
Olimpiada Matemática de Centroamérica y el Caribe 

 

1st Centromerican 1999 

Problem A1  

A, B, C, D, E each has a unique piece of news. They make a series of phone calls to each 

other. In each call, the caller tells the other party all the news he knows, but is not told 

anything by the other party. What is the minimum number of calls needed for all five people 

to know all five items of news? What is the minimum for n people?  

Answer  

8, eg BA, CA, DA, EA, AB, AC, AD, AE.  

2n-2  

Solution  

Consider the case of n people. Let N be the smallest number of calls such that after they have 

been made at least one person knows all the news. Then N ��Q-1, because each of the other n-

1 people must make at least one call, otherwise no one but them knows their news. After N 

calls only one person can know all the news, because otherwise at least one person would 

have known all the news before the Nth call and N would not be minimal. So at least a further 

n-1 calls are needed, one to each of the other n-1 people. So at least 2n-2 calls are needed in 

all. But 2n-2 is easily achieved. First everyone else calls X, then X calls everyone else.  

Problem A2  

Find a positive integer n with 1000 digits, none 0, such that we can group the digits into 500 

pairs so that the sum of the products of the numbers in each pair divides n.  

Answer  

11...1 2112 2112 ... 2112 (960 1s followed by 10 2112s)  

Solution  

Suppose we take 980 digits to be 1 and 20 digits to be 2. Then we can take 8 pairs (2,2), 4 

pairs (2,1) and 488 pairs (1,1) giving a total of 528 = 16· 3· 11. The sum of the digits is 1020 

which is divisible by 3, so n is certainly divisible by 3. We can arrange that half the 1s and 

half the 2s are in odd positions, which will ensure that n is divisible by 11. Finally, n will be 

divisible by 16 if the number formed by its last 4 digits is divisible by 16, so we take the last 4 



digits to be 2112 (=16· 132). So, for example, we can take n to be 11...1 2112 2112 ... 2112, 

where we have 960 1s followed by 10 2112s.  

Problem A3  

A and B play a game as follows. Starting with A, they alternately choose a number from 1 to 

9. The first to take the total over 30 loses. After the first choice each choice must be one of the 

four numbers in the same row or column as the last number (but not equal to the last number):  

  7  8  9 

  4  5  6 

  1  2  3 

Find a winning strategy for one of the players.  

Answer  

A wins  

Solution  

A plays 9.  

Case (1). If B plays 8, then A plays 9. B must now play 3, then A wins with 1.  

Case (2). If B plays 7, then A plays 9. B must now play 3, then A wins with 2.  

Case (3). If B plays 6, then A plays 5. Now if B plays x, A can play 10-x and wins.  

Case (4). If B plays 3, then A plays 6. If B plays 9, then A wins with 3 and vice versa. If B 

plays 5, then A plays 6 and wins. If B plays 4, then A plays 6 and wins.  

Problem B1  

ABCD is a trapezoid with AB parallel to CD. M is the midpoint of AD, �0&%� ����o
, BC = 

x and MC = y. Find area ABCD in terms of x and y.  

 

Answer  

xy/2  

Solution  

Extend CM to meet the line AB at N. Then CDM and NAM are congruent and so area ABCD 

= area CNB. But CN = 2y, so area CNB = ½ 2y· x· sin 150
o
 = xy/2.  



Problem B2  

a > 17 is odd and 3a-2 is a square. Show that there are positive integers b ��F�VXFK�WKDW�D�E��
a+c, b+c and a+b+c are all squares.  

Solution  

Let a = 2k+1. So we are given that 6k+1 is a square. Take b = k
2
-4k, c = 4k. Then b ��F�VLQFH�

a ������$OVR�E�LV�SRVLWLYH�VLQFH�D�!����1RZ�D�E� ��N-1)
2
, a+c = 6k+1 (given to be a square), 

b+c = k
2
, a+b+c = (k+1)

2
.  

Problem B3  

S ∈ {1, 2, 3, ... , 1000} is such that if m and n are distinct elements of S, then m+n does not 

belong to S. What is the largest possible number of elements in S?  

Answer  

501 eg {500, 501, ... , 1000}  

Solution  

We show by induction that the largest possible subset of {1, 2, ... , 2n} has n+1 elements. It is 

obvious for n = 1. Now suppose it is true for n. If we do not include 2n-1 or 2n in the subset, 

then by induction it can have at most n elements. If we include 2n, then we can include at 

most one from each of the pairs (1,2n-1), (2,2n-2), ... , (n-1,n+1). So with n and 2n, that gives 

at most n+1 in all. If we include 2n-1 but not 2n, then we can include at most one from each 

of the pairs (1,2n-2), (2,2n-3), ... , (n-1,n), so at most n in all.  



2nd Centromerican 2000 

Problem A1  

Find all three digit numbers abc (with a �����VXFK�WKDW�D2
 + b

2
 + c

2
 divides 26.  

Answer  

100, 110, 101, 302, 320, 230, 203, 431, 413, 314, 341, 134, 143, 510, 501, 150, 105  

Solution  

Possible factors are 1, 2, 13, 26. Ignoring order, the possible expressions as a sum of three 

squares are: 1 = 1
2
 + 0

2
 + 0

2
, 2 = 1

2
 + 1

2
 + 0

2
, 13 = 3

2
 + 2

2
 + 0

2
, 26 = 5

2
 + 1

2
 + 0

2
 = 4

2
 + 3

2
 + 

1
2
.  

Problem A2  

The diagram shows two pentominos made from unit squares. For which n > 1 can we tile a 15 

x n rectangle with these pentominos?  

 

Answer  

all n except 1, 2, 4, 7  

Solution  

 

The diagram shows how to tile a 3 x 5 rectangle. That allows us to tile a 15 x 3 rectangle and 

a 15 x 5 rectangle. Now we can express any integer n > 7 as a sum of 3s and 5s, because 8 = 

3+5, 9 = 3+3+3, 10 = 5+5 and given a sum for n, we obviously have a sum for n+3. Hence we 

can tile 15 x n rectangles for any n �����:H�FDQ�DOVR�GR�Q� ���������� 
Obviously n = 1 and n = 2 are impossible, so it remains to consider n = 4 and n = 7.  

 



The diagram shows the are 4 ways of covering the top left square (we only show the 3 left 

columns of each 15 x 4 rectangle). Evidently none of them work for n = 4. So n = 4 is 

impossible.  

 

Finally, consider n = 7. As for n = 4, there are only two possibilities for covering the top left 

square, but two obviously do not work. Consider the possibility in the diagram above. If we 

cover x using the U shaped piece, then we cannot cover y. So we must cover x with the cross. 

Then we have to cover z with the U shaped piece. But that leaves the 6 red squares at the 

bottom, which cannot be covered.  

If we cover the top left square with a C, the a similar argument shows that we must cover the 

top three rows and first 5 columns with cross and two Us. But now we cannot cover the 4 x 6 

rectangle underneath.  

Problem A3  

ABCDE is a convex pentagon. Show that the centroids of the 4 triangles ABE, BCE, CDE, 

DAE from a parallelogram with whose area is 2/9 area ABCD.  

 

Solution  

Use vectors. Take any origin O. Write the vector OA as a, OB as b etc. Let P, Q, R, S be the 

centroids of ABE, BCE, CDE, DAE. Then p = (a+b+e)/3, q = (b+c+e)/3, r = (c+d+e)/3, s = 

(a+d+e)/3. So PQ = (a-c)/3 = SR. Hence PQ and SR are equal and parallel, so PQRS is a 

parallelogram.  

QR = (d-b)/3, so the area of the parallelogram is PQ x QR = (a-c) x (d-b)/9. The area of 

ABCD = area ABC + area ACD = ½ CB X CA + ½ CA x CD = ½ (b-c) x (a-c) + ½ (a-c) x 

(d-c) = ½ (a-c) x (-(b-c)+d-c) = (a-c) x (d-b)/2. So area PQRS = (2/9) area ABCD.  

Problem B1  

Write an integer in each small triangles so that every triangle with at least two neighbors has a 

number equal to the difference between the numbers in two of its neighbors.  



 

Answer  

 

Problem B2  

ABC is acute-angled. The circle diameter AC meets AB again at F, and the circle diameter 

AB meets AC again at E. BE meets the circle diameter AC at P, and CF meets the circle 

diameter AB at Q. Show that AP = AQ.  

 

Solution  

AB is a diameter, so ∠AQB = 90
o
. Similarly, AC is a diameter, so ∠AFQ = ∠AFC = 90

o
. 

Hence triangles AQB, AFQ are similar, so AQ/AB = AF/AQ, or AQ
2
 = AF· AB. Similarly, 

AP
2
 = AE· AC. But ∠BEC = ∠BFC = 90

o
, so BFEC is cyclic. Hence AF· AB = AE· AC.  

Problem B3  

A nice representation of a positive integer n is a representation of n as sum of powers of 2 

with each power appearing at most twice. For example, 5 = 4 + 1 = 2 + 2 + 1. Which positive 

integers have an even number of nice representations?  

Answer  

n = 2 mod 3  

Solution  



Let f(n) be the number of nice representations of n. We show first that (1) f(2n+1) = f(n), and 

(2) f(2n) = f(2n-1) + f(n).  

(1) is almost obvious because n = ��Di2
b

i iff 2n+1 = 1 + ��Di2
b

i
+1

. (2) is also fairly obvious. 

There are f(n) representations of 2n without a 1 and f(2n-1) with a 1 (because any nice 

representation of f(2n-1) must have just one 1).  

We now prove the required result by induction. Let Sk be the statement that for n ���N��I�Q��LV�
odd for n = 0, 1 mod 3 and even for n = 2 mod 3. It is easy to check that f(1) = 1, f(2) = 2, f(3) 

= 1, f(4) = 3, f(5) = 2, f(6) = 3. So S1 is true. Suppose Sk is true. Then f(6k+1) = f(3k) = odd. 

f(6k+2) = f(3k+1) + f(6k+1) = odd + odd = even. f(6k+3) = f(3k+1) = odd. f(6k+4) = f(6k+3) 

+ f(3k+2) = odd + even = odd. f(6k+5) = f(3k+2) = odd. So Sk+1 is true. So the result is true 

for all k and hence all n.  



3rd Centromerican 2001 

Problem A1  

A and B stand in a circle with 2001 other people. A and B are not adjacent. Starting with A 

they take turns in touching one of their neighbors. Each person who is touched must 

immediately leave the circle. The winner is the player who manages to touch his opponent. 

Show that one player has a winning strategy and find it.  

Solution  

If there is just one person between A and B, then touching that person loses. There are 1999 

people who can be touched before that happens, so B is sure to lose provided that A never 

touches someone who is the only person between him and B.  

Problem A2  

C and D are points on the circle diameter AB such that ∠AQB = 2 ∠COD. The tangents at C 

and D meet at P. The circle has radius 1. Find the distance of P from its center.  

 

Answer  

2/¥�� 
Solution  

∠AQB = ∠ACB + ∠CBQ = 90
o
 + ∠CBQ = 90

o
 + ½∠COD = 90

o
 + ¼∠AQB. Hence ∠AQB 

= 120
o
, and ∠COD = 60

o
. So OP = 1/cos 30

o
 = 2/¥��� 

Problem A3  

Find all squares which have only two non-zero digits, one of them 3.  

Answer  

36, 3600, 360000, ...  

Solution  

A square must end in 0, 1, 4, 5, 6, or 9. So the 3 must be the first digit. If a square ends in 0, 

then it must end in an even number of 0s and removing these must give a square. Thus we 



need only consider numbers which do not end in 0. The number cannot end in 9, for then it 

would be divisible by 3 but not 9 (using the sum of digits test). It cannot end in 5, because 

squares ending in 5 must end in 25. So it remains to consider 1, 4, 6.  

36 is a square. But if there are one or more 0s between the 3 and the 6, then the number is 

divisible by 2 but not 4, so 36 is the only solution ending in 6.  

Suppose 3· 10
n
 + 1 = m

2
, so 3· 2

n
5

n
 = (m-1)(m+1). But m+1 and m-1 cannot both be divisible 

by 5, so one must be a multiple of 5
n
. But 5

n
 &t; 3· 2

n
 + 2 for n > 1, so that is impossible for n 

> 1. For n = 1, we have 31, which is not a square. Thus there are no squares 3· 10
n
 + 1.  

A similar argument works for 3· 10
n
 + 4, because if 3· 10

n
 + 4 = m

2
, then 5 cannot divide m-2 

and m+2, so 5
n
 must divide one of them, which is then too big, since 5

n
 > 3· 2

n
 + 4 for n > 1. 

For n = 1 we have 34, which is not a square.  

Problem B1  

Find the smallest n such that the sequence of positive integers a1, a2, ... , an has each term �����
and a1! + a2! + ... + an! has last four digits 2001.  

Solution  

We find that the last 4 digits are as follows: 1! 1, 2! 2, 3! 6, 4! 24, 5! 120, 6! 720, 7! 5040, 8! 

320, 9! 2880, 10! 8800, 11! 6800, 12! 1600, 13! 800, 14! 1200, 15! 8000.  

Only 1! is odd, so we must include it. None of the others has last 4 digits 2000, so we need at 

least three factorials. But 13! + 14! + 1! works.  

Problem B2  

a, b, c are reals such that if p1, p2 are the roots of ax
2
 + bx + c = 0 and q1, q2 are the roots of 

cx
2
 + bx + a = 0, then p1, q1, p2, q2 is an arithmetic progression of distinct terms. Show that a 

+ c = 0.  

Solution  

Put p1 = h-k, q1 = h, so p2 = h+k, q2 = h+2k. Then h
2
-k

2
 = c/a, 2h = -b/a, h

2
+2hk = a/c, 2h+2k 

= -b/c.  

So h = -b/2a, k = b/2a - b/2c and b
2
/2ac - b

2
/4c

2
 = c/a, b

2
/2ac - b

2
/4a

2
 = a/c. Subtracting, 

(b
2
/4)(1/a

2
 - 1/c

2
) = c/a - a/c, so (c

2
-a

2
)(b

2
/4 - ac)/(a

2
c

2
) = 0. Hence a = c or a + c = 0 or b

2
 = 

4ac. If b
2
 = 4ac, then p1 = p2, whereas we are given that p1, p2, q1, q2 are all distinct. Similarly, 

if a = c, then {p1,p2} = {q1,q2}. Hence a + c = 0.  

Problem B3  

10000 points are marked on a circle and numbered clockwise from 1 to 10000. The points are 

divided into 5000 pairs and the points of each pair are joined by a segment, so that each 

segment intersects just one other segment. Each of the 5000 segments is labeled with the 

product of the numbers at its endpoints. Show that the sum of the segment labels is a multiple 

of 4.  



Solution  

Suppose points i and j are joined. The j-i-1 points on the arc between i and j are paired with 

each other, with just one exception (the endpoint of the segment that intersects the segment i-

j). So we must have j = i+4k+2. Thus the segment i-j is labeled with i(i+4k+2) = i(i+2) mod 4. 

If i is even, this is 0 mod 4. If i is odd, then it is -1 mod 4. Since odd points are joined to odd 

points (4k+2 is always even), there are 2500 segments joining odd points. Each has a label = -

1 mod 4. So their sum = -2500 = 0 mod 4. All the segments joining even points have labels = 

0 mod 4, so the sum of all the segment labels is a multiple of 4.  



4th Centromerican 2002 

Problem A1  

For which n > 2 can the numbers 1, 2, ... , n be arranged in a circle so that each number 

divides the sum of the next two numbers (in a clockwise direction)?  

Answer  

n=3  

Solution  

Let the numbers be a1, a2, a3, ... . Where necessary we use cyclic subscripts (so that an+1 means 

a1 etc). Suppose ai and ai+1 are both even, then since ai divides ai+1 + ai+2, ai+2 must also be 

even. Hence ai+3 must be even and so on. Contradiction, since only half the numbers are even. 

Hence if ai is even, ai+1 must be odd. But ai+1 + ai+2 must be even, so ai+2 must also be odd. In 

other words, every even number is followed by two odd numbers. But that means there are at 

least twice as many odd numbers as even numbers. That is only possible for n = 3. It is easy to 

check that n = 3 works.  

Problem A2  

ABC is acute-angled. AD and BE are altitudes. area BDE ��DUHD�'($���DUHD�($%���$%'��
Show that the triangle is isosceles.  

 

Solution  

area BDE ��DUHD�'($�LPSOLHV�WKDW�WKH�GLstance of A from the line DE is no smaller than the 

distance of B, so if the lines AB and DE intersect, then they do so on the B, D side. But area 

EAB ��DUHD�$%'�LPSOLHV�WKDW�WKH�GLVWDQFH�RI�'�IURP�WKH�OLQH�$%�LV�QR�VPDOOHU�WKDQ�WKH�
distance of E, so if the lines AB and DE intersect, then they do so on the A, E side. Hence 

they must be parallel. But ABDE is cyclic (∠ADB = ∠AEB = 90
o
), so it must be an isosceles 

trapezoid and hence ∠A = ∠B.  

Problem A3  

Define the sequence a1, a2, a3, ... by a1 = A, an+1 = an + d(an), where d(m) is the largest factor 

of m which is < m. For which integers A > 1 is 2002 a member of the sequence?  

Answer  



None.  

Solution  

Let N have largest proper factor m < N. We show that N + m cannot be 2002. Suppose N + m 

= 2002. Put N = mp. Then p must be a prime (or N would have a larger proper factor than m). 

So 2002 = m(p+1). Also p ��P��+HQFH�S�������6R�N� �S���LV�D�IDFWRU�RI������VPDOOHU�WKDQ����
which is 1 greater than a prime. It is easy to check that the only possibility is k = 14. So N = 

11· 13
2
. But this has largest factor 13

2
, not 11· 13. Contradiction.  

Problem B1  

ABC is a triangle. D is the midpoint of BC. E is a point on the side AC such that BE = 2AD. 

BE and AD meet at F and ∠FAE = 60
o
. Find �)($�� 

 

Solution  

Let the line parallel to BE through D meet AC at G. Then DCG, BCE are similar and BC = 2 

DC, so BE = 2 DG. Hence AD = DG, so ∠DGA = ∠DAG = 60
o
. FE is parallel to DG, so 

∠FEA = 60
o
.  

Problem B2  

Find an infinite set of positive integers such that the sum of any finite number of distinct 

elements of the set is not a square.  

Solution  

Consider the set of odd powers of 2. Suppose a1 < a2 < ... < an and odd positive integers. 

Then 2
a
1 + 2

a
2 + ... + 2

a
n = 2

a
1(1 + 2

a
2

-a
1 + ... + 2

a
n

-a
1). Each term in the bracket except the first 

is even, so the bracket is odd. Hence the sum is divisible by an odd power of 2 and cannot be 

a square.  

Problem B3  

A path from (0,0) to (n,n) on the lattice is made up of unit moves upward or rightward. It is 

balanced if the sum of the x-coordinates of its 2n+1 vertices equals the sum of their y-

coordinates. Show that a balanced path divides the square with vertices (0,0), (n,0), (n,n), 

(0,n) into two parts with equal area.  

Solution  



Denote the vertices of the path as (0,0) = (x0,y0), (x1,y1), ... , (x2n,y2n) = (n,n). Since the path 

proceeds one step at a time, we have xi + yi = i. Hence ���[i + yi) = ��L� �Q��Q�����6R�LI���[i = ��\i, then ���[in = n(2n+1). (Note also that n must be even, although we do not use that.) 

Thus for a balanced path we have 2x1 + 2x2 + ... + 2x2n = n(2n+1) = (2n+1)x2n. Hence 2x1 + 

2x2 + ... + 2x2n-1 = (2n-1)x2n. Adding x2 + 2x3 + 3x4 + ... + (2n-2)x2n-1 to both sides we get 2x1 

+ 3x2 + 4x3 + ... + 2nx2n-1 = x2 + 2x3 + 3x4 + ... + (2n-1)x2n or ��L�[i-1 = ���L-1)xi.  

Hence ��[i-1(i - xi) = ��[i(i-1 - xi-1) or ��[i-1yi = ��[iyi-1. Hence ���[i - xi-1)yi = ��[i(yi - yi-1). 

But it is easy to see that the lhs is the area under the path and the rhs is the area between the 

path and the y-axis, in other words the part of the large square that is above the path. So we 

have established that the path divides the large square into two parts of equal area.  



5th Centromerican 2003 

Problem A1  

There are 2003 stones in a pile. Two players alternately select a positive divisor of the number 

of stones currently in the pile and remove that number of stones. The player who removes the 

last stone loses. Find a winning strategy for one of the players.  

Solution  

The second player has a winning strategy: he always takes 1 stone from the pile. One his first 

move the first player must take an odd number of stones, so leaving an even number. Now the 

second player always has an even number of stones in the pile and always leaves an odd 

number. The first player must always take an odd number and hence must leave an even 

number. Since 0 is not odd, the second player cannot lose.  

Problem A2  

AB is a diameter of a circle. C and D are points on the tangent at B on opposite sides of B. 

AC, AD meet the circle again at E, F respectively. CF, DE meet the circle again at G, H 

respectively. Show that AG = AH.  

Solution  

 

AEB, ABC are similar (∠A common and ∠AEB = ∠ABC = 90
o
), so AE· AC = AB

2
. In the 

same way, AFB and ABD are similar, so AF· AD = AB
2
, so AE· AC = AF· AD. Hence CEFD is 

cyclic. So ∠CED = ∠CFD, in other words, ∠AEH = ∠AFG. Hence the corresponding chords 

are also equal, so AH = AG.  

Problem A3  

Given integers a > 1, b > 2, show that a
b
 + 1 ��E�D�����:KHQ�GR�ZH�KDYH�HTXDOLW\"� 

Solution  

Induction on b. For b=3 we require a
3
 + 1 ���D������RU��D-2)(a+1)

2
 �����ZKLFK�LV�WUXH��ZLWK�

equality iff a = 2. Suppose the result is true for b. Then ab+1 + 1 = a(ab + 1) - a + 1 ��DE�D����
- a + 1 = a(ab-1) +ab + 1 > a(2b-1) + ab + 1 > a(2b-1) + b + 1 > a(b+1) + b+1 = (a+1)(b+1), so 

the result is true, and a strict inequality, for b+1. Hence the result is true for all b>2 and the 

only case of equality is b=3, a=2.  



Problem B1  

Two circles meet at P and Q. A line through P meets the circles again at A and A'. A parallel 

line through Q meets the circles again at B and B'. Show that PBB' and QAA' have equal 

perimeters.  

Solution  

 

Since AP is parallel to BQ and APQB is inscribed in a circle we must have AQ = PB. 

Similarly, A'Q = PB'.  

Since APQB is cyclic, ∠ABQ = ∠A'PQ. Since A'PQB' is cyclic, ∠A'PQ = 180
o
 - ∠A'B'Q, so 

AB is parallel to AB. Hence AA'B'B is a parallelogram, so AA' = BB'. So the triangles are in 

fact congruent.  

Problem B2  

An 8 x 8 board is divided into unit squares. Each unit square is painted red or blue. Find the 

number of ways of doing this so that each 2 x 2 square (of four unit squares) has two red 

squares and two blue squares.  

Answer  

2
9
 - 2.  

Solution  

We can choose the colors in the first column arbitrarily.  

If the squares in the first column alternate in color, then there are 2 choices for the second 

column, either matching the first column, or opposite colors. Similarly, there are 2 choices for 

each of the remaining columns. There are 2 ways in which the squares in the first column can 

alternate in color, so we get 2
8
 ways in all with alternating colors in each column.  

If the squares in the first column do not alternate in color, then there must be two adjacent 

squares the same color. Hence the two squares adjacent to them in the second column are 

determined. Hence all the squares in the second column are determined. It also has two 

adjacent squares of the same color, so all the squares in the third column are determined, and 

so on. There are 2
8
 ways of coloring the first column. 2 of these ways have alternating colors, 

so 2
8
 - 2 have two adjacent squares the same.  

Problem B3  



Call a positive integer a tico if the sum of its digits (in base 10) is a multiple of 2003. Show 

that there is an integer N such that N, 2N, 3N, ... , 2003N are all ticos. Does there exist a 

positive integer such that all its multiples are ticos?  

Answer  

No.  

Solution  

Let A = 10001 0001 0001 ... 0001 (with 2003 1s). Then kA is just 2003 repeating groups for k �������DQG�LV�WKHUHIRUH�D�WLFR�� 
Note that for any N relatively prime to 10 we have (by Euler) 10

3(9N)
 = 1 mod 9N, in other 

words, 9Nk = 9...9 (3(9N) 9s) for some k. Hence Nk is a repunit divisible by N. Now suppose 

all multiples of N are ticos. Take k so that Nk is a repunit. Suppose it has h 1s. So it has digit 

sum h. Then 19Nk = 211..109 with h-2 1s, so its digit sum is h + 9. But h and h+9 cannot both 

be multiples of 2003. Contradiction.  


