 6 Wahrscheinlichkeitsdiagramm einer BERNOU LLIschen Ver-
teslung

Wir erkennen, daB die vorliegende Verteilung den einzigen wahrscheinlich-
sten Wert &, = 5 besitzt. Die zugehorige Verteilungsfunktion By (£€) weist
die graphische Darstellung (Verteilungskurve) auf:

B‘(§)1L _________________
—— T
—
|
|
I 1
- — | ! L.
© 1 ya 3 4 S 6 é

Abb. 7 Verteilungskurve einer BERNOU LLIschen Verteilung
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‘Wir geben nun wieder ein Zahlenbeispiel: In einem Betrieb gehéren 60 Pro-
zent der normgerechten Erzeugnisse zur Sorte 1. Es werden nun Packungen
von je 100 normgerechten Erzeugnissen (durch gufillige Zusammenstellung)
hergestellt. Wie grof} ist die Wahrscheinlichkeit p, dafiir, daBl eine Packung
keine normgerechten Erzeugnisse enthilt, die zur Sorte 1 gehéren? Wie groB
ist die Wahrscheinlichkeit p, dafiir, dal in einer Packung weniger als die
Hilfte zur Sorte 1 gehért? Die erste Grofle ermitteln wir gemiB Formel
(2.24) zu

Pr=Pio @) = (') 06 041 ~ 0.

Es ist praktisch ausgeschlossen, da8 unter 100 Erzeugnissen kein Erzeugnis
der Sorte 1 ist. Fiir die zweite GroSe p, erhalten wir den Ausdruck

, 49
Po= By (50) = 5 P,y () ~ 0,021, (2.28)

z=0

dessen Berechnung schon sehr miihevoll ist (immerhin sind 50 Summanden
zu berechnen, die aus Binomialkoeffizienten und Potenzen bestehen). Im
Zusammenhang mit der Normalverteilung (vgl. Paragraph 2.6) werden wir
eine Naherungsformel kennenlernen, mit deren Hilfe Ausdriicke der Gestalt
(2.27) duBerst einfach zu berechnen sind. Das Ergebnis in (2.28) bedeutet
also, daB in etwa 1/50 aller Packungen weniger als die Hilfte der Erzeugnisse
zur Sorte 1 gehoren.

Wir betrachten nun wieder eine allgemeine BERNOULLIsche Verteilung
und beweisen
Satz 2.16: Ist np + p keine ganze Zahl, dann ist der einzige wahrscheinlichste
Wert der zugehorigen binomischen Verteilung die ganze Zahl zwischen
np + p—1 und np + p. Ist np + p eine ganze Zahl, dann besitzt die zu-
gehorige binomische Verteilung die beiden gleichwahrscheinlichsten Werte
np + p—1 und np + p.
Beweis: Ist x, der wahrscheinlichste Wert der binomischen Verteilung, d. h.,
hat das zugehorige Wahrscheinlichkeitsdiagramm bei «, ein Maximum, dann
muB offenbar

P, (%)) = Py (v, —1), P, (,) = P, (7, + 1)
oder wegen (2.24)
n—=z,+1)p22,q (Z+1)g=(n—z)p
gelten. Losen wir die beiden letzten Ungleichungen nach #, auf und beachten
wir p + ¢ = 1, dann ergibt sich die Beziehung
np+p—ls=z,=np+4p.

Ist nun np + p eine ganze Zahl, dann sind np 4 p—1 und np + p die
beiden gleichwahrscheinlichsten Werte der Verteilung. Ist np + p keine
ganze Zahl, dann liegt aber in dem Intervallnp + p—1 < 2, < np 4 pder
Lénge 1 eine ganze Zahl, die den einzigen wahrscheinlichsten Wert ausmacht.
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Wir bestimmen nun die wahrscheinlichsten Werte der uns schon bekannten
binomischen Verteilungen. Bei der ersten Verteilung liegt wegen n = 10,
p=0,96 und np + p= 9,6 + 0,96 = 10,56 der einzige wahrscheinlichste
Wert 2, = 10 vor. Im zweiten Beispiel haben wir » =6, p = 0,75 und
np + p =4, 4 0,75 = 5,25; daher gibt es hier den einzigen wahrschein-
lichsten Wert 2, = 5. Auch im letzten Fall existiert nur ein wahrscheinlich-
ster Wert, denn wegen n = 100, p = 0,6 ist np + p = 60 4 0,6 = 60,6
nicht ganz; es gilt also z, = 60. Die Verteilung mit den Parametern » = 14

und p = % besitzt dagegen die beiden gleichwahrscheinlichsten Werte
do=np+p—1= —l; + %—1 =4und 2, =np+p=>5.

Wir beweisen nun den wichtigen
Satz 2.17: Die BERNOULLIsche Verteilung besitzt den Erwartungswert
E (z) =mnp (2.29)

und die Streuung

6% = npq (2.30)

Bewess: Fiir den Erwartungswert der diskreten Zufallsvariable 2 mit der
Verteilungstabelle (2.25) erhalten wir zunéchst definitionsgemil

E(9) =32 P, (2

oder
n n!
E@o=2 eyt ? "=
- (n—1)! —1. ga—D—(@—1)
e 2 eee—D—@—D1: Y ¢

Fiihren wir die Abkiirzungen # — 1 = m und # — 1 = y ein, dann wird

m
E@=mnp 3 (m)p”q'”—”=np,
y=0\Y¥
da die vorstehende Summe wegen (2.26) den Wert 1 hat. Damit ist der erste
Teil der Behauptung bewiesen. Fiir die Streuung der diskreten Zufallsgrofe =
mit der Verteilungstabelle (2.25) erhalten wir geméf Definition

0 =2 [o—E @] Py () =

z=0

IV =

' (z — np)® P, ()
0

oder ausfiihrlicher

0'2=Zn‘x2 P”(w)——2np§$ P, (2) —I—nzpzznj'Pn(w).
z=0

z=0 r=10
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Beachten wir im vorstehenden Ausdruck die Beziehungen (2.26) und (2.29),
so ergibt sich

o2 = Zn' 2% P, () — n2p?. (2.31)
=0
Um die Summe
8,= f x2 P, (z) (2.32)
z=0

zu berechnen, ermitteln wir zunichst den Ausdruck

SZ=§,‘ z (z—1) P, (),
)

z=0,
der mit S, durch die Relation
8, =28, +np (2.33)
verkniipft ist. Siir S, erhalten wir den Term
Tox(x—1)n! _
S == 2 am pz qn x
=n(n—1)p? S5 (n—2)! pr—t. =D —G@—D

g=2(@—2)![(rn—2)— (2—2)]!
der nach Einfiihrung der Abkiirzungen # — 2 = r und # — 2 = z die ein-
fache Gestalt
Sy=nm—1)p 3 (:) pPq?
2=0
annimmt. Wegen der Vollstindigkeitsrelation (2.26) hat die Summe in der
letzten Gleichung den Wert 1. Mithin bleibt
Sy, =mn(n—1) - p?
-oder gemifB (2.33), (2.32), und (2.31)
o? =n(n—1) p* + np —n’p® = np (1 — p) = npy .

Damit ist der Satz vollstindig bewiesen.

In den von uns bisher behandelten Beispielen ergeben sich nun folgende
Mittelwerte und Streuungen: Der Erwartungswert fiic die Anzahl der norm-
gerechten Erzeugnisse unter 10 Erzeugnissen betrigt E (x) = 0,96 - 10 = 9,6.
Der Erwartungswert fiir die Anzahl der Tage mit normalem Wasserverbrauch
im Laufe einer Woche belduft sich auf

E(z)=0,75-6=145.
Die mittlere Anzahl der unter 100 Erzeugnissen zur Sorte 1 gehorigen Ele-

mente hat den Wert E (z) = 0,6 - 100 = 60. Die einzelnen Streuungen be-
tragen der Reihe nach

02 = 0,384, 62 = 1,125 und 02 = 24 .
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Setzen wir in die allgemeine TscaEBYSCEEFFsche Ungleichung(2.21) die Para-
meterwerte (2.29) und (2.30) fiir die BErNouLLIsche Verteilung ein, so ergibt
sich die BernNouLLIsche Streuungsungleichung zu

Po—np|<y)21—"0 | (2.34)

dabei isty eine beliebige Konstante mity2 > npq.

Wie im allgemeinen Fall so liefert auch die Ungleichung (2.34) sehr grobe
Abschitzungen fiir die tatsichlichen Wahrscheinlichkeiten. In der Praxis
werden meistens genauere Niherungsverfahren zur Ermittlung von Wahr-
scheinlichkeiten P (|2 — np|<y) bei der binomischen Verteilung benutzt.
Wir werden sie bei der Normalverteilung kennenlernen.

Bevor wir eine wichtige SchluBifolgerung aus der Beziehung (2.34) ziehen,
geben wir noch zwei Beispiele: In einem Betrieb sind 95 Prozent aller Erzeug-
nisse fehlerfrei. Wieviel normgerechte Erzeugnisse werden in 200000 Stiick
erwartet? Wie groBl ist die Wahrscheinlichkeit dafiir, daB8 die tatsichliche
Zahl der fehlerfreien Erzeugnisse zwischen 188000 und 192000 liegt? Den
gesuchten Erwartungswert erhalten wir vermage (2.29) zu

E () = np = 200000 - 0,95 = 190000 .
Die betretfende Streuung hat nach (2.30) den Wert
02 = npgq = 190000 - 0,05 = 9500 .

Aus der Ungleichung (2.34) ergibt sich dann weiter die gesuchte Wahrschein-
lichkeit zu

P (188000 < z < 192000) = P(|z — E (2)| < 2000) =

9500
Es werden also 190000 feblerfreie Erzeugnisse erwartet. Mit einer Wahr-
scheinlichkeit von mindestens 99,8 Prozent liegt die tatsichliche Zahl oer
fehlerfreien Erzeugnisse weiterhin zwischen den Grenzen 188000 und 192000.

Das zweite Beispiel entnehmen wir der Arbeit [3]. Ein Viertel der Beschif-
tigten eines-Industriezweiges hat Oberschulbildung. Fiir eine Untersuchung
werden nach dem Zufallsprinzip 200000 Beschiftigte ausgesucht. Wie grof§§
ist der Erwartungswert fiir die Anzahl der Beschiftigten mit Oberschulbil-
dung unter diesen 200000? Wie grof} ist die Wahrscheinlichkeit dafiir, da8
die wirkliche Anzahl um weniger als 1,6 Prozent vom Erwartungswert
abweicht? Der Mittelwert K (x) belduft sich zunichst auf E (z) = np =
200000 - 0,25 = 50000; fiir die Streuung ergibt sich

6% = npg = 50000 - 0,75 = 37500,

Aus der Streuungsungleichung (2.34) folgt dann

37500

(8_00)2— =~ 0,941 .

P(lz=E ()| <0,016-E(z)=1—
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Im Mittel werden also 5000 Beschiftigte Oberschulbildung besitzen. Mit
einer Wahrscheinlichkeit von 94,1 Prozent weicht die gesuchte Zahl der
Beschéftigten um weniger als 1,6 Prozent vom Erwartungswert, d. h. um
weniger als 800 von dem Wert 50000 ab.

Wir leiten nun aus der Streuungsungleichung (2.34) den Satz von BERNOULLI
her, der eine fundamentale Rolle in der Wahrscheinlichkeitsrechnung spielt.

Satz 2,18: Wahlen wir die Zahl n der Ziehungen hinreichend gro8, dann ist
mit einer nahe bei 1 liegenden Wahrscheinlichkeit zu erwarten, daf die

relative Hiufigkeit % der gezogenen weilen Kugeln von der Wahrscheinlich-

keit p nur unbedeutend abweicht.
Bewets: Setzen wir in der Ungleichung (2.34) y = ne, dann erhalten wir

P
n
Die Grofe € sei nun eine beliebig kleine positive Zahl. Die Anzahl der Zie-

hungen » wéhlen wir derart groB, daB auch ne? iiber alle Grenzen wichst.
Damit haben wir aber schon die Behauptung

P (% —p > e) =0
fiir hinreichend kleine ¢ > 0 und gentigend groBe n.

)z1— 2620 (2.35)

Die Bedeutung des BErNouLLischen Satzes besteht in folgendem: Wir be-
trachten eine Serie von Versuchen, die alle unabhéngig voneinander ablaufen,
und beobachten dabei xmal das Ereignis 4 (und [# — z]-mal das Ereignis 4.)
Dann ergibt sich fiir das Auftreten des Ereignisses 4 innerhalb dieser Serie
die relative Haufigkeit

ha(4) = —. (2.36)

Wenn wir nun gentigend viele Versuche, also eine sehr umfangreiche Versuchs-
serie durchfiihren, dann strebt die relative Hiufigkeit (2.36) nach dem vor-
stehenden Satz gegen die Wahrscheinlichkeit des Ereignisses 4, d. h., es gilt
dann die bei der statistischen Definition der Wahrscheinlichkeit a.ngegebene
Beziehung

lim , (4) = P(4) (2.37)

24. Die Poissonsche Verteilung

Wir fiihren im folgenden den auf Poisson zuriickgehenden Grenziibergang
durch, der darin besteht, daB die BERNouLLIsche Formel (2.24) fiir grofe »
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botrachtet wird, wobei allerdings die GroSe a = np als angendhert konstant
nngesehen wird. Zu diesem Zweck formen wir zunichst (2.24) zu

P, () =g(1 +_—na)nK(n,m) (2.38)
mit _e\=7 | o ‘
= R ()

um. Beachten wir

lim K(n,2) =1
und

lim (1+i)n=e",
n-> 0o n

s0 ergibt sich aus (2.38) die Beziehung

n—> co @

P*(x) = a® e
@ = np konstant

z!

(2.39)

Wir definieren nun als Poissonsche Verteilung diejenige Verteilung, zu der
die diskrete Zufallsvariable # mit der Verteilungstabelle

Wert | 0 1 2 ... k...
Wahrschein- (2.40)
lichkeit P¥0) P*1) P*2)... P¥k)...

gehort. Als Porssonsche Verteslungsfunktion bezeichnen wir entsprechend die
Funktion

F*@ =Pl = Z<,'$P* (@) (2.41)

Wir leiten nun einige Eigenschaften der Porssonschen Verteilung ab. Zuniichst
zeigen wir, dafl die Tabelle (2.40) in der Tat die Vollstindigkeitsrelation

[e e}
> Pt =1 (2.42)
z=0
erfiillt. Beachten wir
© 5
Z e ¢ (2.43)
T=

so erhalten wir in Verbindung mit (2.39)

T

pd % _aoo a —a a 1
S Pra)=¢ "3 y=¢ ¢ =1
z=0

=0

‘Weiter beweisen wir den
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S atz2.19: Fiir die Parameter der Poissonschen Verteilung gilt die Beziehung

E(x) =c2=a=mnp (2.44)

Beweis: Zunichst ist gemidB der Definition (2.5) des Erwartungswertes und
der Gleichung (2.43)

fe ] T, —a x—1
E@= 3 Zp— —a ™" 2 (;‘ —ae " =a.  (245)
z=0 )
Fiir die Streuung gilt deflmtlonsgemaﬁ
o] av c—a
o= X [z—E (o)
=0
oder ausfiihrlicher mit £ (z) = a
e} a® e—"% © T ,—a © LT,
=S Pt =2 Y e 5
z=0 =0 z=0
Beriicksichtigen wir (2.45) und (2.42), dann bleibt
2 - 2 2 — § 2
o'= 3 B ————a*=8—d. (2.46)
zr=
Fiir den Ausdruck S schreiben wir
a®e—? xa® e
S = Z z(x—1) + 2 —_—
x=0 =0
Bei Beachtung der Beziehung (2.45) vereinfacht sich der vorstehende Term zu
s 9 n aa;—z e
=¢ 2 e T

Setzen wir schlieBlich noch £ — 2 = %, dann ist unmittelbar ersichtlich,
daB der unter dem Summenzeichen der letzten Gleichung stehende Ausdruck
gemil (2.42) den Wert 1 hat. Damit haben wir § = a® + a und wegen (2.46)
die Behauptung 02 = a.

Wir haben oben festgestellt, daB die Wahrscheinlichkeit P, () fiir groBe n
und kleine p durch die Wahrscheinlichkeit P* () angenahert wird. Um ein
Bild von dieser Niherung zu erhalten, vergleichen wir im folgenden einige

Werte von P, (x) und P* () fiir n = 500 und p = s miteinander:

365
P*(,) P, () A(x) = P*(2) — P, ()
0 0,2541 0,2537 0,0004
1 0,3484 0,3484 0
2 0,2385 0,2388 —0,0003
3 0,1089 0,1089 0
4 0,0372 0,0372 0
5 0,0102 0,0101 0,0001
6 0,0023 0,0023 0
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Die P* (z) stellen also eine brauchbare Néherung fiir die GréBen P, () dar,
sobald n groB und p klein ist. In der Praxis wird daher stets P* (z) anstelle
von P, (x) angewandt, wenn die erwihnten Bedingungen erfiillt sind, da die
Berechnung von P* (z) gemi (2.39) unter Verwendung von Tafeln bedeutend
cinfacher ist als die Ermittlung der GroBe P, (z) nach der Formel (2.24) mit
den schwer zu bewéltigenden Binomialkoeffizienten.

Wir geben zum Abschluf noch drei praktische Beispiele zur Porssonschen
Verteilung.

In einem Werk sind 1,5 Prozent der gefertigten Schrauben fehlerhaft. Wie
groB ist der Erwartungswert fiir die Anzahl der fehlerhaften Schrauben in
cinem Posten von 100 Stiick? Wie grof ist die Wahrscheinlichkeit dafiir, da
in einer 100-Stiick-Packung keine fehlerhaften Schrauben sind? Fiir den Er-
wartungswert erhalten wir

E (z) = np = 100 - 0,015 = 1,5.

Es sind also 1—2 Schrauben im Mittel in einem Posten von 100 Stiick fehler-
haft. Die gesuchte Wahrscheinlichkeit ist genau P, (0) oder verméoge (2.24)

Py (0) = (1 — 0,015)100 ~ 0,221 .

Néhern wir P, (0) durch P* (o) gemaB (2.39) an, so bekommen wir

0 —1,
15’ M

Pigo (0) = P*(0) = 01

~ 0,223 .
Der Niherungsfehler betrégt also lediglich 0,002.

In einem Blechband von 100 m Lénge treten durchschnittlich 5 Fehler auf.
Das Band wird in kleine Bleche von 3 m Linge zerschnitten. Wieviel fehler-
hafte Blechstiicke sind zu erwarten? Zunichst ist die Wahrscheinlichkeéit

dafiir, daB in einem Meter Blech ein Fehler auftritt, gleich 2i0 .Inn Metern
Blech treten dann x Fehler mit der Wahrscheinlichkeit

)" e %0

(% _n
P, (z) ~ P*(z) = *)
auf. Fir die gesuchte Wahrscheinlichkeit Pj (o) dafiir, da 3 Meter Blech
fehlerfrei sind, ergibt sich daher aus (*) die Ndherung
0,15
e

P*(0) = —5;

~ 0,86

Zerschneiden wir das Band in Stiicke zu 3 Metern, dann sind
100
T . 0,86 ~ 29

fchlerhafte Bleche zu erwarten.
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. In'einem Geschift mogen in der Zeiteinheit (z. B. einer Stunde) im Mittel
A Kunden rein zuféllig eintreten. Der Erwartungswert fiir die Anzahl der
wihrend einer beliebigen Zeitspanne 7' eintreffenden Kunden ist dann AT.
Nach dem Porssonschen Gesetz (2.39) liefert dann

E (32 1) =80 1

(2.47)

die Wahrscheinlichkeit dafiir, da8 innerhalb des Zeitraumes T’ genau  Kun-
den zufillig eintreffen. Die Formel (2.47) spielt in der Theorie der Massen-
bedienung eine wesentliche Rolle (vgl. hierzu Kapitel 4).

2.5. Kontinuierliche Verteilungen

2.5.1. Dichtefunktion und Verteilungsfunktion

Wir betrachten im folgenden eine stetige oder kontinuserliche ZufallsgroBe,
d. h. eine zufillige Variable, die in jedem Intervall der reellen Zahlengeraden
mit einer bestimmten Wahrscheinlichkeit liegt. Wir nennen nun die stetige
Funktion w (x) die kontinuterliche Dichtefunktion der kontinuierlichen Zu-
fallsgréBe «, wenn folgende Bedingungen erfiillt sind:

a) Fiir alle o der reellen Zahlengeraden gilt

w(z) =0 (2.48)

b) Fiir beliebige reelle Zahlen ¢ und b mit a < b besteht

b
[ w(z)dz = Pla=xz<b) |. (2.49)

a

Die erste geforderte Bedingung besagt, daf die Funktion w () nirgends auf
der reellen Achse negativ ist. Die zweite Forderung (2.49) bedeutet, dal der
Inhalt des Flichenstiicks zwischen der Kurve y = w (), den Geraden z = a
und z = b sowie dem Intervall ¢ < 2 < b gleich der Wahrscheinlichkeit
dafiir ist, daB die Zufallsgrofe = diesem Intervall angehort.

Auf Grund der Stetigkeit der Funktion y = w (x) gelten offenbar neben
(2.49) noch die Beziehungen

7w(m)da; =Pa<z£b)=P@sz<b)=Pa<z=d) |, (2.50)

a

‘Wir beweisen nun den
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Satz 2.20: Fiir jede kontinuierliche Dichtefunktion w (x) besteht die Voll-
stindigkeitsrelation

+00
[fw@)de =1 |, (2.51)
Bewers: Aus (2.50) folgt
+ o0
fw(w)dao: P(—oo < z< 00).

Das Ereignis 4A=""—oco < x < oo’ ist offenbar gleich dem Ereignis ,,die
Variable z nimmt einen beliebigen reellen Wert an‘. Daher gilt 4 = S und’
damit P (4) = 1. Der Satz ist hiermit bewiesen.

Geometrisch bedeutet die Relation (2.51), daBl die Fliche zwischen der
Kurve der Funktion y = w (z) und der reellen Zahlengeraden den Wert 1
hat (siehe die folgende Abbildung!).

wix)*
Y ~ Flicheninhalt =1 «

Abb. 8 Dichtefunktion einer stetigen Zufallsgrofie

Die Dichtefunktion w (x) einer stetigen ZufallsgroBe entspricht offenbar der
Verteilungstabelle (2.1) einer diskreten Zufallsvariablen. Insbesondere ent-
spricht der Vollstindigkeitsrelation p, + p, + . . . 4+ p, = 1 im diskreten Fall
die Vollsténdigkeitsrelation (2.51) im kontinuierlichen Fall. Kennen wir die
Dichtefunktion y = w («), so sind wir in der Lage (wie bei Kenntnis der
Verteilungstabelle (2.1) im diskreten Fall!) alle Wesensziige der betreffenden
kontinuierlichen Verteilung anzugeben.

Vielfach ist nicht die Dichtefunktion w (x) einer kontinuierlichen Zufalls-
groBe x, sondern nur eine zu w () proportionale Funktion w* () bekannt.
Dann gilt aber zunéchst

w (z) = ¢- w*(z), (2.52)
wobei ¢ ein Proportionalititsfaktor ist. Beachten wir weiter die fiir w (z)
giiltige Beziehung (2.51), so erhalten wir fiir ¢ den Wert
1
c=—g
f w* (x) dx
-—Q0

und damit gemiB (2.52)

w* (2)
+ 0o
f w* (x) do

—

w (z) = (2.53)

Damit haben wir die gesuchte Dichtefunktion w () eindeutig bestimmt.

55



Wir erldutern den vorstehenden Sachverhalt an einem Beispiel: Gegeben
sei die Funktion

w* (2) = —

T+a’
die einer Dichtefunktion fiir die ZufallsgroBe z proportional sein soll. Wir

setzen w (z) = mit ¢ als konstantem Faktor und erhalten aus (2.51)

1+2

¢= To dz *)

Um das im Nenner des vorstehenden Ausdrucks stehende Integral zu berech-

nen, beachten wir, daf§ w* (z) = ﬁ eine gerade Funktion ist, d. h.
w* (— &) = w* (o) fiir jedes reelle o erfiillt ist (und damit die Kurve von

y = w* (x) spiegelbildlich zur y-Achse liegt!). Wir erhalten dann

+ @©
/ 1+x2= fT — = 2arctgr| =m.
~ o 0 0

Beriicksichtigen wir das letzte Ergebnis in (*), so haben wir unsere Dichte-
funktion w () eindeutig zu

1

@O =i

(2.54)
ermittelt.

Wir verweilen noch einen Augenblick bei der Dichtefunktion (2.54), um den
Verlauf der zugehérigen Kurve kennenzulernen. Auf Grund der oben erwihn-
ten Eigenschaft von w* (z) ist auch das Bild von w () symmetrlsch zur
y-Achse. Weiter erkennen wir die einzigen Nullstellen von w () in den un-
eigentlichen Punkten z = 4 co. Bei z =0 hat die Kurve ferner ein Maxi-
mum (das einzige Extremum!), da

, —2
w' (z) = n(l—+xxz)2 (2.55)
auber an der Stelle £ = 0 nirgends im Endlichen verschwindet und
1" 2 3a2—1

im Ursprung negativ ist. Der zugehorige Maximalwert der Dichtefunktion

ergibt sich nach (2.54) zu% . Die Beziehung (2.55) sagt weiter aus, dal die

Kurve von —co bis 0 monoton steigt, im Punkt (O, % kulminiert und von O

bis co monoton fallt. Schliefilich entnehmen wir noch der Gleichung (2.56),
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daB die einzigen Wendepunkte der in Rede stehenden Kurve bei den Ab-
zsissen ¢ = + —V: liegen; die zugehorigen (auf Grund der Symmetrie) gleichen
Wendepunktsordinaten besitzen den Wert % . Nun sind wir in der Lage, die
Gestalt der Kurve der Dichtefunktion (2.54) anzugeben.

wix)

-2 +2

Abb. 9: Verlauf der Dichtefunktion w (x) = ﬂ(l;_*_zg)

Wir kehren nun zu der allgemeinen kontinuierlichen Verteilung mit der
Dichtefunktion w (z) zuriick. Als kontinuierliche Verteilungsfunktion fithren
wir die Funktion

W) =Pa<d | (2.57)

ein und beweisen den

Satz 2.21: Fir die Verteilungsfunktion W (&) der kontinuierlichen Zufalls-
variablen # mit der Dichtefunktion w (z) gilt die Darstellung

£
W(E) = [w@ds |. (2.58)

— 00

Beweis: Der Beweis der vorstehenden Aussage ergibt sich aus den Beziehungen
(2.57) und (2.50):
¢
WE =Pr<é)=P(—oo<z<b = [ w)de.

—
Aus Satz 2.21 folgt der

Satz 2.22: Die Verteilungsfunktion W (&) einer kontinuierlichen Zufallsgro8e
ist eine monoton wachsende und stetige Funktion, die fiir £ = — oo ver-
schwindet und fiir £ = oo den Wert 1 annimmt.
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Beweis: Differenzieren wir das in (2.58) vorkommende Integral nach der
-oberen Grenze £, dann erhalten wir nach den Regeln der Analysis

PO — e =w®. (2.59)

Wegen der Stetigkeit von w (&) ist W (&) stetig differenzierbar und damit
-erst recht stetig in £. Aus (2.59) und (2.48) folgt W’ (&) =0, d. h. die Tat-
sache, daBB W (&) monoton steigt. Aus der Beziehung (2.58) erhalten wir
weiter die Relation

W(—o0)=0. (2.60)
denn aus (2.58) resultiert

(Ein Integral zwischen gleichen Grenzen verschwindet!). SchlieBlich liefert
W(+o0)=1 (2.61)

-‘wegen (2.58) die schon bewiesene Vollstindigkeitsrelation (2.51). Damit ist
der Satz bewiesen.

Die Verteilungskurve einer kontinuierlichen Zufallsvariablen, d.h. die
Kurve der zugehorigen Verteilungsfunktion W (£) zeigt auf Grund des vor-
stehenden Satzes 2.22 folgenden Verlauf:

—— :

Abb. 10 Verteilungskurve einer stetigen Zufallsgrofe

Die uns schon vertraute Dichtefunktion (2.54) besitzt gemiB (2.58) die
Verteilungsfunktion

1 ¢ d 1 3 1
W(&) =; / szz:—:’; arctgz| =—ﬂ(arctg§+_72t_)

—Q0 — Q0

oder kurz

|

W) = % arc tg &+ . (2.62)

&

b



Die entsprechende Verteilungskurve hat die Gestalt

/—1/1'

1

-2 -1

Abb. 11 Verteilungskurve zu Abb. 9

Wir beweisen nun den

Satz 2.23: Ist W (£) die Verteilungsfunktion einer kontinuierlichen Zufalls-
groBe z, dann besteht die Beziehung

Pa<a<b=WH —W(@a) |. (2.63)

Beweis: Die Verteilungsfunktion W () ist wegen (2.59) eine unbestimmte
Losung des Integrals in (2.49). Daher folgt aus (2.49)

b b
P(a§z<b)=fw(z)dw=W(w)l =W (b)— W (a).
a a
Damit ist schon alles gezeigt. Da weiter nach dem Satz 2.22 die Verteilungs-

funktion W (&) beziiglich ihres Arguments stetig ist, gelten neben (2.63)
auch noch die Relationen

Pa<az<b=Plass<b=Palz<b=WH—Wa |64

Wir wenden uns nun wieder der stetigen Zufallsvariablen z mit der Dichte
(2.54) und der Verteilungsfunktion (2.62) zu. Wir fragen zunichst nach der
Wahrscheinlichkeit p, dafiir, daB « dem Intervall (—— VL_ Sz < V_) ange-
hort, d. h. dal = einen beliebigen Punkt der reellen Achse zwischen den
Wendepunktabszissen annimmt. Aus (2 64) folgt vorerst

1

1 1
Py=P(— o sos )= (—_)—W(——_>.
! V3 Vs V3 V3
Beachten wir (2.62), so wird weiter
Py = %[arc tg Vl—:_; — arc tg <—%)] = %arc tg Vlg—
Der tg-Tafel entnehmen wir den Wert arc tg % = arc tg 30° = %— .
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Damit haben wir das Ergebnis p, = % . Die Wahrscheinlichkeit dafiir, da

z dem Intervall — —}3: - 2 5 angehort, ist demzufolge halb so gro8 wie

die Wahrscheinlichkeit dafiir, daB 2 diesem Intervall nicht angehért. Mit
anderen Worten nimmt die iiber diesem Intervall liegende Fliche unterhalb
der Kurve der Dichtefunktion ein Drittel der Gesamtfliche ein.

Ganz entsprechend berechnen wir die Wahrscheinlichkeit p, = P (lz| < 1)

mp, =P(—1=z=1)=WQA)—W (1) =—72z—arctg1 = —;—

Die Fliche zwischen der Kurve der Dichtefunktion, der z-Achse und den
Geraden z = 4 1 ist demzufolge die Hilfte der Gesamtfliche. Fithren wir
die Beziehungen A="—1<2<1" und B="—cc < 2<1" + "1 <
< 4 o0’ ein, dann sind die Ereignisse 4 und B offenbar gleichwahrscheinlich

mit der Wahrscheinlichkeit % .

SchlieBlich fragen wir in diesem Zusammenhang nach der Zahl «, fiir die

Pe<a)= > ~ 09 *)
erfiillt ist. Mit anderen Worten: Wie gro muBl die Konstante o gewahlt
werden, damit iiber dem Intervall —a < 2z < + o bereits 96 Prozent der
Fliche zwischen der Kurve der Dichtefunktion und der z-Achse liegen? Aus
(2.62), (2.64) und (*) erhalten wir

P(—asz<s0a)= W(a)—W(—a):%arctga:—i—

oder kurz
arc tg o = z. 3 = i
2 4 2
Der tg-Tafel entnehmen wir den Wert o ~= 14,1. AuBlerhalb des Intervalls
— 141 < v < 14,1 tritt die kontinuierliche ZufallsgroBe z also nur mit
einer Wahrscheinlichkeit von annihernd 4 Prozent auf.

Verdeutlichen wir die letzte Diskussion noch an einer Abbildung:

4 wix)
é 2
(/7]
/ AN
y4 AN

-1 -1Yvzy 0 Iy 1

Abb. 12: Verlauf der Dichtefunkiion w (x) = ”(Ti_;{)

Die schrig gestrichelte Fliche hat den Inhalt L , die horizontal gestrichelte
dagegen % .
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2.5.2.  Erwartungswert und Streuung kontinuierlicher Verteilungen

Als Erwartungswert E (x) bzw. als Streuung ¢ () der stetigen Zufallsvaria-
blen # mit der Dichtefunktion w () fiihren wir ohne néhere Begriindung die
Integrale!

+
E (z) = f zw (z) dz 0% = f [t — E ()] w (x) dx (2.65)

—

cin, die als Verallgemeinerung der Summen (2.5) und (2.15) im diskreten Fall
angesehen werden konnen.

Ohne Beweis (vgl. hierzu [4]) erwdhnen wir den

Satz 2.24: Alle in den Sitzen 2.4—2.13 hergeleiteten Eigenschaften des
Erwartungswertes E (z) und der Streuung o2 (z) gelten auch im Fall einer
stetigen ZufallsgroBe .

Wir berechnen nachstehend fiir zweistetige Verteilungen die Parameter E ()
und ¢? (x). Zundchst erértern wir die Verteilung (2.54), die wegen (2.65,)
den Erwartungswert

e 2.66)
o 1t 2 (

besitzt. Um das vorstehende Integral zu bestimmen, untersuchen wir vorerst
das Integral

oo
= ——dz.
—'/az 1+ a2
Nach den Regeln der Analysis wird
+a

I () = [ L do=;ma+29| =o.

Beachten wir I (a) = 0 in (2.66), so erhalten wir das Ergebnis

E(@)= -lmI(@)=—-0=0.

a—>Qa0

Der Erwartungswert der Verteilung (2.54) ist also null. Dieses Resultat, ergibt
sich auch unmittelbar aus der Symmetrie der Kurve der Dichtefunktion (2.54)
Das Ergebnis folgt sogar sofort aus der Tatsache, daf die Funktion 1—_:—3:2

eine ungerade Funktion ist.
1 Selbstverstindlich wird die Konvergenz der Integrale vorausgesetzt.
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Wir interessieren uns nun fiir die Streuung der kontinuierlichen Verteilung
(2.54). GemiSB (2.65,) und E () = O ist zuniichst

o = l+7idz (2.67)
w 14 a? ’ :

Wir behandeln wieder vorerst das Integral

+a 2
I* (a) =_‘/‘;mdz'

Wegen ——— i + &= 1— ﬁ erhalten wir
+a 1 +a
* _— p— _ — J—
I (w)—_fa (1_l+x2) dez =z —arctgx 3 = 2 (¢ — arctg ),
so daf
lim I* (@) =
a—> Q0

wird. Demzufolge iibersteigt die Streuung

o (¢) = - lim I* (@)
7 a—>0o
jeden endlichen Wert.

Wir beschiftigen uns nun mit der kontinuierlichen Zufallsgroe x, die die
Dichtefunktion

x
e,wenn =0 ;

w (z) = (2.68)

e ,wennz =0

I

aufweist. Wir bestatigen die Giiltigkeit der Vollstindigkeitsrelation (2.51)
fiir die eben eingefiihrte Funktion w (). In'der Tat ist

T etda=g [ o femsda|=[e]  —er|7] 1.
0

— Qo — 0o

Die Kurve der Dichtefunktion (2.68) zeigt den Verlauf.

77 LZZ7 % W (X)

-1 c+1
Abb. 13: Verlauf der Dichtefunktion (2 - 68)
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Sie ist speziell symmetrisch zur y-Achse. Aus dieser Symmetrie folgt, dafy
der gemi (2.65,) gebildete Erwartungswert der Verteilung (2.68) verschwin-
det:

0 0
E(w)=%[ [ ze*d x + /zeﬁ”da:}:O; (2.69)
- 0

@

dieses Ergebnis ergibt sich auch schnell auf rechnerischem Wege. Die Formel
(2.65,) liefert fiir die Streuung der Verteilung (2.68) wegen (2.69) den Wert

2 1 ’ 2 o2 7 2 o— 2
o =5 /a;e d:c—f—/xe dz|, (2.70)
— 0o 0

den wir nun berechnen. Beachten wir die durch mehrfache partielle Inte-
gration nachweisbare Beziehung

[f@esae= @1 @2 ], e
wobei f(z) ein Polynom beliebiger Ordnung ist und demzufolge die Reihe
in der eckigen Klammer abbricht, dann erhalten wir fiir das erste Integral
[f (%) = 22, « = 1)] in (2.70) das Ergebnis

0 0
'[a:ze"’dw=e”(w2-—2x—|—2)l =2. (*
- 0o —oo

Fir das zweite Integral (f (z) = 2%, o« = — 1) in (2.70) ergibt sich analog

[ee] 0]
fmze"“’dm=—e—x(w2+2x+2)| =2. (*%)
0

Beriicksichtigen wir schlieBlich (*) und (**) in (2.70), dann liegt das Resultat
mit

1
=5@2+2)=2

Vvor.

2.5.3. Der Zusammenhang zwischen diskreten und kontinuierlichen
Verteilungen

Wir machen im folgenden einige Bemerkungen zum Zusammenhang zwi-
schen diskreten und stetigen Verteilungen. Zu diesem Zweck betrachten wir
zunéchst eine Reihe von Mewerten m,, m,, . . ., m,, einer kontinuierlichen
ZufallsgroBe, die z. B. die Lédngen von n kontrollierten Erzeugnissen in 10~2¢m
bedeuten. Wir ordnen nun die bei der Messung der Erzeugnisse angefertigte
,, Urliste* von MeBwerten, um die absoluten Haufigkeiten by (¢ = 1,2, . . ., n)
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der MeBwerte zu ermitteln. Gehen wir zu den relativen Héufigkeiten h; der

MeBwerte m; (v =1, 2, . . ., n) iiber, so stellt das Schema
MeBwert | my My My ... my,
relative Héaufigkeit | ’:1 7&2 h; v I;n

eine ,,empirische Verteilung* diskreter Natur dar. Da nun aber z. B. der
MeBwert zz = 1,42 alle méglichen Erzeugnislingen x mit 1.415 < » < 1.425
reprisentiert, handelt es sich bei dieser Verteilung genauer um eine Vertei-
lung von Klassen der Breite 0,01 cm fiir die Erzeugnislinge z. Tragen wir
iiber der jeweiligen Klassenmitte, d. h. iiber dem die Klasse reprisentierenden
MeBwert m; die entsprechende relative Haufigkeit h; (¢ = 1, 2, ..., n) auf
und verbinden wir benachbarte der so entstehenden Punkte miteinander, so
erhalten wir ein Haufigkeitsdiagramm fiir die einzelnen Klassen, die wir K,
K,, ..., K, nennen.

my my Mgy Tmy, BN mp
—_ N —
Ky K, K; Ky, Kn

Abb. 14: Diagramm relativer Hdaufigkeiten von Klassen

Die Summe der Strecken muB offenbar die Einheitsstrecke ergeben. Dieses
Diagramm approximiert die Dichtefunktion w (z) der stetigen Zufallsgrole =
(z. B. Erzeugnislinge) im Bereich der Klassen K, K,, ..., K,. Verwenden
wir ein genaueres MeBinstrument, d. h. messen wir die Lingen z auf 10~3
oder 10~4 ecm genau, dann wird die Klasseneinteilung ,,feiner‘ und die Appro-
ximation der unbekannten Dichtefunktion durch das Klassenhdufigkeits-
diagramm ,,besser’. Eine weitergehende Erorterung der hier aufgeworfenen
Problematik erfolgt im Kapitel 4.

.Diese Ausfiihrungen lassen erkennen, daB jede stetige Verteilung durch
eine diskreter Verteilung, jede Dichtefunktion w (z) durch eine Verteilungs-
tabelle der Form (2.1) angendhert werden kann. Unterteilen wir ndmlich die
reelle Zahlengerade in nicht notwendig gleiche Intervalle (Klassen) K,
K,, K; ... und ordnen wir der Klasse K; die Wahrscheinlichkeit p; = P
(,,die stetige ZufallsgroBe x tritt in der Klasse K; auf”) (¢ =1, 2,...) zu,
so haben wir eine diskrete Verteilung der Klassen K; (¢ =1,2,...) mit
der Verteilungstabelle

Klasse | K, K, K;...K,
‘Wahrscheinlichkeit | Py P2 Ps - Py

VOor uns.
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SchlieBlich erwihnen wir noch, daB eine diskrete Zufallsvariable z mit der
Verteilungstabelle (2.1) als eine kontinuierliche Zufallsgréfe mit der aller-
dings unstetigen Dichtefunktion

w (z) = powennz=2x;(t=1,2,...,n);
0, sonst.

aufgefaBt werden kann.

2.6. Die Normalverteilung
2.6.1. Die allgemeine Normalverteilung

Nach den Darlegungen des Paragraphen 2.5 kénnen wir uns ohne grofle
Schwierigkeiten die verschiedenen Formen stetiger Verteilungen verdeut-
lichen. Die Praxis hat nun gezeigt, daB die meisten Verteilungen praktischer
ZufallsgroBen kontinuierlicher Natur mit einer geringen Zahl von Verteilungs-
typen iibereinstimmen (vgl. Abschnitt 2.63). Ein solcher Typ ist die allge-
meine Normalverteilung oder GAUSSsche Verteilung einer kontinuierlichen
Zufallsvariablen z, die die normale Dichtefunktion

v =z >0 (272)

besitzt.
Die Funktion (2.72) enthilt zwei unbestimmte Konstante ¢ und s so da8
(2.72) genauer eine zweiparametrige Schar von Dichtefunktionen darstellt.
Mithin gibt es eine zweiparametrige Schar von Normalverteilungen.

Wir zeigen zunichst einmal, dall die Funktion (2.72) die Vollstandigkeits-
relation (2.51) erfiillt. Fithren wir in dem Integral

+o s (z—1i)?
J=— [ e dz
3]

die neue Verinderliche z = s (z — ¢) mit dz = sdz ein, so erhalten wir
+ )

*’-V;

Beachten wir nun d1e Relation

dz .

(2.73)

to
[ e dz =YVn
— o

auf die wir nicht weiter eingehen (vgl. hierzu [5]), so ergibt sich die Behaup-
tung J = 1.
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Wir untersuchen nun den Verlauf der Kurve der allgemeinen Dichte-
funktion (2.72). Zunédchst liegt die Kurve symmetrisch zur Geraden z = ¢,
da w (t + z) = w (t — z) gilt. Weiter besitzt die Kurve die einzigen Null-

stellen bei & = 4- co. Fiir & = ¢ liegt ein Maximum mit der Ordinate ——

T
vor, da —s2(@— 2
w (z) = —28=—0e (2.74)
V=
auBler an der Stelle & = ¢ nirgends im Endlichen verschwindet und
—82 (z_t)2
,w// (x) =—28’[1—232(m-—t)2]e (2'75)

V= .
tiir & = ¢ negativ ist. Aus (2.74) folgt, da die Kurve von — co bis ¢ monoton

steigt, im Punkte ( t; i) kulminiert und von ¢ bis + oo monoton fillt. Die

Vo
zwei notwendigen Wendepunkte liegen gemif (2.75) bei ¢+ % mit den
s

auf Grund der Symmetrie gleichen) Ordinaten % ~0,6 - —V%.

Wir zeichnen nachstehend drei Kurven, die zu den Funktionen (2.72)
mit den Parameterwerten

lLit=s=1
2. t= s=%
3.t=0, s=V% gehoren.
wix)
0,5

0

11
-2 -1 12¥7 05

Abb. 15: Verlauf normaler Dichtefunktionen
Wir betrachten nun wieder eine allgemeine normal verteilte ZufallsgréBe z,

d. h. eine kontinuierliche Zufallsvariable z, die die Dichtefunktion (2.72)
besitzt. Die Funktion

WE =P

-

(2.76)
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gibt die Wahrscheinlichkeit dafiir an, dal die ZufallsgréBe x einen kleineren
Wert als & annimmt. Wir nennen sie die normale Verteilungsfunktion. Auf
Grund des Satzes 2.21 und in Verbindung mit (2.72) gestattet (2.76) die
Darstellung

s et | (2.77)
[ e dr |-

s
V7 —o

W)=

Die zugehorige normale Verteilungskurve, d.h. die Kurve der Funktion
(2.77) zeigt den folgenden Verlauf

1
|
I

t

-¢
Abb. 16: Normale Vertetlungskurve

In den folgenden Sitzen bestimmen wir den Mittelwert E (z) und die
Streuung o2 () der allgemeinen Normalverteilung (2.72).

Satz 2.25: Die Normalverteilung (2.72) hat den Erwartungswert

E(m)=t|. (2.78)

Beweis: Aus Symmetriegriinden des Verlaufs der Dichtefunktionskurve ist
der behauptete Sachverhalt klar. Wir weisen ihn nun rechnerisch nach:
Zunschst ergibt sich aus (2.65,) und (2.72)

+ oo
—382 (z—1)2
f xe dx

E(z) = =
| @ ==
oder
+ 00 +00
1 —z2 t —22
E(zx) = — 2e  dz 4+ — e dz

@ == L =
Beachten wir die Tatsache, daB ze~#* eine ungerade Funktion ist, und beriick-
sichtigen wir die Relation (2.73), so bekommen wir kurzerhand E (z) =t.
Wir nennen das Integral

+00
8

My == | [c—E@)" ¢

T oo

2(z— 1)2
e =01,..) (2.79)
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das n-te Moment oder das Moment n-ter Ordnung der Normalverteilung (2.72)
und beweisen den

Satz 2.26: Fiir die Momente M, (n = 0,1, 2, . . .) der Normalverteilung (2.72)
besteht die Rekursionsformel

Mn+2=n+1M .

282 n

(2.80)

Insbesondere sind alle Momente ungerader Ordnung null.
Beweis: Wenden wir auf die Definitionsgleichung (2.79) fiir M,, die Regel der
partiellen Integration an, so erhalten wir

+ n+2

M=~ @—p | et +28’+°°(z-t) —s2(—0?

" Ya nm+l o Vadly mI

oder vereinfacht (das erste Glied fallt weg!)

T

+ oo

22 s / n+2 —s2(x—t)2
M”_-n—{——l'i/i_oo(x_t) e dﬁ.

Beachten wir (2.79) fiir den Index »n + 2, so wird klar, daf der vorstehende
Ausdruck die Beziehung (2.80) darstellt; dabei ist » eine beliebige ganze
nichtnegative Zahl. Um den zweiten Teil des Satzes zu beweisen, brauchen
wir nur M, = 0 zu zeigen; denn ist M; = 0, so folgt aus (2.80) sofort Mg =

M, =...=0.In der Tat ist wegen E (x) = ¢
+oo +o
8 —82(x—1)2 . —s2(x—1)2
Mlz——v—— / ze dw—s—__t_ / e dz = 0.
T V” —

Das erste Integral hat nach Satz 2.25 den Wert ¢, das zweite Integral ist bis
auf den Faktor ¢ gerade die Vollstindigkeitsrelation (2.51) in Verbindung
mit (2.72).

Aus dem letzten Satz folgt der

Satz 2.27: Die Normalverteilung (2.72) hat die Streuung

(@) = o |- (2.81)

Beweis: Das nullte Moment (2.79) ist gerade die Vollstindigkeitsrelation,
folglich gilt M, = 1. Weiter stellt das zweite Moment (2.79) die gesuchte
Strenung ¢? (x) dar; mithin folgt M, = 02 (z). Setzen wir nun in (2.80) n = 0,
8o ergibt sich die Behauptung
1 1
My=0(a) = 55 - My= 5, .
Aus der Beziehung (2.81) folgt unmittelbar, daB die Streuung o2 (z) der
Normalverteilung mit wachsendem Parameter s abnimmt. Je grofier also
der Parameter s ist, um so kleiner ist die Streuung o2 (z), d.h. um so ,,besser*
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ist die Normalverteilung. Aus diesem Grunde tragt die positive Konstante s
die Bezeichnung Prdzisionsmaf der Normalverteilung.

Satz 2.28: Hat eine normalverteilte Zufallsvariable # den Erwartungswert
E (x) und das StreuungsmaB o (), dann lautet die zugehorige Verteilungs-
dichte

[z— E ()12
( 1 e‘ 202(z)

pra T (2.82)

Beweis: Ersetzen wir in (2.72) den Parameter ¢ vermége (2.78) durch E (z)

und die GroBe s durch den sich aus (2.81) fiir s ergebenden Wert cr_(xl)—yf R
so resultiert gerade die behauptete Darstellung (2.82). Die Darstellung (2.82)
macht insbesondere deutlich, daf jede Normalverteilung durch ihren Erwar-
tungswert E (z) und ihre Streuung o? (z) eindeutig bestimmt ist. Besitzt
beispielsweise die normalverteilte ZufallsgroBle = den Mittelwert E (z) = 5
und das Streuungsmaf o (x) = 2, so folgt aus (2.82), daB die zugehdorige
Dichtefunktion die Gestalt
, =¥
w(x) = —— ¢ 8
aufweist. 2Y2x

Beachten wir die Beziehung (2.82), so folgt fiir die Verteilungsfunktion einer
Normalverteilung die Darstellung

1 ¢ _ [—E@P
_ 2@ g
W = f e s | (2.83)
—o00

Im eben betrachteten Beispiel lautet mithin die Verteilungsfunktion

I

W(g--)=2;27z fe & iz,

— 00

2.6.2. Die standardisierte Normalverteilung

Die standardisierte Normalverteslung ist diejenige Normalverteilung, die den
Erwartungswert E (z) = 0 und das Streuungsmal ¢ (z) = 1 besitzt. GemiB
(2.82) hat die standardisiert normalverteilte Zufallsveranderliche « die Dichte-
funktion

g (@) = ﬁ e . (2.84)
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Die Funktion ¢ () geht also aus der allgemeinen normalen Wahrscheinlich-

keitsdichte (2.72) hervor, wenn ¢ = o und s = »~12— gesetzt wird. Da ¢ () eine

gerade Funktion in & ist, d. h. ¢ (— z) = ¢ () fiir alle reellen z gilt, liegt
das Bild der Dichte (2.84) symmetrisch zur y-Achse. Weiter folgt aus der
Diskussion des Kurvenverlaufs der allgemeinen Dichtefunktion (2.72), daB

@ (2) bei z = 0 das Maximum ¢ (0) = V;—_— =~ 0,4 (das einzige Extremum
JT
iiberhaupt) und in (:I: 1, l/% R 0,24) die einzigen Wendepunkte aufweist.
em
Das Bild der Kurve der standardisierten Normalverteilungsdichte (2.84) ist
bereits in der vorletzten Skizze gezeichnet worden; es ist dort mit der Be-

zeichnung w, () versehen.

Beriicksichtigen wir in (2.83) die Parameterwerte der standardisierten

Normalverteilung, so nimmt die betreffende Verteilungsfunktion die fol-
gende Gestalt an:

+& a2
q)(&):ﬁ [ e T |; (2.85)

[ — 1
-3 A -1 0 1 2 3

Abb. 17: Die standardisierte normale Verteilungskurve

Ist also « die in standardisiertem Sinne normalverteilte ZufallsgroBe, so gilt
in Verbindung mit (2.85)

Pasz<b) =900 — P

, (2.86)

Wir beweisen nunmehr den ‘ )
Satz 2.29: Ist z eine beliebige normalverteilte Zufallsvariable mit dem Erwef,r-
tungswert E (z) der Dichte w (z) und dem Streuungsmaf o («), dann ist

__ z—E()
T e(x)

(2.87)

70



die standardisiert normalverteilte ZufallsgréBe y mit der Dichte

Py) =0(@) w@) =o@wlo@y+E@)] | (288

und der Verteilungsfunktion

D(n) = W(E) = W(o(z)y + E(2)) (2.89)

Bewers: Wegen (2.87) hat y zunichst den Erwartungswert null:
1
E@y) = 5o Blo— E@)) =
und das StreuungsmaB eins:

o)) = 55 ol — E(@)] = 775+ o(a) = 1.
Weiter folgt aus (2.84), (2.87) und (2.82)

1;2 1 [:0:—;3(4;)]2
— 202(z
=_"_e¢ =0(x) ——— e

(Y= V2 @ a(x))2n

oder die Behauptung (2.88). Wenden wir schlieflich die Substitution (2.87)
auf das Integral in

= o (z)w(x)

] _L”
; dz
an, so wird wegen dy = @
R § _ [s—E(@)e

T2 _ 202(z) —
@ () = V_j e dy——a(x)m;/;oe do = W (&)

mit & = 5o (z) 4+ E (x); das bedeutet aber schon die Behauptung (2.89).

(GemiB dem vorstehenden Satz 148t sich also jede normalverteilte Zufalls-
groBe durch die lineare Transformation (2.87) auf die standardisiert normal-
verteilte Zufallsvariable zuriickfiihren. Die Umkehrung dieses Sachverhalts
— die wegen der Linearitit der Transformation (2.87) méglich ist — bringt
der folgende Satz zum Ausdruck.

Satz 2.30: Ist y die Zufallsvariable der standardisierten Normalverteilung
und sind die Parameter # und 7 > 0 gegeben, dann reprisentiert die Zufalls-
grofe

T=1ry+ % (2.90)
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eine Normalverteilung mit dem Erwartungswert Z, dem Streuungsmaf 7, der
Dichtefunktion

w@)=Lgw="1 927 (2.91)

r

und der Verteilungsfunktion

W@=¢m=¢@:ﬂ (2.92)

Beweis: Wegen (2.90) hat x zunichst den Erwartungswert z:
E@=E@ry+7)=rE@y) +E@ =3
und das Streuungsmalf 7:

o(@)=0c(ry+2)=r-0(y)=r.
Weiter folgt aus (2.82), (2.90) und (2.84)
(z—2)2 y?

1 212 1 1 2 1

w(z)=fl/—2_ne —';"'ﬁ:——ze =9

oder die Behauptung (2.91). Wenden wir schlieBlich die Substitution (2.90)
auf das Integral in (2.83) an, so ergibt sich wegen dz = r dy

(z—2? oy

W(5)=W12~_;_fme‘ 2 dx=%_fme" ZTdy =0 @)

mit n = lr (& — ); das ist aber gerade die Aussage (2.92). Aus den Sétzen

2.29 und 2.30 geht hervor, daB jede Normalverteilung in die standardisierte
Normalverteilung und umgekehrt die standardisierte Normalverteilung in
jede Normalverteilung transformiert werden kann. Aus diesem Sachverhalt
ergibt sich unmittelbar, daB jede Normalverteilung in eine beliebige andere
Normalverteilung iibergefiihrt werden kann. Selbstverstindlich kann diese
Uberfithrung mittelbar iiber die standardisierte Normalverteilung vorgenom-
men werden. Im folgenden Satz geben wir die diesbeziiglichen direkten
Transformationsformeln an.

Satz 2.31: Sind x; (¢ = 1, 2) normalverteilte Zufallsvariable mit den Erwar-
tungswerten Z;, den Streuungsmafen o;, den Dichtefunktionen w; («;) und
den Verteilungsfunktionen W; (£;), dann gelten die Zusammenhénge

%w%—@=%4%—@‘ (2.93)
und oy, (2,) = 0, 10, (25) (2.94)
sowie Wy (&) = W, (&), | (2.95)
mit 0y (B — ) =0y (E,— ) |- (2.95")
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Beweis: Bezeichnet y die standardisiert normalverteilte ZufallsgroBie mit der
Dichte ¢ (y) und der Verteilungsfunktion @ (), dann resultieren aus dem
Satz 2.29 die Beziehungen

y ="

und

@ (y) = oy w; (0 y + ) = 0, w; (%) (=12 *
sowie

D(n)=W(oin + &) = Wi (§).
Eliminieren wir aus diesen 3 Gleichungspaaren die GréBen y, ¢ (y) und @ (#),
dann erhalten wir die Behauptung des Satzes 2.31.

Betrachten wir an dieser Stelle ein Beispiel: Gegeben sind die normal-
verteilten ZufallsgroBen z; und z, mit dem Erwartungswert #, = 3 bzw.
Z,=5 und dem StreuungsmaB ¢; = 10 bzw. g, = 20. Wie hingen die
Zufallsvariablen z;, ihre Dichtefunktionen w; (x;) und ihre Verteilungsfunk-
tionen W, (&;) miteinander zusammen? Aus (2.93) folgt zuniichst 10 (z, — 5)
= 20 (2, — 3) oder kurz

Xy =2 —1.
Wegen (2.94) wird weiter
w; (2,) = 2 w, (x,) .
SchlieBlich ergibt sich aus (2.95) nebst (2.95")

Wl (51) = W2 (52)
mit £, =28 —1.

Kehren wir nun zu den allgemeinen Uberlegungen zuriick. Wir haben das
Ergebnis abgeleitet, daB sich jede Normalverteilung auf die standardisierte
Normalverteilung zuriickfiihren Jd8t. Diese weist unter allen Normalvertei-
lungen die einfachste Struktur auf. Aus diesem Grunde li8t sich jede Frage-
stellung zu einer beliebigen Normalverteilung in eine Frage zur standardi-
sierten Normalverteilung umwandeln. Aus den allgemeinen Bemerkungen
iiber kontinuierliche Verteilungen geht hervor, dal bei der Beantwortung
von Fragen und Erérterung von Problemen stetiger ZufallsgroSen laufend
mit der Dichtefunktion und der Verteilungsfunktion gearbeitet wird. Folg-
lich ist unschwer einzusehen, daf die Funktionen ¢ () und @ (&) eine fun-
damentale Rolle in der Theorie der Normalverteilungen spielen. Um mit
diesen Funktionen, die in (2.84) und (2.85) ausgeschrieben sind, praktisch
umgehen zu kénnen, sind ¢ (2) und @ (&) tabelliert worden; in den meisten
Biichern iiber Wahrscheinlichkeitsrechnung und Statistik sind solche Tabel-
len im Anhang zu finden.

Mitunter wird anstelle von @ (£) die Funktion

+ &
0@ = p@da=0@E— (-8 (2.96)

73



benutzt, die wegen (2.85) die Wahrscheinlichkeit dafiir liefert, dal die stan-
dardisiert normalverteilte Zufallsgrofe z dem Intervall (— &, + £) angehort,
d. h. der Bedingung |z | < & geniigt

O &) =P (g <& |- (2.97)

‘Wir beweisen nun den

Satz 2.32: Zwischen @ (&) und O (&) besteht der Zusammenhang

O =20 —1 | (2.98)

Beweis: Da @ () eine gerade Funktion in # ist, gilt zunéchst
3
0@ =2 [ p@da.
0

Formen wir das letzte Integral um und beachten wir (2.85), so wird

3 0
@@y=2L[¢mdx—/¢uwx}=2@@y—¢@y

Auf Grund der Symmetrie der Kurve von ¢ (z) beziiglich der y-Achse folgt
D0)=P(—o<z<0)= % und damit die Behauptung (2.98).

Vielfach ist die Funktion ® (&) sogar tabelliert. Durch Anwendung der
aus (2.98) resultierenden Beziehung

® =5 [0© +1] (2.99)

ergibt sich aus einer ®-Tabelle ohne groBe Rechnung der entsprechende
Wert: fiir @.

Wir geben im Anhang eine Tabelle fiir die Verteilungsfunktion @ (£) der
standardisierten Normalverteilung. Dabei beschrinken wir uns auf nicht-
negative Argumente & Um der erwihnten Tabelle auch @-Werte negativer
Argumente entnehmen zu kénnen, brauchen wir nur zu beachten

Satz 2.33: Die Funktion @ (&) besitzt die Eigenschaft

O(—E=1—0d ¢ |. (2.100)
Beweis: Aus (2.85) folgt
—¢&
b(—8= [p@ds.
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Das vorstehende Integral gestattet nun die Umformung

—¢& +0o &
[e@is=[p@iz—[p@ac=1—0 @,

wenn wir wieder die Symmetrie der Dichtefunktion ¢ (z) beriicksichtigen.
Damit ist schon alles gezeigt. .

Wir betrachten nun einige Beispiele, bei deren Behandlung wir uns der im
Anhang befindlichen @-Tabelle bedienen.

1. Wie groB ist die Wahrscheinlichkeit dafiir, dal die standardisiert normal-
verteilte Zufallsvariable = im Intervall (— 1, + 1) auftritt? Diese Frage
ist offenbar der folgenden gleichwertig: Wie grof ist der Inhalt des Flichen-
stiickes zwischen der z-Achse, der Kurve y = ¢ (z) und deren Wendepunkts-
ordinaten? Der Flicheninhalt sei F, .

9

TN,
y/4 N
YL LN,
/ 3
4

A\
A\
%

£ Y% \
Fy A\

\\
FZAII\
7

V
-2

-1 1

X

Abb. 18: Die standardisierte normale Dichtefunktion

Wir erhalten gemi8 (2.96) und (2.97)
Fi=P(—1<a<)=P(lzl<1)=0(1).

Durch Anwendung der Beziehung (2.98) wird dann weiter
F,=0(1)=20(1)—1.

Der @-Tabelle entnehmen wir
@ (1) = 0,8413 .

Mithin betrigt die gesuchte Wahrscheinlichkeit (oder der gesuchte Flichen-
inhalt)

F,=2-0,8413 —1 = 0,6826 .
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2.

Mit welcher Wahrscheinlichkeit tritt die in Rede stehende Zufallsverinder-
liche # im Intervall (— 1, 2) auf? Diese gesuchte Wahrscheinlichkeit ist
offenbar gleich dem Inhalt des Flichenstiickes zwischen der z-Achse, der
Kurve y = ¢ () und den Geraden £ = — 1 und « = 2. Dieser Inhalt sei
F,. Aus (2.64) und (2.86) folgt

F,=P(—1<z2<2)=0(2)— D (—1)
oder auf Grund (2.100)
Fo=02)+®(1)—1.

Unter Zuhilfenahme der @-Tabelle ergibt die gesuchte Wahrscheinlichkeit
(oder der gesuchte Flicheninhalt) den Wert

F, = 0,9772 4 0,8413 — 1 = 0,8185.

. In welchem symmetrisch um den Ursprung liegenden Intervall ist die

gegebene ZufallsgroBe z mit einer Wahrscheinlichkeit von 50 Prozent
anzutreffen? Bezeichnen wir das gesuchte Intervall mit (—17, 4 1), so
muf zunéchst wegen (2.96)

OM=P(—l<a<+)=

sein. Beachten wir (2.99), so wird aus der vorstehenden Gleichung

76

o0 =1(b+1)=2.

GemiB der @-Tabelle gehort zu dem @-Wert 0,75 das Argument £ = 0,674
(linear interpoliert!), so dafl

1=0,674

das gesuchte Resultat ist. Beriicksichtigen wir noch die Symmetrie der
Dichtefunktion ¢ (z), so bedeutet dieses Ergebnis, daf die mit 4, B, C
und D bezeichneten Flichen der folgenden Skizze gleichen Inhalt be-
sitzen.

1(x)

1 1 &
-2 = =X

Abb. 19: Die standardisierte normale Dichtefunltion



4. Wie gro8 muB die Konstante o, sein, damit die betrachtete Zufallsvariable
z mit einer Wahrscheinlichkeit von 60 Prozent rechts von «, vorkommt?
Es soll also

P (0g < & < 00) = P (0) — P (o) = 0,6
oder infolge Satz 2.22

D (op) = 0,4
gelten. Aus der @-Tafel geht hervor, daB «, negativ sein muB. Daher
verwenden wir (2.100) in der Form

D (tg) =1— D (— )
und bekommen

D (—ay) =06.
Interpolieren wir wiederum in der @-Tabelle, so wird — &, = 0,253 und
damit das gewiinschte Resultat

oy = — 0,253 .

Wir wenden uns nun wieder den allgemeinen Betrachtungen zu. Zuerst
beweisen wir den wichtigen
Satz 2.34: Hat die normalverteilte ZufallsgréBe = den Erwartungswert E (z)
und die Streuung 02 (z), dann besteht der Zusammenhang

ngx<m=¢@—E@y_¢G:£@>. (2.101)

o(z) o ()

Beweis: Ist W (£) die Verteilungsfunktion der Zufallsvariablen z, dann ist
auf Grund (2.63)
Pasas<P=WE—W(.
Wenden wir nun auf diese letzte Gleichung den Satz 2.29, insbesondere die
Beziehung (2.89) an, dann folgt gerade die Behauptung (2.101).
Da jede Normalverteilungsdichte stetig ist, sind neben (2.101) auch noch
die Beziehungen

Paeaszsp) =Pa<z<f)=Plelz<p)
_ 5 (B—E (2) o— B (2) (2.102)
-0 PS5 -0 (55

Co(®) o (2)

giiltig.

Weiter besteht der

Satz 2.35: Hat die normalverteilte ZufallsgréBe « den Erwartungswert E (x)
und das Streuungsmaf$ o (z), dann gilt die Formel

Pm—EM<@=6%w : (2.103)
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Beweis: Wir betrachten die Zufallsverianderliche
__xz—E (2)
g(x) 7

die nach Satz 2.29 der standardisierten Normalverteilung gehorcht. Dann
wird wegen o (z) > 0

le —E (z)l =lo(z) -yl =0 (z) - lyl
und folglich fiir die linke Seite von (2.103)
Pllz—E (2)| < g]l= Plo()lyl <ol

oder wiederum wegen ¢ (z) > 0
Pllz—E(a)| < o] = P[1y|<a—(% .

Gemd Formel (2.97), in der die standardisiert normalverteilte Zufalls-
verdnderliche mit z bezeichnet ist, ergibt sich dann die Behauptung:

LI o
Plivi<zta) = o Gl

Die abgeleitete Formel (2.103) liefert also die Wahrscheinlichkeit dafiir, dal
die betreffende Zufallsvariable z in einem symmetrisch um ihren Erwartungs-
wert E (x) liegenden Bereich vorkommt. Diese Wahrscheinlichkeit hingt
offenbar nicht von der GroBe des Erwartungswertes E (z) ab, sondern wird
lediglich durch die Lénge dieses Intervalls und das StreuungsmaB o (z)
bestimmt. Diesen Sachverhalt bringt auch die Beziehung (2.103) zum Aus-
druck.

Wir geben zur Illustration der Sétze 2.34 und 2.35 nunmehr einige Beispiele.
Dabei interpolieren wir linear in der @-Tafel.

1. Gegeben sei eine normalverteilte ZufallsgréBe & mit dem Mittelwert
E (z) =1 und dem StreuungsmaB ¢ (x) = 3. Gesucht werden die Wahr-
scheinlichkeiten

a) p, dafiir, daB z dem Intervall —1 <z < 3 angehort;
b) p, dafiir, daB z im Intervall — 2 < 2 < 1 auftritt;
¢) p, dafiir, daB = die Zahl x, = 4 iibertrifft und

d) p; dafiir, da « zwischen x; = 5 und #, = 6 vorkommt.

Wir ermitteln die gesuchten Wahrscheinlichkeiten der Reihe nach. Fiir
Pq ergibt sich gemif (2.102)

r= 0 (5)—0(=5—) = 2(5) —2 (-3
oder als Folge von (2.96) und (2.98)
P= (3)=20(5)—1.
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Unter Zuhilfenahme der @-Tafel wird
Pg=2+0,7475 — 1 = 0,4950 .

Fiir p, erhalten wir zunéchst

Py =@ (1_1> qs(—_z?,_—l) — D (0) — D (—1)
oder wegen (2.100)
P=0(0) + & (1)—1.
Schlagen wir die @-Werte in der Tafel nach, so finden wir
P, = 0,6+ 0,8413 —1 = 0,3413.
Bei der Ermittlung von p, gehen wir von
pe=Pt <<l o) —<15<- : 1—)—¢(4%1>
= (00)— B (1).
aus; @ (1) haben wir oben schon aufgesucht. Beachten wir auerdem noch
® (c0) =1, dann lautet das Ergebnis
p,=1—0,8413 = 0,1587.
SchlieBlich berechnet sich p, zu

=0 ()05 =0f)—2(3)
oder anhand der @-Tabelle

Ppg = 0,9522 — 0,9088 = 0,0434 .
. Welche Normalverteilungen haben die Eigenschaft, daB ihre Zufalls-
variablen z mit einer Wahrscheinlichkeit von 95 Prozent um weniger als

eine Einheit von den betreffenden Erwartungswerten E (z) abweichen?
Fiir die gesuchten Verteilungen soll mithin

Pllz—E (z)] < 1]= 0,9
oder gemifl Satz 2.35
1
? [a (@)
gelten. Bringen wir die Formel (2.99) in Anwendung, so wird

[ ] 095+1 _ 0.975.
o ()

In der @-Tafel steht: @ (1.96) = 0,975. Daher folgt
1
o (%)
oder kurzerhand
o (z) &~ 0,51.

] — 0,95

= 1,96
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Die Antwort auf die gestellte Frage lautet damit: Alle Normalverteilungen
mit dem Streuungsmal ¢ (z) &~ 0,51 haben die Besonderheit, daf ihre
ZufallsgroBen mit einer Wahrscheinlichkeit von 95 Prozent um weniger
als eine Einheit von den betreffenden Erwartungswerten E (x) abweichen.

. Gegeben ist eine normalverteilte Zufallsverinderliche mit dem Mittelwert

E (z) = — 2 und der Streuung o2 (z) = 100. Gesucht sind die Wahr-
scheinlichkeit p, dafiir, daB x dem Intervall (0,5) angehért, und ein solches
symmetrisch um x, = — 2 liegendes Intervall (— 2 — I, — 2 -+ I),in dem
die Zufallsvariable  mit einer Wahrscheinlichkeit von 99,9 Prozent an-
zutreffen ist.

Fiir p, erhalten wir
5+2 042
Py = @ (T) — ¢ (—1_0_) — ®(0T) — & (02
oder bei Zuhilfenahme der @-Tafel
Po = 0,75680 — 0,5793 = 0,1787.

Bei der Bestimmung der GréBe 1 beachten wir den Satz 2.35, demzufolge

l l
Pllz —E@)| <=0 (G_@) = 0 15) = 0,999
besteht. Die Beziehung (2.99) fiihrt uns weiter zu

10
In der @-Tafel gehort zu @ = 0,9995 das Argument & = 3,30. Mithin gilt
l

10
oder das Resultat

1=33.
In dem Intervall (— 35, 31) tritt also die in Rede stehende ZufallsgroBe »
mit einer Wahrscheinlichkeit von 0,999 auf. AuBerhalb dieses Intervalls
ist die ZufallsgroBe daher nur mit einer Wahrscheinlichkeit von 1 Pro-
mille anzutreffen.

@ (i> — 5 (0,999 + 1) = 0,9995.

= 330

. Gegeben ist wiederum eine normalverteilte zufallige GroBe z; in diesem

Fall seien E (z) = 3 und ¢ (x) = 4 die zugehorigen Parameter. Wie gro
mufl nun die Zahl z sein, damit die Variable z in dem Intervall (z, 4)
wenigstens mit einer Wahrscheinlichkeit von 25 Prozent auftritt?
Wir gehen bei der Ermittlung von z von der gestellten Bedingung

Pe<a<t) = (‘i}?’f) — @ (-’f—z?) -
oY) o3 zom
aus. Wegen @ (0,25) = 0,5987 ergibt sich weiter

) (’:3) < 0,5987 — 0,25 — 0,3487.



Um auf einen @-Wert = 0,5 zu gelangen und damit die @-Tafel im Anhang
anwenden zu kénnen, beachten wir die Relation (2.100), die

@ (3:z> >1— ¢ (’:3) >0,6513

zur Folge hat. Auf Grund der Monotonie der @-Funktion und der Tatsache
@ (0,389) = 0,6513 erhalten wir

3—=z
4

oder schlieBlich das Ergebnis
z<1,444.
Die gesuchte GréBe z darf also nicht groBer als die Zahl 1,444 sein.

5. Wie groB muB die Zahl L sein, damit die in der vorstehenden Aufgabe
behandelte ZufallsgroBe x in dem Intervall (3 — L, 3 4 L) mit einer
geringeren Wahrscheinlichkeit als 15 Prozent vorkommt? Es soll also

L
Plle—E(@)|< Ll=0 (Z)< 0,15
oder in Verbindung mit (2.99)

< 0,389

4
sein. Aus @ (0,189) = 0,575 und der Monotonie von @ (&) resultiert

@ (£> < 5 (015 +1) = 0,57

L
4 <0189

oder
L < 0,756 .

Die gesuchte Zahl L muB also kleiner als 0,756 sein, damit der geforderte
Sachverhalt giiltig ist.

2.6.3. Grenzwertsiitze

Die sogenannten Grenzwertsitze beschiftigen sich mit gewissen Grenziiber-
gingen von Verteilungen, die zu Normalverteilungen fiihren. Wir beschreiben
im folgenden zwei solcher Grenzwertsitze, die die praktische Bedeutung der
Normalverteilung unterstreichen. Beziiglich der entsprechenden Beweise ver-
weisen wir auf die einschldgige Literatur, z. B. [4]. Zunichst erwihnen wir
den Zentralen Grenzwertsatz, den

Satz 2.36: Eine Zufallsgrofe  ist normalverteilt, wenn sie die Summe einer
sehr groBen Zahl von Zufallsvariablen #,, z,, . . ., &, ist, die erstens vonein-
ander unabhingig sind und zweitens im Verhéltnis zur Summe unbedeutend
sind, d. h. nur einen geringfiigigen Beitrag zur Summe liefern.
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Die praktische Bedeutung des vorstehenden Satzes beruht darauf, daf die
Verteilungen der ZufallsgroBen x; (1 = 1, 2, . . ., n) ganz beliebig sein konnen.
Die einzelnen Verteilungen brauchen auch gar nicht explizit bekannt zu sein.
Entscheidend ist eben nur die summarische Wirkung der ZufallsgrBen.

Wir behandeln nun zwei Beispiele, die den Sachverhalt des Satzes 2.36
noch verdeutlichen:

1. Wir betrachten die Messung einer physikalischen GroBe mittels eines
MeBinstrumentes. Eine beliebige Messung liefert lediglich einen Naherungs-
wert fiir die zu messende Grofle, da eine Vielzahl zufélliger Faktoren (z. B.
Temperaturdnderung, Schwingungen des MeBinstruments, Unvollkom-
menheit des Auges des Beobachters) unabhéngig voneinander das MeB-
ergebnis beeinflussen. Jeder dieser Faktoren bewirkt einen unbedeutenden
Teilfehler des MeBresultats. Da jedoch die Anzahl dieser Faktoren sehr
groB ist, bewirken alle diese EinfluBfaktoren zusammen einen bemerkens-
werten Gesamtfehler des MeBergebnisses. Der betrachtete Gesamtfehler
ist also die Summe einer Vielzahl voneinander unabhéingiger und gering-
fiigiger Teilfehler. Gemi dem Zentralen Grenzwertsatz ist dann zu erwar-
ten, daB der Gesamtfehler eine Verteilung aufweist, die der Normalvertei-
lung sehr nahe kommt.

9. Wir betrachten die Herstellung von Bolzen auf einer automatischen Werk-

zeugmaschine. Dabei nehmen wir an, daB die Qualitéit eines Bolzens durch
die GrsBe seines Durchmessers bestimmt ist. Als ZufallsgroBe « fassen wir
die Abweichung der Durchmesser der hergestellten Bolzen von dem Norm-
wert fiir den Bolzendurchmesser ins Auge, auf den die automatische
Anlage eingestellt ist. Offenbar gibt es eine groBe Anzahl von Faktoren,
die auf die Tatigkeit des Automaten einen EinfluBl ausiiben (z. B. die
Qualitét des zu verarbeitenden Materials, das Zusammenspiel der einzel-
nen Aggregate der Maschine, die Abnutzung des Drehmeifels, die Tem-
peraturinderung). Jeder dieser Faktoren, die wir als unabhéngig vonein-
ander wirkend ansehen, bedingt eine geringfiigige Abweichung des Bolzen-
durchmessers von der vorgegebenen Norm. Wirkt jedoch der Komplex
aller dieser EinfluBfaktoren, dann ergibt sich schon eine beachtenswerte
Abweichung fiir den Durchmesser des Bolzens von der NormalgrsBe.
Nach dem Satz 2.36 besitzt nun die Zufallsvariable = eine angeniherte
Normalverteilung.
Es ist selbstverstindlich, daB die im letzten Beispiel gezogenen SchluB-
folgerungen nicht nur fiir die Herstellung von Bolzen, sondern fiir jede
Massenproduktion von Erzeugnissen gelten, sobald der technologische
ProzeB nicht verindert wird, solange also die einmal zugrunde gelegten
technologischen Bedingungen konstant bleiben.

Fassen wir unsere Uberlegungen beziiglich des von TSCHEBYSCHEFF, Lyapu-
~ow und MarkKow stammenden Zentralen Grenzwertsatzes zusammen, dann
konnen wir folgendes feststellen: Alle zuféilligen Merkmale geniigen einer
Normalverteilung, wenn sie folgende Charakterisierung zulassen: Das zu-
fallige Merkmal « steht unter dem Einflul einer Vielzahl voneinander unab-
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hingig wirkender zufilliger Ursachen, von denen jede nur einen iuBerst ge-
ringen EinfluBl auf das Merkmal », d. h. auf die Gesamtwirkung aller Ur-
sachen ausiibt. Von den ursidchlichen Faktoren, die in der Praxis nicht ein-
mal alle aufgezdhlt und genannt werden konnen, wird sonst nichts voraus-
gesetzt; insbesondere diirfen diese Faktoren beliebig verteilt sein.

‘Wir beschreiben nun den Grenzwertsatz von LaPLACE-MOIVRE, den
Satz 2.37: Die binomische oder BERNoULLIsche Verteilung (2.25) strebt gegen
die Normalverteilung mit dem Erwartungswert E (x) = np und der Streuung
o2 (z) = np (1 — p), sofern mit » auch np sehr grof wird.
Im Abschnitt 2.3 haben wir uns recht ausfiihrlich mit der binomischen Ver-
teilung beschiftigt. Erhohen wir nun die Anzahl n der Ziehungen im BEr-
~nouLLischen Schema betrdchtlich und liegt die Wahrscheinlichkeit p (fiir das
Ziehen einer weilen Kugel) nicht in der Ndhe der Zahl null, so da8 dann
auch np betrichtlich erhoht wird, dann ist gemiB dem vorstehenden Satz
die ZufallsgroBe z(Anzahl der insgesamt gezogenen weiflen Kugeln) annihernd
normalverteilt. Die im Abschnitt 2.3 skizzierten Wahrscheinlichkeitsdia-
gramme ndhern dann also die Kurve fiir die Dichtefunktion der Normal-
verteilung mit den Parametern E (x) = np und ¢ (x) = np (1 — p) an.

Bei hinreichend groBem 7 und nicht zu kleinem p kann demzufolge die
BernouLLische Verteilungsfunktion B, (£) in (2.27) durch die normale Ver-
teilungsfunktion W (&) in (2.83) mit den Parametern E (z) = np und 0% (z) =
np (1 — p) ersetzt werden. Beachten wir nun noch den Satz 2.29, so ergibt
sich aus dem angegebenen Grenzwertsatz von LAPLACE-MOIVRE der
Satz 2.38: Wird mit n auch np sehr groB, dann gilt:

lim B, (&) = ¢(ﬂ) . (2.104)
n3® Vnp(1-p)

Die Bedeutung des in Rede stehenden Grenzwertsatzes bringt schon der
letzte Satz zum Ausdruck. Sind die diesbeziiglichen Voraussetzungen erfiillt,
so kann die schwierig zu berechnende Funktion B, (§) — vgl. die Struktur
der Formel (2.27) im Zusammenhang mit (2.24) — néherungsweise durch die
tabellarisch gegebene Funktion @ ersetzt werden. Je groBer die Zahl » ist
und je néher die GréBe p bei der Zahl eins liegt, um so genauer ist diese Er-
setzung von B, durch .
Zwei Beispiele mogen diesen Sachverhalt noch klarer hervortreten lassen.
1. Wir betrachten die im Abschnitt 2.3 behandelte Aufgabe, bei deren Losung
die Gleichung (2.28) auftrat: In einem Betrieb sind 60 Prozent der norm-
gerechten Erzeugnisse von der Sorte 1. Es werden Packungen zu je 100
Erzeugnissen (durch beliebige Zusammenstellung der normgerechten) her-
gestellt. Wie grof ist die Wahrscheinlichkeit p, dafiir, da in einer Packung
weniger als die Halfte, d. h. weniger als 50 der Giitesorte 1 angehéren?
Fiir die gesuchte Wahrscheinlichkeit ergibt sich -

49
P = 20 Pigo (%) = By (50) .
z=
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Beachten wir die BERNoULLIsche Formel (2.24), so erkennen wir, daB zur
Berechnung des vorstehenden Ausdrucks die Berechnung von 50 Sum-
manden erforderlich ist, die jeweils aus Produkten von Binomialkoeffizien-
ten und Potenzen bestehen. Durch Anwendung des Satzes 2.38 — hier ist
n = 100 und p = 0,6 — erhalten wir dagegen

5 60
Py = Bygy (50) =~ o ( 1@ ) = @ (— 2,04)

oder vermdge (2.100)

P~ 1— D (2,04)
Um diesen Ausdruck zu berechnen, werfen wir einen Blick in die @-Tafel.
Wegen @ (2,04) = 0,9793 lautet das Ergebnis

P, = 0,0207.

Dieses Ergebnis stimmt mit dem Resultat in (2.28) iiberein: In etwa 1/50
aller Packungen gehéren weniger als die Hilfte der Erzeugnisse zur Quali-
titsstufe 1.

. Wir betrachten eine Urne mit schwarzen und weien Kugeln. Es sei

p = 0,8 die Wahrscheinlichkeit dafiir, daB bei einer zufilligen Ziehung:
eine weille Kugel erscheint. Wie grof ist nun die Wahrscheinlichkeit p,
dafiir, daB die tatsichliche Zahl = der gezogenen weilen Kugeln bei 1000
unabhingigen Ziehungen mindestens 780 und hochstens 820 betragt? Fiir
P, besteht zundchst die Gleichung

820 820 779
Po= 3 Puw(@) = 3 P (@) — 3 Py (2)
z =780 z=0 =0

= Bjggp (820) — Bygg (779) .

Um die miihsame Berechnung der vorstehenden Summe von 41 Summan-
den zu umgehen, wenden wir den Grenzwertsatz von LaPLACE-MOIVRE

an, gemif dem

Buwo @ = * “Vl—;fo)

gilt und erhalten
20
Do = D (VI—GT)) —
oder vermoge (2.100)
Py~ D (1,68) + D (1,66)—1.

Unter Zuhilfenahme der @-Tafel bekommen wir die gesuchte Wahrschein-
lichkeit schlieBlich zu

Do &~ 0,9429 40,9515 — 1 = 0,8944 .

— 21
® (VI—W) — @ (1,58) — & (— 1,66)



Wir berechnen nun noch p, nach der BerNouLLischen Streuungsun-
gleichung (2.34) zu

fo=Plla—E (o) < 121121 — 130 = 1 — 0,3628

— 0,6372.

Wir sehen an dieser Stelle nochmals, daf die BervouLLische Ungleichung
eine sehr grobe Abschitzung fiir die gesuchte Wahrscheinlichkeit liefert.
Die beiden betrachteten Beispiele demonstrieren in der Tat, da die An-
wendung des Grenzwertsatzes von LAPLACE-MoIVRE bei der Behandlung der
binomischen Verteilung bedeutende rechnerische Vorteile in sich birgt
und duBerst leicht zu handhaben ist. Insgesamt haben wir damit zwei
Grenziiberginge beziiglich der BErRNouLLIschen Verteilung kennengelernt,
die sich bei » — co ergeben. Wichst bei diesem Grenziibergang auch np
iiber alle Grenzen, dann strebt die Verteilung — wie wir soeben festgestellt
haben — gegen eine Normalverteilung. Bleibt dagegen np = a annihernd
konstant, so ergibt sich im Grenzfall die Porssonsche Verteilung, die wir
im Abschnitt 2.4 — vgl. (2.39) — untersucht haben.

2.64. Anwendungsbeispiele

1. In einem Sigewerk werden Leisten zugeschnitten. Die Leistenlinge ist
eine normalverteilte ZufallsgroBe & mit dem Erwartungswert (Mittelwert)
E (x) = 200 cm und dem StreuungsmaB ¢ (z) = 3 cn. Wieviel Prozent
der zugeschnittenen Leisten sind linger als 199 cm und kiirzer als 202 cm?
Wie grof8 ist die Wahrscheinlichkeit dafiir, daB die tatsichliche Linge um
weniger als 2,5 cm vom Mittelwert abweicht?
Bezeichnen wir die gefragten Wahrscheinlichkeiten mit p; und p,, so
erhalten wir gemif (2.102)

- [T (B () o)

oder vermége (2.100)
1—p =0 (é) +@ (%)— 1 = 07475 + 0,6306 — 1 — 0,3781
und infolge (2.103)

P, = O (335’) — 0(0,833)

oder wegen (2:98)
P, =2®(0,833) —1 =2-0,7976 — 1 = 0,5952.

37,81 Prozent der zugeschnittenen Leisten sind damit linger als 199 cm
und kiirzer als 202 cm. Mit einer Wahrscheinlichkeit von 59,52 Prozent
weicht die Leistenlinge um weniger als 2,5 cm vom Mittelwert 200 cm ab.
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Von einer GroBbickerei werden die Backwarengeschifte mit Zwieback-
packungen beliefert, deren Mindestgewicht 170 Gramm betragen soll.
Eine umfangreiche Untersuchung ergab fiir das normalverteilte Gewicht
2 der Packungen den Erwartungswert E (») =176 Gramm und das
StreuungsmaB ¢ (z) = 3,3 Gramm. Mit welcher Wahrscheinlichkeit wird
das Mindestgewicht der Packungen unterschritten? Um wieviel Gramm
muBl das urspriinglich auf einem Gewicht von 180 Gramm beruhende
Kalkulationsgewicht fiir die Rohstoffe einer Zwiebackpackung erhtht
werden, damit praktisch eine Unterschreitung des Mindestgewichts nicht
mehr vorkommt? Die gesuchte Wahrscheinlichkeit berechnet sich zu
170 — 176 — 00 — 176
P(—o0 <a< 110)0 =" 1) — 0 (33—) =
=@ (—1,82) — ® (— o0)

oder wegen (2.100) zu ,

D (o) — D (1,82) = 1 —0,9656 = 0,0344 .

Damit unterschreiten 3,44 Prozent oder 1/29 aller Zwiebackpackungen
das Mindestgewicht von 170 Gramm. Das urspriinglich auf 180 angesetzte
Kalkulationsgewicht liegt um 4 Gramm iiber dem Mittelwert und ist auf
Grund des erhaltenen Resultats zu niedrig festgelegt. Erhohen wir das
Kalkulationsgewicht auf 184 Gramm, dann wird E (z) = 180 Gramm und
damit die gewiinschte Unterschreitungswahrscheinlichkeit

P(—oo < o< 170) = & (2050 — o (25050 —
@ (— 3,03) — @ (— o0)

oder gemiB (2.100)
P (o0) — @ (3,03) = 1 — 0,9987 = 0,0013 .

Nunmehr sind lediglich 0,13 Prozent oder 1/769 der Packungen mit unzu-
lissigem Gewicht. Wiirden wir nochmals das Kalkulationsgewicht um
4 Gramm erhéhen, dann wiirde sich wegen E (z) = 184 die Unterschrei-
tungswahrscheinlichkeit zu
170 — 184 — 00 — 184
P (— 00 < & < 170) =¢( o )-tp( - >=
=@ (—424) — D (— )

oder vermdége (2.100) zu
= @ (co) — @ (4,24) = 1 — 0,99999 = 0,00001

ergeben. Jetzt sind nur noch 1/1000 Prozent Zwiepackpackungen vor-
handen, deren Gewicht unterhalb des Mindesgewichts liegt.

. Auf einer Maschine werden Kugeln fiir Kugellager hergestellt, deren nor-

malverteilter Durchmesser 8 mm betrigt. Durch Regulierung der Ma-
schine ist es moglich, die Streuung der Durchmesser der herzustellenden
Kugeln einzustellen, wobei allerdings zu beachten ist, daBl mit einer Ver-



kleinerung bzw. VergroBerung der Streuung die Produktionskosten fiir
die Kugeln zunehmen bzw. absinken (sonst wiirde man von vornherein die
minimalste Streuung fiir die Kugeldurchmesser einstellen). Auf welchen
Wert muB nun das StreuungsmaB ¢ gebracht werden, damit 95 Prozent
der Kugeln den Abnahmebedingungen gerecht werden, die eine Toleranz
von weniger als 0,02 mm Abweichung vom Mittelwert fiir den Durchmesser
der Kugeln vorschreiben? Wir gehen von (2.103) aus:

0,02°
Pllo—E (2)] < 0,02] = © (G(x)) — 0,95
und bekommen auf Grund (2.99)

002y 1
® (a‘(;s) = 1 (095 + 1) = 0975.

In der @-Tafel finden wir den Zusammenhang @ (1,96) = 0,975 und damit
das Ergebnis zu

0,02

o) = 1,95
oder kurz

o(z) = 0,01.

Wird also das Streuungsmafl auf 0,01 mm eingestellt, dann entsprechen
nur 5 Prozent der Kugeln den Abnahmebedingungen nicht. Wieviel Pro-
zent der hergestellten Kugeln sind nicht abnahmefihig, wenn das Streu-
ungsmalB auf das Doppelte eingestellt wird? Wir finden

P[l2—E(2)| < 0021=06 [¢F) = 0 ()
und weiter vermége (2.98)

=20 (1)—1=2.0,8413 —1 = 0,6826.

Erhohen wir also das Streuungsmafl auf 0,02 mm, dann werden immerhin
schon 31,74 Prozent der gefertigten Kugeln nicht mehr abgenommen.

. Bei verschiedenen praktischen Problemen — z. B. in der Stichproben-
theorie — wird damit gerechnet, daB eine normalverteilte Zufallsvariable
z mit dem Streuungsmal ¢ (z) um weniger als 3 o (z) von ihrem Erwar-
tungswert E (x) abweicht. Anders ausgedriickt: Es wird die Beziehung

P(lz—E ()| <30)=1

angenommen. Welche Griinde gibt es fiir diese Faustregel? Fiir die linke
Seite der letzten Gleichung erhalten wir nach (2.103)

— 30(2)\ _
Pllz—E(@)|<36]=6(2)=00
oder als Folge von (2.98)
=20 (3)—1=2-0,9986 —1=0,9972.
In 99,72 Prozent aller Fille ist der behauptete Sachverhalt mithin giiltig.
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5. Von einem Ort O, werden zu einem anderen Ort O, Telefonleitungen gelegt.
In O, gibt es n = 5000 Teilnehmer, die pro Stunde durchschnittlich eine

Minute ( = 7315) mit O, zu telefonieren beabsichtigen. Wieviel Leitungen

miissen nun von O, nach O, gelegt werden, damit im Mittel hochstens
5 Prozent aller Gespriche auf besetzte Leitungen treffen? Wir haben hier

eine BErNoULLIsche Verteilung mit » = 5000, p = _6% und ¢ = —g% vor

uns!, die den Erwartungswert
E (z) = np =~ 83,33
und das Streuungsmal
o (2) = VYnpg ~ 9,05

besitzt. Bezeichnen wir die gesuchte Anzahl der zu legenden Telefon-
leitungen mit I, dann soll

Bygo (1 +1) = 0,9

bestehen. (Bjgeo (¢ + 1) gibt die Wahrscheinlichkeit dafiir an, daf hoch-
stens 1 Grespriche gleichzeitig gefiihrt werden!).

‘Wir konnen uns vorstellen, wie mithsam die Ermittlung von ! aus der
letzten Ungleichung wire, wenn der Grenzwertsatz von LaPLACE-MOIVRE
nicht verwendet wiirde. Geméa8 (2.104) erhalten wir

141 —83,3

Bywo (1 +1) = & o )'g 0,95

Wegen @ (1,645) = 0,95 und der Monotonie der @-Funktion ergibt sich
141 — 833

9,05 = 1,645

oder kurz
1~972.

Es miissen demzufolge mindestens 98 Leitungen gelegt werden, damit
lediglich mit einer Wahrscheinlichkeit von héchstens 5 Prozent alle Lei-
tungen von O, nach O, besetzt sind.

6. Von einem Ort O, fiihrt téglich ein Personenzug zu einem Ort O,. In O,
gibt es 1500 Personen, die im Mittel zweimal im Monat diesen Zug benut-
zen und jeweils — soweit vorhanden — dann einen Sitzplatz einneh-
men. Wie grof ist die Wahrscheinlichkeit dafiir, daB ein Reisender in
einem Zug mit 120 Sitzplitzen keinen Sitzplatz vorfindet? Mit wieviel
Plitzen muB der Zug von O, aus eingesetzt werden, damit hochstens

1 DaB hierin der Tat eine Binomialverteilung vorliegt, erkennen wir sofort, wenn wir uns des Urnen-
schemas von BERNOULLI (vgl. S. 57) vergegenwirtigen; der weiBen Kugel dort entspricht hier
ein telefonierender Fernsprechteilnchmer.
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1 Prozent der Reisenden keinen Sitzplatz erhalten? Wie groB ist schlie-
lich die Wahrscheinlichkeit dafiir, daB ein Zug mit 110 Plitzen nach Ver-
lassen von O; noch mindestens 20 freie Sitzplitze aufweist?

‘Wir haben hier wiederum eine binomische Verteilung vor uns. Die Zufalls-
groBe ist die Zahl der den Zug benutzenden Reisenden aus O, ; die zuge-

hérigen Parameter sind n = 1500, p = und qg=+ % Diehier vorliegende

Verteilung hat daher den Erwartnngswert
E () = np = 100
und das Streuungsmal
o (2) = Ynpg ~ 9,66.
Fiir die erste Wahrscheinlichkeit gilt zunéchst
P(x>120)=1— P (r <121) =1 — B4, (121)
oder vermoge des Grenzwertsatzes

P(a;>120)=l—cb(1—219:_T3100)=1——d)(2,17).

Unter Zuhilfenahme der @-Tafel lautet das Ergebnis
P (2 <120) =1 — 0,9850 = 0,0150.

Die gesuchte Wahrscheinlichkeit betragt somit 1,5 Prozent. Wir ermitteln
nun die gefragte Anzahl der Plitze, die wir mit % bezeichnen, indem wir
von

Px>k=1—P(x<k-+1)=1— By (k4 1) <0,01.
ausgehen. Wenden wir auf die letzte Gleichung den Satz 2.38 an, so wird

+ 1—100
1-«15( 575 )g001

oder
k+1—100
@( V5 )20%
Aus @ (2,323) = 0,99 und der Monotonie von @ (&) resultiert schlieBlich

k+1—100
9,66

oder kurzerhand

k~ 123,4.

> 2,323

Werden mithin mindestens 123 Plitze eingesetzt, dann bekommt nur
hochstens jeder Hundertste der Reisenden keinen Sitzplatz.
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‘Wir gehen nun an die Berechnung der letzten gesuchten Wahrscheinlich-
keit, fiir die

90 — 100
P (z < 90) = By, (90) = & (Wﬁ—) = & (— 1,035)

oder vermége (2.100) und @-Tafel
P(z<90)=1—@ (1,035) = 1 — 0,8497 = 0,1503

gilt. Ein mit 110 Plidtzen versehener Zug wird also in 15 Prozent aller
Fille mindestens 20 freie Plitze nach Verlassen von O, aufweisen.

. Auf einer automatischen Werkzeugmaschine werden Walzen hergestellt,

deren Durchmesser z als eine normalverteilte ZufallsgroBe mit dem
Erwartungswert E (x) = 30 cm und dem Streuungsmaf o (z) = 0,1 cm
erscheint, Wieviel Prozent der gefertigten Erzeugnisse sind stirker als
30,1 cm bzw. schwicher als 29,8 cm? Wie groB ist die Wahrscheinlichkeit
dafiir, daB die Abweichung des Durchmessers vom Sollwert = Mittelwert
mindestens 1,5 mm betrigt? Am Tag werden 7000 Walzen hergestellt.
Eine Walze ist weiterhin normgerecht, wenn ihr Durchmesser von dem
Sollwert um weniger als 2 mm abweicht? Wieviel normgerechte Walzen
erzeugt der Automat durchschnittlich im Laufe eines Monats (= 30 Tage)?
Fiir die erste gesuchte Wahrscheinlichkeit ergibt sich

30,1 — 30

P(z>30,l)=1—P(x_§30,1)=1—q§( -

) —1—d()
oder

P(z>30,1) = 1 — 0,8413 = 0,1587 .
Entsprechend wird im zweiten Fall

29,8();&)=¢(_2)=1—<D(2)=

P(z< 298) — ¢><
=1—0,9772 = 0,0228 .
Die dritte Wahrscheinlichkeit finden wir zu
P[lz— E(z)] 20151 =1— P [|z — E (z)| < 0,15] =

—1—0 (0(;,115’) =1—0 (15

oder gemiB (2.98) zu

Plz—E (x)]=0,15=1—[20(1,5)—1]=1—(2-0,9332 — 1) = 0,1336 .
Die Wahrscheinlichkeit dafiir, daB eine Walze der Norm geniigt, betrigt

Plls—E @] <02]=0(35) =0 @)

oder wieder-gemif (2.98)
Pllr—E(2)! <02]=2®(2) —1=2-0,9772 —1 = 0,9544 .



Im Monat werden 30 - 7000 = 210000 Erzeugnisse hergestellt. Demzu-
folge belauft sich die mittlere Anzahl der gefertigten normgerechten Wal-
zen pro Monat auf 210000 - 0,9544 = 200424 Stiick.

2.7.  Vermischte Aufgaben nebst Lésungen

2.7.1. Aufgaben

1. Bestimme den Erwartungswert E (), die Streuung o2(z) und das
StreuungsmaB o (x) der diskreten ZufallsgréBe = mit der Verteilungs-
tabelle

z| 7 8 9 10 11 12
p| L L L 1T 1 1
9 6 9 3 6 9

Berechne ferner die Wahrscheinlichkeit dafiir, da§ z vom Erwartungs-
wert E (x) um weniger als 2 abweicht, und zwar

a) nach der gegebenen Verteilungstabelle,

b) nach der TscueByscaEFFschen Ungleichung!

2. Berechne die wahrscheinlichsten Werte der Bernourrischen Verteilung
mit den Parametern

a)p = 2,n=17und

3
1
b)Pzz

3. In einem Betrieb sind 0,5 Prozent der hergestellten Erzeugnisse fehler-

haft. Wie groB ist die Wahrscheinlichkeit dafiir, daB8 in einem Posten
von 1000 Erzeugnissen alle fehlerfrei sind ?

4. In einem Geschift treffen im Durchschnitt in einer halben Stunde 20
Kunden ein. Wie groB ist die Wahrscheinlichkeit dafiir, dall wihrend
der Dauer von 2 Stunden

a) 60,
b) 100 und
c) 75 Kunden eintreffen?

5. Wie groB muB die Konstante C sein, damit w (z) = C - w* (x) mit

w* () e*  fiir £ <0
e? fire =0

eine Dichtefunktion fiir die stetige ZufallsgroBe x wird?
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6. Welcher Zahlenwert mufl der Konstanten a erteilt werden, damit

w(o) = 5——;
e + e

eine Dichtefunktion fiir die kontinuierliche Zufallsvariable z wird?

Zeichne diese Dichtefunktion und die zugehorige Verteilungsfunktion

W (£)! Ferner berechne man die Wahrscheinlichkeit P (—1 < 2 < 2) .

7. Man bestimme Mittelwert E (z) und Streuungsmal o (z) der stetigen
ZufallsgroBe = mit der Dichtefunktion

0, fiir z < 0;
w(x) = %sinw,fﬁrogzgn;
0, fiir z > x.

8. Wie lautet die Dichtefunktion w () einer normalverteilten ZufallsgroBe
mit dem Erwartungswert E (z) = 6 und dem Streuungsmal o (z) = 2?
Man gebe weiter die Wahrscheinlichkeit P (0 < = < 5) an!

9. In einem pharmazeutischen Betrieb werden Medikamente in Ampullen
abgefiillt. Der Mittelwert des Ampulleninhalts betrigt 10 ccm, das
StreuungsmaB 0,1 ccm. Wie gro ist die Wahrscheinlichkeit p, dafiir,
daB der Ampulleninhalt um weniger als 0,25 ccm vom Sollwert (= Mit-
telwert) abweicht? Eine Apotheke erhilt eine Lieferung von 10000 Am-
pullen. Wieviel Ampullen darunter haben erwartungsgemiB

a) weniger als 9,8 ccm und
b) mehr als 10,1 ccm Inhalt?
10. In der DDR werden in éinem Zeitraum von etwa 4 Monaten n = 10°
Kinder geboren. Die Wahrscheinlichkeit fiir eine Knabengeburt betrigt
p = 0,514. Wie groB sind Erwartungswert £ (z) und StreunungsmaB o (z)
fiir die Anzahl = der Knabengeburten unter diesen 10° Geburten? Man
berechne die Wahrscheinlichkeit dafiir, daB die tatsichliche Anzahl der

Knabengeburten zwischen den Werten E (z) + 300 und E (x) — 300
liegt und zwar

a) nach der BERNoULLIschen Streuungsungleichung,
b) nach dem Grenzwertsatz von LAPLACE-MOIVRE.

2.2.2. Losungen

1. Zunichst berechnen wir aus (2.5) den Mittelwert

1 1 1 1 1 1

oder E () = -2 ~ 9,61,
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Die Streuung erhalten wir gemé8 (2.15) zu
N R
S 33

o (@) = o0 ~ 2,24,

oder

Damit betrigt das Streuungsmal
6 (2) = V;_ ~ 1,50.
a) Fiir die zu ermlttelnde Wahrscheinlichkeit gilt

P(z_ﬁ <2) P(”Z:S” +I,$=9”+/’$=IO”—|—”$=11")

oder aufgrund des Satzes 1.1 und der gegebenen Verteilungstabelle
173 1 1 1 7
P(‘ ‘<2) b4t i= x0T,

b) Unter Zuhilfenghme der TscHEBYSCHEFFschen Streuungsungleichung
(2.21) erhalten wir die folgende grobe Abschitzung fiir die soeben
berechnete Wahrscheinlichkeit

725

P( 1B | <2) 21 — gy ~ 0.
a) Wir bilden zunaehst die Grofe
2 2
np +p =17 -3-{—?:12.

Da diese GroBe ganz ist, folgt aus Satz 2.16: die vorgegebene binomi-
sche Verteilung besitzt die beiden gleichwahrscheinlichsten Werte
2z, =12—1=11 und x,” =12.
b) Wir gehen wieder von der GroBe
1 1 29

np -}—p=28-z—|-z-=_4
aus, die hier nicht ganz ist. Als Folge des Satzes 2.16 weist daher die
vorgelegte binomische Verteilung den einzigen wahrscheinlichsten
Wert z, = 7 auf.

. Wir haben eine BernouLLische Verteilung mit den Parametern p = 0,005

und % = 1000 vor uns. Die gesuchte Wahrscheinlichkeit berechnet sich
miihsam gemé&B der Formel (2.24) zu

Py @)= (' 1000 ) 0,003 (1 — 0,005 1000

oder
Py (0) = 1000 - 0,9951000 ~; 0,0063 .
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Einfacher ist folgender Weg: Da n sehr groB ist, p dagegen sehr klein,
ndhern wir die vorliegende Binomialverteilung durch die zugehérige
Poissonsche Verteilung mit dem Parameter @ = np = 5 an. Dann gilt

P00 (0) &~ Pigoo (0)
oder wegen (2.39)

Pioge (0) ~ © ¢ — =5 ~ 0,0067.

o!

. Wir bedienen uns der Beziehung (2.47) und wihlen als Zeiteinheit die

halbe Stunde.

a) In diesem Fall liegen die Werte A = 20, T = 4 und = = 60 vor, so
daB wird

- 8060 e 80

E (20;60; 4) —or = 0,0033 .
b) Entsprechend wird bei A = 20, T' = 4 und z = 100
. g0100. ,— 80
E (2051003 4) = ~ 0,003,
c¢) SchlieBlich wird bei A =20, T =4 und z =75
75 , — 80
E(20;75;4) = 20— ~ 0,0391.

. Die gegebene Verteilungsdichte muf die Vollstindigkeitsrelation (2.51)

erfiillen, d. h.

1= c-ymw* (z)dz = ¢ { fw*(w)dao—}—ofow*(a;)dw}

oder wegen der speziellen Struktur von w* ()

1= c{/?e’ dz +:foe'“ dw}-

Beachten wir die unbestimmten Integrale
/e"dw =e“,fe"“’dav = —e 7,

so erhalten wir

=[] L[] o )

- 0
oder

¢ — 1

=5
Wir wenden wieder die Vollstindigkeitsrelation (2.51) an, die
dx
l=a .
e ea: +e z



zur Folge hat. Weil der Integrand gerade ist, das heiBit, die Eigenschaft
w () = w (— ) besitzt, konnen wir fiir den letzten Ausdruck auch
[e9)

dx
1=24 [ — (*)
J ex+e—z

schreiben. Um das unbestimmte Integral

]:./_d_”’_
ez+e—z

zu berechnen, erweitern wir den Integranden mit e?, so daB

_ dx

()2 +1
entsteht. Nun fiihren wird die Substitution ¢ = ¢ mit dt = €* dx ein.
Dann ergibt sich das bekannte Integral

dt
I=/m =al‘ctgt.

Machen wir die Transformatlon t = 7 riickgingig, dann erhalten wir
schlieflich

I = arctg t = arctg e*.

Dann resultiert aus (*)
1 =2a [arc’ogex]Oo
jo

oder 1= 2a (arctg co — arctg 1) = 2a (1—1> =
Damit ist
a=—
Tt

das gesuchte Ergebnis.
Die Dichtefunktion der vorliegenden Verteilung lautet mithin

1
w(z) = —E & + e—x.
GeméB (2.58) leiten wir nun die zugehorige Verteilungsfunktion W (&) ab.
Wir haben oben bereits

dx z
—z—_:_—z = a.]'ctg e
€

ermittelt, so daBl wird
W () = 2 f —— = % (arctg ¢ — arctg o)
oder W () = 72r arctg ¢

95



1.

96

Die Funktionen w (x) und W (&) stellen wir im folgenden graphisch dar.

1 wi(x)

/ug
1 A 1 1 X
-k -3 -2 -1
Abb. 20: Graphische Darstellung von w (x) = — - -
R
v
L I 1 1 1 1 1 1 Il L £
-5 & -3 -2 ] 1 2 3 A 5 °

Abb. 21: Graphische Darstellung von W (&) = %— arc tg &

Wir benutzen die Beziehungen (2.65). Dabei unterteilen wir das Integra-
tionsintervall (— oo, 4+ oo) in die Teilbereiche (— oo, 0), (0, ) und
(7, 4 0), da die gegebene Dichtefunktion in diesen unterschiedlich
erklért ist.

Wir erhalten fiir den Erwartungswert geméB (2.65,)

o n (e
E (z) = fa;~odx—|— / w-—;—sinwdw—k / z-0dx
— 00 /] T
oder einfach
jd
E(z)=% / z - sinxdz.
)}

Durch partielle Integration finden wir das unbestimmte Integral

fw-sinwdx:sinx—x-cosz. (*)



(dieses Resultat 18t sich durch Differentiation auf beiden Seiten schnell
bestatigen!)

Damit ergibt sich der Mittelwert zu

E(z) =%{sinw——m-cosx]:=—%<o+n—|—o+o>=%.

Ganz entsprechend bekommen wir fiir die Streuung o () vermége (2.65,)

0% (z) = ; /" (:c — %)2 - sin zdz
b

oder
T T

5 1 4 5 F4 . d 2 .
o*(z) = 5 | @ singdz — o | ©-sineds + o sinz dz .
0 0 0

Beachten wir das unbestimmte Integral
fa:Qsmzdz=——x2cosw+2wsina;+2cosw

sowie (¥*), so folgt

s n
() = ; l(2 — x%) cos  + 2z - sin a;] — % [sin:c — wcosz]
0 0
n? . g
+ 5 —cosz]
0
oder
1 72 72 n?
2 () = (72— 4) —
o‘(:c)—2(n 4) 2+4 1 2.

Das Streuungsmaf o (z) hat damit den Wert
(@) = ]/”T2 — 9 A 0,684,

8. Wir setzen in dem allgemeinen Ausdruck (2.82) fiir eine normale Ver-
teilungsdichte die Parameter E (z) = 6 und o (z) = 2 ein.

Es resultiert dann

7 Runge/Forbrig 97
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‘Wenden wir die Beziehung (2.102) an, dann erhalten wir fiir die gesuchte
‘Wahrscheinlichkeit

Po<e<n =050 -0 (55

oder
Po< w<’5)=(b(—%)—¢'(— 3).

Beriicksichtigen wir (2.100) und die @-Tafel, so erhalten wir das Resultat

P@(w(5%ﬂﬂ$—@%®=&%%—&%ﬁ=&%n.

. Gegeben sind die Parameter E () = 10 und ¢ (x) = 0,1 fiir die Vertei-

lung der ZufallsgroBe * = Ampulleninhalt, die wir als normal ansehen.
Von Interesse ist die Wahrscheinlichkeit

die wir gemif (2.103) zu
0,25

7=0(37) = 0 @5)

ermitteln. Beachten wir (2.98) und die @-Tafel, so resultiert schlieBlich
P, =2®(25)—1=2-09938—1=0,9876.

a) Wir berechnen nun die Wahrscheinlichkeit ¢, = P (z < 9,8) auf
Grund (2.102) zu

9,8 —10 —o0—10

=i < 2 <30 = 0(5) 0 (=571

oder

(=P (—2)—P(—c).

Wegen @ (—oo) = 0 und (2.100) ergibt sich unter Zuhilfenahme der
@-Tafel

¢ =1—@(2)=1—0,9772 = 0,0228..

Demzufolge fillt der Inhalt einer Ampulle mit einer Wahrscheinlichkeit
von 2,28 Prozent kleiner als 9,8 ccm aus. Wieviel Ampullen (2) solcher
Art gibt es erwartungsgemi unter einer Lieferung von n = 1000 Stiick?
Diese Frage beantworten wir, indem wir unsere Ergebnisse iiber die
Binomialverteilung heranziehen. Die gesuchte Ampullenanzahl z ist
offenbar gleich dem Erwartungswert der Binomialverteilung mit den
Parametern p = ¢, = 0,0228 und » = 1000. Sie ergibt sich aus (2.29) zu

z = 0,0228 - 1000 = 228.



In der Lieferung werden mithin 228 Ampullen erwartet, deren Inhalt
kleiner als 9,8 ccm ist.

b) Ganz entsprechend wie in a) berechnen wir
¢o=P(x>101)=1— P (2 <10,1)

zu
10,1 — 10 —o0—10
gp=1—P(—o0< z=101) =1 —{¢(T)—¢(T)}
oder

go=1—{D (1) — & (—oc0)}.

Beachten wir wieder @ (— oo) = 0 und die @-Tafel, so bleibt
go=1—@ (1) =1—0,8413 = 0,1587 .
Weiter folgt aus diesem Teilergebnis, — in Analogie zu den Ausfiihrun-
gen in a) — daB in einer Lieferung von 1000 Ampullen
2 =0,1587 - 10000 = 1587

Ampullen erwartet werden, deren Inhalt groBer als 10, cem ausfallt.

10. Gegeben ist die Binomialverteilung mit den Parametern p = 0,514
(g=1—p = 0,486) und n = 105. Den gesuchten Mittelwert E (z) be-
rechnen wir vermége (2.29) zu

E(z) =mn-p=0,514-10% = 51400.
Aus (2.30) resultiert das Streuungsmafl

o(z) = Vnpg = V2,498 - 102 ~ 158
‘Wir ermitteln nun die gefragte Wahrscheinlichkeit
Po= P (lz— E (z)| < 300)

a) Nach der Streuungsungleichung (2.34) ergibt sich unter Beachtung
des fiir o () bereits gefundenen Werts sowiey = 300

2,498 - 104

Poz1——"—gm

= 0,7225 .

b) Wenden wir den Grenzwertsatz von LaPLACE-MOIVRE an, indem wir
das Merkmal  als normalverteilt ansehen, so erhalten wir vermége

(2.103)
300 3
Po=0 <V2,493 102 ) =0 158 009
Benutzen wir (2.98) und die @-Tafel, dann ergibt sich schlieBlich das
Resultat

Pp=2® (1,9) —1=2-0,9713 — 1 = 0,9426..
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3.  Einfithrung in die Theorie der Stichproben

3.1. Grundgesamtheit und Stichprobe

Eine Stichprobe ist eine Menge von Elementen, die einer Gesamtheit von
Elementen, der sogenannten Grundgesamthest oder generellen Gesamitheit ent-
stammen. Die Anzahl der Elemente der Stichprobe heit Umfang der Stich-
probe. Der generelle Umfang oder der Umfang der Grundgesamtheit ist die
Anzahl der Elemente der Grundgesamtheit. Der Stichprobenumfang kann
offenbar nicht groBer als der generelle Umfang sein. Wahlen wir zum Beispiel
aus 10000 Erzeugnissen eines Betriebes 50 aus, so haben wir eine Stichprobe
des Umfanges 50 vor uns; die Grundgesamtheit besitzt in diesem Falle den
Umfang 10000.

In diesem Sinne ist jede Reihe von Beobachtungs- und Versuchsergeb-
nissen eine Stichprobe aus der Gesamtheit der méglichen Beobachtungs- und
Versuchsresultate. Der Umfang solcher Stichproben ist gleich der Anzahl
der durchgefiihrten Beobachtungen und Versuche.

Die Stichproben spielen eine groBle Rolle in der Statistischen Qualitdts-
kontrolle. Wegen des hohen Zeit- und Kostenaufwandes ist es namlich oft
untragbar, alle aus einem Fertigungsproze stammenden Erzeugnisse eines
Betriebes auf ihre Qualitit hin zu untersuchen. Falls das Erzeugnis bei der
Kontrolle (Priiffung) zerstort (zum Beispiel Kunstfasern, Glithlampen) bzw.
sein Gebrauchswert herabgesetzt wird, verbietet sich eine Priifung aller her-
gestellten Erzeugnisse (das heilt der Grundgesamtheit) von selbst. In beiden
Fillen ist die Beschrinkung der Kontrolle auf einen Teil der Grundgesamt-
heit, das heiBt auf eine Stichprobe, unumgénglich.

Wir fithren nun einige Begriffsbildungen und Bezeichnungen ein, die fiir
das weitere Verstindnis der Stichprobentheorie bedeutsam sind. Zunéichst
nennen wir eine Stichprobe zufdllig, wenn ihre einzelnen Elemente rein
zufillig der Grundgesamtheit entnommen werden. In diesem Kapitel be-
trachten wir lediglich zufillige Stichproben.

Unter einer grofen Stichprobe verstehen wir im folgenden stets eine zufillige
Stichprobe, deren Umfang mindestens 100 betrigt. Im anderen Fall sprechen
wir von einer klesnen Stichprobe.

Eine Grundgesamtheit erster Art ist eine solche, deren Elemente durch eine
stetige oder diskrete Zufallsvariable z, das generelle Merkmal, charakterisiert
werden konnen. Das Merkmal 148t sich zahlenmaBig ausdriicken. So bildet
beispielsweise die Menge der in einem Sigewerk zugeschnittenen Leisten eine
Grundgesamtheit erster Art, wenn die Leistenldnge x als Charakteristikum
der Leisten angesehen wird. Den Erwartungswert bzw. die Streuung des
generellen Merkmals « nennen wir das generelle Mittel bzw. die generelle
Streuung und bezeichnen diese GréBen mit T bzw. ¢2. Bilden wir eine Stich-
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probe aus einer generellen Gesamtheit erster Art, so liefern die zur Stich-
probe vereinigten Elemente der Grundgesamtheit ein Stichprobenmittel z und
eine Stichprobenstreuung g* fiir das Merkmal . Die GroBen z und g sind wegen
des zufilligen Charakters der Stichprobe Zufallsgrofen.

Eine Grundgesamtheit zweiter Art ist eine solche, in der gewisse Elemente
eine Sonderstellung einnehmen. Sie sind durch ein Merkmal zu charakteri-
sieren, das sich nicht zahlenméBig ausdriicken 1iBt. Betrachten wir zum
Beispiel die im Monat hergestellten Glithlampen eines Betriebes, so bilden
diese eine Grundgesamtheit zweiter Art, sobald wir uns fiir die qualitits-
gerechten Erzeugnisse interessieren. Die einwandfreien Gliihlampen nehmen
in dieser generellen Gesamtheit die oben erwihnte Sonderstellung ein. Mit p
bezeichnen wir die generelle Wahrscheinlichkeit, das heiBt die Wahrscheinlich-
keit dafiir, daB ein zur Grundgesamtheit zweiter Art gehoriges Element eine
Sonderstellung einnimmt. Bilden wir eine Stichprobe aus einer generellen
Gesamtheit zweiter Art, so liefern die zur Stichprobe vereinigten Elemente
der Grundgesamtheit eine Stichprobenhiufigkeit k fiir die eine Sonderstellung
einnehmenden Elemente. Diese GroBe % ist gleichfalls eine Zufallsvariable,
sie dndert sich von Stichprobe zu Stichprobe.

Die Parameter %, ¢ und p charakterisieren offenbar die betreffende gene-
relle Gesamtheit. Sie sind in der Praxis meistens unbekannt und miissen
daher ermittelt werden. Dies ist auf dem Wege iiber die Stichprobenpara-
meter z, und % moglich, die mehr oder weniger von den generellen Parametern
Z und p abweichen. Diese Abweichungen hingen einmal von dem Umfang
der Stichprobe ab. Zu einem grofleren Stichprobenumfang gehoren geringere
Abweichungen.

Die Abweichungen der Stichprobenparameter z und ¢ von den Parametern
z und g einer Grundgesamtheit erster Art werden dariiber hinaus wesentlich
von deren generellem StreuungsmaB ¢ beeinfluBit. Ist zum Beispiel ¢ = 0,
das heiit, besitzen alle Elemente der generellen Gesamtheit denselben Merk-
malswert z, dann liefert schon ein einziges Element — also eine Stichprobe
des Umfanges 1 — eine ausreichende Information iiber die Grundgesamtheit.
In diesem Fall sind die betrachteten Abweichungen null. Bei zunehmender
Streuung o> wachsen diese Abweichungen.

Die Abweichung der Stichprobenhaufigkeit # von der Wahrscheinlichkeit p
einer Grundgesamtheit zweiter Art wird neben dem Stichprobenumfang von
der generellen Wahrscheinlichkeit p beeinfluflt. Ist zum Beispiel p = 0 oder
p = 1, das heiBt, nimmt kein oder jedes Element der generellen Gesamtheit
eine Sonderstellung ein, dann zeichnet schon ein einziges Element — also
eine Stichprobe des Umfanges 1 — ein vollstindiges Bild von der Grund-
gesamtheit. In diesem Fall betrigt die Abweichung zwischen % und p null.

Bewegt sich die GroBle p — von 0 oder 1 ausgehend — in Richtung p = %’

dann nimmt diese Abweichung zu.
Wir formulieren die zwei Hauptaufgaben der Stichprobentheorie:

a) Von den Parametern einer Stichprobe gegebenen Umfanges ist auf die
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entsprechenden Parameter der generellen Gesamtheit zu schliefen. Ferner
ist die Genauigkeit (Zuverlidssigkeit) dieses Schlusses anzugeben.

b) Der Umfang einer vorzunehmenden Stichprobe ist zu ermitteln, der fiir
eine vorgeschriebene Genauigkeit (Zuverldssigkeit) des Schlusses von den

Parametern dieser Stichprobe auf die entsprechenden generellen Para-
meter erforderlich ist.

In den Abschnitten 3.2 und 3.3 behandeln wir die Aufgabe a) der Stich-
probentheorie. Der Aufgabenstellung b) widmen wir uns im Abschnitt 3.4.
Den AbschluBl dieses Kapitels bildet ein Abschnitt iiber einige Verfahren,
die bei der Erhebung einer Stichprobe angewendet werden.

3.2.  Stichproben aus Grundgesamtheiten erster Art

3.2.1.  Grofe Stichproben

Wir betrachten eine Grundgesamtheit erster Art mit sehr grofem Umfang
und den Parametern z und g. Dieser generellen Gesamtheit entnehmen wir
rein zufillig #» (n > 100) Elemente mit den Merkmalswerten z,, z,, .

o Ty,
die wir zu einer groBen Stichprobe des Umfangs n vereinigen.
Wir beweisen nun beziiglich des Mittelwerts

o atato.tm 1)

dieser Stichprobe folgenden

Satz 3.1: Das Stichprobenmittel » ist eine normalverteilte Zufallsvariable
mit dem Erwartungswert

E@) =12 (3.2)

und der Streuung

w = Bl —ap) = 2 |- (3.3)

Beweis: Zunichst sind die GroBen z; (¢ = 1, 2, . . ., n) stetige ZufallsgroBen,
sie andern sich von Stichprobe zu Stichprobe. Damit ist dann z gema8 (3.1)
auch eine stetige Zufallsvariable. Da die zugrunde gelegte generelle Gesamt-
heit einen sehr groBen Umfang aufweist, sind die fiir die Bildung einer Stich-
probe erforderlichen ,,Ziehungen‘ aus der Grundgesamtheit unabhingig.
Damit sind dann die ZufallsgroBen ; (1 =1, 2, ..., n) unabhingig von-
einander. Weil nun praktisch jedes Element der Grundgesamtheit als Stich-
probenelement mit dem Merkmalswert z; auftreten kann, besitzen die Zu-
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fallsvariablen z; (: = 1, 2, . . ., n) den Erwartungswert Z und das Streuungs-
maB g. Also gilt

E@@)==g o(@)=0(G=12...,n) (3.4)

Beachten wir die vorstehenden Beziehungen, so ergibt sich wegen der Unab-
hingigkeit der z; (¢ =1, 2, . . ., n) und des Satzes 2.24 aus (3.1)

und

Da nun »n > 100 besteht, folgt schlieBlich aus dem Zentralen Grenzwertsatz
2.36 die Tatsache, daB z dem Normalverteilungsgesetz gehorcht. Damit ist
alles gezeigt.

Wir nennen die Grofle v, das heifit das StreuungsmafB des Stichproben-
mittels z, das Genauigkeitsmaf der Stichprobe. Die abgeleitete Formel (3.3)
driickt den bereits im Abschnitt 3.1 angedeuteten Zusammenhang zwischen
dem GenauigkeitsmalB u, dem Stichprobenumfang n und dem generellen
Streuungsmal ¢ aus: Das Genauigkeitsmall einer Stichprobe nimmt mit
wachsender Grundgesamtheitsstreuung zu und mit wachsendem Stichproben-
umfang ab. Dieser Sachverhalt rechtfertigt die Bezeichnung ,,Genauigkeits-
malB* fiir die GroBe u. Wenden wir den Satz 2.35 nebst der Relation (2.98)
auf die normalverteilte ZufallsgroBe z an, so ergibt sich sofort der

Satz 3.2: Es gilt die Beziehung

P(|i_f|<e)=2<p<£)—1 : (3.5)

U

Die vorstehende Formel versetzt uns in die Lage, die Abweichung des Stich-
probenmittels z von dem generellen Mittel £ abzuschitzen. Setzen wir in
(3.5) der Reihe nach ¢ = u, ¢ = 2u und g = 3u ein, so erhalten wir unter
Zuhilfenahme der @-Tafel im Anhang die Ausdriicke

P(lz—azl <u) =0,6826,

P(lz— x| < 2u)= 0,9544, (3.6)

P(lz—z| < 3u)=0,9972.
Diese Gleichungen verdeutlichen die Aussage der Formel (3.5). Sie lassen
klar erkennen, in welcher Weise das zufillige Stichprobenmittel z um den
konstanten Wert Z des generellen Mittels schwankt. So sagt die letzte dieser
drei Gleichungen insbesondere aus: Mit einer Wahrscheinlichkeit von 99,72

Prozent weicht das Stichprobenmittel z um weniger als 3% vom Grund-
gesamtheitsmittel Z ab. Haben wir also von einer vorgenommenen Stichprobe
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den Mittelwert Z und das Genauigkeitsmal « ermittelt, so kénnen wir mit
einer Wahrscheinlichkeit von 99,72 Prozent garantieren, daB der gesuchte
Erwartungswert  des generellen Merkmals z weniger als 3u von unserem
Wert z abweicht.

Wir betrachten nun ein Beispiel, das die letzten Ausfiilhrungen unter-
streicht. Gegeben ist eine sehr grofe Gesamtheit von Zuckerpackungen,
deren Reingewicht ein Streuungsmall von ¢ = 10 Gramm aufweist. Gesucht
ist der Erwartungswert Z fiir das Reingewicht dieser Packungen. Zu diesem
Zweck wird der Gesamtheit eine Stichprobe von 200 Packungen entnommen.
Das Stichprobenmittel z belduft sich auf 500 Gramm. Wie gro ist das
Streuungsmafl des Mittels z, d. h. wie groB ist das Genauigkeitsmafl dieser
Stichprobe? Welches symmetrisch um das gefundene Stichprobenmittel lie-
gende Intervall kann mit einer Wahrscheinlichkeit von 98 Prozent fiir das
generelle Reingewicht der Zuckerpackungen garantiert werden? Wie lautet
das Intervall, wenn nur eine Garantie von 90 Prozent gegeben wird?

Es liegen in diesem Beispiel die Werte n = 200, ¢ == 10 Gramm und
z =500 Gramm vor. Aus (3.3) berechnen wir das Genauigkeitsmal der
Stichprobe zu

uh/m f~071

200

das somit annéhernd 0,71 Gramm betrigt. Bezeichnen wir das erste gesuchte
Intervall mit |z — Z1 < g, so folgt aus (3.5)

P(lg—z|< 91)_2<p(071) 1 = 0,98
oder

@1\ __
) (0’71) = 0,99.

Unter Zuhilfenahme der @-Tafel erhalten wir
0, = 1,65.

Damit gilt die folgende Schitzung fiir den Wert des generellen Mittelwerts Z:
P (498,35 < ¥ < 501,65) = 0,98.
Ganz entsprechend leiten wir fiir das zweite gesuchte Intervall Iz — Z| < o,
das Resultat
0, =118

her, das die Abschitzung
P (498,82 < x < 501,18) = 0,90
sicherstellt.
Das vorstehende Beispiel macht deutlich, wie wir die Aussagen iiber das

generelle Mittel £ gewinnen konnen. Als Schétzwert fiir £ dient praktisch
das Stichprobenmittel Z, dessen Erwartungswert nach Satz 3.1 mit & iiber-
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einstimmt. Wir betrachten nun die Streuung ¢ der Stichprobe, das heifit
die Streuung der Merkmalswerte ,, . . ., z, um den Mittelwert z der Stich-
probe und beweisen den

Satz 3.3: Die Stichprobenstreuung o2 ist eine stetige Zufallsgrofe mit dem
Erwartungswert

E () = (1 — %) PLIN (3.7)

Beweis: Da die GroBen x; (1 =1, 2, ..., n) stetige Zufallsvariable sind, ist

o2 zunichst eine kontinuierliche Zufallsverinderliche. Bezeichnen wir mit z2
den Mittelwert der Quadrate der Zahlen z,, . . ., x,,'das heiBlt setzen wir

~ 1 s
2?2 = ;(avl2 + 22 4+ ...+ 2,2,

so folgt aus Satz 2.24 und Gleichung (2.17)
? =2
Bilden wir nun den Erwartungswert des letzten Ausdrucks, so wird
E(@®) = E () — E (7).
oder
-~ ~ I ~ — —-\2
E(02)=E(z2)——E[l(w——z)+a:} ]
Quadrieren wir die geschweifte Klammer aus, so ergibt sich weiter
E(@)=E() —E|(3—22] —22E@GE—2) — o2
oder auf Grund der Eigenschaften der ZufallsgroBe z (die Beziehung F (a:~2)
= a2 148t sich analog wie die Formel (3.2) des Satzes 3.1 herleiten!).
E (0% = a? — 22 — u?.
Nun ist aber — wieder als Folge von (2.17) —
o = 2% — 32,
so daB
E (0% = ¢*> — u?
wird. Beachten wir (3.3), so ist die Behauptung (3.7) perfekt. Der Erwar-
tungswert der Stichprobenstreuung ¢2 ist also nicht gleich der generellen
Streuung o2, sondern wegen 1 — 7 < 1 stets kleiner als ¢2.

Aus diesem Grunde werden wir nicht g2, sondern die GrofBe

o = — & (3.8)

als Schdtzwert fiir die generelle Streuvung g* anseben. Es gilt nimlich der
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Satz 3.4: Die in (3.8) eingefiihrte GroBe gy ist eine kontinuierliche Zufalls-
variable, deren Erwartungswert gleich der generellen Streuung o2 ist:

E(6) = &* |- (3.9)

Beweis: Der erste Teil der Behauptung ist unmittelbar klar. Der zweite Teil
resultiert aus (3.8) und (3.7) zu

Bof) = E (TZ‘I‘ 2’2) n—1<1 - Z)"z = g2-

Den Schitzwert g,? fiir die generelle Streuung ¢* konnen wir gemiB (3.8)
fiir alle Stichproben bilden, die mindestens aus zwei Elementen bestehen,
deren Umfang #» also grofler als 1 ist. Fiir n = 1 verliert die Formel (3.8)
ihre Giiltigkeit. Den Fall einer Stichprobe mit nur einem Element miissen

wir daher ausschlieBen, sobald unsere Uberlegungen auf die GroBe 0,2 Bezug
nehmen.

Wegen

1 > 1 ist der Schitzwert o2 fiir die Streuung ¢* der Grund-

gesamthelt immer grofer als die Stichprobenstreuung ¢*. Bei groBen Stich-
proben ist der Unterschied zwischen diesen beiden Zufallsgréfien duBerst
gering. Haben wir jedoch eine kleine Stichprobe — zum Beispiel mit n = 20
— vor uns, so ist die Abweichung beider Gro8en voneinander doch erheblich.
Wir haben im Satz 3.1 festgestellt, daf das Genauigkeitsmafl w einer
Stichprobe vom generellen Streuungsmal g abhingt. Diese Abhingigkeit
findet ihren Ausdruck in der Beziehung (3.3). Da nun aber die generelle
Streuung o2 in der Praxis meistens unbekannt ist, miissen wir uns mit elnem
Naherungswert fiir g% begniigen. Als einen solchen Niherungswert fiir & o‘
betrachten wir die eingefiihrte GroBe 0,2, deren Erwartungswert mit o2
iibereinstimmt. Ersetzen wir nun ¢2 in (3.3) durch ihren Schitzwert g2,
so bekommen wir fiir das Genauigkeitsmaf3 % der Stichprobe einen Nahe-
rungswert 4,, den wir Schdatzwert fiir das Genauigkeitsmaf nennen.
Satz 3.5: Fiir den Schitzwert 4, des GenauigkeitsmafBes u einer Stichprobe
gilt

S N 3.10
Uy o (3.10)

Beweis: Aus (3.3) und (3.8) folgt sofort

20 1 n G2 o 2
W= W ¢ Sa—1 W
oder die Behauptung (3.10).

Die Schitzung von  durch w, ist bei unbekannter genereller Streuung g2
erforderlich, um iiberhaupt Aussagen iiber die Grundgesamtheit aus der vor-
genommenen Stichprobe zu gewinnen. Diese Schitzung ist um so genauer,
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je groBer der Umfang n der betreffenden Stichprobe ist. Bei kleineren Stich-
proben wird diese Anniherung von % durch u, dagegen grob sein.

Wir behandeln nun zwei Beispiele:

a) Aus einer sehr groBen Gesamtheit von Erzeugnissen werden 170 Erzeug-
nisse ausgewihlt und auf ihre Lange (= generelles Merkmal) untersucht.
Diese 170 Stichprobenelemente liefern den Mittelwert z = 10 cm und das
Streuungsmafl ¢ = 0,4 cm. Welche Aussagen kdnnen wir beziiglich der
mittleren Linge Z der Gesamtheit aller Erzeugnisse treffen? Wir schitzen
zunichst das Genauigkeitsmafl u dieser Stichprobe vermége (3.10) zu

w0t
i

-das heifit zu 0,31 mm. Fiir das gesuchte Mittel Z ergibt sich dann aus (3.5)
die Aussage

P(jo—10|< o) = 2")((7%—1)”1'

w A~ ~ 0,031,

0
Setzen wir beispielsweise ¢ = 3 u, = 0,093 cm, dann erhalten wir wegen
(3.6)

P (9,907 < % < 10,093) = 0,9972 .

oder das Ergebnis: In 99,72 Prozent aller Fille weicht der Erwartungswert
Z der Erzeugnislingen der Grundgesamtheit um weniger als 0,093 cm
~ 1 mm vom Stichprobenmittel z = 10 ¢m ab.

b) In einer GroBstadt wird das monatliche Einkommen von 145 Familien
untersucht. Diese Untersuchung ergibt einen Durchschnitt z = 750 MDN
und ein Streuungsmall ¢ = 90 MDN. In welcher Hohe bewegt sich das
mittlere monatliche Familieneinkommen z dieser GroBstadt?

Wir bilden entsprechend (3.10) das geschitzte GenauigkeitsmaB dieser
Stichprobe

w o 90 _ 90 _
° = Yia T 2

das mithin 7,5 MDN betrigt. Sodann folgt aus (3.5) die Beziehung
— e\ __
P(|z—150| <o) =2 & (£) —1,

7,5

2

die die gestellte Frage beantwortet. Ist insbesondere p = 2u, = 15 MDN,
so resultiert aus (3.6)

P (7135 < % < 7T65) = 0,9544 .

Mit einer Wahrscheinlichkeit von 95,44 Prozent liegt demzufolge das
generelle Familieneinkommen pro Monat zwischen 735 MDN und 765 MDN

Wir haben bislang vorausgesetzt, dal die zugrunde gelegte generelle Gesamt-
heit erster Art einen sehr grofien Umfang besitzt, damit die zur Bildung
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einer Stichprobe erforderlichen ,,Ziehungen* aus der Grundgesamtheit un-
abhéngig voneinander sind. In Wirklichkeit liegt jedoch auch bei einer sol-
chen Grundgesamtheit eine gewisse Abhingigkeit dieser Ziehungen vor.

Um diesen Sachverhalt allgemein zu erdrtern, betrachten wir nunmehr
eine Grundgesamtheit erster Art, die aus N Elementen besteht, die also den
Umfang N aufweist. Wir denken uns diese N Elemente durchnumeriert.
Erhalten wir nun als Ergebnis einer Ziehung aus der generellen Gesamtheit
das Element mit der Nummer 4, so kann dieses Element offenbar bei darauf-
folgenden Ziehungen nicht mehr als Resultat erscheinen. Eine Ziehung beein-
fluBt damit die darauffolgenden Ziehungen, die fiir die Bildung einer Stich-
probe vorgenommen werden. Das bedeutet aber, dall die Ziehungen vonein-
ander abhingen. Wird jedoch jedes durch eine Ziehung erhaltene Element
nach der Erfassung seines Wertes in die generelle Gesamtheit zuriickgegeben,
aus der dann die nichste Ziehung erfolgt usw., so sind die Ziehungen offenbar
unabhingig voneinander. Derartige ,,Ziehungen mit Zuriicklegen‘‘ sollen uns
jedoch in diesem Zusammenhang nicht weiter interessieren.

Ist der generelle Umfang N sehr groB, dann ist die Abhingigkeit der Zie-
hungen aus der Grundgesamtheit duflerst gering; sie kann in diesem Fall
praktisch vernachlissigt werden. Bei konomischen Untersuchungen ist N
meistens sehr gro. Die meisten Betriebe haben beispielsweise einen solch
groflen Produktionsumfang, daB uns viele Daten zur Verfiigung stehen.
Trotzdem wenden wir uns im folgenden den Grundgesamtheiten erster Art
geringen Umfanges zu, da derartige Gesamtheiten mitunter auftreten und
mit den Methoden der Stichprobentheorie gleichfalls beurteilt werden miis-
sen. Wir verdeutlichen nunmehr den Einflul der Abhéingigkeit der Ziehungen
aus einer generellen (lesamtheit geringen Umfangs auf die bereits erzielten
Resultate. Dieser EinfluB wird sich unter anderem darin duern, daB an den
Formeln (3.3) und (3.7) gewisse Korrekturen anzubringen sind, die von N
abhéngen und fiir N = co verschwinden. Zunichst beweisen wir den

Saiz 3.6: Der Mittelwert z einer Stichprobe des Umfangs n aus einer Grund-
gesamtheit des Umfangs NN ist eine diskrete Zufallsgrofe mit dem Erwartungs-
wert

E( =12 | (3.2)

Beweis: Die zugrunde gelegte generelle Gesamtheit moge aus N; Elementen
mit dem Merkmalswert ,, ..., N; Elementen mit dem Merkmalswert
bestehen. Dann gelten znuéichst die Beziehungen N =N, + N, 4 ... N,
und

- 1 k
r = F 2 Nim’i ° (3.11)
[

=1

Wir entnehmen nun dieser Grundgesamtheit eine Stichprobe des Umfangs n,
die n,; Elemente mit dem Merkmalswert z;, ..., n, Elemente mit dem
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Merkmalswert x; aufweist. Dann bestehen offenbar die Gleichungen n =n,

+ny 4 ...+ m und

Ny Ty | ° (3.12)

~ 1
T = —
n s

k
1=

1

Das Stichprobenmittel z ist eine ZufallsgroBe; der zahlenmiBige Wert fiir z
dndert sich von Stichprobe zu Stichprobe. Da insgesamt (ZZ) verschiedene

Stichproben des Umfangs n der in Rede stehenden generellen Gesamtheit
entnommen werden konnen, reprisentiert z eine diskrete Zufallsvariable,

die damit (1:: )mt’)glicher Werte fihigist. Unter diesen ( Z ) Stichproben gibt

es genau
)= )G G

Stichproben des Umfangs n, bei denen n; Elemente den Merkmalswert x;
(#=1,2,...,k) besitzen. Die Wahrscheinlichkeit fiir das Auftreten einer
Stichprobe der letztgenannten Art betrigt demzufolge (klassische Definition
der Wahrscheinlichkeit eines Ereignisses)

k
=1

7 ()
(.,

=1 . (3.13)
(»)

Jeder Zerlegung des Umfangs # ist eine Summe von £ Summanden »; mit
0<m; < N;(t=1,2,..., k) entspricht eine solche Wahrscheinlichkeit (3.13)
Die Summe iiber alle diese Wahrscheinlichkeiten mull gem&8 der Vollstén-
digkeitsrelation gleich 1 sein. Wir driicken diesen Sachverhalt durch die
Formel

P (ng,ng,..., My ;m) =

Z’ P(ny, ngyeyymp;m) =1 (3.14)

ny+ne+...+n=n

aus.

Wir gehen nun an die Ermittlung von E (z). Da eine zu dem Mittelwert (3.12)
-Anlaf} gebende Stichprobe des Umfangs #» mit der Wahrscheinlichkeit (3.13)
vorkommt, nimmt das Stichprobenmittel z als diskrete Zufallsvariable den
konkreten Wert (3.12) mit der Wahrscheinlichkeit (3.13) an. Wenden wir
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nun die Formel fiir den Erwartungswert einer diskreten Zufallsgréfe an, so
ergibt sich auf Grund der obigen Ausfiihrungen

k
E(;)—_—ié'l{% Znip(”l’”z’---,nk;’ﬂ)}wi . (3.15)

n+ng+ ...+ =0
Fiir den Ausdruck

Nl P
{}z%z n (n;)

ny+ng+...+Hk=n (

() (o)

n
")
n

kénnen wir wegen
a\ _a a-——l)
b)_ b (b——l
() (i) )
N ) Unie1) " g

T w A=y '

nmy+ng+...+n=n\np—1

schreiben

Setzen wir nun noch N;* = N;, n;* = n; firj+ tund N* = N;—1,n*=mn,
— 1 sowie N* = N — 1 und #»* = n — 1, so erhalten wir unter Verwendung
der Schreibweise (3.13) fiir den letzten Ausdruck

N.
{”.} =T;— E P(nl*: n2*3"', nk*;n*)°
ny* 4 ng* 4 ...+ * = n*

Wegen (3.14) hat die vorstehende Summe den Wert 1. Damit gilt das wich-
tige Teilergebnis

{...}_:ilvv_i.

Beriicksichtigen wir nun dieses Ergebnis in der Gleichung (3.15), so ergibt
sich die Relation
% 2
- N; z: 1
E@= 2% ltv%=jv“.2 N;z;,

t=1 t=1

die infolge (3.11) gerade die Behauptung E (z) = Z darstellt. Die im Satz 3.1
hergeleitete Beziehung (3.2) gilt also auch dann, wenn der Umfang der gene-
rellen Gesamtheit beschrinkt ist. Der Merkmalswert w; eines Stichproben-
elements ist nach wie vor eine ZufallsgroBe mit dem generellen Mittel als
Erwartungswert

E(z) =% . (3.4)
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Da nun aber die x; nicht mehr unabhéngig voneinander sind, miiBte im vor-
liegenden Fall die Aussage (3.2) auf ganz anderem Wege — als im Beweis zu
Satz 3.1 — hergeleitet werden.

Da wir in diesem Abschnitt lediglich grofie Stichproben untersuchen,
betrigt der Umfang N der Grundgesamtheit mindestens 100 (denn eine
Stichprobe kann nicht umfangreicher sein als die generelle Gesamtheit!).
Daher wird die Abhéngigkeit zwischen den zufilligen GréBen w; gering sein.
Dieser Umstand berechtigt uns, das Stichprobenmittel z in brauchbarer
Anngherung als normalverteilt anzusehen. Ist allerdings das generelle Merk-
mal normalverteilt, dann ist z stets eine Zufallsvariable mit Normalvertei-
lung.

Wir fragen nun nach dem Streuungsmaf} des Stichprobenmittels z, das heiit
nach dem Genauigkeitsma w der vorgenommenen Stichprobe. Die dies-
beziigliche Antwort liefert uns der

Satz 3.7: Das GenauigkeitsmaB u einer Stichprobe des Umfangs n aus einer
generellen Gesamtheit des Umfangs N betrigt

=V%Vllr’:1lb . (3.16)

Bewers: Wir treffen zunéchst einige Vorbereitungen zum eigentlichen Beweis.
Entnehmen wir der generellen Gesamtheit des Umfangs N ein Element mit
dem Merkmalswert z;, dann liefern die verbleibenden N — 1 Elemente z;
der Grundgesamtheit den Mittelwert Z, mit

Nz
E(x) =2 = 5—1 |5 (3.17)

denn NZ ist die Summe aller N Merkmalswerte der generellen Gesamtheit.
Wir halten nun die GréBe ‘z; fest und berechnen den Erwartungswert der
Zufallsvariablen- z; z,. Wegen (3.17) wird

1 _
E (z.; (E,) =" E (1?,) = W:-I— . (Nx Xy — .'6‘2) . (3.18)
Denken wir uns nun auch a; verdnderlich, so folgt aus (3.18)
E(wig) = 51 E (N2 o, — 52) = 5o [NxE(z,)-— E(g 2)] (3.19)

Auf Grund der Relationen (3.4) und der Eigenschaften des Erwartungswertes
einer Zufallsvariablen gilt
E(z?) =a2® =22 4 a? — 72 = 2 4 ¢?

(vgl. auch den Beweis zum Satz 3.3); damit vereinfacht sich (3.19) zu

E(a:,iwi)= (Nfz—f2—52)=922=
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Fiir den Erwartungswert
El(z; —2)(2j—%)] = E(2j) = E (v; ) — 7 - [E (v)) + E ()] + 2

erhalten wir nunmehr unter Beachtung von (3.20) und (3.4)
o
N _

_F2__z2 = _ 0 3.21
i z e+ T° = - ( )

E (zy) = z* —

Wir gehen nun zum eigentlichen Beweis der Behauptung (3.16) tiber. Aus der
Definition des StreuungsmaBes » des Stichprobenmittels z und der Relation
(3.1) folgt

~ — 1 n
o=t An[3 o]
t=1
Quadrieren wir die Glieder der Summe des letzten Ausdrucks aus, so bleibt
12 n B
u? = ,ﬁ{_zlE[(wi— 15)2] + 2 .<Z‘,' \ E [(:vz — x) (r; — z)] } . (3.22)
i= i<i=

Die n Summanden der ersten Summe haben gemiB (3.4) alle den Wert g2.

Die zweite Summe in (3.22) besteht aus (Z ) — ne—l) Gliedern, die we-

2
gen(3.21)alleden Wert l—i aufweisen. Mithin bedeutet (3.22)

n N—1

W= (not 42 B0 — SO0
n N

2(1—N) ) —
oder die Behauptung (3.16).

Im Vergleich zur Formel (3.3) tritt also im Falle einer beschrinkten gene-
rellen Gesamtheit zu der Streuung 42 des Stichprobenmittels z der Korrek-
N—n
turfaktor )
Wir betrachten nun ein Beispiel, bei dem wir z als eine — angendhert —
normalverteilte Zufallsverinderliche mit dem Erwartungswert (3.2) und dem
Streuungsmal (3.16) auffassen: Eine Gesamtheit von N = 2001 hergestellten
Prizisionskugeln wird auf ihre Beschaffenheit untersucht. Zu diesem Zweck
werden n = 151 Kugeln ausgewdhlt und deren Durchmesser bestimmt. Aus
diesen 151 Werten ergibt sich das Stichprobenmittel zu z = 10 mm. Ferner
ist den technologischen Unterlagen fiir den Produktionsprozef (Herstellung
der Prézisionskugeln!) zu entnehmen, daf die 2001 Kugeln der Grundgesamt-
heit ein StreuungsmalB von ¢ = 0,1 mm fiir ihre Durchmesser aufweisen.
Wie gro8 ist das Genauigkeitsmal der vorgenommenen Stichprobe des Um-
fangs 151? Was kann iiber den Mittelwert Z der 2001 Prizisionskugeln aus-
gesagt werden?
Zunichst resultiert aus (3.16) das gesuchte Genauigkeitsmaf zu

v e L /1850
— Y151 V 2000

hinzu, der fiir N — oo gegen 1 strebt.

= 0,0078,
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das heiBit zu &~ 0,0078 mm. Aus (3.5) folgt dann fiir das generelle Mittel
der Durchmesser der Préizisionskugeln

P(|Z— 10| < o) = 2<p(m%ﬁ)—1.

Setzen wir einmal wieder ¢ = 3u = 0,023 mm, so kénnen wir gemiB vor-
stehender Formel und (3.6) sofort aussagen: Mit einer Wahrscheinlichkeit
von 99,72 Prozent liegt der generelle Mittelwert Z der 2001 Kugeldurchmesser
zwischen 9,977 mm und 10,023 mm.

Wenden wir anstelle von (3.16) die Formel (3.3) fiir die Ermittlung des
GenauigkeitsmaBes der obigen Stichprobe an, das heiit, vernachlissigen wir
praktisch die Abhéngigkeit der fiir eine Stichprobenerhebung erforderlichen
Ziehungen, so erhalten wir einen um 0,0003 mm gréBeren Wert fiir das Ge-
nauigkeitsmaf:

w= 29 _ 0,0081 mm.

i

Arbeiten wir mit diesem u-Wert, so erweisen sich die betreffenden Aus-
sagen als ,,schlechter” im Vergleich zu unseren auf 4 = 0,0078 basierenden
Ergebnissen des vorausgegangenen Beispiels.

Das vorstehende Beispiel macht deutlich, wie wir Aussagen iiber das gene-
relle Mittel £ gewinnen konnen, wenn der Umfang der Grundgesamtheit
beschrinkt ist. Als Schitzwert fiir Z dient praktisch das Stichprobenmittel z,
dessen Erwartungswert nach Satz 3.6 mit Z iibereinstimmt.

Wir betrachten nun die Streuung ¢* der Stichprobe des Umfangs #, das
heiBt die Streuung der Merkmalswerte z,, z,, ..., %, der zur Stichprobe
vereinigten n Elemente; dabei wird vorausgesetzt, da die generelle Gesamt-
heit aus N Elementen besteht. Es gilt der

Satz 3.8: Die Streuung g2 einer Stichprobe des Umfangs # aus einer generellen
Gesamtheit des Umfangs N ist eine diskrete ZufallsgroBe mit dem Erwar-
tungswert

E(¢*) = (1 — l) N—N_i a |, (3.23)

n

Bewets: Da nur (i\’) verschiedene Stichproben des Umfangs n aus einer

generellen Gesamtheit des Umfangs N moglich sind, ist 6% eine Zufallsvaria-
ble, die nur endlich vieler Werte fihig ist. Damit ist 62 eine diskrete Zufalls-

variable; die zu den (IZ) moglichen ¢2-Werten gehorigen Wahrscheinlich-

keiten stehen in (3.13). Der erste Teil des Satzes ist hiermit bewiesen.
Um den zweiten Teil als richtig nachzuweisen, gehen wir von der bereits
im Beweis zum Satz 3.3 benutzten Beziehung

- ~
o2 — 2% — 22

8 Runge/Forbig 113



aus, die sich aus der allgemeinen Relation (2.17) ergibt und gelangen ganz
entsprechend zu dem Ausdruck:

E(3) = 6% — u?

Ersetzen wir nun % durch den Ausdruck (3.16), so ist unsere Behauptung

N—1 )

. N n—1 —o
n(N—1) o

E@) = & (1 Tr
perfekt.

Im Vergleich zur Formel (3.7) tritt also im Falle einer beschrinkten Grund-
gesamtheit zum Erwartungswert der Stichprobenstreuung 62 der Korrektur-

faktor ( 7 lf_ 1)

Als Schitzwert fiir den generellen Mittelwert £ nehmen wir bekanntlich
das Stichprobenmittel, auch wenn die Grundgesamtheit einen beschrinkten
Umfang besitzt. Fiir die generelle Streuung 0% nehmen wir nicht die Stich-
probenstreuung 62, sondern die Grofle

hinzu, der fiir N — oo gegen 1 strebt.*

N—1._,

0 = =
O™ N n—1

(3.24)

als Schétzwert. Es besteht nimlich der

Satz 3.9: Die in (3.24) eingefiihrte GroBle ¢,? ist eine diskrete Zufallsgrofe,
deren Erwartungswert gleich der Streuung der generellen Gesamtheit des
Umfangs N ist:

E(o) = & |. (3.25)

Bewets: Der erste Teil der Behauptung folgt unmittelbar aus Satz 3.8. Der
zweite Teil resultiert aus (3.24) und (3.23) zu

n N—1 ~on 7 N—1 N a2—1_,
7 a1 L@ =5 =0

2y — P
E (op) = N n—1 7 N—1

Die beziiglich des Schitzwertes (3.8) im Falle einer unbeschrinkten Grund-
gesamtheit gemachten Voraussetzungen gelten auch beziiglich (3.24). Bei
beschrinktem Umfang der Grundgesamtheit tritt demzufolge zum Schitz-
( 7 li 1) hinzu, der
fiir N — oo gegen 1 strebt. Da dieser Faktor stidndig kleiner als 1 ist, ver-
kleinert sich der Schitzwert o,? fiir die Streuung o2 der generellen Gesamt-
heit, wenn dieselbe einen beschrinkten Umfang besitzt.

wert ¢,2 fiir die generelle Streuung 62 der Korrekturfaktor

N
* Da der Korrekturfakt;
a der Korre] aktor o —

probenstreuung im Falle einer beschrinkten Grundgesamtheit.

groBer ist als 1, vergroBert sich also der Erwartungswert der Stich-
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Ersetzen wir in dem Ausdruck (3.16) die generelle Streuung ¢* durch ihren
Schitzwert (3.24), so bekommen wir einen Schdtzwert u, fiir das Genauig-
keitsmaB u der Stichprobe. Genauere Auskunft hieriiber gibt der

Satz 3.10: Der Schitzwert fiir das GenauigkeitsmaB « einer Stichprobe des
Umfangs » aus einer Grundgesamtheit des Umfangs N betragt

"N—n -

Beweis: Ersetzen wir ¢ in (3.16) durch den Schitzwert o, in (3.24), so resul-
tiert in der Tat

VN—n, n N—1g5 _ N—n &
o= Vo VF=1 V¥ a—1 LN(n—l)

Im Vergleich zur Formel (3.10) tritt damit im Falle einer beschrinkten
Grundgesamtheit zum Schitzwert u, fiir das Genauigkeitsmal der Stich-

;n hinzu, der fiir N —> oo gegen 1 strebt.

Da dieser Faktor stets kleiner als 1 ist, verkleinert sich mithin der Schitzwert
4, im Falle einer beschrinkten generellen Gesamtheit.
Wir betrachten nun ein Beispiel: Ein Posten von N = 1000 Schrauben-
bolzen ist auf seine Qualitit (Durchmesser der Bolzen) zu beurteilen. Zu
diesem Zweck werden n = 100 Bolzen ausgewihlt, die einen Mittelwert von
z = 30 mm und ein StreuungsmaB} von ¢ = 1 mm aufweisen. Wie gro8 ist
das geschitzte Genauigkeitsmal dieser Stichprobe des Umfangs 100? Welche
Aussagen konnen iiber den generellen Mittelwert Z, d. h. iiber die Durch-
messer der 1000 zu beurteilenden Bolzen getroffen werden?

Wegen' N = 1000 und n = 100 sowie ¢ = 1 belduft sich der Schitzwert w,
fiir das gesuchte Genauigkeitsma8 w dieser Stichprobe auf

probe der Korrekturfaktor y

900
=} 95000 — %09

das heiBt auf 0,095 mm. Setzen wir voraus, daB & normalverteilt ist — das
ist ganz bestimmt der Fall, wenn das generelle Merkmal, ndmlich der Bolzen-
durchmesser, normalverteilt ist — dann kénnen wir sofort sagen

P(lx—30|<g)—2¢>(0095) 1 *)

(vgl. (3.5)!) oder gemiB (3.6) beispielsweise

P (29,715 < 7 < 30,285) = 0,9972,
P (29,810 < & < 30,190) = 0,9544, | ()
P (29,905 < T < 30,095) = 0.6826 .
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Beriicksichtigen wir den Umfang N = 1000 in diesem Beispiel nicht, wiirden
wir also stillschweigend annehmen, da die generelle Gesamtheit unbeschrink-
ten Umfang besitzt, dann erhielten wir gems8 (3.10) den Schitzwert

1

U, = — == 0,1005,
S 1T

das heilt, %, = 0,1005 mm fiir das Genauigkeitsmall der vorgenommenen

Stichprobe des Umfangs » = 100. Dann wiirde anstelle der Gleichung (*)
folgende Relation gelten

P(lz—30|< 0)—2¢<01005)

Sie vermittelt im Vergleich zu (**) die schlechteren Aussagen:

P (29,6985 < & < 30,3015) = 0,9972,
P (29,7990 < & < 30,2010) = 0,9544,
P (29,8995 < & < 30,1005) = 0,6826.

‘Wir berechnen nun abschlieBend den Schitzwert o, fiir das generelle Streu-
ungsmall ¢ in dem vorliegenden Beispiel. Aus (3.24) resultiert unmittelbar

0y = Lm""_ =] L 0001

1000 - 99 110 =~

Die geschitzte generelle Streuung betrigt damit 1,0091 mm.

Wir leiten nunmehr eine SchluBfolgerung aus dem Satz 3.7 ab. Zu diesem
Zweck fithren wir die Begriffe des absoluten und relativen Umfangs einer
Stichprobe ein. Unter dem absoluten Umfang einer Stichprobe verstehen wir
die absolute Anzahl der Stichprobenelemente, die wir stets mit # bezeichnet
haben. Unser bisheriger Umfangsbegriff fillt also mit dem Begriff des abso-
luten Umfangs zusammen. Der relative Umfang einer Stichprobe ist das
Verhiltnis zwischen dem absoluten Umfang der Stichprobe und dem Umfang

der generellen Gesamtheit, also gleich dem Verhaltms ~ - Ist’'die Grund-

gesamtheit beschrinkt, dann ist der relative Umfang einer Stichprobe eine
Zahl, die groBer als null und héchstens gleich 1 ist. Bei unbeschrinkter
Grundgesamtheit ist der relative Umfang jeder Stichprobe null. In diesem
Zusammenhang gilt der

Satz 3.11: Das GenauigkeitsmaB w einer Stichprobe aus einer generellen
Gesamtheit groBen Umfangs hingt stirker von dem absoluten als von dem
relativen Umfang der Stichprobe ab.

Bewets: Ist N eine groBe Zahl, dann kénnen wir die im Nenner des Wurzel-
ausdrucks (3.16) vorkommende Zahl N — 1 durch N ersetzen, ohne dabei
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einen nennenswerten Fehler zu begehen. Es bleibt dann von (3.16) die
Relation

u? ‘;2 (1 _z_v) ' (3.27)

iibrig, aus der die Behauptung erhellt.

Wir verdeutlichen den Sachverhalt des vorstehenden Satzes an einem Bei-
spiel: Auf dem Gebiet der DDR gibt es N p Landwirtschaftliche Produktions-
genossenschaften, von denen Ny dem Bezirk Rostock angehdren. Zwecks
Untersuchung eines bestimmten Merkmals der Genossenschaften, z. B. der
Hohe der Arbeitseinheit, werden ng Genossenschaften des Bezirkes Rostock
zufillig herausgegriffen. Diese Bezirksstichprobe hat dann den absoluten

Umfang ng und den relativen Umfang =2, Wir nehmen nun an, da8 in den

anderen Bezirken der DDR gleichfalls der Prozentsatz n— an Landwirt-

schaftlichen Produktionsgenossenschaften zuféllig ausgewahlt wird, um Aus-
sagen iiber die Hohe der Arbeitseinheit in den Bezirken abzuleiten. Alle diese

Bezirksstichproben besitzen den gleichen relativen Umfang Z—i , aber ver-

schiedene absolute Umfinge. Wir denken uns nun alle diese Bezirkstich-
proben zu einer Stichprobe im RepublikmaBstab vereinigt, die ng Elemente
umfassen moge. Diese Republikstichprobe hat denselben relativen Umfang
MR __ "B
Nr_ Np
groBer als der Umfang jeder Bezirkstichprobe. Wir stellen nun die Frage:
Gibt die Republikstichprobe eine zuverldssigere Auskunft {iber die Arbeits-
einheit der Genossenschaften im RepublikmaBstab als die im Bezirk Rostock
vorgenommene Stichprobe im Bezirkmafstab? Um diese Frage zu beant-
worten, setzen wir der Einfachheit halber voraus, daf das Streuungsmal ¢
der Zufallsvariablen ,,Arbeitseinheit“ in allen Bezirken der DDR ein und
denselben Wert besitzt. Bezeichnen wir ferner das Genauigkeitsmall der
,kleinen® Stichprobe mit uz und der ,,grofen Stichprobe mit up, dann
folgt aus (3.27)

—2 2
2 . 0 (1_"B 2 - 0 (1 __ TR
YB= s (1 NB)’ YR = g (1 NR>'

Wegen 17:7——1; = %\% und ng < np besteht die Abschitzung

wie die Bezirkstichproben, ihr absoluter Umfang ist offenbar

__2 .....
2 9o (1__"r O (1 IR} _ e
O R A e
Es gilt demnach up > up. Der Wert ug der ,kleinen Stichprobe ist also
groBer als der Wert uj, der ,,groBen® Stichprobe. Das hat zur Folge, da8 das
Stichprobenmittel im ersten Falle stirker um das generelle Mittel schwankt
als im zweiten Fall. Da das Stichprobenmittel als Schatzwert fiir das generelle
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Mittel — hier fiir die mittlere Hohe der Arbeitseinheit — dient, bedeutet
dieser Umstand eine positive Beantwortung der oben gestellten Frage.

Um 1n diesem Zusammenhang ein konkretes Zahlenbeispiel vor Augen zu
haben, betrachten wir die Werte

Np=10000  mp= 1000

und erhalten aus (32.7)

ul, = el (1 _ l) _ 9
B =7 100 10/ — 1000

und

—2

uezi_1_1>=_9i
R 1000 10 10000 °

In diesem Zahlenbeispiel besteht speziell der Zusammenhang

’MB = Vl_auR,

3.2.2. Kleine Stichproben

‘Wir beschéftigen uns in diesem Abschnitt mit kleinen Stichproben, das heif3t
mit Stichproben, die weniger als 100 Elemente umfassen. Derartige Stich-
proben treten in der Praxis insbesondere dort auf, wo die Erhebung einer
Stichprobe mit groBem Zeit- und Kostenaufwand verbunden ist.

Wir bezeichnen abermals mit z das Stichprobenmittel, mit & das generelle
Mittel, mit & das Streuungsmaf} der Stichprobe und mit ¢ das generelle
StreuungsmaB. Das Stichprobenmittel

~ 1
=2 %

%=1

ist wieder eine ZufallsgroBe. Setzen wir eine unbeschrinkte Grundgesamtheit
mit stetigem Merkmal voraus, dann ist « eine stetige Zufallsvariable. Die
Merkmale @; (¢ =1,2,...,n) der zur Stichprobe vereinigten n Elemente
sind dann wieder unabhéngig voneinander.

Das Stichprobenmittel z braucht jedoch — im Gegensatz zu einer groBen
Stichprobe — nicht normalverteilt zu sein. Da wir ndmlich kleine Stich-
proben vor uns haben, ist der Zentrale Grenzwertsatz auf das Stichproben-
mittel z nicht mehr anwendbar. Gehorcht allerdings das generelle Merkmal
einer Normalverteilung — das setzen wir im weiteren voraus —, dann ist
natiirlich auch z normalverteilt.
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Satz 3.12: Ist das generelle Merkmal normalverteilt, dann reprisentiert das
Stichprobenmittel z eine normalverteilte Zufallsvariable mit dem Erwar-
tungswert

E@=% (3.2)

und dem Streuungsmaf (Genauigkeitsmaf)

(3.3)

Slal

Auf den Nachweis dieser Aussage verzichten wir, da er im Prinzip wie der
Beweis des Satzes 3.1 verlduft.

Wir betrachten nun die im standardisierten Sinne normalverteilte Zufalls-
grofe

2= T2 (3.28)

u

Da das GenauigkeitsmaB « verméoge (3.3) mit dem meist unbekannten gene-
rellen Streuungsmal ¢ zusammenhingt, sind wir auch bei kleinen Stich-
proben gezwungen, mit einem Schitzwert fiir 4 auszukommen. Der bereits
hergeleitete Schitzwert

_9
n—1

u0=

(3.10)

nihert u jedoch sehr grob an, da der Umfang der kleinen Stichproben gering

ist (vgl. die betretfenden Ausfiihrungen iiber %, im Abschnitt 3.21). Demzu-

folge approximiert die gleichfalls stetige Zufallsvariable

T —=x
%o

(3.29)

2 =

die im standardisierten Sinne normalverteilte GroB8e (3.28) sehr grob. Es ist
daher nicht angebracht, die Zufallsvariable 2, als angendhert normalverteilt
zu betrachten. Uber die tatsichliche Verteilung der Zufallsveranderlichen z,
gibt uns Auskunft der

Satz3. 13: Die ZufallsgroBez,in (3.29) besitzt die STupENTsche Dichtefunktion

s (23 M) = B,,(l + f,,,zi:) —v (3.30)
mit w
B, = F(z) (3.31)
Va1 T (*57)
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als einer von # abhingigen Konstanten.! Fiir n — oo strebt die STupeNTsche
Dichtefunktion (3.30) gegen die Dichtefunktion der standardisierten Normal-
verteilung

_n?
lim S (zy;n) = %e z - (3.32)

Beweis: Auf den Nachweis der ersten Aussage verzichten wir, da er in diesem
Rahmen zu weit fiihrt. Den zweiten Teil der Behauptung machen wir plau-
sibel. Beziiglich eines exakten Beweises dieses Satzes verweisen wir auf die
einschligige Literatur, z. B. [4]. Wir verdeutlichen in diesem Zusammenhang
lediglich, daB (3.30) fiir n — oo gegen die standardisierte Normalverteilungs-
dichte strebt. Zunichst kénnen wir

n

. 2\ g 1
llm (1 - %o > 2 =

n—>00 + n—1 lim (1+ zoz)"

n—>0 n

schreiben. Unter Verwendung der schon bei der Porssonschen Verteilung
angewandten Relation

lim (1+%)m=e

m—> o

a

folgt dann

_n _=?
) 2 o 2

lim (1 + n"’”l

n—>0o0

Die in (3.30) vorkommende Konstante B, strebt fiir » — oo gegen eine
gewisse Zahl B, so daB insgesamt gilt
Zo2
Lm  [S(zy;»)] = Be— 2.
n—> Qo
Wenden wir schlieBlich auf die rechte Seite der letzten Gleichung die Voll-
stindigkeitsrelation fiir stetige Dichtefunktionen an, dann ergibt sich auf-

grund der im Kapitel 2 angestellten Betrachtungen B = V;: .Damit ist die
n
Beziehung (3.32) bewiesen.
Ist also der Umfang n der Stichprobe bekannt, dann haben wir die Vertei-
lungsdichte fiir die ZufallsgroBe z, vermoge (3.30) in der Hand. Damit lassen

sich dann Aussagen iiber das Verhalten dieser Zufallsvariablen herleiten,
die wegen

z=2"Y+7T

1 I ist die Eulersche oder Gammafunktion. Fiir natiirliche Argumente m gilt " (m) = (m — 1)!.
Vgl [5].
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eine Charakterisierung des Stichprobenmittels z zulassen. Mit dieser Pro-
blematik befaBt sich der

Satz 3.14: Es besteht die Beziehung

P(lz—z|[< o) =W (&:n) (3.33)
mit
+ &
¥ (&y; m) = fS(t; n) dt (3.34)
—&
und
& = QI’f_:_':i__ . (3.35)
g

Beweis: Zunichst folgt aus (3.29) und (3.10)
P(lz—Z|<e)=P(luz| <o =P(lz|< &)

mit dem in (3.35) stehenden Wert fiir £;. Da nun aber z, die in (3.30) aufge-
schriebene Dichtefunktion besitzt, folgt aus den allgemeinen Darlegungen
iiber stetige Verteilungen

éo
P(lz,| <&)=P(—§<2< &)= [ S(t;n)dt.
_Eo

Das ist aber wegen (3.34) gerade die Behauptung (3.33).

Im Anhang geben wir eine Tabelle fiir die in (3.34) eingefiihrte ¥-Funktion,
um den vorstehenden Satz praktisch anwenden zu konnen (vgl. die folgenden
Beispiele!). Diese Tabelle besitzt einen doppelten Eingang, einen fiir den
Stichprobenumfang n und einen fiir die Gréfe &,. Haben wir also ein ganz
bestimmtes Paar von Zahlen fiir n und &, im Auge, dann finden wir den
betreffenden ¥-Wert in der erwidhnten Tafel in der Spalte # und in der
Zeile &,.

Die OFunktion ¥ (&,; n) spielt offenbar im Rahmen der StupENnTschen
Verteilung diejenige Rolle, die der Funktion ® (&) bei der standardisierten
Normalverteilung zukommt. Aufgrund des Satzes 3.13 gilt sogar

[lim (e n) =0 |. (3.36)

n-—>oo

Die in der letzten Spalte der -Tafel stehenden Werte sind daher genau die
entsprechenden Werte @ (&,).

Wir behandeln nun zwei Beispiele.
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1. In einem Kunstfaserwerk werden an 6 Fiden Zerreiproben ausgefiihrt.
Die einzelnen Fiden reiflen bei den in Kilopond gemessenen Belastungen

z, = 1,90, z, = 2,50,
z, = 2,30, xs = 2,00,
zg = 1,50, zg = 2,40.

Damit besitzt die vorgenommene Stichprobe des Umfangs n = 6 den
Mittelwert

5= %(1,90 + 2,30 + 1,50 + 2,50 + 2,00 + 2,40) = 2,1
und die Streuung
5 = ; (0,22 + 0,22 + 0,62 + 0,42 4 0,12 L 0,32) — 0,117

sowie das Strenungsmal
o= 0,342.

Die Verteilung der zum Zerreilen eines Fadens erforderlichen Belastung z
fassen wir als normal auf; diese Voraussetzung diirfte in der Praxis erfiillt
sein. Wir fragen nun nach der Wahrscheinlichkeit dafiir, daBl das gesuchte
generelle Mittel Z (das heilt die durchschnittliche ZerreiBbelastung) vom
Stichprobenmittelwert z = 2,1 kp um weniger als 0,1 kp abweicht. Wegen
¢ = 0,1 folgt aus (3.35)

£ = _V;s‘- 0,1
0™ 0,342

und damit aus (3.33)
P(lz—2]11<0,1) =¥ (0,654; 6) .

= 0,654

Interpolieren wir linear in der zu » = 6 gehorigen Zeile der ¥-Tafel, so
erhalten wir das Resultat

P(lz—2,11<0,1)=0,457.
Die gesuchte Wahrscheinlichkeit ist also kleiner als 50 Prozent.

2. Ein Backwarengeschift erhilt eine grofle Lieferung von Kekspackungen,
deren Sollgewicht 200 Gramm betragen soll. Eine Untersuchung von 10
Packungen liefert die in Gramm angegebenen Werte

x, = 195 zg = 194
x, = 202 z, =199
x5 = 201 zy = 200
x, = 204 xg = 203

s =198 %, = 201,
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die den Mittelwert
z=199,7,
die Streuung

a2 = 9,61
und das StreuungsmaB

¢ =31
bewirken. Mit welcher Wahrscheinlichkeit weicht das mittlere Gewicht &
der Kekspackungen vom Stichprobenmittel z = 199,7 Gramm um weni-
ger als 2 Gramm ab? Wegen p = 2 resultiert aus (3.35)

2.3

&y = 3T 1,935
und damit aus (3.33)

P (1 —199,71 < 2) =W (1,935; 10) .

Interpolieren wir wiederum linear in der zu n = 10 gehorigen Zeile der
Y-Tafel, so ergibt sich das gesuchte Resultat

P (1 —199,71 < 2) = 0,914

Das gesuchte generelle Mittel £ weicht also lediglich mit einer Wahr-
scheinlichkeit von 8,6 Prozent um mindestens 2 Gramm vom Stichproben-
wert z = 199,7 Gramm ab.

Wir leiten nun noch eine Folgerung aus dem letzten Satz ab. Zu diesem
Zweck bezeichnen wir mit 4 (n; p,) denjenigen Wert von &,, der ¥ (£,, n)
= p, erfiillt, so daB die Identitit

¥ [A (n; po) 5 m] = P, (3.37)

besteht. A (n; p,) stellt praktisch die nach £, aufgeloste Relation ¥
(&,; m) = p, dar (diese Auflosung ist iibrigens eindeutig, wie die -Tafel
im Anhang zeigt). Mit dieser Funktion A (n; p,) gilt nun der

Satz 3.15: Es besteht der Zusammenhang

P(lz—z| < ) = p, (3.38)

mit ~
g A(n;py)
= ot | (8.39)

Beweis: Wir gehen von der Beziehung (3.33) aus. Aus ¥ (&,;n) = p,
folgt gemiB obiger Vereinbarung (3.37) & = A (n; p,), so daB (3.35)
gerade (3.39) zur Folge hat. Damit ist der Satz schon bewiesen.
Die Aussage des vorstehenden Satzes besteht — anders ausgedriickt — in
folgendem: Geben wir uns eine bestimmte Wahrscheinlichkeit p, vor, dann
konnen wir vermoge (3.38) und (3.39) ohne groBe Miihe dasjenige symmet-
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risch um den Stichprobenmittelwert z liegende Intervall (z — g, z + o)
angeben, in dem das gesuchte generelle Mittel mit der Wahrscheinlichkeit p,
anzutreffen ist. Bei der Liosung solcher in der Praxis héufig auftretender
Aufgaben spielt die Funktion A (; p,) eine wesentliche Rolle. Daher geben
wir im Anhang eine Tabelle fiir diese Funktion mit den vier — fiir praktische
Uberlegungen und Anwendungen wichtigsten — p,-Werten p, = 0,90,
Po=10,95, py=10,99 und p,= 0,999. Diese Tabelle besitzt wieder einen
doppelten Eingang, einen fiir den Stichprobenumfang » und einen fiir die
vorgegebene Wahrscheinlichkeit p,. Haben wir also ein ganz bestimmtes
Paar von Zahlen fiir » und p, im Auge, dann finden wir den betreffenden
A-Wert in der erwihnten Tafel in der Spalte p, und in der Zeile n.

Zur Verdeutlichung des soeben erérterten Sachverhalts betrachten wir nun
zwei Beispiele, die sich an die beiden letzten Beispiele anlehnen.

1. In welchem Intervall (z — g, z -+ @) liegt die generelle mittlere Zerreif3-
belastung Z fiir Kunstfasern mit einer Wahrscheinlichkeit von p, = 95
Prozent? Wegen n = 6, g = 0,342 und A (6; 0,95) = 2,57 folgt aus (3.39)

0,342 . 2,57
= ——— = 0,393.
e V5

Das gesuchte Intervall lautet mithin (1,707; 2,493).

2. Welchen Wert mu die Zahl ¢ annehmen, damit das generelle mittlere
Gewicht der Kekspackungen dem Intervalll z — Z! < g in 99,9 Prozent
aller Fille angehort? Beachten wir die Parameter n = 10, ¢ = 2,92 und
A (10; 0,999) = 4,78, so ergibt sich das Resultat

314,78
C="3

Bislang haben wir in diesem Abschnitt angenommen, dal die generelle
Gesamtheit einen unbeschrinkten Umfang aufweist. UmfaBt die Grund-
gesamtheit indes nur N Elemente, so verlaufen die Uberlegungen prinzi-
piell analog. Es ist lediglich zu beachten, dal nunmehr (3.16) anstelle von
(3.10) als geschitztes GenauigkeitsmaB der kleinen Stichprobe zu ver-
wenden ist. Daher besteht der

Satz 3.16: Wird einer Grundgesamtheit mit normalverteiltem Merkmal
des Umfangs N eine kleine Stichprobe des Umfangs » entnommen, so
bleiben die Aussagen der Sitze 3.14 und 3.15 giiltig, sofern die Relationen
(3.35) und (3.39) durch

= 4,939 .

_ el =1
£ = P (3.40)
bzw. e
0 =72 VN;ri{(n 3 Po) (3.41)
VN (n—T)

ersetzt werden.
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Wir geben abschlieBend zum letzten Satz ein Beispiel: In einem Betrieb
werden Glithlampen hergestellt, deren Brenndauer z eine normalverteilte
ZufallsgroBe ist. Um einen Posten von N = 900 Glithlampen zu beurteilen,
werden 7 = 20 Lampen ausgewéhlt und auf ihre Brenndauer z untersucht.
Diese kleine Stichprobe des Umfangs n = 20 liefert den Mittelwert z = 5000
Stunden und das StreuungsmaB & = 1000 Stunden. Welche Aussagen gelten
daraufhin beziiglich des generellen Mittels #, das heifit beziiglich der mitt-
leren Lebensdauer der Glithlampen des betreffenden Postens? Wie gro8 ist
die Wahrscheinlichkeit dafiir, daB Z zwischen 4546 Stunden und 5454 Stun-
den liegt? Wie groB muf} die Zahl p sein, damit & weniger als ¢ vom Stich-
probenmittel z = 5000 Stunden mit einer Wahrscheinlichkeit von 99 Prozent
abweicht?

‘Zunichst resultiert aus (3.40) wegen N = 900, n = 20, ¢ = 454 und
o = 1000

_ 454 )900-19 _

™ 1000 1880

Dann folgt aus den Sétzen 3.17 und 3.15
P(lx —z| < 454) =¥ (2; 20) = 0,94
Die gesuchte Wahrscheinlichkeit betrigt mithin 94 Prozent. Fiir die Zahl p

erhalten wir aufgrund der Sitze 3.16 und 3.15, insbesondere der Relation
(3.41)
__ 1000 /880-2,86 _ .o
Y900 - 19

3.3.  Stichproben aus Grundgesamtheiten zweiter Art

Wir setzen zunichst voraus, dafl die betrachtete Grundgesamtheit zweiter
Art einen sehr groen Umfang besitzt. Dariiber hinaus nehmen wir an, daf
die generelle Wahrscheinlichkeit p, das heiBt die Wahrscheinlichkeit dafiir,
dafB ein beliebiges Element der Grundgesamtheit eine ausgezeichnete Stellung

einnimmt, gréBer als —;—ist. Diese Annahme bedeutet keine Einschrinkung

der Allgemeinheit. Denn ist p < % , dann sehen wir eben die nichtausge-
zeichneten Elemente der generellen Gesamtheit als ausgezeichnet an, zu
denen die generelle Wahrscheinlichkeit g =1 —p > % gehort.

Dieser Grundgesamtheit entnehmen wir nun eine zuféllige Stichprobe des
Umfangs n. Unter den n ausgewédhlten Elementen seien m ausgezeichnet.
Die Zahl m heiBit die absolute Hiufigkeit der ausgezeichneten Elemente der
Stichprobe. Sie ist eine diskrete ZufallsgroBe mit den moglichen Werten
m=0,...,m=n. Esgilt der

125



Satz 3.17: Die absolute Hiufigkeit m der ausgezeichneten Elemente einer
Stichprobe des Umfangs # ist mit den Parametern

Em)=mn-p (3.43)

o (m) = Ynp (1 — p) (8.44)

binomisch verteilt. Liegt eine groBe Stichprobe vor, so geniigt m der Normal-
verteilung mit den Parametern (3.43) und (3.44).

Beweis: Der erste Teil der Aussage erhellt aus den Ausfithrungen iiber die
BERNOULLIsche Verteilung im 2. Kapitel.

Der zweite Teil stellt eine Folgerung aus dem Grenzwertsatz von LAPLACE-
MOIVRE (und der beziiglich p getroffenen Annahme) dar. Fiir die relative
Héufigkert

und

_m
h=27 (3.45)

der ausgezeichneten Elemente der Stichprobe ergibt sich damit der

Satz 3.18: Die relative Hiufigkeit / der ausgezeichneten Elemente einer
Stichprobe des Umfangs » ist eine ZufallsgréBe mit dem Erwartungswert

E ) =p (3.46)

und dem Streuungsmaf (Genauigkeitsmaf der Stichprobe)

v=ELG—pr1 =] |, (3.47)

die fiir grofle Stichproben mit den Parametern (3.46) und (3.47) normalver-
teilt ist.

Beweis: Wir miissen nur (3.46) und (3.47) nachweisen, alle andere Aussagen
resultieren aus Satz 3.17. Nun folgt aus (3.43) und (3.45)

E(h)zE(%)Z%'E(m)=%'"P=p

und aus (3.44) und (3.45)

1 1 1—
=0 (h) =0 (%) = o (m) = yup (1 — p) =2E=D),
Damit gilt
Satz 3.19: Fiir grofle Stichproben besteht die Beziehung
P(lh—p|<o=20(%)—1[. 3.48)
pl<e » (
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‘Wir nihern die generelle Wahrscheinlichkeit p durch die relative Haufigkeit &
der Stichprobe an; vgl. die Betrachtungen im Abschnitt 3.1. Die Beziehung
(3.48) gestattet nun die Abschitzung dieser Approximation. Setzen wir der
Reihe nach g = v, ¢ = 20 und ¢ = 3v, so erhalten wir die Abschitzungen

P(lh—pl<v) =0,6826
P(Ih—pl < 2)=09544 |,
P (lh—p| < 3v) = 0,9972

die beispielsweise zeigen, in welcher Weise die relative Haufigkeit A um
die konstante generelle Wahrscheinlichkeit p schwankt.

Wir erortern nun ein Beispiel, daB die letzten Uberlegungen verdeutlicht.
In einem Betrieb sind p = 64 Prozent der Erzeugnisse von der Sorte I.
Es wird nun eine Stichprobe von # = 100 dieser Erzeugnisse vorgenommen,
die eine gewisse relative Haufigkeit & der zur Sorte I gehorigen Stichproben-
elemente liefert. Wie groB ist das Genauigkeitsmaf dieser Stichprobe? In
welchem symmetrisch um p = 0,64 liegendem Intervall ist die Héufigkeit
mit einer Wahrscheinlichkeit von 99 Prozent zu erwarten? Mit welcher
‘Wahrscheinlichkeit gehort 2 dem Bereich (0,60; 0,68) an?

Wir erhalten gemif (3.47) das Genauigkeitsmafl

VO ,64 - 0,36
- 100

Aus (3.48) resultiert weiter

20 (o O48>

= 0,048..

1 =0,99
oder

e\ _
@ ( 0,043) — 0,995.

Wegen @ (2,567) = 0,995 wird schlieBlich
o =0,124.

In dem Intervall (0,516; 0,764) ist die GroBe k demzufolge mit einer Wahr-
scheinlichkeit von 99 Prozent zu erwarten. Wir beantworten nun die letzte
Frage. Wegen g = 0,04 ergibt sich

P(|h—p|<004)_2¢<33:8) 1

oder
P (lh—pl <0,04) =20 (0,8333) —1 = 20,7976 — 1 = 0,5952 .

In diesem Beispiel haben wir von der generellen Wahrscheinlichkeit p auf
die Stichprobenhiufigkeit & geschlossen. In der Praxis geht es jedoch darum,
von der Grofe A auf die unbekannte Wahrscheinlichkeit p zu schliefen. In
diesem Fall sind wir genétigt, fiir das Streuungsmal v einen Schdtzwert v,
zu verwenden, da v von dem unbekannten generellen Parameter p abhiangt.
Im folgenden leiten wir einen Schétzwert fiir v ab.
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Wir denken uns die Grundgesamtheit zweiter Art durch eine ZufallsgroBe
charakterisiert, die den Wert 1 annimmt, falls das betrachtete Element ein
ausgezeichnetes ist, also beispielsweise normgerecht ist. Im anderen Fall wird
x der Wert O gegeben. Durch diese Festsetzung konnen wir die zugrunde
gelegte generelle Gesamtheit zweiter Art als eine Grundgesamtheit erster Art
mit dem diskreten Merkmal x auffassen. Damit gewinnen wir Anschlu} an
die im vorangehenden Abschnitt angestellten Untersuchungen.

Satz 3.20: Das eingefiihrte generelle Merkmal « hat den Mittelwert

z=0p (3.49)
und das Streuungsmaf
o=Vpd—7p) |- (3.50)
Eine Stichprobe desAar;f;;é;ﬁesitzt den Mittelwert
a=n (3.51)
und das Stre&gﬁéﬁ
o =VhA —h)|. (3.52)

Fiir grofie Stichproben ist z eine normalverteilte ZufallsgroBe mit dem
Erwartungswert

E@=2=p (3.53)
und dem Streuungsmaf} (Genauigkeitsmaf der Stichprobe!)
o p(I—p)
u = —V_; = V—n‘ =0 |. (3.54)

Die Stichprobenstreuung g2 ist eine Zufallsgrofie mit dem Erwartungswert

E(&) = (1 —%) & =<1 —%) pl—p)|.  (355)

Beweis: Zunichst sind die Relationen (3.49) und (3.51) einleuchtend. Um
(3.50) nachzuweisen, betrachten wir ein beliebiges Element der Grund-
gesamtheit, dessen Merkmal « der Verteilungstabelle

z-Wert | 1 0
Wahrscheinlichkeit I p 1—p

geniigt und demzufolge gemalB den Ausfiihrungen iiber BERNOULLIsche
Verteilungen die Streuung p (1 — p) aufweist. Da diese Uberlegung fiir jedes
Element der generellen Gesamtheit gilt, ist die Aussage (3.50) richtig. Ganz
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entsprechend 148t sich der Ausdruck (3.52) gewinnen. Die Aussagen (3.53)
bis (3.55) resultieren schlieflich aus den Sidtzen 3.1—3.3 und 3.18.
Aus den Sdtzen 3.4—3.5 und 3.20 folgt weiter der

Satz 3.21: Der Schitzwert v, des Genauigkeitsmafes einer Stichprobe des
Umfangs » und der relativen Haufigkeit % berechnet sich zu

_1/20—=h

,
0 n—1

(3.56)

Von diesem hergeleiteten Schitzwert {iir v in (3.47) machen wir Gebrauch,
wenn die generelle Wahrscheinlichkeit  unbekannt ist. Folgende zwei Bei-
spiele erldutern diesen Sachverhalt:

1. Von 325 gepriiften Erzeugnissen einer Grundgesamtheit erweisen sich 300
als normgerecht. Welche Aussagen bestehen in bezug auf die Wahrschein-
lichkeit p dafiir, dal ein beliebiges Erzeugnis der ins Auge gefaBten gene-
rellen Gesamtheit normgerecht ist? Wir haben #n = 325 und m = 300 und
daher nach (3.45)

300 12
Fiir das StreuungsmalB der relativen Hiufigkeit A, das heift fiir das
Genaunigkeitsma v der vorgenommenen Stichprobe, ergibt sich gemiB
(3.56) der Schitzwert

12 V3
% —Vm—‘rﬁ ~ 0015.

Damit folgt dann aus (3.48) die gesuchte Aussage

— e )\ __
P(]0928 —p|< 0 =20 (58z) —1.
Wihlen wir zum Beispiel ¢ = 3v, = 0,045, so resultiert nach (3.48)
P (10,923 — pl < 0,045) = 0,9972.

In 99,72 Prozent aller-Fille ist also die gefragte Wahrscheinlichkeit p der
generellen Gesamtheit, das heilt der Anteil der normgerechten Erzeug-
nisse, in dem Intervall (0,878; 0,968) zu erwarten.

2. In einer GroBstadt sind unter 145 Familien 60 Familien, zu denen minde-
stens 2 Kinder gehoren. Wie 18t sich die Wahrscheinlichkeit p dafiir
schitzen, daB eine beliebige Familie dieser Stadt mindestens zwei Kinder
besitzt? Wegen n = 145 und m = 60 wird

60 12
h =145 = 59 = 04l
und demzufolge
_q/ 12-17 Yl
v= Vot =t~ 0041
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Mithin folgt aus (3.48) beispielsweise

0,05 _
P(|p— 0414 | < 0,05) =20 (m) — 1 =0,7176.

Das bedeutet: In 77,76 Prozent aller Fille weicht die gesuchte Wahrschein-

lichkeit » um weniger als 0,05 von der gefundenen Stichprobenhiufigkeit

h = 0,414 ab.

Bislang haben wir vorausgesetzt, daBl die Grundgesamtheit zweiter Art
einen unbeschrinkten Umfang besitzt. Ist das nicht der Fall, dann lassen
sich analog zu den Ausfithrungen im Abschnitt 3.22 die bereits erhaltenen
Ergebnisse entsprechend abéndern. Insgesamt gilt der

Satz 3.22: Besitzt die generelle Gesamtheit zweiter Art den Umfang N, dann
bleiben die Aussagen der Sitze 3.20—3.21 richtig, sofern die Relationen
(3.47) und (3.54)—(3.56) der Reihe nach durch die Beziehungen

0 — 11<__1%W_)_—"> (3.57)
u=%l/ﬁ=v, (3.58)
E (3°) = (1 —%) Nlil-p(l——p) (3.59)
e IR0 550

ersetzt werden.

Wir ersparen uns die Herleitung der vorstehenden Formeln, die fiir N — co
wieder in (3.47), bzw. (3.54)—(3.56) iibergehen; sie erfolgt wie im Abschnitt
3.22.

Ein Beispiel moge den Sachverhalt des letzten Satzes verdeutlichen: Eine
Lieferung von N = 800 Bohrern soll daraufhin untersucht werden, mit wel-
cher Wahrscheinlichkeit p ein beliebiger Bohrer zur Giiteklasse 1 gehort.
In einer Stichprobe von n = 160 Erzeugnisse sind m = 120 von der Klasse 1.
Was kann iiber die Qualitit der Lieferung ausgesagt werden? Wegen

120 3

h = m = Z = 0’75‘
wird gemi8 (3.60)
/3 640 1 1
% = VE "159.800 — 2 265 0,031

und damit
Pp—015/< o) = 20 (&) —1
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als Folge von (3.48). Setzen wir etwa ¢ = 0,02, dann erhalten wir

0,02
P(p—0,75|<002) = 2 & (0,031
und damit das Ergebnis: Mit einer Wahrscheinlichkeit von 48,12 Prozent
weicht die gesuchte generelle Wahrscheinlichkeit p von der gefundenen
Stichprobenhgufigkeit A = 0,75 um weniger als 0,02 ab. Mit anderen Worten:
Der Anteil der zur Qualitétsklasse 1 gehorenden Bohrer liegt mit einer Wahr-
scheinlichkeit von 0,4812 zwischen 73 und 77 Prozent.

‘Wir geben noch einen Hinweis zu kleinen Stichproben aus Grundgesamt-
heiten zweiter Art. In diesem Fall findet der Grenzwertsatz von LAPLACE-
Moivee keine Anwendung, so da8 die relative Haufigkeit # der Stichprobe —
das heiflt der Schitzwert fiir die generelle Wahrscheinlichkeit p — nicht
mehr als normalverteilt angesehen werden kann. Dann verliert beispielsweise

die Formel (3.48) ihre Berechtigung. Auf diese Problematik gehen wir jedoch
in diesem Rahmen nicht weiter ein.

) — 1= 04812

34. Die Ermittlung des Umfangs einer Stichprobe
34.1. Die Ermittlung bes Grundgesamtheiten erster Art

Wir betrachten zunichst wieder eine generelle Gesamtheit mit sehr groBem
Umfang und beweisen den

Satz 3.23: Fiir den Umfang # einer Stichprobe muf die Beziehung

éo0?
=G (3.61)

bestehen, damit mit einer Wahrscheinlichkeit p, das generelle Mittel z von
dem errechneten Stichprobenmittelwert z um weniger als o abweicht. Dabei
berechnet sich £p aus der Gleichung

D (&) =—5 (3.62)

Ist das generelle Merkmal nicht normalverteilt und fillt die nach (3.61)
ermittelte Grofe » kleiner als 100 aus, dann stellt (3.61) lediglich eine Néhe-
rung fiir den tatsichlich erforderlichen Umfang der kleinen Stichprobe dar.

Beweis: Wir gehen von der Veraussetzung P (lz — Z| < g) = pp aus, die
wegen (3.3) und (3.5) die Relation

@(‘-’_l/_”_.)=“f_”e
p 2

9*
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zur Folge hat. Bezeichnen wir mit £p das Argument der Funktion & (&), fiir
das (3.62) gilt, dann erhalten wir gerade die Formel (3.61). Der zweite Teil
der Behauptung resultiert aus dem Satz 3.13.

Wir geben zur Erlduterung ein Beispiel: In einem Sigewerk werden Lei-
sten mit einer Sollinge geschnitten. Das generelle StreuungsmaB fiir die
Leistenlinge ist als ¢ = 1 cm bekannt. Wieviel Leisten miissen nun auf ihre
Linge untersucht werden, damit die mittlere Lange Z der hergestellten Lei-
sten mit einer Wahrscheinlichkeit von p, = 95 Prozent um weniger als
¢ = 0,1 cm von dem errechneten Stichprobenmittel z abweicht? Aus (3.62)
wird @ (£,) = 0,975 oder unter Zuhilfenahme der @-Tafel £, = 1,96 ermit-
telt. GemiB (3.61) resultiert dann das Ergebnis

_1,962-12
=Tor

= 19,62 ~ 384.

Damit miissen 384 Leisten untersucht werden, um den gestellten Forderungen
Geniige zu leisten.

In der Praxis ist meistens neben & auch ¢ unbekannt. Das erschwert die
Bestimmung des Umfangs n einer vorzunehmenden Stichprobe, da ein
Niherungswert fiir ¢ im allgemeinen nicht angegeben werden kann. (Die
Stichprobe, die iiber g stets gewisse Informationen liefert, wird ja erst nach
der Bestimmung ihres Umfangs erhoben!)

Ist jedoch das generelle Merkmal & normalverteilt, dann kénnen wir einen
solchen Schdtzwert g, fiir o auf einfachem Wege herleiten

Satz 3.24: Bei normalverteiltem generellem Merkmal  besitzt das generelle
StreuungsmaB den Schitzwert

- Tg— X

Og = 6 ) (3.63)

dabei sind z, der groBte und x; der kleinste Wert des generellen Merkmals.

Beweis: Wir gehen von der Beziehung
P(lz—z!1 <36) =09972~ 1
aus, die

Ty~ T—30, T,~T 430

zur Folge hat, wenn 12;, und #, die im Satz 3.24 angegebene Bedeutung
besitzen. Eliminieren wir aus den beiden letzten Néherungsrelationen den
Parameter %, dann folgt die Behauptung

= 0g.

Ersetzen wir das generelle Streuungsmaf ¢ in (3.61) durch seinen Schitzwert
o, 1n (3.63), so erhalten wir den
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Satz 3.25: Fiir den Umfang n einer Stichprobe aus einer normalverteilten
Grundgesamtheit muB die Relation

(29— @)? £¢

n = 36 o?

(3.64)

bestehen, damit die Bedingung P (lz —Z| < p) = pg erfiillt ist. Dabei
haben &,, , und z; die in den Sétzen 3.23 und 3.24 angegebene Bedeutung.

Wir geben nun zur Veranschaulichung der letzten Uberlegungen ein Bei-
spiel: Wieviel Personenkraftwagen gleichen Typs miissen auf ihren Benzin-
verbrauch pro 100 km getestet werden, damit der dabei errechnete Mittel-
wert mit einer Wahrscheinlichkeit p, = 94 Prozent um weniger als p = 0,1
!/ 100 km von dem generellen Durchschnitt abweicht? Der niedrigste Benzin-
verbrauch wird mit @; = 8 !/, km und der héchste mit z, = 12 !/, km
angenommen. Nach (3.62) erhalten wir

14 0,04
D (&) = — 55— =097.
Laut @-Tabelle gilt
&, =188.

Nach (3.64) kénnen wir nunmehr berechnen
_ (8122 Lgs

-~ 36-0,12
oder
16.3,53

Es brauchen also nur 157 Personenkraftwagen getestet zu werden, um die
vorgeschriebene Genauigkeit einzuhalten. Wir beweisen nun den

Satz 3.26: Besitzt die generelle Gesamtheit den Umfang N, dann bleiben die
Aussagen der Sétze 3.23 und 3.26 giiltig, sofern die Formeln (3.61) und (3.64)
durch

N
n = ¢ 5 (3.65)
(N —1) 4+ & o?
bzw.
2
Ee (xg—a)?- N
n =~ 3 (3.66)
3602 (N—1)4 Ee (%g — 22)?

ersetzt werden.
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Beweis: Aus P (lz— Z| < g) = pp folgt unter Beachtung von (3.5) und
(3.16) der Ausdruck

,p(eVn(N—n):lﬂe
g VN==n 2

der in Verbindung mit (3.62) gerade die Behauptung (3.65) liefert. Die Aus-
sage (3.66) geht schlieflich wegen (3.63) aus (3.65) hervor.

Wir wollen auch zu diesem Problem ein Beispiel besprechen. Dazu gehen
wir von der letzten Aufgabe aus. Allerdings gelten andere Bedingungen.
Es wird danach gefragt, wieviel Personenkraftwagen zu testen sind, damit
der dabei errechnete Mittelwert mit einer Wahrscheinlichkeit pg = 98 Pro-
zent um weniger als o = 0,1 1/100 km vom generellen Durchschnitt abweicht.
Die Auswahl kann nur aus N = 600 Kraftwagen getroffen werden, da erst
diese Menge des neuen Typs produziert worden ist. Der niedrigste Benzin-
verbrauch wird mit #; = 81/100 km und der héchste mit z, = 12 /100 km
angenommen. Wir berechnen £p aus

1
? () = 1P — 09

b

Nach der @-Tafel gilt £p & 2,32. Damit stehen uns alle GroBen zur Verfii-
gung, um sie in (3.66) einzusetzen:
2,322 (8 — 12)2 - 600

"~ 36.0,12- (600 — 1) 1 2,32% (8 — 12

oder

" 5,38 - 16 - 600 ~ 171
~ 0,36-599 + 5,38 16

Demzufolge miissen 171 Wagen getestet werden.

3.4.2. Die Ermittlung ber Grundgesamtheiten zweiter Art

‘Wir untersuchen zunichst wieder eine generelle Gesamtheit zweiter Art mit
sehr grofem Umfang. In Analogie zum Satz 3.23 gilt:

Satz 3.27: Fiir den Umfang » einer Stichprobe mufl die Beziehung

2
Ee p(1—p)
Qz

"= (3.67)

bestehen, damit P (Ik— p!| < p) = pp erfiillt ist. Dabei berechnet sich &g
aus der Gleichung (3.62). Gilt fir die nach (3.67) ermittelte Grofle n die
Ungleichung % < 100, dann stellt sie lediglich einen groben Néherungswert
fiir den tatsichlich erforderlichen Umfang der zugehorigen kleinen Stich-
probe dar.
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Bewers: Wir gehen von der Voraussetzung P (1h — pl < p) = pp aus, die
wegen (3.48) und (3.47) die Relation

@ ( eln ) _l4p,
Vp(1—p) 2
nach sich zieht. Beachten wir schlieflich (3.62), dann folgt die Behauptung
(3.67). Die restliche Aussage des vorstehenden Satzes resultiert aus den Uber-
legungen am Ende des Abschnitts 3.3.

Wir geben zu diesem Problemkreis ein Beispiel: In einem Betrieb sind 97
Prozent der Erzeugnisse normgerecht, die verpackt werden sollen. Wie grof3
mufl das Fassungsvermdgen der Packungen sein, damit zu 80 Prozent
garantiert ist, daB der Anteil der in diesen Packungen vorhandenen norm-
gerechten Erzeugnisse um weniger als 9 = 1 Prozent von der generellen

Wahrscheinlichkeit p = 0,97 abweicht? Aus @ (&) = (1 + 0,80) = 0,90
folgt £, = 1,282 und damit gemiB (3.67)

_ (1,282)20,97-0,03
- (0,01)2

In der Praxis ist die generelle Wahrscheinlichkeit p meistens unbekannt.
In diesem Fall miissen wir die generelle Streuung ¢2 = p (1 — p) durch
einen Schitzwert ersetzen. Dabei kann nur von Vorteil sein, wenn der
betreffende Schitzwert o,2 grofler als 62 ausfillt, denn in diesem Fall sind
die tatsdchlichen Verhdltnisse in der generellen Gesamtheit nicht ,,schlech-
ter’ als die der ,,Ersatzgrundgesamtheit’ mit der Streuung g,.

Satz 3.28: Fiir die generelle Streuung ¢ = p (1 — p) einer Grundgesamtheit
zweiter Art gilt stets die Abschitzung

~ 478.

— _ 1
2 2
0° < 6y =

(3.68)

Beweis: Die generelle Streuung ¢ ist eine Funktion S (p) = p (1 — p) der
generellen Wahrscheinlichkeit p. Diese Funktion ist wegen 0 < p < 1 nir-

gends negativ. Thr einziges Extremum ist ein Maximum an der Stelle p =

PR
denn S’ (p) = 1 — 2p verschwindet und 8" (p) = — 2 ist negativ an dieser
Stelle p = —;— . Der zu p = % gehorige Maximalwert der Funktion S (p)
hat den Wert . Mithin gilt (3.68).

Nun konstatieren wir den
Satz 3.29: Der Umfang n einer Stichprobe mit
£ \2
n o~ (_e_) (3.69)
20

erfiillt sicher die Bedingung P (1A —pl| < p) = p,. Die GroBe &, geniigt
dabei der Gleichung (3.62).
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Beweis: Ersetzen wir 62 in (3.67) durch 6,2 = —:T in (3.68), so folgt

fo \2 _
ns (gg) =m

Der Umfang » muB also héchstens n, sein. Wihlen wir n = n,, dann ergibt
sich aus den bisherigen Uberlegungen iiber Stichproben, da8 die geforderte
Bedingung P (12— p! < g) = p, mit Sicherheit erfiillt ist.

Beispiel: Wieviel Erzeugnisse einer Gesamtheit miissen auf ihre Qualitit
hin begutachtet werden, damit die relative Hiufigkeit der normgerechten
unter diesen mit einer Wahrscheinlichkeit von 90 Prozent um weniger als
0,05 von der gesuchten generellen Wahrscheinlichkeit p fiir die Normgerecht-
140,90

heit eines Erzeugnisses abweicht? Wir berechnen aus @ (£,) = 3

= 0,95 den Wert £, = 1,645 und erhalten dann aus (3.69)

1,6452

"= 00023 — 210

Wir betrachten nun noch den Fall, daB die generelle Gesamtheit lediglich N
Elemente umfafBt. Diesbeziiglich ist maBgebend der

Satz 3.30: Besitzt die generelle Gesamtheit den Umfang N, dann bleiben die
Aussagen der Satze 3.27 und 3.29 erhalten, sofern die Formeln (3.67) und
(3.69) der Reihe nach durch die Ausdriicke

2
1 —
. £ 2?)? (3.70)
W1+ Eep(l—p)
bzw. )
& N
n =~ __9__2_ (3.71)
WD +E

ersetzt werden.
Beweis: Aus P (lh—pl < g) = p, folgt wegen (3.48) und (3.57)

2@(1)—1=2<p( ofn(¥—1) )—l=pe
v Vp(I—p) (N —n)
oder q)( VA m—1) )=p9+1.
Vp(I—p) (W —n) 2
Beachten wir (3.62), so ergibt sich aus
A= _
Vp(T—p) (W —m)
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durch beiderseitiges Quadrieren und anschlieBende Auflésung nach n die
Beziehung (3.70). Der erste Teil des Satzes ist damit bewiesen.
Ersetzen wir nun p (1 — p) = 62 in (3.70) durch den im Satz 3.28 abgelei-

teten Schitzwert 6,2 = %, dann erhalten wir gerade die Formel (3.71).

Damit ist auch der zweite Teil des Satzes bewiesen.

Zum AbschluB} erortern wir folgendes Beispiel: Gegeben ist ein Posten von
N = 900 Erzeugnissen. Wieviel Erzeugnisse dieses Postens miissen kontrol-
hert werden, damit die sich ergebende relative Hiufigkeit der zur Sorte 1
gehorigen Erzeugnisse mit einer Wahrscheinlichkeit von 70 Prozent um we-
niger als 5 Prozent von der generellen Wahrscheinlichkeit fiir die Zugehorig-
keit zur Sorte 1 abweicht? Aus @ (&,) = 0,85 folgt &, = 1,037 und damit
gemiB (3.71)

(1,037)2 - 900

m R 017899+ (LogTE = O

3.5.  Einige Auswahlverfahren

In diesem Abschnitt fithren wir einige Verfahren an, nach denen die Erhe-
bung von Stichproben vorgenommen werden kann. Das herkémmliche Aus-
wahlverfahren besteht darin, dafl der Grundgesamtheit rein zuféllig der Reihe
nach # Elemente entnommen werden, die insgesamt die erhobene Stichprobe
ausmachen. Unsere bisherigen Uberlegungen bezogen sich ausschlieBlich auf
Stichproben, die in der herkommlichen Weise gebildet werden.

In der Praxis wird eine Stichprobe hiufig nach dem folgenden Verfahren
erhoben: Die Grundgesamtheit besteht aus r Teilgrundgesamtheiten, die keine
gemeinsamen Elemente aufweisen. Jeder Teilgrundgesamtheit wird auf dem
Wege der herkémmlichen Auswahl eine Teslstichprobe entnommen. Alle diese
Teilstrichpoben ergeben zusammen eine einzige Stichprobe aus der betreffen-
den generellen Gesamtheit. So zerfallen zum Beispiel die in der DDR beob-
achteten Niederschlagsmengen eines Monats in solche Ergebnisse, die den
einzelnen Bezirken bzw. Kreisen der Republik entstammen.

Wir betrachten nun allgemein eine generelle Gesamtheit erster Art mit
dem Umfang N, dem Mittelwert £ und der Streuung ¢2. Diese Gesamtheit
besteht aus 7 elementefremden Teilgrundgesamtheiten mit dem Umfang N,
dem Mittelwert Z; und der Streuung 6,2 (j=1,2,...,7). Danngilt N = N,
+...+ N,und

Satz 3.31: Der Mittelwert der Grundgesamtheit ist gleich dem gewogenen
Mittelwert der Mittelwerte der Teilgrundgesamtheiten mit den Umféngen
der Teilgrundgesamtheiten als entsprechenden Gewichten:

T Ny |, (3.72)

8

Il
=~
I M =

1

137



Beweis: Der Ausdruck Z; N; (j=1, 2,...,7) stellt die Summe der Merk-
malswerte der N; Elemente der j-ten Teilgrundgesamtheit dar. Demzufolge

ist 2 %; N; gerade die Summe der Merkmale der N Elemente der generellen

=
Gesamthelt Dividieren wird diese Summe durch den Umfang N, dann ergibt
sich gerade die Behauptung (3.72)

Wir denken uns nun der j-ten Teilgrundgesamtheit eine Stichprobe des
Umfangs 'nJ mit dem Mittelwert z;, dem GenauigkeitsmaB u; und der
Streuung 0;2(j=1,2,...,7) entnommen. Diese r Teilstichproben vereini-
gen wir zu emer Stlchprobe des Umfangs n = n, + . .. 4+ n, mit dem Mittel-
wert Z, dem GenauigkeitsmaB « und der Streuung 32.

Satz 3.32: Das Stichprobenmittel z ist gleich dem gewogenen Mittelwert der
Mittelwerte g; der Teilstichproben mit den Umfingen N; (j =1,2,...,7)
der Teilgrundgesamtheiten als entsprechenden Gewichten

1

¥

I\ =

7 = N; | (3.73)

j=1

Das Mittel 7 ist eine ZufallsgroBe mit dem Erwartungswert

EG@ =z% (3.74)

und dem Streuungsmaf} (Genauigkeitsmafl der Stichprobe)

1 T =2 ) )
u = FVZE%N’N—’-:—? ) (3.75)

Beweis: Zunichst ist z eine ZufallsgroBe, die mit einer Wahrscheinlichkeit

von % durch 5,- (j=1,2,...,r) determiniert ist, da mit einer Wahrschein-

lichkeit von % ein der Grundgesamtheit entnommenes Element der j-ten

Teilgrundgesamtheit (j =1,2,...,7) entstammt. Mithin gilt (3.73). Die
Behauptung (3.74) folgt aus (3.72) zu

T

E(z) = F( Z z; N;) ,ZzE(fi) N; =1iv,21@Na' =
=

=

denn es gilt E (z;) = %; (j = 1,2, . . ., r) nach Satz 3.6. Wegen der sich aus
(3.73) und (3.72) ergebenden Relatlon

- s 1 ~ -
T—ZI=y 1(:1;,-——:1;,-)1\1',-

T
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konnen wir schreiben

- _ 1 [ T 2
w2 = E [(x—x)2]=ﬁEl[2(wj_ﬁi)Nf]}
i=1

u? = %LZI Ny E{(éf_fiy}‘i‘ 2 ,<Z 2Ni NiE{(ii—fi)(‘ij_fi)}]'
- i<ie

oder

Beachten wir nun (vgl. Satz 3.7)

3 — E)] —u? = TN
E (3 — 5;)"] =u® = nj N;j—1
sowie die wegen der Unabhingigkeit der einzelnen Stichproben giiltigen
Beziehung

dann bleibt

N.__ .
o araNi—m
§ n_ 7 N;—1

Damit ist alles gezeigt.

Wir behandeln nun ein Beispiel:

In einem Bezirk der DDR gibt es 10 Kreise mit den Einwohnerzahlen N;
G=12,...,10), die fir den monatlichen Pro-Kopf-Verbrauch an Zucker
(in kg) die StreuungsmaBe o; (j =1,2, ..., 10) aufweisen. Im j-ten Kreis
werden n; Personen iiber ihren Zuckerverbrauch im Monat befragt (j =1, 2,
, 10). Diese m; Personen verbrauchen durchschnittlich pro Kopf und
Monat die Zuckermenge zj j=1,2,...,10). Fir den Mittelwert 5 des
durchschnittlichen Zuckerverbrauchs pro Kopf und Monat der n = n, 4 ..
-+ nq befragten Personen gilt dann gemaf (3.73)

10
2 ZNj
i=1

TN ANt N

Das GenauigkeitsmaB dieser Stichprobe des Umfangs n hat wegen (3.75)

den Wert
a* N.2 Ni—”i.
'/]_1 nj 7 Nj—1
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Betrachten wir das Zahlenbeispiel

1 5 . 104 120 0,03 0,35
4 4 .104 150 0,05 0,30
3 3,5 104 200 0,04 0,37
4 4,5. 104 180 0,04 0,36
5 3 .10¢ 125 0,03 0,34
6 2,5. 104 130 0,01 0,38
7 2 .10% 250 0,02 0,35
8 1,5. 104 110 0,03 0,36
9 3 104 180 0,01 0,34
10 1 -104 175 0,04 0,35
dann finden wir die konkreten Werte
z = 0,348
und u = 0,005.

Mit diesen Werten konnen wir dann iiber den unbekannten Mittelwert T des
Pro-Kopf-Verbrauchs an Zucker in dem betrachteten Bezirk aussagen

P(lz—%|<g) =20 (0—,50—5)—1
oder gemif (3.6)

P (0,343 < 7 < 0,353) = 0,6826

P (0,338 < & < 0,358) — 0,9544

P (0,333 < T < 0,363) = 0,9972.

Es ist demnach mit einer Wahrscheinlichkeit von 99,72 Prozent zu rechnen,
daB der gesuchte generelle Mittelwert Z zwischen 343 Gramm und 353 Gramm
liegt.

Wir betrachten nun eine generelle Gesamtheit zweiter Art mit dem Um-
fang N und der generellen Wahrscheinlichkeit p. Diese Gesamtheit besteht
aus r elementefremden Teilgrundgesamtheiten mit dem Umfang N; und der
generellen Wahrscheinlichkeit p; (j =1,2,...,7). Wir denken uns weiter
der j-ten Teilgrundgesamtheit eine Stichprobe des Umfangs n; mit der rela-
tiven Héufigkeit »; und dem Genauigkeitsma8 v; (j =1, 2, ...,7) entnom-
men. Diese » Teilstichproben fassen wir als eine Stichprobe des Umfangs
n=mn, + ny + ... + n, auf, die die relative Haufigkeit » und das Genauig-
keitsmaB v aufweist. In voller Analogie zu denS dtzen 3.31 und 3.32 besteht der
Satz 3.33: Die generelle Wahrscheinlichkeit der Grundgesamtheit p ist gleich
dem gewogenen Mittel der generellen Wahrscheinlichkeiten der Teilgrund-
gesamtheiten mit den Umféngen der Teilgrundgesamtheiten als entsprechen-
den Gewichten

1 7

i=1
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Die relative Stichprobenhédufigkeit ist gleich dem gewogenen Mittel der rela-
tiven Héufigkeiten der Teilstichproben mit den Umfingen der Teilgrund-
gesamtheiten als entsprechenden Gewichten

r
h = % s W N; | (3.77)
i=1

Die Stichprobenhaufigkeit % ist eine Zufallsvariable mit dem Erwartungswert

E(h) =p (3.78)

und dem StreuungsmaB (GenauigkeitsmaB der Stichprobe)

-1 o P(l—m) Ni—n o "
”—N‘/Z m 1 N . (3.79)

i=1

Wir erwihnen schlieBlich noch ein letztes Verfahren, das in gewissem Sinne
im Gegensatz zu der eben besprochenen Auswahlmethode steht. Dieses Ver-
fahren besteht darin, daf der Grundgesamtheit rein zufillig geschlossene
Elementegruppen — sogenannte Serien — entnommen werden. In diesem
Falle liegt eine Stichprobe von Serien aus der betreffenden generellen Ge-
samtheit vor. Dieses Serienauswahlverfahren hat jedoch im Vergleich zu der
eingangs behandelten Auswahlmethode keine besonderen Aspekte. Fassen
wir ndmlich die einzelnen Serien als Elemente (im weiteren Sinne) auf, so
stellt das Serienauswahlverfahren gerade die herkommliche Auswahlmethode
dar.
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4. Einfithrung in die Bedienungstheorie

4.1. Der Gegenstand der Bedienungstheorie

Die Bedienungstheorie ist eine mathematische Disziplin, die sich mit der
Tatigkeit eines sogenannten Systems der Massenbedienung beschiftigt und
sich dabei wahrscheinlichkeitstheoretischer Methoden bedient. Als Beispiel
fiir solche Systeme der Massenbedienung (oder kurz Bedienungssysteme)
konnen zunichst dienen: Warenhiuser, Telefonstationen, Dienstieistungs-
einrichtungen, Reparaturstationen, Auskunftbiiros und Fahrkartenschalter.
Weitere Beispiele aus der Praxis werden wir im weiteren noch kennenlernen.

Jedes Bedienungssystem besteht aus einer gewissen Anzahl von bedienen-
den Einheiten, die wir Bedienungsstationen oder -aggregate nennen. So fun-
gieren als bedienende Einheiten die Verkduferinnen und Verkdufer der
Warenhduser, die Verbindungslinien im Fernsprechverkehr, die Kassierer an
den Fahrkartenschaltern usw. Die bedienenden Einheiten kinnen also Per-
sonen und/oder Sacheinheiten (Automaten) sein. Dariiber hinaus ist ersicht-

lich, daB ein Bedienungssystem eine oder mehrere Bedienungsstationen
besitzt.

Die Titigkeit eines beliebigen Bedienungssystems besteht in der Befrie-
digung (Erfiillung) von Forderungen, die in das System eintretende Einhei-
ten erheben. Wir nennen im folgenden Einheiten mit Forderungen kurz
Forderungen. Die Titigkeit eines Warenhauses beinhaltet die Erfiillung der
Wiinsche der eintreffenden Kunden; hier sind also die zu bedienenden Kun-
den die eintreffenden Forderungen. Die Tatigkeit eines Verpackungsauto-
maten hat die Verpackung von Waren zur Aufgabe; hier stellen also die zu
verpackenden Waren die eintreffenden Forderungen dar.

Die Forderungen treffen nacheinander in gewissen zufilligen Zeitmomen-
ten in das Bedienungssystem ein. Die Bedienung oder Abfertigung einer
Forderung durch eine Bedienungsstation dauert eine gewisse Zeit. Nach Ab-
lauf dieser Bedienungszeit, die im allgemeinen von Forderung zu Forderung
verschieden ist, wird die Station frei und damit bereit fiir die Bedienung einer
néichsten Forderung.

Die bisher erwahnten Beispiele fiir praktische Bedienungssysteme lassen
erkennen, dall neben der Qualitit der Bedienung die Organisation der Be-
dienung eine groBe Bedeutung besitzt. Diese (organisatorische) Seite eines
Bedienungsprozesses kann durch verschiedene Kennziffern ausgedriickt wer-
den, von denen wir als Beispiele anfiihren: die Wartezeit der eingetroffenen
Forderung bis zum Bedienungsbeginn, die Anzahl der titigen Bedienungs-
stattonen, die Linge der Warteschlange, die mittlere Leerlaufzest (d. h. den
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Auslastungsgrad) der Bedienungsstationen und den Prozentsatz der nicht
bedienten Forderungen, die das System unbedient verlassen, denn nicht immer
kann eine Forderung befriedigt — bedient — werden; das ist beispielsweise
der Fall, wenn in einer Reparaturstation die fiir die Reparatur eines defekten
Gerdtes (Forderung) notwendigen Einzelteile fehlen oder die Reparatursta-
tion iiberfiillt ist!). Alle diese Kennziffern hingen von den verschiedensten
Bedingungen ab, die im einzelnen gar nicht immer beriicksichtigt werden
konnen. So hingt zum Beispiel die Linge der Warteschlange an einem
Fahrkartenschalter von den Erfahrungen des Kassierers ab, von der Art der
Operationen, die er beim Ausfiillen der Fahrkarten auszufiihren hat, oder der
Anzahl der Ziige, fiir die an diesem Schalter gleichzeitig Karten verkauft
werden usw. Aber alle diese Kennziffern charakterisieren den Bedienungs-
prozeB. Sie geben ein Bild davon, in welchem MaBe das Bedienungssystem
der Gesamtheit der Forderungen gerecht wird.

Der Gegenstand der Bedienungstheorie besteht in der Aufstellung von
Beziehungen zwischen den ein Bedienungssystem charakterisierenden Para-
metern, das heit zum Beispiel zwischen dem Charakter des Stromes der
eintreffenden Forderungen, der Produktivitit der einzelnen Bedienungs-
stationen, der Anzahl der Bedienungsstationen und der Effektivitit der
Bedienung.

Die Kenntnis dieser Beziehungen gestattet eine bestimmte Regulierung
des Bedienungsprozesses, indem ein oder mehrere Parameter entsprechend
verdndert werden. Besitzen zum Beispiel in einem Bedienungssystem die
Bedienungsstationen eine hohe Leerlaufzeit (beispielsweise 40 Prozent der
gesamten Téatigkeitszeit), sind die Stationen also nur gering ausgelastet,
dann 148t sich durch entsprechende Verinderungen der Anzahl der tatigen
Bedienungsstationen eine bessere Auslastung der Stationen (etwa zu 90 Pro-
zent) erreichen. Auf diesem Wege lassen sich dann optimale Zustidnde im
Bedienungssystem herstellen.

Die Bedienungstheorie ist noch eine relativ neue mathematische Disziplin.
Sie entstand in den zwanziger Jahren dieses Jahrhunderts bei der Behand-
lung von Problemen, die sich bei der Ausnutzung von Fernsprechanlagen
ergaben. Seit dieser Zeit hat sich die Bedienungstheorie selbst wesentlich
vervollkommnet und ihr Anwendungsgebiet hat sich sténdig erweitert. Viele
Aufgaben der Automatisierung der Produktion und der Organisation des
Transports lassen eine Behandlung mittels bedienungstheoretischer Metho-
den zu. Des weiteren wird die Bedienungstheorie mit Erfolg bei der Projek-
tierung und Entwicklung technischer Einrichtungen (Aggregate) angewandst,
fiir die solche Kennziffern wie mittlere Zeit der storungsfreien Arbeit, die
erforderliche Menge an Ersatzteilen und die mittlere Zeit des Leerstehens
der zu konstruierenden Anlagen ausschlaggebend sind.

Im folgenden geben wir eine kurze Einfiihrung in das Wesen und in die
Methoden der Bedienungstheorie. Dabei miissen wir aus Platzmangel manche
Beweise und bemerkenswerte Zusammenhinge beiseite lassen. Der interes-
sierte Leser findet das Fehlende in der Literatur [9]—[12].
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4.2. Der Eingangsstrom und die Bedienungsdauer

Wir beschéftigen uns nunmehr mit den fiir das Funktionieren eines Bedie-
nungssystems so wichtigen Prozessen Ankunft und Bedienung der Forde-
rungen. Zunichst wollen wir ein Bedienungssystem reguldr nennen, wenn die
einzelnen Forderungen in genau bestimmten Zeitpunkten eintreffen und
eine genau bestimmte Bedienungszeit bendtigen. Der denkbar einfachste
Fall eines solchen Systems liegt vor, wenn die Zwischenankunfiszeit (also die
Zeit zwischen zwei aufeinanderfolgend eintreffenden Forderungen) und die
Bedienungsdauer konstant sind. Die Ermittlung der die Giite der Organisa-
tion eines solchen Bedienungssystems beeinflussenden Parameter bereitet
keine Schwierigkeiten. Trifft zum Beispiel in einem Warenhaus alle 5 Minuten
eine Forderung ein, die fiir die Bedienung stets 10 Minuten beansprucht,
so brauchen nur zwei Bedienungsstationen geofinet zu werden, um Warte-
zeiten der Forderung bzw. die Nichtauslastung der Bedienungsstationen zu
vermeiden.

Vergegenwirtigen wir uns nochmals die bisher aufgezihlten Beispiele aus
der Praxis fiir Bedienungssysteme, dann erkennen wir, daB diese nicht regu-
lér sind. Die Zeitmomente des Eintreffens der einzelnen Forderungen sind
nicht genau bestimmt, sondern zufillig. Diese Feststellung ist gleichbedeu-
tend damit, da3 die Zwischenankunftszeit eine Zufallsgrofe ist. Veranschau-
lichen wir uns den Eingangsstrom der Forderungen derart, da wir auf einer
reellen Zahlengeraden die Ankunftsmomente durch Punkte kennzeichnen,

o - O OO
Abb. 22 Bild eines Eingangsstromes von Forderungen

dann weisen die in der Praxis vorherrschenden Eingangsstréme sogenannte
Verdichtungen und Verdiinnungen auf (vgl. Abb. 22). Die Verdichtungen
konnen zur Bildung von Warteschlangen, von Stauungen vor den Bedienungs-
stationen fiihren, die Verdiinnungen zum unproduktiven Leerstehen der
Bedienungsapparate.

Die Bedienungszeit, die in praktischen Bedienungssystemen fiir die ein-
zelnen Forderungen bendtigt wird, ist auch eine Zufallsvariable, sie dndert
sich von Forderung zu Forderung zufallig. ‘Diesen Sachverhalt belegen die
bereits angefithrten Beispiele.

Die fiir die Tatigkeit eines Bedienungssystems ausschlaggebenden Prozesse
Ankunft und Bedienung der Forderungen sind also Zufallsprozesse, die durch
die Zufallsgrofen Zwischenankunftszeit bzw. Bedienungszeit charakterisiert
werden. Sind die Verteilungen dieser stetigen Zufallsvariablen gegeben, dann
sind die entsprechenden Prozesse Ankunft und Bedienung der Forderungen
eindeutig beschrieben. Von den vielféltigsten Typen dieser Zufallsprozesse
werden wir im folgenden den fiir die Praxis wichtigsten Typ kennenlernen.

Wir beschreiben nunmehr den Eingangsstrom der Forderungen etwas
ausfiihrlicher. Zu diesem Zweck nennen wir einen Eingangsstrom stationdr,
wenn die Wahrscheinlichkeit dafiir, da8 in einem Zeitraum diese oder jene
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Anzahl von Forderungen eintrifft, nur von der Lange dieses Zeitraumes und
nicht von dem Beginn dieser Zeitspanne abhingt.

Viele Eingangsstrome realer Bedienungssysteme besitzen diese Eigen-
schaft. Betrachten wir zum Beispiel das Bedienungssystem, das in der War-
tung mehrerer Webautomaten durch einen Facharbeiter besteht. Der Arbei-
ter ist in diesem System die einzige Bedienungsstation; die Forderungen
stellen die defekten Webautomaten dar. Die Bedienung der Forderungen ist
hier mit der Reparatur der defekten Automaten identisch. Der Eingangs-
strom der Forderungen in diesem System ist offenbar stationér.

Als stationdr kann auch der Strom der Gespridche angesehen werden, die
im Selbstwéhlverkehr gefithrt werden. Zwar dndert sich die Gesprachshaufig-
keit im Verlaufe eines Tages in einem Selbstwéhlfernsprechamt betrichtlich,
jedoch kann der Strom der Ferngespriche fiir einzelne Tagesabschnitte
(morgens, mittags, nachts usw.) mit guter Niherung als stationir angenom-
men werden.

Eine &hnliche Situation herrscht in dem Bedienungssystem, das ein
Dienstleistungsgeschaft verkorpert. Nehmen wir an, daB dieses Geschift
Kleidungsstiicke zur chemischen Reinigung entgegennimmt. Hier ist der
Eingangsstrom der Forderungen (Reinigungsauftrige) innerhalb der ein-
zelnen Jahreszeiten (Sommer, Winter usw.) gleichfalls stationir.

Wir denken uns nun zwei Zeitriume T, und 7', gegeben, von denen T,
vor T, liegen moge, und bezeichnen mit 4 (T) (¢ = 1, 2) die Anzahl der in
dem Zeitraum T; (s =1, 2) eintreffenden Forderungen. Die eingefiihrten
GroBen 4 (T;) (¢ = 1, 2) sind augenscheinlich diskrete Zufallsverdnderliche.
Wir nennen nun einen Eingangsstrom okne Nachwirkung, wenn A (T,) von
A (T,) unabhéngigist. In einem Forderungenstrom ohne Nachwirkung hingt
demzufolge das Geschehen innerhalb eines Zeitraumes 7' nicht von der Vor-
geschichte dieses Zeitintervalls ab. Zahlreiche reale Forderungenstrome weisen
diese Eigenschaft auf.

So ist zum Beispiel der Strom der Auftrige, der eine Reparaturstation
erreicht, ohne Nachwirkung, weil in der Regel jeder Auftrag unabhingig
davon aufgegeben wird, wann und wieviele Auftréige bis zu diesem Zeitpunkt
bereits aufgegeben wurden.

Wir konnen auch den Strom der Forderungen als ohne Nachwirkung an-
sehen, der von defekten Maschinen (vgl. obiges Beispiel zu Webautomaten)
ausgeht. Jedoch ist hierbei zu beachten, da die Menge der Maschinen ge-
wihnlich beschrinkt ist und der Strom der zu reparierenden Maschinen
damit nur bedingt ohne Nachwirkung in Erscheinung tritt. Bei einer grofen
Anzahl von Maschinen kann dieser Strom als ohne Nachwirkung aufgefalit
werden; bei kleinerer Anzahl fehlt dem Forderungsstrom diese Besonderheit.

Wir betrachten nun eine Zeitspanne At und bezeichnen mit P (At, n) die
Wahrscheinlichkeit dafiir, daf wiahrend der Zeitspanne At genau n Forde-
runigen eintreffen. Ein Eingangsstrom heiit nun ordindr, wenn die Wahr-
scheinlichkeiten P (At k) (k= 2,3,...) im Vergleich zu der Wahrschein-
lichkeit P (At, 1) klein sind. Diese Eigenschaft eines Forderungenstroms be-
deutet mit anderen Worten, dal die Wahrscheinlichkeit dafiir, daf in einem
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kleinen Zeitintervall mehr als eine Forderung eintrifft, sehr klein ist, daB also
das Auftreten von zwei oder mehr Forderungen in einem kleinen Zeitintervall
fast unwahrscheinlich ist.

Bei gewissen praktischen Eingangsstrémen (z. B. im Bedienungssystem

Tankstelle) ist diese Eigenschaft erkennbar; bei anderen Stromen ist diese
Besonderheit intuitiv erkennbar, oder die Wirklichkeit wird mindestens mit
ausreichender Anniherung als ordindr wiedergegeben. Selbstverstédndlich
gibt es auch Bedienungssysteme, deren Forderungenstrom nicht ordinér ist.
Auf solche Bedienungssysteme gehen wir jedoch in diesem Rahmen nicht
ein. Vgl. hierzu [10].
Wir nennen nun einen Forderungenstrom eines Bedienungssystems Pors-
sonsch, wenn er gleichzeitig stationér, ordindr und ohne Nachwirkung ist.
Porssonsche Eingangsstrome sind die in der Praxis vorherrschenden Ein-
gangsstrome. Demzufolge betrachten wir im weiteren Verlauf lediglich
Porssonsche Forderungenstréme.

Mit A bezeichnen wir die sogenannte Evngangsrate des Forderungenstromes,
das heilt die mittlere Anzahl der in der Zeiteinheit eintreffenden Forderun-
gen. Diese Grofle A ist konstant, weil der Porssonsche Forderungenstrom
stationdr ist. Bedeutet weiter ¢, die Zwischenankunftszeit des Eingangsstro-
mes, dann gilt der

Satz 4.1: Die ZufallsgroBe ¢, ist im Intervall (o, co) mit der Dichte

— &t
fil) = 2e °° (4.1)
stetig verteilt. IThr Erwartungswert betrigt
1
E(t)) = 7 |- (4.2)

Bewets: Auf den Beweis des ersten Teils der Behauptung miissen wir ver-
zichten; vgl. diesbeziiglich [7]. Die Vollstindigkeitsrelation fiir ¢, ist wegen

—at ®

Tle_udt =—c =1
0 0
erfiillt. Da weiter A die mittlere Anzahl der in der Zeiteinheit eintreffenden
Forderungen ausmacht, bedeutet % gerade diejenige Zeit, die im Durchschnitt

zwischen zwei aufeinanderfolgenden Ankiinften von Forderungen verstreicht.
Damit ist aber (4.2) bewiesen.
Auch auf analytischem Wege ergibt sich die Beziehung (4.2) unmittelbar:.

E (&) = ftfl(t)dt= e—“<t + %) |0 = %
0 o]

Mit E (\; z, T) bezeichnen wir nun die Wahrscheinlichkeit dafiir, daB} wih-
rend der Zeitspanne T genau x Forderungen eines Porssonschen Eingangs-
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stromes mit*der Eingangsrate A eintreffen. Beziiglich dieser neuen Kennziffer
des Forderungenstromes besteht der

Satz 4.2 Fiir die Wahrscheinlichkeit E (A; z, T') gilt die Formel

—aT |
E(ha )= D7 (43)

x!

Wegen des Beweises dieser Formel verweisen wir wieder auf die Arbeit [7].
‘Wir erinnern bei dieser Gelegenheit daran, daB wir im Zusammenhang mit
der Poissonschen Verteilung durch heuristische Uberlegungen die Beziehung
(4.3) bereits gewonnen haben; vgl. hierzu (2.47)!

Wie wir vorstehend gesehen haben, gestattet der Porssonsche Eingangs-
strom eine recht einfache Beschreibung. Der Forderungenstrom wird voll-
stindig durch die Eingangsrate A bestimmt. Bei Kenntnis des konstanten
Parameters A konnen mithin alle Wesensziige des Eingangsstromes praktisch
erfalt werden. Der wichtige Parameter A wird bei Eingangsstrémen in der
Praxis auftretender Bedienungssysteme auf statistischem Wege ermittelt;
auf diesen Sachverhalt konnen wir in diesem Rahmen leider auch nicht
eingehen.

‘Wir betrachten nun ein Beispiel, um die eingefithrten Begriffe und Formeln
anzuwenden: In einer Buchhandlung werden Bestellungen fiir Biicher ent-
gegengenommen, und zwar pro Viertelstunde durchschnittlich 2 Bestellun-
gen.

Die Eingangsrate des hier bestehenden Forderungenstroms betrigt A = 2,
sofern die Viertelstunde als Zeiteinheit gewihlt wird. Gemis (4.2) verstreicht
dann im Mittel zwischen zwei aufeinanderfolgenden Bestellungen die Zeit

von( % Viertelstunde oder) 71/, Minuten. Die Wahrscheinlichkeit dafiir, daB

in einer Stunde (7' = 4) genau ¢ = 5 Bestellungen aufgegeben werden, be-
rechnet sich nach (4.3) zu

8% ¢—8
5!

oder 9,3 Prozent. Entsprechend ergibt sich dié Wahrscheinlichkeit dafiir,
daB in einer halben Stunde (7' = 2) iiberhaupt kein Kunde (z = 0) die
Buchhandlung zwecks Buchbestellung betritt, zu

40.
oder 1,8 Prozent. Es ist also dullerst selten, daB im Verlaufe einer halben
Stunde keine Bestellung aufgegeben wird.

Wir untersuchen nun etwas eingehender die Bedienungsdauer der Forde-
rungen, die in erster Linie ein Charakteristikum fiir das Funktionieren jeder
Bedienungsstation eines Bedienungssystems ist. Sie gibt an, wieviel Zeit auf
die Bedienung einer Forderung von der jeweiligen Bedienungsstation auf-
gewendet werden muB. Wir haben bereits oben konstatiert, daB die Bedie-

E (2;5,4) = = 0,093

E(2;0,2) =
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nungsdauer eine Zufallsvariable ist. Die Ursachen fiir diesen Tatbestand sind
insbesondere darin zu sehen, da8 die eintreffenden Forderungen nicht vollig
identisch sind und die Verschiedenheit der Forderungen zufélligen Einfliissen
unterliegt. So haben zum Beispiel Fernsehempfinger und Rundfunkgerite,
die zur Reparatur in eine Elektro-Werkstatt gebracht werden, die unter-
schiedlichsten Defekte. Selbst wenn die Fehler der Aggregate identisch sind
(zum Beispiel defekter Lautsprecher) kann die Reparaturdauer verschieden
sein, sofern es sich beispielsweise um Gerite verschiedener Typen handelt.
Es ist damit klar, daB die Bedienungsdauer im allgemeinen eine Zufalls-
groBe ist und demzufolge durch ein Verteilungsgesetz beschrieben werden
kann.

Wir denken uns nun eine Bedienungsstation gegeben, die ein Strom von
Forderungen erreicht. Da die bedienten Einheiten das Bedienungssystem
verlassen, bildet sich ein Awsgangsstrom von bedienten (befriedigten) Ein-
heiten. Aus den oben angestellten Untersuchungen geht hervor, dal dieser
Strom ein ZufallsprozeB ist. Wir nehmen nun diesen ProzeB der Einfachheit
halber gleichfalls als Porssonsch an, das heiBt als stationir, ordinér und ohne
Nachwirkung. Derartige Ausgangsstréme treten vielfach in der Praxis auf
bzw. approximieren mit brauchbarer Giite verschiedene reale Ausgangs-
strome. Dariiber hinaus ist diese Annahme in den meisten theoretischen
Darlegungen iiber praktische Bedienungssysteme getroffen worden. Demzu-
folge legen wir unseren weiteren Betrachtungen stets Porssonsche Ausgangs-
strome zugrunde.

Wir fassen nunmehr eine Bedienungsstation ins Auge, die ein Forderungen-
strom erreicht. Mit . bezeichnen wir die sogenannte Bedienungsrate dieser
Bedienungsstation, das hei3t die mittlere Anzahl der in der Zeiteinheit durch
diese Station bedienten Forderungen. Diese Grofie p ist konstant, weil der
Ausgangsstrom stationir ist. Bedeutet weiter ¢, die Bedienungsdauer einer
Forderung an der gegebenen Bedienungsstation, dann folgt analog zu Satz 4.1

Satz 4.3: Die ZufallsgroBe ¢, ist im Intervall (0, oo) mit der Dichte

folt) = pe " | (4.4)

stetig verteilt. Thr Erwartungswert betragt

E () =% . (4.5)

Wir beschiftigen uns nun mit einem Bedienungssystem, das » Bedienungs-
stationen enthilt, zu denen die Bedienungsraten y; (1 = 1, 2, . . ., n) gehoren.
Diese n Stationen mogen unabhéngig voneinander arbeiten; diese Voraus-
setzung ist praktisch immer erfiillt. Es liegt nun nahe, dieses Bedienungs-
system als ein System mit nur einer Bedienungsstation aufzufassen, das die
IZedienungsrate p besitzt. Es gilt dann
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Satz 4.4: Ein Bedienungssystem, in dem # Stationen unabhéngig voneinander

mit den Bedienungsraten p,, gy, ..., 1, titig sind, besitzt insgesamt die
Bedienungsrate
 —
w= 3 (4.6)
i=1

Beweis: Wir bezeichnen mit 4, (i = 1, 2, . . ., n) bzw. t die Bedienungsdauer
einer Forderung durch die i-te Station (¢=1,2,..., %) bzw. das ganze
System. Die Parameter ¢; (: =1, 2, ..., n) haben gemif (4.4) die Vertei-
lungsfunktion

Plhi<n=1—¢ “" G=12..mn [ (4.7

Wir berechnen nun die Verteilungsfunktion der Zufallsverdnderlichen t.
Zunichst besteht die Relation

P(tgr):P(min tigt),

t=1,2,...,n

weil die Bedienung einer Forderung durch das Bedienungssystem beendet ist,
sobald eine Bedienungsstation diese Forderung abgefertigt hat. Weiter folgt
aufgrund des Multiplikationssatzes fiir unabhingige Wahrscheinlichkeiten
(die Parameter ¢; (s = 1, 2, ») sind voneinander unabhingig!)

. n
P(mintigr) =Pty =1,...,t,=1) = II P(t, =7)
i=1,...,n i=1

oder infolge (4.7)

MiT —urz

n —_—
Pi<t)y=1— IT ¢ =1—ce
=1

mit der in (4.6) stehenden Abkiirzung fiir . Die Dichtefunktion fiir die
Bedienungsdauer ¢ des Systems betrégt mithin f, (¢) = pe™#. Damit ist der
Satz bewiesen. Aus Satz 4.4 resultiert

Satz 4.5: Je groBer die Anzahl der Bedienungsstationen eines Systems ist,
umso kleiner wird die mittlere Dauer der Bedienung einer Forderung durch
das Bedienungssystem.

Beweis: Aus (4.5) und (4.6) ergibt sich zwangslidufig die Behauptung

E() = % = RE (4.8)

denn da die p; (¢t =1, 2, ..., n) nichtnegative GroBen sind, verkleinert sich
die linke Seite der letzten Gleichung (4.8) bei VergroBlerung der Zahl n der
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Bedienungsstationen. Haben wir etwa ein Bedienungssystem mit n = 3 Sta-
tionen vor uns, die alle dieselbe Bedienungsrate ., = p, = @z = 5 aufweisen,
dann betridgt die Bedienungsrate des Systems gemi8 (4.6)

p=t Ft e+ ps=15
und die mittlere Bedienungsdauer

E (1) = 7 Stunde = 4 Minuten,

falls als Zeiteinheit die Stunde (60 Minuten) zugrunde gelegt wird. Nimmt
nun eine weitere Bedienungsstation mit gleicher Bedienungsrate p, = 5 ihre
Titigkeit im gegebenen Bedienungssystem auf, so steigt die Bedienungsrate
des Systems auf

w=20

an, wihrend die mittlere Bedienungsdauer auf 3 Minuten zuriickgeht. Wird

andererseits im urspriinglichen System eine Bedienungsstation geschlossen,

dann lauten die den Bedienungsproze8 charakterisierenden Parameter
w=10

E (t) = 1—10 Stunde = 6 Minuten.

Wir bezeichnen nun mit B (u; «, T) die Wahrscheinlichkeit dafiir, daB wih-
rend der Zeitspanne T' genau  Forderungen in einem Bedienungssystem mit
der Bedienungsrate p. abgefertigt werden. In Analogie zum Satz 4.2 gilt der
Satz 4.6: Fiir die Wahrscheinlichkeit B (u; #, T) gilt die Formel

und

—uT
B(,u, z, T) = (p T)x;j_ﬂ_ . (4.9)

Wir verdeutlichen diese Aussage an dem oben bereits behandelten Beispiel
einer Bedienungsstation mit drei Stationen und der konstanten Bedienungs-
rate . = 15. Wir fragen nach der Wahrscheinlichkeit dafiir, dal im Verlaufe
einer halben Stunde { ' = %) nur =10 Forderungen bedient werden. Aus
(4.9) folgt fiir die gesuchte Wahrscheinlichkeit der Wert
1y 7,507 78
B (15; 10, _2> =T e T = 008

oder 8,5 Prozent. Wird eine zusitzliche Station gedffnet bzw. eine der drei

Bedienungsaggregate stillgelegt, dann ergeben sich fiir die gefragte Wahr-
scheinlichkeit die Werte

1 1010 . 6—10
B (20, 10, -2-> = o — = 01%
oder 12,5 Prozent bzw.
1 510. ¢—5
B (10,, 10. ?) = =008

oder 1,8 Prozent.
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Wie wir vorstehend festgestellt haben, gestattet der Porssonsche Ausgangs-
strom bedienter Forderungen eine recht einfache Beschreibung. Dieser Strom
wird vollstindig durch die konstante Bedienungsrate y. des Systems charak-
terisiert. Was wir oben iiber die Ermittlung der Eingangsrate A gesagt haben,
trifft im gleichen Umfang fiir den Parameter . eines praktischen Bedienungs-
systems zu.

Nachdem wir bisher ausfiihrlich die Prozesse Eingang und Bedienung dex
Forderungen, die das Funktionieren eines jeden Bedienungssystems in all-
gemeinen Ziigen bedingen, analysiert haben, wenden wir uns nunmehr dem
Verhalten der eintreffenden Forderungen im Bedienungssystem zu. Ent-
sprechend diesem Verhalten werden wir uns mit verschiedenen Grundtypen
von Bedienungssystemen beschiftigen, die in der Praxis eine Rolle spielen.

4.3. Das Verlustsystem

Wir nennen ein Bedienungssystem ein sogenanntes Verlustsystem, wenn die
eintreffenden Forderungen folgendes Verhalten zeigen: Ist mindestens eine
Bedienungsstation frei, das heifit bereit zur Bedienung einer Forderung,
dann 148t sich die eintreffende Forderung abfertigen. Sind allerdings alle
Stationen besetzt, das heiBt mit der Bedienung bereits frither angekommener
Forderungen beschéftigt, dann verliBt die eingetroffene Forderung kurz-
erhand unbedient (unbefriedigt) das Bedienungssystem. Mit anderen Worten
ist ein Verlustsystem ein System, das die eintreffenden Forderungen zuriick-
weist, sobald diese auf besetzte Bedienungsstationen treffen. Es ist in diesem
Zusammenhang klar, daB eine solche Bedienungssituation notwendigerweise
eine endliche Anzahl der Bedienungsaggregate voraussetzt.

Ein Beispiel fiir ein Verlustsystem stellt ein Fernsprechamt dar, das nur
eine beschrinkte Anzahl von Fernsprechteilnehmern gleichzeitig vermitteln
kann. Sind nun alle Verbindungslinien besetzt, das heiit wird in allen Ver-
bindungsleitungen gesprochen, dann erhilt jeder Teilnehmer, der sich zu
diesem Zeitpunkt an das Fernamt wendet, eine Absage. Diese Situation ist
uns allzu gut bekannt. Wahlen wir zum Beispiel wihrend der Hauptgeschéfts-
zeit eine Telefonnummer, dann ertént zuweilen schon nach dem Wiahlen der
ersten Ziffer das Besetztzeichen in dem Telefonhérer. In diesem Fall erhalten
wir eine Ablehnung und verlassen das Bedienungssystem, indem wir den
Horer auflegen.

Ein Verlustsystem kann (wie jedes Bedienungssystem) durch verschiedene
Kennziffern charakterisiert werden. Diese Ziffern geben an, in welchem Mafe
das System organisiert und funktionstihig ist. Eine solche Kennziffer ist zum
Beispiel die Verlustwahrscheinlichkest, das heiBt die Wahrscheinlichkeit dafiir,
daB eine eintreffende Forderung alle Bedienungsstationen besetzt vorfindet,
das System verlifit und damit dem Bedienungssystem verlorengeht. Be-
trachten wir bei dieser Gelegenheit nochmals das letzte Beispiel aus der
Telefonie, dann stellen wir eine sehr hohe Verlustwahrscheinlichkeit fiir die-
ses Bedienungssystem wihrend der Hauptgeschiftszeit fest. Eine weitere ein
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Verlustsystem charakterisierende Kenngrofie ist die mittlere Anzahl der
titigen, das heiBt der mit der Bedienung von Forderungen beschéftigten
Bedienungsstationen. Diese GroBe driickt praktisch den Auslastungsgrad der
Bedienungsaggregate aus. Die Verlustwahrscheinlichkeit gibt demgegeniiber
ein Bild von der mittleren Anzahl der unbedienten, dem System verloren-
gehenden Forderungen. Beide Kennziffern stehen in wechselseitigem Ver-
hiltnis zueinander: keine Verlustwahrscheinlichkeit bedingt einen niedrigen
Auslastungsgrad und umgekehrt; hoher Auslastungsgrad hat eine groBe Ver-
lustwahrscheinlichkeit zur Folge und umgekehrt. Auf diesen Zusammenhang
kommen wir spéter ausfiihrlich zu sprechen. Weitere Kenngréflen eines Ver-
lustsystems werden uns im folgenden noch begegnen.

Wir gehen nun daran, Beziehungen zwischen den einzelnen Parametern
herzuleiten, die ein Verlustsystem in seinem Funktionieren charakterisieren.
Diese Beziehungen werden es uns erméglichen, ein Verlustsystem optimal zu
organisieren, das heiit das entsprechende Bedienungssystem auf optimale
Parameter einzustellen. Zu diesem Zweck betrachten wir ein Verlustsystem
mit » unabhingig voneinander arbeitenden Bedienungsaggregaten. Der Ein-
gangsstrom ist Porssonsch mit der Eingangsrate A. Die Bedienungsdauer
einer Forderung durch die s-te Bedienungsstation (¢ =1, 2, .. ., n) ist mit
der fiir alle Stationen gleichen Bedienungsrate y — im Sinne von Satz 4.3 —
exponentiell verteilt. Dann ist gemidB Satz 4.4 auch die Bedienungsdauer
einer Forderung durch das gesamte System exponentiell verteilt.

Mit s bezeichnen wir die Anzahl der titigen, das heiit mit der Bedienung
von Forderungen beschéftigten Bedienungsstationen. Diese Grofe s ist offen-
bar eine diskrete Zufallszahl mit den moglichen Werten s =0, 1, 2, .. ., .
Weiter seien Z, das Ereignis (der Zustand) ,,s Bedienungsstationen sind tétig
und n-s Bedienungsaggregate stehen leer* und P, (t) die Wahrscheinlichkeit
dafiir, daB der Zustand Z, zur Zeit ¢ vorherrscht; dabei ist jeweils s = 0, 1,
2, ..., n. Nun besteht folgender Zusammenhang:

Satz 4.7: Im stationiren Verlustsystem gelten die Formeln:

s

Po)=p= —S— (s=0,1,-+,n) (4.10)

st ¥ e

k=0k'

mit
A ’
A £10°)
0=, (

Beweis: Der Kiirze halber beweisen wir den vorstehenden Satz nur fiir den
Fall n =1, in dem die Formeln (4.10) die Gestalt

P, () = p = {7, (s =01) (4.11)
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annehmen. Wegen des allgemeinen Beweises verweisen wir auf die Arbeit [6].
Wir betrachten einen Zeitmoment ¢ sowie eine kleine Zeitspanne At und
untersuchen im folgenden die Wahrscheinlichkeit P, (¢ 4+ At) (s = 0, 1), das
heiBt die Wahrscheinlichkeiten dafiir, daB im Moment ¢ 4+ A¢ der Zustand
Z, (s =0, 1) besteht.

Der Zustand Z, zur Zeit ¢ + A¢ kann sich wie folgt ergeben:

1. Zur Zeit t besteht der Zustand Z (die einzige Station ist frei) und wihrend
der Zeitspanne At trifft keine Forderung ein.

2. Zur Zeit t herrscht der Zustand Z, (die einzige Station ist besetzt) und die
betreffende Forderung verlifit im Laufe des Zeitraumes At das System.

Die Moglichkeit, daBl zum Zeitpunkt ¢ der Zustand Z, vorliegt und wihrend
der Zeitspanne At eine Forderung eintrifft und bedient wird, ist bei hinrei-
chend klein gewéhlter GroBe At ausgeschlossen. Ebenso ist es wegen der Ordi-
néritdt des Stromes der eintreffenden sowie der bedienten Forderungen nicht
moglich, daf wahrend der Zeitspanne At mehrere Forderungen eintreffen
bzw. das System verlassen. Demzufolge kann der Zustand Z, zur Zeit ¢ + At
nur auf einer der beiden Arten 1. oder 2. zustande kommen. Aus Satz 4.2
resultiert die Ubergangswahrscheinlichkeit

Poo=E (A; 0, At) = g7 4t (4.12)

das heiBt die Wahrscheinlichkeit fiir den Ubergang Z, — Z, wihrend des
Zeitraumes At (keine Forderung trifft ein!). Entsprechend folgt aus (4.9) die
Ubergangswahrscheinlichkeit

Pro= B(w; 1, At) = pArer 4t (4.13)

die Wahrscheinlichkeit fiir den Ubergang Z, — Z, wihrend der Zeitspanne
At (eine Forderung wird bedient). Wenden wir nun die Regel fiir die voll-
standige Wahrscheinlichkeit beziiglich des Ereignis Z, zur Zeit ¢ 4 At an,
dann folgt bei Beachtung der Ubergangswahrscheinlichkeiten (4.12) und (4.13)

Po(t+ At)=Py()e=*0t 4 Py () pAte—nat |. (4.14)

Denken wir uns fiir e724¢ bzw. ¢~# 4t die entsprechende Tavror-Reihe (beziig-
lich der Entwicklungsstelle At = 0) aufgeschrieben und in (4.14) eingesetzt,
so ergibt sich die Gleichung

Py (t 4+ At) = (1 — MY P(t) + pAtP,(t) + o (At), (4.15)

wobei alle Glieder mit kleinerer Ordnung als At zu dem Ausdruck o (At)
zusammengefaft sind.

Der Zustand Z, zur Zeit ¢t 4+ A¢ kann wie folgt zustande kommen:

1. Zur Zeit ¢ herrscht der Zustand Z; und wihrend der Zeitspanne A¢ tritt
eine Forderung in das System ein.

2. Zur Zeit t besteht der Zustand Z, und wihrend des Zeitraumes A¢ wird
die Bedienung der betreffenden Forderung nicht abgeschlossen.
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Entsprechende Uberlegungen wie oben zeigen, daB nur auf eine dieser Arten
der Zustand Z, zur Zeit t + At entstehen kann. Aus Satz 4.2 ergibt sich die
Ubergangswahrscheinlichkeit

por = E (A; 1, At) = Mter4¢, (4.16)

das heiBt die Wahrscheinlichkeit fiir den Ubergang Z, — Z, wihrend der
Zeitspanne At (eine Forderung trifft ein). Die Ubergangswahrschemhchkelt

P11 = B (; 0, At) = e7# 4t (4.17)

resultiert aus (4.9); sie stellt die Wahrscheinlichkeit fir den Ubergang
Z, — Z, wihrend des Zeitraumes A¢ dar (die Bedienung wird nicht abge-
schlossen!). Nach der Regel fiir die vollstindige Wahrscheinlichkeit des
Ereignis Z, zur Zeit t + Af wird dann

Py (t + At) = P, (t) NAte24t | P, (1)er4t (4.18)

oder nach entsprechender Umformung wie oben (Gleichung (4.15))
P, (¢ + At) = AL Py(t) + (1 — pA)P4(t) + o(At). (4.19)
Wir bringen nun die Gleichungen (4.15) und (4.19) auf folgende Gestalt

Pl A0=P® _ _3p, ) +u Py ) + 200,
t .
(4.20)
P At)—P 4
1(t+ Att) l(t) — ). Po (t) ‘u P1 (t)+ O( t)

Nehmen wir nun den Grenziibergang A¢ — 0 vor, so ergibt sich wegen
lim  Py(t+At)—P,(t) d Ps(t)

At—>0 At =g =L (=01
und

lim o(At)_O

Adt— 0 At

das lineare Differential — Differenzengleichungssystem

Py(t)y=—APy(t) + u Py (1),

(4.21)
P/ () = APy(t)y — u Py(2)

Die Losungen P, () (s=0,1) dieses Systemssind die gesuchten Wahrscheinlich-
keiten dafiir, da8 zur Zeit ¢ der Zustand Z, (s = 0, 1) herrscht. Wir setzen nun
voraus, daB das betrachtete Verlustsystem stationdr ist. Sodann sind diese
Wahrscheinlichkeiten von der Zeit ¢ unabhingig: P (¢) = p, (s =0, 1). Aus
(4.21) folgt dann mit der in (4.10") eingefiihrten Bezeichnung fiir o

Pr=0P |- (4.22)
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Da nun Z, und Z, ein vollstindiges System von Ereignissen bilden, muf}
zwangsldufig

Pt P =1 (1.23)

bestehen. Aus (4.22) und (4.23) resultiert aber schon die Behauptung (4.11).
‘Wir beweisen nun den

Satz4.8: Ein stationidres Verlustsystem besitzt die Ablehnungswahrschein-
lichkeit

e'ﬂ
Pap = y % (4.24)
'y &
k=0 K!
und weist im Mittel
n k
[4
kfl (k—1)!
E(s) = —— (4.25)
> 2
E—0 k!

titige Bedienungsstationen auf.

Beweis: Eine ankommende Forderung erhilt eine Ablehnung, wenn alle
Bedienungsaggregate besetzt sind, wenn also der Zustand Z, besteht. Damit
gilt Py, = p,. In Verbindung mit (4.10) fiir s = » ergibt sich dann gerade
die Aussage (4.24). Um die Behauptung (4.25) nachzuweisen, gehen wir von
der Verteilungstabelle fiir die diskrete Zufallsvariable s aus:

s|0 1 2 ....»n
2l Do Dy D2 ..o Pa

Aufgrund der iiber diskrete Verteilungen gemachten Ausfiihrungen betrigt
die mittlere Anzahl der titigen Stationen, das heifft der Erwartungswert von
s kurzerhand

n n
EG)= 2 kp= 3 kpg-
k=0 k=1

Beachten wir (4.10) und die Beziehung ¥ (kK — 1)! = %!, dann erhalten wir
gerade die Behauptung (4.25). Damit ist der Satz vollstindig bewiesen.

Die hergeleiteten Beziehungen (4.10) heilen ErraNGsche Formeln. Sie sind
unter der Annahme aufgestellt worden, daf die Bedienungsdauer der ein-
zelnen Forderungen eine exponentiell verteilte ZufallsgroBe darstellt (Vgl.
(4.4)!). Kiirzlich ist nachgewiesen worden, dafl die ErLaNGschen Formeln
auch dann gelten, wenn die Bedienungsdauer eine beliebige Verteilung mit

dem Erwartungswert % besitzt. Vgl. hierzu [8]. Mithin folgt
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Satz 4.9: Die Aussagen der Sitze 4.7 und 4.8 gelten auch fiir Verlustsysteme
mit beliebiger Verteilung fiir die Bedienungsdauer, deren Erwartungswert
gleich der reziproken Bedienungsrate p. ist.

Wir geben nunmehr einige Beispiele zu den bisher gewonnenen Ergeb-
nissen.

In einer Stadt wird ein Fernsprechamt projektiert, das in der Lage sein
soll, n Gesprichsteilnehmern gleichzeitig die Gespriche zu vermitteln. Auf-
grund statistischer Erhebungen ist ermittelt worden, da der fiir dieses Fern-
sprechamt zu erwartende Forderungenstrom die Ankunftsrate A=1 Ge-
sprach pro Minute besitzt. Des weiteren ist die Erfahrung gesammelt wor-
den, dal die Gesprichsdauer der Teilnehmer im Durchschnitt 2 Minuten

betragt. Demzufolge besitzt jede Bedienungsstation die Bedienungsrate u = %
Gespriache pro Minute. Das gesamte Fernsprechamt fertigt sodann im Mittel
pro Minute % Gespriche ab. Fiir die Projektanten ist nun die Frage von

Interesse: Wie gro muf} die Zah! » sein, das heit mit wieviel Verbindungs-
kanilen muBl das zukiinftige Fernamt ausgestattet sein, damit hichstens
10 Prozent der Gesprachsteilnehmer auf besetzte Leitungen treffen? Gegeben
ist also die Ablehnungswahrscheinlichkeit p,;, < 0, 1; gesucht ist die Anzahl

n der Bedienungsstationen. Setzen wirin (4.24) die Werte A =1, p = —;— und
als Folge von (4.10') o = 2 ein, dann folgt aus der Bedienung p,, < 0,1

unmittelbar

2n
0’1 = n 2k
n! [
2 R
;= 0
oder noogk "
Syn)y=mn! 2 7 =10-2"=8,(n) (4.26)
E=0

Aus dieser Ungleichung ist nun die GroBe n zu ermitteln. Zunichst ist die
rechte Seite fiir n = 1 gréBer als die linke Seite:

8, (1) =3 < 20 =85, (1).

Als Antwort auf die oben gestellte Frage kommt damit n =1 nicht in
Betracht. Um nun den tatsichlichen Wert fiir » zu erhalten, berechnen wir
die beiden Seiten S, (n) und S; (n) in (4.26) fir n =2, ..., ny; dabei ist
ng die kleinste natiirliche Zahl, fiir die die rechte Seite die linke Seite nicht
iibertrifft. Das Ergebnis dieser Rechnungen stellen wir in der folgenden
Tabelle zusammen:

n 8y(n) 8,(n)
1 3 20
2 10 40
3 38 80
4 168 160
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Es ist demzufolge n, = 4. Mithin lautet die gesuchte Antwort
n=4.

Das im Projekt befindliche Fernsprechamt muf infolgedessen mindestens
4 Verbindungskanile aufweisen, damit hochstens jeder zehnte Gesprichs-
teilnehmer auf besetzte Leitungen trifft.
Werden nun genau n = 4 Verbindungslinien installiert, so betrigt die
Ablehnungswahrscheinlichkeit des zukiinftigen Fernamtes gemiB (4.24)
2t 16

P = —5 5 = g5 ~ 009

oder 9,5 Prozent. Unter diesen Umsténden treffen also von 1000 Teilnehmern
im Mittel 95 auf durchwegs besetzte Leitungen.

Vermoge (4.10) geben wir zum Abschlufl noch die vollstindige Verteilungs-
tabelle fiir die ZufallsgréBe s = Anzahl der besetzten Verbindungslinien bei
vier Kanilen an

s | 0 1 2 3 4

Dy I 0,143 0,286 0,286 0,190 0,095

Mit einer Wahrscheinlichkeit von 14,3 Prozent ist demzufolge das Kanal-
system der Fernsprechanlage unbesetzt (ohne Auftrige!); mit einer Wahr-
scheinlichkeit von 19 Prozent ist nur eine Verbindungslinie frei usw.

Wir fithren nun als neue Kennaziffer eines Verlustsystems den Quotienten

c = ? ein, der in Verbindung mit (4.25) die Gestalt
n Qk
z
=1 (E—1
¢ = = e" (4.27)
mE R

besitzt. Dieser Parameter stellt offensichtlich den Auslastungsgrad der Bedse-
nungsstationen eines Verlustsystems dar. Die GroBe (4.27) zeigt also, welcher
Anteil (in Prozent) der Kapazitit des Verlustsystems im Mittel iiber einen
langeren Zeitraum in Anspruch genommen wird. In dem letzten Beispiel,
das von dem Fernsprechamt handelt, nimmt dieser Parameter den Wert
¢ = 45,2 Prozent an.

Als abschlieBendes Beispiel fiir ein Verlustsystem betrachten wir ein
Mitropa-Friseurgeschift, in dem 3 Friseure arbeiten. Diesen Friseursalon
suchen im Mittel 15 Reisende pro Stunde auf, um sich bedienen (frisieren,
rasieren, . . .) zu lassen. Da die Reisenden wenig Zeit haben, verlassen sie das
Friseurgeschift, sobald sie warten miissen, das heiBt, sobald alle 3 Friseure
mit der Bedienung bereits frither eingetroffener Kunden beschiftigt sind.
Jeder Friseur fertigt durchschnittlich 3 Reisende pro Stunde ab. Uns interes-
sieren in diesem Zusammenhang folgende Fragen:
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1. Wie gro8 ist die Wahrscheinlichkeit dafiir, daB von den 3 Friseuren s = 0,
1, 2 bzw. 3 beschiftigt sind?

2. Wie groB ist der Auslastungsgrad des Friseurgeschéfts?
3. Wie lauten die Antworten auf die Fragen 1. und 2., wenn einer der drei
Friseure wegen Krankheit ausfallt?

Ad 1) Aus (4.10) ergibt sich wegen n = 3, A = 15, u. = 3 und p = 5 das Ver-
teilungsgesetz fiir die ZufallsgroBe s zu

] ] 0 1 2 3

Ps I 0,025 0,127 0,318 0,530
Ad 2) Gemi8 (4.27) liegt der Auslastungsgrad

6= oo = 0,784

vor.

Ad 3) Nunmehr sind die Parameterwerte n =2, A=15, u =3 und o =5
mafgebend. Entsprechend oben erhalten wir

s | 0 1 2"

p,\ 0,054 0,270 0,676

sowie ¢ = 81,1 Prozent.

4.4. Das Wartesystem

Wir nennen ein Bedienungssystem ein sogenanntes Wartesystem, wenn die
eintreffenden Forderungen folgendes Verhalten zeigen: Ist mindestens eine
Bedienungsstation frei, dann 148t sich die eintreffende Forderung abfertigen.
Sind allerdings alle Stationen besetzt, dann wartet die eintreffende Forde-
rung solange, bis eine Bedienungsstation frei wird, die sie dann bedient.
Mit anderen Worten ist ein Wartesystem ein Bedienungssystem, das eine
eintreffende Forderung nur dann verlift, wenn sie vollkommen bedient ist.
Wir beschrinken uns im folgenden auf den Fall, dal die wartenden Forde-
rungen eine geordnete Linie bilden, die wir Wartelinie oder Warteschlange
nennen. Diese Beschrinkung bedeutet, daBl eine Forderung, die bereits I,
wartende Forderungen in der Schlange vorfindet, sich als (I, 4 1)-te war-
tende Einheit in die Schlange ,,anstellt”. Entsprechend der Reihenfolge bei
der Ankunft werden die wartenden Forderungen durch die Bedienungs-
aggregate abgefertigt.

Ein Beispiel fiir ein Wartesystem stellt eine Reparaturstation dar. Die
eintreffenden Forderungen sind Sacheinheiten (z. B. Maschinen oder andere:
Aggregate: Traktoren, Fernsehapparate, Kiichenmaschinen, . ..), die repa-
raturbediirftig sind; die Bedienung ist identisch mit der Reparatur durch
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einen Facharbeiter (zum Beispiel Fernsehmechaniker). Die Forderungen ver-
weilen solange in der Reparaturstation, bis sie repariert sind. Die Forderun-
gen warten meistens in einer geordneten Warteschlange.

In einem Geschéft konnen wir beispielsweise zwei Wartesysteme erkennen.
Auf der einen Seite haben wir das System, das aus den Kiufern (Forderungen)
und den Verkidufern (Bedienungsstationen) besteht; die in der Schlange
stehenden Personen warten darauf, von den Verkiufern mit Ware bedient
zu werden. Auf der anderen Seite beobachten wir das System, das sich aus
der Ware (Forderungen) und den Verkiufern (Bedienungsaggregaten) zusam-
mensetzt; die auf Lager liegende Ware wartet darauf, durch die Verkdufer
verkauft zu werden. In beiden Wartesystemen tritt also der Verkiufer als
Bedienungsstation auf.

Die wartenden Forderungen miissen keine geordnete Wartelinie bilden,
sie konnen auch einen ungeordneten Haufen reprisentieren (wie etwa im
Wartesystem Ware — Verkédufer bei gewissen Waren und in bestimmten
Geschéften: die Waren werden nicht in der Reihenfolge verkauft, in der sie
angeliefert worden sind). Auf solche Wartesysteme gehen wir im folgenden
nicht ein. Ferner braucht die Wartelinie nicht sichtbar zu sein, sie kann
beispielsweise — gewissermaBen unsichtbar — nur auf dem Papier stehen
(etwa in Form einer Bestelliste). Ein Wartesystem kann nun — wie jedes
Bedienungssystem — durch verschiedene Kennziffern charakterisiert wer-
den. Diese Ziffern geben ein Bild davon, in welchem MaBe das Wartesystem
organisiert und funktionsféhig ist. Eine solche Kennziffer ist zum Beispiel
die mittlere Schlangenlinge, das heiBt die mittlere Anzahl der in der Schlange
auf Bedienung wartenden Forderungen. Betrachten wir die oben genannte
Reparaturstation als Beispiel, so bedeutet dieser Parameter die mittlere Zaht
der bereits zur Reparatur angenommenen, aber noch nicht instandgesetzten
Aggregate. Eine weitere ein Wartesystem charakterisierende Grofle ist die
mattlere Wartezeit einer eintreffenden Forderung, das heilt die Zeit, die eine
eintreffende Forderung im Mittel bis zu ihrer Bedienung warten muB. Diese
GroBe ist beispielsweise in dem Wartesystem Ware-Verkaufer von Interesse,
sobald die Waren (zum Beispiel Lebensmittel und Obst) nur eine beschrinkte
Zeit auf Lager liegen diirfen, da anderenfalls ihr Wert (zum Beispiel Genuf3-
fahigkeit) herabsinkt. Die bereits aufgezihlten Parameter charakterisieren
das Wartesystem von der Seite der Forderungen her. Fiir die Einschitzung
des Auslastungsgrades ist — wie im Fall eines Verlustsystems — auch hier
die mittlere Anzahl der titigen Bedienungsstationen bedeutsam. Weitere
Kennziffern eines Wartesystems begegnen uns noch im folgenden.

Wir gehen nun an die Aufstellung von Relationen zwischen den einzelnen
das Wartesystem kennzeichnenden Parametern. Diese Relationen gestatten
die optimale Organisation eines Wartesystems, das heilt eine Einstellung
des Systems auf optimale Parameter. Zu diesem Zweck betrachten wir »
unabhingig voneinander arbeitende Bedienungsstationen; dabei ist n eine
endliche Zahl. Beziiglich des Eingangsstroms und der Bedienungsdauer einer
Forderung durch eine Station bzw. das gesamte System treffen wir die an
entsprechender Stelle iiber Verlustsysteme gemachten Voraussetzungen.
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Des weiteren beschrinken wir uns im folgenden auf den fiir die Praxis wich-
tigen Fall A < ny. oder gemiB (4.10") o < n. Es ist klar, daf§ die Ungleichung
A > n oder 9 > n zu einer tendentiell anwachsenden Schlangenlénge fiihrt,
denn in der Zeiteinheit treffen stets mehr Forderungen im Mittel ein als
durchschnittlich bedient werden konnen. Aber auch der Fall ¢ = »n hat
wegen des zufilligen Charakters des Eingangs- und Ausgangsstromes eine
tendentiell anwachsende Schlangenlinge zur Folge. Dieser Sachverhalt wird
spéter noch deutlicher hervortreten.

Wir bezeichnen mit I, die Anzahl der im Bedienungsproze8 stehenden
Forderungen und mit I, die Schlangenlinge, das heilt die Anzahl der auf
ibhre Bedienung wartenden.Forderungen. Offenbar sind I, und I, diskrete
Zufallsvariable mit den moglichen Werten I, =0, 1, 2, ..., n bzw. [, =0,
1, 2, ... Weiter ist ersichtlich, dafl die Ereignisse ,,l; = »n* und ,,l, = 0%
identisch sind:!

P(l,=n)= P(l,=0).
Die Summe dieser beiden ZufallsgroBen ist wieder eine Zufallsverdnderliche

l=1,+1,, die zuweilen wuneigentliche Schlangenlinge im Gegensatz zur
eigentlichen Schlangenlinge 1, heift. Es gilt

I,, wenn keine Forderung wartet
l= (4.28)

l, + n, wenn alle Stationen besetzt sind.

Die Zahl I gibt offenbar die Gesamtzahl der sich im Bedienungssystem auf-
haltenden Forderungen an.

Mit Z; bezeichnen wir weiter das Ereignis (den Zustand) ,,! Forderungen
verweilen im Wartesystem* und mit P, (¢) die Wahrscheinlichkeit dafiir,
daBl der Zustand Z; zu der Zeit ¢ vorherrscht; dabei gilt stets [ =0, 1,2, 3,...
In diesem Zusammenhang konstatieren wir den

Satz 4.9: Im stationdren Wartesystem bestehen die Formeln

i—'e%wenno_s_ < n;
Pty=p =" (4.29)

14
n'_leTR ,Wennn§l<oo

mit g = % — vgl. Gleichung (4.10") — und

n—1

peor

— I .1 4.29'
R_kélok!_l—(n—l)!(n,u—}.) (£:29)

1 Befinden sich namlich genau n Forderungen im System (I; = n), dann werden alle diese Forderun-
gen bedient, da es ja n Bedienungskanile gibt. Dann wartet also keine Forderung (I, = 0).
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Diese Behauptung wird im Prinzip nach derselben Methode bewiesen, der
wir uns beim Beweis des Satzes 4.7 fiir den Fall n = 1 bedienten. Aus diesem
Grunde verzichten wir auf den Beweis des Satzes 4.9 und verweisen auf [7].
‘Wir wenden nun die Formel (4.29) auf ein Wartesystem an, das ein Aus-
kunftsbiiro darstellt. In der Stunde mogen durchschnittlich 20 Personen
eintreffen. Das aus 3 Auskunftsschaltern bestehende Biiro mége eine Bedie-
nungsrate von 30 Personen aufweisen. Uns interessieren folgende Fragen:
1. Mit welcher Wahrscheinlichkeit stehen alle drei Schalter leer?
2. Mit welcher Wahrscheinlichkeit sind genau 6 Personen im Biiro?

3. Mit welcher Wahrscheinlichkeit ist ein Schalter frei?

Wegen n =3, A =20, p.=10und g = * _ 2 erhalten wir der Reihe nach
aus (4.29) die Antworten #

Ad1)p, = 3 =5 ~ 0111
32 2
4d3)p, = 2 =2 ~ 0222

‘Wir beweisen nun den

Satz 4.10: Die Wahrscheinlichkeit dafiir, da$ in einem stationiren Warte-
system alle Bedienungsstationen besetzt sind, betrigt

- e .
Py T Rm—1)t(n—p) (4.30)

Beweis: Der Zustand ,,alle Stationen sind besetzt* tritt ein, wenn mindestens
n Forderungen im System verweilen. Das bedeutet gema8 (4.29)
o] [e<] @ 0 l nn gn oo 0 k
P= 3 P= 3 P=g5 3 (5) = gt 3 (1)
Ig=0 1=n i=n k=0

Wegen ¢ =% < n konvergiert die unendliche Reihe im letzten Ausdruck.
Wir erhalten damit

p e v _ e )
®~ Rn!y_e¢ R(m—1)!(n—p)
n

Im letzten Beispiel, das von dem Auskunftsbiiro handelt, ergibt sich diese
‘Wahrscheinlichkeit zu

P, = ¢ ~ 0444

Satz 4.11: Die mittlere eigentliche Schlangenlinge in einem stationiren
Wartesystem betriagt

Q"’+1

L=E0 = g —Tie—mwr

(4.31)
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Der Auslastungsgrad fiir die Bedienungsstationen eines stationiren Warte-
systems belduft sich auf

c=1— oy =Kok |, (4.32)

1
L K!

Beweis: Aus (4.29) ergibt sich zunichst

) on 0 k
lp=0 =0
Die unendliche Reihe
oo oo k
S= X = Z k e **
k=0 x k=1 (”) ")

+1

a
ist konvergent, weil der Quotient ’;— von zwei aufeinanderfolgenden

Qliedern dieser Reihe fiir & — oo kleiner als 1 ist. (Wir hatten ¢ < n voraus-
gesetzt!) Wir formen die Summe (**) nunmehr um (diese Umformung ist
wegen der bestehenden Konvergenz gestattet!)!

m—>oo I=1[i=1 m—> o

ey
m—>oo [.%—1]

S = lm Z [E (%)’J — lim 7(%&)7”_1 énl (&)
n

indem wir zweimal die Summenformel fiir die endliche geometrische Reihe
anwenden. Wegen p < n gilt lim (%)m = 0. Mithin resultiert aus (*)

m —> Q0

und (**) die Behauptung (4.31)

" e 1 ettt
nl-R '7(3 1)2= Rn—1)! (g—n)?
n

Mit f bezeichnen wir die Anzahl der freien Stationen eines Wartesystems.

1 Wir denken uns dabei das allgemeine Glied % (%) k in (**) durch die Summe der k-Gro8en der-

k
selben Form (%) ersetzt und die Glieder der so aus (**) hervorgehenden Reihe umgeordnet.

162



Die GroBle f ist eine diskrete Zufallsvariable mit dem Verteilungsgesetz

f] 0 1 2 ceon—1  n

Pl Dy Pn—1 Pp—2--- P Po

(vgl. (4.29) und (4.30)!). Demzufolge betrigt ihr Mittelwert

n—1

E(f)= 5 (v—RDn.

Die mittlere Anzahl der titigen Bedienungsaggregate besitzt den Wert
n — E (f). Dividieren wir diesen Ausdruck » — E (f) durch », so ergibt sich
gerade der Auslastungskoeffizient c. Beriicksichtigen wir in Z (f) noch die
Gleichungen (4.29), dann resultiert unmittelbar die Aussage (4.32).

Wenden wir die hergeleiteten Formeln (4.31) und (4.32) auf das letzte Beispiel
(Auskunftsbiiro) an, dann erhalten wir folgende Werte: Die mittlere Schlan-
genlidnge betrigt

8
L=5 =089
Forderungen. Der Auslastungsgrad der Bedienungsstationen erweist sich zu
1 2
c=l—g=3

oder zu 66,7 Prozent.

‘Wir hatten bereits zu Beginn der Untersuchungen iiber Wartesysteme fest-
gestellt, dal der Fall g = n zu einer sehr groBen Schlangenlinge fiihrt. Diese
Feststellung unterstreicht nun die Formel (4.31):

. ntt1

i‘ﬂn L= gm—nro=o.
Wir haben vorstehend einige Kennziffern und Beziehungen zwischen diesen
abgeleitet, die ein stationires Wartesystem als Bedienungssystem charak-
terisieren. Wir beschaftigen uns im folgenden mit einem weiteren wichtigen
Parameter, der Wartezeit der eintreffenden Forderungen. Dieser Parameter
ist offenbar eine stetige ZufallsgroBe, deren Verteilungsfunktion und Mittel-
wert uns besonders interessiert. Zunéchst beweisen wir den

Satz 4.12: In einem stationdren Wartesystem wartet eine eintreffende For-
derung mit einer Wahrscheinlichkeit von

7 e——(n,u—}.)é

WE)=1—-2

R(m—1)! (n—o) (4.39)

weniger als 0 > 0 Zeiteinheiten.

Beweis: Eine eintreffende Forderung moge bei ihrer Ankunft ! Forderungen
im Bedienungssystem vorfinden. Die Wahrscheinlichkeit P, (&) dafiir, daB
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diese Forderung mindestens ¢ Zeiteinheiten bis zum Bedienungsbeginn war-
tet, ist gleich der Wahrscheinlichkeit dafiir, daf innerhalb der Zeitspanne
(gerechnet von dem Moment der Ankunft) hochstens [ —n Forderungen
abgefertigt werden. Diese letzte Wahrscheinlichkeit ergibt sich aus dem
Summensatz fiir Wahrscheinlichkeiten und Satz 4.6 zu

l—n (nud)™ e "HI

o) = 3 *)

m=0
denn wihrend der Zeitspanne ¢ fertigt jede Bedienungsstation im Mittel n
Forderungen ab. Nach der Regel fiir die vollstindige Wahrscheinlichkeit
stellt dann

W= X Po)n )

die Wahrscheinlichkeit dafiir dar, daB eine eintreffende Forderung minde-
stens J Zeiteinheiten warten muB. Diese Wahrscheinlichkeit héangt mit der
gesuchten GroBe W (0) in der Form W (9) + W* (0) = 1 zusammen. Wir
formen jetzt (**) um. Zunichst ist P, (6) =0, wenn I < n ist; denn in
diesem Fall wartet die eintreffende Forderung nicht, sie wird sofort bedient.
Setzen wir weiter (*) in (**) ein, dann wird unter Beriicksichtigung von (4.29')

n ,— J 1 —
o= 2 Rop =T S (2). (z"wm"‘).(***)
l=n l=mn

R-n! n m—o ™!

Beachten wir noch die Identitét!

© l—n m o] @©
= (ﬂ)l s wd™) 5 <,9_)k s Ao
l=n \®/ \m=o ™! E=n\" r=20 rt

dann erhalten wir wegen

Eer- W

1—e
n

— unendliche geometrische Reihe mit dem Quotienten % <1—und

®© (A8) ___e;.a

r!
r=20

Tayrorsche Entwicklung der e-Funktion — aus (***)
®N) 0" e~ (np—12)8 .
W*@) = R(n—1)!(n—p)

Das ist aber wegen W* (8) -+ W (0) = 1 schon die ﬁehauptung (4.33).

1 Diese Identitit 148t sich leicht bestatigen, indem unter Beachtung von (l'}) = p beide Seiten aus-

fihrlich als Potenzreihen in 8 aufgeschrieben werden und ein Vergleich der entsprechenden 8-
Koeffizienten (auf Identitit) vorgenommen wird. Ist das geschehen, so ist die Identitit beider
Seiten durch den Identititssabz iiber Potenzreihen sichergestellt.

164



Die hergeleitete Formel (4.33) stellt die Verteilungsfunktion der Wartezeit
einer eintreffenden Forderung — gerechnet von der Ankunft bis zum Bedie-
nungsbeginn — fiit positive Werte ¢ dar. Beachten wir die selbstverstind-
liche Relation W (§) = 0 fiir ¢ < 0, dann ergibt sich insgesamt die Warte-
zeitverteilungsfunktion zu

(4.33), wenn ¢ > 0

0, sonst. (4.34)

W<a>={

Die Verteilungsfunktion W (9) ist fiir § = O unstetig. Wir erkennen, daBl
sie beim Passieren des Ursprungs in Richtung wachsender §-Werte einen
endlichen Sprung von W =0 auf W=1—p, (vgl. die Formel (4.30)!)
macht. Die Sprunghéohe ist demzufolge gleich der Wahrscheinlichkeit dafiir,
daf nicht alle Bedienungsstationen besetzt sind, das heiflt, dal mindestens
ein Bedienungsaggregat frei ist. Wir beweisen nun den

Satz 4.13: In einem stationdiren Wartesystem besteht fiir eine eintreffende
Forderung die mittlere Wartezeit

(4.35)

_ "
Elw) = ga—tim—om

Beweis: Die Wartezeit t,, einer eintreffenden Forderung ist eine stetige Zu-
fallsvariable mit der Verteilungsfunktion (4.34) nebst (4.33). Aufgrund der
tiber stetige Verteilungen angestellten Untersuchungen kinnen wir

+ oo
E(t,) = f LW () dt *)

folgern; denn W’ (¢,) = d W;t(t“’) = w (t,) ist die Wahrscheinlichkeitsdichte

fiir die ZufallsgroBe ¢,,. Wegen (4.34,) und (4.33) folgt aus (*)

o
. or . _ —(npu—2a) ,
Elt) = gn—tyin—yg "4 Z){te de.
Wenden wir auf das vorstehende Integral die Formel
R, —at _ —at|ow ;| P —at _e—ato 1
a({te dt = — te 0-|-£e dt =——| =+

an, indem wir oo = ny. — A setzen, so ergibt sich schon die Behauptung

_ en 1 . 9"’ .
E (t,) = BRn—1)'(n—g) np—2i Rm—1)In—o)iu

Damit ist alles gezeigt.
‘Wegen (4.30) kinnen wir die Formel (4:35) zu

. _ b
Et) = o ‘ (4.36)
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umschreiben. Diese Schreibweise 1i8t klar erkennen, da8 die mittlere Warte-
zeit, fiir eine eintreffende Forderung direkt proportional ist der Wahrschein-
lichkeit dafiir, daBl alle Stationen besetzt sind, das heiBit die betreffende
Forderung warten muB. Desweiteren resultiert aus (4.36) unmittelbar die
Tatsache, daB fiir ¢ — n die mittlere Wartezeit unendlich grof wird, vgl.
hierzu die bereits oben getroffenen Bemerkungen. Die Formeln (4.33) und
(4.35) wenden wir nun auf das letzte Beispiel an, das von dem Auskunftsbiiro
handelt. Die mittlere Wartezeit berechnet sich zu

E(,) - 546 ~ 0,044

Stunden oder ca. 2,7 Minuten. Die Wahrscheinlichkeit dafiir, daB eine For-
derung weniger als die durchschnittliche Wartezeit von rund 2,7 Minuten
wartet, belduft sich auf

4 4 _ 4
W<m> =1—7ge 9=0T14.
In 71,4 Prozent aller Fille wartet demzufolge eine eintreffende Forderung
weniger als die mittlere Wartezeit.

Als AbschluB unserer Betrachtungen iiber Wartesysteme behandeln wir
folgendes Beispiel: Eine Werkstatt, in der n = 5 Mechaniker (gleicher Pro-
duktivitdt und unabhingig voneinander) arbeiten, erreicht ein aus defekten
Aggregaten (z. B. Fernsehapparaten, Kiichengeraten, Fahrzeugen usw.) be-
stehender Forderungenstrom. Statistische Erhebungen haben ergeben, daf
zwischen der Anlieferung zweier aufeinanderfolgender Auftrige durchschnitt-
lich eine Zeit von einer Stunde verstreicht und daB die Dauer der Reparatur
(Bedienung) einer Forderung durch einen Mechaniker im Mittel vier Arbeits-
stunden ausmacht. Wir stellen in diesem Zusammenhang folgende Fragen:

1. Wie lange hilt sich ein Aggregat in der Werkstatt im Mittel auf?

2. Mit welcher Wahrscheinlichkeit verbleibt ein defektes Aggregat weniger
als einen Tag in der Reparaturstation?

3. Wieviel Aggregate warten durchschnittlich auf ihre Instandsetzung?

4. Wie groB} ist die Wahrscheinlichkeit dafiir, daBl in der Werkstatt drei
defekte Aggregate auf Reparatur warten?

5. Wie gro8 ist die Wahrscheinlichkeit dafiir, daB alle fiinf Handwerker ohne
Arbeit sind?

6. Wie hoch ist der Auslastungsgrad der Mechaniker?

7. Wie fallen die Antworten zu den Fragen 1. bis 6. aus, wenn nur drei Hand-
werker in der Reparaturstation beschaftigt sind ?

Wir legen unseren weiteren Uberlegungen als Zeiteinheit einen achtstiindigen
Arbeitstag zugrunde. Dann sind uns die Parameter n = 5, A = 8 und p. = 2

gegeben. Aus (4.10°) bzw. (4.29) berechnen wir die HilfsgroBen o = % =4

und L 2. 45
B= 2 pitaa="T
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Die unerlédBliche Voraussetzung ¢ < = fiir ein Wartesystem ist damit erfiillt.
Wir beginnen nun mit der Beantwortung der einzelnen Fragen
Ad 1: Aus (4.35) resultiert
45 64

E(ty) = srgra 2 = ag1 ~ 0277
Ein in Auftrag gegebenes Aggregat wartet mithin im Mittel 0,277 Arbeitstage
oder annihernd zwei Stunden (genauer 133 Minuten!), ehe es in die Reparatur
genommen wird. Da die Reparatur eines Gerdtes durchschnittlich vier Stun-
den dauert, verbleibt demzufolge ein Aggregat im Mittel ca. 6 Stunden in der
Werkstatt. Das heiBt, es vergeht durchschnittlich eine Zeit von ungefihr
6 Stunden von der Aufgabe bis zur vélligen Erledigung des Reparaturaui-
trages.

Ad 2: Wir wenden die Formel (4.33) mit 0 = % an (da ein halber Tag durch-

schnittlich fiir die Instandsetzung bendtigt wird!).

e 1 45.¢-1 256 . e—1
W(?) =l—g g =1— g ~07%.

1

Infolgedessen betrigt die Wahrscheinlichkeit dafiir, daB eine Foderung weni-
ger als einen Tag im System verbleibt, 79,6 Prozent. Lediglich in einem
Fiinftel aller Fille hilt sich ein defektes Aggregat mindestens einen Tag in
der Werkstatt auf.

Ad 3: Wir benutzen die Formel (4.31)

48 1024

L=gmari= e ~ 22
Ad 4: Aus (4.29) folgt mit I = 8
48
Py = g ~ 0,056

Mit einer Wahrscheinlichkeit von 5,6 Prozent warten demzufolge drei Aggre-
gate auf Instandsetzung.
Ad 5: Wir erhalten aus (4.29) mit I =0

Po= 7 ~ 0,013

Nur mit einer Wahrscheinlichkeit von 1,3 Prozent tritt infolgedessen der
Zustand ein, daB alle Handwerker ohne Arbeit sind.
Ad 6: Aus (4.32) ergibt sich

4k

1 4

Der Auslastungsgrad der Reparaturstation betrigt mithin 80 Prozent.

Ad 7: In diesem Falle ist die unbedingte Voraussetzung o < n nicht erfiillt:
Die drei Mechaniker reparieren am Tage durchschnittlich 6 Aggregate, wih-
rend 8 Aggregate am Tage im Mittel eintreffen. Wir haben somit ein Bedie-
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nungssystem vor uns, das mit dem Strom der Forderungen nicht fertig wird;
es entstehen unbeschrinkte Wartezeiten und Schlangenléngen.

Mit diesem Beispiel beschlieBen wir unsere Ausfiithrungen iiber die Bedie-
nungstheorie. Neben den behandelten Warte- und Verlustsystemen gibt es
noch zahlreiche andere Typen von Bedienungssystemen, die in der Praxis
eine Rolle spielen und eine gewisse Zwischenstellung zu den beiden behandel-
ten Typen einnehmen. Als zwei solcher Typen erwéhnen wir nur kurz:

a) ein System, in dem die eintreffende Forderung nur dann wartet, wenn die
Linge der bereits vorhandenen Schlange eine vorgegebene Grenze (bei-
spielsweise die Lagerkapazitit einer Reparaturstelle!) nicht iibersteigt;
andernfalls verldt die Forderung das Bedienungssystem unbedient.

b) ein System, in dem die eintreffende Forderung nur eine gewisse Zeitspanne
wartet; hat nach Ablauf dieser Zeitspanne die Bedienung der Forderung
noch nicht begonnen, so verliBlt die Forderung das Bedienungssystem
unbedient.

Desweiteren ergeben sich Verallgemeinerungen, wenn die Eingangs- und
Ausgangsstrome instationir sind und beispielsweise die Eingangsrate nicht
konstant (sondern abhingig von der Zeit und der Schlangenlinge) ist. Auf
solche verallgemeinerten Bedienungssituationen kénnen wir in diesem Rah-
men nicht eingehen. Dariiber hinaus miissen wir auch die Mdglichkeiten
unerwéihnt lassen, die die moderne Rechentechnik (im Zusammenhang mit
der Monte-Carlo-Methode) der Bedienungstheorie (Simulieren von realen
Bedienungssituationen, insbesondere wirklicher Eingangsstrome) bietet. Uns
ist an dieser Stelle nur ein Hinweis auf die Literatur [9] bis [12] gestattet.
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ANLAGENVERZEICHNIS

Nachstehend geben wir Tabellen fiir die Funktionen @ (&),
¥ (&y; n) und A (n; p,), die in der Wahrscheinlichkeitsrechnung
im allgemeinen und in der Stichprobentheorie im besonderen
eine bedeutende Rolle spielen. Diese Tabellen sind auf der elek-
tronischen Rechenanlage ZRA 1 des Rechenzentrums der Uni-
versitit Rostock berechnet worden. Die letzte Stelle der in den
Tabellen angegebenen Funktionswerte ist gerundet. Der abso-
lute Fehler dieser Werte belduft sich demzufolge dem Betrage
nach auf hochstens einer halben Einheit der betreffenden letzten
Dezimalstelle.
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2

1 £ =
Tafel der Funktion @ (&) = Vé: f e 2 dx
44
—

¢ @ (§) £ ? (&) & 2 @& & 2 (&) & o (§)

0,00 0,5000 0,52 0,6985 1,04 0,8508 1,56 0,9406 2,16 0,9846
1 5040 63 7019 05 8531 57 9418 18 9854
2 5080 b4 7054 06 8554 58 9429 20 9861
3 5120 65 7088 07 8577 59 9441 22 9868
4 5160 56 7123 08 8599 60 9452 24 9875
5 5199 57 7157 09 8621 61 9463 26 9881
6 5239 68 7190 10 8643 62 9474 28 9887
7 5279 59 7224 11 8665 63 9484 30 9893
8 5319 60 7257 12 8686 64 9495 32 9898
9 5359 61 7291 13 8708 65 9505 34 9904
10 5398 62 7324 14 8729 66 9515 36 9909
11 5438 63 7357 15 8749 67 9525 38 9913
12 5478 64 7389 16 8770 68 9536 40 9918
13 55617 65 7422 17 8790 69 9545 42 9922
14 6557 66 7454 18 8810 70 9554 44 9927
15 5596 67 7486 19 8830 71 9564 46 9931
16 5636 68 7617 20 8849 72 9572 48 9934
17 5676 69 7549 21 8869 73 9582 50 9938
18 5714 70 7580 22 8888 74 9591 52 9941
19 6763 71 7611 23 8907 75 9599 54 9945
20 5793 72 7642 24 8925 76 9608 56 9948
21 5832 73 7673 25 8944 77 9616 58 9951
22 5871 74 7703 26 8962 78 9625 60 99563
23 5910 75 7734 27 8980 79 9633 62 9956
24 5948 76 7764 28 8997 80 9641 64 9959
25 5987 77 7794 29 9015 81 9649 66 9961
26 6026 78 7823 30 9032 82 9656 68 9963
27 6064 79 7853 31 9049 83 9664 70 9965
28 6103 80 7881 32 9066 84 9671 ‘72 9967
29 6141 81 7910 33 9082 85 9678 74 9969
30 6179 82 7939 34 9099 86 9686 76 9971
31 6217 83 7967 35 9115 87 9693 78 9973
32 6255 84 7995 36 9131 88 9699 80 9974
33 6293 85 8023 37 9147 89 9706 82 9976
34 6331 86 8051 38 9162 90 9713 84 9977
35 6368 87 8078 39 9177 91 9719 86 9979
36 6406 88 8106 40 9192 92 9726 88 9980
37 6443 89 8133 41 9207 93 9732 90 9981
38 6480 90 8159 42 9222 94 9738 92 9982
39 6517 91 8186 43 9236 95 9744 94 9984
40 6554 92 8212 44 9251 96 9750 96 9985
41 6591 93 8238 45 9265 97 9766 2,98 9986
42 6628 94 8264 46 9279 98 9761 3,00 9986
43 6664 95 8289 47 9292 1,99 9767 10 9990
44 6700 96 8315 48 9306 2,00 9772 20 9993
45 6736 97 8340 49 9319 02 9783 30 9995
46 6772 98 8365 50 9332 04 9793 40 9996
47 6808 0,99 8389 51 9346 06 9803 50 9997
48 .6844 1,00 8413 52 9357 08 9812 60 9998
49 6879 01 8438 53 9370 10 9821 70 9998
50 6915 02 8461 54 9382 12 9830 80 9999
61 6950 03 8485 55 9394 14 9838 90 9999
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o

e

o

2r(3)

n(n—1)r (”T_l)

Tafel der Funktion ¥ (&, ;n) =

o\ 7 | 2 3 4 5 6
01 0,063 0,070 0,073 0,075 0,076
2 126 140 146 149 161
3 185 207 216 221 224
4 242 272 284 290 294
5 295 333 348 356 361
6 344 390 409 419 425
7 388 443 465 477 485
8 429 492 517 531 540
9 466 536 565 581 590
1,0 500 577 609 626 636
1 530 614 648 666 678
2 567 647 683 708 716
3 582 676 716 736 749
4 605 703 743 765 779
5 625 727 769 791 806
6 644 749 792 815 829
7 661 768 812 835 850
8 677 786 830 853 868
9 691 802 846 869 884
2,0 704 816 860 883 897
1 717 829 873 896 910
2 728 841 884 907 920
3 738 851 894 916 930
4 748 861 904 925 938
5 757 870 912 933 945
6 766 878 919 939 951
7 774 885 926 945 957
8 781 892 932 950 961
9 788 898 937 955 966
3,0 795 904 942 959 969
1 801 909 946 963 972
2 807 914 950 966 975
3 812 919 954 969 978
4 817 923 957 972 980
5 822 927 960 974 982
6 827 930 963 977 984
7 831 933 965 978 985
8 836 937 967 980 987
9 840 939 969 982 988
4,0 843 942 971 983 989
1 847 945 973 984 990
2° 851 947 975 986 991
3 854 949 976 987 992
4 857 951 978 988 992
5 860 953 979 988 993
6 863 955 980 989 993
7 866 957 981 990 994
8 869 959 982 991 994
9 871 960 983 991 995
5,0 874 962 984 992 995
1 876 963 985 992 996
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2 I"
Tafel der Funktion ¥ (& ;7)) = —— n_l [

dx
V 7 (n— 1) 1" n _1
E N\ n 7 8 9 10 12 14 16
0,1 0,076 0,077 0,077 0,077 0,078 0,078 0,078
2 152 153 153 154 155 155 155
3 226 227 228 229 230 231 232
4 297 299 300 301 303 304 305
5 365 367 369 371 373 374 375
6 429 432 435 436 439 441 442
7 490 493 496 498 501 503 505
8 545 550 553 555 559 562 563
9 597 602 605 608 612 615 617
1,0 644 649 653 656 661 664 666
1 686 692 696 700 705 708 711
2 724 730 735 739 744 748 751
3 758 765 770 773 779 783 786
4 788 795 800 804 810 814 818
5 815 822 827 831 838 842 845
6 839 846 851 855 862 866 869
7 859 866 872 876 882 886 890
8 877 885 890 894 900 904 907
9 893 900 905 909 915 920 923
2,0 907 914 919 923 929 933 935
1 919 925 930 934 940 944 946
2 929 936 940 944 949 953 955
3 938 944 949 952 957 961 963
4 946 952 956 959 964 967 970
5 953 958 962 965 970 973 975
6 959 964 968 971 975 977 979
7 964 969 972 975 979 981 983
8 968 973 976 979 982 984 986
9 972 976 979 982 985 987 988
3,0 975 979 982 984 987 989 990
1 978 982 985 987 989 991 992
2 981 984 987 988 991 992 993
3 983 986 988 990 992 994 994
4 985 988 990 991 993 995 995
5 986 989 991 993 994 995 996
6 988 991 992 994 995 996 997
7 989 992 993 994 996 997" 997
8 990 993 994 995 996 997 998
9 991 993 995 996 997 997 998
4,0 992 994 995 996 997 998 998
1 993 995 996 997 998 998 998
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Tafel der Funktion ¥ (£, ; 2) 2r(3) f 1+ 2 | % do
0> }W’Il—l)['(nT—l) | n—1
£\ 18 20 25 30 40 0
0,1 0,078 0,079 0,079 0,079 0,079 0,080
2 156 156 157 157 157 159
3 232 239 233 234 234 235
4 306 306 307 308 308 311
5 376 377 378 379 380 383
6 43 444 446 447 448 451
7 506 507 509 510 512 516
8 566 566 568 564 571 576
9 619 620 623 624 626 632
1,0 668 670 672 674 676 683
1 713 714 7 719 721 729
2 753 56 758 760 762 770
3 789 790 794 796 798 806
4 820 822 825 827 830 838
5 847 849 853 855 857 866
6 871 873 877 879 882 890
7 892 804 897 900 902 911
8 910 912 915 917 920 928
9 925 927 930 932 935 943
2,0 938 939 942 944 947 954
1 948 950 953 9565 957 964
2 957 958 962 963 966 972
3 965 966 969 971 972 979
4 971 973 975 976 978 984
5 976 978 980 981 983 988
6 981 982 984 985 986 901
7 984 985 987 988 989 903
8 987 988 989 990 9901 995
9 989 990 991 992 993 996
3,0 991 992 993 994 995 997
1 903 9903 994 995 996 9908
2 994 995 995 996 997 999
3 995 996 996 997 997 999
4 996 996 997 997 998 9995
5 997 997 997 908 908 9997
6 997 997 998 908 908 9998
7 998 908 998 908 999 9999
8 998 908 908 999 999 9999
9 998 908 999 999 999 9999
4,0 998 999 999 999 999 9999
1 999 999 999 999 999 99995
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Tafel der Funktion &, = A (n ; pp) mit ¥ [A (n; Do) ; n] = po

2 \_Po 0,90 0,95 0,99 0,999
2 6,37 12,88 68,43
3 2,93 4,33 10,29 56,78
4 2,36 3,20 5,99 19,15
5 2,14 2,78 4,60 8,61
6 2,02 2,57 4,03 6,86
7 1,95 2,45 3,71 5,96
8 1,90 2,37 3,50 5,41
9 1,86 2,31 3,36 5,04
10 1,84 2,26 3,25 4,78
12 1,80 2,20 3,11 4,44
14 1,78 2,16 3,01 4,22
16 1,76 2,13 2,95 4,07
18 1,75 2,11 2,90 3,97
20 1,74 2,09 2,86 3,88
25 1,71 2,06 2,80 3,75
30 1,70 2,05 2,76 3,66
40 1,69 2,02 2,71 3,56
0 1,65 1,96 2,58 3,30
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