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Problem A1  
Prove that (21n+4)/(14n+3) is irreducible for every natural number n. 
 
Solution  
3(14n+3) - 2(21n+4) = 1. 
 
Problem A2  
For what real values of x is √(x + √(2x-1)) + √(x - √(2x-1)) = A, given (a) A = √2, (b) A 
= 1, (c) A = 2, where only non-negative real numbers are allowed in square roots and the 
root always denotes the non-negative root?  
 
Answer  
(a) any x in the interval [1/2,1]; (b) no solutions; (c) x=3/2.  
 
Solution  
Note that we require x ≥ 1/2 to avoid a negative sign under the inner square roots. Since 
(x-1)2 ≥ 0, we have x ≥ √(2x-1), so there is no difficulty with √(x - √(2x-1)), provided 
that x ≥ 1/2.  
Squaring gives 2x + 2√(x2-2x+1) = A2. Note that the square root is |x-1|, not simply (x-
1). So we get finally 2x + 2|x-1| = A2. It is now easy to see that we get the solutions 
above.  
 
Problem A3  
Let a, b, c be real numbers. Given the equation for cos x: 
        a cos2x + b cos x + c = 0,  
form a quadratic equation in cos 2x whose roots are the same values of x. Compare the 
equations in cos x and cos 2x for a=4, b=2, c=-1.  
 
Solution  
You need that cos 2x = 2 cos2x - 1. Some easy manipulation then gives:  
a2cos22x + (2a2 + 4ac - 2b2) cos 2x + (4c2 + 4ac - 2b2 + a2) = 0.  
The equations are the same for the values of a, b, c given. The angles are 2π/5 (or 8π/5) 
and 4π/5 (or 6π/5).  
 
Problem B1  
Given the length |AC|, construct a triangle ABC 
with ∠ABC = 90o, and the median BM satisfying 
BM2 = AB·BC. 
 
Solution  
Area = AB·BC/2 (because ∠ABC = 90o= BM2/2 
(required) = AC2/8 (because BM = AM = MC), so 
B lies a distance AC/4 from AC. Take B as the 
intersection of a circle diameter AC with a line 
parallel to AC distance AC/4.  
 
Problem B2  
An arbitrary point M is taken in the interior of the segment AB. Squares AMCD and MBEF 
are constructed on the same side of AB. The circles circumscribed about these squares, 
with centers P and Q, intersect at M and N. 
  (a) prove that AF and BC intersect at N; 
  (b) prove that the lines MN pass through a fixed point S (independent of M); 
  (c) find the locus of the midpoints of the segments PQ as M varies.  
 
 



Solution  
 
(a)   ∠ANM = ∠ACM = 45o. But ∠FNM = ∠FEM = 
45o, so A, F, N are collinear. Similarly, ∠BNM = 
∠BEM = 45o and ∠CNM = 180o - ∠CAM = 135o, so 
B, N, C are collinear.  
(b)   Since ∠ANM = ∠BNM = 45o, ∠ANB = 90o, so N 
lies on the semicircle diameter AB. Let NM meet the 
circle diameter AB again at S. ∠ANS = ∠BNS implies 
AS = BS and hence S is a fixed point.  
(c)   Clearly the distance of the midpoint of PQ from 
AB is AB/4. Since it varies continuously with M, it 
must be the interval between the two extreme 
positions, so the locus is a segment length AB/2 
centered over AB. 
 
Problem B3  
The planes P and Q are not parallel. The point A lies 
in P but not Q, and the point C lies in Q but not P. 
Construct points B in P and D in Q such that the 

quadrilateral ABCD satisfies the following conditions: (1) it lies in a plane, (2) the vertices 
are in the order A, B, C, D, (3) it is an isosceles trapezeoid with AB is parallel to CD 
(meaning that AD = BC, but AD is not parallel to BC unless it is a square), and (4) a circle 
can be inscribed in ABCD touching the sides.  
 

Solution  
 
Let the planes meet in the line L. Then AB and CD must be 
parallel to L. Let H be the foot of the perpendicular from C to 
AB. The fact that a circle can be inscribed implies AB + CD = BC 
+ AD (equal tangents from A, B, C, D to the circle). Also CD = 
AB ± 2BH. This leads to AH = AD = BC.  
The construction is now easy. First construct the point H. Then 
using the circle center C radius AH, construct B. Using the circle 
center A radius AH construct D.  
Note that if CH > AH then no construction is possible. If CH < 
AH, then there are two solutions, one with AB > CD, the other 
with AB < CD. If CH = AH, then there is a single solution, which 
is a square.  
 
IMO 1960 
 
Problem A1  
Determine all 3 digit numbers N which are divisible by 11 and 
where N/11 is equal to the sum of the squares of the digits of N.  
 
Answer  
550, 803.  
 
Solution  
So, put N/11 = 10a + b. If a + b ≤ 9, we have 2a2 + 2ab + 2b2 
= 10a + b (*), so b is even. Put b = 2B, then B = a(a-5) + 2aB 

+ 4B2, which is even. So b must be a multiple of 4, so b = 0, 4 or 8. If b = 0, then (*) 
gives a = 5 and we get the solution 550. If b = 4, then (*) gives a2 - a + 14 = 0, which has 
no integral solutions. If b = 8, then (since a + b ≤ 9 and a > 0) a must be 1, but that does 
not satisfy (*).  
If a + b > 9, we have (a+1)2 + (a+b-10)2 + b2 = 10a + b, or 2a2 + 2ab + 2b2 - 28a - 21b 
+ 101 = 0 (**), so b is odd. Put b = 2B+1. Then a2 + 2aB + 4B2 - 13a - 17B + 41 = 0. But 
a(a-13) is even, so B is odd. Hence b = 3 or 7. If b = 3, then (**) gives a2 - 11a + 28 = 0, 



so a = 4 or 7. But a + b > 9, so a = 7. That gives the solution 803. If b = 7, then (**) 
gives a2 - 7a + 26 = 0, which has no integral solutions.  
 
Problem A2  
For what real values of x does the following inequality hold:  
        4x2/(1 - √(1 + 2x))2  <  2x + 9 ?  
 
Answer  
- 1/2 ≤ x < 45/8.  
 
Solution  
We require the first inequality to avoid imaginary numbers. Hence we may set x = -1/2 + 
a2/2, where a ≥ 0. The inequality now gives immediately a < 7/2 and hence x < 45/8. It is 
a matter of taste whether to avoid x = 0. I would allow it because the limit as x tends to 0 
of the lhs is 4, and the inequality holds.  
 
Problem A3  
In a given right triangle ABC, the hypotenuse BC, length a, is divided into n equal parts 
with n an odd integer. The central part subtends an angle α at A. h is the perpendicular 
distance from A to BC. Prove that:  
        tan α = 4nh/(an2 - a).  
 
Solution  
Let M be the midpoint of BC, and P and Q the two points a/2n either side of it, with P 
nearer B. Then α = ∠PAQ = ∠QAH - ∠PAH (taking angles as negative if P (or Q) lies to the 
left of H). So tan α = (QH - PH)/(AH2 + QH·PH) = AH·PQ/(AH2 + (MH - a/2n)(MH + a/2n)) 
= (ah/n)/(a2/4 - a2/(4n2)) = 4nh/(an2 - a).  
 
Problem B1  
Construct a triangle ABC given the lengths of the altitudes from A and B and the length of 
the median from A.  
 
Solution  
Let M be the midpoint of BC, AH the altitude 
from A, and BI the altitude from B. Start by 
constructing AHM. Take X on the circle 
diameter AM with MX = BI/2. Let the lines 
AX, HM meet at C and take B so that BM = 
MC. [This works because CMX and CBI are 
similar with MX = BI/2 and hence CM = 
CB/2.]  
 
Problem B2  
The cube ABCDA'B'C'D' has A above A', B 

above 
B' and 
so on. 
X is any 
point of 
the face diagonal AC and Y is any point of B'D'. 
(a) find the locus of the midpoint of XY; 
(b) find the locus of the point Z which lies one-third of 
the way along XY, so that ZY=2·XZ.  
 
Solution  
The key idea is that the midpoint must lie in the plane 
half-way between ABCD and A'B'C'D'. Similarly, Z must 
lie in the plane one-third of the way from ABCD to 

A'B'C'D'.  



(a)  Regard ABCD as horizontal. Then the locus is the square with vertices the midpoints of 
the vertical faces (shown shaded in the diagram).  
Take Y at B' and let X vary, then we trace out MN. Similarly, we can get the other sides. 
Now with Y at B', take X in general position, so the 
midpoint of XY is on MN. Now move Y to D', the 
midpoint traces out a line parallel to the other two 
sides of the square, so we can get any point inside 
the square. But equally, it is clear that any point 
inside the triangle LMN corresponds to a point Y on 
the ray D'B' not between B' and D', so it does not lie 
in the locus. Similarly for the other three triangles. 
So the locus is the square.  
(b)  A similar argument shows that the locus is the 
rectangle shown in the diagram below which is √2/3 
x 2√2/3.  
 
Problem B3  
A cone of revolution has an inscribed sphere tangent to the base of the cone (and to the 
sloping surface of the cone). A cylinder is circumscribed about the sphere so that its base 
lies in the base of the cone. The volume of the cone is V1 and the volume of the cylinder is 
V2.  
(a)  Prove that V1 ≠ V2; 
(b)  Find the smallest possible value of V1/V2. For this case construct the half angle of the 
cone. 
 
Solution  
Let the vertex of the cone be V, the center of the sphere be O and the center of the base be 
X. Let the radius of the sphere be r and the half-angle of the cone θ.  
Then the the cone's height is VO + OX = r(1 + 1/sin θ), and the radius of its base is r(1 + 
1/sin θ) tan θ. Hence V1/V2 = (1/6) (1 + 1/sin θ)3 tan2θ = (1 + s)3(6s(1 - s2)), where s = 
sin θ.  
We claim that (1 + s)3(6s(1 - s2)) ≥ 4/3. This is equivalent to 1 + 3s + 3s2 + s3 ≥ 8s - 3s3 
or 1 - 5s + 3s2 + 9s3 >= 0. But we can factorise the cubic as (1 - 3s)2(1 + s). So we have 
V1/V2 ≥ 4/3 with equality iff s = 1/3.  
 
Problem B4  
In the isosceles trapezoid ABCD (AB parallel to DC, and BC = AD), let AB = a, CD = c and 
let the perpendicular distance from A to CD be h. Show how to construct all points X on the 
axis of symmetry such that ∠BXC = ∠AXD = 90o. Find the distance of each such X from AB 
and from CD. What is the condition for such points to exist?  

 
Solution 
 
Since angle BXC = 90o, X lies on the circle 
diameter BC. In general this will intersect the 
axis of symmetry in 0, 1 or 2 points. By 
symmetry any points of intersection X will also 
lie on the circle diameter AD and so will have 
angle AXD = 90o also.  
Let L be the midpoint of AB, and M the midpoint 
of CD. Let X lie on LM a distance x from L. We 
have LB = a/2, MC = c/2, and XM = h - x. The 
triangles LBX and MXC are similar, so 2x/a = 
c/(2(h-x)). Hence 4x2 - 4xh + ac = 0, so x = 
h/2 ± (√(h2 - ac) )/2.  

There are 0, 1, 2 points according as h2 <, =, > ac.  



IMO 1961 
 
Problem A1  
Solve the following equations for x, y and z:  
        x + y + z = a;     x2 + y2 + z2 = b2;     xy = z2  
What conditions must a and b satisfy for x, y and z to be distinct positive numbers?  
 
Solution  
A routine slog gives z = (a2 - b2)/2a, x and y = (a2 + b2)/4a ± √(10a2b2 - 3a4 - 3b4)/4a.  
A little care is needed with the conditions. Clearly x, y, z positive implies a > 0, and then z 
positive implies |b| < a. The expression under the root must be positive. It helps if you 
notice that it factorizes as (3a2 - b2)(3b2 - a2). The second factor is positive because |b| < 
a, so the first factor must also be positive and hence a < √3 |b|. These conditions are also 
sufficient to ensure that x and y are distinct, but then z must also be distinct because z2 = 
xy.  
 
Problem A2  
Let a, b, c be the sides of a triangle and A its area. Prove that:  
        a2 + b2 + c2 ≥ 4√3 A  
When do we have equality?  
 
Solution  
One approach is a routine slog from Heron's formula. The inequality is quickly shown to be 
equivalent to a2b2 + b2c2 + c2a2 ≤ a4 + b4 + c4, which is true since a2b2 ≤ (a4 + b4)/2. We 
get equality iff the triangle is equilateral.  
Another approach is to take an altitude lying inside the triangle. If it has length h and 
divides the base into lengths r and s, then we quickly find that the inequality is equivalent 
to (h - (r + s)√3/2)2 + (r - s)2 ≥ 0, which is true. We have equality iff r = s and h = (r + 
s)√3/2, which means the triangle is equilateral.  
 
Problem A3  
Solve the equation cosnx - sinnx = 1, where n is a natural number.  
 
Solution 
Since cos2x + sin2x = 1, we cannot have solutions with n not 2 and 0 < |cos x|, |sin x| < 1. 
Nor can we have solutions with n=2, because the sign is wrong. So the only solutions have 
sin x = 0 or cos x = 0, and these are: x = multiple of π, and n even; x even multiple of π 
and n odd; x = even multiple of π + 3π/2 and n odd.  
 
Problem B1  
P is inside the triangle ABC. PA 
intersects BC in D, PB intersects 
AC in E, and PC intersects AB in F. 
Prove that at least one of AP/PD, 
BP/PE, CP/PF does not exceed 2, 
and at least one is not less than 2.  
 
Solution  
Take lines through the centroid 
parallel to the sides of the triangle. 
The result is then obvious.  
 
Problem B2  
Construct the triangle ABC, given 
the lengths AC = b, AB = c and the acute AMB = α, where M is the midpoint of BC. Prove 
that the construction is possible if and only if  
        b tan(α/2) ≤ c < b. 
When does equality hold?  



Answer  
Equality holds if ∠BAC = 90o and ∠ACB 
= α/2  
 
Solution  
The key is to take N so that A is the 
midpoint of NB, then ∠NCB = α.  
The construction is as follows: take BN 
length 2AB. Take circle through B and N 
such that the ∠BPN = α for points P on 
the arc BN. Take A as the midpoint of 
BN and let the circle center A, radius AC 
cut the arc BN at C. In general there 
are two possibilities for C.  
Let X be the intersection of the arc BN 
and the perpendicular to the segment 
BN through A. For the construction to 
be possible we require AX ≥ AC > AB. 
But AB/AX = tan α/2, so we get the 
condition in the question.  
Equality corresponds to C = X and 
hence to ∠BAC = 90o and ∠ACB = α/2.  
 

Problem B3  
Given 3 non-collinear points A, B, C and a plane p not parallel to ABC and such that A, B, C 
are all on the same side of p. Take three arbitrary points A', B', C' in p. Let A'', B'', C'' be 
the midpoints of AA', BB', CC' respectively, and let O be the centroid of A'', B'', C''. What is 
the locus of O as A', B', C' vary?  
 
Solution  
The key is to notice that O is the midpoint of the segment joining the centroids of ABC and 
A'B'C'. The centroid of ABC is fixed, so the locus is just the plane parallel to p and midway 
between p and the centroid of ABC.  
 
IMO 1962 
 
Problem A1  
Find the smallest natural number with 6 as the last digit, such that if the final 6 is moved to 
the front of the number it is multiplied by 4.  
 
Solution  
We have 4(10n+6) = 6·10m + n, where n has m digits. So 13n + 8 = 2·10m. Hence n = 2n' 
and 13n' = 10m - 4. Dividing, we quickly find that the smallest n', m satisfying this are: n' 
= 7692, m = 5. Hence the answer is 153846.  
 
Problem A2  
Find all real x satisfying: √(3 - x) - √(x + 1) > 1/2.  
 
Solution  
It is easy to show that the inequality implies |x-1| > √31/8, so x > 1 + √31/8, or x < 1 - 
√31/8. But the converse is not true.  
Indeed, we easily see that x > 1 implies the lhs < 0. Also care is needed to ensure that the 
expressions under the root signs are not negative, which implies -1 ≤ x ≤ 3. Putting this 
together, suggests the solution is -1 ≤ x < 1 - √31/8, which we can easily check.  
 
Problem A3  
The cube ABCDA'B'C'D' has upper face ABCD and lower face A'B'C'D' with A directly above 
A' and so on. The point x moves at constant speed along the perimeter of ABCD, and the 



point Y moves at the same speed along the perimeter of B'C'CB. X leaves A towards B at 
the same moment as Y leaves B' towards C'. What is the locus of the midpoint of XY?  
 

Solution  
Answer: the rhombus CUVW, 
where U is the center of ABCD, V 
is the center of ABB'A, and W is 
the center of BCC'B'.  
Take rectangular coordinates with 
A as (0, 0, 0) and C' as (1, 1, 1). 
Let M be the midpoint of XY. 
Whilst X is on AB and Y on B'C', X 
is (x, 0, 0) and Y is (1, x, 1), so M 
is (x/2 + 1/2, x/2, 1/2) = x (1, 
1/2, 1/2) + (1-x) (1/2, 0, 1/2) = 
x W + (1-x) V, so M traces out the 
line VW.  
Whilst X is on BC and Y is on C'C, 
X is (1, x, 0) and Y is ( 1, 1, 1-x), 
so M is (1, x/2+1/2, 1/2 - x/2) = 
x (1, 1, 0) + (1-x) (1, 1/2, 1/2) = 
x C + (1-x) W, so M traces out the 
line WC.  
Whilst X is on CD and Y is on CB, 

X is (1-x, 1, 0) and Y is (1, 1-x, 0), so M is (1-x/2, 1-x/2, 0) = x (1, 1, 0) + (1-x) (1/2, 
1/2, 0) = x C + (1-x) U, so M traces out the line CU.  
Whilst X is on DA and Y is on BB', X is (0, 1-x, 0) and Y is (1, 0, x), so M is (1/2, 1/2 - x/2, 
x/2) = x (1/2, 0, 1/2) + (1-x) (1/2, 1/2, 0) = x V + (1-x) U, so M traces out the line UV.  
 
Problem B1  
Find all real solutions to cos2x + cos22x + cos23x = 1.  
 
Solution 
Put c = cos x, and use cos3x = 4c3 - 3c, cos 2x = 2 c2 - 1. We find the equation given is 
equivalent to c = 0, c2 = 1/2 or c2 = 3/4. Hence x = π/2, 3π/2, π/4, 3π/4, π/6, 5π/6 or any 
multiple of π plus one of these.  
 
Problem B2  
Given three distinct points A, B, C on a circle K, construct a point D on K, such that a circle 
can be inscribed in ABCD.  
 
Solution 
I be the center of the inscribed circle. Consider 
the quadrilateral ABCI. ∠BAI = 1/2 ∠BAD and 
∠BCI = 1/2 ∠BCD, so ∠BAI + ∠BCI = 90o, since 
ABCD is cyclic. Hence ∠AIC = 270o - ∠ABC. So if 
we draw a circle through A and C such that for X 
points on the arc AC ∠AXC = 90o + ∠ABC, then 
the intersection of the circle with the angle 
bisector of ∠ABC gives the point I.  
To draw this circle take the diameter AE. Then 
∠CAE = 180o - ∠ACE - ∠AEC = 90o - ∠ABC. So 
we want AE to be tangent to the circle. Thus the 
center of the circle is on the perpendicular to AE 
through A and on the perpendicular bisector of AC.  
To prove the construction possible we use the fact that a quadrilateral ABCD has an 
inscribed circle iff AB + CD = BC + AD. For D near C on the circumcircle of ABC we have AB 
+ CD < BC + AD, whilst for D near A we have AB + CD > BC + AD, so as D moves 
continuously along the circumcircle there must be a point with equality. [Proof that the 



condition is sufficient: it is clearly necessary (use fact that tangents from a point are of 
equal length). So take a circle touching AB, BC and AD and let the other tangent from C 
(not BC) meet AD in D'. Then CD' - CD = AD' - AD, hence D'= D.]  
 
Problem B3  
The radius of the circumcircle of an isosceles triangle is R and the radius of its inscribed 
circle is r. Prove that the distance between the two centers is √(R(R - 2r)).  
 
Solution  

   
Let the triangle be ABC with AB = AC, let the incenter be I and the circumcenter O. Let the 
distance IO be d, taking d positive if O is closer to A than I, negative if I is closer. Let the 

∠OAB be θ.  
  
Then r = (R + d) sin θ, and r + d = R cos 2θ. It helps to 
draw a figure to check that this remains true for the 
various possible configurations. Using cos 2θ = 1 - 2 
sin2θ, we find that (d + R + r)(d2 - R(R - 2r)) = 0. But OI 
< OA, so d is not - R - r. Hence result.  
This result is known as Euler's formula and is true for any 
triangle. Suppose two chords PQ and ST of a circle 
intersect at I. Then PIS and TIQ are similar, so PI·IQ = 
SI·IT. Take the special case when ST is perpendicular to 
OI, where O is 
the center of the 
circle, then SI·IT 
= SI2 = R2 - OI2, 
where R is the 

radius of the circle, so PI·IQ = R2 - OI2.  
 
Now let O be the circumcenter, I the incenter of an 
arbitrary triangle ABC. Extend AI to meet the 
circumcircle again at D. Then by the above IO2 = 
R2 - AI·ID. If E is the foot of the perpendicular from 
I to AC, then AI = r/sin(A/2). We show that DI = 
DB. ∠DBI = ∠DBC + ∠CBI = ∠DAC + ∠DBI = A/2 
+ B/2. ∠DIB = ∠IAB + ∠IBA = A/2 + B/2. Hence 
∠DBI = ∠DIB, so DI = DB, as claimed. Take F on 
the circle so that DF is a diameter, then ∠DFB = ∠DAB = A/2, so DB = 2R sin A/2. Thus IO2 
= R2 - r/sin(A/2) 2R sin(A/2) = R2 - 2Rr.  
 
Problem B4  
Prove that a regular tetrahedron has five distinct spheres each tangent to its six extended 
edges. Conversely, prove that if a tetrahedron has five such spheres then it is regular.  



Solution  
First part is obvious. The wrong way to do the second part is to start looking for the locus 
of the center of a sphere which touches three edges. The key is to notice that the tangents 
to a sphere from a given point have the same length.  
Let the tetrahedron be A1A2A3A4. Let S be the sphere inside the tetrahedron, S1 the 
tetrahedron opposite A1, and so on. Let the tangents to S from Ai have length ai. Then the 
side AiAj has length ai+aj. Now consider the tangents to S1 from A1. Their lengths are a1 + 
2a2, a1 + 2a3, and a1 + 2a4. Hence a2 = a3 = a4. Similarly, considering S2, we have that a1 
= a3 = a4.  
 
IMO 1963 
 
Problem A1  
For which real values of p does the equation  
        √(x2 - p) + 2 √(x2 - 1) = x have real roots? What are the roots?  
 
Solution  
I must admit to having formed rather a dislike for this type of question which came up in 
almost every one of the early IMOs. Its sole purpose seems to be to teach you to be careful 
with one-way implications: the fact that a2 = b2 does not imply a = b.  
The lhs is non-negative, so x must be non-negative. Moreover 2√(x2 - 1) ≤ x, so x ≤ 2/√3. 
Also √(x2 - p) ≤ x, so p ≥ 0.  
Squaring etc gives that any solution must satisfy x2 = (p - 4)2/(16 - 8p). We require x ≤ 
2/√3 and hence (3p - 4)(p + 4) ≤ 0, so p ≤ 4/3.  
Substituting back in the original equality we get |3p-4| + 2|p| = |p - 4|, which is indeed 
true for any p satisfying 0 ≤ p ≤ 4/3.    
 
Problem A2  
Given a point A and a segment BC, determine the locus of all points P in space for which 
APX = 90o for some X on the segment BC.  
 
Solution  
Take the solid sphere on diameter AB, and the solid sphere on diameter AC. Then the locus 
is the points in one sphere but not the other (or on the surface of either sphere). Given P, 
consider the plane through P perpendicular to AP and the parallel planes through the other 
two points of intersection of AP with the two spheres (apart from A) which pass through B 
and C.  
 
Problem A3  
An n-gon has all angles equal and the lengths of consecutive sides satisfy a1 ≥ a2 ≥ ... ≥ 
an. Prove that all the sides are equal.  
 
Solution  
For n odd consider the perpendicular distance of the shortest side from the opposite vertex. 
This is a sum of terms ai x cosine of some angle. We can go either way round. The angles 
are the same in both cases, so the inequalities give that a1 = an-1, and hence a1 = ai for all i 
< n. We get a1 = an by repeating the argument for the next shortest side. The case n even 
is easier, because we take a line through the vertex with sides a1 and an making equal 
angles with them and look at the perpendicular distance to the opposite vertex. This gives 
immediately that a1 = an.  
 
Problem B1  
Find all solutions x1, ... , x5 to the five equations xi + xi+2 = y xi+1 for i = 1, ... , 5, where 
subscripts are reduced by 5 if necessary.  
 
Solution  
Successively eliminate variables to get x1(y - 2)(y2 + y - 1)2 = 0. We have the trivial 
solution xi = 0 for any y. For y = 2, we find xi = s for all i (where s is arbitrary). Care is 
needed for the case y2 + y - 1 = 0, because after eliminating three variables the two 



remaining equations have a factor y2 + y - 1, and so they are automatically satisfied. In 
this case, we can take any two xi arbitrary and still get a solution. For example, x1 = s, x2 = 
t, x3 = - s + yt, x4 = - ys - yt, x5 = ys - t.  
 
Problem B2  
Prove that cos π/7 - cos 2π/7 + cos 3π/7 = 1/2.  
 
Solution  
Consider the roots of x7 + 1 = 0. They are eiπ/7, ei3π/7, ... , ei13π/7 and must have sum zero 
since there is no x6 term. Hence, in particular, their real parts sum to zero. But cos7π/7 = - 
1 and the others are equal in pairs, because cos(2π - x) = cos x. So we get cos π/7 + cos 
3π/7 + cos 5π/7 = 1/2. Finally since cos(π - x) = - cos x, cos 5π/7 = - cos 2π/7.  
 
Problem B3  
Five students A, B, C, D, E were placed 1 to 5 in a contest with no ties. One prediction was 
that the result would be the order A, B, C, D, E. But no student finished in the position 
predicted and to two students predicted to finish consecutively did so. For example, the 
outcome for C and D was not 1, 2 (respectively), or 2, 3, or 3, 4 or 4, 5. Another prediction 
was the order D, A, E, C, B. Exactly two students finished in the places predicted and two 
disjoint pairs predicted to finish consecutively did so. Determine the outcome.  
 
Solution  
Start from the second prediction. The disjoint pairs can only be: DA, EC; DC, CB; or AE, CB. 
The additional requirement of just two correct places means that the only possibilities (in 
the light of the information about the second prediction) are: DABEC, DACBE, EDACB, 
AEDCB. The first is ruled out because AB are consecutive. The second is ruled out because 
C is in the correct place. The fourth is ruled out because A is in the correct place. This 
leaves EDACB, which is indeed a solution.  
 
IMO 1964 
 
Problem A1  
(a)  Find all natural numbers n for which 7 divides 2n - 1. 
(b)  Prove that there is no natural number n for which 7 divides 2n + 1.  
 
Solution  
23 = 1 (mod 7). Hence 23m = 1 (mod 7), 23m+1 = 2 (mod 7), and 23m+2 = 4 (mod 7). Hence 
we never have 7 dividing 2n + 1, and 7 divides 2n - 1 iff 3 divides n.  
 
Problem A2  
Suppose that a, b, c are the sides of a triangle. Prove that:  
    a2(b + c - a) + b2(c + a - b) + c2(a + b - c) ≤ 3abc.  
 
Solution  
The condition that a, b, c be the sides of a triangle, together with the appearance of 
quantities like a + b - c is misleading. The inequality holds for any a , b, c ≥ 0.  
At most one of (b+c-a), (c+a-b), (a+b-c) can be negative. If one of them is negative, then 
certainly:  
        abc ≥ (b + c - a)(c + a - b)(a + b - c) (*)  
since the lhs is non-negative and the rhs is non-positive.  
(*) is also true if none of them is negative. For then the arithmetic/geometric mean on b + 
c - a, c + a - b gives:  
        c2 ≥ (b + c - a)(c + a - b).  
Similarly for a2 and b2. Multiplying and taking the square root gives (*). Multiplying out 
easily gives the required result.  
 
Problem A3  



Triangle ABC has sides a, b, c. Tangents to the inscribed circle are constructed parallel to 
the sides. Each tangent forms a triangle with the other two sides of the triangle and a circle 
is inscribed in each of these three triangles. Find the total area of all four inscribed circles.  
 
Solution  

 
This is easy once you realize that the answer is 
not nice and the derivation a slog. Use r = 
2·area/perimeter and Heron's formula: area k is 
given by 16k2 = (a + b + c)(b + c - a)(c + a - 
b)(a + b - c).  
The small triangles at the vertices are similar to 
the main triangle and smaller by a factor (h - 
2r)/h, where h is the relevant altitude. For the 
triangle opposite side a: (h - 2r)/h = 1 - 
2(2k/p)/(2k/a) = 1 - 2a/p = (b + c - a)/(a + b 

+ c).  
Hence the total area is ((a + b + c)2 + (b + c - a)2 + (c + a - b)2 + (a + b - c)2)/(a + b + 
c)2 pi r2 = (a2 + b2 + c2).pi.(b + c - a)(c + a - b)(a + b - c)/(a + b + c)3.  
 
Problem B1  
Each pair from 17 people exchange letters on one of three topics. Prove that there are at 
least 3 people who write to each other on the same topic. [In other words, if we color the 
edges of the complete graph K17 with three colors, then we can find a triangle all the same 
color.]  
 
Solution  
Take any person. He writes to 16 people, so he must write to at least 6 people on the same 
topic. If any of the 6 write to each other on that topic, then we have a group of three 
writing to each other on the same topic. So assume they all write to each other on the 
other two topics. Take any of them, B. He must write to at least 3 of the other 5 on the 
same topic. If two of these write to each other on this topic, then they form a group of 
three with B. Otherwise, they must all write to each other on the third topic and so from a 
group of three.  
 
Problem B2  
5 points in a plane are situated so that no two of the lines joining a pair of points are 
coincident, parallel or perpendicular. Through each point lines are drawn perpendicular to 
each of the lines through two of the other 4 points. Determine the maximum number of 
intersections these perpendiculars can have.  
 
Solution  
It is not hard to see that the required number is at most 315. But it is not at all obvious 
how you prove it actually is 315, short of calculating the 315 points intersection for a 
specific example.  
Call the points A, B, C, D, E. Given one of the points, the other 4 points determine 6 lines, 
so there are 6 perpendiculars through the given point and hence 30 perpendiculars in all. 
These determine at most 30.29/2 = 435 points of intersection. But some of these 
necessarily coincide. There are three groups of coincidences. The first is that the 6 
perpendiculars through A meet in one point (namely A), not the expected 15. So we lose 
5.14 = 70 points. Second, the lines through C, D and E perpendicular to AB are all parallel, 
and do not give the expected 3 points of intersection, so we lose another 10.3 = 30 points. 
Third, the line through A perpendicular to BC is an altitude of the triangle ABC, as are the 
lines through B perpendicular to AC, and the through C perpendicular to AB. So we only get 
one point of intersection instead of three, thus losing another 10.2 = 20 points. These 
coincidences are clearly all distinct (the categories do not overlap), so they bring us down 
to a maximum of 435 - 120 =315.  
There is no obvious reason why there should be any further coincidences. But that is not 
quite the same as proving that there are no more. Indeed, for particular positions of the 



points A, B, C, D, E we can certainly arrange for additional coincidences (the constraints 
given in the problem are not sufficient to prevent additional coincidences). So we have to 
prove that it is possible to arrange the points so that there are no additional coincidences. I 
cannot see how to do this, short of exhibiting a particular set of points, which would be 
extremely tiresome. Apparently the contestants were instructed verbally that they did not 
have to do it.  
 
Problem B3  
ABCD is a tetrahedron and D0 is the centroid of ABC. Lines parallel to DD0 are drawn 
through A, B and C and meet the planes BCD, CAD and ABD in A0, B0, and C0 respectively. 
Prove that the volume of ABCD is one-third of the volume of A0B0C0D0. Is the result true if 
D0 is an arbitrary point inside ABC?  
 
Solution  
Yes, indeed it is true for an arbitrary point in the plane of ABC not on any of the lines AB, 
BC, CA  
Take D as the origin. Let A, B, C be the points a, b, c respectively. Then D0 is pa + qb + rc 
with p + q + r = 1 and p, q, r > 0. So a point on the line parallel to DD0 through A is a + 
s(pa + qb + rc. It is also in the plane DBC if s = -1/p, so A0 is the point - q/p b - r/p c. 
Similarly, B0 is - p/q a - r/q c, and C0 is - p/r a - q/r b.  
The volume of ABCD is 1/6 |a x b.c| and the volume of A0B0C0D0 is 1/6 |(pa + (q + q/p)b 
+ (r + r/p)c) x ((p + p/q)a + qb + (r + r/q)c).((p + p/r)a + (q + q/r)b + rc)|  
Thus vol A0B0C0D0/vol ABCD = abs value of the determinant:  
 | p        q + q/p  r + r/p | 
 | p + p/q  q        r + r/q | 
 | p + p/r  q + q/r  r       | 
which is easily found to be 2 + p + q + r = 3.  
 
IMO 1965 
 
Problem A1  
Find all x in the interval [0, 2π] which satisfy:  
        2 cos x ≤ |√(1 + sin 2x) - √(1 - sin 2x)| ≤ √2.  
 
Solution  
Let y = |√(1 + sin 2x) - √(1 - sin 2x)|. Then y2 = 2 - 2|cos 2x|. If x belongs to [0, π/4] or 
[3π/4, 5π/4] or [7π/4], then cos 2x is non-negative, so y2 = 2 - 2 cos 2x = 4 sin2 x, so y = 
2|sin x|. We have cos x <= |sin x| except for x in [0, π/4] and [7π/4, 2π]. So that leaves 
[3π/4, 5π/4] in which we certainly have |sin x| ≤ 1/√2.  
If x belongs (π/4, 3π/4) or (5π/5, 7π/4), then cos 2x is negative, so y2 = 2 + 2 cos 2x = 4 
cos2x. So y = 2 |cos x|. So the first inequality certainly holds. The second also holds.  
Thus the inequalities hold for all x in [π/4, 7π/4].  
 
Problem A2  
The coefficients aij of the following equations  
        a11x1 + a12 x2+ a13 x3 = 0 
        a21x1 + a22x2 + a23x3 = 0 
        a31x1 + a32x2 + a33x3 = 0  
satisfy the following: (a) a11, a22, a33 are positive, (b) other aij are negative, (c) the sum of 
the coefficients in each equation is positive. Prove that the only solution is x1 = x2 = x3 = 0.  
 
Solution  
The slog solution is to multiply out the determinant and show it is non-zero. A slicker 
solution is to take the xi with the largest absolute value. Say |x1| ≥ |x2|, |x3|. Then looking 
at the first equation we have an immediate contradiction, since the first term has larger 
absolute value than the sum of the absolute values of the second two terms.  
 
Problem A3 



The tetrahedron ABCD is divided into two parts by a plane parallel to AB and CD. The 
distance of the plane from AB is k times its distance from CD. Find the ratio of the volumes 
of the two parts.  
 
Solution 
Let the plane meet AD at X, BD at Y, BC at Z and AC at W. Take plane parallel to BCD 
through WX and let it meet AB in P.  
Since the distance of AB from WXYZ is k times the distance of CD, we have that AX = k·XD 
and hence that AX/AD = k/(k+1). Similarly AP/AB = AW/AC = AX/AD. XY is parallel to AB, 
so also AX/AD = BY/BD = BZ/BC.  
vol ABWXYZ = vol APWX + vol WXPBYZ. APWX is similar to the tetrahedron ABCD. The 
sides are k/(k+1) times smaller, so vol APWX = k3(k+1)3 vol ABCD. The base of the prism 
WXPBYZ is BYZ which is similar to BCD with sides k/(k+1) times smaller and hence area 
k2(k+1)2 times smaller. Its height is 1/(k+1) times the height of A above ABCD, so vol 
prism = 3 k2(k+1)3 vol ABCD. Thus vol ABWXYZ = (k3 + 3k2)/(k+1)3 vol ABCD. We get the 
vol of the other piece as vol ABCD - vol ABWXYZ and hence the ratio is (after a little 
manipulation) k2(k+3)/(3k+1).  
 
Problem B1  
Find all sets of four real numbers such that the sum of any one and the product of the other 
three is 2.  
 
Answer  
1,1,1,1 or 3,-1,-1,-1.  
 
Solution  
Let the numbers be x1, ... , x4. Let t = x1x2x3x4. Then x1 + t/x1 = 2. So all the xi are roots of 
the quadratic x2 - 2x + t = 0. This has two roots, whose product is t.  
If all xi are equal to x, then x3 + x = 2, and we must have x = 1. If not, then if x1 and x2 
are unequal roots, we have x1x2 = t and x1x2x3x4 = t, so x3x4 = 1. But x3 and x4 are still 
roots of x2 - 2x + t = 0. They cannot be unequal, otherwise x3x4 = t, which gives t = 1 and 
hence all xi = 1. Hence they are equal, and hence both 1 or both -1. Both 1 gives t = 1 and 
all xi = 1. Both -1 gives t = -3 and hence xi = 3, -1, -1, -1 (in some order).  
 
Problem B2  
The triangle OAB has O acute. M is an arbitrary point on AB. P and Q are the feet of the 
perpendiculars from M to OA and OB respectively. What is the locus of H, the orthocenter of 
the triangle OPQ (the point where its altitudes meet)? What is the locus if M is allowed to 
vary of the interior of OAB?  
 
Solution  

Let X be the foot of the perpendicular from B to 
OA, and Y the foot of the perpendicular from A to 
OB. We show that the orthocenter of OPQ lies on 
XY.  
MP is parallel to BX, so AM/MB = AP/PX. Let H be 
the intersection of XY and the perpendicular from 
P to OB. PH is parallel to AY, so AP/PX = YH/HX. 
MQ is parallel to AY, so AM/MB = YQ/BQ. Hence 
YQ/BQ = YH/HX and so QH is parallel to BX and 
hence perpendicular to AO, so H is the 
orthocenter of OPQ as claimed.  
If we restrict M to lie on a line A'B' parallel to AB 
(with A' on OA, B' on OB) then the locus is a line 
X'Y' parallel to XY, so as M moves over the whole 

interior, the locus is the interior of the triangle OXY.  
 
Problem B3  



Given n > 2 points in the plane, prove that at most n pairs of points are the maximum 
distance apart (of any two points in the set).  
 
Solution  
The key is that if two segments length d do not intersect then we 
can find an endpoint of one which is a distance > d from an 
endpoint of the other.  
Given this, the result follows easily by induction. If false for n, 
then there is a point A in three pairs AB, AC and AD of length d 
(the maximum distance). Take AC to lie between AB and AD. 
Now C cannot be in another pair. Suppose it was in CX. Then CX 
would have to cut both AB and AD, which is impossible.  
To prove the result about the segments, suppose they are PQ 
and RS. We must have angle PQR less than 90o, otherwise PR > 
PQ = d. Similarly, the other angles of the quadrilateral must all 
be less than 90o. Contradiction.  
 
IMO 1966 
 
Problem A1  
Problems A, B and C were posed in a mathematical contest. 25 competitors solved at least 
one of the three. Amongst those who did not solve A, twice as many solved B as C. The 
number solving only A was one more than the number solving A and at least one other. The 
number solving just A equalled the number solving just B plus the number solving just C. 
How many solved just B?  
 
Answer  
6.  
 
Solution  
Let a solve just A, b solve just B, c solve just C, and d solve B and C but not A. Then 25 - a 
- b - c - d solve A and at least one of B or C. The conditions give:  
b + d = 2(c + d); a = 1 + 25 - a - b - c - d; a = b + c.  
Eliminating a and d, we get: 4b + c = 26. But d = b - 2c ≥ 0, so b = 6, c = 2.  
 
Problem A2  
Prove that if BC + AC = tan C/2 (BC tan A + AC tan B), then the triangle ABC is isosceles.  
 
Solution  
A straight slog works. Multiply up to get (a + b) cos A cos B cos C/2 = a sin A cos B sin C/2 
+ b cos A sin B sin C/2 (where a = BC, b = AC, as usual). Now use cos(A + C/2) = cos A 
cos C/2 - sin A sin C/2 and similar relation for cos (B + C/2) to get: a cos B cos(A + C/2) + 
b cos A cos (B + C/2) = 0. Using C/2 = 90o - A/2 - B/2, we find that cos(A + C/2) = - cos(B 
+ C/2) (and = 0 only if A = B). Result follows.  
 
Problem A3 
Prove that a point in space has the smallest sum of the distances to the vertices of a 
regular tetrahedron iff it is the center of the tetrahedron.  
 
Solution 
Let the tetrahedron be ABCD and let P be a general point. Let X be the midpoint of CD. Let 
P' be the foot of the perpendicular from P to the plane ABX. We show that if P does not 
coincide with P', then PA + PB + PC + PD > P'A + P'B + P'C + P'D.  
PA > P'A (because angle PP'A = 90o) and PB > P'B. P'CD is isosceles and PCD is not but P is 
the same perpendicular distance from the line CD as P'. It follows that PC + PD > P'C + 
P'D. The easiest way to see this is to reflect C and D in the line PP' to give C' and D'. Then 
PC = PC', and PC' + PD > C'D = P'C' + P'D = P'C + P'D.  



So if P has the smallest sum, it must lie in the plane ABX and similarly in the plane CDY, 
where Y is the midpoint of AB, and hence on the line XY. Similarly, it must lie on the line 
joining the midpoints of another pair of opposite sides and hence must be the center.  
 
Problem B1  
Prove that 1/sin 2x + 1/sin 4x + ... + 1/sin 2nx = cot x - cot 2nx for any natural number n 
and any real x (with sin 2nx non-zero).  
 
Solution  
cot y - cot 2y = cos y/sin y - (2 cos2y - 1)/(2 sin y cos y) = 1/(2 sin y cos y) = 1/sin 2y. 
The result is now easy. Use induction. True for n = 1 (just take y = x). Suppose true for n, 
then taking y = 2nx, we have 1/sin 2n+1x = cot 2nx - cot 2n+1x and result follows for n + 1.  
 
Problem B2  
Solve the equations:  
    |ai - a1| x1 + |ai - a2| x2 + |ai - a3| x3 + |ai - a4| x4 = 1, i = 1, 2, 3, 4, where ai are 
distinct reals.  
 
Answer  
x1 = 1/(a1 - a4), x2 = x3 = 0, x4 = 1/(a1 - a4).  
 
Solution  
Take a1 > a2 > a3 > a4. Subtracting the equation for i=2 from that for i=1 and dividing by 
(a1 - a2) we get:  
      - x1 + x2 + x3 + x4 = 0.  
Subtracting the equation for i=4 from that for i=3 and dividing by (a3 - a4) we get:  
      - x1 - x2 - x3 + x4 = 0.  
Hence x1 = x4. Subtracting the equation for i=3 from that for i=2 and dividing by (a2 - a3) 
we get:  
      - x1 - x2 + x3 + x4 = 0.  
Hence x2 = x3 = 0, and x1 = x4 = 1/(a1 - a4).  
 
Problem B3 
Take any points K, L, M on the sides BC, CA, AB of the triangle ABC. Prove that at least one 
of the triangles AML, BKM, CLK has area ≤ 1/4 area ABC.  
 
Solution 
If not, then considering ALM we have 
4·AL·AM·sin A > AB·AC·sin A, so 4·AL·AM > 
AB·AC = (AM + BM)(AL + CL), so 3·AL·AM > 
AM·CL + BM·AL + BM·CL. Set k = BK/CK, l = 
CL/AL, m = AM/BM, and this inequality 
becomes:  
      3 > l + 1/m + l/m.  
Similarly, considering the other two triangles 
we get: 3 > k + 1/l + k/l, and 3 > m + 1/k + 
m/k.  
Adding gives: 9 > k + l + m + 1/k + 1/l + 1/m + k/l + l/m + m/k, which is false by the 
arithmetic/geometric mean inequality.  
 
IMO 1967 
 
Problem A1  
The parallelogram ABCD has AB = a, AD = 1, angle BAD = A, and the triangle ABD has all 
angles acute. Prove that circles radius 1 and center A, B, C, D cover the parallelogram iff  
            a ≤ cos A + √3 sin A.  
 
Solution  
 



Evidently the parallelogram is a red herring, since 
the circles cover it iff and only if the three circles 
center A, B, D cover the triangle ABD.  
The three circles radius x and centers the three 
vertices cover an acute-angled triangle ABD iff x is 
at least R, the circumradius. The circumcenter O is 
a distance R from each vertex, so the condition is 
clearly necessary. If the midpoints of BD, DA, AB 
are P, Q, R, then the circle center A, radius R 
covers the quadrilateral AQOR, the circle center B, 
radius R covers the quadrilateral BROP, and the 
circle center D radius R covers the quadrilateral 
DPOQ, so the condition is also sufficient.  
We need an expression for R in terms of a and A. We can express BD two ways: 2R sin A, 
and √(a2 + 1 - 2a cos A). So a necessary and sufficient condition for the covering is 4 sin2A 
≥ (a2 + 1 - 2a cos A), which reduces to a ≤ cos A + √3 sin A, since cos A ≤ a (the foot of 
the perpendicular from D onto AB must lie between A and B).  
 
Problem 2  
Prove that a tetrahedron with just one edge length greater than 1 has volume at most 1/8.  

 
Solution  
Let the tetrahedron be ABCD and assume that all edges except AB 
have length at most 1. The volume is the 1/3 x area BCD x height 
of A above BCD. The height is at most the height of A above CD, 
so we maximise the volume by taking the planes ACD and BCD to 
be perpendicular. If AC or AD is less than 1, then we can increase 
the altitude from A to CD whilst keeping BCD fixed by taking AC = 
AD = 1. A similar argument shows that we must have BC = BD = 
1.  
But the volume is also the 1/3 x area ABC x height of D above 
ABC, so we must adjust CD to maximise this height. We want the 
angle between planes ABC and ABD to be as close as possible to 

90o. The angle increases with increasing CD until it becomes 90o. CMD is then a right-
angled triangle. Now the angle ACB must be less than the angle between the planes ACD 
and BCD and hence < 90o, so angle ACM < 45o, so CM > 1/√2. Similarly DM. Hence when 
CMD = 90o we have CD > 1. Thus we maximise the height of D above ABC by taking CD = 
1.  
So BCD is equilateral with area (√3)/4. ACD is also equilateral with altitude (√3)/2. Since 
the planes ACD and BCD are perpendicular, that is also the height of A above BCD. So the 
volume is 1/3 x(√3)/4 x (√3)/2 = 1/8.  
 
Problem A3  
Let k, m, n be natural numbers such that m + k + 1 is a prime greater than n + 1. Let cs = 
s(s+1). Prove that:  
        (cm+1 - ck)(cm+2 - ck) ... (cm+n - ck)  
is divisible by the product c1c2 ... cn.  
 
Solution  
The key is that ca - cb = (a - b)(a + b + 1). Hence the product (cm+1 - ck)(cm+2 - ck) ... (cm+n 
- ck) is the product of the n consecutive numbers (m - k + 1), ... , (m - k + n), times the 
product of the n consecutive numbers (m + k + 2), ... , (m + k + n + 1). The first product 
is just the binomial coefficient (m-k+n)Cn times n!, so it is divisible by n!. The second 
product is 1/(m + k + 1) x (m + k + 1)(m + k + 2) ... (m + k + n + 1) = 1/(m + k + 1) x 
(m+k+n+1)C(n+1) x (n+1)!. But m + k + 1 is a prime greater than n + 1, so it has no 
factors in common with (n+1)!, hence the second product is divisible by (n+1)!. Finally 
note that c1c2 ... cn= n! (n+1)!.  
 
Problem B1 



A0B0C0 and A1B1C1 are acute-angled triangles. Construct the triangle ABC with the largest 
possible area which is circumscribed about A0B0C0 (BC contains A0, CA contains B0, and AB 
contains C0) and similar to A1B1C1.  
 
Solution 
Take any triangle similar to A1B1C1 and circumscribing A0B0C0. For example, take an 
arbitrary line through A0 and then lines through B0 and C0 at the appropriate angles to the 
first line. Label the triangle's vertices X, Y, Z so that A0 lies on YZ, B0 on ZX, and C0 on XY. 
Now any circumscribed ABC (labeled with the same convention) must have C on the circle 
through A0, B0 and Z, because it has ∠C = ∠Z = ∠C1. Similarly it must have B on the circle 
through C0, A0 and Y, and it must have A on the circle through B0, C0 and X.  
Consider the side AB. It passes through 
C0. Its length is twice the projection of the 
line joining the centers of the two circles 
onto AB (because each center projects 
onto the midpoint of the part of AB that is 
a chord of its circle). But this projection is 
maximum when it is parallel to the line 
joining the two centers. The area is 
maximised when AB is maximised 
(because all the triangles are similar), so 
we take AB parallel to the line joining the 
centers. [Note, in passing, that this 
proves that the other sides must also be 
parallel to the lines joining the respective 
centers and hence that the three centers 
form a triangle similar to A1B1C1.]    
 
Problem B2  
a1, ... , a8 are reals, not all zero. Let cn = 
a1

n + a2
n + ... + a8

n for n = 1, 2, 3, ... . 
Given that an infinite number of cn are 
zero, find all n for which cn is zero.  
 
Solution  
Take |a1| ≥ |a2| ≥ ... ≥ |a8|. Suppose that |a1|, ... , |ar| are all equal and greater than 
|ar+1|. Then for sufficiently large n, we can ensure that |as|n < 1/8 |a1|n for s > r, and 
hence the sum of |as|n for all s > r is less than |a1|n. Hence r must be even with half of a1, 
... , ar positive and half negative.  
If that does not exhaust the ai, then in a similar way there must be an even number of ai 
with the next largest value of |ai|, with half positive and half negative, and so on. Thus we 
find that cn = 0 for all odd n.  
 
Problem B3  
In a sports contest a total of m medals were awarded over n days. On the first day one 
medal and 1/7 of the remaining medals were awarded. On the second day two medals and 
1/7 of the remaining medals were awarded, and so on. On the last day, the remaining n 
medals were awarded. How many medals were awarded, and over how many days?  
 
Solution  
Let the number of medals remaining at the start of day r be mr. Then m1 = m, and 6(mk - 
k)/7 = mk+1 for k < n with mn = n.  
After a little rearrangement, we find that m = 1 + 2(7/6) + 3(7/6)2 + ... + n(7/6)n-1. 
Summing, we get m = 36(1 - (n + 1)(7/6)n + n (7/6)n+1) = 36 + (n - 6)7n/6n-1. 6 and 7 are 
coprime, so 6n-1 must divide n - 6. But 6n-1 > n - 6, so n = 6 and m = 36.  



IMO 1968 
 
Problem A1  
Find all triangles whose side lengths are consecutive integers, and one of whose angles is 
twice another.  
 
Solution  
Let the sides be a, a+1, a+2, the angle oppose a be A, the angle opposite a+1 be B, and 
the angle opposite a+2 be C.  
Using the cosine rule, we find cos A = (a+5)/(2a+4), cos B = (a+1)/2a, cos C = (a-3)/2a. 
Finally, using cos 2x = 2 cos2x - 1, we find solutions a = 4 for C = 2A, a = 1 for B = 2A, 
and no solutions for C = 2B.  
a = 1 is a degenerate solution (the triangle has the three vertices collinear). The other 
solution is 4, 5, 6.  
 
Problem A2  
Find all natural numbers n the product of whose decimal digits is n2 - 10n - 22.  
 
Solution  
Suppose n has m > 1 digits. Let the first digit be d. Then the product of the digits is at 
most d.9m-1 < d.10m-1 <= n. But (n2 - 10n - 22) - n = n(n - 11) - 22 > 0 for n >= 13. So 
there are no solutions for n ≥ 13. But n2 - 10n - 22 < 0 for n ≤ 11, so the only possible 
solution is n = 12 and indeed that is a solution.  
 
Problem A3  
a, b, c are real with a non-zero. x1, x2, ... , xn satisfy the n equations:  
        axi

2 + bxi + c = xi+1, for 1 ≤ i < n  
        axn

2 + bxn + c = x1  
Prove that the system has zero, 1 or >1 real solutions according as (b - 1)2 - 4ac is <0, =0 
or >0.  
 
Solution  
Let f(x) = ax2 + bx + c - x. Then f(x)/a = (x + (b-1)/2a)2 + (4ac - (b-1)2)/4a2. Hence if 4ac 
- (b-1)2 > 0, then f(x) has the same sign for all x. But f(x) > 0 means ax2 + bx + c > x, so 
if {xi} is a solution, then either x1 < x2 < ... < xn < x1, or x1 > x2 > ... > xn > x1. Either way 
we have a contradiction. So if 4ac - (b-1)2 > 0 there cannot be any solutions.  
If 4ac - (b-1)2 = 0, then we can argue in the same way that either x1 ≤ x2 ≤ ... ≤ xn ≤ x1, 
or x1 ≥ x2 ≥ ... ≥ xn ≥ x1. So we must have all xi = the single root of f(x) = 0 (which clearly 
is a solution).  
If 4ac - (b-1)2 < 0, then f(x) = 0 has two distinct real roots y and z and so we have at least 
two solutions to the equations: all xi =y, and all xi = z. We may, however, have additional 
solutions. For example, if a = 1, b = 0, c = -1 and n is even, then we have the additional 
solution x1 = x3 = x5 = ... = 0, x2 = x4 = ... = -1.  
 
Problem B1  
Prove that every tetrahedron has a vertex whose three edges have the right lengths to 
form a triangle.  
 
Solution  
The trick is to consider the longest side. That avoids getting into lots of different possible 
cases for which edge is longer than the sum of the other two.  
So assume the result is false and let AB be the longest side. Then we have AB > AC + AD 
and BA > BC + BD. So 2AB > AC + AD + BC + BC. But by the triangle inequality, AB < AC 
+ CB, AB < AD + DB, so 2AB < AC + CB + AD + DB. Contradiction.  
 
Problem B2  
Let f be a real-valued function defined for all real numbers, such that for some a > 0 we 
have  
        f(x + a) = 1/2 + √(f(x) - f(x)2) for all x.  



Prove that f is periodic, and give an example of such a non-constant f for a = 1.  
 
Solution  
Directly from the equality given: f(x+a) ≥ 1/2 for all x, and hence f(x) ≥ 1/2 for all x.  
So f(x+2a) = 1/2 + √( f(x+a) - f(x+a)2 ) = 1/2 + √f(x+a) √(1 - f(x+a)) = 1/2 + √(1/4 - 
f(x) + f(x)2) = 1/2 + (f(x) - 1/2) = f(x). So f is periodic with period 2a.  
We may take f(x) to be arbitrary in the interval [0,1). For example, let f(x) = 1 for 0 ≤ x < 
1, f(x) = 1/2 for 1 ≤ x < 2. Then use f(x+2) = f(x) to define f(x) for all other values of x.  
 
Problem B3  
For every natural number n evaluate the sum  
    [(n+1)/2] + [(n+2)/4] + [(n+4)/8] + ... + [(n+2k)/2k+1] + ... , where [x] denotes the 
greatest integer ≤ x.  
 
Solution  
For any real x we have [x] = [x/2] + [(x+1]/2]. For if x = 2n + 1 + k, where n is an 
integer and 0 ≤ k < 1, then lhs = 2n + 1, and rhs = n + n + 1. Similarly, if x = 2n + k.  
Hence for any integer n, we have: [n/2k] - [n/2k+1] = [(n/2k + 1)/2] = [(n + 2k)/2k+1]. 
Hence summing over k, and using the fact that n < 2k for sufficiently large k, so that [n/2k 
] = 0, we have: n = [(n + 1)/2] + [(n + 2)/4] + [(n + 4)/8] + ... .    
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Problem A1  
Prove that there are infinitely many positive integers m, such that n4 + m is not prime for 
any positive integer n.  
 
Solution  
n4 + 4 r4 = (n2 + 2rn + 2r2)(n2 - 2rn + 2r2). Clearly the first factor is greater than 1, the 
second factor is (n - r)2 + r2, which is also greater than 1 for r greater than 1. So we may 
take m = 4 r4 for any r greater than 1.  
 
Problem A2  
Let f(x) = cos(a1 + x) + 1/2 cos(a2 + x) + 1/4 cos(a3 + x) + ... + 1/2n-1 cos(an + x), where 
ai are real constants and x is a real variable. If f(x1) = f(x2) = 0, prove that x1 - x2 is a 
multiple of π.  
 
Solution  
f is not identically zero, because f(-a1) = 1 + 1/2 cos(a2 - a1) + ... > 1 - 1/2 - 1/4 - ... - 
1/2n-1 > 0.  
Using the expression for cos(x + y) we obtain f(x) = b cos x + c sin x, where b = cos a1 + 
1/2 cos a2 + ... + 1/2n-1 cos an, and c = - sin a1 - 1/2 sin a2 - ... - 1/2n-1 sin an. b and c are 
not both zero, since f is not identically zero, so f(x) = √(b2 + c2) cos(d + x), where cos d = 
b/√(b2 + c2), and sin d = c/√(b2 + c2). Hence the roots of f(x) = 0 are just mπ + π/2 - d.  
 
Problem A3  
For each of k = 1, 2, 3, 4, 5 find necessary and sufficient conditions on a > 0 such that 
there exists a tetrahedron with k edges length a and the remainder length 1.  
 
Solution  
A plodding question. Take the tetrahedron to be ABCD.  
Take k = 1 and AB to have length a, the other edges length 1. Then we can hinge triangles 
ACD and BCD about CD to vary AB. The extreme values evidently occur with A, B, C, D 
coplanar. The least value, 0, when A coincides with B, and the greatest value √3, when A 
and B are on opposite sides of CD. We rule out the extreme values on the grounds that the 
tetrahedron is degenerate, thus obtaining 0 < a < √3.  
For k = 5, the same argument shows that 0 < 1 < √3 a, and hence a > 1/√3.  
For k = 2, there are two possible configurations: the sides length a adjacent, or not. 
Consider first the adjacent case. Take the sides length a to be AC and AD. As before, the 
two extreme cases gave A, B, C, D coplanar. If A and B are on opposite sides of CD, then a 
= √(2 - √3). If they are on the same side, then a = √(2 + √3). So this configuration allows 
any a satisfying √(2 - √3) < a < √(2 + √3).  
The other configuration has AB = CD = a. One extreme case has a = 0. We can increase a 
until we reach the other extreme case with ADBC a square side 1, giving a = √2. So this 
configuration allows any a satisfying 0 < a < √2. Together, the two configurations allow 
any a satisfying: 0 < a < √(2 + √3).  
This also solves the case k = 4, and allows any a satisfying: a > 1/√(2 + √3) = √(2 - √3).  
For k = 3, any value of a > 0 is allowed. For a <= 1, we may take the edges length a to 
form a triangle. For a ≥ 1 we may take a triangle with unit edges and the edges joining the 
vertices to the fourth vertex to have length a.    
 
Problem B1  
C is a point on the semicircle diameter AB, between A and B. D is the foot of the 
perpendicular from C to AB. The circle K1 is the in-circle of ABC, the circle K2 touches CD, 
DA and the semicircle, the circle K3 touches CD, DB and the semicircle. Prove that K1, K2 
and K3 have another common tangent apart from AB.  
 
Solution  



Let the three centers be O1, O2 and O3. We show 
that O1 is the midpoint of O2O3. In fact it is 
sufficient to show that O1 lies on O2O3, because 
then we can reflect the known tangent AB in the 
line O2O3.  
As usual, let AB = c, BC = a, CA = b. Let the in-
circle touch AB at P, AC at Q and BC at R. Then 
since angle ACB = 90, O1QCR is a square. Also AQ 
= AP and BP = BR, so r1 = b - AP, and r1 = a - BP 
= a - (c - AP). Adding: r1 = (a + b - c)/2, and AP = 
(b + c - a)/2.  
Let the circle center O2 touch AB at X, and the circle 
center O3 touch AB at Y. Let O be the midpoint of 
AB. Now consider the right-angled triangle OXO2. 
Since the circle center O2 touches the semicircle, 

OO2 = c/2 - r2. OX = OD + DX = (c/2 - AD) + r2. Also, by similar triangles, AD = b2/c. So, 
using Pythagoras: (c/2 - r2)2 = r2

2 + (c/2 - b2/c + r2)2. Multiplying out and rearranging: r2
2 

- 2r2(c - b2/c) - (b2 - b4/c2). But ABC is right-angled, so c2 = a2 + b2, and hence c - b2/c = 
a2/c and b2 - b4/c2 = a2b2/c2. So r2

2 + 2r2 a2/c - a2b2/c2 = 0, which has roots r2 = a - a2/c 
(positive) and - a + a2/c (negative). So r2 = a - a2/c. Similarly, r3 = b - b2/c. So O2X + O3Y 
= XY = r2 + r3 = a + b - c = 2 r1.  
XP = AP - AX = AP - (AD - DX) = (b + c - a)/2 - (b2/c - r2) = (b + c - a)/2 - (c - a) = (a + 
b - c)/2 = r1. We now have all we need: XP = PY = PO1, and XO2 + YO3 = 2 PO1.  
 
Problem B2  
Given n > 4 points in the plane, no three collinear. Prove that there are at least (n-3)(n-
4)/2 convex quadrilaterals with vertices amongst the n points.  
 
Solution  
(n-3)(n-4)/2 is a poor lower bound.  
Observe first that any 5 points include 4 forming a convex quadrilateral. For take the 
convex hull. If it consists of more than 3 points, we are done. If not, it must consist of 3 
points, A, B and C, with the other 2 points, D and E, inside the triangle ABC. Two vertices 
of the triangle must lie on the same side of the line DE and they form convex quadrilateral 
with D and E.  
Given n points, we can choose 5 in n(n-1)(n-2)(n-3)(n-4)/120 different ways. Each choice 
gives us a convex quadrilateral, but any given convex quadrilateral may arise from n-4 
different sets of 5 points, so we have at least n(n-1)(n-2)(n-3)/120 different convex 
quadrilaterals. We now show that n(n-1)(n-2)(n-3)/120 ≥ (n-3)(n-4)/2 for all n ≥ 5.  
We wish to prove that n(n-1)(n-2) ≥ 60(n-4), or n(n-1)(n-2) - 60(n-4) ≥ 0. Trial shows 
equality for n = 5 and 6, so we can factorise and get (n-5)(n-6)(n+8), which is clearly at 
least 0 for n at least 5.  
 
Problem B3  
Given real numbers x1, x2, y1, y2, z1, z2, satisfying x1 > 0, x2 > 0, x1y1 > z1

2, and x2y2 > z2
2, 

prove that:  
      8/((x1 + x2)(y1 + y2) - (z1 + z2)2) ≤ 1/(x1y1 - z1

2) + 1/(x2y2 - z2
2).  

Give necessary and sufficient conditions for equality.  
 
Solution  
Let a1 = x1y1 - z1

2 and a2 = x2y2 - z2
2. We apply the arithmetic/geometric mean result 3 

times:  
(1) to a1

2, a2
2, giving 2a1a2 ≤ a1

2 + a2
2;  

(2) to a1, a2, giving √(a1a2) ≤ (a1 + a2)/2;  
(3) to a1y2/y1, a2y1/y2, giving √(a1a2) ≤ (a1y2/y1 + a2y1/y2)/2;  
We also use (z1/y1 - z2/y2)2 ≥ 0. Now x1y1 > z1

2 ≥ 0, and x1 > 0, so y1 > 0. Similarly, y2 > 
0. So:  
(4) y1y2(z1/y1 - z2/y2)2 ≥ 0, and hence z1

2y2/y1 + z2
2y1/y2 ≥ 2z1z2.  



Using (3) and (4) gives 2√(a1a2) ≤ (x1y2 + x2y1) - (z1
2y2/y1 + z2

2y1/y2) ≤ (x1y2 + x2y1 - 
2z1z2).  
Multiplying by (2) gives: 4a1a2 ≤ (a1 + a2)(x1y2 + x2y1 - 2z1z2).  
Adding (1) and 2a1a2 gives: 8a1a2 ≤ (a1 + a2)2 + (a1 + a2)(x1y2 + x2y1 - 2z1z2) = a(a1 + a2), 
where a = (x1 + x2)(y1 + y2) - (z1 + z2)2. Dividing by a1a2a gives the required inequality.  
Equality requires a1 = a2 from (1), y1 = y2 from (2), z1 = z2 from (3), and hence x1 = x2. 
Conversely, it is easy to see that these conditions are sufficient for equality.  
 
IMO 1970 
 
Problem A1 
M is any point on the side AB of the triangle ABC. r, r1, r2 are the radii of the circles 
inscribed in ABC, AMC, BMC. q is the radius of the circle on the opposite side of AB to C, 
touching the three sides of AB and the extensions of CA and CB. Similarly, q1 and q2. Prove 
that r1r2q = rq1q2.  
 
Solution 
We need an expression for r/q. There are two expressions, one in terms of angles and the 
other in terms of sides. The latter is a poor choice, because it is both harder to derive and 
less useful. So we derive the angle expression.  
Let I be the center of the in-circle for ABC and X the center of the external circle for ABC. I 
is the intersection of the two angle bisectors from A and B, so c = r (cot A/2 + cot B/2). 
The X lies on the bisector of the external angle, so angle XAB is 90o - A/2. Similarly, angle 
XBA is 90o - B/2, so c = q (tan A/2 + tan B/2). Hence r/q = (tan A/2 + tan B/2)/(cot A/2 + 
cot B/2) = tan A/2 tan B/2.  
Applying this to the other two triangles, we get r1/q1 = tan A/2 tan CMA/2, r2/q2 = tan B/2 
tan CMB/2. But CMB/2 = 90o - CMA/2, so tan CMB/2 = 1/tan CMA/2. Hence result.  
 
Problem A2 
We have 0 ≤ xi < b for i = 0, 1, ... , n and xn > 0, xn-1 > 0. If a > b, and xnxn-1...x0 
represents the number A base a and B base b, whilst xn-1xn-2...x0 represents the number A' 
base a and B' base b, prove that A'B < AB'.  
 
Solution 
We have anbm > bnam for n > m. Hence anB' > bnA'. Adding anbn to both sides gives anB > 
bnA. Hence xnanB > xnbnA. But xnan = A - A' and xnbn = B - B', so (A - A')B > (B - B')A. 
Hence result.  
Note that the only purpose of requiring xn-1 > 0 is to prevent A' and B' being zero.  
 
Problem A3  
The real numbers a0, a1, a2, ... satisfy 1 = a0 <= a1 ≤ a2 <= ... . b1, b2, b3, ... are defined 
by bn = sum for k = 1 to n of (1 - ak-1/ak)/√ak.  
(a)  Prove that 0 ≤ bn < 2.  
(b)  Given c satisfying 0 ≤ c < 2, prove that we can find an so that bn > c for all sufficiently 
large n.  
 
Solution  
(a)  Each term of the sum is non-negative, so bn is non-negative. Let ck = √ak. Then the 
kth term = (1 - ak-1/ak)/√ak = ck-1

2/ck (1/ak-1 - 1/ak) = ck-1
2/ck (1/ck-1 + 1/ck)(1/ck-1 - 1/ck). 

But ck-1
2/ck (1/ck-1 + 1/ck) ≤ 2, so the kth term ≤ 2(1/ck-1 - 1/ck). Hence bn <= 2 - 2/cn < 2.  

(b)  Let ck = dk, where d is a constant > 1, which we will choose later. Then the kth term is 
(1 - 1/d2)1/dk, so bn = (1 - 1/d2)(1 - 1/dn+1)/(1 - 1/d) = (1 + 1/d)(1 - 1/dn+1). Now take d 
sufficiently close to 1 that 1 + 1/d > c, and then take n sufficiently large so that (1 + 
1/d)(1 - 1/dn+1) > c.  
 
Problem B1  
Find all positive integers n such that the set {n, n+1, n+2, n+3, n+4, n+5} can be 
partitioned into two subsets so that the product of the numbers in each subset is equal.  
 



Solution  
The only primes dividing numbers in the set can be 2, 3 or 5, because if any larger prime 
was a factor, then it would only divide one number in the set and hence only one product. 
Three of the numbers must be odd. At most one of the odd numbers can be a multiple of 3 
and at most one can be a multiple of 5. The other odd number cannot have any prime 
factors. The only such number is 1, so the set must be {1, 2, 3, 4, 5, 6}, but that does not 
work because only one of the numbers is a multiple of 5. So there are no such sets.  
 
Problem B2 
In the tetrahedron ABCD, angle BDC = 90o and the foot of the perpendicular from D to ABC 
is the intersection of the altitudes of ABC. Prove that:  
      (AB + BC + CA)2 ≤ 6(AD2 + BD2 + CD2).  
When do we have equality?  
 
Solution 
The first step is to show that angles ADB and ADC are also 90o. Let H be the intersection of 
the altitudes of ABC and let CH meet AB at X. Planes CED and ABC are perpendicular and 
AB is perpendicular to the line of intersection CE. Hence AB is perpendicular to the plane 
CDE and hence to ED. So BD2 = DE2 + BE2. Also CB2 = CE2 + BE2. Subtracting: CB2 - BD2 = 
CE2 - DE2. But CB2 - BD2 = CD2, so CE2 = CD2 + DE2, so angle CDE = 90o. But angle CDB = 
90o, so CD is perpendicular to the plane DAB, and hence angle CDA = 90o. Similarly, angle 
ADB = 90o.  
Hence AB2 + BC2 + CA2 = 2(DA2 + DB2 + DC2). But now we are done, because Cauchy's 
inequality gives (AB + BC + CA)2 ≤ 3(AB2 + BC2 + CA2).  
We have equality iff we have equality in Cauchy's inequality, which means AB = BC = CA.  
 
Problem B3 
Given 100 coplanar points, no 3 collinear, prove that at most 70% of the triangles formed 
by the points have all angles acute.  
 
Solution 
At most 3 of the triangles formed by 4 points can be acute. It follows that at most 7 out of 
the 10 triangles formed by any 5 points can be acute. For given 10 points, the maximum 
no. of acute triangles is: the no. of subsets of 4 points x 3/the no. of subsets of 4 points 
containing 3 given points. The total no. of triangles is the same expression with the first 3 
replaced by 4. Hence at most 3/4 of the 10, or 7.5, can be acute, and hence at most 7 can 
be acute.  
The same argument now extends the result to 100 points. The maximum number of acute 
triangles formed by 100 points is: the no. of subsets of 5 points x 7/the no. of subsets of 5 
points containing 3 given points. The total no. of triangles is the same expression with 7 
replaced by 10. Hence at most 7/10 of the triangles are acute.  
 
IMO 1971 
 
Problem A1 
Let En = (a1 - a2)(a1 - a3) ... (a1 - an) + (a2 - a1)(a2 - a3) ... (a2 - an) + ... + (an - a1)(an - a2) 
... (an - an-1). Let Sn be the proposition that En ≥ 0 for all real ai.  
Prove that Sn is true for n = 3 and 5, but for no other n > 2.  
 
Solution 
Take a1 < 0, and the remaining ai = 0. Then En = a1

n-1 < 0 for n even, so the proposition is 
false for even n.  
Suppose n ≥ 7 and odd. Take any c > a > b, and let a1 = a, a2 = a3 = a4= b, and a5 = a6 = 
... = an = c. Then En = (a - b)3(a - c)n-4 < 0. So the proposition is false for odd n ≥ 7.  
Assume a1 ≥ a2 ≥ a3. Then in E3 the sum of the first two terms is non-negative, because (a1 
- a3) ≥ (a2 - a3). The last term is also non-negative. Hence E3 ≥ 0, and the proposition is 
true for n = 3.  
It remains to prove S5. Suppose a1 ≥ a2 ≥ a3 ≥ a4 ≥ a5. Then the sum of the first two terms 
in E5 is (a1 - a2){(a1 - a3)(a1 - a4)(a1 - a5) - (a2 - a3)(a2 - a4)(a2 - a5)} ≥ 0. The third term is 



non-negative (the first two factors are non-positive and the last two non-negative). The 
sum of the last two terms is: (a4 - a5){(a1 - a5)(a2 - a5)(a3 - a5) - (a1 - a4)(a2 - a4)(a3 - a4)} 
≥ 0. Hence E5 ≥ 0.  
 
Problem A2 
Let P1 be a convex polyhedron with vertices A1, A2, ... , A9. Let Pi be the polyhedron 
obtained from P1 by a translation that moves A1 to Ai. Prove that at least two of the 
polyhedra P1, P2, ... , P9 have an interior point in common.  
 
Solution 
The result is false for 8 vertices - for example, the cube. We get 8 cubes, with only faces in 
common, forming a cube 8 times as large.  
This suggests a trick. Each Pi is contained in D, the polyhedron formed from P1 by doubling 
the scale. Take A1 as the origin and take the vertex Bi to have twice the coordinates of Ai. 
Given a point X inside P1, the midpoint of PiX must lie in P1 by convexity. Hence the point 
with doubled coordinates, which is obtained by adding the coordinates of Ai to the 
coordinates of X, lies in D. In other words every point of Pi lies in D. But the volume of D is 
8 times the volume of P1, which is less than the sum of the volumes of P1, ... , P9.  
 
Problem A3 
Prove that we can find an infinite set of positive integers of the form 2n - 3 (where n is a 
positive integer) every pair of which are relatively prime.  
 
Solution 
We show how to enlarge a set of r such integers to a set of r+1. So suppose 2n

1 - 3, ... , 2n
r 

- 3 are all relatively prime. The idea is to find 2n - 1 divisible by m = (2n
1 - 3) ... (2n

r - 3), 
because then 2n - 3 must be relatively prime to all of the factors of m. At least two of 20, 
21, ... , 2m must be congruent mod m. So suppose m1 > m2 and 2m

1 = 2m
2 (mod m), then 

we must have 2m
1
 - m

2 - 1 = 0 (mod m), since m is odd. So we may take nr+1 to be m1 - m2.  
 
Problem B1 
All faces of the tetrahedron ABCD are acute-angled. Take a point X in the interior of the 
segment AB, and similarly Y in BC, Z in CD and T in AD.  
(a)  If ∠DAB + ∠BCD ≠ ∠CDA + ∠ABC, then prove that none of the closed paths XYZTX has 
minimal length;  
(b)  If ∠DAB + ∠BCD = ∠CDA + ∠ABC, then there are infinitely many shortest paths 
XYZTX, each with length 2 AC sin k, where 2k = ∠BAC + ∠CAD + ∠DAB.  
 
Solution 
The key is to pretend the tetrahedron is made of cardboard, cut it along three edges and 
unfold it. Suppose we do this to get the hexagon CAC'BDB'. Now the path is a line joining Y 
on B'C to Y' on the opposite side BC' of the hexagon. Clearly this line must be straight for a 
minimal path. If B'C and BC' are parallel, then we can take Y anywhere on the side and the 
minimal path length is the expression given.  
But if they are not parallel, then the minimal path will come from an extreme position. 
Suppose CC' < BB'. If the interior angle CAC' is less than 180o, then the minimal path is 
obtained by taking Y at C. But this does not meet the requirement that Y be an interior 
point of the edge, so there is no minimal path in the permitted set. If the interior angle 
CAC' is greater than 180, then the minimal path is obtained by taking X and T at A. Again 
this is not permitted.  
The problem therefore reduces to finding the condition for B'C and BC' to be parallel. This is 
evidently angles BCD + DCA + CAD + BAD + BAC + ACB = 360o. But DCA + CAD = 180o - 
ADC, and BAC + ACB = 180o - ABC, so we obtain the condition given.  
 
Problem B2  
Prove that for every positive integer m we can find a finite set S of points in the plane, such 
that given any point A of S, there are exactly m points in S at unit distance from A.  
 
Solution  



Take a1, a2, ... , am to be points a distance 1/2 from the origin O. Form the set of 2m points 
±a1 ±a2 ± ... ±am. Given such a point, it is at unit distance from the m points with just one 
coefficient different. So we are home, provided that we can choose the ai to avoid any other 
pairs of points being at unit distance, and to avoid any degeneracy (where some of the 2m 
points coincide).  
The distance between two points in the set is |c1a1 + c2a2 + ... + cmam|, where ci = 0, 2 or -
2. So let us choose the ai inductively. Suppose we have already chosen up to m. The 
constraints on am+1 are that we do not have |c1a1 + c2a2 + ... + cmam + 2am+1| equal to 0 or 
1 for any ci = 0, 2 or -2, apart from the trivial cases of all ci = 0. Each | | = 0 rules out a 
single point and each | | = 1 rules out a circle which intersects the circle radius 1/2 about 
the origin at 2 points and hence rules out two points. So the effect of the constraints is to 
rule out a finite number of points, whereas we have uncountably many to choose from.  
 
Problem B3  
Let A = (aij), where i, j = 1, 2, ... , n, be a square matrix with all aij non-negative integers. 
For each i, j such that aij = 0, the sum of the elements in the ith row and the jth column is 
at least n. Prove that the sum of all the elements in the matrix is at least n2/2.  
 
Solution  
Let x be the smallest row or column sum. If x >= n/2, then we are done, so assume x < 
n/2. Suppose it is a row. (If not, interchange rows and columns.) The number of non-zero 
elements in the row, y, must also satisfy y < n/2, since each non-zero element is at least 1. 
Now move across this row summing the columns. The y columns with a non-zero element 
have sum at least x (by the definition of x). The n - y columns with a zero have sum at 
least n - x. Hence the total sum is at least xy + (n - x)(n - y) = n2/2 + (n - 2x)(n - 2y)/2 > 
n2/2.  
The result is evidently best possible, because we can fill the matrix alternately with zeros 
and ones (so that aij = 1 if i and j are both odd or both even, 0 otherwise). For n even, 
every row and column has n/2 1s, so the condition is certainly satisfied and the total sum is 
n2/2. For n odd, odd numbered rows have (n+1)/2 1s and even numbered one less. But the 
only zeros are in positions which have either the row or the column odd-numbered, so the 
sum in such cases is n as required. The total sum is n2/2 + 1/2. Alternatively, for n even, 
we could place n/2 down the main diagonal.  
 
IMO 1972 
 
Problem A1  
Given any set of ten distinct numbers in the range 10, 11, ... , 99, prove that we can 
always find two disjoint subsets with the same sum.  
 
Solution  
The number of non-empty subsets is 210 - 1 = 1023. The sum of each subset is at most 90 
+ ... + 99 = 945, so there must be two distinct subsets A and B with the same sum. A \ B 
and B \ A are disjoint subsets, also with the same sum.  
 
Problem A2  
Given n > 4, prove that every cyclic quadrilateral can be dissected into n cyclic 
quadrilaterals.  
 
Solution  
A little tinkering soon shows that it is easy to divide a cyclic quadrilateral ABCD into 4 cyclic 
quadrilaterals. Take a point P inside the quadrilateral and take an arbitrary line PK joining it 
to AB. Now take L on BC so that ∠KPL = 180o - ∠B (thus ensuring that KPLB is cyclic), then 
M on CD so that ∠LPM = 180o - ∠C, then N on AD so that ∠MPN = 180o - ∠D. Then ∠NPK = 
180o - ∠A. We may need to impose some restrictions on P and K to ensure that we can 
obtain the necessary angles. It is not clear, however, what to do next.  
The trick is to notice that the problem is easy if two sides are parallel. For then we may 
take arbitrarily many lines parallel to the parallel sides and divide the original quadrilateral 
into any number of parts.  



So we need to arrange our choice of P and K so that one of the new quadrilaterals has 
parallel sides. But that is easy, since K is arbitrary. So take PK parallel to AD, then we must 
also have PL parallel to CD.  
It remains to consider how we ensure that the points lie on the correct sides. Consider first 
K and L. K cannot lie on AD since PK is parallel to AD, and we can avoid it lying on BC by 
taking P sufficiently close to D. Similarly, taking P sufficiently close to D ensures that L lies 
on BC. Now suppose that M and N are both on AD. Then if we keep K fixed and move P 
closer to CD, N will move on to CD, leaving M on AD.  
 
Problem A3 
Prove that (2m)!(2n)! is a multiple of m!n!(m+n)! for any non-negative integers m and n.  
 
Solution 
The trick is to find a recurrence relation for f(m,n) = (2m)!(2n)!/(m!n!(m+n)!). In fact, 
f(m,n) = 4 f(m,n-1) - f(m+1,n-1), which is sufficient to generate all the f(m,n), given that 
f(m,0) = (2m)!/(m!m!), which we know to be integeral.  
 
Problem B1  
Find all positive real solutions to:  
        (x1

2 - x3x5)(x2
2 - x3x5) ≤ 0  

        (x2
2 - x4x1)(x3

2 - x4x1) ≤ 0  
        (x3

2 - x5x2)(x4
2 - x5x2) ≤ 0  

        (x4
2 - x1x3)(x5

2 - x1x3) ≤ 0  
        (x5

2 - x2x4)(x1
2 - x2x4) ≤ 0  

 
Solution 
Answer: x1 = x2 = x3 = x4 = x5.  
The difficulty with this problem is that it has more information than we need. There is a 
neat solution in Greitzer which shows that all we need is the sum of the 5 inequalities, 
because one can rewrite that as (x1x2 - x1x4)2 + (x2x3 - x2x5)2 + ... + (x5x1 - x5x3)2 + (x1x3 - 
x1x5)2 + ... + (x5x2 - x5x4)2 ≤ 0. The difficulty is how one ever dreams up such an idea!  
The more plodding solution is to break the symmetry by taking x1 as the largest. If the 
second largest is x2, then the first inequality tells us that x1

2 or x2
2 = x3x5. But if x3 and x5 

are unequal, then the larger would exceed x1 or x2. Contradiction. Hence x3 = x5 and also 
equals x2 or x1. If they equal x1, then they would also equal x2 (by definition of x2), so in 
any case they must equal x2. Now the second inequality gives x2 = x1x4. So either all the 
numbers are equal, or x1 > x2 = x3 = x5 > x4. But in the second case the last inequality is 
violated. So the only solution is all numbers equal.  
If the second largest is x5, then we can use the last inequality to deduce that x2 = x4 = x5 
and proceed as before.  
If the second largest is x3, then the fourth inequality gives that x1 = x3 = x5 or x1 = x3 = x4. 
In the first case, x5 is the second largest and we are home already. In the second case, the 
third inequality gives x3

2 = x2x5 and hence x3 = x2 = x5 (or one of x2, x5 would be larger 
than the second largest). So x5 is the second largest and we are home.  
Finally, if the second largest is x4, then the second inequality gives x1 = x2 = x4 or x1 = x3 = 
x4. Either way, we have a case already covered and so the numbers are all equal.  
 
Problem B2  
f and g are real-valued functions defined on the real line. For all x and y, f(x + y) + f(x - y) 
= 2f(x)g(y). f is not identically zero and |f(x)| ≤ 1 for all x. Prove that |g(x)| ≤ 1 for all x.  
 
Solution  
Let k be the least upper bound for |f(x)|. Suppose |g(y)| > 1. Take any x with |f(x)| > 0, 
then 2k ≥ |f(x+y)| + |f(x-y)| ≥ |f(x+y) + f(x-y)| = 2|g(y)||f(x)|, so |f(x)| < k/|g(y)|. In 
other words, k/|g(y)| is an upper bound for |f(x)| which is less than k. Contradiction.  
 
Problem B3  
Given four distinct parallel planes, prove that there exists a regular tetrahedron with a 
vertex on each plane.  



Solution  
Intuitively, we can place A and B on the two outer planes with AB perpendicular to the 
planes. Then tilt AB in one direction until we bring C onto one of the middle planes (keeping 
A and B on the outer planes), then tilt AB the other way (keeping A, B, C on their 
respective planes) until D gets onto the last plane.  
Take A as the origin. Let the vectors AB, AC, AD be b, c, d. Take p as one of the outer 
planes. Let the distances to the other planes be e, f, g. Now we find a vector n satisfying: 
n.b = e, n.c = f, n.d = g. This is a system of three equations in three unknowns with non-
zero determinant (because b.c x d is non-zero), so it has a solution n. Scale the 
tetrahedron by |n|, orient p perpendicular to n/|n|, then B, C, D will be on the other planes 
as required.  
 
IMO 1973 
 
Problem A1 
OP1, OP2, ... , OP2n+1 are unit vectors in a plane. P1, P2, ... , P2n+1 all lie on the same side of 
a line through O. Prove that |OP1 + ... + OP2n+1| ≥ 1.  
 
Solution 
We proceed by induction on n. It is clearly true for n = 1. Assume it is true for 2n-1. Given 
OPi for 2n+1, reorder them so that all OPi lie between OP2n and OP2n+1. Then u = OP2n + 
OP2n+1 lies along the angle bisector of angle P2nOP2n+1 and hence makes an angle less than 
90o with v = OP1 + OP2 + ... + OP2n-1 (which must lie between OP1 and OP2n-1 and hence 
between OP2n and OP2n+1. By induction |v| ≥ 1. But |u + v| ≥ |v| (use the cosine formula). 
Hence the result is true for 2n+1.  
It is clearly best possible: take OP1 = ... = OPn = -OPn+1 = ... = -OP2n, and OP2n+1 in an 
arbitrary direction.  
 
Problem A2 
Can we find a finite set of non-coplanar points, such that given any two points, A and B, 
there are two others, C and D, with the lines AB and CD parallel and distinct?  
 
Solution 
To warm up, we may notice that a regular hexagon is a planar set satisfying the condition.  
Take two regular hexagons with a common long diagonal and their planes perpendicular. 
Now if we take A, B in the same hexagon, then we can find C, D in the same hexagon. If 
we take A in one and B in the other, then we may take C at the opposite end of a long 
diagonal from A, and D at the opposite end of a long diagonal from B.  
 
Problem A3 
a and b are real numbers for which the equation x4 + ax3 + bx2 + ax + 1 = 0 has at least 
one real solution. Find the least possible value of a2 + b2.  
 
Solution 
Put y = x + 1/x and the equation becomes y2 + ay + b - 2 = 0, which has solutions y = -
a/2 ±√(a2 + 8 - 2b)/2. We require |y| ≥ 2 for the original equation to have a real root and 
hence we need |a| + √(a2 + 8 - 4b) ≥ 4. Squaring gives 2|a| - b ≥ 2. Hence a2 + b2 ≥ a2 + 
(2 - 2|a|)2 = 5a2 - 8|a| + 4 = 5(|a| - 4/5)2 + 4/5. So the least possible value of a2 + b2 is 
4/5, achieved when a = 4/5, b = -2/5. In this case, the original equation is x4 + 4/5 x3 - 
2/5 x2 + 4/5 x + 1 = (x + 1)2(x2 - 6/5 x + 1).  
 
Problem B1 
A soldier needs to sweep a region with the shape of an equilateral triangle for mines. The 
detector has an effective radius equal to half the altitude of the triangle. He starts at a 
vertex of the triangle. What path should he follow in order to travel the least distance and 
still sweep the whole region?  
 
Solution 



In particular he must sweep the other two vertices. Let us take the triangle to be ABC, with 
side 1 and assume the soldier starts at A. So the path must intersect the circles radius 
√3/4 centered on the other two vertices. Let us look for the shortest path of this type. 
Suppose it intersects the circle center B at X and the circle center C at Y, and goes first to X 
and then to Y. Clearly the path from A to X must be a straight line and the path from X to Y 
must be a straight line. Moreover the shortest path from X to the circle center C follows the 
line XC and has length AX + XC - √3/4. So we are looking for the point X which minimises 
AX + XC.  
Consider the point P where the altitude intersects the circle. By the usual reflection 
argument the distance AP + PC is shorter than the distance AP' + P'C for any other point P' 
on the line perpendicular to the altitude through P. Moreover for any point X on the circle, 
take AX to cut the line at P'. Then AX + XC > AP' + P'C > AP + PC.  
It remains to check that the three circles center A, X, Y cover the triangle. In fact the circle 
center X covers the whole triangle except for a small portion near A and a small portion 
near C, which are covered by the triangles center A and Y.  
 
Problem B2  
G is a set of non-constant functions f. Each f is defined on the real line and has the form 
f(x) = ax + b for some real a, b. If f and g are in G, then so is fg, where fg is defined by 
fg(x) = f(g(x)). If f is in G, then so is the inverse f-1. If f(x) = ax + b, then f-1(x) = x/a - 
b/a. Every f in G has a fixed point (in other words we can find xf such that f(xf) = xf. Prove 
that all the functions in G have a common fixed point.  
 
Solution  
f(x) = ax + b has fixed point b/(1-a). If a = 1, then b must be 0, and any point is a fixed 
point. So suppose f(x) = ax + b and g(x) = ax + b' are in G. Then h the inverse of f is 
given by h(x) = x/a - b/a, and hg(x) = x + b'/a - b/a. This is in G, so we must have b' = b.  
Suppose f(x) = ax + b, and g(x) = cx + d are in G. Then fg(x) = acx + (ad + b), and gf(x) 
= acx + (bc + d). We must have ad + b = bc + d and hence b/(1-a) = c/(1-d), in other 
words f and g have the same fixed point.  
 
Problem B3  
a1, a2, ... , an are positive reals, and q satisfies 0 < q < 1. Find b1, b2, ... , bn such that:  
(a)  ai < bi for i = 1, 2, ... , n,  
(b)  q < bi+1/bi < 1/q for i = 1, 2, ... , n-1,  
(c)  b1 + b2 + ... + bn < (a1 + a2 + ... + an)(1 + q)/(1 - q).  
 
Solution  
We notice that the constraints are linear, in the sense that if bi is a solution for ai, q, and bi' 
is a solution for ai', q, then for any k, k' > 0 a solution for kai + k'ai', q is kbi + k'bi'. Also a 
"near" solution for ah = 1, other ai = 0 is b1 = qh-1, b2 = qh-2, ... , bh-1 = q, bh = 1, bh+1 = q, 
... , bn = qn-h. "Near" because the inequalities in (a) and (b) are not strict.  
However, we might reasonably hope that the inequalities would become strict in the linear 
combination, and indeed that is true. Define br = qr-1a1 + qr-2a2 + ... + qar-1 + ar + qar+1 + 
... + qn-ran. Then we may easily verify that (a) - (c) hold.  
 
IMO 1974 
 
Problem A1  
Three players play the following game. There are three cards each with a different positive 
integer. In each round the cards are randomly dealt to the players and each receives the 
number of counters on his card. After two or more rounds, one player has received 20, 
another 10 and the third 9 counters. In the last round the player with 10 received the 
largest number of counters. Who received the middle number on the first round?  
 
Solution  
The player with 9 counters.  
The total of the scores, 39, must equal the number of rounds times the total of the cards. 
But 39 has no factors except 1, 3, 13 and 39, the total of the cards must be at least 1 + 2 



+ 3 = 6, and the number of rounds is at least 2. Hence there were 3 rounds and the cards 
total 13.  
The highest score was 20, so the highest card is at least 7. The score of 10 included at least 
one highest card, so the highest card is at most 8. The lowest card is at most 2, because if 
it was higher then the highest card would be at most 13 - 3 - 4 = 6, whereas we know it is 
at least 7. Thus the possibilities for the cards are: 2, 3, 8; 2, 4, 7; 1, 4, 8; 1, 5, 7. But the 
only one of these that allows a score of 20 is 1, 4, 8. Thus the scores were made up: 8 + 8 
+ 4 = 20, 8 + 1 + 1 = 10, 4 + 4 + 1 = 9. The last round must have been 4 to the player 
with 20, 8 to the player with 10 and 1 to the player with 9. Hence on each of the other two 
rounds the cards must have been 8 to the player with 20, 1 to the player with 10 and 4 to 
the player with 9.  
 
Problem A2  
Prove that there is a point D on the side AB of the triangle ABC, such that CD is the 
geometric mean of AD and DB if and only if sin A sin B ≤ sin2(C/2)  
 
Solution  
Extend CD to meet the circumcircle of ABC at E. Then CD·DE = AD·DB, so CD is the 
geometric mean of AD and DB iff CD = DE. So we can find such a point iff the distance of C 
from AB is less than the distance of AB from the furthest point of the arc AB on the 
opposite side of AB to C. The furthest point F is evidently the midpoint of the arc AB. F lies 
on the angle bisector of C. So ∠FAB = ∠FAC = ∠C/2. Hence distance of F from AB is c/2 tan 
C/2 (as usual we set c = AB, b = CA, a = BC). The distance of C from AB is a sin B. So a 
necessary and sufficient condition is c/2 tan C/2 ≥ a sin B. But by the sine rule, a = c sin 
A/sin C, so the condition becomes (sin C/2 sin C)/(2 cos C/2) ≥ sin A sin B. But sin C = 2 
sin C/2 cos C/2, so we obtain the condition quoted in the question.  
 
Problem A3  
Prove that the sum from k = 0 to n of (2n+1)C(2k+1) 23k is not divisible by 5 for any non-
negative integer n. [rCs denotes the binomial coefficient r!/(s!(r-s)!) .]  
 
Solution  
Let k = √8. Then (1 + k)2n+1 = a + bk, where b is the sum given in the question. Similarly, 
(1 - k)2n+1 = a - bk. This looks like a dead end, because eliminating a gives an unhelpful 
expression for b. The trick is to multiply the two expressions to get 72n+1 = 8b2 - a2. This 
still looks unhelpful, but happens to work, because we soon find that 72n+1 ≠ ±2 (mod 5). 
So if b was a multiple of 5 then we would have a square congruent to ±2 (mod 5) which is 
impossible.  
 
Problem B1  
An 8 x 8 chessboard is divided into p disjoint rectangles (along the lines between squares), 
so that each rectangle has the same number of white squares as black squares, and each 
rectangle has a different number of squares. Find the maximum possible value of p and all 
possible sets of rectangle sizes.  
 
Solution  
The requirement that the number of black and white squares be equal is equivalent to 
requiring that the each rectangle has an even number of squares. 2 + 4 + 6 + 8 + 10 + 12 
+ 14 + 16 = 72 > 64, so p < 8. There are 5 possible divisions of 64 into 7 unequal even 
numbers: 2 + 4 + 6 + 8 + 10 + 12 + 22; 2 + 4 + 6 + 8 + 10 + 16 + 18; 2 + 4 + 6 + 8 + 
12 + 14 + 18; 2 + 4 + 6 + 10 + 12 + 14 + 16. The first is ruled out because a rectangle 
with 22 squares would have more than 8 squares on its longest side. The others are all 
possible.  
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Problem B2  
Determine all possible values of a/(a+b+d) + b/(a+b+c) + c/(b+c+d) + d/(a+c+d) for 
positive reals a, b, c, d.  
 
Solution  
We show first that the sum must lie between 1 and 2. If we replace each denominator by 
a+b+c+d then we reduce each term and get 1. Hence the sum is more than 1. Suppose a 
is the largest of the four reals. Then the first term is less than 1. The second and fourth 
terms have denominators greater than b+c+d, so the terms are increased if we replace the 
denominators by b+c+d. But then the last three terms sum to 1. Thus the sum of the last 
three terms is less than 1. Hence the sum is less than 2.  
If we set a = c = 1 and make b and d small, then the first and third terms can be made 
arbitarily close to 1 and the other two terms arbitarily close to 0, so we can make the sum 
arbitarily close to 2. If we set a = 1, c = d and make b and c/b arbitarily small, then the 
first term is arbitarily close to 1 and the last three terms are all arbitarily small, so we can 
make the sum arbitarily close to 1. Hence, by continuity, we can achieve any value in the 
open interval (1,2).  
 
Problem B3 
Let P(x) be a polynomial with integer coefficients of degree d > 0. Let n be the number of 
distinct integer roots to P(x) = 1 or -1. Prove that n ≤ d + 2.  
 
Solution 
Suppose that A(x) and B(x) are two polynomials with integer coefficients which are identical 
except for their constant terms, which differ by 2. Suppose A(r) = 0, and B(s) =0 with r 
and s integers. Then subtracting we get 2 plus a sum of terms a(ri - si). Each of these 
terms is divisible by (r - s), so 2 must be divisible by (r - s). Hence r and s differ by 0, 1 or 
2.  
Now let r be the smallest root of P(x) = 1 and P(x) = -1. The polynomial with r as a root 
can have at most d distinct roots and hence at most d distinct integer roots. If s is a root of 



the other equation then s must differ from r by 0, 1, or 2. But s ≥ r, so s = r, r+1 or r+2. 
Hence the other equation adds at most 2 distinct integer roots.  
 
IMO 1975 
 
Problem A1  
Let x1 ≥ x2 ≥ ... ≥ xn, and y1 ≥ y2 ≥ ... ≥ yn be real numbers. Prove that if zi is any 
permutation of the yi, then:  
      ∑1

n (xi - yi)2 ≤ ∑1
n (xi - zi)2.  

 
Solution  
If x ≥ x' and y ≥ y', then (x - y)2 + (x' - y')2 ≤ (x - y')2 + (x' - y)2. Hence if i < j, but zi ≤ 
zj, then swapping zi and zj reduces the sum of the squares. But we can return the order of 
the zi to yi by a sequence of swaps of this type: first swap 1 to the 1st place, then 2 to the 
2nd place and so on.  
 
Problem A2  
Let a1 < a2 < a3 < ... be positive integers. Prove that for every i >= 1, there are infinitely 
many an that can be written in the form an = rai + saj, with r, s positive integers and j > i.  
 
Solution  
We must be able to find a set S of infinitely many an in some residue class mod ai. Take aj 
to be a member of S. Then for any an in S satisfying an > aj, we have an = aj + a multiple of 
ai.  
 
Problem A3  
Given any triangle ABC, construct external triangles ABR, BCP, CAQ on the sides, so that 
∠PBC = 45o, ∠PCB = 30o, ∠QAC = 45o, ∠QCA = 30o, ∠RAB = 15o, ∠RBA = 15o. Prove that 
∠QRP = 90o and QR = RP.  
 
Solution  
Trigonometry provides a routine solution. Let BC = a, CA = b, AB = c. Then, by the sine 
rule applied to AQC, AQ = b/(2 sin 105o) = b/(2 cos 15o). Similarly, PB = a/(2 cos 15). Also 
AR = RB = c/(2 cos 15o). So by the cosine rule RP2 = (a2 + c2 - 2ac cos(B+60o))/(4 
cos215o), and RQ2 = (b2 + c2 - 2bc cos(A+60o))/(4 cos215o). So RP = RQ is equivalent to: 
a2 - 2ac cos(60o+B) = b2 - 2bc cos(60o+A) and hence to a2 - ac cos B + √3 ac sin B = b2 - 
bc cos A + √3 bc sin A. By the sine rule, the sine terms cancel. Also b - b cos A = a cos C, 
and a - c cos B = b cos C, so the last equality is true and hence RP = RQ. We get an exactly 
similar expression for PQ2 and show that it equals 2 RP2 in the same way.  
A more elegant solution is to construct S on the outside of AB so that ABS is equilateral. 
Then we find that CAS and QAR are similar and that CBS and PBR are similar. So QR/CS = 
PR/CS. The ratio of the sides is the same in each case (CA/QA = CB/PB since CQA and CPB 
are similar), so QR = PR. Also there is a 45o rotation between QAR and CAS and another 
45o rotation between CBS and PBR, hence QR and PR are at 90o.  
 
Problem B1  
Let A be the sum of the decimal digits of 44444444, and B be the sum of the decimal digits of 
A. Find the sum of the decimal digits of B.  
 
Solution  
Let X = 44444444.Then X has less than 4.4444 = 17776 digits, so A is at most 9.17776 = 
159984. Hence B is at most 6.9 = 54. But all these numbers are congruent mod 9. 4444 = 
-2 (mod 9), so X = (-2)4444 (mod 9). But (-2)3 = 1 (mod 9), and 4444 = 1 (mod 3), so X = 
-2 = 7 (mod 9). But any number less than 55 and congruent to 7 has digit sum 7 
(possibilities are 7, 16, 25, 34, 43, 52). Hence the answer is 7.  
 
Problem B2  
Find 1975 points on the circumference of a unit circle such that the distance between each 
pair is rational, or prove it impossible.  



Solution  
Let x be the angle cos-14/5, so that cos x = 4/5, sin x = 3/5. Take points on the unit circle 
at angles 2nx for n integral. Then the distance between the points at angles 2nx and 2mx is 
2 sin(n - m)x. The usual formula, giving sin(n - m)x in terms of sin x and cos x, shows that 
sin(n - m)x is rational. So it only remains to show that this process generates arbitarily 
many distinct points, in other words that x is not a rational multiple of π.  
This is quite hard. There is an elegant argument in sections 5 and 8 of Hadwiger et al, 
Combinatorial geometry in the Plane. But we can avoid it by observing that there are only 
finitely many numbers with are nth roots of unity for n ≤ 2 x 1975, whereas there are 
infinitely many Pythagorean triples, so we simply pick a triple which is not such a root of 
unity.  
 
Problem B3  
Find all polynomials P(x, y) in two variables such that:  
(1)  P(tx, ty) = tnP(x, y) for some positive integer n and all real t, x, y;  
(2)  for all real x, y, z: P(y + z, x) + P(z + x, y) + P(x + y, z) = 0;  
(3)  P(1, 0) = 1.  
 
Solution  
(1) means that P is homogeneous of degree n for some n. Experimenting with low n, shows 
that the only solutions for n = 1, 2, 3 are (x - 2y), (x + y)(x - 2y), (x + y)2(x - 2y). It then 
obvious by inspection that (x + y)n(x - 2y) is a solution for any n. Taking x = y = z in (2) 
shows that P(2x,x) = 0, so (x - 2y) is always a factor. Taking x = y = 1, z = -2 gives P(1,-
1) (2n - 2) = 0, so (x + y) is a factor for n > 1. All this suggests (but does not prove) that 
the general solution is (x + y)n(x - 2y).  
Take y = 1 - x, z = 0 in (2) and we get: P(x, 1-x) = -1 - P(1-x, x). In particular, P(0,1) = -
2. Now take z = 1 - x - y and we get: P(1-x, x) + P(1-y, y) + P(x+y, 1-x-y) = 0 and hence 
f(x+y) = f(x) + f(y), where f(x) = P(1-x, x) - 1. By induction we conclude that, for any 
integer m and real x, f(mx) = mf(x). Hence f(1/s) = 1/s f(1) and f(r/s) = r/s f(1) for any 
integers r, s. But P(0,1) = -2, so f(1) = -3. So f(x) = -3x for all rational x. But f is 
continuous, so f(x) = -3x for all x. So set x = b/(a+b), where a and b are arbitrary reals 
(with a+b non-zero). Then P(a,b) = (a+b)nP(1-x, x) = (a+b)n(-3b/(a+b) + 1) = (a+b)n-1(a-
2b), as claimed. [For a+b = 0, we appeal to continuity, or use the already derived fact that 
for n > 1, P(a,b) = 0.]  
 
IMO 1976 
 
Problem A1  
A plane convex quadrilateral has area 32, and the sum of two opposite sides and a diagonal 
is 16. Determine all possible lengths for the other diagonal.  
 
Solution  
At first sight, the length of the other diagonal appears unlikely to be significantly 
constrained. However, a little experimentation shows that it is hard to get such a low value 
as 16. This suggests that 16 may be the smallest possible value.  
If the diagonal which is part of the 16 has length x, then the area is the sum of the areas of 
two triangles base x, which is xy/2, where y is the sum of the altitudes of the two triangles. 
y must be at most (16 - x), with equality only if the two triangles are right-angled. But 
x(16 - x)/2 = (64 - (x - 8)2)/2 ≤ 32 with equality only iff x = 8. Thus the only way we can 
achieve the values given is with one diagonal length 8 and two sides perpendicular to this 
diagonal with lengths totalling 8. But in this case the other diagonal has length 8√2.  
 
Problem A2  
Let P1(x) = x2 - 2, and Pi+1 = P1(Pi(x)) for i = 1, 2, 3, ... . Show that the roots of Pn(x) = x 
are real and distinct for all n.  
 
Solution  
We show that the graph of Pn can be divided into 2n lines each joining the top and bottom 
edges of the square side 4 centered on the origin (vertices (2,2), (-2,2), (-2,-2), (-2,2) ). 



We are then home because the upward sloping diagonal of the square, which represents 
the graph of y = x, must cut each of these lines and hence give 2n distinct real roots of 
Pn(x) = x in the range [-2,2]. But Pn is a polynomial of degree 2n, so it has exactly 2n roots. 
Hence all its roots are real and distinct.  
We prove the result about the graph by induction. It is true for n = 1: the first line is the 
graph from x = -2 to 0, and the second line is the graph from 0 to 2. So suppose it is true 
for n. Then P1 turns each of the 2n lines for Pn into two lines for Pn+1, so the result is true for 
n+1.  
 
Problem A3 
A rectangular box can be completely filled with unit cubes. If one places as many cubes as 
possible, each with volume 2, in the box, with their edges parallel to the edges of the box, 
one can fill exactly 40% of the box. Determine the possible dimensions of the box.  
 
Solution 
Answer: 2 x 3 x 5 or 2 x 5 x 6.  
This is somewhat messy. The basic idea is that the sides cannot be too long, because then 
the ratio becomes too big. Let k denote the (real) cube root of 2. Given any integer n, let n' 
denote the least integer such that n'k <= n. Let the sides of the box be a ≤ b ≤ c. So we 
require 5a'b'c' = abc (*).  
It is useful to derive n' for small n: 1' = 0, 2' = 1, 3' = 2, 4' = 3, 5' = 3, 6' = 4, 7' = 5, 8' = 
6, 9' = 7, 10' = 7.  
Clearly n'k ≥ n-2. But 63 > 0.4 83, and hence (n'k)3 ≥ (n - 2)3 > 0.4 n3 for all n ≥ 8. We 
can check directly that (n'k)3 > 0.4 n3 for n = 3, 4, 5, 6, 7. So we must have a = 2 (we 
cannot have a = 1, because 1' = 0).  
From (*) we require b or c to be divisible by 5. Suppose we take it to be 5. Then since 5' = 
3, the third side n must satisfy: n' = 2/3 n. We can easily check that 2k/3 < 6/7 and hence 
(2/3 nk + 1 ) < n for n ≥ 7, so n' > 2/3 n for n ≥ 7. This just leaves the values n = 3 and n 
= 6 to check (since n' = 2/3 n is integral so n must be a multiple of 3). Referring to the 
values above, both these work. So this gives us two possible boxes: 2 x 3 x 5 and 2 x 5 x 
6.  
The only remaining possibility is that the multiple of 5 is at least 10. But then it is easy to 
check that if it is m then m'/m ≥ 7/10. It follows from (*) that the third side r must satisfy 
r'/r <= 4/7. But using the limit above and referring to the small values above, this implies 
that r must be 2. So a = b = 2. But now c must satisfy c' = 4/5 c. However, that is 
impossible because 4/5 k > 1.  
 
Problem B1  
Determine the largest number which is the product of positive integers with sum 1976.  
 
Solution  
Answer: 2·3658.  
There cannot be any integers larger than 4 in the maximal product, because for n > 4, we 
can replace n by 3 and n - 3 to get a larger product. There cannot be any 1s, because there 
must be an integer r > 1 (otherwise the product would be 1) and r + 1 > 1.r. We can also 
replace any 4s by two 2s leaving the product unchanged. Finally, there cannot be more 
than two 2s, because we can replace three 2s by two 3s to get a larger product. Thus the 
product must consist of 3s, and either zero, one or two 2s. The number of 2s is determined 
by the remainder on dividing the number 1976 by 3.  
1976 = 3·658 + 2, so there must be just one 2, giving the product 2·3658.    
 
Problem B2  
n is a positive integer and m = 2n. aij = 0, 1 or -1 for 1 ≤ i ≤ n, 1 ≤ j ≤ m. The m 
unknowns x1, x2, ... , xm satisfy the n equations:  
      ai1x1 + ai2x2 + ... + aimxm = 0,  
for i = 1, 2, ... , n. Prove that the system has a solution in integers of absolute value at 
most m, not all zero.  
 
Solution  



We use a counting argument. If the modulus of each xi is at most n, then each of the linear 
combinations has a value between -2n2 and 2n2, so there are at most (4n2 + 1) possible 
values for each linear combination and at most (2n2 + 1)n possible sets of values. But there 
are 2n+1 values for each xi with modulus at most n, and hence (2n+1)2n = (4n2+4n+1)n 
sets of values. So two distinct sets must give the same set of values for the linear 
combinations. But now if these sets are xi and xi', then the values xi-xi' give zero for each 
linear combination, and have modulus at most 2n. Moreover they are not all zero, since the 
two sets of values were distinct.  
 
Problem B3  
The sequence u0, u1, u2, ... is defined by: u0= 2, u1 = 5/2, un+1 = un(un-1

2 - 2) - u1 for n = 
1, 2, ... . Prove that [un] = 2(2n - (-1)n)/3, where [x] denotes the greatest integer less than or 
equal to x.  
 
Solution  
Experience with recurrence relations suggests that the solution is probably the value given 
for [un] plus its inverse. It is straightforward to verify this guess by induction.  
Squaring un-1 gives the sum of positive power of 2, its inverse and 2. So un-1 - 2 = the sum 
of a positive power of 2 and its inverse. Multiplying this by un gives a positive power of 2 + 
its inverse + 2 + 1/2, and we can check that the power of 2 is correct for un+1.  
 
IMO 1977 
 
Problem A1  
Construct equilateral triangles ABK, BCL, CDM, DAN on the inside of the square ABCD. 
Show that the midpoints of KL, LM, MN, NK and the midpoints of AK, BK, BL, CL, CM, DM, 
DN, AN form a regular dodecahedron.  
 
Solution  
The most straightforward approach is to use coordinates. Take A, B, C, D to be (1,1), (-
1,1), (-1,-1), (1,-1). Then K, L, M, N are (0, -2k), (2k, 0), (0, 2k), (-2k, 0), where k = (√3 
- 1)/2. The midpoints of KL, LM, MN, NK are (k, -k), (k, k), (-k, k), (-k, -k). These are all a 
distance k√2 from the origin, at angles 315, 45, 135, 225 respectively. The midpoints of 
AK, BK, BL, CL, CM, DM, DN, AN are (h, j), (-h, j), (-j, h), (-j, -h), (-h, -j), (h, -j), (j, -h), 
(j, h), where h = 1/2, j = (1 - 1/2 √3). These are also at a distance k√2 from the origin, at 
angles 15, 165, 105, 255, 195, 345, 285, 75 respectively. For this we need to consider the 
right-angled triangle sides k, h, j. The angle x between h and k has sin x = j/k and cos x = 
h/k. So sin 2x = 2 sin x cos x = 2hj/k2 = 1/2. Hence x = 15.  
So the 12 points are all at the same distance from the origin and at angles 15 + 30n, for n 
= 0, 1, 2, ... , 11. Hence they form a regular dodecagon.  
 
Problem A2  
In a finite sequence of real numbers the sum of any seven successive terms is negative, 
and the sum of any eleven successive terms is positive. Determine the maximum number 
of terms in the sequence.  
 
Solution  
Answer: 16. x1 + ... + x7 < 0, x8 + ... + x14 < 0, so x1 + ... + x14 < 0. But x4 + ... + x14 > 
0, so x1 + x2 + x3 < 0. Also x5 + ... + x11 < 0 and x1 + ... + x11 > 0, so x4 > 0. If there are 
17 or more elements then the same argument shows that x5, x6, x7 > 0. But x1 + ... + x7 < 
0, and x5 + ... + x11 < 0, whereas x1 + ... + x11 > 0, so x5 + x6 + x7 < 0. Contradiction.  
If we assume that there is a solution for n = 16 and that the sum of 7 consecutive terms is 
-1 and that the sum of 11 consecutive terms is 1, then we can easily solve the equations to 
get: 5, 5, -13, 5, 5, 5, -13, 5, 5, -13, 5, 5, 5, -13, 5, 5 and we can check that this works 
for 16.  
 
Problem A3  
Given an integer n > 2, let Vn be the set of integers 1 + kn for k a positive integer. A 
number m in Vn is called indecomposable if it cannot be expressed as the product of two 



members of Vn. Prove that there is a number in Vn which can be expressed as the product 
of indecomposable members of Vn in more than one way (decompositions which differ 
solely in the order of factors are not regarded as different).  
 
Solution  
Take a, b, c, d = -1 (mod n). The idea is to take abcd which factorizes as ab.cd or ac.bd. 
The hope is that ab, cd, ac, bd will not factorize in Vn. But a little care is needed, since this 
is not necessarily true.  
Try taking a = b = n - 1, c = d = 2n -1. a2 must be indecomposable because it is less than 
the square of the smallest element in Vn. If ac = 2n2 - 3n + 1 is decomposable, then we 
have kk'n + k + k' = 2n - 3 for some k, k' >= 1. But neither of k or k' can be 2 or more, 
because then the lhs is too big, and k = k' = 1 does not work unless n = 5. Similarly, if c2 is 
decomposable, then we have kk'n + k + k' = 4n - 4. k = k' = 1 only works for n = 2, but 
we are told n > 2. k = 1, k' = 2 does not work (it would require n = 7/2). k = 1, k' = 3 only 
works for n = 8. Other possibilities make the lhs too big.  
So if n is not 5 or 8, then we can take the number to be (n - 1)2(2n - 1)2, which factors as 
(n - 1)2 x (2n - 1)2 or as (n - 1)(2n - 1) x (n - 1)(2n - 1). This does not work for 5 or 8: 
16·81 = 36·36, but 36 decomposes as 6·6; 49·225 = 105·105, but 225 decomposes as 
9·25. For n = 5, we can use 3136 = 16·196 = 56·56. For n = 8, we can use 25921 = 
49·529 = 161·161.  
 
Problem B1  
Define f(x) = 1 - a cos x - b sin x - A cos 2x - B sin 2x, where a, b, A, B are real constants. 
Suppose that f(x) ≥ 0 for all real x. Prove that a2 + b2 ≤ 2 and A2 + B2 ≤ 1.  
 
Solution  
Take y so that cos y = a/√(a2 + b2), sin y = b/√(a2 + b2), and z so that cos 2z = A/√(A2 + 
B2), sin 2z = B/√(A2 + B2). Then f(x) = 1 - c cos(x - y) - C cos2(x - z), where c = √(a2 + 
b2), C = √(A2 + B2).  
f(z) + f(π + z) ≥ 0 gives C ≤ 1. f(y + π/4) + f(y - π/4) ≥ 0 gives c ≤ √2.  
 
Problem B2  
Let a and b be positive integers. When a2 + b2 is divided by a + b, the quotient is q and the 
remainder is r. Find all pairs a, b such that q2 + r = 1977.  
 
Solution  
a2 + b2 >= (a + b)2/2, so q ≥ (a + b)/2. Hence r < 2q. The largest square less than 1977 
is 1936 = 442. 1977 = 442 + 41. The next largest gives 1977 = 432 + 128. But 128 > 2.43. 
So we must have q = 44, r = 41. Hence a2 + b2 = 44(a + b) + 41, so (a - 22)2 + (b - 22)2 
= 1009. By trial, we find that the only squares with sum 1009 are 282 and 152. This gives 
two solutions 50, 37 or 50, 7.  
 
Problem B3  
The function f is defined on the set of positive integers and its values are positive integers. 
Given that f(n+1) > f(f(n)) for all n, prove that f(n) = n for all n.  
 
Solution  
The first step is to show that f(1) < f(2) < f(3) < ... . We do this by induction on n. We take 
Sn to be the statement that f(n) is the unique smallest element of { f(n), f(n+1), f(n+2), ... 
}. For m > 1, f(m) > f(s) where s = f(m-1), so f(m) is not the smallest member of the set 
{f(1), f(2), f(3), ... }. But the set is bounded below by zero, so it must have a smallest 
member. Hence the unique smallest member is f(1). So S1 is true.  
Suppose Sn is true. Take m > n+1. Then m-1 > n, so by Sn, f(m-1) > f(n). But Sn also tells 
us that f(n) > f(n-1) > ... > f(1), so f(n) ≥ n - 1 + f(1) ≥ n. Hence f(m-1) ≥ n+1. So f(m-
1) belongs to { n+1, n+2, n+3, .. }. But we are given that f(m) > f(f(m-1)), so f(m) is not 
the smallest element of { f(n+1), f(n+2), f(n+3), ... }. But there must be a smallest 
element, so f(n+1) must be the unique smallest member, which establishes Sn+1. So, Sn is 
true for all n.  



So n ≤ m implies f(n) <= f(m). Suppose for some m, f(m) ≥ m+1, then f(f(m)) ≥ f(m+1). 
Contradiction. Hence f(m) ≤ m for all m. But since f(1) ≥1 and f(m) > f(m-1) > ... > f(1), 
we also have f(m) ≥ m. Hence f(m) = m for all m.  
 
IMO 1978 
 
Problem A1  
m and n are positive integers with m < n. The last three decimal digits of 1978m are the 
same as the last three decimal digits of 1978n. Find m and n such that m + n has the least 
possible value.  
 
Solution  
We require 1978m(1978n-m - 1) to be a multiple of 1000=8·125. So we must have 8 divides 
1978m, and hence m ≥ 3, and 125 divides 1978n-m - 1.  
By Euler's theorem, 1978φ(125) = 1 (mod 125). φ(125) = 125 - 25 = 100, so 1978100 = 1 
(mod 125). Hence the smallest r such that 1978r = 1 (mod 125) must be a divisor of 100 
(because if it was not, then the remainder on dividing it into 100 would give a smaller r). 
That leaves 9 possibilities to check: 1, 2, 4, 5, 10, 20, 25, 50, 100. To reduce the work we 
quickly find that the smallest s such that 1978s = 1 (mod 5) is 4 and hence r must be a 
multiple of 4. That leaves 4, 20, 100 to examine.  
We find 9782 = 109 (mod 125), and hence 9784 = 6 (mod 125). Hence 97820 = 65 = 36·91 
= 26 (mod 125). So the smallest r is 100 and hence the solution to the problem is 3, 103.  
 
Problem A2  
P is a point inside a sphere. Three mutually perpendicular rays from P intersect the sphere 
at points U, V and W. Q denotes the vertex diagonally opposite P in the parallelepiped 
determined by PU, PV, PW. Find the locus of Q for all possible sets of such rays from P.  
 
Solution  
Suppose ABCD is a rectangle and X any point inside, then XA2 + XC2 = XB2 + XD2. This is 
most easily proved using coordinates. Take the origin O as the center of the rectangle and 
take OA to be the vector a, and OB to be b. Since it is a rectangle, |a| = |b|. Then OC is -a 
and OD is -b. Let OX be c. Then XA2 + XC2 = (a - c)2 + (a + c)2 = 2a2 + 2c2 = 2b2 + 2c2 = 
XB2 + XD2.  
Let us fix U. Then the plane k perpendicular to PU through P cuts the sphere in a circle 
center C. V and W must lie on this circle. Take R so that PVRW is a rectangle. By the result 
just proved CR2 = 2CV2 - CP2. OC is also perpendicular to the plane k. Extend it to X, so 
that CX = PU. Then extend XU to Y so that YR is perpendicular to k. Now OY2 = OX2 + XY2 
= OX2 + CR2 = OX2 + 2CV2 - CP2 = OU2 - UX2 + 2CV2 - CP2 = OU2 - CP2 + 2(OV2 - OC2) - 
CP2 = 3OU2 - 2OP2. Thus the locus of Y is a sphere.  
 
Problem A3  
The set of all positive integers is the union of two disjoint subsets {f(1), f(2), f(3), ... }, 
{g(1), g(2), g(3), ... }, where f(1) < f(2) < f(3) < ..., and g(1) < g(2) < g(3) < ... , and 
g(n) = f(f(n)) + 1 for n = 1, 2, 3, ... . Determine f(240).  
 
Solution  
Let F = {f(1), f(2), f(3), ... }, G = {g(1), g(2), g(3), ... }, Nn = {1, 2, 3, ... , n}. f(1) ≥ 1, 
so f(f(1)) ≥ 1 and hence g(1) ≥ 2. So 1 is not in G, and hence must be in F. It must be the 
smallest element of F and so f(1) = 1. Hence g(1) = 2. We can never have two successive 
integers n and n+1 in G, because if g(m) = n+1, then f(something) = n and so n is in F and 
G. Contradiction. In particular, 3 must be in F, and so f(2) = 3.  
Suppose f(n) = k. Then g(n) = f(k) + 1. So |Nf(k)+1 � G| = n. But |Nf(k)+1 � F| = k, so n + 
k = f(k) + 1, or f(k) = n + k - 1. Hence g(n) = n + k. So n + k + 1 must be in F and hence 
f(k+1) = n + k + 1. This so given the value of f for n we can find it for k and k+1.  
Using k+1 each time, we get, successively, f(2) = 3, f(4) = 6, f(7) = 11, f(12) = 19, f(20) 
= 32, f(33) = 53, f(54) = 87, f(88) = 142, f(143) = 231, f(232) = 375, which is not much 
help. Trying again with k, we get: f(3) = 4, f(4) = 6, f(6) = 9, f(9) = 14, f(14) = 22, f(22) 
= 35, f(35) = 56, f(56) = 90, f(90) = 145, f(145) = 234. Still not right, but we can try 



backing up slightly and using k+1: f(146) = 236. Still not right, we need to back up 
further: f(91) = 147, f(148) = 239, f(240) = 388.  
 
Problem B1  
In the triangle ABC, AB = AC. A circle is tangent internally to the circumcircle of the triangle 
and also to AB, AC at P, Q respectively. Prove that the midpoint of PQ is the center of the 
incircle of the triangle.  
 
Solution  
It is not a good idea to get bogged down in complicated formulae for the various radii. The 
solution is actually simple.  
By symmetry the midpoint, M, is already on the angle bisector of A, so it is sufficient to 
show it is on the angle bisector of B. Let the angle bisector of A meet the circumcircle again 
at R. AP is a tangent to the circle touching AB at P, so ∠ PRQ = ∠ APQ = ∠ ABC. Now the 
quadrilateral PBRM is cyclic because the angles PBR, PMR are both 90o. Hence ∠ PBM = ∠ 
PRM = (∠ PRQ)/2, so BM does indeed bisect angle B as claimed.  
 
Problem B2  
{ak} is a sequence of distinct positive integers. Prove that for all positive integers n, ∑1

n 
ak/k2 ≥ ∑1

n 1/k.  
 
Solution  
We use the general rearrangement result: given b1 ≥ b2 ≥ ... ≥ bn, and c1 ≤ c2 ≤ ... ≤ cn, if 
{ai} is a permutation of {ci}, then ∑ aibi ≥ ∑ cibi. To prove it, suppose that i < j, but ai > aj. 
Then interchanging ai and aj does not increase the sum, because (ai - aj)(bi - bj) ≥ 0, and 
hence aibi + ajbj ≥ ajbi + aibj. By a series of such interchanges we transform {ai} into {ci} 
(for example, first swap c1 into first place, then c2 into second place and so on).  
Hence we do not increase the sum by permuting {ai} so that it is in increasing order. But 
now we have ai > i, so we do not increase the sum by replacing ai by i and that gives the 
sum from 1 to n of 1/k.  
 
Problem B3  
An international society has its members from six different countries. The list of members 
has 1978 names, numbered 1, 2, ... , 1978. Prove that there is at least one member whose 
number is the sum of the numbers of two members from his own country, or twice the 
number of a member from his own country.  
 
Solution  
The trick is to use differences.  
At least 6.329 = 1974, so at least 330 members come from the same country, call it C1. 
Let their numbers be a1 < a2 < ... < a330. Now take the 329 differences a2 - a1, a3 - a1, ... , 
a330 - a1. If any of them are in C1, then we are home, so suppose they are all in the other 
five countries.  
At least 66 must come from the same country, call it C2. Write the 66 as b1 < b2 < ... < 
b66. Now form the 65 differences b2 - b1, b3 - b1, ... , b66 - b1. If any of them are in C2, then 
we are home. But each difference equals the difference of two of the original ais, so if it is 
in C1 we are also home.  
So suppose they are all in the other four countries. At least 17 must come from the same 
country, call it C3. Write the 17 as c1 < c2 < ... < c17. Now form the 16 differences c2 - c1, 
c3 - c1, ... , c17 - c1. If any of them are in C3, we are home. Each difference equals the 
difference of two bis, so if any of them are in C2 we are home. [For example, consider ci - 
c1. Suppose ci = bn - b1 and c1 = bm - b1, then ci - c1 = bn - bm, as claimed.]. Each 
difference also equals the difference of two ais, so if any of them are in C1, we are also 
home. [For example, consider ci - c1, as before. Suppose bn = aj - a1, bm = ak - a1, then ci - 
c1 = bn - bm = aj - ak, as claimed.]  
So suppose they are all in the other three countries. At least 6 must come from the same 
country, call it C4. We look at the 5 differences and conclude in the same way that at least 
3 must come from C5. Now the 2 differences must both be in C6 and their difference must 
be in one of the C1, ... , C6 giving us the required sum.  



Internationale Mathematikolympiade 
 
IMO 1979 
 
Problem A1 
Let m and n be positive integers such that:  
      m/m = 1 - 1/2 + 1/3 - 1/4 + ... - 1/1318 + 1/1319.  
Prove that m is divisible by 1979.  
 
Solution 
This is difficult.  
The obvious step of combining adjacent terms to give 1/(n(n+1) is unhelpful. The trick is to 
separate out the negative terms:  
    1 - 1/2 + 1/3 - 1/4 + ... - 1/1318 + 1/1319 = 1 + 1/2 + 1/3 + ... + 1/1319 - 2(1/2 + 
1/4 + ... + 1/1318) = 1/660 + 1/661 + ... + 1/1319.  
and to notice that 660 + 1319 = 1979. Combine terms in pairs from the outside:  
    1/660 + 1/1319 = 1979/(660.1319); 1/661 + 1/1318 = 1979/(661.1318) etc.  
There are an even number of terms, so this gives us a sum of terms 1979/m with m not 
divisible by 1979 (since 1979 is prime and so does not divide any product of smaller 
numbers). Hence the sum of the 1/m gives a rational number with denominator not 
divisible by 1979 and we are done.  
 
Problem A2  
A prism with pentagons A1A2A3A4A5 and B1B2B3B4B5 as the top and bottom faces is given. 
Each side of the two pentagons and each of the 25 segments AiBj is colored red or green. 
Every triangle whose vertices are vertices of the prism and whose sides have all been 
colored has two sides of a different color. Prove that all 10 sides of the top and bottom 
faces have the same color.  
 
Solution  
We show first that the Ai are all the same color. If not then, there is a vertex, call it A1, with 
edges A1A2, A1A5 of opposite color. Now consider the five edges A1Bi. At least three of them 
must be the same color. Suppose it is green and that A1A2 is also green. Take the three 
edges to be A1Bi, A1Bj, A1Bk. Then considering the triangles A1A2Bi, A1A2Bj, A1A2Bk, the three 
edges A2Bi, A2Bj, A2Bk must all be red. Two of Bi, Bj, Bk must be adjacent, but if the 
resulting edge is red then we have an all red triangle with A2, whilst if it is green we have 
an all green triangle with A1. Contradiction. So the Ai are all the same color. Similarly, the 
Bi are all the same color. It remains to show that they are the same color. Suppose 
otherwise, so that the Ai are green and the Bi are red.  
Now we argue as before that 3 of the 5 edges A1Bi must be the same color. If it is red, then 
as before 2 of the 3 Bi must be adjacent and that gives an all red triangle with A1. So 3 of 
the 5 edges A1Bi must be green. Similarly, 3 of the 5 edges A2Bi must be green. But there 
must be a Bi featuring in both sets and it forms an all green triangle with A1 and A2. 
Contradiction. So the Ai and the Bi are all the same color.  
 
Problem A3  
Two circles in a plane intersect. A is one 
of the points of intersection. Starting 
simultaneously from A two points move 
with constant speed, each traveling 
along its own circle in the same sense. 
The two points return to A 
simultaneously after one revolution. 
Prove that there is a fixed point P in the 
plane such that the two points are 
always equidistant from P.  
 
Solution  



Let the circles have centers O, O' and let the moving points by X, X. Let P be the reflection 
of A in the perpendicular bisector of OO'. We show that triangles POX, X'O'P are congruent. 
We have OX = OA (pts on circle) = O'P (reflection). Also OP = O'A (reflection) = O'X' (pts 
on circle). Also ∠ AOX = ∠ AO'X' (X and X' circle at same rate), and ∠ AOP = ∠ AO'P 
(reflection), so ∠ POX = ∠ PO'X'. So the triangles are congruent. Hence PX = PX'.  
 
Problem B1  
Given a plane k, a point P in the plane and a point Q not in the plane, find all points R in k 
such that the ratio (QP + PR)/QR is a maximum.  
 
Solution  
Consider the points R on a circle center P. Let X be the foot of the perpendicular from Q to 
k. Assume P is distinct from X, then we minimise QR (and hence maximise (QP + PR)/QR) 
for points R on the circle by taking R on the line PX. Moreover, R must lie on the same side 
of P as X. Hence if we allow R to vary over k, the points maximising (QP + PR)/QR must lie 
on the ray PX. Take S on the line PX on the opposite side of P from X so that PS = PQ. Then 
for points R on the ray PX we have (QP + PR)/QR = SR/QR = sin RQS/sin QSR. But sin QSR 
is fixed for points on the ray, so we maximise the ratio by taking ∠ RQS = 90o. Thus there 
is a single point maximising the ratio.  
If P = X, then we still require ∠ RQS = 90o, but R is no longer restricted to a line, so it can 
be anywhere on a circle center P.  
 
Problem B2  
Find all real numbers a for which there exist non-negative real numbers x1, x2, x3, x4, x5 
satisfying:  
  x1 + 2x2 + 3x3 + 4x4 + 5x5 = a,  
  x1 + 23x2 + 33x3 + 43x4 + 53x5 = a2,  
  x1 + 25x2 + 35x3 + 45x4 + 55x5 = a3.  
 
Solution  
Take a2 x 1st equ - 2a x 2nd equ + 3rd equ. The rhs is 0. On the lhs the coefficient of xn is 
a2n - 2an3 + n5 = n(a - n2)2. So the lhs is a sum of non-negative terms. Hence each term 
must be zero separately, so for each n either xn = 0 or a = n2. So there are just 5 solutions, 
corresponding to a = 1, 4, 9, 16, 25. We can check that each of these gives a solution. [For 
a = n2, xn = n and the other xi are zero.]  
 
Problem B3  
Let A and E be opposite vertices of an octagon. A frog starts at vertex A. From any vertex 
except E it jumps to one of the two adjacent vertices. When it reaches E it stops. Let an be 
the number of distinct paths of exactly n jumps ending at E. Prove that:  
      a2n-1 = 0  
      a2n = (2 + √2)n-1/√2 - (2 - √2)n-1/√2.  
 
Solution  
Each jump changes the parity of the shortest distance to E. The parity is initially even, so 
an odd number of jumps cannot end at E. Hence a2n-1 = 0.  
We derive a recurrence relation for a2n. This is not easy to do directly, so we introduce bn 
which is the number of paths length n from C to E. Then we have immediately:  
    a2n = 2a2n-2 + 2b2n-2 for n > 1  
    b2n = 2b2n-2 + a2n-2 for n > 1  
Hence, using the first equation: a2n - 2a2n-2 = 2a2n-2 - 4a2n-4 + 2b2n-2 - 4b2n-4 for n > 2. Using 
the second equation, this leads to: a2n = 4a2n-2 - 2a2n-4 for n > 2. This is a linear recurrence 
relation with the general solution: a2n = a(2 + √2)n-1 + b(2 - √2)n-1. But we easily see 
directly that a4 = 2, a6 = 8 and we can now solve for the coefficients to get the solution 
given.  



IMO 1981 
 
Problem A1  
P is a point inside the triangle ABC. D, E, F are the feet of the perpendiculars from P to the 
lines BC, CA, AB respectively. Find all P which minimise:  
        BC/PD + CA/PE + AB/PF.  
 
Solution  
We have PD.BC + PE.CA + PF.AB = 2 area of triangle. Now use Cauchy's inequality with x1 
= √(PD·BC), x2 = √(PE·CA), x3 = √(PF·AB), and y1 = √(BC/PD), y2 = √(CA/PE), y3 = 
√(AB/PF). We get that (BC + CA + AB)2 < 2 x area of triangle x (BC/PD + CA/PE + AB/PF) 
with equality only if xi/yi = const, ie PD = PE = PF. So the unique minimum position for P is 
the incenter.  
 
Problem A2  
Take r such that 1 ≤ r ≤ n, and consider all subsets of r elements of the set {1, 2, ... , n}. 
Each subset has a smallest element. Let F(n,r) be the arithmetic mean of these smallest 
elements. Prove that:  
        F(n,r) = (n+1)/(r+1).  
 
Solution  
Denote the binomial coefficient n!/(r!(n-r)!) by nCr.  
Evidently nCr F(n,r) = 1 (n-1)C(r-1) + 2 (n-2)C(r-1) + ... + (n-r+1) (r-1)C(r-1). [The first 
term denotes the contribution from subsets with smallest element 1, the second term 
smallest element 2 and so on.]  
Let the rhs be g(n,r). Then, using the relation (n-i)C(r-1) - (n-i-1)C(r-2) = (n-i-1)C(r-1), 
we find that g(n,r) - g(n-1,r-1) = g(n-1,r), and we can extend this relation to r=1 by taking 
g(n,0) = n+1 = (n+1)C1. But g(n,1) = 1 + 2 + ... + n = n(n+1)/2 = (n+1)C2. So it now 
follows by an easy induction that g(n,r) = (n+1)C(r+1) = nCr (n+1)/(r+1). Hence F(n,r) = 
(n+1)/(r+1).  
 
Problem A3  
Determine the maximum value of m2 + n2, where m and n are integers in the range 1, 2, 
... , 1981 satisfying (n2 - mn - m2)2 = 1.  
 
Solution  
Experimenting with small values suggests that the solutions of n2 - mn - m2 = 1 or -1 are 
successive Fibonacci numbers. So suppose n > m is a solution. This suggests trying m+n, 
n: (m+n)2 - (m+n)n - n2 = m2 + mn - n2 = -(n2 - mn - m2) = 1 or -1. So if n > m is a 
solution, then m+n, n is another solution. Running this forward from 2,1 gives 3,2; 5,3; 
8,5; 13,8; 21,13; 34,21; 55,34; 89,55; 144,89; 233,144; 377,233; 610,377; 987,610; 
1597,987; 2584,1597.  
But how do we know that there are no other solutions? The trick is to run the recurrence 
the other way. For suppose n > m is a solution, then try m, n-m: m2 - m(n-m) - (n-m)2 = 
m2 + mn - n2 = -(n2 - mn - m2) = 1 or -1, so that also satisfies the equation. Also if m > 1, 
then m > n-m (for if not, then n >= 2m, so n(n - m) >= 2m2, so n2 - nm - m2 >= m2 > 1). 
So given a solution n > m with m > 1, we have a smaller solution m > n-m. This process 
must eventually terminate, so it must finish at a solution n, 1 with n > 1. But the only such 
solution is 2, 1. Hence the starting solution must have been in the forward sequence from 
2, 1.  
Hence the solution to the problem stated is 15972 + 9872.  
 
Problem B1  
(a)  For which n > 2 is there a set of n consecutive positive integers such that the largest 
number in the set is a divisor of the least common multiple of the remaining n - 1 
numbers?  
(b)  For which n > 2 is there exactly one set having this property?  
 
Solution  



(a)  n = 3 is not possible. For suppose x was the largest number in the set. Then x cannot 
be divisible by 3 or any larger prime, so it must be a power of 2. But it cannot be a power 
of 2, because 2m - 1 is odd and 2m - 2 is not a positive integer divisible by 2m.  
For k ≥ 2, the set 2k-1, 2k , ... , 4k-2 gives n = 2k. For k ≥ 3, so does the set 2k-5, 2k-4, 
... , 4k-6. For k ≥ 2, the set 2k-2, 2k-3, ... , 4k-2 gives n = 2k+1. For k ≥ 4 so does the 
set 2k-6,2k-5, ... , 4k-6. So we have at least one set for every n ≥ 4, which answers (a).  
(b)  We also have at least two sets for every n ≥ 4 except possibly n = 4, 5, 7. For 5 we 
may take as a second set: 8, 9, 10, 11, 12, and for 7 we may take 6, 7, 8, 9 ,10, 11, 12. 
That leaves n = 4. Suppose x is the largest number in a set with n =4. x cannot be divisible 
by 5 or any larger prime, because x-1, x-2, x-3 will not be. Moreover, x cannot be divisible 
by 4, because then x-1 and x-3 will be odd, and x-2 only divisible by 2 (not 4). Similarly, it 
cannot be divisible by 9. So the only possibilities are 1, 2, 3, 6. But we also require x ≥ 4, 
which eliminates the first three. So the only solution for n = 4 is the one we have already 
found: 3, 4, 5, 6.  
 
Problem B2  
Three circles of equal radius have a common point O and lie inside a given triangle. Each 
circle touches a pair of sides of the triangle. Prove that the incenter and the circumcenter of 
the triangle are collinear with the point O.  
 
Solution  
Let the triangle be ABC. Let the center of the circle touching AB and AC be D, the center of 
the circle touching AB and BC be E, and the center of the circle touching AC and BC be F. 
Because the circles center D and E have the same radius the perpendiculars from D and E 
to AB have the same length, so DE is parallel to AB. Similarly EF is parallel to BC and FD is 
parallel to CA. Hence DEF is similar and similarly oriented to ABC. Moreover D must lie on 
the angle bisector of A since the circle center D touches AB and AC. Similarly E lies on the 
angle bisector of B and F lies on the angle bisector of C. Hence the incenter I of ABC is also 
the incenter of DEF and acts as a center of symmetry so that corresponding points P of ABC 
and P' of DEF lie on a line through I with PI/P'I having a fixed ratio. But OD = OE = OF 
since the three circles have equal radii, so O is the circumcenter of DEF. Hence it lies on a 
line with I and the circumcenter of ABC.  
 
Problem B3  
The function f(x,y) satisfies: f(0,y) = y + 1, f(x+1,0) = f(x,1), f(x+1,y+1) = f(x,f(x+1,y)) 
for all non-negative integers x, y. Find f(4, 1981).  
 
Solution  
f(1,n) = f(0,f(1,n-1)) = 1 + f(1,n-1). So f(1,n) = n + f(1,0) = n + f(0,1) = n + 2.  
f(2,n) = f(1,f(2,n-1)) = f(2,n-1) + 2. So f(2,n) = 2n + f(2,0) = 2n + f(1,1) = 2n + 3.  
f(3,n) = f(2,f(3,n-1)) = 2f(3,n-1) + 3. Let un = f(3,n) + 3, then un = 2un-1. Also u0 = f(3,0) 
+ 3 = f(2,1) + 3 = 8. So un = 2n+3, and f(3,n) = 2n+3 - 3.  
f(4,n) = f(3,f(4,n-1)) = 2f(4,n-1)+3 - 3. f(4,0) = f(3,1) = 24 - 3 = 13. We calculate two more 
terms to see the pattern: f(4,1) = 224 - 3, f(4,2) = 2224 - 3. In fact it looks neater if we 
replace 4 by 22, so that f(4,n) is a tower of n+3 2s less 3.  
 
IMO 1982 
 
Problem A1  
The function f(n) is defined on the positive integers and takes non-negative integer values. 
f(2) = 0, f(3) > 0, f(9999) = 3333 and for all m, n:  
      f(m+n) - f(m) - f(n) = 0 or 1.  
Determine f(1982).  
 
Solution  
We show that f(n) = [n/3] for n <= 9999, where [ ] denotes the integral part.  
We show first that f(3) = 1. f(1) must be 0, otherwise f(2) - f(1) - f(1) would be negative. 
Hence f(3) = f(2) + f(1) + 0 or 1 = 0 or 1. But we are told f(3) > 0, so f(3) = 1. It follows 
by induction that f(3n) ≥ n. For f(3n+3) = f(3) + f(3n) + 0 or 1 = f(3n) + 1 or 2. Moreover 



if we ever get f(3n) > n, then the same argument shows that f(3m) > m for all m > n. But 
f(3.3333) = 3333, so f(3n) = n for all n <= 3333.  
Now f(3n+1) = f(3n) + f(1) + 0 or 1 = n or n + 1. But 3n+1 = f(9n+3) ≥ f(6n+2) + 
f(3n+1) ≥ 3f(3n+1), so f(3n+1) < n+1. Hence f(3n+1) = n. Similarly, f(3n+2) = n. In 
particular f(1982) = 660.  
 
Problem A2 
A non-isosceles triangle A1A2A3 has sides a1, a2, a3 with ai opposite Ai. Mi is the midpoint of 
side ai and Ti is the point where the incircle touches side ai. Denote by Si the reflection of Ti 
in the interior bisector of ∠ Ai. Prove that the lines M1S1, M2S2 and M3S3 are concurrent.  
   
Solution 
Let Bi be the point of intersection of the interior angle bisector of the angle at Ai with the 
opposite side. The first step is to figure out which side of Bi Ti lies. Let A1 be the largest 
angle, followed by A2. Then T2 lies between A1 and B2, T3 lies between A1 and B3, and T1 lies 
between A2 and B1. For ∠ OB2A1 = 180o - A1 - A2/2 = A3 + A2/2. But A3 + A2/2 < A1 + A2/2 
and their sum is 180o, so A3 + A2/2 < 90o. Hence T2 lies between A1 and B2. Similarly for 
the others.  
Let O be the center of the incircle. Then ∠ T1OS2 = ∠ T1OT2 - 2 ∠ T2OB2 = 180o - A3 - 2(90o 
- ∠ OB2T2) = 2(A3 + A2/2) - A3 = A2 + A3. A similar argument shows ∠ T1OS3 = A2 + A3. 
Hence S2S3 is parallel to A2A3.  
Now ∠ T3OS2 = 360o - ∠ T3OT1 - ∠ T1OS2 = 360o - (180o - A2) - (A2 + A3) = 180o - A3 = A1 
+ A2. ∠ T3OS1 = ∠ T3OT1 + 2 ∠ T1OB1 = (180o - A2) + 2(90o - ∠ OB1T1) = 360o - A2 - 2(A3 
+ A1/2) = 2(A1 + A2 + A3) - A2 - 2A3 - A1 = A1 + A2 = ∠ T3OS2. So S1S2 is parallel to A1A2. 
Similarly we can show that S1S3 is parallel to A1A3.  
So S1S2S3 is similar to A1A2A3 and turned through 180o. But M1M2M3 is also similar to A1A2A3 
and turned through 180o. So S1S2S3 and M1M2M3 are similar and similarly oriented. Hence 
the lines through corresponding vertices are concurrent.  
 
Problem A3  
Consider infinite sequences {xn} of positive reals such that x0 = 1 and x0 ≥= x1 ≥ x2 ≥ ... .  
(a)  Prove that for every such sequence there is an n ≥ 1 such that:  
      x0

2/x1 + x1
2/x2 + ... + xn-1

2/xn ≥ 3.999.  
(b)  Find such a sequence for which:  
      x0

2/x1 + x1
2/x2 + ... + xn-1

2/xn < 4   for all n.  
 
Solution  
(a)  It is sufficient to show that the sum of the (infinite) sequence is at least 4. Let k be the 
greatest lower bound of the limits of all such sequences. Clearly k ≥ 1. Given any ε > 0, we 
can find a sequence {xn} with sum less than k + ε. But we may write the sum as:  
x0

2/x1 + x1( (x1/x1)2/(x2/x1) + (x2/x1)2/(x3/x1) + ... + (xn/x1)2/(xn+1/x1) + ... ).  
The term in brackets is another sum of the same type, so it is at least k. Hence k + ε > 
1/x1 + x1k. This holds for all ε > 0, and so k ≥ 1/x1 + x1k. But 1/x1 + x1k ≥ 2√k, so k ≥ 4.  
(b)  Let xn = 1/2n. Then x0

2/x1 + x1
2/x2 + ... + xn-1

2/xn = 2 + 1 + 1/2 + ... + 1/2n-2 = 4 - 
1/2n-2 < 4.  
 
Problem B1  
Prove that if n is a positive integer such that the equation  
      x3 - 3xy2 + y3 = n  
has a solution in integers x, y, then it has at least three such solutions. Show that the 
equation has no solutions in integers for n = 2891.  
 
Solution  
If x, y is a solution then so is y-x, -x. Hence also -y, x-y. If the first two are the same, then 
y = -x, and x = y-x = -2x, so x = y = 0, which is impossible, since n > 0. Similarly, if any 
other pair are the same.  
2891 = 2 (mod 9) and there is no solution to x3 - 3xy2 + y3 = 2 (mod 9). The two cubes 
are each -1, 0 or 1, and the other term is 0, 3 or 6, so the only solution is to have the 
cubes congruent to 1 and -1 and the other term congruent to 0. But the other term cannot 



be congruent to 0, unless one of x, y is a multiple of 3, in which case its cube is congruent 
to 0, not 1 or -1.  
 
Problem B2  
The diagonals AC and CE of the regular hexagon ABCDEF are divided by inner points M and 
N respectively, so that:       AM/AC = CN/CE = r.  
Determine r if B, M and N are collinear.  
 
Solution  
For an inelegant solution one can use coordinates. The advantage of this type of approach 
is that it is quick and guaranteed to work! Take A as (0,√3), B as (1,√3), C as (3/2,√3/2, 
D as (1,0). Take the point X, coordinates (x,0), on ED. We find where the line BX cuts AC 
and CE. The general point on BX is (k + (1-k)x,k√3). If this is also the point M with AM/AC 
= r then we have: k + (1-k)x = 3r/2, k√3 = (1-r)√3 + r√3/2. Hence k = 1 - r/2, r = 2/(4-
x). Similarly, if it is the point N with CN/CE = r, then k + (1-k)x = 3(1-r)/2, k√3 = (1-
r)√3/2. Hence k = (1-r)/2 and r = (2-x)/(2+x). Hence for the ratios to be equal we require 
2/(4-x) = (2-x)/(2+x), so x2 - 8x + 4 = 0. We also have x < 1, so x = 4 - √12. This gives r 
= 1/√3.  
A more elegant solution uses the ratio theorem for the triangle EBC. We have CM/MX XB/BE 
EN/NC = -1. Hence (1-r)/(r - 1/2) (-1/4) (1-r)/r = -1. So r = 1/√3.  
 
Problem B3  
Let S be a square with sides length 100. Let L be a path within S which does not meet itself 
and which is composed of line segments A0A1, A1A2, A2A3, ... , An-1An with A0 = An. Suppose 
that for every point P on the boundary of S there is a point of L at a distance from P no 
greater than 1/2. Prove that there are two points X and Y of L such that the distance 
between X and Y is not greater than 1 and the length of the part of L which lies between X 
and Y is not smaller than 198.  
 
Solution  
Let the square be A'B'C'D'. The idea is to find points of L close to a particular point of A'D' 
but either side of an excursion to B'.  
We say L approaches a point P' on the boundary of the square if there is a point P on L with 
PP' ≤ 1/2. We say L approaches P' before Q' if there is a point P on L which is nearer to A0 
(the starting point of L) than any point Q with QQ' ≤ 1/2.  
Let A' be the first vertex of the square approached by L. L must subsequently approach 
both B' and D'. Suppose it approaches B' first. Let B be the first point on L with BB' ≤ 1/2. 
We can now divide L into two parts L1, the path from A0 to B, and L2, the path from B to An.  
Take X' to be the point on A'D' closest to D' which is approached by L1. Let X be the 
corresponding point on L1. Now every point on X'D' must be approached by L2 (and X'D' is 
non-empty, because we know that D' is approached by L but not by L1). So by compactness 
X' itself must be approached by L2. Take Y to be the corresponding point on L2. XY ≤ XX' + 
X'Y ≤ 1/2 + 1/2 = 1. Also BB' ≤ 1/2, so XB ≥ X'B' - XX' - BB' ≥ X'B' - 1 ≥ A'B' - 1 = 99. 
Similarly YB ≥ 99, so the path XY ≥ 198.  
 
IMO 1983 
 
Problem A1  
Find all functions f defined on the set of positive reals which take positive real values and 
satisfy:  
  f(x(f(y)) = yf(x) for all x, y; and f(x) → 0 as x → ∞.  
 
Solution  
If f(k) = 1, then f(x) = f(xf(k)) = kf(x), so k =1. Let y = 1/f(x) and set k = xf(y), then f(k) 
= f(xf(y)) = yf(x) = 1. Hence f(1) = 1 and f(1/f(x)) = 1/x. Also f(f(y)) = f(1f(y)) = y. 
Hence f(1/x) = 1/f(x). Finally, let z = f(y), so that f(z) = y. Then f(xy) = f(xf(z)) = zf(x) = 
f(x)f(y).  
Now notice that f(xf(x)) = xf(x). Let k = xf(x). We show that k = 1. f(k2) = f(k)f(k) = k2 
and by a simple induction f(kn) = kn, so we cannot have k > 1, or f(x) would not tend to 0 



as x tends to infinity. But f(1/k) = 1/k and the same argument shows that we cannot have 
1/k > 1. Hence k = 1.  
So the only such function f is f(x) = 1/x.  
 
Problem A2  
Let A be one of the two distinct points of intersection of two unequal coplanar circles C1 and 
C2 with centers O1 and O2 respectively. One of the common tangents to the circles touches 
C1 at P1 and C2 at P2, while the other touches C1 at Q1 and C2 at Q2. Let M1 be the midpoint 
of P1Q1 and M2 the midpoint of P2Q2. Prove that ∠ O1AO2 = ∠ M1AM2.  
 
Solution  
Let P1P2 and O1O2 meet at O. Let OA meet C2 again at A2. O is the center of similitude for C1 
and C2 so ∠ M1AO1 = ∠ M2A2O2. Hence if we can show that ∠ M2AO2 = ∠ M2A2O2, then we 
are home.  
Let X be the other point of intersection of the two circles. The key is to show that A2, M2 
and X are collinear, for then ∠ M2AO2 = ∠ M2XO2 (by reflection) and O2A2X is isosceles.  
But since O is the center of similitude, M2A2 is parallel to M1A, and by reflection ∠ XM2O = ∠ 
AM2O, so we need to show that triangle AM1M2 is isosceles. Extend XA to meet P1P2 at Y. 
Then YP1

2 = YA.YX = YP2
2, so YX is the perpendicular bisector of M1M2, and hence AM1 = 

AM2 as required.  
 
Problem A3  
Let a , b and c be positive integers, no two of which have a common divisor greater than 1. 
Show that 2abc - ab - bc - ca is the largest integer which cannot be expressed in the form 
xbc + yca + zab, where x, y, z are non-negative integers.  
 
Solution  
We start with the lemma that bc - b - c is the largest number which cannot be written as 
mb + nc with m and n non-negative. [Proof: 0, c, 2c, ... , (b-1)c is a complete set of 
residues mod b. If r > (b-1)c - b, then r = nc (mod b) for some 0 ≤ n ≤ b-1. But r > nc - b, 
so r = nc + mb for some m ≥ 0. That proves that every number larger than bc - b - c can 
be written as mb + nc with m and n non-negative. Now consider bc - b - c. It is (b-1)c 
(mod b), and not congruent to any nc with 0 ≤ n < b-1. So if bc - b - c = mb + nc, then n 
≥ b-1. Hence mb + nc ≥ nc ≥ (b-1)c > bc - b - c. Contradiction.]  
0, bc, 2bc, ... , (a-1)bc is a complete set of residues mod a. So given N > 2abc - ab - bc - 
ca we may take xbc = N (mod a) with 0 <= x < a. But N - xbc > 2abc - ab - bc - ca - (a-
1)bc = abc - ab - ca = a(bc - b - c). So N - xbc = ka, with k > bc - b - c. Hence we can find 
non-negative y, z so that k = zb + yc. Hence N = xbc + yca + zab.  
Finally, we show that for N = 2abc - ab - bc - ca we cannot find non-negative x, y, z so that 
N = xbc + yca + zab. N = -bc (mod a), so we must have x = -1 (mod a) and hence x ≥ a-
1. Similarly, y ≥ b-1, and z ≥ c-1. Hence xbc + yca + zab ≥ 3abc - ab - bc - ca > N. 
Contradiction.  
 
Problem B1  
Let ABC be an equilateral triangle and E the set of all points contained in the three 
segments AB, BC and CA (including A, B and C). Determine whether, for every partition of 
E into two disjoint subsets, at least one of the two subsets contains the vertices of a right-
angled triangle.  
 
Solution  
It does.  
Suppose otherwise, that E is the disjoint union of e and e' with no right-angled triangles in 
either set. Take points X, Y, Z two-thirds of the way along BC, CA, AB respectively (so that 
BX/BC = 2/3 etc). Then two of X, Y, Z must be in the same set. Suppose X and Y are in e. 
Now YX is perpendicular to BC, so all points of BC apart from X must be in e'. Take W to be 
the foot of the perpendicular from Z to BC. Then B and W are in e', so Z must be in e. ZY is 
perpendicular to AC, so all points of AC apart from Y must be in e'. e' is now far too big. For 
example let M be the midpoint of BC, then AMC is in e' and right-angled.  
 



Problem B2  
Is it possible to choose 1983 distinct positive integers, all less than or equal to 105, no 
three of which are consecutive terms of an arithmetic progression?  
 
Solution  
We may notice that an efficient way to build up a set with no APs length 3 is as follows. 
Having found 2n numbers in {1, 2, ... , un} we add the same pattern starting at 2un, thus 
giving 2n+1 numbers in {1, 2, ... , 3un-1}. If x is in the first part and y, z in the second part, 
then 2y is at least 4un, whereas x + z is less than 4un, so x, y, z cannot be an AP length 3. 
If x and y are in the first part, and z in the second part, then 2y is at most 2un, but x + z is 
more than 2un, so x, y, z cannot be an AP length 3. To start the process off, we have the 4 
numbers 1, 2, 4, 5 in {1, 2, 3, 4, 5}. So u2 = 5. This gives u11 = 88574, in other words we 
can find 2048 numbers in the first 88574 with no AP length 3.  
If we are lucky, we may notice that if we reduce each number in the set we have 
constructed by 1 we get the numbers which have no 2 when written base 3. This provides a 
neater approach. Take x, y, z with no 2 when written in base 3. Then 2y has only 0s and 2s 
when written base 3. But x + z only has no 1s if x = z. So x, y, z cannot form an AP length 
3. Also there are 211 = 2048 numbers of this type with 11 digits or less and hence ≤ 
111111111113 = 88573.  
 
Problem B3  
Let a, b and c be the lengths of the sides of a triangle. Prove that  
    a2b(a - b) + b2c(b - c) + c2a(c - a) ≥ 0.  
Determine when equality occurs.  
 
Solution  
Put a = y + z, b = z + x, c = x + y. Then the triangle condition becomes simply x, y, z > 0. 
The inequality becomes (after some manipulation):  
    xy3 + yz3 + zx3 ≥ xyz(x + y + z).  
Applying Cauchy's inequality we get (xy3 + yz3 + zx3)(z + x + y) ≥ xyz(y + z + x)2 with 
equality iff xy3/z = yz3/x = zx3/y. So the inequality holds with equality iff x = y = z. Thus 
the original inequality holds with equality iff the triangle is equilateral.  
 
IMO 1984 
 
Problem A1 
Prove that 0 ≤ yz + zx + xy - 2xyz ≤ 7/27, where x, y and z are non-negative real 
numbers satisfying x + y + z = 1.  
 
Solution 
(1 - 2x)(1 - 2y)(1 - 2z) = 1 - 2(x + y + z) + 4(yz + zx + xy) - 8xyz = 4(yz + zx + xy) - 
8xyz - 1. Hence yz + zx + xy - 2xyz = 1/4 (1 - 2x)(1 - 2y)(1 - 2z) + 1/4. By the 
arithmetic/geometric mean theorem (1 - 2x)(1 - 2y)(1 - 2z) ≤ ((1 - 2x + 1 - 2y + 1 - 
2z)/3)3 = 1/27. So yz + zx + xy - 2xyz ≤ 1/4 28/27 = 7/27.  
 
Problem A2  
Find one pair of positive integers a, b such that ab(a+b) is not divisible by 7, but (a+b)7 - 
a7 - b7 is divisible by 77.  
 
Solution  
We find that (a + b)7 - a7 - b7 = 7ab(a + b)(a2 + ab + b2)2. So we must find a, b such that 
a2 + ab + b2 is divisible by 73.  
At this point I found a = 18, b = 1 by trial and error.  
A more systematic argument turns on noticing that a2 + ab + b2 = (a3 - b3)/(a - b), so we 
are looking for a, b with a3 = b3 (mod 73). We now remember that aφ(m) = 1 (mod m). But 
φ(73) = 2·3·49, so a3 = 1 (mod 343) if a = n98. We find 298 = 18 (343), which gives the 
solution 18, 1.  
This approach does not give a flood of solutions. n98 = 0, 1, 18, or 324. So the only 
solutions we get are 1, 18; 18, 324; 1, 324.  



Problem A3  
Given points O and A in the plane. Every point in the plane is colored with one of a finite 
number of colors. Given a point X in the plane, the circle C(X) has center O and radius OX 
+ (∠ AOX)/OX, where ∠ AOX is measured in radians in the range [0, 2π). Prove that we 
can find a point X, not on OA, such that its color appears on the circumference of the circle 
C(X).  
 
Solution  
Suppose the result is false. Let C1 be any circle center O. Then the locus of points X such 
that C(X) = C1 is a spiral from O to the point of intersection of OA and C1. Every point of 
this spiral must be a different color from all points of the circle C1. Hence every circle center 
O with radius smaller than C1 must include a point of different color to those on C1. 
Suppose there are n colors. Then by taking successively smaller circles C2, C3, ... , Cn+1 we 
reach a contradiction, since each circle includes a point of different color to those on any of 
the larger circles.  
 
Problem B1  
Let ABCD be a convex quadrilateral with the line CD tangent to the circle on diameter AB. 
Prove that the line AB is tangent to the circle on diameter CD if and only if BC and AD are 
parallel.  
 
Solution  
If AB and CD are parallel, then AB is tangent to the circle on diameter CD if and only if AB 
= CD and hence if and only if ABCD is a parallelogram. So the result is true.  
Suppose then that AB and DC meet at O. Let M be the midpoint of AB and N the midpoint 
of CD. Let S be the foot of the perpendicular from N to AB, and T the foot of the 
perpendicular fromM to CD. We are given that MT = MA. OMT, ONS are similar, so OM/MT 
= ON/NS and hence OB/OA = (ON - NS)/(ON + NS). So AB is tangent to the circle on 
diameter CD if and only if OB/OA = OC/OD which is the condition for BC to be parallel to 
AD.  
 
Problem B2  
Let d be the sum of the lengths of all the diagonals of a plane convex polygon with n > 3 
vertices. Let p be its perimeter. Prove that:  
    n - 3 < 2d/p < [n/2] [(n+1)/2] - 2, where [x] denotes the greatest integer not 
exceeding x.  
 
Solution  
Given any diagonal AX, let B be the next vertex counterclockwise from A, and Y the next 
vertex counterclockwise from X. Then the diagonals AX and BY intersect at K. AK + KB > 
AB and XK + KY > XY, so AX + BY > AB + XY. Keeping A fixed and summing over X gives n 
- 3 cases. So if we then sum over A we get every diagonal appearing four times on the lhs 
and every side appearing 2(n-3) times on the rhs, giving 4d > 2(n-3)p.  
Denote the vertices as A0, ... , An-1 and take subscripts mod n. The ends of a diagonal AX 
are connected by r sides and n-r sides. The idea of the upper limit is that its length is less 
than the sum of the shorter number of sides. Evaluating it is slightly awkward.  
We consider n odd and n even separately. Let n = 2m+1. For the diagonal AiAi+r with r ≤ 
m, we have AiAi+r ≤ AiAi+2 + ... + AiAi+r. Summing from r = 2 to m gives for the rhs (m-
1)AiAi+1 + (m-1)Ai+1Ai+2 + (m-2)Ai+2Ai+3 + (m-3)Ai+3Ai+4 + ... + 1.Ai+m-1Ai+m. Now summing 
over i gives d for the lhs and p( (m-1) + (1 + 2 + ... + m-1) ) = p( (m2 + m - 2)/2 ) for 
the rhs. So we get 2d/p ≤ m2 + m - 2 = [n/2] [(n+1)/2] - 2.  
Let n = 2m. As before we have AiAi+r <= AiAi+2 + ... + AiAi+r for 2 ≤ r ≤ m-1. We may also 
take AiAi+m ≤ p/2. Summing as in the even case we get 2d/p = m2 - 2 = [n/2] [(n+1)/2] - 
2.  
 
Problem B3  
Let a, b, c, d be odd integers such that 0 < a < b < c < d and ad = bc. Prove that if a + d 
= 2k and b + c = 2m for some integers k and m, then a = 1.  
 



Solution  
a < c, so a(d - c) < c (d - c) and hence bc - ac < c(d - c). So b - a < d - c, or a + d > b + 
c, so k > m.  
bc = ad, so b(2m - b) = a(2k - a). Hence b2 - a2 = 2m(b - 2k-ma). But b2 - a2 = (b + a)(b - 
a), and (b + a) and (b - a) cannot both be divisible by 4 (since a and b are odd), so 2m-1 
must divide b + a or b - a. But if it divides b - a, then b - a ≥ 2m-1, so b and c > 2m-1 and b 
+ c > 2m. Contradiction. Hence 2m-1 divides b + a. If b + a ≥ 2m = b + c, then a ≥ c. 
Contradiction. Hence b + a = 2m-1.  
So we have b = 2m-1 - a, c = 2m-1 + a, d = 2k - a. Now using bc = ad gives: 2ka = 22m-2. But 
a is odd, so a = 1.  
 
IMO 1985 
 
Problem A1 
A circle has center on the side AB of the cyclic quadrilateral ABCD. The other three sides 
are tangent to the circle. Prove that AD + BC = AB.  
 
Solution 
Let the circle touch AD, CD, BC at L, M, N respectively. Take X on the line AD on the same 
side of A as D, so that AX = AO, where O is the center of the circle. Now the triangles OLX 
and OMC are congruent: OL = OM = radius of circle, ∠ OLX = ∠ OMC = 90o, and ∠ OXL = 
90o - A/2 = (180o - A)/2 = C/2 (since ABCD is cyclic) = ∠ OCM. Hence LX = MC. So OA = 
AL + MC. Similarly, OB = BN + MD. But MC = CN and MD = DL (tangents have equal 
length), so AB = OA + OB = AL + LD + CN + NB = AD + BC.  
 
Problem A2  
Let n and k be relatively prime positive integers with k < n. Each number in the set M = {1, 
2, 3, ... , n-1} is colored either blue or white. For each i in M, both i and n-i have the same 
color. For each i in M not equal to k, both i and |i-k| have the same color. Prove that all 
numbers in M must have the same color.  
 
Solution  
n and k are relatively prime, so 0, k, 2k, ... , (n-1)k form a complete set of residues mod n. 
So k, 2k, ... , (n-1)k are congruent to the numbers 1, 2, ... , n-1 in some order. Suppose ik 
is congruent to r and (i+1)k is congruent to s. Then either s = r + k, or s = r + k - n. If s = 
r + k, then we have immediately that r = s - k and s have the same color. If s = r + k - n, 
then r = n - (k - s), so r has the same color as k - s, and k - s has the same color as s. So 
in any case r and s have the same color. By giving i values from 1 to n-2 this establishes 
that all the numbers have the same color.  
 
Problem A3  
For any polynomial P(x) = a0 + a1x + ... + akxk with integer coefficients, the number of odd 
coefficients is denoted by o(P). For i = 0, 1, 2, ... let Qi(x) = (1 + x)i. Prove that if i1, i2, ... , 
in are integers satisfying 0 ≤ i1 < i2 < ... < in, then:  
    o(Qi1 + Qi2 + ... + Qin) ≥ o(Qi1).  
 
Solution  
If i is a power of 2, then all coefficients of Qi are even except the first and last. [There are 
various ways to prove this. Let iCr denote the rth coefficient, so iCr = i!/(r!(i-r)!). Suppose 
0 < r < i. Then iCr = i-1Cr-1 i/r, but i-1Cr-1 is an integer and i is divisible by a higher 
power of 2 than r, hence iCr is even.]  
Let Q = Qi1 + ... + Qin. We use induction on in. If in = 1, then we must have n = 2, i1 = 0, 
and i2 = 1, so Q = 2 + x, which has the same number of odd coefficients as Qi1 = 1. So 
suppose it is true for smaller values of in. Take m a power of 2 so that m ≤ in < 2m. We 
consider two cases i1 ≥ m and i1 < m.  
Consider first i1 ≥ m. Then Qi1 = (1 + x)mA, Q = (1 + x)mB, where A and B have degree 
less than m. Moreover, A and B are of the same form as Qi1 and Q, (all the ijs are reduced 
by m, so we have o(A) ≤ o(B) by induction. Also o(Qi1) = o((1 + x)mA) = o(A + xmA) = 
2o(A) ≤ 2o(B) = o(B + xmB) = o((1 + x)mB) = o(Q), which establishes the result for in.  



It remains to consider the case i1 < m. Take r so that ir < m, ir+1 > m. Set A = Qi1 + ... + 
Qir, (1 + x)mB = Qir+1 + ... + Qin, so that A and B have degree < m. Then o(Q) = o(A + (1 
+ x)mB) = o(A + B + xmB) = o(A + B) + o(B). Now o(A - B) + o(B) >= o(A - B + B) = 
o(A), because a coefficient of A is only odd if just one of the corresponding coefficients of A 
- B and B is odd. But o(A - B) = o(A + B), because corresponding coefficients of A - B and A 
+ B are either equal or of the same parity. Hence o(A + B) + o(B) ≥ o(A). But o(A) ≥ o(Qii) 
by induction. So we have established the result for in.    
 
Problem B1  
Given a set M of 1985 distinct positive integers, none of which has a prime divisor greater 
than 23, prove that M contains a subset of 4 elements whose product is the 4th power of an 
integer.  
 
Solution  
Suppose we have a set of at least 3.2n+1 numbers whose prime divisors are all taken from 
a set of n. So each number can be written as p1

r
1...pn

r
n for some non-negative integers ri, 

where pi is the set of prime factors common to all the numbers. We classify each ri as even 
or odd. That gives 2n possibilities. But there are more than 2n + 1 numbers, so two 
numbers have the same classification and hence their product is a square. Remove those 
two and look at the remaining numbers. There are still more than 2n + 1, so we can find 
another pair. We may repeat to find 2n + 1 pairs with a square product. [After removing 2n 
pairs, there are still 2n + 1 numbers left, which is just enough to find the final pair.] But we 
may now classify these pairs according to whether each exponent in the square root of 
their product is odd or even. We must find two pairs with the same classification. The 
product of these four numbers is now a fourth power.  
Applying this to the case given, there are 9 primes less than or equal to 23 (2, 3, 5, 7, 11, 
13, 17, 19, 23), so we need at least 3.512 + 1 = 1537 numbers for the argument to work 
(and we have 1985).  
The key is to find the 4th power in two stages, by first finding lots of squares. If we try to 
go directly to a 4th power, this type of argument does not work (we certainly need more 
than 5 numbers to be sure of finding four which sum to 0 mod 4, and 59 is far too big).  
 
Problem B2  
A circle center O passes through the vertices A and C of the triangle ABC and intersects the 
segments AB and BC again at distinct points K and N respectively. The circumcircles of ABC 
and KBN intersect at exactly two distinct points B and M. Prove that angle OMB is a right 
angle.  
 
Solution  
The three radical axes of the three circles taken in pairs, BM, NK and AC are concurrent. Let 
X be the point of intersection. [They cannot all be parallel or B and M would coincide.] The 
first step is to show that XMNC is cyclic. The argument depends slightly on how the points 
are arranged. We may have: ∠ XMN = 180o - ∠ BMN = ∠ BKN = 180o - ∠ AKN = ∠ ACN = 
180o - ∠ XCN, or we may have ∠ XMN = 180o - ∠ BMN = 180o - ∠ BKN = ∠ AKN = 180o - ∠ 
ACN = 180o - ∠ XCN.  
Now XM.XB = XK.XN = XO2 - ON2. BM·BX = BN·BC = BO2 - ON2, so XM·XB - BM·BX = XO2 - 
BO2. But XM·XB - BM·BX = XB(XM - BM) = (XM + BM)(XM - BM) = XM2 - BM2. So XO2 - BO2 
= XM2 - BM2. Hence OM is perpendicular to XB, or ∠ OMB = 90o.  
 
Problem B3  
For every real number x1, construct the sequence x1, x2, ... by setting:  
        xn+1 = xn(xn + 1/n).  
Prove that there exists exactly one value of x1 which gives 0 < xn < xn+1 < 1 for all n.  
 
Solution  
Define S0(x) = x, Sn(x) = Sn-1(x) (Sn-1(x) + 1/n). The motivation for this is that xn = Sn-

1(x1).  



Sn(0) = 0 and Sn(1) > 1 for all n > 1. Also Sn(x) has non-negative coefficients, so it is 
strictly increasing in the range [0,1]. Hence we can find (unique) solutions an, bn to Sn(an) 
= 1 - 1/n, Sn(bn) = 1.  
Sn+1(an) = Sn(an) (Sn(an) + 1/n) = 1 - 1/n > 1 - 1/(n+1), so an < an+1. Similarly, Sn+1(bn) = 
Sn(bn) (Sn(bn) + 1/n) = 1 + 1/n > 1, so bn > bn+1. Thus an is an increasing sequence and bn 
is a decreasing sequence with all an less than all bn. So we can certainly find at least one 
point x1 which is greater than all the an and less than all the bn. Hence 1 - 1/n < Sn(x1) < 1 
for all n. But Sn(x1) = xn+1. So xn+1 < 1 for all n. Also xn > 1 - 1/n implies that xn+1 = xn(xn 
+ 1/n) > xn. Finally, we obviously have xn > 0. So the resulting series xn satisfies all the 
required conditions.  
It remains to consider uniqueness. Suppose that there is an x1 satisfying the conditions 
given. Then we must have Sn(x1) lying in the range 1 - 1/n, 1 for all n. [The lower limit 
follows from xn+1 = xn(xn + 1/n).] Hence we must have an < x1 < bn for all n. We show 
uniqueness by showing that bn - an tends to zero as n tends to infinity. Since all the 
coefficients of Sn(x) are non-negative, it is has increasing derivative. Sn(0) = 0 and Sn(bn) 
= 1, so for any x in the range 0, bn we have Sn(x) ≤ x/bn. In particular, 1 - 1/n < an/bn. 
Hence bn - an ≤ bn - bn(1 - 1/n) = bn/n < 1/n, which tends to zero.  
 
IMO 1986 
 
Problem A1  
Let d be any positive integer not equal to 2, 5 or 13. Show that one can find distinct a, b in 
the set {2, 5, 13, d} such that ab - 1 is not a perfect square.  
 
Solution  
Consider residues mod 16. A perfect square must be 0, 1, 4 or 9 (mod 16). d must be 1, 5, 
9, or 13 for 2d - 1 to have one of these values. However, if d is 1 or 13, then 13d - 1 is not 
one of these values. If d is 5 or 9, then 5d - 1 is not one of these values. So we cannot 
have all three of 2d - 1, 5d - 1, 13d - 1 perfect squares.  
 
Problem A2  
Given a point P0 in the plane of the triangle A1A2A3. Define As = As-3 for all s ≥ 4. Construct 
a set of points P1, P2, P3, ... such that Pk+1 is the image of Pk under a rotation center Ak+1 
through 120o clockwise for k = 0, 1, 2, ... . Prove that if P1986 = P0, then the triangle A1A2A3 
is equilateral.  
 
Solution  
The product of three successive rotations about the three vertices of a triangle must be a 
translation (see below). But that means that P1986 (which is the result of 662 such 
operations, since 1986 = 3 x 662) can only be P0 if it is the identity, for a translation by a 
non-zero amount would keep moving the point further away. It is now easy to show that it 
can only be the identity if the triangle is equilateral. Take a circle center A1, radius A1A2 and 
take P on the circle so that a 120o clockwise rotation about A1 brings P to A2. Take a circle 
center A3, radius A3A2 and take Q on the circle so that a 120o clockwise rotation about A3 
takes A2 to Q. Then successive 120o clockwise rotations about A1, A2, A3 take P to Q. So if 
these three are equivalent to the identity we must have P = Q. Hence �A1A2A3 = �A1A2P + 
�A3A2P = 30o + 30o = 60o. Also A2P = 2A1A2cos 30o and = 2A2A3cos 30o. Hence A1A2 = 
A2A3. So A1A2A2 is equilateral. Note in passing that it is not sufficient for the triangle to be 
equilateral. We also have to take the rotations in the right order. If we move around the 
vertices the opposite way, then we get a net translation.  
It remains to show that the three rotations give a translation. Define rectangular 
coordinates (x, y) by taking A1 to be the origin and A2 to be (a, b). Let A3 be (c, d). A 
clockwise rotation through 120 degrees about the origin takes (x, y) to (-x/2 + y√3/2, -
x√3/2 - y/2). A clockwise rotation through 120 degrees about some other point (e, f) is 
obtained by subtracting (e, f) to get (x - e, y - f), the coordinates relative to (e, f), then 
rotating, then adding (e, f) to get the coordinates relative to (0, 0). Thus after the three 
rotations we will end up with a linear combination of x's, y's, a's, b's, c's and d's for each 
coordinate. But the linear combination of x's and y's must be just x for the x-coordinate 
and y for the y-coordinate, since three successive 120 degree rotations about the same 



point is the identity. Hence we end up with simply (x + constant, y + constant), in other 
words, a translation.  
[Of course, there is nothing to stop you actually carrying out the computation. It makes 
things slightly easier to take the triangle to be (0, 0), (1, 0), (a, b). The net result turns out 
to be (x, y) goes to (x + 3a/2 - b√3/2, y - √3 + a√3/2 + 3b/2). For this to be the identity 
requires a = 1/2, b = √3/2. So the third vertex must make the triangle equilateral (and it 
must be on the correct side of the line joining the other two). This approach avoids the 
need for the argument in the first paragraph above, but is rather harder work.]    
 
Problem A3  
To each vertex of a regular pentagon an integer is assigned, so that the sum of all five 
numbers is positive. If three consecutive vertices are assigned the numbers x, y, z 
respectively, and y < 0, then the following operation is allowed: x, y, z are replaced by x + 
y, -y, z + y respectively. Such an operation is performed repeatedly as long as at least one 
of the five numbers is negative. Determine whether this procedure necessarily comes to an 
end after a finite number of steps.  
 
Solution  
Let S be the sum of the absolute value of each set of adjacent vertices, so if the integers 
are a, b, c, d, e, then S = |a| + |b| + |c| + |d| + |e| + |a + b| + |b + c| + |c + d| + |d + 
e| + |e + a| + |a + b + c| + |b + c + d| + |c + d + e| + |d + e + a| + |e + a + b| + |a + 
b + c + d| + |b + c + d + e| + |c + d + e + a| + |d + e + a + b| + |e + a + b + c| + |a + 
b + c + d + e|. Then the operation reduces S, but S is a greater than zero, so the process 
must terminate in a finite number of steps. So see that S is reduced, we can simply write 
out all the terms. Suppose the integers are a, b, c, d, e before the operation, and a+b, -b, 
b+c, d, e after it. We find that we mostly get the same terms before and after (although 
not in the same order), so that the sum S' after the operation is S - |a + c + d + e| + |a + 
2b + c + d + e|. Certainly a + c + d + e > a + 2b + c + d + e since b is negative, and a + 
c + d + e > -(a + 2b+ c + d + e) because a + b + c + d + e > 0.  
 
Problem B1  
Let A, B be adjacent vertices of a regular n-gon (n ≥ 5) with center O. A triangle XYZ, 
which is congruent to and initially coincides with OAB, moves in the plane in such a way 
that Y and Z each trace out the whole boundary of the polygon, with X remaining inside the 
polygon. Find the locus of X.  
 
Solution  
Take AB = 2 and let M be the midpoint of AB. Take coordinates with origin at A, x-axis as 
AB and y-axis directed inside the n-gon. Let Z move along AB from B towards A. Let �YZA 
be t. Let the coordinates of X be (x, y). �YZX = π/2 - π/n, so XZ = 1/sin π/n and y = XZ 
sin(t + π/2 - π/n) = sin t + cot π/n cos t.  
BY sin 2π/n = YZ sin t = 2 sin t. MX = cot π/n. So x = MY cos t - BY cos 2π/n + MX sin t = 
cos t + (cot π/n - 2 cot 2π/n) sin t = cos t + tan π/n sin t = y tan π/n. Thus the locus of X 
is a star formed of n lines segments emanating from O. X moves out from O to the tip of a 
line segement and then back to O, then out along the next segment and so on. x2 + y2 = 
(1/sin2π/n + 1/cos2π/n) cos2(t + π/n). Thus the length of each segment is (1 - cos π/n)/(sin 
π/n cos π/n).  
 
Problem B2  
Find all functions f defined on the non-negative reals and taking non-negative real values 
such that: f(2) = 0, f(x) ≠ 0 for 0 ≤ x < 2, and f(xf(y)) f(y) = f(x + y) for all x, y.  
 
Solution  
f(x+2) = f(xf(2)) f(2) = 0. So f(x) = 0 for all x ≥ 2.  
f(y) f((2-y)f(y)) = f(2) = 0. So if y < 2, then f((2-y) f(y)) = 0 and hence (2 - y) f(y) ≥ 2, or 
f(y) ≥ 2/(2 - y).  
Suppose that for some y0 we have f(y0) > 2/(2 - y0), then we can find y1 > y0 (and y1 < 2) 
so that f(y0) = 2/(2 - y1). Now let x1 = 2 - y1. Then f(x1f(y0)) = f(2) = 0, so f(x1 + y0) = 0. 
But x1 + y0 < 2. Contradiction. So we must have f(x) = 2/(2 - x) for all x < 2.  



We have thus established that if a function f meets the conditions then it must be defined 
as above. It remains to prove that with this definition f does meet the conditions. Clearly 
f(2) = 0 and f(x) is non-zero for 0 ≤ x < 2. f(xf(y)) = f(2x/(2 - y)). If 2x/(2 - y) ≥ 2, then 
f(xf(y)) = 0. But it also follows that x + y ≥ 2, and so f(x + y) = 0 and hence f(xf(y)) f(y) 
= f(x + y) as required. If 2x/(2 - y) < 2, then f(xf(y)) f(y) = 2/(2 - 2x/(2-y)) 2/(2 - y) = 
2/(2 - x - y) = f(x + y). So the unique function satisfying the conditions is:  
      f(x) = 0 for x ≥ 2, and 2/(2 - x) for 0 ≤ x < 2.  
 
Problem B3  
Given a finite set of points in the plane, each with integer coordinates, is it always possible 
to color the points red or white so that for any straight line L parallel to one of the 
coordinate axes the difference (in absolute value) between the numbers of white and red 
points on L is not greater than 1?  
 
Solution  
Answer: yes.  
We prove the result by induction on the number n of points. It is clearly true for n = 1. 
Suppose it is true for all numbers less than n. Pick an arbitrary point P and color it red. Now 
take a point in the same row and color it white. Take a point in the same column as the 
new point and color it red. Continue until either you run out of eligible points or you pick a 
point in the same column as P. The process must terminate because there are only finitely 
many points. Suppose the last point picked is Q. Let S be the set of points picked.  
If Q is in the same column as P, then it is colored white (because the "same row" points are 
all white, and the "same column" points are all red). Now every row and column contains 
an equal number of red points of S and of white points of S. By induction we can color the 
points excluding those in S, then the difference between the numbers of red and white 
points in each row and column will be unaffected by adding the points in S and so we will 
have a coloring for the whole set. This completes the induction for the case where Q is in 
the same column as P.  
If it is not, then continue the path backwards from P. In other words, pick a point in the 
same column as P and color it white. Then pick a point in the same row as the new point 
and color it red and so on. Continue until either you run out of eligible points or you pick a 
point to pair with Q. If Q was picked as being in the same row as its predecessor, this 
means a point in the same column as Q; if Q was picked as being in the same column as its 
predecessor, this means a point in the same row as Q. Again the process must terminate. 
Suppose the last point picked is R. Let S be the set of all points picked.  
If R pairs with Q, then we can complete the coloring by induction as before. Suppose S 
does not pair with Q. Then there is a line (meaning a row or column) containing Q and no 
uncolored points. There is also a line containing R and no uncolored points. These two lines 
have an excess of one red or one white. All other lines contain equal number of red and 
white points of S. Now color the points outside S by induction. This gives a coloring for the 
whole set, because no line with a color excess in S has any points outside S. So we have 
completed the induction.  
 
IMO 1987 
 
Problem A1 
1.  Let pn(k) be the number of permutations of the set {1, 2, 3, ... , n} which have exactly 
k fixed points. Prove ∑0

n (k pn(k) ) = n!.  
 
Solution 
We show first that the number of permutations of n objects with no fixed points is n!(1/0! - 
1/1! + 1/2! - ... + (-1)n/n!). This follows immediately from the law of inclusion and 
exclusion: let Ni be the number which fix i, Nij the number which fix i and j, and so on. Then 
N0, the number with no fixed points, is n! - all Ni + all Nij - ... + (-1)nN1...n. But Ni = (n-1)!, 
Nij = (n-2)! and so on. So N0 = n! ( 1 - 1/1! + ... + (-1)r(n-r)!/(r! (n-r)!) + ... + (-1)n/n!) = 
n! (1/0! - 1/1! + ... + (-1)n/n!).  
Hence the number of permutations of n objects with exactly r fixed points = no. of ways of 
choosing the r fixed points x no. of perms of the remaining n - r points with no fixed points 



= n!/(r! (n-r)!) x (n-r)! (1/0! - 1/1! + ... + (-1)n-r/(n-r)! ). Thus we wish to prove that the 
sum from r = 1 to n of 1/(r-1)! (1/0! - 1/1! + ... + (-1)n-r/(n-r)! ) is 1. We use induction on 
n. It is true for n = 1. Suppose it is true for n. Then the sum for n+1 less the sum for n is: 
1/0! (-1)n/n! + 1/1! (-1)n-1/(n-1)! + ... + 1/n! 1/0! = 1/n! (1 - 1)n = 0. Hence it is true for 
n + 1, and hence for all n.  
 
Problem A2  
In an acute-angled triangle ABC the interior bisector of angle A meets BC at L and meets 
the circumcircle of ABC again at N. From L perpendiculars are drawn to AB and AC, with 
feet K and M respectively. Prove that the quadrilateral AKNM and the triangle ABC have 
equal areas.  
 
Solution  
AKL and AML are congruent, so KM is perpendicular to AN and area AKNM = KM.AN/2.  
AKLM is cyclic (2 opposite right angles), so angle AKM = angle ALM and hence KM/sin BAC 
= AM/sin AKM (sine rule) = AM/sin ALM = AL.  
ABL and ANC are similar, so AB.AC = AN.AL. Hence area ABC = 1/2 AB.AC sin BAC = 1/2 
AN.AL sin BAC = 1/2 AN.KM = area AKNM.  
 
Problem A3  
Let x1, x2, ... , xn be real numbers satisfying x1

2 + x2
2 + ... + xn

2 = 1. Prove that for every 
integer k ≥ 2 there are integers a1, a2, ... , an, not all zero, such that |ai| ≤ k - 1 for all i, 
and |a1x1 + a2x2 + ... + anxn| ≤ (k - 1)√n/(kn - 1).  
 
Solution  
This is an application of the pigeon-hole principle.  
Assume first that all xi are non-negative. Observe that the sum of the xi is at most √n. 
Consider the kn possible values of ∑1≤i≤n bixi, where each bi is an integer in the range [0,k-
1]. Each value must lie in the interval [0, k-1 √n]. Divide this into kn-1 equal subintervals. 
Two values must lie in the same subinterval. Take their difference. Its coefficients are the 
required ai. Finally, if any xi are negative, solve for the absolute values and then flip signs 
in the ai.  
 
Problem B1  
Prove that there is no function f from the set of non-negative integers into itself such that 
f(f(n)) = n + 1987 for all n.  
 
Solution  
We prove that if f(f(n)) = n + k for all n, where k is a fixed positive integer, then k must be 
even. If k = 2h, then we may take f(n) = n + h.  
Suppose f(m) = n with m = n (mod k). Then by an easy induction on r we find f(m + kr) = 
n + kr, f(n + kr) = m + k(r+1). We show this leads to a contradiction. Suppose m < n, so 
n = m + ks for some s > 0. Then f(n) = f(m + ks) = n + ks. But f(n) = m + k, so m = n + 
k(s - 1) ≥ n. Contradiction. So we must have m ≥ n, so m = n + ks for some s ≥ 0. But 
now f(m + k) = f(n + k(s+1)) = m + k(s + 2). But f(m + k) = n + k, so n = m + k(s + 1) 
> n. Contradiction.  
So if f(m) = n, then m and n have different residues mod k. Suppose they have r1 and r2 
respectively. Then the same induction shows that all sufficiently large s = r1 (mod k) have 
f(s) = r2 (mod k), and that all sufficiently large s = r2 (mod k) have f(s) = r1 (mod k). 
Hence if m has a different residue r mod k, then f(m) cannot have residue r1 or r2. For if 
f(m) had residue r1, then the same argument would show that all sufficiently large numbers 
with residue r1 had f(m) = r (mod k). Thus the residues form pairs, so that if a number is 
congruent to a particular residue, then f of the number is congruent to the pair of the 
residue. But this is impossible for k odd.  
 
Problem B2  
Let n be an integer greater than or equal to 3. Prove that there is a set of n points in the 
plane such that the distance between any two points is irrational and each set of 3 points 
determines a non-degenerate triangle with rational area.  



Solution  
Let xn be the point with coordinates (n, n2) for n = 1, 2, 3, ... . We show that the distance 
between any two points is irrational and that the triangle determined by any 3 points has 
non-zero rational area.  
Take n > m. |xn - xm| is the hypoteneuse of a triangle with sides n - m and n2 - m2 = (n - 
m)(n + m). So |xn - xm| = (n - m)√(1 + (n+m)2). Now (n + m)2 < (n + m)2 + 1 < (n + m 
+ 1)2 = (n + m)2 + 1 + 2(n + m), so (n + m)2 + 1 is not a perfect square. Hence its 
square root is irrational. [For this we may use the classical argument. Let N' be a non-
square and suppose √N' is rational. Since N' is a non-square we must be able to find a 
prime p such that p2a+1 divides N' but p2a+2 does not divide N' for some a ≥ 0. Define N = 
N'/p2a. Then √N = (√N')/pa, which is also rational. So we have a prime p such that p 
divides N, but p2 does not divide N. Take √N = r/s with r and s relatively prime. So s2N = 
r2. Now p must divide r, hence p2 divides r2 and so p divides s2. Hence p divides s. So r and 
s have a common factor. Contradiction. Hence non-squares have irrational square roots.]  
Now take a < b < c. Let B be the point (b, a2), C the point (c, a2), and D the point (c, b2). 
Area xaxbxc = area xaxcC - area xaxbB - area xbxcD - area xbDCB = (c - a)(c2 - a2)/2 - (b - 
a)(b2 - a2)/2 - (c - b)(c2 - b2)/2 - (c - b)(b2 - a2) which is rational.  
 
Problem B3  
Let n be an integer greater than or equal to 2. Prove that if k2 + k + n is prime for all 
integers k such that 0 ≤ k ≤ √(n/3), then k2 + k + n is prime for all integers k such that 0 
≤ k ≤ n - 2.  
 
Solution  
First observe that if m is relatively prime to b + 1, b + 2, ... , 2b - 1, 2b, then it is not 
divisible by any number less than 2b. For if c <= b, then take the largest j ≥ 0 such that 
2jc ≤ b. Then 2j+1c lies in the range b + 1, ... , 2b, so it is relatively prime to m. Hence c is 
also. If we also have that (2b + 1)2 > m, then we can conclude that m must be prime, 
since if it were composite it would have a factor ≤ √m.  
Let n = 3r2 + h, where 0 ≤ h < 6r + 3, so that r is the greatest integer less than or equal 
to √(n/3). We also take r ≥ 1. That excludes the value n = 2, but for n = 2, the result is 
vacuous, so nothing is lost.  
Assume that n + k(k+1) is prime for k = 0, 1, ... , r. We show by induction that N = n + (r 
+ s)(r + s + 1) is prime for s = 1, 2, ... , n - r - 2. By the observation above, it is sufficient 
to show that (2r + 2s + 1)2 > N, and that N is relatively prime to all of r + s + 1, r + s + 2, 
... , 2r + 2s. We have (2r + 2s + 1)2 = 4r2 + 8rs + 4s2 + 4r + 4s + 1. Since r, s ≥ 1, we 
have 4s + 1 > s + 2, 4s2 > s2, and 6rs > 3r. Hence (2r + 2s + 1)2 > 4r2 + 2rs + s2 + 7r + 
s + 2 = 3r2 + 6r + 2 + (r + s)(r + s + 1) >= N.  
Now if N has a factor which divides 2r - i with i in the range -2s to r - s - 1, then so does N 
- (i + 2s + 1)(2r - i) = n + (r - i - s - 1)(r - i - s) which has the form n + s'(s'+1) with s' in 
the range 0 to r + s - 1. But n + s'(s' + 1) is prime by induction (or absolutely for s = 1), 
so the only way it can have a factor in common with 2r - i is if it divides 2r - i. But 2r - i ≤ 
2r + 2s ≤ 2n - 4 < 2n and n + s'(s' + 1) ≥ n, so if n + s'(s' + 1) has a factor in common 
with 2r - i, then it equals 2r - i = s + r + 1 + s'. Hence s'2 = s - (n - r - 1) < 0, which is not 
possible. So we can conclude that N is relatively prime to all of r + s + 1, ... , 2r + 2s and 
hence prime.    
 
IMO 1988 
 
Problem A1  
Consider two coplanar circles of radii R > r with the same center. Let P be a fixed point on 
the smaller circle and B a variable point on the larger circle. The line BP meets the larger 
circle again at C. The perpendicular to BP at P meets the smaller circle again at A (if it is 
tangent to the circle at P, then A = P).  
(i)  Find the set of values of AB2 + BC2 + CA2.  
(ii)  Find the locus of the midpoint of BC.  
 
Solution  



(i)  Let M be the midpoint of BC. Let PM = x. Let BC meet the small circle again at Q. Let O 
be the center of the circles. Since angle APQ = 90 degrees, AQ is a diameter of the small 
circle, so its length is 2r. Hence AP2 = 4r2 - 4x2. BM2 = R2 - OM2 = R2 - (r2 - x2). That is 
essentially all we need, because we now have: AB2 + AC2 + BC2 = (AP2 + (BM - x)2) + (AP2 
+ (BM + x)2) + 4BM2 = 2AP2 + 6BM2 + 2x2 = 2(4r2 - 4x2) + 6(R2 - r2 + x2) + 2x2 = 6R2 + 
2r2 , which is independent of x.  
(ii)  M is the midpoint of BC and PQ since the circles have a common center. If we shrink 
the small circle by a factor 2 with P as center, then Q moves to M, and hence the locus of M 
is the circle diameter OP.  
 
Problem A2  
Let n be a positive integer and let A1, A2, ... , A2n+1 be subsets of a set B. Suppose that:  
(i)  Each Ai has exactly 2n elements,  
(ii)  The intersection of every two distinct Ai contains exactly one element, and  
(iii)  Every element of B belongs to at least two of the Ai.  
For which values of n can one assign to every element of B one of the numbers 0 and 1 in 
such a way that Ai has 0 assigned to exactly n of its elements?  
 
Solution  
Answer: n even.  
Each of the 2n elements of Ai belongs to at least one other Aj because of (iii). But given 
another Aj it cannot contain more than one element of Ai because of (ii). There are just 2n 
other Aj available, so each must contain exactly one element of Ai. Hence we can 
strengthen (iii) to every element of B belongs to exactly two of the As.  
This shows that the arrangement is essentially unique. We may call the element of B which 
belongs to Ai and Aj (i,j). Then Ai contains the 2n elements (i, j) with j not i.  
|B| = 1/2 x no. of As x size of each A = n(2n+1). If the labeling with 0s and 1s is possible, 
then if we list all the elements in each A, n(2n+1) out of the 2n(2n+1) elements have value 
0. But each element appears twice in this list, so n(2n+1) must be even. Hence n must be 
even.  
 
Problem A3  
A function f is defined on the positive integers by: f(1) = 1; f(3) = 3; f(2n) = f(n), f(4n + 
1) = 2f(2n + 1) - f(n), and f(4n + 3) = 3f(2n + 1) - 2f(n) for all positive integers n. 
Determine the number of positive integers n less than or equal to 1988 for which f(n) = n.  
 
Solution  
Answer: 92.  
f(n) is always odd. If n = br+1br...b2b1b0 in binary and n is odd, so that br+1 = b0 = 1, then 
f(n) = br+1b1b2...brb0. If n has r+2 binary digits with r > 0, then there are 2[(r+1)/2] numbers 
with the central r digits symmetrical, so that f(n) = n (because we can choose the central 
digit and those lying before it arbitarily, the rest are then determined). Also there is one 
number with 1 digit (1) and one number with two digits (3) satisfying f(n) = 1. So we find a 
total of 1 + 1 + 2 + 2 + 4 + 4 + 8 + 8 + 16 + 16 = 62 numbers in the range 1 to 1023 
with f(n) = n. 1988 = 11111000011. So we also have all 32 numbers in the range 1023 to 
2047 except for 11111111111 and 11111011111, giving another 30, or 92 in total.  
It remains to prove the assertions above. f(n) odd follows by an easy induction. Next we 
show that if 2m < 2n+1 < 2m+1, then f(2n+1) = f(n) + 2m. Again we use induction. It is true 
for m = 1 (f(3) = f(1) + 2). So suppose it is true for 1, 2, ... , m. Take 4n+1 so that 2m+1 < 
4n+1 < 2m+2, then f(4n+1) = 2f(2n+1) - f(n) = 2(f(n) + 2m) - f(n) = f(n) + 2m+1 = f(2n) + 
2m+1, so it is true for 4n+1. Similarly, if 4n+3 satisfies, 2m+1 < 4n+3 < 2m+2, then f(4n+3) 
= 3f(2n+1) - 2f(n) = f(2n+1) + 2(f(n) + 2m) - 2f(n) = f(2n+1) + 2m+1, so it is true for 
4n+3 and hence for m+1.  
Finally, we prove the formula for f(2n+1). Let 2n+1 = br+1br...b2b1b0 with b0 = br+1 = 1. We 
use induction on r. So assume it is true for smaller values. Say b1 = ... = bs = 0 and bs+1 = 
1 (we may have s = 0, so that we have simply b1 = 1). Then n = br+1 ... b1 and f(n) = 
br+1bs+2bs+3...brbs+1 by induction. So f(n) + 2r+1 = br+10...0br+1bs+2...brbs+1, where there are 
s zeros. But we may write this as br+1b1...bsbs+1...brbr+1, since b1 = ... = bs = 0, and bs+1 = 
br+1 = 1. But that is the formula for f(2n+1), so we have completed the induction.  



Problem B1  
Show that the set of real numbers x which satisfy the inequality:  
  1/(x - 1) + 2/(x - 2) + 3/(x - 3) + ... + 70/(x - 70) ≥ 5/4  
is a union of disjoint intervals, the sum of whose lengths is 1988.  
 
Solution  
Let f(x) = 1/(x - 1) + 2/(x - 2) + 3/(x - 3) + ... + 70/(x - 70). For any integer n, n/(x - n) 
is strictly monotonically decreasing except at x = n, where it is discontinuous. Hence f(x) is 
strictly monotonically decreasing except at x = 1, 2, ... , 70. For n = any of 1, 2, ... , 70, 
n/(x - n) tends to plus infinity as x tends to n from above, whilst the other terms m/(x - m) 
remain bounded. Hence f(x) tends to plus infinity as x tends to n from above. Similarly, f(x) 
tends to minus infinity as x tends to n from below. Thus in each of the intervals (n, n+1) 
for n = 1, ... , 69, f(x) decreases monotonically from plus infinity to minus infinity and 
hence f(x) = 5/4 has a single foot xn. Also f(x) ≥ 5/4 for x in (n, xn] and f(x) < 5/4 for x in 
(xn, n+1). If x < 0, then every term is negative and hence f(x) < 0 < 5/4. Finally, as x 
tends to infinity, every term tends to zero, so f(x) tends to zero. Hence f(x) decreases 
monotonically from plus infinity to zero over the range [70, infinity]. Hence f(x) = 5/4 has a 
single root x70 in this range and f(x) >= 5/4 for x in (70, x70] and f(x) < 5/4 for x > x70. 
Thus we have established that f(x) ≥ 5/4 for x in any of the disjoint intervals (1, x1], (2, 
x2], ... , (70, x70] and f(x) < 5/4 elsewhere.  
The total length of these intervals is (x1 - 1) + ... + (x70 - 70) = (x1 + ... + x70) - (1 + ... + 
70). The xi are the roots of the 70th order polynomial obtained from 1/(x - 1) + 2/(x - 2) + 
3/(x - 3) + ... + 70/(x - 70) = 5/4 by multiplying both sides by (x - 1) ... (x - 70). The sum 
of the roots is minus the coefficient of x69 divided by the coefficient of x70. The coefficient of 
x70 is simply k, and the coefficient of x69 is - (1 + 2 + ... + 70)k - (1 + ... + 70). Hence the 
sum of the roots is (1 + ... + 70)(1 + k)/k and the total length of the intervals is (1 + ... + 
70)/k = 1/2 70·71 4/5 = 28·71 = 1988.  
 
Problem B2 
ABC is a triangle, right-angled at A, and D is the foot of the altitude from A. The straight 
line joining the incenters of the triangles ABD and ACD intersects the sides AB, AC at K, L 
respectively. Show that the area of the triangle ABC is at least twice the area of the triangle 
AKL.  
 
Solution  
The key is to show that AK = AL = AD. We do this indirectly. Take K' on AB and L' on AC so 
that AK' = AL' = AD. Let the perpendicular to AB at K' meet the line AD at X. Then the 
triangles AK'X and ADB are congruent. Let J be the incenter of ADB and let r be the in-
radius of ADB. Then J lies on the angle bisector of angle BAD a distance r from the line AD. 
Hence it is also the incenter of AK'X. Hence JK' bisects the right angle AK'X, so �AK'J = 45o 
and so J lies on K'L'. An exactly similar argument shows that I, the incenter of ADC, also 
lies on K'L'. Hence we can identify K and K', and L and L'.  
The area of AKL is AK·AL/2 = AD2/2, and the area of ABC is BC·AD/2, so we wish to show 
that 2AD ≤ BC. Let M be the midpoint of BC. Then AM is the hypoteneuse of AMD, so AM ≥ 
AD with equality if and only if D = M. Hence 2AD ≤ 2AM = BC with equality if and only if AB 
= AC.  
 
Problem B3  
Let a and b be positive integers such that ab + 1 divides a2 + b2. Show that (a2 + b2)/(ab + 
1) is a perfect square.  
 
Solution  
A little experimentation reveals the following solutions: a, a3 giving a2; a3, a5 - a giving a2; 
and the recursive a1 = 2, b1 = 8, an+1 = bn, bn+1 = 4bn - an giving 4. The latter may lead us 
to: if a2 + b2 = k(ab + 1), then take A = b, B = kb - a, and then A2 + B2 = k(AB + 1). 
Finally, we may notice that this can be used to go down as well as up.  
So starting again suppose that a, b, k is a solution in positive integers to a2 + b2 = k(ab + 
1). If a = b, then 2a2 = k(a2 + 1). So a2 must divide k. But that implies that a = b = k = 1. 
Let us assume we do not have this trivial solution, so we may take a < b. We also show 



that a3 > b. For (b/a - 1/a)(ab + 1) = b2 + b/a - b - 1/a < b2 < a2 + b2. So k > b/a - 1/a. 
But if a3 < b, then b/a (ab + 1) > b2 + a2, so k < b/a. But now b > ak and < ak + 1, which 
is impossible. It follows that k ≥ b/a.  
Now define A = ka - b, B = a. Then we can easily verify that A, B, k also satisfies a2 + b2 = 
k(ab + 1), and B and k are positive integers. Also a < b implies a2 + b2 < ab + b2 < ab + 
b2 + 1 + b/a = (ab + 1)(1 + b/a), and hence k < 1 + b/a, so ka - b < a. Finally, since k > 
b/a, ka - b ≥ 0. If ka - b > 0, then we have another smaller solution, in which case we can 
repeat the process. But we cannot have an infinite sequence of decreasing numbers all 
greater than zero, so we must eventually get A = ka - b = 0. But now A2 + B2 = k(AB + 1), 
so k = B2. k was unchanged during the descent, so k is a perfect square.  
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Problem A1  
Prove that the set {1, 2, ... , 1989} can be expressed as the disjoint union of subsets A1, 
A2, ... , A117 in such a way that each Ai contains 17 elements and the sum of the elements 
in each Ai is the same.  
 
Solution  
We construct 116 sets of three numbers. Each set sums to 3 x 995 = 2985. The 348 
numbers involved form 174 pairs {r, 1990 - r}. At this point we are essentially done. We 
take a 117th set which has one {r, 1990 - r} pair and 995. The original 1989 numbers 
comprise 995 and 994 {r, 1990 - r} pairs. We have used up 995 and 175 pairs, leaving just 
819 pairs. We now add 7 pairs to each of our 117 sets, bringing the total of each set up to 
2985 + 7.1990 = 1990 x 17/2.  
It remains to exhibit the 116 sets. There are many possibilities. We start with:  
301, 801, 1883 and the "complementary" set 1990 - 301 = 1689, 1990 - 801 = 1189, 
1990 - 1883 = 107. We then add one to each of the first two numbers to get:  
302, 802, 1881 and 1688, 1188, 109, and so on:  
303, 803, 1879 and 1687, 1187, 111,  
...  
358, 858, 1769 and 1632, 1132, 221.  
We can immediately see that these triples are all disjoint. So the construction is complete.  
 
Problem A2  
In an acute-angled triangle ABC, the internal bisector of angle A meets the circumcircle 
again at A1. Points B1 and C1 are defined similarly. Let A0 be the point of intersection of the 
line AA1 with the external bisectors of angles B and C. Points B0 and C0 are defined 
similarly. Prove that the area of the triangle A0B0C0 is twice the area of the hexagon 
AC1BA1CB1 and at least four times the area of the triangle ABC.  
 
Solution  
Let I be the point of intersection of AA0, BB0, CC0 (the in-center). BIC = 180 - 1/2 ABC - 
1/2 BCA = 180 - 1/2 (180 - CAB) = 90 + 1/2 CAB. Hence CA1B = 180 - CAB [BA1CA is 
cyclic] = 2(180 - BIC) = 2CA0B. But A1B = A1C, so A1 is the center of the circumcircle of 
BCA0. But I lies on this circumcircle (IBA0 = ICA0 = 90), and hence A1A0 = A1I.  
Hence area IBA1 = area A0BA1 and area ICA1 = area A0CA1. Hence area IBA0C = 2 area 
IBA1C. Similarly, area ICB0A = 2 area ICB1A and area IAC0B = 2 area IAC1B. Hence area 
A0B0C0 = 2 area hexagon AB1CA1BC1.  
Let H be the orthocentre of ABC. Let H1 be the reflection of H in BC, so H1 lies on the 
circumcircle. So area BCH = area BCH1 <= area BCA1. Adding to the two similar inequalities 
gives area ABC <= area hexagon - area ABC.  
 
Problem A3 
Let n and k be positive integers, and let S be a set of n points in the plane such that no 
three points of S are collinear, and for any point P of S there are at least k points of S 
equidistant from P. Prove that k < 1/2 + √(2n).  
 
Solution 
Consider the pairs P, {A, B}, where P, A, B are points of S, and P lies on the perpendicular 
bisector of AB. There are at least n k(k - 1)/2 such pairs, because for each point P, there 
are at least k points equidistant from P and hence at least k(k - 1)/2 pairs of points 
equidistant from P.  
If k ≥ 1/2 + √(2n), then k(k - 1) ≥ 2n - 1/4 > 2(n - 1), and so there are more than n(n - 
1) pairs P, {A, B}. But there are only n(n - 1)/2 possible pairs {A, B}, so for some {A0, B0} 
we must be able to find at least 3 points P on the perpendicular bisector of A0B0. But these 
points are collinear, contradicting the assumption in the question.  
 



Problem B1  
Let ABCD be a convex quadrilateral such that the sides AB, AD, BC satisfy AB = AD + BC. 
There exists a point P inside the quadrilateral at a distance h from the line CD such that AP 
= h + AD and BP = h + BC. Show that:  
    1/√h ≥ 1/√AD + 1/√BC.  
 
Solution  
Let CA be the circle center A, radius AD, and CB the circle center B, radius BC. The circles 
touch on AB. Let CP the the circle center P, radius h. CP touches CA and CB and CD. Let t be 
the common tangent to CA and CB whose two points of contact are on the same side of AB 
as C and D. Then CP is confined inside the curvilinear triangle whose sides are segments of 
t, CA and CB. Evidently h attains its maximum value, for given lengths AB, AD, BC, when CP 
touches t, in which case D must be the point at which t touches CA, and C the point at 
which it touches CB. Suppose E is the point at which t touches CP.  
Angles ADC and BCD are right angles, so CD2 = AB2 - (AD - BC)2 = 4 AD BC. Similarly, DE2 
= 4 h AD, and CE2 = 4 h BC. But CD = DE + CE, so 1/√h = 1/√AD + 1/√BC. This gives the 
maximum value of h, so in general we have the inequality stated.  
 
Problem B2  
Prove that for each positive integer n there exist n consecutive positive integers none of 
which is a prime or a prime power.  
 
Solution  
Consider (N!)2+2, (N!)2+3, ... , (N!)2+N. (N!)2+r is divisible by r, but ((N!)2+r)/r = N! 
(N!/r) + 1, which is greater than one, but relatively prime to r since N! (N!/r) is divisible by 
r. For each r we may take a prime pr dividing r, so (N!)2+r is divisible by pr, but is not a 
power of pr. Hence it is not a prime or a prime power. Taking N = n+1 gives n consecutive 
numbers as required.  
 
Problem B3  
A permutation {x1, x2, ... , xm} of the set {1, 2, ... , 2n} where n is a positive integer is 
said to have property P if |xi - xi+1| = n for at least one i in {1, 2, ... , 2n-1}. Show that for 
each n there are more permutations with property P than without.  
 
Solution  
Let Ak be the set of permutations with k and k+n in neighboring positions, and let A be the 
set of permutations with property P, so that A is the union of the Ak.  
Then |A| = Sumk |Ak| - Sumk<l |Ak�Al| + Sumk<l<m |Ak�Al�Am| - ... . But this is an 
alternating sequence of monotonically decreasing terms, hence |A| ≥ ∑k |Ak| - Sumk<l 
|Ak�Al|.  
But |Ak| = 2 (2n - 1)! (two orders for k, k+n and then (2n - 1)! ways of arranging the 2n - 
1 items, treating k, k+n as a single item). Similarly, |Ak�Al| = 4 (2n - 2)! So |A| ≥ (2n - 
2)! [n.2(2n -1) - n(n - 1)/2 4] = 2n2 (2n - 2)! > (2n)!/2.  
 
IMO 1990 
 
Problem A1  
Chords AB and CD of a circle intersect at a point E inside the circle. Let M be an interior 
point of the segment EB. The tangent at E to the circle through D, E and M intersects the 
lines BC and AC at F and G respectively. Find EF/EG in terms of t = AM/AB.  
 
Solution  
∠ECF = ∠DCB (same angle) = ∠DAB (ACBD is cyclic) = ∠MAD (same angle). Also ∠CEF = 
∠EMD (GE tangent to circle EMD) = ∠AMD (same angle). So triangles CEF and AMD are 
similar.  
∠CEG = 180o - ∠CEF = 180o - ∠EMD = ∠BMD. Also ∠ECG = ∠ACD (same angle) = ∠ABD 
(BCAD is cyclic) = ∠MBD (same angle). So triangles CEG and BMD are similar.  
Hence EF/CE = MD/AM, EG/CE = MD/BM, and so dividing, EF/EG = BM/AM = (1- t)/t.  
 



Problem A2  
Take n ≥ 3 and consider a set E of 2n-1 distinct points on a circle. Suppose that exactly k 
of these points are to be colored black. Such a coloring is "good" if there is at least one pair 
of black points such that the interior of one of the arcs between them contains exactly n 
points from E. Find the smallest value of k so that every such coloring of k points of E is 
good.  
 
Solution  
Answer: n for n = 0 or 1 (mod 3), n - 1 for n = 2 (mod 3).  
Label the points 1 to 2n - 1. Two points have exactly n points between them if their 
difference (mod 2n - 1) is n - 2 or n + 1. We consider separately the three cases n = 3m, 
3m + 1 and 3m + 2.  
Let n = 3m. First, we exhibit a bad coloring with n - 1 black points. Take the black points to 
be 1, 4, 7, ... , 6m - 2 (2m points) and 2, 5, 8, ... , 3m - 4 (m - 1 points). It is easy to 
check that this is bad. The two points which could pair with r to give n points between are r 
+ 3m - 2 and r + 3m + 1. Considering the first of these, 1, 4, 7, ... , 6m - 2 would pair 
with 3m - 1, 3m + 2, 3m + 5, ... , 6m - 1, 3, 6, ... , 3m - 6, none of which are black. 
Considering the second, they would pair with 3m + 2, 3m + 5, ... , 6m - 1, 3, ... , 3m - 3, 
none of which are black. Similarly, 2, 5, 8, ... , 3m - 4 would pair with 3m, 3m + 3, ... , 6m 
- 3, none of which are black. So the set is bad.  
Now if we start with 1 and keep adding 3m - 2, reducing by 6m - 1 when necessary to keep 
the result in the range 1, ... , 6m - 1, we eventually get back to 1: 1, 3m - 1, 6m - 3, 3m - 
4, 6m - 6, ... , 2, 3m, 6m - 2, 3m - 3, 6m - 5, ... , 3, 3m + 1, 6m - 1, ... , 4, 3m + 2, 1. 
The sequence includes all 6m - 1 numbers. Moreover a bad coloring cannot have any two 
consecutive numbers colored black. But this means that at most n - 1 out of the 2n - 1 
numbers in the sequence can be black. This establishes the result for n = 3m.  
Take n = 3m + 1. A bad coloring with n - 1 black points has the following black points: 1, 
4, 7, ... , 3m - 2 (m points) and 2, 5, 8, ... , 6m - 1 (2m points). As before we add n - 2 
repeatedly starting with 1 to get: 1, 3m, 6m - 1, 3m - 3, 6m - 4, ... , 3, 3m + 2, 6m + 1, 
3m - 1, ... , 2, 3m + 1, 6m, 3m - 2, ... , 1. No two consecutive numbers can be black in a 
bad set, so a bad set can have at most n - 1 points.  
Finally, take n = 3m + 2. A bad coloring with n - 2 points is 1, 2, ... , n - 2. This time when 
we add n - 2 = 3m repeatedly starting with 1, we get back to 1 after including only one-
third of the numbers: 1, 3m + 1, 6m + 1, 3m - 2, ... , 4, 3m + 4, 1. The usual argument 
shows that at most m of these 2m + 1 numbers can be colored black in a bad set. 
Similarly, we may add 3m repeatedly starting with 2 to get another 2m + 1 numbers: 2, 
3m + 2, 6m + 2, 3m - 1, ... , 3m + 5, 2. At most m of these can be black in a bad set. 
Similarly at most m of the 2m + 1 numbers: 3, 3m + 3, 6m + 3, 3m, ... , 3m + 6, 3 can be 
black. So in total at most 3m = n - 2 can be black in a bad set.    
 
Problem A3  
Determine all integers greater than 1 such that (2n + 1)/n2 is an integer.  
 
Solution  
Answer: n = 3.  
Since 2n + 1 is odd, n must also be odd. Let p be its smallest prime divisor. Let x be the 
smallest positive integer such that 2x = -1 (mod p), and let y be the smallest positive 
integer such that 2y = 1 (mod p). y certainly exists and indeed y < p, since 2p-1 = 1 (mod 
p). x exists since 2n = -1 (mod p). Write n = ys + r, with 0 ≤ r < y. Then - 1 = 2n = (2y)s2r 
= 2r (mod p), so x ≤ r < y (r cannot be 0, since - 1 is not 1 (mod p) ).  
Now write n = hx + k, with 0 ≤ k < x. Then -1 = 2n = (-1)h2k (mod p). Suppose k > 0. 
Then if h is odd we contradict the minimality of y, and if h is even we contradict the 
minimality of x. So k = 0 and x divides n. But x < p and p is the smallest prime dividing n, 
so x = 1. Hence 2 = -1 (mod p) and so p = 3.  
Now suppose that 3m is the largest power of 3 dividing n. We show that m must be 1. 
Expand (3 - 1)n + 1 by the binomial theorem, to get (since n is odd):   1 - 1 + n.3 - 1/2 
n(n - 1) 32 + ... = 3n - (n - 1)/2 n 32 + ... . Evidently 3n is divisible by 3m+1, but not 3m+2. 
We show that the remaining terms are all divisible by 3m+2. It follows that 3m+1 is the 



highest power 3 dividing 2n + 1. But 2n + 1 is divisible by n2 and hence by 32m, so m must 
be 1.  
The general term is (3ma)Cb 3b, for b ≥ 3. The binomial coefficients are integral, so the 
term is certainly divisible by 3m+2 for b ≥ m+2. We may write the binomial coefficient as 
(3ma/b) (3m - 1)/1 (3m - 2)/2 (3m - 3)/3 ... (3m - (b-1)) / (b - 1). For b not a multiple of 3, 
the first term has the form 3m c/d, where 3 does not divide c or d, and the remaining terms 
have the form c/d, where 3 does not divide c or d. So if b is not a multiple of 3, then the 
binomial coefficient is divisible by 3m, since b > 3, this means that the whole term is 
divisible by at least 3m+3. Similarly, for b a multiple of 3, the whole term has the same 
maximum power of 3 dividing it as 3m 3b/b. But b is at least 3, so 3b/b is divisible by at 
least 9, and hence the whole term is divisible by at least 3m+2.  
We may check that n = 3 is a solution. If n > 3, let n = 3 t and let q be the smallest prime 
divisor of t. Let w be the smallest positive integer for which 2w = -1 (mod q), and v the 
smallest positive integer for which 2v = 1 (mod q). v certainly exists and < q since 2q-1 = 1 
(mod q). 2n = -1 (mod q), so w exists and, as before, w < v. Also as before, we conclude 
that w divides n. But w < q, the smallest prime divisor of n, except 3. So w = 1 or 3. These 
do not work, because then 2 = -1 (mod q) and so q = 3, or 23 = -1 (mod q) and again q 
=3, whereas we know that q > 3.  
 
Problem B1  
Construct a function from the set of positive rational numbers into itself such that f(x f(y)) 
= f(x)/y for all x, y.  
 
Solution  
We show first that f(1) = 1. Taking x = y = 1, we have f(f(1)) = f(1). Hence f(1) = f(f(1)) 
= f(1 f(f(1)) ) = f(1)/f(1) = 1.  
Next we show that f(xy) = f(x)f(y). For any y we have 1 = f(1) = f(1/f(y) f(y)) = 
f(1/f(y))/y, so if z = 1/f(y) then f(z) = y. Hence f(xy) = f(xf(z)) = f(x)/z = f(x) f(y).  
Finally, f(f(x)) = f(1 f(x)) = f(1)/x = 1/x.  
We are not required to find all functions, just one. So divide the primes into two infinite 
sets S = {p1, p2, ... } and T= {q1, q2, ... }. Define f(pn) = qn, and f(qn) = 1/pn. We extend 
this definition to all rationals using f(xy) = f(x) f(y): f(pi1pi2...qj1qj2.../(pk1...qm1...)) = 
pm1...qi1.../(pj1...qk1...). It is now trivial to verify that f(x f(y)) = f(x)/y.    
 
Problem B2  
Given an initial integer n0 > 1, two players A and B choose integers n1, n2, n3, ... alternately 
according to the following rules:  
Knowing n2k, A chooses any integer n2k+1 such that n2k ≤ n2k+1 ≤ n2k

2.  
Knowing n2k+1, B chooses any integer n2k+2 such that n2k+1/n2k+2 = pr for some prime p and 
integer r ≥ 1.  
Player A wins the game by choosing the number 1990; player B wins by choosing the 
number 1. For which n0 does  
(a)  A have a winning strategy?  
(b)  B have a winning strategy?  
(c)  Neither player have a winning strategy?  
 
Solution  
Answer: if n0 = 2, 3, 4 or 5 then A loses; if n0 ≥ 8, then A wins; if n0 = 6 or 7 , then it is a 
draw.  
A's strategy given a number n is as follows:  
(1) if n ∈ [8, 11], pick 60  
(2) if n ∈ [12, 16], pick 140  
(3) if n ∈ [17, 22], pick 280  
(4) if n ∈ [23, 44], pick 504  
(5) if n ∈ [45, 1990], pick 1990  
(6) if n = 1991 = 11.181 (181 is prime), pick 1991  
(7) if n ∈ [11r181 + 1, 11r+1181] for some r > 0, pick 11r+1181.  
Clearly (5) wins immediately for A. After (4) B has 7.8.9 so must pick 56, 63, 72 or 168, 
which gives A an immediate win by (5). After (3) B must pick 35, 40, 56, 70 or 140, so A 



wins by (4) and (5). After (2) B must pick 20, 28, 35 or 70, so A wins by (3) - (5). After (1) 
B must pick 12, 15, 20 or 30, so A wins by (2) - (5).  
If B is given 11r+1181, then B must pick 181, 11.181, ... , 11r.181 or 11r+1, all of which are 
≤ 11r.181. So if A is given a number n in (6) or (7) then after a turn each A is given a 
number < n (and >= 11), so after a finite number of turns A wins.  
If B gets a number less than 6, then he can pick 1 and win. Hence if A is given 2, he loses, 
because he must pick a number less than 5. Now if B gets a number of 11 or less, he wins 
by picking 1 or 2. Hence if A is given 3, he loses, because he must pick a number less than 
10. Now if B gets a number of 19 or less, he can win by picking 1, 2 or 3. So if A is given 4 
he loses. Now if B is given 29 or less, he can pick 1, 2, 3 or 4 and win. So if A is given 5 he 
loses.  
We now have to consider what happens if A gets 6 or 7. He must pick 30 or more, or B 
wins. If he picks 31, 32, 33, 34, 35 or 36, then B wins by picking (for example) 1, 1, 3, 2, 
5, 4 respectively. So his only hope given 6 is to pick 30. B also wins given any of 37, 38, 
39, 40, 41, 43, 44, 45, 46, 47, 48, 49 (winning moves, for example, 37, 1; 38, 2; 39, 3; 
40, 5; 41, 1; 43, 1; 44, 4; 45, 5; 46, 3; 47, 1; 48, 3]. So A's only hope given 7 is to pick 
30 or 42.  
If B is faced with 30=2·3·5, then he has a choice of 6, 10, 15. We have already established 
that 10 and 15 will lose, so he must pick 6. Thus 6 is a draw: A must pick 30 or lose, and 
then B must pick 6 or lose.  
If B is faced with 42=2·3·7, then he has a choice of 6, 14 or 21. We have already 
established that 14 and 21 lose, so he must pick 6. Thus 7 is also a draw: A must pick 30 
or 42, and then B must pick 6.  
 
Problem B3  
Prove that there exists a convex 1990-gon such that all its angles are equal and the lengths 
of the sides are the numbers 12, 22, ... , 19902 in some order.  
 
Solution  
In the complex plane we can represent the sides as pn

2wn, where pn is a permutation of (1, 
2, ... , 1990) and w is a primitive 1990th root of unity.  
The critical point is that 1990 is a product of more than 2 distinct primes: 1990 = 2·5·199. 
So we can write w = -1·a·b, where -1 is primitive 2nd root of unity, a is a primitive 5th root 
of unity, and b is a primitive 199th root of unity.  
Now given one of the 1990th roots we may write it as (-1)iajbk, where 0 < i < 2, 0 < j < 5, 
0 < k < 199 and hence associate it with the integer r(i,j,k) = 1 + 995i + 199j + k. This is a 
bijection onto (1, 2, ... , 1990). We have to show that the sum of r(i,j,k)2 (-1)iajbk is zero.  
We sum first over i. This gives -9952 x sum of ajbk which is zero, and - 1990 x sum s(j,k) 
ajbk, where s(j,k) = 1 + 199j + k. So it is sufficient to show that the sum of s(j,k) ajbk is 
zero. We now sum over j. The 1 + k part of s(j,k) immediately gives zero. The 199j part 
gives a constant times bk, which gives zero when summed over k.  
 
IMO 1991 
 
Problem A1  
Given a triangle ABC, let I be the incenter. The internal bisectors of angles A, B, C meet the 
opposite sides in A', B', C' respectively. Prove that:  
    1/4 < AI·BI·CI/(AA'·BB'·CC') ≤ 8/27.  
 
Solution  
Consider the areas of the three triangles ABI, BCI, CAI. Taking base BC we conclude that 
(area ABI + area CAI)/area ABC = AI/AA'. On the other hand, if r is the radius of the in-
circle, then area ABI = AB.r/2 and similarly for the other two triangles. Hence AI/AA' = (CA 
+ AB)/p, where p is the perimeter. Similarly BI/BB' = (AB + BC)/p and CI/CC' = (BC + 
CA)/p. But the arithmetic mean of (CA + AB)/p, (AB + BC)/p and (BC + CA)/p is 2/3. 
Hence their product is at most (2/3)3 = 8/27.  
Let AB + BC - CA = 2z, BC + CA - AB = 2x, CA + AB - BC = 2y. Then x, y, z are all positive 
and we have AB = y + z, BC = z + x, CA = x + y. Hence (AI/AA')(BI/BB')(CI/CC') = (1/2 + 
y/p)(1/2 + z/p)(1/2 + x/p) > 1/8 + (x+y+z)/(4p) = 1/8 + 1/8 = 1/4.  



Problem A2  
Let n > 6 be an integer and let a1, a2, ... , ak be all the positive integers less than n and 
relatively prime to n. If   a2 - a1 = a3 - a2 = ... = ak - ak-1 > 0, prove that n must be either a 
prime number or a power of 2.  
 
Solution  
If n is odd, then 1 and 2 are prime to n, so all integers < n are prime to n, and hence is 
prime.  
If n = 4k, then 2k-1 and 2k+1 are prime to n, so all odd integers < n are prime to n, and 
hence n must be a power of 2.  
If n = 4k+2, then 2k+1 divides n, but 2k+3 and 2k+5 are prime to n. But if n > 6, then 
2k+5 < n, so this cannot be a solution.  
 
Problem A3  
Let S = {1, 2, 3, ... 280}. Find the smallest integer n such that each n-element subset of S 
contains five numbers which are pairwise relatively prime.  
 
Solution  
Answer: 217.  
Let A be the subset of all multiples of 2, 3, 5 or 7. Then A has 216 members and every 5-
subset has 2 members with a common factor. [To show that |A| = 216, let an be the 
number of multiples of n in S. Then a2 = 140, a3 = 93, a5 = 56, a6 = 46, a10 = 28, a15 = 18, 
a30 = 9. Hence the number of multiples of 2, 3 or 5 = a2 + a3 + a5 - a6 - a10 - a15 + a30 = 
206. There are ten additional multiples of 7: 7, 49, 77, 91, 119, 133, 161, 203, 217, 259.]  
Let P be the set consisting of 1 and all the primes < 280. Define:  
A1 = {2·41, 3·37, 5·31, 7·29, 11·23, 13·19}  
A2 = {2·37, 3·31, 5·29, 7·23, 11·19, 13·17}  
A3 = {2··31, 3·29, 5·23, 7·19, 11·17, 13·13}  
B1 = {2·29, 3·23, 5·19, 7·17, 11·13}  
B2 = {2·23, 3·19, 5·17, 7·13, 11·11}  
Note that these 6 sets are disjoint subsets of S and the members of any one set are 
relatively prime in pairs. But P has 60 members, the three As have 6 each, and the two Bs 
have 5 each, a total of 88. So any subset T of S with 217 elements must have at least 25 
elements in common with their union. But 6·4 = 24 < 25, so T must have at least 5 
elements in common with one of them. Those 5 elements are the required subset of 
elements relatively prime in pairs.  
 
Problem B1  
Suppose G is a connected graph with k edges. Prove that it is possible to label the edges 1, 
2, ... , k in such a way that at each vertex which belongs to two or more edges, the 
greatest common divisor of the integers labeling those edges is 1.  
[A graph is a set of points, called vertices, together with a set of edges joining certain pairs 
of distinct vertices. Each pair of edges belongs to at most one edge. The graph is connected 
if for each pair of distinct vertices x, y there is some sequence of vertices x = v0, v1, ... , vm 
= y, such that each pair vi, vi+1 (0 ≤ i < m) is joined by an edge.]  
 
Solution  
The basic idea is that consecutive numbers are relatively prime.  
We construct a labeling as follows. Pick any vertex A and take a path from A along 
unlabeled edges. Label the edges consecutively 1, 2, 3, ... as the path is constructed. 
Continue the path until it reaches a vertex with no unlabeled edges. Let B be the endpoint 
of the path. A is now guaranteed to have the gcd (= greatest common divisor) of its edges 
1, because one of its edges is labeled 1. All the vertices between A and B are guaranteed to 
have gcd 1 because they have at least one pair of edges with consecutive numbers. Finally, 
either B has only one edge, in which case its gcd does not matter, or it is also one of the 
vertices between A and B, in which case its gcd is 1.  
Now take any vertex C with an unlabeled edge and repeat the process. The same argument 
shows that all the new vertices on the new path have gcd 1. The endpoint is fine, because 



either it has only one edge (in which case its gcd does not matter) or it has already got gcd 
1. Repeat until all the edges are labeled.  
 
Problem B2  
Let ABC be a triangle and X an interior point of ABC. Show that at least one of the angles 
XAB, XBC, XCA is less than or equal to 30o.  
 
Solution  
Let P, Q, R be the feet of the perpendiculars from X to BC, CA, AB respectively. Use A, B, C 
to denote the interior angles of the triangle (BAC, CBA, ACB). We have PX = BX sin XBC = 
CX sin(C - XCA), QX = CX sin XCA = AX sin(A - XAB), RX = AX sin XAB = BX sin(B - XBC). 
Multiplying: sin(A - XAB) sin(B - XBC) sin(C - XCA) = sin A sin B sin C.  
Now observe that sin(A - x)/sin x = sin A cot x - cos A is a strictly decreasing function of x 
(over the range 0 to π), so if XAB, XBC and XCA are all greater than 30, then sin(A - 30) 
sin(B - 30o) sin(C - 30o) > sin330o = 1/8.  
But sin(A - 30o) sin(B - 30o) = (cos(A - B) - cos(A + B - 60o))/2 ≤ (1 - cos(A + B - 60o))/2 
= (1 - sin(C - 30o))/2, since (A - 30o) + (B - 30o) + (C - 30o) = 90o. Hence sin(A - 30o) 
sin(B - 30o) sin(C - 30o) ≤ 1/2 (1 - sin(C - 30o)) sin(C - 30o) = 1/2 (1/4 - (sin(C - 30o) - 
1/2)2) ≤ 1/8. So XAB, XBC, XCA cannot all be greater than 30o.  
 
Problem B3  
Given any real number a > 1 construct a bounded infinite sequence x0, x1, x2, ... such that 
|xn - xm| |n - m|a ≥ 1 for every pair of distinct n, m.  
[An infinite sequence x0, x1, x2, ... of real numbers is bounded if there is a constant C such 
that |xn| < C for all n.]  
 
Solution  
Let t = 1/2a. Define c = 1 - t/(1 - t). Since a > 1, c > 0. Now given any integer n > 0, take 
the binary expansion n = ∑i bi 2i, and define xn = 1/c ∑bi>0 ti. For example, taking n = 21 = 
24 + 22 + 20, we have x21 = (t4 + t2 + t0)/c. We show that for any unequal n, m, |xn - xm| 
|n - m|a ≥ 1. This solves the problem, since the xn are all positive and bounded by (∑ tn )/c 
= 1/(1 - 2t).  
Take k to be the highest power of 2 dividing both n and m. Then |n - m| ≥ 2k. Also, in the 
binary expansions for n and m, the coefficients of 20, 21, ... , 2k-1 agree, but the coefficients 
for 2k are different. Hence c |xn - xm| = tk + ∑i>k yi, where yi = 0, ti or - ti. Certainly ∑i>k yi 
> - ∑i>k ti = tk+1/(1 - t), so c |xn - xm| > tk(1 - t/(1 - t)) = c tk. Hence |xn - xm| |n - m|a > tk 
2ak = 1.  
 
IMO 1992 
 
Problem A1  
Find all integers a, b, c satisfying 1 < a < b < c such that (a - 1)(b -1)(c - 1) is a divisor of 
abc - 1.  
 
Solution  
Answer: a = 2, b = 4, c = 8; or a = 3, b = 5, c = 15.  
Let k = 21/3. If a ≥ 5, then k(a - 1) > a. [Check: (k(a - 1)3 - a3 = a3 - 6a2 + 6a - 2. For a ≥ 
6, a3 ≥ 6a2 and 6a > 2, so we only need to check a = 5: 125 - 150 + 30 - 2 = 3.] We know 
that c > b > a, so if a ≥ 5, then 2(a - 1)(b - 1)(c - 1) > abc > abc - 1. So we must have a 
= 2, 3 or 4.  
Suppose abc - 1 = n(a - 1)(b - 1)(c - 1). We consider separately the cases n = 1, n = 2 
and n ≥ 3. If n = 1, then a + b + c = ab + bc + ca. But that is impossible, because a, b, c 
are all greater than 1 and so a < ab, b < bc and c < ca.  
Suppose n = 2. Then abc - 1 is even, so all a, b, c are odd. In particular, a = 3. So we have 
4(b - 1)(c - 1) = 3bc - 1, and hence bc + 5 = 4b + 4c. If b >= 9, then bc >= 9c > 4c + 4b. 
So we must have b = 5 or 7. If b = 5, then we find c = 15, which gives a solution. If b = 7, 
then we find c = 23/3 which is not a solution.  
The remaining case is n >= 3. If a = 2, we have n(bc - b - c + 1) = 2bc - 1, or (n - 2)bc + 
(n + 1) = nb + nc. But b ≥ 3, so (n - 2)bc ≥ (3n - 6)c ≥ 2nc for n ≥ 6, so we must have n 



= 3, 4 or 5. If n = 3, then bc + 4 = 3b + 3c. If b >= 6, then bc ≥ 6c > 3b + 3c, so b = 3, 
4 or 5. Checking we find only b = 4 gives a solution: a = 2, b = 4, c = 8. If n = 4, then (n - 
2)bc, nb and nc are all even, but (n + 1) is odd, so there is no solution. If n = 5, then 3bc 
+ 6 = 5b + 5c. b = 3 gives c = 9/4, which is not a solution. b >= 4 gives 3bc > 10c > 5b + 
5c, so there are no solutions.  
If a = 3, we have 2n(bc - b - c + 1) = 3bc - 1, or (2n - 3)bc + (2n + 1) = 2nb + 2nc. But b 
≥ 4, so (2n - 3)bc ≥ (8n - 12)c ≥ 4nc > 2nc + 2nb. So there are no solutions. Similarly, if 
a = 4, we have (3n - 4)bc + (3n + 1) = 3nb + 3nc. But b ≥ 4, so (3n - 4)bc ≥ (12n - 16)c 
> 6nc > 3nb + 3nc, so there are no solutions.  
 
Problem A2  
Find all functions f defined on the set of all real numbers with real values, such that f(x2 + 
f(y)) = y + f(x)2 for all x, y.  
 
Solution  
The first step is to establish that f(0) = 0. Putting x = y = 0, and f(0) = t, we get f(t) = t2. 
Also, f(x2+t) = f(x)2, and f(f(x)) = x + t2. We now evaluate f(t2+f(1)2) two ways. First, it is 
f(f(1)2 + f(t)) = t + f(f(1))2 = t + (1 + t2)2 = 1 + t + 2t2 + t4. Second, it is f(t2 + f(1 + t)) 
= 1 + t + f(t)2 = 1 + t + t4. So t = 0, as required.  
It follows immediately that f(f(x)) = x, and f(x2) = f(x)2. Given any y, let z = f(y). Then y = 
f(z), so f(x2 + y) = z + f(x)2 = f(y) + f(x)2. Now given any positive x, take z so that x = z2. 
Then f(x + y) = f(z2 + y) = f(y) + f(z)2 = f(y) + f(z2) = f(x) + f(y). Putting y = -x, we get 0 
= f(0) = f(x + -x) = f(x) + f(-x). Hence f(-x) = - f(x). It follows that f(x + y) = f(x) + f(y) 
and f(x - y) = f(x) - f(y) hold for all x, y.  
Take any x. Let f(x) = y. If y > x, then let z = y - x. f(z) = f(y - x) = f(y) - f(x) = x - y = -
z. If y < x, then let z = x - y and f(z) = f(x - y) = f(x) - f(y) = y - x. In either case we get 
some z > 0 with f(z) = -z < 0. But now take w so that w2 = z, then f(z) = f(w2) = f(w)2 >= 
0. Contradiction. So we must have f(x) = x.  
 
Problem A3  
Consider 9 points in space, no 4 coplanar. Each pair of points is joined by a line segment 
which is colored either blue or red or left uncolored. Find the smallest value of n such that 
whenever exactly n edges are colored, the set of colored edges necessarily contains a 
triangle all of whose edges have the same color.  
 
Solution  
We show that for n = 32 we can find a coloring without a monochrome triangle. Take two 
squares R1R2R3R4 and B1B2B3B4. Leave the diagonals of each square uncolored, color the 
remaining edges of R red and the remaining edges of B blue. Color blue all the edges from 
the ninth point X to the red square, and red all the edges from X to the blue square. Color 
RiBj red if i and j have the same parity and blue otherwise.  
Clearly X is not the vertex of a monochrome square, because if XY and XZ are the same 
color then, YZ is either uncolored or the opposite color. There is no triangle within the red 
square or the blue square, and hence no monochrome triangle. It remains to consider 
triangles of the form RiRjBk and BiBjRk. But if i and j have the same parity, then RiRj is 
uncolored (and similarly BiBj), whereas if they have opposite parity, then RiBk and RjBk have 
opposite colors (and similarly BiRk and BjRk).  
It remains to show that for n = 33 we can always find a monochrome triangle. There are 
three uncolored edges. Take a point on each of the uncolored edges. The edges between 
the remaining 6 points must all be colored. Take one of these, X. At least 3 of the 5 edges 
to X, say XA, XB, XC must be the same color (say red). If AB is also red, then XAB is 
monochrome. Similarly, for BC and CA. But if AB, BC and CA are all blue, then ABC is 
monochrome.  
 
Problem B1  
L is a tangent to the circle C and M is a point on L. Find the locus of all points P such that 
there exist points Q and R on L equidistant from M with C the incircle of the triangle PQR.  
 
Solution  



Answer: Let X be the point where C meets L, let O be the center of C, let XO cut C gain at 
Z, and take Y on QR so that M be the midpoint of XY. Let L' be the line YZ. The locus is the 
open ray from Z along L' on the opposite side to Y.  
Let C' be the circle on the other side of QR to C which also touches the segment QR and the 
lines PQ and QR. Let C' touch QR at Y'. If we take an expansion (technically, homothecy) 
center P, factor PY'/PZ, then C goes to C', the tangent to C at Z goes to the line QR, and 
hence Z goes to Y'. But it is easy to show that QX = RY'.  
We focus on the QORO'. Evidently X,Y' are the feet of the perpendiculars from O, O' 
respectively to QR. Also, OQO' = ORO' = 90. So QY'O' and OXQ are similar, and hence 
QY'/Y'O' = OX/XQ. Also RXO and O'Y'R are similar, so RX/XO = O'Y'/Y'R. Hence QY'·XQ = 
OX·O'Y' = RX·Y'R. Hence QX/RX = QX/(QR - QX) = RY'/(QR - RY') = RY'/QY'. Hence QX = 
RY'.  
But QX = RY by construction (M is the midpoint of XY and QR), so Y = Y'. Hence P lies on 
the open ray as claimed. Conversely, if we take P on this ray, then by the same argument 
QX = RY. But M is the midpoint of XY, so M must also be the midpoint of QR, so the locus is 
the entire (open) ray.  
 
Problem B2  
Let S be a finite set of points in three-dimensional space. Let Sx, Sy, Sz be the sets 
consisting of the orthogonal projections of the points of S onto the yz-plane, zx-plane, xy-
plane respectively. Prove that:  
      |S|2 <= |Sx| |Sy| |Sz|, where |A| denotes the number of points in the set A.  
 
Solution  
Induction on the number of different z-coordinates in S.  
For 1, it is sufficient to note that S = Sz and |S| ≤ |Sx| |Sy|  (at most |Sx| points of S 
project onto each of the points of Sy).  
In the general case, take a horizontal (constant z) plane dividing S into two non-empty 
parts T and U. Clearly, |S| = |T| + |U|, |Sx| = |Tx| + |Ux|, and |Sy| = |Ty| + |Uy|.  
By induction, |S| = |T| + |U| ≤ (|Tx| |Ty| |Tz|)1/2 + (|Ux| |Uy| |Uz|)1/2. But |Tz|, |Uz| ≤ |Sz|, 
and for any positive a, b, c, d we have (a b)1/2 + (c d)1/2 ≤ ( (a + c) (b + d) )1/2 (square!).  
Hence |S| ≤ |Sz|1/2( ( |Tx| + |Ux| ) ( |Ty| + |Uy| ) )1/2 = ( |Sx| |Sy| |Sz| ) 1/2.    
 
Problem B3  
For each positive integer n, S(n) is defined as the greatest integer such that for every 
positive integer k ≤ S(n), n2 can be written as the sum of k positive squares.  
(a)  Prove that S(n) <= n2 - 14 for each n ≥ 4.  
(b)  Find an integer n such that S(n) = n2 - 14.  
(c)  Prove that there are infinitely many integers n such that S(n) = n2 - 14.  
 
Solution  
(a)  Let N = n2. Suppose we could express N as a sum of N - 13 squares. Let the number of 
4s be a, the number of 9s be b and so on. Then we have 13 = 3a + 8b + 15c + ... . Hence 
c, d, ... must all be zero. But neither 13 nor 8 is a multiple of 3, so there are no solutions. 
Hence S(n) ≤ N - 14.  
A little experimentation shows that the problem is getting started. Most squares cannot be 
expressed as a sum of two squares. For N = 132 = 169, we find: 169 = 9 + 4 + 4 + 152 
1s, a sum of 155 = N - 14 squares. By grouping four 1s into a 4 repeatedly, we obtain all 
multiples of 3 plus 2 down to 41 (169 = 9 + 40 4s). Then grouping four 4s into a 16 gives 
us 38, 35, ... , 11 (169 = 10 16s + 9). Grouping four 16s into a 64 gives us 8 and 5. We 
obtain the last number congruent to 2 mod 3 by the decomposition: 169 = 122 + 52.  
For the numbers congruent to 1 mod 3, we start with N - 15 = 154 squares: 169 = 5 4s + 
149 1s. Grouping as before gives us all 3m + 1 down to 7: 169 = 64 + 64 + 16 + 16 + 4 + 
4 + 1. We may use 169 = 102 + 82 + 22 + 12 for 4.  
For multiples of 3, we start with N - 16 = 153 squares: 169 = 9 + 9 + 151 1s. Grouping as 
before gives us all multiples of 3 down to 9: 169 = 64 + 64 + 16 + 9 + 9 + 4 + 1 + 1 + 1. 
Finally, we may take 169 = 122 + 42 + 32 for 3 and split the 42 to get 169 = 122 + 32 + 22 
+ 22 + 22 + 22 for 6. That completes the demonstration that we can write 132 as a sum of k 
positive squares for all k <= S(13) = 132 - 14.  



We now show how to use the expressions for 132 to derive further N. For any N, the 
grouping technique gives us the high k. Simply grouping 1s into 4s takes us down: from 9 
+ 4 + 4 + (N-17) 1s to (N-14)/4 + 6 < N/2 or below; from 4 + 4 + 4 + 4 + 4 + (N-20) 1s 
to (N-23)/4 + 8 < N/2 or below; from 9 + 9 + (N-18) 1s to (N-21)/4 + 5 < N/2 or below. 
So we can certainly get all k in the range (N/2 to N-14) by this approach. Now suppose that 
we already have a complete set of expressions for N1 and for N2 (where we may have N1 = 
N2). Consider N3 = N1N2. Writing N3 = N1( an expression for N2 as a sum of k squares) gives 
N3 as a sum of 1 thru k2 squares, where k2 = N2 - 14 squares (since N1 is a square). Now 
express N1 as a sum of two squares: n1

2 + n2
2. We have N3 = n1

2(a sum of k2 squares) + 
n2

2(a sum of k squares). This gives N3 as a sum of k2 + 1 thru 2k2 squares. Continuing in 
this way gives N3 as a sum of 1 thru k1k2 squares. But ki = Ni - 14 > 2/3 Ni, so k1k2 > N3/2. 
So when combined with the top down grouping we get a complete set of expressions for N3.  
This shows that there are infinitely many squares N with a complete set of expressions, for 
example we may take N = the squares of 13, 132, 133, ... .  
 
IMO 1993 
 
Problem A1  
Let f(x) = xn + 5xn-1 + 3, where n > 1 is an integer. Prove that f(x) cannot be expressed as 
the product of two non-constant polynomials with integer coefficients.  
 
Solution 
Suppose f(x) = (xr + ar-1xr-1 + ... + a1x ± 3)(xs + bs-1xs-1 + ... + b1x ± 1). We show that all 
the a's are divisible by 3 and use that to establish a contradiction.  
First, r and s must be greater than 1. For if r = 1, then ± 3 is a root, so if n is even, we 
would have 0 = 3n ± 5·3n-1 + 3 = 3n-1( 3 ± 5) + 3, which is false since 3 ± 5 = 8 or -2. 
Similarly if n is odd we would have 0 = 3n-1(±3 + 5) + 3, which is false since ±3 + 5 = 8 or 
2. If s = 1, then ±1 is a root and we obtain a contradiction in the same way.  
So r ≤ n - 2, and hence the coefficients of x, x2, ... , xr are all zero. Since the coefficient of 
x is zero, we have: a1 ± 3b1 = 0, so a1 is divisible by 3. We can now proceed by induction. 
Assume a1, ... , at are all divisible by 3. Then consider the coefficient of xt+1. If s-1 ≥ t+1, 
then at+1 = linear combination of a1, ... , at ± 3bt+1. If s-1 < t+1, then at+1 = linear 
combination of some or all of a1, ... , at. Either way, at+1 is divisible by 3. So considering the 
coefficients of x, x2, ... , xr-1 gives us that all the a's are multiples of 3. Now consider the 
coefficient of xr, which is also zero. It is a sum of terms which are multiples of 3 plus ±1, so 
it is not zero. Contradiction. Hence the factorization is not possible.  
 
Problem A2 
Let D be a point inside the acute-angled triangle ABC such that ADB = ACB + 90o, and 
AC·BD = AD·BC.  
(a)  Calculate the ratio AB·CD/(AC·BD).  
(b)  Prove that the tangents at C to the circumcircles 
of ACD and BCD are perpendicular.  
 
Solution 
 
Take B' so that CB = CB', ∠BCB' = 90o and B' is on 
the opposite side of BC to A. It is easy to check that 
ADB, ACB' are similar and DAC, BAB' are similar. 
Hence AB/BD = AB'/B'C and CD/AC = BB'/AB'. It 
follows that the ratio given is BB'/B'C which is √2.  
Take XD the tangent to the circumcircle of ADC at D, 
so that XD is in the ∠ADB. Similarly, take YD the 
tangent to the circumcircle BDC at D. Then ∠ADX = 
∠ACD, ∠BDY = ∠BCD, so ∠ADX + ∠BDY = ∠ACB 
and hence ∠XDY = ∠ADB - (∠ADX + ∠BDY) = ∠ADB 
- ∠ACB = 90o. In other words the tangents to the 
circumcircles at D are perpendicular. Hence, by 
symmetry (reflecting in the line of centers) the 



tangents at C are perpendicular.  
Theo Koupelis, University of Wisconsin, Marathon   provided a similar solution (about 10 
minutes later!) taking the point B' so that �BDB' = 90o, BD = B'D and ∠B'DA = ∠ACB. 
DAC, B'AB are similar; and ABC, AB'D are similar.  
Marcin Mazur, University of Illinois at Urbana-Champaign   provided the first solution I 
received (about 10 minutes earlier!) using the generalized Ptolemy's equality (as opposed 
to the easier equality), but I do not know of a slick proof of this, so I prefer the proof 
above.  
 
Problem A3  
On an infinite chessboard a game is played as follows. At the start n2 pieces are arranged in 
an n x n block of adjoining squares, one piece on each square. A move in the game is a 
jump in a horizontal or vertical direction over an adjacent occupied square to an unoccupied 
square immediately beyond. The piece which has been jumped over is removed. Find those 
values of n for which the game can end with only one piece remaining on the board.  
Solution  
We show first that the game can end with only one piece if n is not a multiple of 3. Note 
first that the result is true for n = 2 or 4.  
n=2  
X X   . . X   . . X   . . .  
X X   X X     . . X   . . . 
                          X 
 
n = 4  
              X         X         X         X         X 
X X X X   X X . X   X X . X   . . X X   . . X X   . X . . 
X X X X   X X . X   . . X X   . . X X   X . X X   X . X X 
X X X X   X X X X   X X X X   X X X X   . X X X   . X X X 
X X X X   X X X X   X X X X   X X X X   . X X X   . X X X 
 
    X         X         X 
 
. X . .   . X . .   . X X .   . X . .   . X . .   . . . . 
X X . .   . . X .   . . . .   . . X .   . X X .   . . X . 
. X X X   . X X X   . X . X   . X . X   . . . X   . X . X 
. X X X   . X X X   . X X X   . X X X   . . X X   . . X X 
 
. . . .   . . . .   . . . .   . . . . 
. . X X   . X . .   . . . .   . . . . 
. X . .   . X . .   . . . .   . . . . 
. . X .   . . X .   . X X .   . . . X 
 
The key technique is the following three moves which can be used to wipe out three 
adjacent pieces on the border provided there are pieces behind them:  
 
 X X X     X X .     X X .     X X X 
 X X X     X X .     . . X     . . . 
               X         X 
 
We can use this technique to reduce (r + 3) x s rectangle to an r x s rectangle. There is a 
slight wrinkle for the last two rows of three:  
 
 X X X X     X X . X     . . X X     . . X X     . . . X     . . . X 
 X X X X     X X . X     . . X X     . . X X     . . . X     . . . X 
 . . . X     . . X X     . . X X     . X . .     . X X .     . . . X 
 
Thus we can reduce a square side 3n+2 to a 2 x (3n+2) rectangle. We now show how to 
wipe out the rectangle. First, we change the 2 x 2 rectangle at one end into a single piece 
alongside the (now) 2 x 3n rectangle:  



  X X    . .     . . 
  X X    . .     . . 
         X X        X    
 
Then we use the following technique to shorten the rectangle by 3:  
 
 X X X     X . X     X . X     . . .     . . . 
 X X X     X . X     X . X     . . .     . . . 
 X         X X     X .       X X . X         . X 
 
That completes the case of the square side 3n+2. For the square side 3n+1 we can use the 
technique for removing 3 x r rectangles to reduce it to a 4 x 4 square and then use the 
technique above for the 4 x 4 rectangle.  
Finally, we use a parity argument to show that if n is a multiple of 3, then the square side n 
cannot be reduced to a single piece. Color the board with 3 colors, red, white and blue:  
 
 R W B R W B R W B ... 
 W B R W B R W B R ... 
 B R W B R W B R W ... 
 R W B R W B R W B ... 
 ... 
 
Let suppose that the single piece is on a red square. Let A be the number of moves onto a 
red square, B the number of moves onto a white square and C the number of moves onto a 
blue square. A move onto a red square increases the number of pieces on red squares by 1, 
reduces the number of pieces on white squares by 1, and reduces the number of pieces on 
blue squares by 1. Let n = 3m. Then there are initially m pieces on red squares, m on white 
and m on blue. Thus we have:  
  - A + B + C = m-1;   A - B + C = m;   A + B - C = m.  
Solving, we get A = m, B = m - 1/2, C = m - 1/2. But the number of moves of each type 
must be integral, so it is not possible to reduce the number of pieces to one if n is a 
multiple of 3.  
 
Problem B1  
For three points P, Q, R in the plane define m(PQR) as the minimum length of the three 
altitudes of the triangle PQR (or zero if the points are collinear). Prove that for any points A, 
B, C, X:  
    m(ABC) ≤ m(ABX) + m(AXC) + m(XBC).  
 
Solution 
The length of an altitude is twice the area divided by the length of the corresponding side. 
Suppose that BC is the longest side of the triangle ABC. Then m(ABC) = area ABC/BC. [If A 
= B = C, so that BC = 0, then the result is trivially true.]  
Consider first the case of X inside ABC. Then area ABC = area ABX + area AXC + area XBC, 
so m(ABC)/2 = area ABX/BC + area AXC/BC + area XBC/BC. We now claim that the 
longest side of ABX is at most BC, and similarly for AXC and XBC. It then follows at once 
that area ABX/BC ≤ area ABX/longest side of ABX = m(ABX)/2 and the result follows (for 
points X inside ABC).  
The claim follows from the following lemma. If Y lies between D and E, then FY is less than 
the greater than FD and FE. Proof: let H be the foot of the perpendicular from F to DE. One 
of D and E must lie on the opposite side of Y to H. Suppose it is D. Then FD = FH/cos HFD 
> FH/cos HFY = FY. Returning to ABCX, let CX meet AB at Y. Consider the three sides of 
ABX. By definition AB ≤ BC. By the lemma AX is smaller than the larger of AC and AY, both 
of which do not exceed BC. Hence AX ≤ BC. Similarly BX ≤ BC.  
It remains to consider X outside ABC. Let AX meet AC at O. We show that the sum of the 
smallest altitudes of ABY and BCY is at least the sum of the smallest altitudes of ABO and 
ACO. The result then follows, since we already have the result for X = O. The altitude from 
A in ABX is the same as the altitude from A in ABO. The altitude from X in ABX is clearly 
longer than the altitude from O in ABO (let the altitudes meet the line AB at Q and R 



respectively, then triangles BOR and BXQ are similar, so XQ = OR·BX/BO > OR). Finally, let 
k be the line through A parallel to BX, then the altitude from B in ABX either crosses k 
before it meets AX, or crosses AC before it crosses AX. If the former, then it is longer than 
the perpendicular from B to k, which equals the altitude from A to BO. If the latter, then it 
is longer than the altitude from B to AO. Thus each of the altitudes in ABX is longer than an 
altitude in ABO, so m(ABX) > m(ABO).  
 
Problem B2  
Does there exist a function f from the positive integers to the positive integers such that 
f(1) = 2, f(f(n)) = f(n) + n for all n, and f(n) < f(n+1) for all n?  
 
Answer  
Yes: f(n) = [g*n + ½], where g = (1 + √5)/2 = 1.618 ... .  
 
Solution  
Let g(n) = [g*n + ½]. Obviously g(1) = 2. Also g(n+1) = g(n) + 1 or g(n) + 2, so certainly 
g(n+1) > g(n).  
Consider d(n) = g* [g*n + ½] + ½ - ( [g*n + ½] + n). We show that it is between 0 and 
1. It follows immediately that g(g(n)) = g(n) + n, as required.  
Certainly, [g*n + ½] > g*n - ½, so d(n) > 1 - g/2 > 0 (the n term has coefficient g2 - g - 1 
which is zero). Similarly, [g*n + ½] ≤ g*n + ½, so d(n) ≤ g/2 < 1, which completes the 
proof.  
 
Problem B3 
There are n > 1 lamps L0, L1, ... , Ln-1 in a circle. We use Ln+k to mean Lk. A lamp is at all 
times either on or off. Initially they are all on. Perform steps s0, s1, ... as follows: at step si, 
if Li-1 is lit, then switch Li from on to off or vice versa, otherwise do nothing. Show that:  
(a)  There is a positive integer M(n) such that after M(n) steps all the lamps are on again;  
(b)  If n = 2k, then we can take M(n) = n2 - 1.  
(c)  If n = 2k + 1, then we can take M(n) = n2 - n + 1.  
 
Solution  
(a)  The process cannot terminate, because before the last move a single lamp would have 
been on. But the last move could not have turned it off, because the adjacent lamp was off. 
There are only finitely many states (each lamp is on or off and the next move can be at one 
of finitely many lamps), hence the process must repeat. The outcome of each step is 
uniquely determined by the state, so either the process moves around a single large loop, 
or there is an initial sequence of steps as far as state k and then the process goes around a 
loop back to k. However, the latter is not possible because then state k would have had two 
different precursors. But a state has only one possible precursor which can be found by 
toggling the lamp at the current position if the previous lamp is on and then moving the 
position back one. Hence the process must move around a single large loop, and hence it 
must return to the initial state.  
(b)  Represent a lamp by X when on, by - when not. For 4 lamps the starting situation and 
the situation after 4, 8, 12, 16 steps is as follows:  
X X X X 
- X - X 
X - - X 
- - - X 
X X X - 
 
On its first move lamp n-2 is switched off and then remains off until each lamp has had n-1 
moves. Hence for each of its first n-1 moves lamp n-1 is not toggled and it retains its initial 
state. After each lamp has had n-1 moves, all of lamps 1 to n-2 are off. Finally over the 
next n-1 moves, lamps 1 to n-2 are turned on, so that all the lamps are on. We show by 
induction on k that these statements are all true for n = 2k. By inspection, they are true for 
k = 2. So suppose they are true for k and consider 2n = 2k+1 lamps. For the first n-1 moves 
of each lamp the n left-hand and the n right-hand lamps are effectively insulated. Lamps n-
1 and 2n-1 remain on. Lamp 2n-1 being on means that lamps 0 to n-2 are in just the same 



situation that they would be with a set of only n lamps. Similarly, lamp n-1 being on means 
that lamps n to 2n-2 are in the same situation that they would be with a set of only n 
lamps. Hence after each lamp has had n-1 moves, all the lamps are off except for n-1 and 
2n-1. In the next n moves lamps 1 to n-2 are turned on, lamp n-1 is turned off, lamps n to 
2n-2 remain off, and lamp 2n-1 remains on. For the next n-1 moves for each lamp, lamp n-
1 is not toggled, so it remains off. Hence all of n to 2n-2 also remain off and 2n-1 remains 
on. Lamps 0 to n-2 go through the same sequence as for a set of n lamps. Hence after 
these n-1 moves for each lamp, all the lamps are off, except for 2n-1. Finally, over the next 
2n-1 moves, lamps 0 to 2n-2 are turned on. This completes the induction. Counting moves, 
we see that there are n-1 sets of n moves, followed by n-1 moves, a total of n2 - 1.  
(c)  We show by induction on the number of moves that for n = 2k+ 1 lamps after each 
lamp has had m moves, for i = 0, 1, ... , 2k - 2, lamp i+2 is in the same state as lamp i is 
after each lamp has had m moves in a set of n - 1 = 2k lamps (we refer to this as lamp i in 
the reduced case). Lamp 0 is off and lamp 1 is on. It is easy to see that this is true for m = 
1 (in both cases odd numbered lamps are on and even numbered lamps are off). Suppose it 
is true for m. Lamp 2 has the same state as lamp 0 in the reduced case and both toggle 
since their predecessor lamps are on. Hence lamps 3 to n - 1 behave the same as lamps 1 
to n - 3 in the reduced case. That means that lamp n - 1 remains off. Hence lamp 0 does 
not toggle on its m+1th move and remains off. Hence lamp 1 does not toggle on its m+1th 
move and remains on. The induction stops working when lamp n - 2 toggles on its nth 
move in the reduced case, but it works up to and including m = n - 2. So after n - 2 moves 
for each lamp all lamps are off except lamp 1. In the next two moves nothing happens, 
then in the following n - 1 moves lamps 2 to n - 1 and lamp 0 are turned on. So all the 
lamps are on after a total of (n - 2)n + n + 1 = n2 + n + 1 moves.  
 
IMO 1994 
 
Problem A1  
Let m and n be positive integers. Let a1, a2, ... , am be distinct elements of {1, 2, ... , n} 
such that whenever ai + aj ≤ n for some i, j (possibly the same) we have ai + aj = ak for 
some k. Prove that:  
    (a1 + ... + am)/m ≥ (n + 1)/2.  
 
Solution  
Take a1 < a2 < ... < am. Take k ≤ (m+1)/2. We show that ak + am-k+1 ≥ n + 1. If not, then 
the k distinct numbers a1 + am-k+1, a2 + am-k+1, ... , ak + am-k+1 are all ≤ n and hence equal 
to some ai. But they are all greater than am-k+1, so each i satisfies m-k+2 ≤ i ≤ m, which is 
impossible since there are only k-1 available numbers in the range.  
 
Problem A2  
ABC is an isosceles triangle with AB = AC. M is the midpoint of BC and O is the point on the 
line AM such that OB is perpendicular to AB. Q is an arbitrary point on BC different from B 
and C. E lies on the line AB and F lies on the line AC such that E, Q, F are distinct and 
collinear. Prove that OQ is perpendicular to EF if and only if QE = QF.  
 

Solution  
Assume OQ is perpendicular to EF. Then ∠EBO = ∠EQO = 
90o, so EBOQ is cyclic. Hence ∠OEQ = ∠OBQ. Also ∠OQF = 
∠OCF = 90o, so OQCF is cyclic. Hence ∠OFQ = ∠OCQ. But 
∠OCQ = ∠OBQ since ABC is isosceles. Hence ∠OEQ = ∠OFQ, 
so OE = OF, so triangles OEQ and OFQ are congruent and QE 
= QF.  
Assume QE = QF. If OQ is not perpendicular to EF, then take 
E'F' through Q perpendicular to OQ with E' on AB and F' on 
AC. Then QE' = QF', so triangles QEE' and QFF' are 
congruent. Hence ∠QEE' = ∠QFF'. So CA and AB make the 
same angles with EF and hence are parallel. Contradiction. So 
OQ is perpendicular to EF.  
 



Problem A3  
For any positive integer k, let f(k) be the number of elements in the set {k+1, k+2, ... , 
2k} which have exactly three 1s when written in base 2. Prove that for each positive 
integer m, there is at least one k with f(k) = m, and determine all m for which there is 
exactly one k.  
 
Answer  
2, 4, ... , n(n-1)/2 + 1, ... .  
 
Solution  
To get a feel, we calculate the first few values of f explicitly:  
f(2) = 0, f(3) = 0  
f(4) = f(5) = 1, [7 = 111]  
f(6) = 2, [7 = 111, 11 = 1011]  
f(7) = f(8) = f(9) = 3 [11 = 1011, 13 = 1101, 14 = 1110]  
f(10) = 4 [11, 13, 14, 19 = 10011]  
f(11) = f(12) = 5 [13, 14, 19, 21 = 10101, 22 = 10110]  
f(13) = 6 [14, 19, 21, 22, 25 = 11001, 26 = 11010]  
We show that f(k+1) = f(k) or f(k) + 1. The set for k+1 has the additional elements 2k+1 
and 2k+2 and it loses the element k+1. But the binary expression for 2k+2 is the same as 
that for k+1 with the addition of a zero at the end, so 2k+2 and k+1 have the same 
number of 1s. So if 2k+1 has three 1s, then f(k+1) = f(k) + 1, otherwise f(k+1) = f(k). 
Now clearly an infinite number of numbers 2k+1 have three 1s, (all numbers 2r + 2s + 1 for 
r > s > 0). So f(k) increases without limit, and since it only moves up in increments of 1, it 
never skips a number. In other words, given any positive integer m we can find k so that 
f(k) = m.  
From the analysis in the last paragraph we can only have a single k with f(k) = m if both 
2k-1 and 2k+1 have three 1s, or in other words if both k-1 and k have two 1s. Evidently 
this happens when k-1 has the form 2n + 1. This determines the k, namely 2n + 2, but we 
need to determine the corresponding m = f(k). It is the number of elements of {2n+3, 
2n+4, ... , 2n+1+4} which have three 1s. Elements with three 1s are either 2n+2r+2s with 0 
≤ r < s < n, or 2n+1+3. So there are m= n(n-1)/2 + 1 of them. As a check, for n = 2, we 
have k = 22+2 = 6, m = 2, and for n = 3, we have k = 23+2 = 10, m = 4, which agrees 
with the f(6) = 2, f(10) = 4 found earlier.    
 
Problem B1  
Determine all ordered pairs (m, n) of positive integers for which (n3 + 1)/(mn - 1) is an 
integer.  
 
Answer  
(1, 2), (1, 3), (2, 1), (2, 2), (2, 5), (3, 1), (3, 5), (5, 2), (5, 3).  
 
Solution  
We start by checking small values of n. n = 1 gives n3 + 1 = 2, so m = 2 or 3, giving the 
solutions (2, 1) and (3, 1). Similarly, n = 2 gives n3 + 1 = 9, so 2m-1 = 1, 3 or 9, giving 
the solutions (1, 2), (2, 2), (5, 2). Similarly, n = 3 gives n3 + 1 = 28, so 3m - 1 = 2, 14, 
giving the solutions (1, 3), (5, 3). So we assume hereafter that n > 3.  
Let n3 + 1 = (mn - 1)h. Then we must have h = -1 (mod n). Put h = kn - 1. Then n3 + 1 = 
mkn2 - (m + k)n + 1. Hence n2 = mkn - (m + k). (*)   Hence n divides m + k. If m + k ≥ 
3n, then since n > 3 we have at least one of m, k ≥ n + 2. But then (mn - 1)(kn - 1) ≥ (n2 
+ 2n - 1)(n - 1) = n3 + n2 - 3n + 1 = (n3 + 1) + n(n - 3) > n3 + 1. So we must have m + k 
= n or 2n.  
Consider first m + k = n. We may take m ≥ k (provided that we remember that if m is a 
solution, then so is n - m). So (*) gives n = m(n - m) - 1. Clearly m = n - 1 is not a 
solution. If m = n - 2, then n = 2(n - 2) - 1, so n = 5. This gives the two solutions (m, n) = 
(2, 5) and (3, 5). If m < n - 2 then n - m ≥ 3 and so m(n - m) - 1 ≥ 3m - 1 ≥ 3n/2 - 1 > n 
for n > 3.  



Finally, take m + k = 2n. So (*) gives n + 2 = m(2n - m). Again we may take m ≥ k. m = 
2n - 1 is not a solution (we are assuming n > 3). So 2n - m ≥ 2, and hence m(2n - m) ≥ 
2m ≥ 2n > n + 2.  
 
Problem B2  
Let S be the set of all real numbers greater than -1. Find all functions f :S�S such that f(x 
+ f(y) + xf(y)) = y + f(x) + yf(x) for all x and y, and f(x)/x is strictly increasing on each of 
the intervals -1 < x < 0 and 0 < x.  
 
Answer  
f(x) = -x/(x+1).  
 
Solution  
Suppose f(a) = a. Then putting x = y = a in the relation given, we get f(b) = b, where b = 
2a + a2. If -1 < a < 0, then -1 < b < a. But f(a)/a = f(b)/b. Contradiction. Similarly, if a > 
0, then b > a, but f(a)/a = f(b)/b. Contradiction. So we must have a = 0.  
But putting x = y in the relation given we get f(k) = k for k = x + f(x) + xf(x). Hence for 
any x we have x + f(x) + xf(x) = 0 and hence f(x) = -x/(x+1).  
Finally, it is straightforward to check that f(x) = -x(x+1) satisfies the two conditions.  
 
Problem B3  
Show that there exists a set A of positive integers with the following property: for any 
infinite set S of primes, there exist two positive integers m in A and n not in A, each of 
which is a product of k distinct elements of S for some k ≥ 2.  
 
Solution  
Let the primes be p1 < p2 < p3 < ... . Let A consists of all products of n distinct primes such 
that the smallest is greater than pn. For example: all primes except 2 are in A; 21 is not in 
A because it is a product of two distinct primes and the smallest is greater than 3. Now let 
S = {pi1, pi2, ... } be any infinite set of primes. Assume that pi1 < pi2 < ... . Let n = i1. Then 
pi1pi2 ... pin is not in A because it is a product of n distinct primes, but the smallest is not 
greater than pn. But pi2pi3 ... pin+1 is in A, because it is a product of n distinct primes and 
the smallest is greater than pn. But both numbers are products of n distinct elements of S.  
 
IMO 1995 
 
Problem A1  
Let A, B, C, D be four distinct points on a line, in that order. The circles with diameter AC 
and BD intersect at X and Y. The line XY meets BC at Z. Let P be a point on the line XY 
other than Z. The line CP intersects the circle with diameter AC at C and M, and the line BP 
intersects the circle with diameter BD at B and N. Prove that the lines AM, DN, XY are 
concurrent.  
 
Solution  
Let DN meet XY at Q. Angle QDZ = 90o - 
angle NBD = angle BPZ. So triangles QDZ 
and BPZ are similar. Hence QZ/DZ = 
BZ/PZ, or QZ = BZ·DZ/PZ. Let AM meet 
XY at Q'. Then the same argument shows 
that Q'Z = AZ·CZ/PZ. But BZ·DZ = XZ·YZ 
= AZ·CZ, so QZ = Q'Z. Hence Q and Q' 
coincide.  
 
Problem A2  
Let a, b, c be positive real numbers with 
abc = 1. Prove that:  
    1/(a3(b + c)) + 1/(b3(c + a)) + 1/(c3(a 
+ b)) ≥ 3/2.  
 



Solution  
Put a = 1/x, b = 1/y, c = 1/z. Then 1/(a3(b+c)) = x3yz/(y+z) = x2/(y+z). Let the 
expression given be E. Then by Cauchy's inequality we have (y+z + z+x + x+y)E ≥ (x + y 
+ z)2, so E ≥ (x + y + z)/2. But applying the arithmetic/geometric mean result to x, y, z 
gives (x + y + z) ≥ 3. Hence result.  
 
Problem A3  
Determine all integers n > 3 for which there exist n points A1, ... , An in the plane, no three 
collinear, and real numbers r1, ... , rn such that for any distinct i, j, k, the area of the 
triangle AiAjAk is ri + rj + rk.  
 
Answer  
n = 4.  
 
Solution  
The first point to notice is that if no arrangement is possible for n, then no arrangement is 
possible for any higher integer. Clearly the four points of a square work for n = 4, so we 
focus on n = 5.  
If the 5 points form a convex pentagon, then considering the quadrilateral A1A2A3A4 as 
made up of two triangles in two ways, we have that r1 + r3 = r2 + r4. Similarly, A5A1A2A3 
gives r1 + r3 = r2 + r5, so r4 = r5.  
We show that we cannot have two r's equal (whether or not the 4 points form a convex 
pentagon). For suppose r4 = r5. Then A1A2A4 and A1A2A5 have equal area. If A4 and A5 are 
on the same side of the line A1A2, then since they must be equal distances from it, A4A5 is 
parallel to A1A2. If they are on opposite sides, then the midpoint of A4A5 must lie on A1A2. 
The same argument can be applied to A1 and A3, and to A2 and A3. But we cannot have two 
of A1A2, A1A3 and A2A3 parallel to A4A5, because then A1, A2 and A3 would be collinear. We 
also cannot have the midpoint of A4A5 lying on two of A1A2, A1A3 and A2A3 for the same 
reason. So we have established a contradiction. hence no two of the r's can be equal. In 
particular, this shows that the 5 points cannot form a convex pentagon.  
Suppose the convex hull is a quadrilateral. Without loss of generality, we may take it to be 
A1A2A3A4. A5 must lie inside one of A1A2A4 and A2A3A4. Again without loss of generality we 
may take it to be the latter, so that A1A2A5A4 is also a convex quadrilateral. Then r2 + r4 = 
r1 + r3 and also = r1 + r5. So r3 = r5, giving a contradiction as before.  
The final case is the convex hull a triangle, which we may suppose to be A1A2A3. Each of the 
other two points divides its area into three triangles, so we have: (r1 + r2 + r4) + (r2 + r3 + 
r4) + (r3 + r1 + r4) = (r1 + r2 + r5) + (r2 + r3 + r5) + (r3 + r1 + r5) and hence r4 = r5, giving 
a contradiction.  
So the arrangement is not possible for 5 and hence not for any n > 5.  
 
Problem B1  
Find the maximum value of x0 for which there exists a sequence x0, x1, ... , x1995 of positive 
reals with x0 = x1995 such that for i = 1, ... , 1995:  
        xi-1 + 2/xi-1 = 2xi + 1/xi.  
 
Answer  
2997.  
 
Solution  
The relation given is a quadratic in xi, so it has two solutions, and by inspection these are xi 
= 1/xi-1 and xi-1/2. For an even number of moves we can start with an arbitrary x0 and get 
back to it. Use n-1 halvings, then take the inverse, that gets to 2n-1/x0 after n moves. 
Repeating brings you back to x0 after 2n moves. However, 1995 is odd!  
The sequence given above brings us back to x0 after n moves, provided that x0 = 2(n-1)/2. 
We show that this is the largest possible x0. Suppose we have a halvings followed by an 
inverse followed by b halvings followed by an inverse. Then if the number of inverses is odd 
we end up with 2a-b+c- .../x0, and if it is even we end up with x0/2a-b+c- .... In the first case, 
since the final number is x0 we must have x0 = 2(a-b+-...)/2. All the a, b, ... are non-negative 
and sum to the number of moves less the number of inverses, so we clearly maximise x0 by 



taking a single inverse and a = n-1. In the second case, we must have 2a-b+c- ... = 1 and 
hence a - b + c - ... = 0. But that implies that a + b + c + ... is even and hence the total 
number of moves is even, which it is not. So we must have an odd number of inverses and 
the maximum value of x0 is 2(n-1)/2.  
 
Problem B2  
Let ABCDEF be convex hexagon with AB = BC = CD and DE = EF = FA, such that ∠BCD = 
∠EFA = 60o. Suppose that G and H are points in the interior of the hexagon such that ∠AGB 
= ∠DHE = 120o. Prove that AG + GB + GH + DH + HE ≥ CF.  
 
Solution 
BCD is an equilateral triangle and AEF is an equilateral triangle. The presence of equilateral 
triangles and quadrilaterals suggests using Ptolemy's inequality. From CBGD, we get CG·BD 
≤ BG·CD + GD·CB, so CG ≤ BG + GD. Similarly from HAFE we get HF ≤ HA + HE. Also CF 
is shorter than the indirect path C to G to H to F, so CF ≤ CG + GH + HF. But we do not get 
quite what we want.  
However, a slight modification of the argument does work. BAED is symmetrical about BE 
(because BA = BD and EA = ED). So we may take C' the reflection of C in the line BE and F' 
the reflection of F. Now C'AB and F'ED are still equilateral, so the same argument gives C'G 
≥ AG + GB and HF' ≤ DH + HE. So CF = C'F' ≤ C'G + GH + HF' ≤ AG + GB + GH + DH + 
HE.  
 
Problem B3  
Let p be an odd prime number. How many p-element subsets A of {1, 2, ... , 2p} are there, 
the sum of whose elements is divisible by p?  
 
Answer  
2 + (2pCp - 2)/p, where 2pCp is the binomial coefficient (2p)!/(p!p!).  
 
Solution  
Let A be a subset other than {1, 2, ... , p} and {p+1, p+2, ... , 2p}. Consider the elements 
of A in {1, 2, ... , p}. The number r satisfies 0 < r < p. We can change these elements to 
another set of r elements of {1, 2, ... , p} by adding 1 to each element (and reducing mod 
p if necessary). We can repeat this process and get p sets in all. For example, if p = 7 and 
the original subset of {1, 2, ... , 7} was {3 , 5}, we get:  
  {3 , 5}, {4, 6}, {5, 7}, {6, 1}, {7, 2}, {1, 3}, {2, 4}.  
The sum of the elements in the set is increased by r each time. So, since p is prime, the 
sums must form a complete set of residues mod p. In particular, they must all be distinct 
and hence all the subsets must be different.  
Now consider the sets A which have a given intersection with {p+1, ... , n}. Suppose the 
elements in this intersection sum to k mod p. The sets can be partitioned into groups of p 
by the process described above, so that exactly one member of each group will have the 
sum -k mod p for its elements in {1, 2, ... , p}. In other words, exactly one member of 
each group will have the sum of all its elements divisible by p.  
There are 2pCp subsets of {1, 2, ... , 2p} of size p. Excluding {1, 2, ... , p} and {p+1, ... , 
2p} leaves (2pCp - 2). We have just shown that (2pCp - 2)/p of these have sum divisible 
by p. The two excluded subsets also have sum divisible by p, so there are 2 + (2pCp - 2)/p 
subsets in all having sum divisible by p.  
 
IMO 1996 
 
Problem A1  
We are given a positive integer r and a rectangular board divided into 20 x 12 unit squares. 
The following moves are permitted on the board: one can move from one square to another 
only if the distance between the centers of the two squares is √r. The task is to find a 
sequence of moves leading between two adjacent corners of the board which lie on the long 
side.  



(a)  Show that the task cannot be done if r is divisible by 2 or 3.  
(b)  Prove that the task is possible for r = 73.  
(c)  Can the task be done for r = 97?  
 
Answer  
No.  
 
Solution  
(a)  Suppose the move is a units in one direction and b in the orthogonal direction. So a2 + 
b2 = r. If r is divisible by 2, then a and b are both even or both odd. But that means that 
we can only access the black squares or the white squares (assuming the rectangle is 
colored like a chessboard). The two corners are of opposite color, so the task cannot be 
done. All squares are congruent to 0 or 1 mod 3, so if r is divisible by 3, then a and b must 
both be multiples of 3. That means that if the starting square has coordinates (0,0), we can 
only move to squares of the form (3m,3n). The required destination is (19,0) which is not 
of this form, so the task cannot be done.  
(b)  If r = 73, then we must have a = 8, b = 3 (or vice versa). There are 4 types of move:  
      A: (x,y) to (x+8,y+3)  
      B: (x,y) to (x+3,y+8)  
      C: (x,y) to (x+8,y-3)  
      D: (x,y) to (x+3,y-8)  
We regard (x,y) to (x-8,y-3) as a negative move of type A, and so on. Then if we have a 
moves of type A, b of type B and so on, then we require:  
    8(a + c) + 3(b + d) = 19; 3(a - c) + 8(b - d) = 0.  
A simple solution is a = 5, b = -1, c = -3, d = 2, so we start by looking for solutions of this 
type. After some fiddling we find:  
(0,0) to (8,3) to (16,6) to (8,9) to (11,1) to (19,4) to (11,7) to (19,10) to (16,2) to (8,5) 
to (16,8) to (19,0).  
(c)  If r = 97, then we must have a = 9, b = 4. As before, assume we start at (0,0). A good 
deal of fiddling around fails to find a solution, so we look for reasons why one is impossible. 
Call moves which change y by 4 "toggle" moves. Consider the central strip y = 4, 5, 6 or 7. 
Toggle moves must toggle us in and out of the strip. Non-toggle moves cannot be made if 
we are in the strip and keep us out of it if we are out of it. Toggle moves also change the 
parity of the x-coordinate, whereas non-toggle moves do not. Now we start and finish out 
of the strip, so we need an even number of toggle moves. On the other hand, we start with 
even x and end with odd x, so we need an odd number of toggle moves. Hence the task is 
impossible.  
 
Problem A2  
Let P be a point inside the triangle ABC such that ∠APB - ∠ACB = ∠APC - ∠ABC. Let D, E be 
the incenters of triangles APB, APC respectively. Show that AP, BD, CE meet at a point.  
 
Solution  
We need two general results: the angle bisector theorem; and the result about the feet of 
the perpendiculars from a general point inside a triangle. The second is not so well-known. 
Let P be a general point in the triangle ABC 
with X, Y, Z the feet of the perpendiculars to 
BC, CA, AB. Then PA = YZ/sin A and ∠APB - 
∠C = ∠XZY. To prove the first part: AP = 
AY/sin APY = AY/sin AZY (since AYPZ is 
cyclic) = YZ/sin A (sine rule). To prove the 
second part: ∠XZY = ∠XZP + ∠YZP = ∠XBP 
+ ∠YAP = 90o - ∠XPB + 90o - ∠YPA = 180o - 
(360o - ∠APB - ∠XPY) = -180o + ∠APB + 
(180o - ∠C) = ∠APB - ∠C.  
 
So, returning to the problem, ∠APB - ∠C = 
∠XZY and ∠APC - ∠B = ∠XYZ. Hence XYZ is isosceles: XY = XZ. Hence PC sin C = PB sin B. 
But AC sin C = AB sin B, so AB/PB = AC/PC. Let the angle bisector BD meet AP at W. Then, 



by the angle bisector theorem, AB/PB = AW/WP. Hence AW/WP = AC/PC, so, by the angle 
bisector theorem, CW is the bisector of angle ACP, as required.  
 
Problem A3  
Let S be the set of non-negative integers. Find all functions f: S→S such that f(m + f(n)) = 
f(f(m)) + f(n) for all m, n.  
 
Solution 
Setting m = n = 0, the given relation becomes: f(f(0)) = f(f(0)) + f(0). Hence f(0) = 0. 
Hence also f(f(0)) = 0. Setting m = 0, now gives f(f(n)) = f(n), so we may write the 
original relation as f(m + f(n)) = f(m) + f(n).  
So f(n) is a fixed point. Let k be the smallest non-zero fixed point. If k does not exist, then 
f(n) is zero for all n, which is a possible solution. If k does exist, then an easy induction 
shows that f(qk) = qk for all non-negative integers q. Now if n is another fixed point, write 
n = kq + r, with 0 ≤ r < k. Then f(n) = f(r + f(kq)) = f(r) + f(kq) = kq + f(r). Hence f(r) = 
r, so r must be zero. Hence the fixed points are precisely the multiples of k.  
But f(n) is a fixed point for any n, so f(n) is a multiple of k for any n. Let us take n1, n2, ... , 
nk-1 to be arbitrary non-negative integers and set n0 = 0. Then the most general function 
satisfying the conditions we have established so far is:  
      f(qk + r) = qk + nrk for 0 ≤ r < k.  
We can check that this satisfies the functional equation. Let m = ak + r, n = bk + s, with 0 
≤ r, s < k. Then f(f(m)) = f(m) = ak + nrk, and f(n) = bk + nsk, so f(m + f(n)) = ak + bk 
+ nrk + nsk, and f(f(m)) + f(n) = ak + bk + nrk + nsk. So this is a solution and hence the 
most general solution.  
 
Problem B1  
The positive integers a, b are such that 15a + 16b and 16a - 15b are both squares of 
positive integers. What is the least possible value that can be taken on by the smaller of 
these two squares?  
 
Answer  
4812.  
 
Solution  
Put 15a ± 16b = m2, 16a - 15b = n2. Then 15m2 + 16n2 = 481a = 13·37a. The quadratic 
residues mod 13 are 0, ±1, ±3, ±4, so the residues of 15m2 are 0, ±2, ±5, ±6, and the 
residues of 16n2 are 0, ±1, ±3, ±4. Hence m and n must both be divisible by 13. Similarly, 
the quadratic residues of 37 are 0, ±1, ±3, ±4, ±7, ±9, ±10, ±11, ±12, ±16, so the 
residues of 15m2 are 0, ±2, ±5, ±6, ±8, ±13, ±14, ±15, ±17, ±18, and the residues of 
16n2 are 0, ±1, ±3, ±4, ±7, ±9, ±10, ±11, ±12, ±16. Hence m and n must both be 
divisible by 37. Put m = 481m', n = 481n' and we get: a = 481(15m'2 + 16n'2). We also 
have 481b = 16m2 - 15n2 and hence b = 481(16m'2 - 15n'2). The smallest possible solution 
would come from putting m' = n' = 1 and indeed that gives a solution.  
This solution is straightforward, but something of a slog - all the residues have to be 
calculated. A more elegant variant is to notice that m4 + n4 = 481(a2 + b2). Now if m and n 
are not divisible by 13 we have m4 + n4 = 0 (mod 13). Take k so that km = 1 (mod 13), 
then (nk)4 = -(mk)4 = -1 (mod 13). But that is impossible because then (nk)12 = -1 (mod 
13), but x12 = 1 (mod 13) for all non-zero residues. Hence m and n are both divisible by 
13. The same argument shows that m and n are both divisible by 37.  
 
Problem B2  
Let ABCDEF be a convex hexagon such that AB is parallel to DE, BC is parallel to EF, and 
CD is parallel to FA. Let RA, RC, RE denote the circumradii of triangles FAB, BCD, DEF 
respectively, and let p denote the perimeter of the hexagon. Prove that:  
        RA + RC + RE ≥ p/2.  
 
Solution  
The starting point is the formula for the circumradius R of a triangle ABC: 2R = a/sin A = 
b/sin B = c/sin C. [Proof: the side a subtends an angle 2A at the center, so a = 2R sin A.] 



This gives that 2RA = BF/sin A, 2RC = BD/sin C, 2RE = FD/sin E. It is clearly not true in 
general that BF/sin A > BA + AF, although it is true if angle FAB ≥ 120o, so we need some 

argument that involves the hexagon as a whole.  
 
Extend sides BC and FE and take lines 
perpendicular to them through A and D, thus 
forming a rectangle. Then BF is greater than or 
equal to the side through A and the side through 
D. We may find the length of the side through A 
by taking the projections of BA and AF giving AB 
sin B + AF sin F. Similarly the side through D is 
CD sin C + DE sin E. Hence:  
    2BF ≥ AB sin B + AF sin F + CD sin C + DE sin 
E.   Similarly:  
    2BD ≥ BC sin B + CD sin D + AF sin A + EF sin 
E, and  

    2FD ≥ AB sin A + BC sin C + DE sin D + EF sin F.  
Hence 2BF/sin A + 2BD/sin C + 2FD/sin E ≥ AB(sin A/sin E + sin B/sin A) + BC(sin B/sin C 
+ sin C/sin E) + CD(sin C/sin A + sin D/sin C) + DE(sin E/sin A + sin D/sin E) + EF(sin 
E/sin C + sin F/sin E) + AF(sin F/sin A + sin A/sin C).  
We now use the fact that opposite sides are parallel, which implies that opposite angles are 
equal: A = D, B = E, C = F. Each of the factors multiplying the sides in the last expression 
now has the form x + 1/x which has minimum value 2 when x = 1. Hence 2(BF/sin A + 
BD/sin C + FD/sin E) ≥ 2p and the result is proved.  
 
Problem B3  
Let p, q, n be three positive integers with p + q < n. Let x0, x1, ... , xn be integers such that 
x0 = xn = 0, and for each 1 ≤ i ≤ n, xi - xi-1 = p or -q. Show that there exist indices i < j 
with (i, j) not (0, n) such that xi = xj.  
 
Solution  
Let xi - xi-1 = p occur r times and xi - xi-1 = -q occur s times. Then r + s = n and pr = qs. If 
p and q have a common factor d, the yi = xi/d form a similar set with p/d and q/d. If the 
result is true for the yi then it must also be true for the xi. So we can assume that p and q 
are relatively prime. Hence p divides s. Let s = kp. If k = 1, then p = s and q = r, so p + q 
= r + s = n. But we are given p + q < n. Hence k > 1. Let p + q = n/k = h.  
Up to this point everything is fairly obvious and the result looks as though it should be 
easy, but I did not find it so. Some fiddling around with examples suggested that we seem 
to get xi = xj for j = i + h. We observe first that xi+h - xi must be a multiple of h. For 
suppose e differences are p, and hence h-e are -q. Then xi+h - xi = ep - (h - e)q = (e - q)h.  
The next step is not obvious. Let di = xi+h - xi. We know that all dis are multiples of h. We 
wish to show that at least one is zero. Now di+1 - di = (xi+h+1 - xi+h) - (xi+1 - xi) = (p or -q) - 
(p or -q) = 0, h or -h. So if neither of di nor di+1 are zero, then either both are positive or 
both are negative (a jump from positive to negative would require a difference of at least 
2h). Hence if none of the dis are zero, then all of them are positive, or all of them are 
negative. But d0 + dh + ... + dkh is a concertina sum with value xn - x0 = 0. So this subset 
of the dis cannot all be positive or all negative. Hence at least one di is zero.  
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Problem A1  
In the plane the points with integer coordinates are the vertices of unit squares. The 
squares are colored alternately black and white as on a chessboard. For any pair of positive 
integers m and n, consider a right-angled triangle whose vertices have integer coordinates 
and whose legs, of lengths m and n, lie along the edges of the squares. Let S1 be the total 
area of the black part of the triangle, and S2 be the total area of the white part. Let f(m, n) 
= |S1 - S2|.  
(a)  Calculate f(m, n) for all positive integers m and n which are either both even or both 
odd.  



(b)  Prove that f(m, n) ≤ max(m, n)/2 for all m, n.  
(c)  Show that there is no constant C such that f(m, n) < C for all m, n.  
 
Solution  
(a)  If m and n are both even, then f(m,n) = 0. Let M be the midpoint of the hypoteneuse. 
The critical point is that M is a lattice point. If we rotate the triangle through 180 to give 
the other half of the rectangle, we find that its coloring is the same. Hence S1 and S2 for the 
triangle are each half their values for the rectangle. But the values for the rectangle are 
equal, so they must also be equal for the triangle and hence f(m,n) = 0.  
If m and n are both odd, then the midpoint of the hypoteneuse is the center of a square 
and we may still find that the coloring of the two halves of the rectangle is the same. This 
time S1 and S2 differ by one for the rectangle, so f(m,n) = 1/2.  
(b)  The result is immediate from (a) for m and n of the same parity. The argument in (a) 
fails for m and n with opposite parity, because the two halves of the rectangle are 
oppositely colored. Let m be the odd side. Then if we extend the side length m by 1 we 
form a new triangle which contains the original triangle. But it has both sides even and 
hence S1 = S2. The area added is a triangle base 1 and height n, so area n/2. The worst 
case would be that all this area was the same color, in which case we would get f(m,n) = 
n/2. But n <= max(m,n), so this establishes the result.  
(c)  Intuitively, it is clear that if the hypoteneuse runs along the diagonal of a series of 
black squares, and we then extend one side, the extra area taken in will be mainly black. 
We need to make this rigorous. For the diagonal to run along the diagonal of black squares 
we must have n = m. It is easier to work out the white area added by extending a side. The 
white area takes the form of a series of triangles each similar to the new n+1 x n triangle. 
The biggest has sides 1 and n/(n+1). The next biggest has sides (n-1)/n and (n-1)/(n+1), 
the next biggest (n-2)/n and (n-2)/(n+1) and so on, down to the smallest which is 1/n by 
1/(n+1). Hence the additional white area is 1/2 (n/(n+1) + (n-1)2/(n(n+1)) + (n-
2)2/(n(n+1)) + ... + 1/(n(n+1)) ) = 1/(2n(n+1))  (n2 + ... + 12) = (2n+1)/12. Hence the 
additional black area is n/2 - (2n+1)/12 = n/3 - 1/12 and the black excess in the additional 
area is n/6 - 1/6. If n is even, then f(n,n) = 0 for the original area, so for the new triangle 
f(n+1,n) = (n-1)/6 which is unbounded.  
 
Problem A2  
The angle at A is the smallest angle in the triangle ABC. The points B and C divide the 
circumcircle of the triangle into two arcs. Let U be an interior point of the arc between B 
and C which does not contain A. The perpendicular bisectors of AB and AC meet the line AU 
at V and W, respectively. The lines BV and CW meet at T. Show that AU = TB + TC.  
 
Solution  
Extend BV to meet the circle again at X, and extend CW to meet the circle again at Y. Then 
by symmetry (since the perpendicular bisectors pass through the center of the circle) AU = 
BX and AU = CY. Also arc AX = arc BU, and arc AY = arc UC. Hence arc XY = arc BC and so 
angle BYC = angle XBY and hence TY = TB. So AU = CY = CT + TY = CT + TB.  
 
Problem A3  
Let x1, x2, ... , xn be real numbers satisfying |x1 + x2 + ... + xn| = 1 and |xi| ≤ (n+1)/2 for 
all i. Show that there exists a permutation yi of xi such that |y1 + 2y2 + ... + nyn| ≤ 
(n+1)/2.  
 
Solution  
Without loss of generality we may assume x1 + ... + xn = +1. [If not just reverse the sign 
of every xi.] For any given arrangement xi we use sum to mean x1 + 2x2 + 3x3 + ... + nxn. 
Now if we add together the sums for x1, x2, ... , xn and the reverse xn, xn-1, ... , x1, we get 
(n+1)(x1 + ... + xn) = n+1. So either we are home with the original arrangement or its 
reverse, or they have sums of opposite sign, one greater than (n+1)/2 and one less than -
(n+1)/2.  
A transposition changes the sum from ka + (k+1)b + other terms to kb + (k+1)a + other 
terms. Hence it changes the sum by |a - b| (where a, b are two of the xi) which does not 
exceed n+1. Now we can get from the original arrangement to its reverse by a sequence of 



transpositions. Hence at some point in this sequence the sum must fall in the interval [-
(n+1)/2, (n+1)/2] (because to get from a point below it to a point above it in a single step 
requires a jump of more than n+1). That point gives us the required permutation.  
 
Problem B1 
An n x n matrix whose entries come from the set S = {1, 2, ... , 2n-1} is called silver 
matrix if, for each i = 1, 2, ... , n, the ith row and the ith column together contain all 
elements of S. Show that:  
(a)  there is no silver matrix for n = 1997;  
(b)  silver matrices exist for infinitely many values of n.  
 
Solution 
(a)  If we list all the elements in the rows followed by all the elements in the columns, then 
we have listed every element in the array twice, so each number in S must appear an even 
number of times. But considering the ith row with the ith column, we have also given n 
complete copies of S together with an additional copy of the numbers on the diagonal. If n 
is odd, then each of the 2n-1 numbers appears an odd number of times in the n complete 
copies, and at most n numbers can have this converted to an even number by an 
appearance on the diagonal. So there are no silver matrices for n odd. In particular, there 
is no silver matrix for n = 1997.  
(b)  Let Ai,j be an n x n silver matrix with 1s down the main diagonal. Define the 2n x 2n 
matrix Bi,j with 1s down the main diagonal as follows: Bi,j = Ai,j; Bi+n,j+n = Ai,j; Bi,j+n = 2n + 
Ai,j; Bi+n,j = 2n + Ai,j for i not equal j and Bi+n,i = 2n. We show that Bi,j is silver. Suppose i ≤ 
n. Then the first half of the ith row is the ith row of Ai,j, and the top half of the ith column is 
the ith column of Ai,j, so between them those two parts comprise the numbers from 1 to 2n 
- 1. The second half of the ith row is the ith row of Ai,j with each element increased by 2n, 
and the bottom half of the ith column is the ith column of Ai,j with each element increased 
by 2n, so between them they give the numbers from 2n + 1 to 4n - 1. The only exception 
is that Ai+n,i = 2n instead of 2n + Ai,i. We still get 2n + Ai,i because it was in the second half 
of the ith row (these two parts do not have an element in common). The 2n fills the gap so 
that in all we get all the numbers from 1 to 4n - 1.  
An exactly similar argument works for i > n. This time the second half of the row and the 
second half of the column (which overlap by one element) give us the numbers from 1 to 
2n - 1, and the first halves (which do not overlap) give us 2n to 4n - 1. So Bi,j is silver. 
Hence there are an infinite number of silver matrices.  
 
Problem B2  
Find all pairs (a, b) of positive integers that satisfy ab2 = ba.  
 
Answer  
(1,1), (16,2), (27,3).  
 
Solution  
Notice first that if we have am = bn, then we must have a = ce, b = cf, for some c, where 
m=fd, n=ed and d is the greatest common divisor of m and n. [Proof: express a and b as 
products of primes in the usual way.]  
In this case let d be the greatest common divisor of a and b2, and put a = de, b2 = df. Then 
for some c, a = ce, b = cf. Hence f ce = e c2f. We cannot have e = 2f, for then the c's cancel 
to give e = f. Contradiction. Suppose 2f > e, then f = e c2f-e. Hence e = 1 and f = c2f-1. If c 
= 1, then f = 1 and we have the solution a = b = 1. If c ≥ 2, then c2f-1 ≥ 2f > f, so there 
are no solutions.  
Finally, suppose 2f < e. Then e = f ce-2f. Hence f = 1 and e = ce-2. ce-2 ≥ 2e-2 ≥ e for e ≥ 5, 
so we must have e = 3 or 4 (e > 2f = 2). e = 3 gives the solution a = 27, b = 3. e = 4 
gives the solution a = 16, b = 2.  
 
Problem 6  
For each positive integer n, let f(n) denote the number of ways of representing n as a sum 
of powers of 2 with non-negative integer exponents. Representations which differ only in 
the ordering of their summands are considered to be the same. For example, f(4) = 4, 



because 4 can be represented as 4, 2 + 2, 2 + 1 + 1 or 1 + 1 + 1 + 1. Prove that for any 
integer n ≥ 3, 2n2/4 < f(2n) < 2n2/2.  
 
Solution  
The key is to derive a recurrence relation for f(n) [not for f(2n)]. If n is odd, then the sum 
must have a 1. In fact, there is a one-to-one correspondence between sums for n and sums 
for n-1. So:  
          f(2n+1) = f(2n)  
Now consider n even. The same argument shows that there is a one-to-one correspondence 
between sums for n-1 and sums for n which have a 1. Sums which do not have a 1 are in 
one-to-one correspondence with sums for n/2 (just halve each term). So:  
          f(2n) = f(2n - 1) + f(n) = f(2n - 2) + f(n).  
The upper limit is now almost immediate. First, the recurrence relations show that f is 
monotonic increasing. Now apply the second relation repeatedly to f(2n+1) to get:  
  f(2n+1) = f(2n+1 - 2n) + f(2n - 2n-1 + 1) + ... + f(2n - 1) + f(2n) = f(2n) + f(2n - 1 ) + ... + 
f(2n-1 + 1) + f(2n)   (*)  
and hence f(2n+1) ≥ (2n-1 + 1)f(2n)    
We can now establish the upper limit by induction. It is false for n = 1 and 2, but almost 
true for n = 2, in that: f(22) = 222/2. Now if f(2n) ≤ 2n2/2, then the inequality just established 
shows that f(2n+1) < 2n2n2/2 < 2(n2+2n+1)/2 = 2(n+1)2/2, so it is true for n + 1. Hence it is true 
for all n > 2.  
Applying the same idea to the lower limit does not work. We need something stronger. We 
may continue (*) inductively to obtain f(2n+1) = f(2n) + f(2n - 1) + ... + f(3) + f(2) + f(1) + 
1.   (**)     We now use the following lemma:  
  f(1) + f(2) + ... + f(2r) ≥ 2r f(r)  
We group the terms on the lhs into pairs and claim that f(1) + f(2r) ≥ f(2) + f(2r-1) ≥ f(3) 
+ f(2r-2) ≥ ... ≥ f(r) + f(r+1). If k is even, then f(k) = f(k+1) and f(2r-k) = f(2r+1-k), so 
f(k) + f(2r+1-k) = f(k+1) + f(2r-k). If k is odd, then f(k+1) = f(k) + f((k+1)/2) and 
f(2r+1-k) = f(2r-k) + f((2r-k+1)/2), but f is monotone so f((k+1)/2) ≤ f((2r+1-k)/2) and 
hence f(k) + f(2r+1-k) ≥ f(k+1) + f(2r-k), as required.  
Applying the lemma to (**) gives f(2n+1) > 2n+1f(2n-1). This is sufficient to prove the lower 
limit by induction. It is true for n = 1. Suppose it is true for n. Then f(2n+1) > 2n+12(n-1)2/4 = 
2(n2-2n+1+4n+4)/4 > 2(n+1)2/4, so it is true for n+1.  
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Problem A1 
In the convex quadrilateral ABCD, the diagonals AC and BD are perpendicular and the 
opposite sides AB and DC are not parallel. The point P, where the perpendicular bisectors of 
AB and DC meet, is inside ABCD. Prove that ABCD is cyclic if and only if the triangles ABP 
and CDP have equal areas.  
 
Solution 
Let AC and BD meet at X. Let H, K be the feet 
of the perpendiculars from P to AC, BD 
respectively. We wish to express the areas of 
ABP and CDP in terms of more tractable 
triangles. There are essentially two different 
configurations possible. In the first, we have 
area PAB = area ABX + area PAX + area PBX, 
and area PCD = area CDX - area PCX - area 
PDX. So if the areas being equal is equivalent 
to: area ABX - area CDX + area PAX + area 
PCX + area PBX + area PDX = 0. ABX and 
CDX are right-angled, so we may write their 
areas as AX·BX/2 and CX·DX/2. We may also 
put AX = AH - HX = AH - PK, BX = BK - PH, 
CX = CH + PK, DX = DK + PH. The other 
triangles combine in pairs to give area ACP + area BDP = (AC·PH + BD·PK)/2. This leads, 



after some cancellation to AH·BK = CH·DK. There is a similar configuration with the roles of 
AB and CD reversed.  
The second configuration is area PAB = area ABX + area PAX - PBX, area PCD = area CDX 
+ area PDX - area PCX. In this case AX = AH + PK, BX = BK - PH, CX = CH - PK, DX = DK 
+ PH. But we end up with the same result: AH·BK = CH·DK.  
Now if ABCD is cyclic, then it follows immediately that P is the center of the circumcircle 
and AH = CH, BK = DK. Hence the areas of PAB and PCD are equal.  
Conversely, suppose the areas are equal. If PA > PC, then AH > CH. But since PA = PB and 
PC = PD (by construction), PB > PD, so BK > DK. So AH·BK > CH·DK. Contradiction. So PA 
is not greater than PC. Similarly it cannot be less. Hence PA = PC. But that implies PA = PB 
= PC = PD, so ABCD is cyclic.  
 
Problem A2 
In a competition there are a contestants and b judges, where b ≥ 3 is an odd integer. Each 
judge rates each contestant as either "pass" or "fail". Suppose k is a number such that for 
any two judges their ratings coincide for at most k contestants. Prove k/a ≥ (b-1)/2b.  
 
Solution 
Let us count the number N of triples (judge, judge, contestant) for which the two judges 
are distinct and rate the contestant the same. There are b(b-1)/2 pairs of judges in total 
and each pair rates at most k contestants the same, so N ≤ kb(b-1)/2.  
Now consider a fixed contestant X and count the number of pairs of judges rating X the 
same. Suppose x judges pass X, then there are x(x-1)/2 pairs who pass X and (b-x)(b-x-
1)/2 who fail X, so a total of (x(x-1) + (b-x)(b-x-1))/2 pairs rate X the same. But (x(x-1) + 
(b-x)(b-x-1))/2 = (2x2 - 2bx + b2 - b)/2 = (x - b/2)2 + b2/4 - b/2 ≥ b2/4 - b/2 = (b - 1)2/4 
- 1/4. But (b - 1)2/4 is an integer (since b is odd), so the number of pairs rating X the same 
is at least (b - 1)2/4. Hence N ≥ a (b - 1)2/4. Putting the two inequalities together gives k/a 
≥ (b - 1)/2b.  
 
Problem A3 
For any positive integer n, let d(n) denote the number of positive divisors of n (including 1 
and n). Determine all positive integers k such that d(n2) = k d(n) for some n.  
 
Solution 
Let n = p1

a
1...pr

a
r. Then d(n) = (a1 + 1)(a2 + 1) ... (ar + 1), and d(n2) = (2a1 + 1)(2a2 + 1) 

... (2ar + 1). So the ai must be chosen so that (2a1 + 1)(2a2 + 1) ... (2ar + 1) = k (a1 + 
1)(a2 + 1) ... (ar + 1). Since all (2ai + 1) are odd, this clearly implies that k must be odd. 
We show that conversely, given any odd k, we can find ai.  
We use a form of induction on k. First, it is true for k = 1 (take n = 1). Second, we show 
that if it is true for k, then it is true for 2mk - 1. That is sufficient, since any odd number has 
the form 2mk - 1 for some smaller odd number k. Take ai = 2i((2m - 1)k - 1) for i = 0, 1, ... 
, m-1. Then 2ai + 1 = 2i+1(2m - 1)k - (2i+1 - 1) and ai + 1 = 2i(2m - 1)k - (2i - 1). So the 
product of the (2ai + 1)'s divided by the product of the (ai + 1)'s is 2m(2m - 1)k - (2m - 1) 
divided by (2m - 1)k, or (2mk - 1)/k. Thus if we take these ais together with those giving k, 
we get 2mk - 1, which completes the induction.    
 
Problem B1  
Determine all pairs (a, b) of positive integers such that ab2 + b + 7 divides a2b + a + b.  
 
Answer (a, b) = (11, 1), (49, 1) or (7k2, 7k).  
 
Solution  
If a < b, then b ≥ a + 1, so ab2 + b + 7 > ab2 + b ≥ (a + 1)(ab + 1) = a2b + a + ab ≥ a2b 
+ a + b. So there can be no solutions with a < b. Assume then that a ≥ b.  
Let k = the integer (a2b + a + b)/(ab2 + b + 7). We have (a/b + 1/b)(ab2 + b + 7) = ab2 + 
a + ab + 7a/b + 7/b + 1 > ab2 + a + b. So k < a/b + 1/b. Now if b ≥ 3, then (b - 7/b) > 0 
and hence (a/b - 1/b)(ab2 + b + 7) = ab2 + a - a(b - 7/b) - 1 - 7/b < ab2 + a < ab2 + a + 
b. Hence either b = 1 or 2 or k > a/b - 1/b.  



If a/b - 1/b < k < a/b + 1/b, then a - 1 < kb < a + 1. Hence a = kb. This gives the solution 
(a, b) = (7k2, 7k).  
It remains to consider b = 1 and 2. If b = 1, then a + 8 divides a2 + a + 1 and hence also 
a(a + 8) - (a2 + a + 1) = 7a - 1, and hence also 7(a + 8) - (7a - 1) = 57. The only factors 
bigger than 8 are 19 and 57, so a = 11 or 49. It is easy to check that (a, b) = (11, 1) and 
(49, 1) are indeed solutions.  
If b = 2, then 4a + 9 divides 2a2 + a + 2, and hence also a(4a + 9) - 2(2a2 + a + 2) = 7a - 
4, and hence also 7(4a + 9) - 4(7a - 4) = 79. The only factor greater than 9 is 79, but that 
gives a = 35/2 which is not integral. Hence there are no solutions for b = 2.  
 
Problem B2 
Let I be the incenter of the triangle ABC. Let the incircle of ABC touch the sides BC, CA, AB 
at K, L, M respectively. The line through B parallel to MK meets the lines LM and LK at R 
and S respectively. Prove that the angle RIS is acute.  
 
Solution 
We show that RI2 + SI2 - RS2 > 0. The result then follows from the cosine rule.  
BI is perpendicular to MK and hence also to RS. So IR2 = BR2 + BI2 and IS2 = BI2 + BS2. 
Obviously RS = RB + BS, so RS2 = BR2 + BS2 + 2 BR·BS. Hence RI2 + SI2 - RS2 = 2 BI2 - 2 
BR·BS. Consider the triangle BRS. The angles at B and M are 90 - B/2 and 90 - A/2, so the 
angle at R is 90 - C/2. Hence BR/BM = cos A/2/cos C/2 (using the sine rule). Similarly, 
considering the triangle BKS, BS/BK = cos C/2/cos A/2. So BR·BS = BM·BK = BK2. Hence 
RI2 + SI2 - RS2 = 2(BI2 - BK2) = 2 IK2 > 0.  
 
Problem B3  
Consider all functions f from the set of all positive integers into itself satisfying f(t2f(s)) = s 
f(t)2 for all s and t. Determine the least possible value of f(1998).  
 
Answer  
120  
 
Solution  
Let f(1) = k. Then f(kt2) = f(t)2 and f(f(t)) = k2t. Also f(kt)2 = 1·f(kt)2 = f(k3t2) = 
f(12f(f(kt2))) = k2f(kt2) = k2f(t)2. Hence f(kt) = k f(t).  
By an easy induction knf(tn+1) = f(t)n+1. But this implies that k divides f(t). For suppose the 
highest power of a prime p dividing k is a > b, the highest power of p dividing f(t). Then a 
> b(1 + 1/n) for some integer n. But then na > (n + 1)b, so kn does not divide f(t)n+1. 
Contradiction.  
Let g(t) = f(t)/k. Then f(t2f(s)) = f(t2kg(s)) = k f(t2g(s) = k2g(t2g(s)), whilst s f(t)2 = k2s 
f(t)2. So g(t2g(s)) = s g(t)2. Hence g is also a function satisfying the conditions which 
evidently has smaller values than f (for k > 1). It also satisfies g(1) = 1. Since we want the 
smallest possible value of f(1998) we may restrict attention to functions f satisfying f(1) = 
1. Thus we have f(f(t) = t and f(t2) = f(t)2. Hence f(st)2 = f(s2t2) = f(s2f(f(t2))) = f(s)2f(t2) = 
f(s)2f(t)2. So f(st) = f(s) f(t).  
Suppose p is a prime and f(p) = m·n. Then f(m)f(n) = f(mn) = f(f(p)) = p, so one of f(m), 
f(n) = 1. But if f(m) = 1, then m = f(f(m)) = f(1) = 1. So f(p) is prime. If f(p) = q, then 
f(q) = p.  
Now we may define f arbitarily on the primes subject only to the conditions that each 
f(prime) is prime and that if f(p) = q, then f(q) = p. For suppose that s = p1

a
1...pr

a
r and that 

f(pi) = qi. If t has any additional prime factors not included in the qi, then we may add 
additional p's to the expression for s so that they are included (taking the additional a's to 
be zero). So suppose t = q1

b
1...qr

b
r.Then t2f(s) = q1

2b
1
+a

1 ...qr
2b

r
+a

r and hence f(t2f(s) = 
p1

2b
1
+a

1 ...pr
2b

r
+a

r = s f(t)2.  
We want the minimum possible value of f(1998). Now 1998 = 2.33.37, so we achieve the 
minimum value by taking f(2) = 3, f(3) = 2, f(37) = 5 (and f(37) = 5). This gives f(1998) 
= 3·235 = 120.  
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Problem A1  
Find all finite sets S of at least three points in the plane such that for all distinct points A, B 
in S, the perpendicular bisector of AB is an axis of symmetry for S.  
 
Solution  
The possible sets are just the regular n-gons (n > 2).  
Let A1, A2, ... , Ak denote the vertices of the convex hull of S (and take indices mod k as 
necessary). We show first that these form a regular k-gon. Ai+1 must lie on the 
perpendicular bisector of Ai and Ai+2 (otherwise its reflection would lie outside the hull). 
Hence the sides are all equal. Similarly, Ai+1 and Ai+2 must be reflections in the 
perpendicular bisector of Ai and Ai+3 (otherwise one of the reflections would lie outside the 
hull). Hence all the angles are equal.  
Any axis of symmetry for S must also be an axis of symmetry for the Ai, and hence must 
pass through the center C of the regular k-gon. Suppose X is a point of S in the interior of 
k-gon. Then it must lie inside or on some triangle AiAi+1C. C must be the circumcenter of 
AiAi+1X (since it lies on the three perpendicular bisectors, which must all be axes of 
symmetry of S), so X must lie on the circle center C, through Ai and Ai+1. But all points of 
the triangle AiAi+1X lie strictly inside this circle, except Aiand Ai+1, so X cannot be in the 
interior of the k-gon.  
 
Problem A2  
Let n >= 2 by a fixed integer. Find the smallest constant C such that for all non-negative 
reals x1, ... , xn:  
  ∑i<j xi xj (xi

2 + xj
2) <= C (∑ xi)4.  

Determine when equality occurs.  
 
Answer  C = 1/8. Equality iff two xi are equal and the rest zero.  
 
Solution  
(∑ xi)4 = (∑xi

2 +2 ∑i<jxixj)2 ≥ 4 (∑ xi
2) (2 ∑i<j xixj) = 8 ∑i<j ( xixj ∑ xk

2) ≥ 8 ∑i<j xixj(xi
2 + xj

2).  
The second inequality is an equality only if n - 2 of the xi are zero. So assume that x3 = x4 
= ... = xn = 0. Then for the first inequality to be an equality we require that (x1

2 + x2
2) = 2 

x1x2 and hence that x1 = x2. However, that is clearly also sufficient for equality.  
 
Problem A3  
 
Given an n x n square board, with n even. Two distinct squares of the board are said to be 
adjacent if they share a common side, but a square is not adjacent to itself. Find the 
minimum number of squares that can be marked so that every square (marked or not) is 
adjacent to at least one marked square.  
 
Answer  n/2 (n/2 + 1) = n(n + 2)/4.  
 
Solution  
Let n = 2m. Color alternate squares black and white (like a chess board). It is sufficient to 
show that m(m+1)/2 white squares are necessary and sufficient to deal with all the black 
squares.  
This is almost obvious if we look at the diagonals.  
Look first at the odd-length white diagonals. In every other such diagonal, mark alternate 
squares (starting from the border each time, so that r+1 squares are marked in a diagonal 
length 2r+1). Now each black diagonal is adjacent to a picked white diagonal and hence 
each black square on it is adjacent to a marked white square. In all 1 + 3 + 5 + ... + m-1 
+ m + m-2 + ... + 4 + 2 = 1 + 2 + 3 + ... + m = m(m+1)/2 white squares are marked. 
This proves sufficiency.  



For necessity consider the alternate odd-length black diagonals. Rearranging, these have 
lengths 1, 3, 5, ... , 2m-1. A white square is only adjacent to squares in one of these 
alternate diagonals and is adjacent to at most 2 squares in it. So we need at least 1 + 2 + 
3 + ... + m = m(m+1)/2 white squares.  
 
Problem B1  
Find all pairs (n, p) of positive integers, such that: p is prime; n ≤ 2p; and (p - 1)n + 1 is 
divisible by np-1.  
 
Answer  
(1, p) for any prime p; (2, 2); (3, 3).  
 
Solution  
Answer: (1, p) for any prime p; (2, 2); (3, 3).  
Evidently (1, p) is a solution for every prime p. Assume n > 1 and take q to be the smallest 
prime divisor of n. We show first that q = p.  
Let x be the smallest positive integer for which (p - 1)x = - 1 (mod q), and y the smallest 
positive integer for which (p - 1)y = 1 (mod q). Certainly y exists and indeed y < q, since (p 
- 1)q-1 = 1 (mod q). We know that (p - 1)n = -1 (mod q), so x exists also. Writing n = sy + 
r, with 0 ≤ r < y, we conclude that (p - 1)r = -1 (mod q), and hence x ≤ r < y (r cannot be 
zero, since 1 is not -1 (mod q) ).  
Now write n = hx + k with 0 ≤ k < x. Then   -1 = (p - 1)n = (-1)h(p - 1)k (mod q). h cannot 
be even, because then (p - 1)k = -1 (mod q), contradicting the minimality of x. So h is odd 
and hence (p - 1)k = 1 (mod q) with 0 ≤ k < x < y. This contradicts the minimality of y 
unless k = 0, so n = hx. But x < q, so x = 1. So (p - 1) = -1 (mod q). p and q are primes, 
so q = p, as claimed.  
So p is the smallest prime divisor of n. We are also given that n ≤ 2p. So either p = n, or p 
= 2, n = 4. The latter does not work, so we have shown that n = p. Evidently n = p = 2 
and n = p = 3 work. Assume now that p > 3. We show that there are no solutions of this 
type.  
Expand (p - 1)p + 1 by the binomial theorem, to get (since (-1)p = -1): 1 + -1 + p2 - 1/2 
p(p - 1)p2 + p(p - 1)(p - 2)/6 p3 - ...  
The terms of the form (bin coeff) pi with i >= 3 are obviously divisible by p3, since the 
binomial coefficients are all integral. Hence the sum is p2 + a multiple of p3. So the sum is 
not divisible by p3. But for p > 3, pp-1 is divisible by p3, so it cannot divide (p - 1)p + 1, and 
there are no more solutions.  
 
Problem B2  
The circles C1 and C2 lie inside the circle C, and are tangent to it at M and N, respectively. 
C1 passes through the center of C2. The common chord of C1 and C2, when extended, meets 
C at A and B. The lines MA and MB meet C1 again at E and F. Prove that the line EF is 
tangent to C2.  
 
Solution  
Let O, O1, O2 and r, r1, r2 be the centers and radii of C, C1, C2 respectively. Let EF meet the 
line O1O2 at W, and let O2W = x. We need to prove that x = r2.  
Take rectangular coordinates with origin O2, x-axis O2O1, and let O have coordinates (a, b). 
Notice that O and M do not, in general, lie on O1O2. Let AB meet the line O1O2 at V.  
We observe first that O2V = r2

2/(2 r1). [For example, let X be a point of intersection of C1 
and C2 and let Y be the midpoint of O2X. Then O1YO2 and XVO2 are similar. Hence, O2V/O2X 
= O2Y/O2O1.]  
An expansion (or, to be technical, a homothecy) center M, factor r/r1 takes O1 to O and EF 
to AB. Hence EF is perpendicular to O1O2. Also the distance of O1 from EF is r1/r times the 
distance of O from AB, so (r1 - x) = r1/r (a - r2

2/(2 r1) ) (*).  
We now need to find a. We can get two equations for a and b by looking at the distances of 
O from O1 and O2. We have:  
  (r - r1)2 = (r1 - a)2 + b2, and  
  (r - r2)2 = a2 + b2.  



Subtracting to eliminate b, we get   a = r2
2/(2 r1) + r - r r2/r1.   Substituting back in (*), we 

get x = r2, as required.  
 
Problem 6  
Determine all functions f: R -> R such that f(x - f(y) ) = f( f(y) ) + x f(y) + f(x) - 1 for all x, 
y in R. [R is the reals.]  
 
Solution  
Let c = f(0) and A be the image f(R). If a is in A, then it is straightforward to find f(a): 
putting a = f(y) and x = a, we get f(a - a) = f(a) + a2 + f(a) - 1, so f(a) = (1 + c)/2 - a2/2 
(*).  
The next step is to show that A - A = R. Note first that c cannot be zero, for if it were, then 
putting y = 0, we get: f(x - c) = f(c) + xc + f(x) - 1 (**) and hence f(0) = f(c) = 1. 
Contradiction. But (**) also shows that f(x - c) - f(x) = xc + (f(c) - 1). Here x is free to 
vary over R, so xc + (f(c) - 1) can take any value in R.  
Thus given any x in R, we may find a, b in A such that x = a - b. Hence f(x) = f(a - b) = 
f(b) + ab + f(a) - 1. So, using (*):   f(x) = c - b2/2 + ab - a2/2 = c - x2/2.  
In particular, this is true for x in A. Comparing with (*) we deduce that c = 1. So for all x in 
R we must have   f(x) = 1 - x2/2. Finally, it is easy to check that this satisfies the original 
relation and hence is the unique solution.  
 
IMO 2000 
 
Problem A1  
AB is tangent to the circles CAMN and NMBD. M lies between C and D on the line CD, and 
CD is parallel to AB. The chords NA and CM meet at P; the chords NB and MD meet at Q. 
The rays CA and DB meet at E. Prove that PE = QE.  
 
Solution  
Angle EBA = angle BDM (because CD is parallel to 
AB) = angle ABM (because AB is tangent at B). So 
AB bisects EBM. Similarly, BA bisects angle EAM. 
Hence E is the reflection of M in AB. So EM is 
perpendicular to AB and hence to CD. So it suffices 
to show that MP = MQ.  
Let the ray NM meet AB at X. XA is a tangent so XA2 
= XM·XN. Similarly, XB is a tangent, so XB2 = 
XM·XN. Hence XA = XB. But AB and PQ are parallel, 
so MP = MQ.  
 
Problem A2  
A, B, C are positive reals with product 1. Prove that (A - 1 + 1/B)(B - 1 + 1/C)(C - 1 + 1/A) 
≤ 1.  
 
Solution  
 (B - 1 + 1/C) = B(1 - 1/B + 1/(BC) ) = B(1 + A - 1/B). Hence, (A - 1 + 1/B)(B - 1 + 1/C) 
= B(A2 - (1 - 1/B)2) ≤ B A2. So the square of the product of all three ≤ B A2 C B2 A C2 = 1.  
Actually, that is not quite true. The last sentence would not follow if we had some negative 
left hand sides, because then we could not multiply the inequalities. But it is easy to deal 
separately with the case where (A - 1 + 1/B), (B - 1 + 1/C), (C - 1 + 1/A) are not all 
positive. If one of the three terms is negative, then the other two must be positive. For 
example, if A - 1 + 1/B < 0, then A < 1, so C - 1 + 1/A > 0, and B > 1, so B - 1 + 1/C > 0. 
But if one term is negative and two are positive, then their product is negative and hence 
less than 1.  
 
Problem A3  
k is a positive real. N is an integer greater than 1. N points are placed on a line, not all 
coincident. A move is carried out as follows. Pick any two points A and B which are not 
coincident. Suppose that A lies to the right of B. Replace B by another point B' to the right 



of A such that AB' = k BA. For what values of k can we move the points arbitrarily far to the 
right by repeated moves?  
 
Answer k ≥ 1/(N-1).  
 
Solution  
Suppose k < 1/(N-1), so that k0 = 1/k - (N - 1) > 0. Let X be the sum of the distances of 
the points from the rightmost point. If a move does not change the rightmost point, then it 
reduces X. If it moves the rightmost point a distance z to the right, then it reduces X by at 
least z/k - (N-1)z = k0 z. X cannot be reduced below nil. So the total distance moved by the 
rightmost point is at most X0/k0, where X0 is the initial value of X.  
Conversely, suppose k ≥ 1/(N-1), so that k1 = (N-1) - 1/k ≥ 0. We always move the 
leftmost point. This has the effect of moving the rightmost point z > 0 and increasing X by 
(N-1)z - z/k = k1z ≥ 0. So X is never decreased. But z ≥ k X/(N-1) ≥ k X0/(N-1) > 0. So we 
can move the rightmost point arbitrarily far to the right (and hence all the points, since 
another N-1 moves will move the other points to the right of the rightmost point).  
 
Problem B1  
100 cards are numbered 1 to 100 (each card different) and placed in 3 boxes (at least one 
card in each box). How many ways can this be done so that if two boxes are selected and a 
card is taken from each, then the knowledge of their sum alone is always sufficient to 
identify the third box?  
 
Answer  
12. Place 1, 2, 3 in different boxes (6 possibilities) and then place n in the same box as its 
residue mod 3. Or place 1 and 100 in different boxes and 2 - 99 in the third box (6 
possibilities).  
 
Solution  
Let Hn be the corresponding result that for cards numbered 1 to n the only solutions are by 
residue mod 3, or 1 and n in separate boxes and 2 to n - 1 in the third box. It is easy to 
check that they are solutions. Hn is the assertion that there are no others. H3 is obviously 
true (although the two cases coincide). We now use induction on n. So suppose that the 
result is true for n and consider the case n + 1.  
Suppose n + 1 is alone in its box. If 1 is not also alone, then let N be the sum of the largest 
cards in each of the boxes not containing n + 1. Since n + 2 ≤ N ≤ n + (n - 1) = 2n - 1, we 
can achieve the same sum N as from a different pair of boxes as (n + 1) + (N - n - 1). 
Contradiction. So 1 must be alone and we have one of the solutions envisaged in Hn+1.  
If n + 1 is not alone, then if we remove it, we must have a solution for n. But that solution 
cannot be the n, 1, 2 to n - 1 solution. For we can easily check that none of the three boxes 
will then accomodate n + 1. So it must be the mod 3 solution. We can easily check that in 
this case n + 1 must go in the box with matching residue, which makes the (n + 1) solution 
the other solution envisaged by Hn+1. That completes the induction.  
 
Problem B2  
Can we find N divisible by just 2000 different primes, so that N divides 2N + 1? [N may be 
divisible by a prime power.]  
 
Answer Yes  
 
Solution  
Note that for b odd we have 2ab + 1 = (2a + 1)(2a(b-1) - 2a(b-2) + ... + 1), and so 2a + 1 is a 
factor of 2ab + 1. It is sufficient therefore to find m such that (1) m has only a few distinct 
prime factors, (2) 2m + 1 has a large number of distinct prime factors, (3) m divides 2m + 
1. For then we can take k, a product of enough distinct primes dividing 2m + 1 (but not m), 
so that km has exactly 2000 factors. Then km still divides 2m + 1 and hence 2km + 1.  
The simplest case is where m has only one distinct prime factor p, in other words it is a 
power of p. But if p is a prime, then p divides 2p - 2, so the only p for which p divides 2p + 



1 is 3. So the questions are whether ah = 2m + 1 is (1) divisible by m = 3h and (2) has a 
large number of distinct prime factors.  
ah+1 = ah(22m - 2m + 1), where m = 3h. But 2m = (ah - 1), so ah+1 = ah(ah

2 - 3 ah + 3). Now 
a1 = 9, so an easy induction shows that 3h+1 divides ah, which answers (1) affirmatively. 
Also, since ah is a factor of ah+1, any prime dividing ah also divides ah+1. Put ah = 3h+1bh. 
Then bh+1 = bh(32h+1bh

2 - 3h+2bh + 1). Now (32h+1bh
2 - 3h+2bh + 1) > 1, so it must have some 

prime factor p > 1. But p cannot be 3 or divide bh (since (32h+1bh
2 - 3h+2bh + 1) is a multiple 

of 3bh plus 1), so bh+1 has at least one prime factor p > 3 which does not divide bh. So bh+1 
has at least h distinct prime factors greater than 3, which answers (2) affirmatively. But 
that is all we need. We can take m in the first paragraph above to be 32000: (1) m has only 
one distinct prime factor, (2) 2m + 1 = 32001 b2000 has at least 1999 distinct prime factors 
other than 3, (3) m divides 2m + 1. Take k to be a product of 1999 distinct prime factors 
dividing b2000. Then N = km is the required number with exactly 2000 distinct prime factors 
which divides 2N + 1.  
 
Problem B3  
A1A2A3 is an acute-angled triangle. The foot of the altitude from Ai is Ki and the incircle 
touches the side opposite Ai at Li. The line K1K2 is reflected in the line L1L2. Similarly, the 
line K2K3 is reflected in L2L3 and K3K1 is reflected in L3L1. Show that the three new lines form 
a triangle with vertices on the incircle.  
 

Solution  
Let O be the centre of the incircle. Let the line 
parallel to A1A2 through L2 meet the line A2O 
at X. We will show that X is the reflection of 
K2 in L2L3. Let A1A3 meet the line A2O at B2. 
Now A2K2 is perpendicular to K2B2 and OL2 is 
perpendicular to L2B2, so A2K2B2 and OL2B2 are 

similar. Hence K2L2/L2B2 = A2O/OB2. But OA3 is the angle bisector in the triangle A2A3B2, so 
A2O/OB2 = A2A3/B2A3.  
Take B'2 on the line A2O such that L2B2 = 
L2B'2 (B'2 is distinct from B2 unless L2B2 is 
perpendicular to the line). Then angle L2B'2X 
= angle A3B2A2. Also, since L2X is parallel to 
A2A1, angle L2XB'2 = angle A3A2B2. So the 
triangles L2XB'2 and A3A2B2 are similar. 
Hence A2A3/B2A3 = XL2/B2'L2 = XL2/B2L2 
(since B'2L2 = B2L2).  
Thus we have shown that K2L2/L2B2 = 
XL2/B2L2 and hence that K2L2 = XL2. L2X is 
parallel to A2A1 so angle A2A1A3 = angle 
A1L2X = angle L2XK2 + angle L2K2X = 2 
angle L2XK2 (isosceles). So angle L2XK2 = 
1/2 angle A2A1A3 = angle A2A1O. L2X and 
A2A1 are parallel, so K2X and OA1 are 
parallel. But OA1 is perpendicular to L2L3, so 
K2X is also perpendicular to L2L3 and hence 



X is the reflection of K2 in L2L3.  
Now the angle K3K2A1 = angle A1A2A3, because it is 90o - angle K3K2A2 = 90o - angle K3A3A2 
(A2A3K2K3 is cyclic with A2A3 a diameter) = angle A1A2A3. So the reflection of K2K3 in L2L3 is 
a line through X making an angle A1A2A3 with L2X, in other words, it is the line through X 
parallel to A2A3.  
Let Mi be the reflection of Li in AiO. The angle M2XL2 = 2 angle OXL2 = 2 angle A1A2O (since 
A1A2 is parallel to L2X) = angle A1A2A3, which is the angle betwee L2X and A2A3. So M2X is 
parallel to A2A3, in other words, M2 lies on the reflection of K2K3 in L2L3.  
If follows similarly that M3 lies on the reflection. Similarly, the line M1M3 is the reflection of 
K1K3 in L1L3, and the line M1M2 is the reflection of K1K2 in L1L2 and hence the triangle formed 
by the intersections of the three reflections is just M1M2M3.  
 
IMO 2001 
 
Problem A1 
ABC is acute-angled. O is its circumcenter. X is the foot of the perpendicular from A to BC. 
Angle C ≥ angle B + 30o. Prove that angle A + angle COX < 90o  
 
Solution 
Take D on the circumcircle with AD parallel to BC. Angle CBD = angle BCA, so angle ABD ≥ 
30o. Hence angle AOD ≥ 60o. Let Z be the midpoint of AD and Y the midpoint of BC. Then 
AZ ≥ R/2, where R is the radius of the circumcircle. But AZ = YX (since AZYX is a 
rectangle).  
Now O cannot coincide with Y (otherwise angle A would be 90o and the triangle would not 
be acute-angled). So OX > YX ≥ R/2. But XC = YC - YX < R - YX ≤ R/2. So OX > XC.  
Hence angle COX < angle OCX. Let CE be a diameter of the circle, so that angle OCX = 
angle ECB. But angle ECB = angle EAB and angle EAB + angle BAC = angle EAC = 90o, 
since EC is a diameter. Hence angle COX + angle BAC < 90o.  
 
Problem A2 
a, b, c are positive reals. Let a' = √(a2 + 8bc), b' = √(b2 + 8ca), c' = √(c2 + 8ab). Prove 
that a/a' + b/b' + c/c' >= 1.  
 
Solution 
A not particularly elegant, but fairly easy, solution is to use Cauchy: (∑ xy)2 ≤ ∑ x2 ∑ y2.  
To get the inequality the right way around we need to take x2 = a/a' [to be precise, we are 
taking x1

2 = a/a', x2
2 = b/b', x3

2 = c/c'.]. Take y2 = a a', so that xy = a. Then we get ∑ a/a' 
>= (∑ a)2/∑ a a'.  
Evidently we need to apply Cauchy again to deal with ∑ a a'. This time we want ∑ a a' ≤ 
something. The obvious X=a, Y=a' does not work, but if we put X=a1/2, Y=a1/2a', then we 
have ∑ a a' ≤ (∑ a)1/2 (∑ a a'2)1/2. So we get the required inequality provided that (∑ a)3/2 ≥ 
(∑ a a'2)1/2 or (∑ a)3 ≥ ∑ a a'2.  
Multiplying out, this is equivalent to: 3(ab2 + ac2 + ba2 + bc2 + ca2 + cb2) ≥ 18abc, or a(b 
- c)2 + b(c - a)2 + c(a - b)2 ≥ 0, which is clearly true.  
 
Problem A3 
Integers are placed in each of the 441 cells of a 21 x 21 array. Each row and each column 
has at most 6 different integers in it. Prove that some integer is in at least 3 rows and at 
least 3 columns.  
 
Solution 
Notice first that the result is not true for a 20 x 20 array. Make 20 rectangles each 2 x 10, 
labelled 1, 2, ... , 20. Divide the 20 x 20 array into four quadrants (each 10 x 10). In each 
of the top left and bottom right quadrants, place 5 rectangles horizontally. In each of the 
other two quadrants, place 5 rectangles vertically. Now each row intersects 5 vertical 
rectangles and 1 horizontal. In other words, it contains just 6 different numbers. Similarly 
each column. But any given number is in either 10 rows and 2 columns or vice versa, so no 
number is in 3 rows and 3 columns. [None of this is necessary for the solution, but it helps 
to show what is going on.]  



Returning to the 21 x 21 array, assume that an arrangement is possible with no integer in 
at least 3 rows and at least 3 columns. Color a cell white if its integer appears in 3 or more 
rows and black if its integer appears in only 1 or 2 rows. We count the white and black 
squares.  
Each row has 21 cells and at most 6 different integers. 6 x 2 < 21, so every row includes 
an integer which appears 3 or more times and hence in at most 2 rows. Thus at most 5 
different integers in the row appear in 3 or more rows. Each such integer can appear at 
most 2 times in the row, so there are at most 5 x 2 = 10 white cells in the row. This is true 
for every row, so there are at most 210 white cells in total.  
Similarly, any given column has at most 6 different integers and hence at least one appears 
3 or more times. So at most 5 different integers appear in 2 rows or less. Each such integer 
can occupy at most 2 cells in the column, so there are at most 5 x 2 = 10 black cells in the 
column. This is true for every column, so there are at most 210 black cells in total.  
This gives a contradiction since 210 + 210 < 441.  
 
Problem B1 
Let n1, n2, ... , nm be integers, where m is odd. Let x = (x1, ... , xm) denote a permutation 
of the integers 1, 2, ... , m. Let f(x) = x1n1 + x2n2 + ... + xmnm. Show that for some distinct 
permutations a, b the difference f(a) - f(b) is a multiple of m!.  
 
Solution 
This is a simple application of the pigeon hole principle.  
The sum of all m! distinct residues mod m! is not divisible by m! because m! is even (since 
m > 1). [The residues come in pairs a and m! - a, except for m!/2.].  
However, the sum of all f(x) as x ranges over all m! permutations is 1/2 (m+1)! ∑ ni, which 
is divisible by m! (since m+1 is even). So at least one residue must occur more than once 
among the f(x).  
 
Problem B2  
ABC is a triangle. X lies on BC and AX bisects angle A. Y lies on CA and BY bisects angle B. 
Angle A is 60o. AB + BX = AY + YB. Find all possible values for angle B.  
 
Answer  80o.  
 
Solution  
 
This is an inelegant solution, but I did get it fast! 
Without loss of generality we can take length AB 
= 1. Take angle ABY = x. Note that we can now 
solve the two triangles AXB and AYB. In 
particular, using the sine rule, BX = sin 
30o/sin(150o-2x), AY = sin x/sin(120o-x), YB = 
sin 60o/sin(120o-x). So we have an equation for 
x.  
Using the usual formula for sin(a + b) etc, and 
writing s = sin x, c = cos x, we get: 2√3 s2c - 4sc - 2√3 c3 + 2√3 c2 + 6sc - 2s - √3 = 0 or 
-√3 (4c3 - 2c2 - 2c + 1) = 2s(2c2 -3c + 1). This has a common factor 2c - 1. So c = 1/2 or 
-√3 (2c2 - 1) = 2s(c - 1) (*).  
c = 1/2 means x = 60o or angle B = 120o. But in that case the sides opposite A and B are 
parallel and the triangle is degenerate (a case we assume is disallowed). So squaring (*) 
and using s2 = 1 - c2, we get: 16c4 - 8c3 - 12c2 + 8c - 1 = 0. This has another factor 2c - 1. 
Dividing that out we get: 8c3 - 6c + 1 = 0. But we remember that 4c3 - 3c = cos 3x, so we 
conclude that cos 3x = -1/2. That gives x = 40o, 80o, 160o, 200o, 280o, 320o. But we 
require that x < 60o to avoid degeneracy. Hence the angle B = 2x = 80o.  
 
Problem B3  
K > L > M > N are positive integers such that KM + LN = (K + L - M + N)(-K + L + M + N). 
Prove that KL + MN is composite.  
   



Solution  
Note first that KL+MN > KM+LN > KN+LM, because (KL+MN) - (KM+LN) = (K - N)(L - M) > 
0 and (KM+LN) - (KN+LM) = (K - L)(M - N) > 0.  
Multiplying out and rearranging, the relation in the question gives K2 - KM + M2 = L2 + LN 
+ N2. Hence (KM + LN)(L2 + LN + N2) = KM(L2 + LN + N2) + LN(K2 - KM + M2) = KML2 + 
KMN2 + K2LN + LM2N = (KL + MN)(KN + LM). In other words (KM + LN) divides (KL + 
MN)(KN + LM).  
Now suppose KL + MN is prime. Since it greater than KM + LN, it can have no common 
factors with KM + LN. Hence KM + LN must divide the smaller integer KN + LM. 
Contradiction.  
 
IMO 2002 
 
Problem A1 
S is the set of all (h, k) with h, k non-negative integers such that h + k < n. Each element 
of S is colored red or blue, so that if (h, k) is red and h' ≤ h, k' ≤ k, then (h', k') is also red. 
A type 1 subset of S has n blue elements with different first member and a type 2 subset of 
S has n blue elements with different second member. Show that there are the same 
number of type 1 and type 2 subsets.  
 
Solution 
Let ai be the number of blue members (h, k) in S with h = i, and let bi be the number of 
blue members (h, k) with k = i. It is sufficient to show that b0, b1, ... , bn-1 is a 
rearrangement of a0, a1, ... , an-1 (because the number of type 1 subsets is the product of 
the ai and the number of type 2 subsets is the product of the bi).  
Let ci be the largest k such that (i, k) is red. If (i, k) is blue for all k then we put ci = -1. 
Note that if i < j, then ci ≥ cj, since if (j, ci ) is red, then so is (i, ci ). Note also that (i, k) is 
red for k ≤ ci, so the sequence c0, c1, ... , cn-1 completely defines the coloring of S.  
Let Si be the set with the sequence c0, c1, ... , ci, -1, ... , -1, so that Sn-1 = S. We also take 
S-1 as the set with the sequence -1, -1, ... , -1, so that all its members are blue. We show 
that the rearrangement result is true for S-1 and that if it is true for Si then it is true for 
Si+1. It is obvious for S-1, because both ai and bi are n, n-1, ... , 2, 1. So suppose it is true 
for Si (where i < n-1). The only difference between the aj for Si and for Si+1 is that ai+1 = n-
i-1 for Si and (n-i-1)-(ci+1+1) for Si+1. In other words, the number n-i-1 is replaced by the 
number n-i-c-2, where c = ci+1. The difference in the bj is that 1 is deducted from each of 
b0, b1, ... , bc. But these numbers are just n-i-1, n-i-1, n-i-2, ... , n-i-c-1. So the effect of 
deducting 1 from each is to replace n-i-1 by n-i-c-2, which is the same change as was 
made to the aj. So the rearrangement result also holds for Si+1. Hence it holds for S.  
 
Problem A2 
BC is a diameter of a circle center O. A is any point on the circle with angle AOC > 60o. EF 
is the chord which is the perpendicular bisector of AO. D is the midpoint of the minor arc 
AB. The line through O parallel to AD meets AC at J. Show that J is the incenter of triangle 
CEF.  

 
Solution 
F is equidistant from A and O. But OF = OA, so OFA is 
equilateral and hence angle AOF = 60o. Since angle 
AOC > 60o, F lies between A and C. Hence the ray CJ 
lies between CE and CF.  
D is the midpoint of the arc AB, so angle DOB = ½ 
angle AOB = angle ACB. Hence DO is parallel to AC. 
But OJ is parallel to AD, so AJOD is a parallelogram. 
Hence AJ = OD. So AJ = AE = AF, so J lies on the 
opposite side of EF to A and hence on the same side 
as C. So J must lie inside the triangle CEF.  
Also, since EF is the perpendicular bisector of AO, we 
have AE = AF = OE, so A is the center of the circle 



through E, F and J. Hence angle EFJ = ½ angle EAJ. But angle EAJ = angle EAC (same 
angle) = angle EFC. Hence J lies on the bisector of angle EFC.  
Since EF is perpendicular to AO, A is the midpoint of the arc EF. Hence angle ACE = angle 
ACF, so J lies on the bisector of angle ECF. Hence J is the incenter.  
 
Problem A3 
Find all pairs of integers m > 2, n > 2 such that there are infinitely many positive integers k 
for which (kn + k2 - 1) divides (km + k - 1).  
 
Solution 
Answer: m = 5, n = 3.  
Obviously m > n. Take polynomials q(x), r(x) with integer coefficients and with degree r(x) 
< n such that xm + x - 1 = q(x) (xn + x2 - 1) + r(x). Then xn + x2 - 1 divides r(x) for 
infinitely many positive integers x. But for sufficiently large x, xn + x2 - 1 > r(x) since r(x) 
has smaller degree. So r(x) must be zero. So xm + x - 1 factorises as q(x) (xn + x2 - 1), 
where q(x) = xm-n + am-n-1xm-n-1 + ... + a0.  
We have (xm + x - 1) = xm-n(xn + x2 - 1) + (1 - x)(xm-n+1 + xm-n - 1), so (xn + x2 - 1) must 
divide (xm-n+1 + xm-n - 1). So, in particular, m ≥ 2n-1. Also (xn + x2 - 1) must divide (xm-n+1 
+ xm-n - 1) - xm-2n+1(xn + x2 - 1) = xm-n - xm-2n+3 + xm-2n+1 - 1 (*).  
 (*) can be written as xm-2n+3(xn-3 - 1) + (xm-(2n-1) - 1) which is < 0 for all x in (0, 1) unless 
n - 3 = 0 and m - (2n - 1) = 0. So unless n = 3, m = 5, it is has no roots in (0, 1). But xn + 
x2 - 1 (which divides it) has at least one becaause it is -1 at x = 0 and +1 at x = 1. So we 
must have n = 3, m = 5. It is easy to check that in this case we have an identity.  
If m = 2n-1, (*) is xn-1 - x2. If n = 3, this is 0 and indeed we find m = 5, n = 3 gives an 
identity. If n > 3, then it is x2(xn-3 - 1). But this has no roots in the interval (0, 1), whereas 
xn + x2 - 1 has at least one (because it is -1 at x = 0 and +1 at x = 1), so xn + x2 - 1 
cannot be a factor.  
If m > 2n-1, then (*) has four terms and factorises as (x - 1)(xm-n-1 + xm-n-2 + ... + xm-2n+3 
+ xm-2n + xm-2n-1 + ... + 1). Again, this has no roots in the interval (0, 1), whereas xn + x2 - 
1 has at least one, so xn + x2 - 1 cannot be a factor.  
 
Problem B1 
The positive divisors of the integer n > 1 are d1 < d2 < ... < dk, so that d1 = 1, dk = n. Let d 
= d1d2 + d2d3 + ... + dk-1dk. Show that d < n2 and find all n for which d divides n2.  
 
Solution 
dk+1-m <= n/m. So d < n2(1/(1.2) + 1/(2.3) + 1/(3.4) + ... ). The inequality is certainly 
strict because d has only finitely many terms. But 1/(1.2) + 1/(2.3) + 1/(3.4) + ... = (1/1 - 
1/2) + (1/2 - 1/3) + (1/3 - 1/4) + ... = 1. So d < n2.  
Obviously d divides n2 for n prime. Suppose n is composite. Let p be the smallest prime 
dividing n. Then d > n2/p. But the smallest divisor of n2 apart from 1 is p, so if d divides n2, 
then d ≤ n2/p. So d cannot divide n2 for n composite.  
 
Problem B2 
Find all real-valued functions f on the reals such that (f(x) + f(y)) (f(u) + f(v)) = f(xu - yv) 
+ f(xv + yu) for all x, y, u, v.  
 
Solution 
Answer: there are three possible functions: (1) f(x) = 0 for all x; (2) f(x) = 1/2 for all x; or 
(3) f(x) = x2.  
Put x = y = 0, u = v, then 4 f(0) f(u) = 2 f(0). So either f(u) = 1/2 for all u, or f(0) = 0. 
f(u) = 1/2 for all u is certainly a solution. So assume f(0) = 0.  
Putting y = v = 0, f(x) f(u) = f(xu) (*). In particular, taking x = u = 1, f(1)2 = f(1). So f(1) 
= 0 or 1. Suppose f(1) = 0. Putting x = y = 1, v = 0, we get 0 = 2f(u), so f(x) = 0 or all x. 
That is certainly a solution. So assume f(1) = 1.  
Putting x = 0, u = v = 1 we get 2 f(y) = f(y) + f(-y), so f(-y) = f(y). So we need only 
consider f(x) for x positive. We show next that f(r) = r2 for r rational. The first step is to 
show that f(n) = n2 for n an integer. We use induction on n. It is true for n = 0 and 1. 
Suppose it is true for n-1 and n. Then putting x = n, y = u = v = 1, we get 2f(n) + 2 = f(n-



1) + f(n+1), so f(n+1) = 2n2 + 2 - (n-1)2 = (n+1)2 and it is true for n+1. Now (*) implies 
that f(n) f(m/n) = f(m), so f(m/n) = m2/n2 for integers m, n. So we have established f(r) = 
r2 for all rational r.  
From (*) above, we have f(x2) = f(x)2 ≥ 0, so f(x) is always non-negative for positive x and 
hence for all x. Putting u = y, v = x, we get ( f(x) + f(y) )2 = f(x2 + y2), so f(x2 + y2) = 
f(x)2 + 2f(x)f(y) + f(y)2 ≥ f(x)2 = f(x2). For any u > v > 0, we may put u = x2 + y2, v = x2 
and hence f(u) ≥ f(v). In other words, f is an increasing function.  
So for any x we may take a sequence of rationals rn all less than x we converge to x and 
another sequence of rationals sn all greater than x which converge to x. Then rn

2 = f(rn) ≤ 
f(x) ≤ f(sn) = sn

2 for all x and hence f(x) = x2.  
 
Problem B3 
2 circles of radius 1 are drawn in the plane so that no line meets more than two of the 
circles. Their centers are O1, O2, ... , On. Show that ∑i<j 1/OiOj ≤ (n-1)π/4.  
 
Solution 
 
Denote the circle center Oi by Ci. The 
tangents from O1 to Ci contain an angle 2x 
where sin x = 1/O1Oi. So 2x > 2/O1Oi. 
These double sectors cannot overlap, so ∑ 
2/O1Oi < π. Adding the equations derived 
from O2, O3, ... we get 4 ∑ OiOj < nπ, so ∑ 
OiOj < nπ/4, which is not quite good 
enough.  

 
There are two key observations. The first is 
that it is better to consider the angle OiO1Oj 
than the angle between the tangents to a 
single circle. It is not hard to show that this 
angle must exceed both 2/O1Oi and 2/O1Oj. 
For consider the two common tangents to C1 
and Ci which intersect at the midpoint of O1Oi. 

The angle between the center line and one of the tangents is at least 2/O1Oi. No part of the 
circle Cj can cross this line, so its center Oj cannot cross the line parallel to the tangent 
through O1. In other word, angle OiO1Oj is at least 2/O1Oi. A similar argument establishes it 
is at least 2/O1Oj.  
Now consider the convex hull of the n points Oi. m ≤ n of these points form the convex hull 
and the angles in the convex m-gon sum to (m-2)π. That is the second key observation. 
That gains us not one but two amounts π/4. However, we lose one back. Suppose O1 is a 
vertex of the convex hull and that its angle is θ1. Suppose for convenience that the rays 
O1O2, O1O3, ... , O1On occur in that order with O2 and On adjacent vertices to O1 in the 
convex hull. We have that the n-2 angles between adjacent rays sum to θ1. So we have ∑ 
2/O1Oi < θ1, where the sum is taken over only n-2 of the i, not all n-1. But we can choose 
which i to drop, because of our freedom to choose either distance for each angle. So we 
drop the longest distance O1Oi. [If O1Ok is the longest, then we work outwards from that 
ray. Angle Ok-1O1Ok > 2/O1Ok-1, and angle OkO1Ok+1 > 2/O1Ok+1 and so on.]  
We now sum over all the vertices in the convex hull. For any centers Oi inside the hull we 
use the ∑j 2/OiOj < π which we established in the first paragraph, where the sum has all n-
1 terms. Thus we get ∑i,j 2/OiOj < (n-2)π, where for vertices i for which Oi is a vertex of the 
convex hull the sum is only over n-2 values of j and excludes 2/OiOmax i where Omax idenotes 
the furthest center from Oi.  
Now for Oi a vertex of the convex hull we have that the sum over all j, ∑ 2/OiOj, is the sum 
Σ' over all but j = max i plus at most 1/(n-2) Σ'. In other words we must increase the sum 



by at most a factor (n-1)/(n-2) to include the missing term. For Oi not a vertex of the hull, 
obviously no increase is needed. Thus the full sum ∑i,j 2/OiOj < (n-1)π. Hence ∑i<j 1/OiOj < 
(n-1)π/4 as required.  
 
IMO 2003 
 
Problem A1 
S is the set {1, 2, 3, ... , 1000000}. Show that for any subset A of S with 101 elements we 
can find 100 distinct elements xi of S, such that the sets xi + A are all pairwise disjoint. 
[Note that xi + A is the set {a + xi | a is in A} ].  
 
Solution 
Having found x1, x2, ... , xk there are k·101·100 forbidden values for xk+1 of the form xi + 
am - an with m and n unequal and another k forbidden values with m = n. Since 99·101·100 
+ 99 = 106 - 1, we can successively choose 100 distinct xi.  
 
Problem A2 
Find all pairs (m, n) of positive integers such that m2/(2mn2 - n3 + 1) is a positive integer.  
 
Answer 
(m, n) = (2k, 1), (k, 2k) or (8k4 - k, 2k)  
 
Solution 
The denominator is 2mn2 - n3 + 1 = n2(2m - n) + 1, so 2m >= n > 0. If n = 1, then m 
must be even, in other words, we have the solution (m, n) = (2k, 1).  
So assume n > 1. Put h = m2/(2mn2 - n3 + 1). Then we have a quadratic equation for m, 
namely m2 - 2hn2m + (n3 - 1)h = 0. This has solutions hn2 +- N, where N is the positive 
square root of h2n4 - hn3 + h. Since n > 1, h ≥ 1, N is certainly real. But the sum and 
product of the roots are both positive, so both roots must be positive. The sum is an 
integer, so if one root is a positive integer, then so is the other.  
The larger root hn2 + N is greater than hn2, so the smaller root < h(n3 - 1)/(hn2) < n. But 
note that if 2m - n > 0, then since h > 0, we must have the denominator (2m - n)n2 + 1 
smaller than the numerator and hence m > n. So for the smaller root we cannot have 2m - 
n > 0. But 2m - n must be non-negative (since h is positive), so 2m - n = 0 for the smaller 
root. Hence hn2 - N = n/2. Now N2 = (hn2 - n/2)2 = h2n4 - hn3 + h, so h = n2/4. Thus n 
must be even. Put n = 2k and we get the solutions (m, n) = (k, 2k) and (8k4 - k, 2k).  
We have shown that any solution must be of one of the three forms given, but it is trivial to 
check that they are all indeed solutions.  
 
Problem A3 
A convex hexagon has the property that for any pair of opposite sides the distance between 
their midpoints is ½ √3 times the sum of their lengths. Show that all the hexagon's angles 
are equal.  
   
Solution 
We use bold to denote vectors, so AB means the vector from A to B. We take some 
arbitrary origin and write the vector OA as A for short. Note that the vector to the midpoint 
of AB is (A + B)/2, so the vector from the midpoint of DE to the midpoint of AB is (A + B - 
D - E)/2. So the starting point is |A + B - D - E| ≥ √3 ( |A - B| + |D - E| ) and two similar 
equations. The key is to notice that by the triangle inequality we have |A - B| + |D - E| ≥ 
|A - B - D + E| with equality iff the opposite sides AB and DE are parallel. Thus we get |DA 
+ EB| ≥ √3 |DA - EB|. Note that DA and EB are diagonals. Squaring, we get DA2 + 2 
DA.EB + EB2 ≥ 3(DA2 - 2 DA.EB + EB2), or DA2 + EB2 ≤ 4 DA.EB. Similarly, we get EB2 
+ FC2 ≤ 4 EB.FC and FC2 + AD2 ≤ 4 FC.AD = - 4 FC.DA. Adding the three equations gives 
2(DA - EB + FC)2 ≤ 0. So it must be zero, and hence DA - EB + FC = 0 and opposite sides 
of the hexagon are parallel.  
Note that DA - EB + FC = A - D - B + E + C - F = BA + DC + FE. So BA + DC + FE = 0. 
In other words, the three vectors can form a triangle.  
 



Since EF is parallel to BC, if we translate EF along the vector ED we get CG, an extension of 
BC. Similarly, if we translate AB along the 
vector BC we get an extension of ED. Since 
BA, DC and FE form a triangle, AB must 
translate to DG. Thus HAB and CDG are 
congruent. Similarly, if we take AF and DE to 
intersect at I, the triangle FIE is also congruent 
(and similarly oriented) to HAB and CDG. Take 
J, K as the midpoints of AB, ED. HIG and HAB 
are equiangular and hence similar. IE = DG 
and K is the midpoint of ED, so K is also the 
midpoint of IG. Hence HJ is parallel to HK, so 
H, J, K are collinear.  
Hence HJ/AB = HK/IG = (HK - HJ)/(IG - AB) = 
JK/(AB + ED) = ½ √3. Similarly, each of the 
medians of the triangle HAB is ½ √3 times the 
corresponding side. We will show that this 
implies it is equilateral. The required result 

then follows immediately.  
Suppose a triangle has side lengths a, b, c and the length of the median to the midpoint of 
side length c is m. Then applying the cosine rule twice we get m2 = a2/2 + b2/2 - c2/4. So if 
m2 = ¾ c2, it follows that a2 + b2 = 2c2. Similarly, b2 + c2 = 2a2. Subtracting, a = c. 
Similarly for the other pairs of sides.  
 
Problem B1  
ABCD is cyclic. The feet of the perpendicular from D to the lines AB, BC, CA are P, Q, R 
respectively. Show that the angle bisectors of ABC and CDA meet on the line AC iff RP = 
RQ.  
 
Solution  
APRD is cyclic with diameter AD (because angle 
APD = angle ARD = 90o. Suppose its center is 
O and its radius r. Angle PAR = ½ angle POR, 
so PR = 2r sin ½POR = AD sin PAR. Similarly, 
RQ = CD sin RCQ. (Note that it makes no 
difference if R, P are on the same or opposite 
sides of the line AD.) But sin PAR = sin BAC, 
sin RCQ = sin ACB, so applying the sine rule to 
the triangle ABC, sin RCQ/sin PAR = AB/BC. 
Thus we have AD/CD = (PR/RQ) (AB/BC). 
Suppose the angle bisectors of B, D meet AD at 
X, Y. Then we have AB/BC = AX/CX and AD/CD 
= AY/CY. Hence (AY/CY)/(AX/CX) = PR/RQ. So 
PR = RQ iff X = Y, which is the required result.  
 
Problem B2 
Given n > 2 and reals x1 <= x2 <= ... <= xn, 
show that (∑i,j |xi - xj| )2 ≤ (2/3) (n2 - 1) ∑i,j (xi - xj)2. Show that we have equality iff the 
sequence is an arithmetic progression.  
   
Solution 
Notice first that if we restrict the sums to i < j, then they are halved. The lhs sum is 
squared and the rhs sum is not, so the the desired inequality with sums restricted to i < j 
has (1/3) on the rhs instead of (2/3).  
Consider the sum of all |xi - xj| with i < j. x1 occurs in (n-1) terms with a negative sign. x2 
occurs in one term with a positive sign and (n-2) terms with a negative sign, and so on. So 
we get -(n-1)x1 - (n-3)x2 - (n-5)x3 - ... + (n-1)xn = ∑ (2i-1-n)xi.  
We can now apply Cauchy-Schwartz. The square of this sum is just ∑ xi

2 ∑ (2i-1-n)2.  



Looking at the other side of the desired inequality, we see immediately that it is n ∑ xi
2 - (∑ 

xi)2. We would like to get rid of the second term, but that is easy because if we add h to 
every xi the sums in the desired inequality are unaffected (since they use only differences 
of xi), so we can choose h so that ∑ xi is zero. Thus we are home if we can show that ∑ (2i-
1-n)2 ≤ n(n2 - 1)/3. That is easy: lhs = 4 ∑ i2 - 4(n+1) ∑ i + n(n+1)2 = (2/3)n(n+1)(2n+1) 
- 2n(n+1) + n(n+1)2 = (1/3)n(n+1)(2(2n+1) - 6 + 3(n+1) ) = (1/3)n(n2 - 1) = rhs. That 
establishes the required inequality.  
We have equality iff we have equality at the Cauchy-Schwartz step and hence iff xi is 
proportional to (2i-1-n). That implies that xi+1 - xi is constant. So equality implies that the 
sequence is an AP. But if the sequence is an AP with difference d (so xi+1 = xi + d) and we 
take x1 = -(d/2)(n-1), then we get xi = (d/2)(2i-1-n) and ∑ xi = 0, so we have equality.  
 
Problem B3 
Show that for each prime p, there exists a prime q such that np - p is not divisible by q for 
any positive integer n.  
 
Solution 
If p = 2, then we can take q = 3, since squares cannot be 2 mod 3. So suppose p is odd.  
Consider N = 1 + p + p2 + ... + pp-1. There are p terms. Since p is odd, that means an odd 
number of odd terms, so N is odd. Also N = p + 1 mod p2, which is not 1 mod p2, so N 
must have a prime factor q which is not 1 mod p2. We will show that q has the required 
property.  
Since N = 1 mod p, p does not divide N, so q cannot be p. If p = 1 mod q, then N = 1 + 1 
+ ... + 1 = p mod q. Since N = 0 mod q, that implies q divides p. Contradiction. So q does 
not divide p - 1.  
Now suppose np = p mod q (*). We have just shown that n cannot be 1 mod q. We have 
also shown that q is not p, so n cannot be a multiple of q. So assume n is not 0 or 1 mod q. 
Take the pth power of both sides of (*). Since (p - 1)N = pp - 1, we have pp = 1 mod q. So 
n to the power of p2 is 1 mod q. But nq-1 = 1 mod q (the well-known Fermat little theorem). 
So if d = gcd(q-1, p2), then nd = 1 mod q. We chose q so that q-1 is not divisible by p2, so 
d must be 1 or p. But we are assuming n is not 1 mod q, so d cannot be 1. So it must be p. 
In other words, np = 1 mod q. But np = p mod q, so p = 1 mod q. Contradiction (we 
showed above that q does not divide p - 1).  
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