

Chemische Grundbegriffe · Seite 7
Bau der Stoffe - Periodensystem . Seite 35
Grundlagen chemischer Reaktionen . Seite 71
Chemisches Rechnen · Seite 99
Elemente und anorganische Verbindungen . Seite 109
Organische Verbindungen · Seite 145
Chemische Experimente · Seite 171
Chemische Technologie · Seite 199
Stichwortregister • Seite 245

Klaus Sommer

Wissensspeicher Chemie

Das Wichtigste bis zum Abitur in Stichworten und Übersichten

4. Auflage

Ausgabe 1965

Lizenz Nr. 203 · 1000/67 (DN) · ES 18 C1 (11 H)

Redaktionelle Bearbeitung: Edward Gutmacher · Wolfgang Eisenhuth

Einband: Herbert Lemme

Typographie: Günter Wolff · Gerhard Neitzke

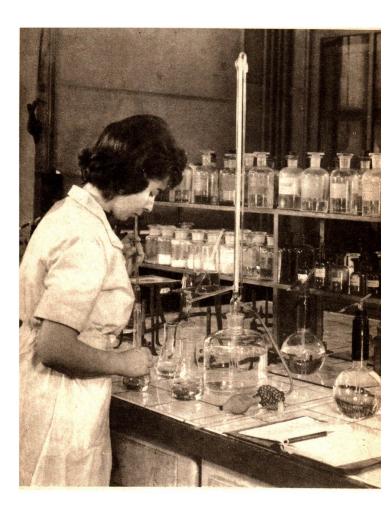
Zeichnungen: Heinrich Linkwitz Fotos: Eckhard Grieshammer (S. 34, 70, 98, 144, 170, 198) · Zentralbild (S. 6, 108)

Satz: VEB Druckerei "Thomas Müntzer" Bad Langensalza (V/12/6)

Druck: (140) Druckerei Neues Deutschland, Berlin

Gesetzt aus der Gill-Grotesk

Redaktionsschluß: 10. November 1967


Bestell-Nr. 031701-4 · Preis 7,-

(Fotomechanischer Nachdruck)

Zur Einführung

Das vorliegende Buch faßt alle wichtigen Kenntnisse, die im Chemieunterricht bis zum Abitur vermittelt werden, in knapper und übersichtlicher Form zusammen. Es enthält außerdem Zahlenwerte und Angaben, die häufig gebraucht werden. Das Wissen ist, unabhängig von der Reihenfolge der Behandlung im Unterricht, nach Sachgebieten zusammengefaßt und zahlreichen Stichworten zugeordnet. Alle Stichworte sind durch einen grünen Balken hervorgehoben und werden erläutert. Beispiele sind durch ein schwarzes Quadrat (a) gekennzeichnet. Bei der Benutzung des Buches ist eine schnelle Orientierung wichtig. Dazu dient eine besondere Leiteinrichtung. Einen Überblick über die Hauptabschnitte 1 bis 8 erhält man auf dem vorderen Innendeckel des Buches. Zu jedem Hauptabschnitt gehört eine grüne Marke, die am Rand der Buchseiten in gleicher Höhe wiederkehrt. Dadurch lassen sich die Hauptabschnitte leicht auffinden. Die weitere Untergliederung ist jeweils auf der ersten Seite jedes Hauptabschnittes angegeben.

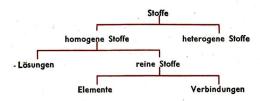
Will man sich umfassend über ein bestimmtes Sachgebiet informieren, so sind dazu oftmals mehrere Stichworte erforderlich. Auf entsprechende Seiten wird bei solchen Stichworten durch einen schräg stehenden Pfeil (//) hingewiesen. Außer der Leiteinrichtung enthält das Buch ein alphabetisch geordnetes Stichwortregister, nach dem man sich ebenfalls schnell orientieren kann.

Seite	8	1.1.	Chemie und ihre l'eligeblete
Seite	9	1.2.	Einteilung der Stoffe
Seite	13	1.3.	Chemische Zeichensprache
Seite	18	1.4.	Nomenklatur anorganischer Verbindungen
Seite :	25	1.5.	Einige Grundbegriffe der organischen Chemie
Seite	28	1.6.	Nomenklatur organischer Verbindungen

1.1. Chemie und ihre Teilgebiete

Chemie

Wissenschaft von den Stoffen, ihrem Aufbau, ihren Eigenschaften und den Reaktionen, die zu anderen Stoffen führen.


Die Chemie wird in Teilgebiete untergliedert, die sich in ihrem Aufgabenbereich und ihren Arbeitsmethoden unterscheiden, zwischen denen es aber Übergänge und Grenzgebiete gibt.

Wichtige Teilgebiete

Teilgebiet	Aufgabenbereich	
Anorganische Chemie	Elemente und ihre Verbindungen (mit Ausnahme der in der organischen Chemie erfaßten Kohlenstoffverbin- dungen)	
Organische Chemie	Kohlenstoffverbindungen (mit Ausnahme der Oxide des Kohlenstoffs, der Kohlensäure und ihrer Salze sowie einiger anderer einfacher Kohlenstoffverbindungen)	
Physikalische, theoretische und allgemeine Chemie	Aufbau, physikalische Erscheinungen und Gesetzmäßig- keiten der Stoffe und der chemischen Reaktionen	
Chemische Technologie	Arbeitsmethoden zur Durchführung chemischer Reak- tionen in technischem Maßstab und die chemisch-techni- schen Produkte	
Analytische Chemie	Qualitative und quantitative Bestimmung der Stoffe	
Präparative Chemie	Darstellung der Stoffe	
Biochemie und physiologische Chemie	Chemische Vorgänge im lebenden Organismus, chemischer Mechanismus der Lebenstätigkeit	

1.2. Einteilung der Stoffe

Übersicht über die Stoffe

Homogener Stoff

Stoff mit durch und durch gleichen Eigenschaften.

Man unterscheidet:

Lösungen (bestehen aus Teilchen verschiedener Stoffe)

Natriumchlorid in Wasser, Äthanol—Wasser-Gemisch, Luft, Messing

Seite 91 bis 94, 102 bis 106, 177, 235

Reine Stoffe (bestehen aus Teilchen eines einzigen Stoffes)

Schwefel, Kohlendioxid, Kaliumsulfat

/ Seite 109 ff., 145 ff.

Heterogener Stoff

Mischung homogener Stoffe, zwischen denen wahrnehmbare Abgrenzungen bestehen, und deren physikalische und chemische Eigenschaften unterschiedlich sind.

■ Granit, Zucker—Sand-Gemenge, Holz

Element

Stoff, dessen sämtliche Atome gleiche Kernladung haben.

✓ Seite 38 bis 43, 54, 55, 109 ff.

Man unterscheidet:

Reinelemente (alle Atome haben gleiche Masse)

Beryllium, Fluor, Gold, Kobalt

Mischelemente (die Atome haben unterschiedliche Masse)

Kalzium, Sauerstoff, Eisen, Zinn

Verbindung

Stoff, der aus mindestens zwei Elementen in einem bestimmten Massenverhältnis zusammengesetzt ist.

Eine Verbindung entsteht durch eine chemische Reaktion und hat andere Eigenschaften als ihre Ausgangsstoffe.

Seite 18 bis 24, 28 bis 33, 109 ff., 145 ff.

Wichtige Arten anorganischer Verbindungen

Art	■ Name	Formel
Oxid	Aluminiumoxid	Al ₂ O ₃
Hydroxid	Kalziumhydroxid	Ca(OH)₂
Säure	Schwefelsäure	H ₂ SO ₄
Salz	Natriumchlorid	NaCl

Wichtige Arten organischer Verbindungen

Art	■ Name	Formel
Kohlenwasserstoff	Äthan	C ₂ H ₆
Alkohol	Methanol	СН₃—ОН
Aldehyd	Äthanal	CH₃—CHO
Keton	Propanon	CH ₃ —CO—CH ₃
Karbonsäure	Butansäure	C₃H₁—COOH

Metall

Element, das als charakteristische Eigenschaften hohe elektrische Leitfähigkeit, gute Wärmeleitfähigkeit, metallischen Glanz und hohe Siedetemperatur besitzt. Metalle lassen sich nach verschiedenen Gesichtspunkten einteilen:

Einteilungsprinzip	Einteilung		
Dichte	Leichtmetaile (Dichte < 5 g · cm ⁻³) Chrom (7, Magnesium (1,74 g · cm ⁻³) Aluminium (2,70 g · cm ⁻³) Gold (15		
Schmelz- temperatur	leichtschmelzende Metalle (Schmelztemperatur < 1000 °C) ■ Kalium (63,5 °C) Zinn (232 °C) Blei (327 °C)	schwerschmelzende Metalle (Schmelztemperatur > 1000 °C) Kupfer (1083 °C) Eisen (1535 °C) Platin (1773 °C)	
Eisengehalt	Eisenmetalle Eisen und Eisenlegierungen	Nichteisenmetalle ■ alle Metalle außer Eisen und Eisenlegierungen	
chemische Beständig- keit Silber Gold Platin		unedle Metalle (leicht oxydierbar) ■ Natrium Kalium Kalzium	

Seite 55, 109 ff., 233 bis 235

Nichtmetall

Element, das keine metallischen Eigenschaften besitzt.

Chlor, Sauerstoff, Schwefel, Stickstoff, Phosphor, Kohlenstoff, Wasserstoff
 Seite 55, 109 ff.

<u>Halbmetall</u>

Element, das sowohl Metall- als auch Nichtmetalleigenschaften besitzt.

Bor, Silizium, Arsen, Antimon, Tellur

/ Seite 55, 109 ff.

Oxid

Verbindung eines Elements mit Sauerstoff.

✓ Seite 18 bis 20, 72, 109 ff.

Hydroxide

Verbindungen, die in wäßriger Lösung (bzw. in Schmelzen) in frei bewegliche positive Ionen und negative Hydroxid-Ionen dissoziieren (Definition nach Arrhenius).

NaOH
$$\rightarrow$$
 Na⁺ + OH⁻
Ca(OH)₂ \rightarrow Ca²⁺ + 2 OH⁻

Hydroxide werden auch als Basen bezeichnet.

✓ Seite 21, 54, 73, 109 ff.

Nach Brönstedt kann man Basen als Stoffe auffassen, die Wasserstoff-lonen anlagern (Protonenakzeptoren).

Base + Wasserstoff-Ion ≤ Säure

Säuren

Verbindungen, die in wäßriger Lösung (bzw. in Schmelzen) in frei bewegliche positive Wasserstoff-lonen und negative Säurerest-lonen dissoziieren (Definition nach Arrhenius).

$$H_2SO_4 \rightarrow 2 H^+ + SO_4^{2-}$$

 CH_3 — $COOH \rightarrow H^+ + CH_3$ — COO^-

✓ Seite 21 bis 23, 54, 73, 109 ff. .

Nach Brönstedt kann man Säuren als Stoffe auffassen, die Wasserstoff-lonen abspalten (Protonendonatoren).

Säure ≤ Base + Wasserstoff-lon

Salze

Verbindungen, die in wäßriger Lösung (bzw. in Schmelzen) in frei bewegliche positive Ionen und negative Säurerest-Ionen dissoziieren (Definition nach Arrhenius).

$$NaNO_3 \rightarrow Na^+ NO_3^-$$

 CH_3 — $COONa \rightarrow Na^+ + CH_3$ — COO^-

✓ Seite 21 bis 23, 54, 74, 109 ff.

1.3. Chemische Zeichensprache

Symbole

Zeichen für chemische Elemente.

Aussage eines Symbols	■ S
► Ein chemisches Element	Das Element Schwefel
 1 Atom eines chemischen Elements 1 Grammatom eines chemischen 	1 Grammatom des Elements
Elements	Schwefel (32 g)

✓ Seite 110 bis 112

Darstellungsformen

Darstellung	■ Schwefelatom	■ Sulfid-Ion
normale Schreibweise	s	S ²⁻
Elektronenschreibweise (Außenelektronen)	:ġ·	[:::]2-
Elektronenschreibweise (ungepaarte und gepaarte Außenelektronen)	l <u>š·</u>	$\left[\left \overline{\underline{S}} \right \right]^{2-}$

Formeln

Zeichen für chemische Verbindungen sowie für Elemente, deren Moleküle aus mindestens zwei Atomen bestehen.

Aussage einer Formel	■ Fe,O,
▶ Eine chemische Verbindung, unter Angabe der Elemente, aus denen sie besteht, oder ein Element	Die Verbindung Eisen(III)-oxid; besteht aus Eisen und Sauerstoff
► 1 Molekül einer chemischen Verbindung oder eines Elements unter Angabe der Anzahl von Atomen, die in diesem Molekül enthalten sind	Molekül der Verbindung Eisen(III)- oxid; besteht aus 2 Atomen Eisen und 3 Atomen Sauerstoff
▶ 1 Mol einer chemischen Verbindung oder eines Elements	1 Mol der Verbindung Eisen(III)-oxid (160 g); besteht aus 112 g Eisen und 48 g Sauerstoff

Darstellungsformen

Darstellung	■ Wasser	■ Natriumchlorid	■ Äthanal
Summenformel	H₂O	NaCl	C ₂ H ₄ O
Strukturformel	H—0 H	Na+CI-	H_C_H
vereinfachte Strukturformel	-	-	сн₃–с н
Elektronenformel (Außenelektronen)	н:Ö: н	Na ⁺ [:CI:]	H H:Č:C::Ö: H H
Elektronenformel (ungepaarte und gepaarte Außenelektronen)	H—Ō:	Na+[+CI+]-	H C H

(Für Verbindungen aus zwei Elementen, wenn alle Atome jedes der beiden Elemente in gleicher stöchlometrischer Wertigkeit vorliegen.)

Teilschritt	■ Aluminiumoxid
1. Ermittlung der Symbole der Elemente, au die Verbindung besteht	s denen Al O
2. Festellen der stöchiometrischen Wertigkei Elemente, aus denen die Verbindung besto	
3. Errechnen des kleinsten gemeinschaftliche fachen der stöchiometrischen Wertigkeite	
4. Feststellen, wie oft die stöchiometrischen Neiten im kleinsten gemeinschaftlichen Vie enthalten sind Diese Zahlen geben an, aus wieviel Atom Elements ein Molekül der Verbindung bes	elfachen 2 Atome 3 Atome nen des Alu- Sauer-
5. Aufstellen der Formel	Al ₂ O ₃

Reaktionsgleichungen

Zeichen, die chemische Reaktionen veranschaulichen.

Aussage einer Reaktionsgleichung	■ 2 Mg + O ₃ → 2 MgO
► Die Umsetzung von Ausgangs-	Magnesium reagiert mit Sauerstoff
stoffen zu Reaktionsprodukten	zu Magnesiumoxid
Die kleinstmögliche Anzahl von Atomen und Molekülen der Stoffe, die sich umsetzen und nach der Umsetzung vorliegen	2 Atome Magnesium reagieren mit 1 Molekül Sauerstoff zu 2 Molekülen Magnesiumoxid
▶ Die Grammatome und Mole der	2 Grammatome Magnesium (48 g)
Stoffe, die sich umsetzen und nach	reagieren mit 1 Mol Sauerstoff (32 g)
der Umsetzung vorliegen	zu 2 Molen Magnesiumoxid (80 g)

Darstellungsformen

Darstellung	•
Gleichung mit Summenformeln	2 NO + O ₂ → 2 NO ₂
Gleichung mit Strukturformeln	$2 N = O + O_2 \rightarrow 2 O = N = O$
Gleichung mit Elektronenformeln (Außenelektronen)	2:N::Ö: + ·Ö: → 2:Ö::N::Ö: :Ö·
Gleichung mit Elektronenformeln (ungepaarte und gepaarte Außenelektronen)	$2 \dot{\mathbf{N}} = 0 + 0 \rightarrow 2 0 = \dot{\mathbf{N}} = 0 $ $ \underline{0} $
Gleichung mit Angabe von Oxydationszahlen	$2 \stackrel{+2}{NO} + O_2 \rightarrow 2 \stackrel{+4}{NO}_2$
lonengleichung ausführliche Form gekürzte Form	$\begin{array}{c} B\alpha^{2^{+}} + 2\ CI^{-} + 2\ H^{+} + SO_{4}^{2^{-}} \rightarrow \\ B\alpha SO_{4} \downarrow + 2\ H^{+} + 2\ CI^{-} \\ B\alpha^{2^{+}} + SO_{4}^{2^{-}} \rightarrow B\alpha SO_{4} \downarrow \end{array}$

Aufstellen von Reaktionsgleichungen

a) Errechnen durch Gleichungen mit mehreren Unbekannten. (Nur möglich, wenn die Anzahl der in den Reaktionsteilnehmern vorkommenden Elemente höchstens um 1 kleiner ist als die Anzahl der gesuchten Faktoren der Gleichung.)

Teilschritt ■ Rösten von Pyrit			
Aufstellen der Symbole bzw. Formeln für die Ausgangsstoffe	FeS₂ + O₂ →		
2. Aufstellen der Symbole bzw. Formeln für die Reaktionsprodukte	$FeS_2 + O_2 \rightarrow Fe_2O_3 + SO_3$		
3. Darstellung der unbekannten Faktoren durch allgemeine Zahlsymbole	$x \text{ FeS}_2 + y O_2 \rightarrow y \text{ Fe}_2 O_3 + y SO_2$		

4. Aufstellen der Beziehungen zwisch den Unbekannten durch Vergleic der vorkommenden Elemente	
5. Eine Unbekannte willkürlich glei 1 setzen, wenn eine Beziehung fe	
 Ausrechnen der Unbekannten nach den Regeln für das Lösen von Gleichungen mit mehreren Unbekannten 	$x = 1$ $u = \frac{1}{2}$ $v = 2$ $y = \frac{11}{4}$
7. Gegebenenfalls multiplizieren, so daß ganzzahlige Werte entstehen	$ \begin{array}{c cccc} $
8. Einsetzen der gefundenen Werte in die Gleichung	4 FeS ₂ + 11 O ₂ → 2 Fe ₂ O ₅ + 8 SO ₂

b) Vergleichen der Oxydationszahlen

Teilschritt	Reaktion von Zink und Salzsäure		
Aufstellen der Symbole bzw. Formeln für die Ausgangsstoffe	Zn + HCl →		
2. Aufstellen der Symbole bzw. Formeln für die Reaktionsprodukte	Zn + HCl →ZnCl ₂ + H ₂		
3. Eintragen der Oxydationszahlen über den Symbolen bzw. Formeln	\$\frac{1}{2} + \frac{1}{1} - \frac{1}{2} \frac{1}{2} \frac{1}{1} + \frac{1}{1} \frac{1}{2}		
 Bestimmen, in welcher Anzahl die Reaktionspartner vorhanden sein müssen, damit die Oxydations- zahlen sich ausgleichen 	+1 -1 +2 2·(-1) Schlußfolgerung: 2·(+1) 2·(-1)		
5. Eintragen der gefundenen Faktoren in die Gleichung	Zn + 2 HCl → ZnCl _s + H _s		

c) Vergleichen der Anzahl der Atome. (Nur möglich bei einfachen Gleichungen für Reaktionen, bei denen alle Atome jedes der beteiligten Elemente in gleicher stöchlometrischer Wertigkeit vorliegen.)

Teilschritt	Reduktion von Eisen(III)-oxid durch Aluminium		
Aufstellen der Symbole bzw. Formeln für die Ausgangsstoffe	Fe ₃ O ₃ + , Al →		
2. Aufstellen der Symbole bzw. Formeln für die Reaktionsprodukte	Fe ₂ O ₃ + Al → Fe + Al ₂ O ₃		
3. Auffinden der kleinstmöglichen Anzahl Atome bzw. Moleküle der Stoffe, die an der Reaktion teilnehmen Die Anzahl der einzelnen Atomarten in den Ausgangs- stoffen und Reaktionsprodukten muß gleich sein.	2 Fe 1 Fe Schlußfolgerung: + 1 Fe		
	Fe _s O _s + Al → 2Fe + Al _s O _s		
	1 Al 2 Al Schlußfolgerung: + 1 Al		
	Fe ₂ O ₃ + 2Al → 2 Fe + Al ₂ O ₃		
	30 30		
4. Richtige Gleichung	Fe ₂ O ₃ + 2 Al → 2 Fe + Al ₂ O ₃		

1.4. Nomenklatur anorganischer Verbindungen

Verbindungen aus zwei Elementen

 a) Aligemeine Regein. Die Namen von anorganischen Verbindungen aus zwei Elementen werden aus den Namen der beiden enthaltenen Elemente gebildet.

Der Name des elektropositiveren Elements wird (meist unverändert) im Namen der Verbindung zuerst genannt. Der (vom lateinischen Wortstamm abgeleitete) Name des elektronegativeren Elements wird mit der Endung -ld versehen und an den Namen des elektropositiveren Elements angefügt.

Verbindung zwischen Kalzium und Schwefel; Formel CaS

Kaiziumsulfid			
Kalzium	sulf	id	
Name des elektropositiveren Elements	Name des elektronegativeren Elements (abgeleitet)	Endung id	

Elektronegativitätsskale der Elemente (Auswahl)

K Na Ba Li Ca Mg Be Al Sn Si H P J C S Br N Cl O F 0.8 0.9 0.9 1.0 1.0 1.2 1.5 1.5 1.7 1.8 2.1 2.1 2.4 2.5 2.5 2.8 3.0 3.0 3.5 4.0

Bezeichnungen der elektronegativeren Bestandteile (einschließlich Endung)

Element	Bezeichnung	■ Name	Formel
Wasserstoff	Hydrid	Lithiumhydrid	LiH
Fluor	Fluorid	Kalziumfluorid	CaF ₂
Chlor	Chlorid	Kupfer(I)-chlorid	CuCI
Brom	Bromid	Silberbromid	AgBr
Jod	Jodid	Natriumjodid	NaJ
Sauerstoff	Oxid	Schwefeltrioxid	SO
Schwefel	Sulfid	Kohlendisulfid	CS ₂
Stickstoff	Nitrid	Magnesiumnitrid	Mg ₃ N
Kohlenstoff	Karbid	Kalziumkarbid	CaC.

Die stöchiometrischen Mengenverhältnisse der beiden Elemente werden im Namen der Verbindung gekennzeichnet, wenn mehrere Verbindungen der beiden Elemente existieren.

- b) Verbindungen aus einem Metall und einem Nichtmetall. Die Namen dieser Verbindungen werden gebildet aus:
- dem Namen des elektropositiveren Elements;
- der Oxydationsstufe des elektropositiveren Elements, angegeben in römischen Ziffern, in Klammern gesetzt und mit einem Bindestrich versehen;
- dem (vom lateinischen Wortstamm abgeleiteten) Namen des elektronegativeren Elements;
- der Endung id.

■ Verbindung zwischen Eisen und Chlor; Formel FeCl₃

	Eisen(III)-c	hlorid	
Eisen	(III)-	chlor	id
Name des elektropositiveren Elements	Oxydationsstufe des elektropositiveren Elements	Name des elektro- negativeren Elements (abgeleitet)	Endung id

Wenn nur eine Verbindung zwischen beiden Elementen besteht, entfällt die Angabe der Oxydationsstufe.

- c) Verbindungen zwischen zwei Nichtmetallen. Die Namen dieser Verbindungen werden gebildet aus:
- der Anzahl der Atome des elektropositiveren Elements (in einem Molekül) in griechischen Zahlwörtern;
- ▶ dem Namen des elektropositiveren Elements;
- der Anzahl der Atome des elektronegativeren Elements (in einem Molekül) in griechischen Zahlwörtern;
- dem (vom lateinischen Wortstamm abgeleiteten) Namen des elektronegativeren Elements:
- der Endung id.

■ Verbindung zwischen Stickstoff und Sauerstoff; Formel N₂O₂

	Distic	kstofftrioxid		
Di	stickstoff	tri	ox	id
Anzahl der Atome des elektro- positiveren Elements	Name des elektro- positiveren Elements	Anzahl der Atome des elektro- negativeren Elements	Name des elektro- negativeren Elements (abgeleitet)	Endung id

lst im Molekül nur ein Atom des elektropositiveren Elements enthalten, so entfällt die Angabe der Atomanzahl für dieses Element.

Angabe der Atomanzahl

1 mon(o) 2 di 3 tri 4 tetr(a) 5 pent(a) 6 hex(a) 7 hept(a)

Hydroxide

Die Namen der Hydroxide werden aus dem Namen des Metalls (oder der Ammoniumgruppe) und der Bezeichnung Hydroxid gebildet. Die Bezeichnung Hydroxid setzt sich zusammen aus dem (vom lateinischen Wortstamm) abgeleiteten Namen für den elektronegativeren Bestandteil der Verbindung (hydrox) und der Endung id.

Wenn mehrere Hydroxide eines Metalls existieren, wird die Oxydationsstufe des Metalls (in römischen Ziffern, in Klammern gesetzt und mit Bindestrich versehen) seinem Namen angefügt.

Formel des Hydroxids	Name des Metalls (oder der Ammoniumgruppe)	Oxydationsstufe des Metalls	Bezeichnung Hydroxid
Fe(OH) ₃	Eisen	(111)-	hydroxid
		Eisen(III)-hydrox	tid
NaOH	Natrium		hydroxid
		Natriumhydrox	id

Säuren und Salze

Für die anorganischen Säuren sind im allgemeinen Trivialnamen gebräuchlich. Eine einheitliche Nomenklatur ist nicht üblich.

Die Namen der Salze werden gebildet aus:

- dem Namen des Metalls oder der Ammoniumgruppe;
- der Oxydationsstufe des Metalls (wenn es in mehreren Oxydationsstufen auftritt), angegeben in römischen Ziffern, in Klammern gesetzt und mit einem Bindestrich versehen;
- dem (vom lateinischen Wortstamm) abgeleiteten Namen für den Säurerest, der dem elektronegativeren Bestandteil der Verbindung entspricht;
- der Endung id bei sauerstofffreien Säuren bzw.
 - it bei Säuren der niedrigeren Oxydationsstufe bzw.
 - at bei Säuren der höheren Oxydationsstufe.

Formel des Salzes	Name des Metalls oder der Ammoniumgruppe	Oxydationsstufe des Metalls	Name des Säure- rests (abgeleitet)	Endung
FeS	Eisen	(II)-	sulf	id
		Eisen(II)-sulfi	d	
Na ₂ SO ₃	Natrium		sulf	it
2 -1		Natriumsulfit		
CuSO4	Kupfer	(II)-	sulf	at
		Kupfer(II)-sulf	fat	

Salze, die Säurewasserstoff enthalten, heißen Hydrogensalze.

Wichtige anorganische Säuren und ihre Salze

Saure			Salz	
Name	Formel	lonen		
Fluorwasserstoffsäure	HF	H+ F-	Fluorid	
Chlorwasserstoffsäure	HCI	H+ CI-	Chlorid	
Chlorsdure	HCIO ₃	H+ CIO ₈	Chlorat	
Bromwasserstoffsäure	HBr	H+ Br-	Bromid	
Jodwasserstoffsäure	нл	H+1-	Jodid	
Schwefelwasserstoffsäure	H _s S	H+ HS- 2 H+ S2-	Hydrogensulfid Sulfid	
schweflige Säure	H ₂ SO ₃	H+ HSO ₃ - 2 H+ SO ₃ -	Hydrogensulfit Sulfit	

Saure			Salz
Name	Formel	lonen	
Schwefelsäure	H ₂ SO ₄	H+ HSO ₄ 2 H+ SO ₄ ² -	Hydrogensulfat Sulfat
salpetrige Säure	HNO ₂	H+ NO	Nitrit
Salpetersäure	HNO ₃	H+ NOs	Nitrat
phosphorige Säure	H ₃ PO ₃	2 H+ HPO3-	Hydrogenphosphit
Phosphorsäure	H₃PO₄	H+ H₂PO-	Dihydrogen- phosphat
		2 H+ HPO4-	Hydrogen- phosphat
		3 H+ PO4-	Phosphat
Kohlensäure	H₂CO₃	H+ HCO-	Hydrogen- karbonat
		2 H+ CO ₃ -	Karbonat
Zyanwasserstoffsäure	HCN	H+ CN-	Zyanid¹
Zyansäure	HOCN	H+ OCN-	Zyanat
Thiozyansäure	HSCN	H+ SCN-	Thiozyanat
Kleselsäure	H ₂ SiO ₃	(2 H+ SiO ₈ ²⁻)	Silikat

Die Säurereste der sauerstofffreien Säuren werden im Namen durch die Endung "id" gekennzeichnet, auch wann sie aus mehr als einem Atom bestehen.

Komplexverbindungen

Die Namen der Komplexverbindungen werden aus dem Namen für das Komplexion und dem Namen für das Gegenion gebildet. Der Name des Kations steht zuerst, dann folgt (mit einem Bindestrich) der Name des Anions.

Der Name des Komplexions enthält:

- b die Anzahl der Liganden in griechischen Zahlwörtern;
- die Bezeichnung der Liganden, bestehend aus dem Namen des Ions bzw. Moleküls mit der Endung o;
- den Namen des Zentralions (beim Kation: unverändert; beim Anion: mit der Endung at);
- die Oxydationsstufe des Zentralions, angegeben in römischen Ziffern, in Klammern gesetzt.
- Komplexverbindung mit komplexem Anion: K, [Fe(CN),]

1		Komplexion		
Gegenion	Anzahl der Liganden	Name des Liganden (Endung o)	Name des Zentralions (Endung at)	Oxydationsstufe des Zentralions
Kalium	hexa	zyano	ferrat	(II)
	Kali	um-hexazyan	oferrat(II)	

■ Komplexverbindung mit komplexem Kation: [Cr(H₂O)₅] Cl₂

Komplexion			1	
Anzahl der Liganden	Name des Liganden (Endung o)	Name des Zentralions	Oxydationsstufe das Zentralions	Gegenion
lex	aquo	chrom	(III)	chlorid

Bezeichnungen einiger wichtiger Liganden

H ₂ O	aquo	NH ₃	ammin ¹	S2O2-	thiosulfato
OH-	hydroxo	NO-	nitrito	F-	fluoro .
CN-	zyano	SO2-	sulfato	CI-	chloro

¹ Im Gegensatz zu den anderen Liganden hat der Name für Ammoniak als Ligand nicht die Endung o.

1.5. Einige Grundbegriffe der organischen Chemie

Kettenförmige Kohlenstoffverbindungen

Stoffe, in denen die Kohlenstoffatome in Form offener Ketten miteinander verbunden sind (azyklische Verbindungen):

unverzweigte Kette

verzweigte Kette

Seite 28 bis 32, 145 ff.

Ringförmige Kohlenstoffverbindungen

Stoffe, in denen die Kohlenstoffatome ringförmig miteinander verbunden sind (zyklische Verbindungen):

/ Selte 30, 33, 145 ff.

Gesättigte Kohlenstoffverbindungen

Verbindungen, bei denen einfache Bindungen zwischen den Kohlenstoffatomen bestehen.

Propan

X44 --- 1

D.,t...........

/ Seite 145 ff.

Ungesättigte Kohlenstoffverbindungen

Verbindungen, bei denen Mehrfachbindungen (Doppelbindung, Dreifachbindung) zwischen Kohlenstoffatomen bestehen.

/ Seite 145ff.

Homologe Reihe

Reihe chemisch ähnlicher Verbindungen, bei der zwischen zwei aufeinanderfolgenden Gliedern stets die gleiche Differenz von —CH₂— auftritt. Die Glieder einer homologen Reihe zeigen teils gleiche chemische, teils sich schriftweise ändernde physikalische (z. B. Schmelztemperatur, Siedetemperatur) und chemische Eigenschaften. Die Glieder einer homologen Reihe heißen **Homologe.**

Einige homologe Reihen

allgemeine Formel		erste Homologe	
Reihe	1 Kohlenstoffatom	2 Kohlenstoffatome	3 Kohlenstoffatome
C _n H _{2n+2}	CH ₄	C₂H ₆	C ₃ H ₈
Alkane	Methan	Äthan	Propan
C _n H _{1n+1} OH	CH ₃ —OH	C₂H₅—OH	C ₃ H ₇ —OH
Alkanole	Methanol	Äthanol	Propanol
C _n H _{2n+1} CHO	HCHO	CH ₃ —CHO	C ₂ H ₅ —CHO
Alkanale	Methanal	Äthanal	Propanal
C _n H _{sn+1} COOH	HCOOH	CH ₃ —COOH	C ₂ H ₅ —COOH
Alkansäuren	Methansäure	Äthansäure	Propansäure
C _n H _n ,	-	C₂H₄	C ₈ H ₆
Alkene		Äthen	Propen
C _n H _{nn-1}	-	C ₂ H ₂	C ₃ H ₄
Alkine		Äthin	Propin

Derivate

Verbindungen, in denen Wasserstoffatome der Ausgangsverbindung durch andere Atome oder Atomgruppen ersetzt sind.

Ausgangs-	Veränderungen gegenüber dem Molekül der Ausgangsverbindung		Derivate	
verbindung	ausgeschiedene Atome	eingetretene Atome bzw. Atomgruppen	Derivate	
CH			Chlorderivate des Methans	
Methan	1 1 H	1 CI	CH _a Cl Monochlormethan	
	2 H	2 CI	CH ₂ Cl ₂ Dichlormethan	
	3 H	3 CI	CHCl _s Trichlormethan	
	4 H	4 CI	CCI4 Tetrachlormethan	
CH.—CH.			Hydroxylderivate des Äthans	
CH ₃ —CH ₃	1 1 H	1 OH	CH _a —CH _a —OH Äthanol	
	2 H	2 OH	CH ₂ (OH)—CH ₂ OH Äthandiol	

Radikale

Ein- oder mehrwertige Atomgruppen organischer Verbindungen, die häufig als Ganzes reagieren. Sie werden durch Spaltung von Elektronenpaaren gebildet und besitzen einsame Elektronen. Einwertige Radikale organischer Verbindungen werden im Namen durch die Endung yl gekennzeichnet.

Radikal		abgeleitet von	der Verbindung
Name	Formel	Name	Formel
Methyl Äthyl Propyl Äthenyl Propenyl	CH _s — CH _s —CH _s — CH _s —CH _s — CH _s = CH— CH _s = CH—CH _s —	Methan Äthan Propan Äthen Propen	CH ₄ CH ₅ —CH ₉ CH ₄ —CH ₄ —CH ₈ CH ₁ =CH ₉ CH ₁ =CH ₉
Phanyl	H T	Benzol	H H

Funktionelle Gruppen

Radikale, die weitgehend das chemische Verhalten von Verbindungen bestimmen.

Name der funktionellen Gruppe	Zusammensetzung	Name der funktionellen Gruppe	Zusammensetzung
Hydroxylgruppe	OH	Karboxylgruppe	—COOH
Aldehydgruppe	CHO	Aminogruppe	—NH ₂
Oxogruppe	=-CO	Nitrogruppe	—NO ₂

1.6. Nomenklatur organischer Verbindungen

Unverzweigte kettenförmige Kohlenwasserstoffe

Die wissenschaftlichen Namen unverzweigter kettenförmiger Kohlenwasserstoffe sind zusammengesetzt aus einem Wortstamm und einer Endung. Der Wortstamm gibt die Anzahl der Kohlenstoffatome im Molekül an. Die Endung charakterisiert die Bindungen zwischen den Kohlenstoffatomen. Die Stellung von Mehrfachbindungen wird durch nachgestellte, in Klammern gesetzte arabische Ziffern mit Bindestrich angegeben. (Die Kohlenstoffatome werden fortlaufend beziffert, beginnend an dem Ende der Kette, dem eine Mehrfachbindung am nächsten liegt.)

	Wortstamm (Anzahl der	Endung .		
	Kohlenstoffatome)	Art der Bindung	Stellung der Bindung	
Name	But	en-	(1)	
		Buten-(1)		
Bedeutung	unverzweigte Kette aus 4 Kohlenstoffatomen	ungesättigte Verbindung, 1 Doppelbindung	Doppelbindung am 1. Kohlenstoffatom	
Formel		H H H H H-C=C-C-C-H		

Wortstämme

Anzahl der Kohlenstoff- atome in der Kette	Wort- stamm	Kohlen- stoffatome	Wortstamm	Kohlen- stoffatome	Wortstamm
1	Meth	8	Okt	15	Pentadek ¹
2	Äth	9	Non	16	Hexadek 1
3	Prop	10	Dek1	17	Heptadek1
4	But	11	Undek1	18	Oktadek1
5	Pent	12	Dodek1	19	Nonadek1
6	Hex	13	Tridek1	20	Eikos
7	Hept	14	Tetradek1		

¹ bei Alkenen und Alkinen tritt der Buchstabe z an Stelle von k.

Endungen

Endung	Kennzeichen	Name der Reihe	•
an	gesättigt, einfache Bindungen	Alkane	CH ₃ —CH ₂ —CH ₃ Propan
en	ungesättigt, 1 Doppelbindung	Alkene	CH ₂ =CH ₂ Äthen
(a)dien	ungesättigt, 2 Doppelbindungen	Alkadiene	CH ₂ =CH—CH=CH ₂ Butadien-(1,3)
In	ungesättigt, 1 Dreifachbindung	Alkine	C≡C—CH₂—CH₂—CH₃ Pentin-(1)

Verzweigte kettenförmige Kohlenwasserstoffe

Verzweigte kettenförmige Kohlenwasserstoffe erhalten als Grundnamen die Bezeichnung des unverzweigten Kohlenwasserstoffes (Stammkohlenwasserstoff), der der längsten Kohlenstoffkette im Molekül entspricht.

Dem Namen des Stammkohlenwasserstoffs stellt man die Bezeichnungen der als Seitenketten enthaltenen Radikale voran, arabische Ziffern mit Bindestrich geben ihre Stellung an. Die Anzahl der Radikale wird mit griechischen Zahlwörtern bezeichnet.

	Stellung der Radikale	Anzahl der Radikale	Name des Radikals	Name des Stamm- kohlenwasserstoffs	
3,3-	3,3-	Di	methyl	pentan	
	3,3-Dimethylpentan				
Bedeutung	2 gleiche Radikale am 3. Kohlenstoff- atom	2	Methylradikal	5 Kohlenstoffatome bilden im Molekül die längste unverzweigte Kohlenstoff- kette	
Formel	-	CH _s —C	CH ₃ CH ₃ —C—CH ₃ — CH ₃	-CH _s	
			CH,		

Außer den rationellen Namen sind auch ältere Bezeichnungen gebräuchlich:

n-Verbindungen (Normalverbindungen) bilden unverzweigte Ketten.

i-Verbindungen (Isoverbindungen) bilden verzweigte Ketten.

Zykloalkane

Die Namen der Zykloalkane sind zusammengesetzt aus der Vorsilbe **Zyklo** und dem Namen des kettenförmigen Kohlenwasserstoffs mit der gleichen Anzahl von Kohlenstoffatomen.

Formal	Name		
	Vorsilbe	Name des kettenförmigen Kohlenwasserstoffs mit der gleichen Anzahl Kohlenstoffatome	
CH,	Zyklo	hexan	
CH, CH,	Zyklohexan		

Derivate kettenförmiger Kohlenwasserstoffe

Die wissenschaftlichen Namen der wichtigsten Derivate kettenförmiger Kohlenwasserstoffe sind zusammengesetzt aus dem Namen des Kohlenwasserstoffs mit der gleichen Anzahl von Kohlenstoffatomen (von dem sie abgeleitet sind) und einer Endung. Die Endung gibt die Art der funktionellen Gruppe an; nachgegestellte, in Klammern gesetzte arabische Ziffern mit Bindestrich bezeichnen ihre Stellung.

100	Name des Stamm- kohlenwasserstoffs	Art der funktionellen Gruppe	Stellung der funktionellen Gruppe		
Name der	Butan	ol	-(1)		
Verbindung	Butanol-(1)				
Bedeutung	unverzweigter, gesättig- ter Kohlenwasserstoff mit 4 Kohlenstoffatomen	1 Hydroxylgruppe	endständig		
Formal	н н н н н с с с с он н н н н				

Kommt dieselbe funktionelle Gruppe mehrmals im Molekül vor, so wird ihre Anzahl durch griechische Zahlwörter angegeben, die im Namen der Endung vorangestellt werden.

	Name des Kohlen- wasserstoffs	Anzahl der funktionellen Gruppen	Art der funktionellen Gruppe	Stellung der funktionellen Gruppen	
Name der Verbindung	Propan	tri	ol	-(1,2,3)	
	Propantriol-(1,2,3)				
Bedeutung	unverzweigter, gesättigter Kohlenwasserstoff mit 3 Kohlenstoff- atomen	3	Hydroxylgruppe	-	
Formel	CH ₂ (OH)—CH(OH)—CH ₂ OH				

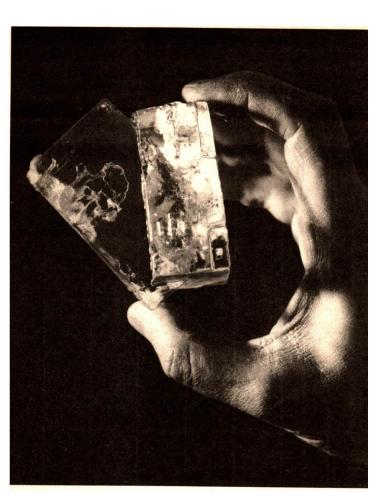
Enthält die Verbindung noch andere funktionelle Gruppen, so werden diese im Namen durch Vorsilben gekennzeichnet. Den Vorsilben vorangestellte arabische Ziffern mit Bindestrich geben die Stellung, griechische Zahlwörter die Anzahl dieser funktionellen Gruppen an.

	weitere funktionelle Gruppen			Stammkohlen-	charakteristische funktionelle Gruppe	
Stellung Anzahi Art wasserstoff	Anzahl	Art				
Name	2,3-	Di	hydroxy	butan	di	säure
	2,3-Dihydroxybutandisäure					
Bedeutung	am 2. und 3. Kohlen- stoffatom	2	Hydroxyl- gruppen	unverzweigter, gesättigter Kohlen- wasserstoff mit 4 Kohlenstoffatomen	2	Karboxyl- gruppen
Formel	HOOC—CH(OH)—CH(OH)—COOH					

Namen der funktionellen Gruppen in Verbindungen

funktionelle Gruppe	Name als	Name als		
Bezeichnung	Zusammensetzung	Vorsilbe	Endung	
Hydroxylgruppe	—он	Hydroxy	ol	
Aldehydgruppe	_c<__h	-	al	
Oxogruppe	=C=O	Охо	on	
Karboxylgruppe	_c⟨o _H	Karboxy	säure	
Rest der Karboxylgruppe (in Salzen)	_c<_o_	-	at	
Aminogruppe	−N <h< td=""><td>Amino</td><td>amin</td></h<>	Amino	amin	
Nitrogruppe	_N(°)	Nitro	_	

Die Namen der Homologen und der Derivate des Benzols sind aus der Bezeichnung des Substituenten (als Vorsilbe bzw. als Endung) und dem Namen "Benzol" zusammengesetzt. Bei mehreren Substituenten wird die Stellung derseiben durch Ziffern mit Bindestrich angegeben:


\(\bar{\range}\)_R

1,2-Stellung (ortho-Stellung) 1,3-Stellung (meta-Stellung) 1,4-Stellung (para-Stellung)

Substituenten		Stammkohlen-		
Stellung	Anzahl	Art	wasserstoff Benzol	
1,3-	Di	methyl	benzol	
1,3-Dimethylbenzol				
Je ein Substituent am 1. und am 3. Kohlenstoffatom	2	Methylradikal	Benzol	
		CH _s		
	. ()_сн.		
	1,3- Je ein Substituent am 1. und am	Stellung Anzahl 1,3- Di 1,3-Din Je ein Substituent am 1. und am 3. Kohlenstoffatom	Stellung Anzahl Art 1,3- Di methyl 1,3-Dimethylbenzol Je ein Substituent am 1. und am 3. Kohlenstoffatom CH ₃	

Für Benzolderivate, die funktionelle Gruppen enthalten, sind vorrangig noch die Trivialnamen gebräuchlich.

Seite	36	2.1.	Bausteine der Stoffe
Seite	52	2.2.	Periodensystem der Elemente
Seite	58	2.3.	Chemische Bindung
Seite	63	2.4.	Komplexverbindungen
Seite	65	2.5.	Wertigkeit
Seite	67	2.6.	Isomerie

2.1. Bausteine der Stoffe

Atome

Kleinste Teilchen, aus denen die chemischen Elemente aufgebaut sind. Sie können mit chemischen Methoden nicht in ihre Bestandteile zerlegt werden. Alle Atome eines Elements haben bestimmte gleiche Eigenschaften. Atome bestehen aus dem Atomkern und aus der Elektronenhülle. Im Atom ist die Anzahl der Elektronen (negativ geladen) in der Elektronenhülle gleich der Anzahl der Protonen (positiv geladen) im Atomkern. Das Atom ist nach außen hin elektrisch neutral.

Atomkern

Befindet sich im Zentrum des Atoms und ist positiv geladen; vereinigt fast die ganze Masse des Atoms; enthält **Nukleonen.**

Nukleonen

Masseteilchen im Atomkern; relative Masse rund 1; werden nach der elektrischen Ladung eingeteilt in **Protonen** und **Neutronen**. Die Summe aller Nukleonen eines Atoms heißt **Massenzahl**. Sie gibt die abgerundete Kernmasse in Einheiten der relativen Atommasse an.

35CI Die Massenzahl wird durch eine hoch gestellte Zahl, die Protonenzahl durch eine tief gestellte Zahl vor dem Symbol angegeben.

Protonen

Positiv elektrisch geladene Masseteilchen (relative Masse rund 1) im Atomkern. Die Protonenzahl ist für jedes Element charakteristisch. Durch sie ist die Stellung der Elemente im Periodensystem festgelegt. Die Protonenzahl entspricht der Ordnungszahl.

Neutronen

Elektrisch neutrale Masseteilchen (etwa gleiche Masse wie Protonen) im Atomkern. Die Neutronenzahl kann für die Atomkerne des gleichen Elements unterschiedlich sein.

✓ Seite 38 bis 43, 44

Elektronen

Negativ elektrisch geladene Masseteilchen (Masse etwa 1/1836 der des Protons) in der Elektronenhülle, die sich mit sehr großer Geschwindigkeit um den Atomkern bewegen. Die Anzahl der Elektronen in der Elektronenhülle eines Atoms ist der Protonenzahl des Atomkerns gleich. Für Atome gilt:

Protonenzahl = Elektronenzahl = Ordnungszahl

Elektronenhülle

Enthält alle zu einem Atomkern gehörenden Elektronen. Die Elektronenhülle besteht aus einer oder mehreren Schalen. Jede dieser Elektronenschalen kann eine bestimmte größte Anzahl Elektronen aufnehmen.

Bezeichnung der Elektronenschale	maximale Aufnahme- fähigkeit für Elektronen
K-Schale	2
L-Schale	8
M-Schale	18
N-Schale	32

✓ Seite 38 bis 43, 44 bis 46

Energieniveauschema

In den Elektronenschalen sind Elektronen mit gleichem oder annähernd gleichem Energieniveau zusammengefaßt. Die Schale, die dem Atomkern amnächten liegt, hat das tiefste Energieniveau. Durch das Energieniveauschema wird der Schalenaufbau veranschaulicht.

Energieniveauschema des Aluminiumatoms

Außenelektronen

Elektronen in der äußeren Schale eines Atoms. Sie bestimmen weitgehend das chemische Verhalten der Elemente, wie Wertigkeit und Reaktionsfähigkeit.

✓ Seite 38 bis 43

Atomaufbau der Elemente

Periode	Element	Symbol	Protonenzahl ≙ Ordnungszahl	Neutronenzahl ¹ (häufig auftretende)
1	Wasserstoff	н	1	0:1
	Helium	He	2	2;1
2	Lithium	Li	3	4:3
	Beryllium	Be	4	5
	Bor	В	5	6:5
	Kohlenstoff	C	6	6:7
	Stickstoff	N	7	7:8
	Saverstoff	0	8	8; 10; 9
	Fluor	F	9	10
	Neon	Ne	10	10; 12; 11
3	Natrium	Na	11	12
	Magnesium	Mg	12	12; 13; 14
	Aluminium	Al	13	14
	Silizium	Si	14	14; 15; 16
	Phosphor	P	15	16
	Schwefel	S	16	16; 18; 17
	Chlor	CI	17	18; 20
	Argon	Ar	18	22; 18; 20
4	Kalium	К	19	20; 22
	Kalzium	Ca	20	20; 24; 22; 28; 23
	Skandium	Sc	21	24
	Titan	Ti	22	26; 24; 25; 27; 28
	Vanadin	V	23	28; 27
1	Chrom	Cr	24	28; 29; 26; 30
	Mangan	Mn	25	30
	Eisen	Fe	26	30; 28; 31; 32
	Kobalt	Co	27	32
	Nickel	Ni	28	30; 32; 34; 33; 36
	Kupfer	Cu	29	34; 36
1 14	Zink	Zn	30	34; 36; 38; 37; 40
	Gallium	Ga	, 31	38; 40
	Germanium	Ge	32	42; 40; 38; 41; 44

¹ Die Neutronenzahlen sind nach prozentualem Anteil geordnet.

Dec. 1			Elektronenzal	hl		
K-Schale	L-Schale	M-Schale	N-Schale	O Schale	P-Schale	Q-Schale
1 2						
2 2 2 2 2 2 2 2 2 2	1 2 3 4 5 6 7 8					
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 8 8 8 8 8	1 2 3 4 5 6 7 8				
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8+1 8+2 8+3 8+4 8+5 8+6 8+7 8+8 8+10 18	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			

^{*} Abweichungen in der Anordnung der neu hinzukommenden Elektronen bzw. Anordnung derselben nicht gesichert.

(Fortsetzung)

Periode	Element	Symbol	Protonenzahl 🖴 Ordnungszahl	Neutronenzahl ¹ (häufig auftretende)
	Arsen	As	33	42
	Selen	Se	34	46; 44; 42; 48; 43
	Brom	Br	35	44: 46
	Krypton	Kr	36	48; 50; 47; 46; 44
5	Rubidium	Rb	37	48: 50
	Strontium	Sr	38	50; 48; 49; 46
	Yttrium	Y	39	50
	Zirkon	Zr	40	50; 54; 52; 51; 56
	Niob	Nb	41	52
	Molybdän	Mo	42	56; 53; 50; 54; 58
	Technetium	Tc	43	56
	Ruthenium	Ru	44	58; 60; 57; 55; 56
	Rhodium	Rh	45	58
	Palladium	Pd	46	60; 62; 59; 64; 58
	Silber	Ag	47	60: 62
	Kadmium	Cq	48	66; 64; 63; 62; 65
	Indium	ln l	49	66: 64
	Zinn	Sn	50	70; 68; 66; 69; 67
	Antimon	Sb	51	70; 72
	Tellur	Te	52	78; 76; 74; 73; 72
	Jod	J	53	74
	Xenon	Xe	54	78; 75; 77; 80; 82
6	Zäsium	Cs	55	78
	Barium	Ba	56	82; 81; 80; 79; 78
	Lanthan	. La	57	82; 81
-	Zer	Ce	58	82; 84; 80: 78
-	Praseodym	Pr	59	82
	Neodym •	Nd	60	82; 84; 86; 83; 85
	Promethium	Pm	61	86
	Samarium	Sm	62	90; 92; 85; 87;86
	Europium	Eυ	63	90; 88
	Gadolinium	Gd	64	94; 96; 92; 93; 91
	Terbium	ТЬ	65	94
1	Dysprosium	Dy	66	98; 96; 97; 95; 94
- 1	Holmium	Но	67	98

¹ Die Neutronenzahlen sind nach prozentualem Anteil geordnet.

,			Elektronenzah			
K-Schale	L-Schale	M-Schale	N-Schale	O-Schale	P-Schale	Q-Schale
2	8	18	5			
2	8	18	6			
2 2 2	8	18	7			
2	8	18	8			
2	8	18	8	1	,	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8	18	8	2		
2	8	18	8+1	2		
2	8	18	8+2	2 2 2 * 2 *		
2	8	18	8+3	2 *		
2	8	18	8+4	2 *		
2	8	18	8+5	2 *		
2	. 8	18	8+6	2 *		
2	8	18	8+7	2 *	_	
2	8	18	8+8	2 *		
2	8	18	8+9	2 *		
2	8	18	8+10	2		-
2	8	18	18	3		
2	. 8	18	18	4		
2	8	18	18	5		
2	8	18	18	6		
2	8	18	18	7		
2	. 8	18	18	8		
2	8	18	18	8	1	
2	8	18	18	8	2	
2	8	18	18	8+1	2 2	1
2	8	18	18+1	8+1	2	
2	8	18	18+2	8+1	2	
2	8	18	18+3	8+1	2 2 * 2 * 2 * 2 * 2 *	1
2	8	18	18+4	8+1	2 *	
2	8	18	18+5	8+1	2 *	5.7
2	8	18	18+6	8+1	2 *	
2	8	18	18+7	8+1	2	
2	8	18	18+8	8+1	2	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8	18	18+9	8+1	2 2	
2	8	18	18+10	8+1	1 1	

Abweichungen in der Anordnung der neu hinzukommenden Elektronen bzw. Anordnung derselben nicht gesichert.

(Fortsetzung)

Periode	Element	Symbol	Protonenzahl ≙ Ordnungszahl	Neutronenzahl ¹ (häufig auftretende)
	Erbium	Er	68	98; 100; 99; 102; 96
	Thulium	Tm	69	100
	Ytterbium	Yb	70	104; 102; 103; 101; 106
	Lutetium	Lu	71	104; 105
	Hafnium	Hf	72	108; 106; 105; 107; 104
	Tantal	Ta	73	108
	Wolfram	Wo	74	110; 112; 108; 109; 106
	Rhenium	Re	' 75	112; 110
	Osmium	Os	76	116; 114; 113; 112; 111
	Iridium	lr .	77	116; 114
	Platin	Pt	78	117; 116; 118; 120; 114
	Gold	Au	79	118
	Quecksilber	Hg	80	122; 120; 119; 121; 118
	Thallium	T⊩	81	124; 122
	Blei	РЬ	82	126; 124; 125; 122
	Wismut	Bi	83	126
	Polonium	Po	84	126; 127; 128; 130; 131
	Astat	At	85	130; 133; 134
	Radon	Rn	86	133; 134; 136
7	Franzium	Fr	87	136
	Radium	Ra	88	135; 136; 138; 140
	Aktinium	Ac	89	138
	Thorium	Th	90	142
	Protaktinium	Pa	91	140
	Uran	U	92	146: 143: 142
	Neptunium	Np	93	144
	Plutonium	Pu	94	148
	Amerizium	Am	95	148
	Kurium	Cm	96	151
	Berkelium	Bk	97	150
	Kalifornium	Cf	98	153
	Einsteinium	Es	99	155
	Fermium	Fm	100	153
	Mendelevium	Md	101	155
	Nobelium	No	102	152
	Lawrenzium	Lw	103	154
		-"	103	

¹ Die Neutronenzahlen sind nach prozentualem Anteil geordnet.

K-Schale	L-Schale	M-Schale	N-Schale	O-Schale	P-Schale	Q-Schale
2	8	18	18+11	8+1	2	
2	8	18	18+12	8+1	2 *	-
2 2	8	18	18+13	8+1		
2	8	18	18+14	8+1	2	
2 2 2 2	8	18	32	8+2	2 * 2 2 2	
2	8	18	32	8+3	2	
2	8	18	32	8+4	2	1.0
2	8	18	32	8+5	2 2 2 2	
2 2	8	18	32	8+6	2	
	8	18	32	8+7	2	1
2	8	18	32	8+8	2 *	
2	8	18	32	8+9	2 *	1 '
2 2	8	18	32	8+10	2	
2 2	8	18	32	18	3	
2	8	18	32	18	4	
2	8	18	32	18	5	
2 2	8	18	32	18	6	
/ 2	8	18	32	18	7	
2	8	18	32	18	8	
2	8	18	32	18	8	
	8	18	32	18	8	2
2 2 2 2	8	18	32	18	8+1	2 2 * 2 * 2 * 2 * 2 * 2 *
2	8	18	32	18+1	8+1	2 *
2	8	18	32	18+2	8+1	2 *
2	8	18	32	18+3	8+1	2 *
2 2	8	18	32	18+4	8+1	2 *
2	8	18	32	18+5	8+1	2 *
2	8	18	32	18+6	8+1	2 *
	8	18	32	18+7	8+1	2 *
2	8	18	32	18+8	8+1	2 *
2 2 2	8	18	32	18+9	8+1	2 *
2	8	18	32	18+10	8+1	2 *
2	8	18	32	18+11	8+1	2 *
2	8	18	32	18+12	8+1	2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 *
2	8	18	32	18+13	8+1	2 *
2 2	8	18	32	18+14	8+1	2 *

Abweichungen in der Anordnung der neu hinzukommenden Elektronen bzw. Anordnung derselben nicht gesichert.

Isotope

Atome eines chemischen Elements, die bei gleicher Protonenzahl verschiedene Neutronenzahlen haben. I sotope eines Elements besitzen daher verschiedene Nukleonenzahlen.

Kohlenstoff ¹²₆C: 6 Protonen 6 Neutronen 6 Elektronen Kohlenstoff ¹³₆C: 6 Protonen 7 Neutronen 6 Elektronen

/ Seite 36, 38 bis 43

Wellenmechanisches Atommodell

Im wellenmechanischen Atommodell wird das Elektron als stehende Welle aufgefaßt. Die wahrscheinlichen Aufenthaltsbereiche (Orbitale) der Elektronen haben die Form von Elektronenwolken, die um den Atomkern angeordnet sind.

Wasserstoffatom

Orbital

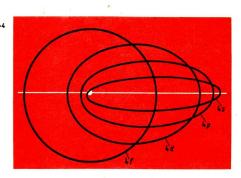
Aufenthaltsbereich eines Elektrons in der Elektronenhülle. Jeder Orbital ist durch einen bestimmten Energiezustand gekennzeichnet; er kann maximal 2 Elektronen aufnehmen. Die Orbitale werden mit den Buchstaben $s, \, \rho, \, d, \, f$ bezeichnet, die den **Nebenquantenzahlen** entsprechen. Ihnen ist die jeweils zutreffende **Hauptquantenzahl** vorangestellt. Die Bezeichnung charakterisiert die Bahn und den Energiezustand.

1s-Orbital

2p-Orbital

Hauptquantenzahl n

Zahl, durch die der Energiezustand eines Elektrons angegeben wird. Die Elektronen einer Schale des Bohrschen Atommodells gehören einem bestimmten Energieniveau an. Jede Elektronenschale entspricht einer Hauptquantenzahl.

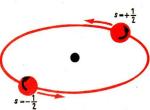

Hauptquantenzahlen	1	2	3	4	5	6	7
Schale	К	L	М	z	0	Р	Q

Bei größeren Atomen reicht die Hauptquantenzahl n nicht aus, um alle Energiezustände zu kennzeichnen. Dazu dienen noch drei weitere Quantenzahlen.

Nebenguantenzahl 1

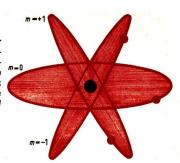
Zahl, durch die die zu einer Schale des Bohrschen Atommodells gehörenden Ellipsenbahnen gekennzeichnet werden. Für jede Hauptquantenzahl n kann die Nebenquantenzahl l die Werte 0 bis (n-1) annehmen. Die Bahn mit der Nebenquantenzahl l=n-1 ist ein Kreis. Den Nebenquantenzahlen entsprechen die Bezeichnungen s, p, d, f.

Zur Hauptquantenzahl n=4 gehören 4 Bahnen: 3 Ellipsenbahnen und eine Kreisbahn.



Spinquantenzahl s

Zahl, die die Eigendrehung der Elektronen (Elektronenspin) angibt. Sie hat die


Werte
$$s = +\frac{1}{2}$$
 und $s = -\frac{1}{2}$.

Elektronenbahn und Elektronenspin

Magnetische Quantenzahl m

Zahl, durch die die Neigung der Bahnebene des Bohrschen Atommodells im Raum (räumliche Orientierung) angegeben wird. Die Zahl mkann die Werte—I; ...—2; —1; 0; +1; +2; ... + I annehmen. Sie ist von der Nebenquantenzahl I abhängig.

Die Bahnebene 4p hat drei Neigungen.

Pauli-Prinzip

In einem Atom stimmen niemals zwei Elektronen in allen vier Quantenbedingungen überein:

$$Z = 2n^2$$

 $Z = H\ddot{o}$ chstzahl der Elektronen, die auf einer Elektronenschale Platz haben.

Schale	Haupt- quanten- zahl n	Anzahl von Ellipsen und Kreis	Neben- quanten- zahi /	Anzahl der Neigungen im Raum	magne- tische Quanten- zahl <i>m</i>	Spin- quanten- zahl s	Höchstzahl der Elektronen
К	1	1	0	1	0	± 1/2	2
			0	1	0	± 1/2	
L	2	2			_1	± 1/2	
			.1	3	0	$\pm \frac{1}{2}$	
					+1	± 1/2	

Relative Atommasse (Atomgewicht)

Verhältniszahl, mit der die Masse eines Atoms angegeben wird. Die relative Atommasse gibt an, wievielmal so groß die Masse eines Atoms des betreffenden Elements als $\frac{4}{12}$ der Atommasse des Kohlenstoffisotops 12 C ist.

Moleküle

Kleinste Teilchen chemischer Verbindungen oder Teilchen eines Elements; bestehen aus mindestens zwei Atomen. Sie können mit chemischen Methoden in ihre Bestandteile zerlegt werden. Alle Moleküle eines Stoffes haben gleiche chemische Eigenschaften.

Relative Molekülmasse (Molekulargewicht)

Angabe für die Masse eines Moleküls; Summe der relativen Atommassen aller in einem Molekül enthaltenen Atome.

Errechnen von relativen Molekülmassen

Teilschritt	■ Relative Molekülmasse von Kohlensäure H ₂ CO ₈		
Man schreibt die relativen Atommassen der im Molekül enthaltenen Atome auf	H: C:	1 12 16	
Die Anzahl der Atome eines jeden Elements wird aus der Formel abgelesen	H: C: O:	1 2 12 1 16 3	
 Die relative Atommasse eines jeden Elements wird mit der entsprechenden Anzahl von Atomen multipliziert 	H: C: O:	$1 \cdot 2 = 2$ $12 \cdot 1 = 12$ $16 \cdot 3 = 48$	
 Durch Addition der Ergebnisse der Multiplikation (3.) erhält man die relative Molekülmasse 	H: C: O: H₂CO ₃ :	$ \begin{array}{r} 1 \cdot 2 = 2 \\ 12 \cdot 1 = 12 \\ 16 \cdot 3 = 48 \\ \hline 62 \end{array} $	

Äquivalentmasse (Äquivalentgewicht)

Die Äquivalentmasse eines Stoffes ist der Quotient aus der relativen Atommasse (bzw. der relativen Molekülmasse) und der Wertigkeit.

Äquivalentmasse =

relative Atommasse (bzw. Molekülmasse)
Wertigkeit

Verbindung	Formel	relative Molekülmasse	Wertigkeit	Xquivalentmasse
Schwefelsäure	H _a SO ₄	98,0	2	49,0
Natriumhydroxid	NaOH	40,0	1	40,0
Natriumchlorid	NaCl	58,5	1	58,5
Eisen(III)-chlorid	FeCl _a	162,3	3	54,1

Grammatom

Die Anzahl Gramm eines Elements, die gleich seiner relativen Atommasse ist.

relative Atommasse des Schwefels: 32

1 Grammatom Schwefel: 32 g

relative Atommasse des Kalziums: 40 1 Grammatom Kalzium: 40 a

Mol (Grammolekül)

Die Anzahl Gramm eines Stoffes, die gleich seiner relativen Molekülmasse ist.

relative Molekülmasse des Schwefeldioxids SO₂: 64

1 Mol Schwefeldioxid SO₂: 64 g

relative Molekülmasse des Methanals HCHO: 30 1 Mol Methanal HCHO: 30 a

Val (Grammäquivalent)

Die Anzahl Gramm eines Stoffes, die gleich seiner Äquivalentmasse ist.

Äquivalentmasse der Phosphorsäure H_sPO₄: 32,7 1 Val Phosphorsäure H₂PO₄: 32,7 g

Äquivalentmasse des Eisen(II)-chlorids FeCl_a: 63.4

1 Val Eisen(II)-chlorid FeCl.: 63,4 q

Loschmidtsche Zahl

(auch Avogadrosche Zahl). Ein Grammatom beziehungsweise ein Mol aller Stoffe enthält 6,024 · 1028 Teilchen.

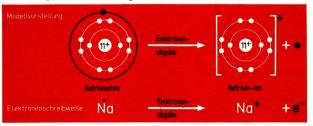
Stoff	Zeichen	1 Grammatom bzw. 1 Mol	Anzahl der Teilchen
Magnesium	Mg	24 g	6,024 · 10 ²⁸
Saverstoff	0,	32 g	6,024 · 1028
Schwefelsäure	H ₂ SO ₄	98 g	6,024 · 1028
Methanal	HCHO	30 g	6,024 - 1028

Molvolumen von Gasen

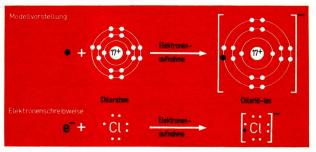
Ein Mol eines jeden Gases nimmt im Normzustand ein Volumen von 22,4 I ein. Dieses Volumen bezeichnet man als Molyolumen.

Stoff	Formel	1 Mol	Molvolumen
Wasserstoff	Hs	2 g	22,41
Schwefeldioxid	SO,	64 g	22,4
Methan	CH,	16 g	22,4
Äthen	C ₂ H ₄	28 g	22,4

lonen


Positiv oder negativ geladene Teilchen; sind in den wäßrigen Lösungen (bzw. Schmelzen) der Elektrolyte frei beweglich.

,	■ Kalzium		■ Brom		
	Atom	lon	Atom	lon	
Kernladungszahl	20	20	35	35	
Elektronenzahl elektrische Ladung Zeichen	20 neutral Ca	18 zweifach positiv Ca ²⁺	35 neutral Br	36 einfach negativ Br-	


lonenbildung

lonen der Elemente entstehen durch Aufnahme bzw. Abgabe von Elektronen.

■ lonenbildung durch Elektronenabgabe

■ lonenbildung durch Elektronenaufnahme

2

Anionen

Negative Ionen.

SO ₄ -	CO ₃ -	NO ₃	CI-
Sulfat-Ion	Karbonat-lon	Nitrat-Ion	Chlorid-lon
	4		

PO₄⁴ S² CIO₃ CN⁻
Phosphat-lon Sulfid-lon Chlorat-lon Zyanid-lon

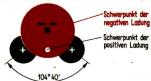
/ Seite 22, 23, 188, 189

Kationen

Positive Ionen

Na+	Mg ²⁺	K+	Ba ²⁺
Natrium-Ion	Magnesium-lon	Kalium-lon	Barium-lon
NH‡	Fe³+	Cu⁺	Cu ²⁺
Ammonium-lon	Eisen(III)-lon	Kupfer(I)-lon	Kupfer(II)-lon

Zwitterionen


Ionen, die zwei entgegengesetzte Ladungen besitzen.

COO-CH₂—NH₃+ Aminoäthansäure-lon

₹ Seite 162

Dipol

Nach außen elektrisch neutrales Molekül, das jedoch positive und negative Ladungsschwerpunkte besitzt. Dipole haben eine hohe Dielektrizitätskonstante.

Wassermolekül als Dipol

2.2. Periodensystem der Elemente

Ordnungszahl

Zahl, die die Reihenfolge der Elemente im Periodensystem kennzeichnet. Dabei gilt:

Ordnungszahl = Protonenzahl = Elektronenzahl

/ Seite 38 bis 43, 110 bis 112

Gruppen

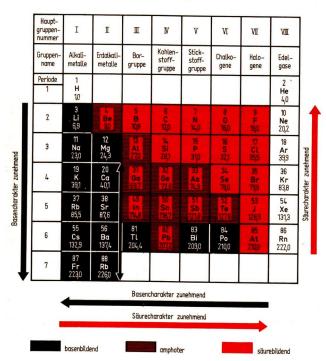
Senkrechte Reihen im Periodensystem. Jede Gruppe ist in eine Hauptgruppe und in eine Nebengruppe unterteilt.

Perioden

Waagerechte Reihen im Periodensystem.

Periodensystem und Atombau

Die Stellung jedes Elements im Periodensystem ist im Atombau begründet. Für alle Hauptgruppenelemente gelten:


Angabe des Periodensystems		Bezug zum Atombau		
	■ Rubidium		Rubidium	
Ordnungszahl	37	= Protonenzahl = Kernladungszahl = Elektronenzahl	37 37 37	
Gruppennummer	1		1	
Periodennummer	5	Anzahl der Elektronen- schalen	5	

Periodizität chemischer und physikalischer Eigenschaften

	Änderungen				
Eigenschaft	in den Hauptgruppen	in den Perioden			
Metalicharakter	↓ zunehmend	← zunehmend			
Nichtmetallcharakter	↑ zunehmend	→ zunehmend			
Reaktionsfähigkeit typischer Metalle gegenüber typischen Nichtmetallen	↓ zunehmend	← zunehmend			
höchste stöchiometrische Wertigkeit gegenüber Saverstoff	gleichbleibend	zunehmend			
höchste stöchiometrische Wertigkeit gegenüber Wasserstoff	gleichbleibend	zunehmend			
Kernladung	↓ zunehmend	→ zunehmend			
elektropositiver Charakter	↓ zunehmend	← zunehmend			
Atomradius	↓ zunehmend	zunehmend			
lonenradius	↓ zunehmend	← zunehmend			
Dichte	im allgemeinen zunehmend	zunehmend			
Schmelz- und Siedetemperatur der Metalle	im allgemeinen zunehmend				
Schmelz- und Siedetemperatur der Nichtmetalle	im allgemeinen zunehmend	_			

Basenbildende, säurenbildende, amphotere Elemente

In den Hauptgruppen nimmt mit steigender Ordnungszahl der basische Charakter zu, der saure ab. Innerhalb der Perioden nimmt mit steigender Ordnungszahl der basische Charakter ab, der saure zu.

Die Pfeillinie in obenstehender Tabelle gibt an, wo die Nebengruppenelemente des Periodensystems einzuordnen sind.

✓ Schluß des Buches

In den Hauptgruppen nimmt mit steigender Ordnungszahl der Metallcharakter zu, der Nichtmetallcharakter ab. In den Perioden nimmt mit steigender Ordnungszahl der Metallcharakter ab, der Nichtmetallcharakter zu.

Haupt- gruppen- nummer	I	I	I	IV	V	VI	VII	VIII
Gruppen- name	Alkali- metalle	Erdalkali- metalle	Bor- gruppe	Kohlen- stoff- gruppe	Stick- stoff- gruppe	Chalko- gene	Halo- gene	Edel- gase
Periode 1	1 H 10							2 He 40
2	3 L1 69	90 90	5 . B 10,8	6 C 12,0	? N 14,0	168 0 18	9 F 190	10 Ne 20,2
3	11 Ma 230	17 Mg 243	13 Al 270	14 SI 28,1	15 P 310	16 S 32,1	F 0 55	18 Ar 39,9
4	19 K 391	20 (Ca 40)	31 Ga 697	32. Ge 72,6	33 As 74,9	34 Se 78,0	35 Br 799	36 Kr 83,8
. 5	37. 20. 35. 35.	39 Sr 97,6	49 In 1148	50 Sn 1187	51 Sb 121,8	52 Te 127,6	53 J 125,9	54 Xe 131,3
6	55 C3 1829	56 Bu 1871	81 TL 2043	92 P6 207/2	83 8 1 209,0	84 Po 2100	85 At 210,0	86 Rn 2220
7	87 Fr 2730	88 Ra 2260 1	,					
,	_		Metall	charakter	zunehmend		×	
			Nichtmet	allcharakte	r zunehme	nd		

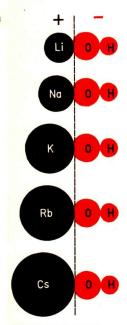
Die Pfeillinie in obenstehender Tabelle gibt an, wo die Nebengruppenelemente des Periodensystems einzuordnen sind.

Hauptgruppennummer und stöchiometrische Wertigkeit

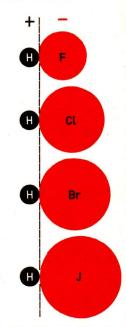
Hauptgruppennummer	1	11	Ш	IV	٧	VI	VII
■ Saverstoffverbindung	Na ₂ O	CaO	Al ₂ O ₃	CO ₂	N ₂ O ₅	SO ₃	Cl ₂ O
(höchste) stöchiometrische Wertigkeit gegenüber Sauerstoff	1	п	Ξ	IV	V	VI	VII
■ Wasserstoffverbindung	NaH	CaH ₂	AIH ₃	CH₄	NH ₃	SH ₂ (H ₂ S)	CIH (HCI)
(höchste) stöchiometrische Wertigkeit gegenüber Wasserstoff	1	н	m	IV	m	П	1

Periodizität chemischer Eigenschaften in den Nebengruppen

- Die Ähnlichkeit zwischen den zur gleichen Gruppe gehörenden Haupt- und Nebengruppenelementen wächst von der I. bis zur IV. Gruppe stark an und sinkt von da bis zur VII. Gruppe stark ab.
- Die Ähnlichkeit zwischen den Elementen der Haupt- und Nebengruppen ist jeweils am stärksten ausgeprägt zwischen dem zweiten Element der Hauptgruppe und dem ersten Element der Nebengruppe.
- ► Eine Reihe von Nebengruppenelementen bildet in wäßriger Lösung gefärbte lonen.


Abhängigkeit chemischer Eigenschaften von den physikalischen

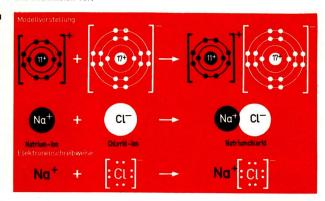
Der lonenradius ist kleiner als der Atomradius, wenn das lon durch Elektronenabgabe entstanden ist, dagegen größer, wenn es durch Elektronenaufnahme entstanden ist.


| K | K+

Atom- und Ionenradien von Kalium und Chlor

Innerhalb der Gruppe nimmt der Ionenradius mit steigender Ordnungszahl zu. In Ionenverbindungen nimmt deshalb der Abstand der Ladungsschwerpunkte, zum Beispiel bei Hydroxiden und sauerstofffreien Säuren, innerhalb der Gruppe ebenfalls mit steigender Ordnungszahl zu und damit die Anziehungskraft ab. Dementsprechend dissoziieren die Moleküle mit steigender Ordnungszahl leichter, der basische beziehungsweise saure Charakter nimmt zu.

Hydroxide der I. Hauptgruppe

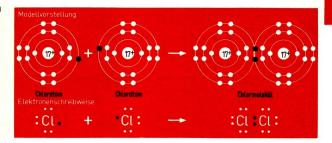


Wasserstoffverbindungen der VII. Hauptgruppe

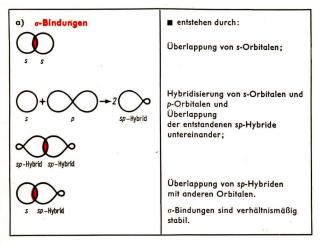
2.3. Chemische Bindung

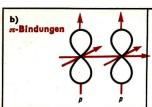
Ionenbeziehung

Chemische Bindung, die auf elektrostatischer Anziehung entgegengesetzt geladener Ionen beruht. Sie liegt hauptsächlich in Verbindungen zwischen Metall und Nichtmetall vor.



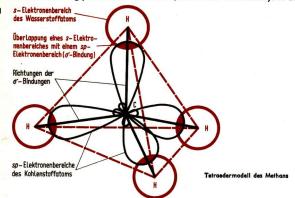
lonenverbindungen bilden lonenkristalle, die sich aus positiven und negativen lonen in regelmäßiger Anordnung aufbauen. Die räumliche Anordnung der lonen im lonenkristall wird als lonengitter bezeichnet.



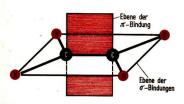

Atombindung

Chemische Bindung, die durch gemeinsame Elektronenpaare bewirkt wird; kann sowohl zwischen gleichartigen als auch verschiedenartigen Atomen auftreten. Sie liegt hauptsächlich zwischen Nichtmetallatomen vor.

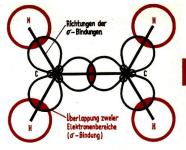
Atombindungen können unterschiedlich sein:


entstehen durch:

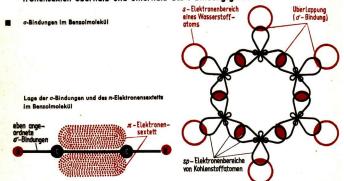
Überlappung von parallel zueinander angeordneten p-Orbitalen.


 π -Bindungen sind verhältnismäßig schwach.

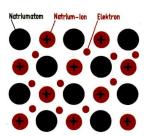
Auf diese Weise lassen sich auch die unterschiedlichen Bindungsverhältnisse in organischen Verbindungen erklären:


Einfachbindung (Kohlenstoff-Kohlenstoff; Kohlenstoff-Wasserstoff): 1 σ-Bindung

Doppelbindung (Kohlenstoff-Kohlenstoff): 1 σ -Bindung, 1 π -Bindung.


Ebenen der σ-Bindungen und der π-Bindung im Äthenmolekül

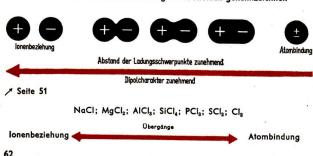
Dreifachbindung (Kohlenstoff–Kohlenstoff): 1 σ -Bindung, 2 π -Bindungen.



Bindung im Benzoiring (Kohlenstoff–Kohlenstoff): 6 σ -Bindungen, π -Elektronensextett oberhalb und unterhalb des σ -Bindungsgerüstes.

Metallische Bindung

Chemische Bindung, die durch elektrostatische Anziehung zwischen positiven Metall-lonen und freien Elektronen bewirkt wird. Metall-lonen und -Atome bilden ein Metallgitter, das von den leichtbeweglichen Elektronen durchdrungen ist. Durch den ständigen Platzwechsel der Elektronen wandeln sich ständig Metall-lonen in -Atome um (und umgekehrt). Die freien Elektronen sind Ursache der elektrischen Leitfähigkeit der Metalle.



Metallische Bindung beim Natrium

Übergänge zwischen den Bindungsarten

Ionenbeziehung, Atombindung und metallische Bindung stellen ideale Grenzfälle dar. Zwischen ihnen gibt es zahlreiche Übergangsformen. Die Mehrzahl der chemischen Verbindungen weist Bindung mit Übergangscharakter auf.

a) lonenbeziehung - Atombindung. Übergang wird durch die Deformation der Elektronenhülle von Ionen beziehungsweise Atomen gekennzeichnet.

b) Ionenbeziehung — metallische Bindung. Hierzu gehören Leglerungen, Intermetallische Verbindungen und Mischkristalle. Diese Stoffe stehen zwischen den physikalischen Gemengen und den chemischen Verbindungen.

NaCl; Na₂S; Na₃P; (Na_x Si); Na_x Al; Na_x Mg; NaNa ·

c) Metallische Bindung — Atombindung

NaNa; MgMg; AlAl; SiSi; PP; SS; CICI

2.4. Komplexverbindungen

Komplexverbindung

Verbindung, die durch Anlagerung von Molekülen oder Ionen an andere Atome oder Ionen entsteht. Komplexverbindungen sind aus Komplexionen und Gegenionen zusammengesetzt. Komplexionen zeigen charakteristische Reaktionen, die sich von den Reaktionen der Bestandteile unterscheiden.

$$Cu(OH)_2 + 4 NH_3 \rightarrow [Cu(NH_3)_4]^{2+} + 2 OH^-$$
Komplexes Kation Gegenionen

[Cu(NH₃)₄](OH)₂

Tetramminkupfer(II)-hydroxid

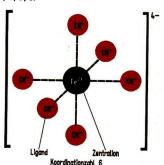
 $Na_3[Ag(S_2O_3)_2]$

Natrium-dithiosulfatoargentat

✓ Seite 23, 24

Zentralion

lon, an das eine bestimmte Anzahl von Molekülen oder Ionen angelagert ist. Dadurch wird ein Komplexion gebildet.


63

Ligand

Molekül oder Ion, das an ein Zentralion eines Komplexions angelagert ist.

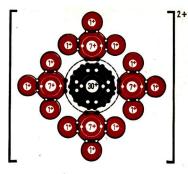
Koordinationszahl in Komplexverbindungen

Zahl, die die Anzahl der Liganden angibt, die ein Zentralion anzulagern vermag; hängt mit der Größe der Liganden und des Zentralions zusammen. Häufig auftretende Koordinationszahlen sind 2; 4; 6; 8.

Beim Hexazyanoferrat(II)-lon sind um das Zentralion Fe^{s+} 6 Liganden CN⁻ gelagert.

Anlagerungskomplex

Komplexion, das durch Anlagerung von Ionen oder Dipoimolekülen an ein Zentralion entsteht; Bindungsverhältnisse beruhen auf elektrostatischen Anziehungskräften; zerfallen in wäßriger Lösung verhältnismäßig leicht.


Ionen-Ionen-Komplex: [AIF₆]³Ionen-Dipol-Komplex: [Ca(H₂O)₆]³⁺

Durchdringungskomplex

Komplexion, das aus Liganden entsteht, die bei abgeschlossener Achterschale freie (einsame) Elektronenpaare besitzen. Die freien Elektronenpaare dieser Liganden bilden eine Edelgaskonfiguration der Elektronen um das Zentralion aus, wobei in einigen Fällen auch dessen Elektronenschalen noch einbezogen werden. Durchdringungskomplexe sind besonders stabil.

 $Zn^{2+} + 4NH_s \rightarrow [Zn(NH_s)_4]^{2+}$

Anlagerungskomplexe und Durchdringungskomplexe stellen Grenzfälle dar. Außerdem kommen auch Übergänge zwischen beiden Formen vor.

Komplexzerfallskonstante

Dissoziationskonstante des Komplexes; Maß für den Zerfall eines Komplexions in wäßriger Lösung.

$$\frac{[Zentralion] \cdot [Ligand]^{Koordinationszahl}}{[Komplexion]} = K$$

✓ Seite 81

2.5. Wertigkeit

Stöchlometrische Wertigkeit

Angabe über das Zahlenverhältnis, in dem sich die Atome verschiedener Elemente oder Atomgruppen verbinden können. Die stöchiometrische Wertigkeit kann durch eine hochgestellte römische Ziffer dargestellt werden:

■ Nal einwertiges Natriumatom; SO zweiwertiger Säurerest der Schwefelsäure

Ionenwertigkeit

Angabe über die Anzahl der Ladungen, die ein Ion hat. Sie wird durch hochgestellte arabische Ziffern mit positivem oder negativem Vorzeichen angegeben.

5 [031701]

lon	Zeichen	lonenwertigkeit
Wasserstoff-Ion	H+	1+
Kalzium-Ion	Ca2+	2 +
Hydroxid-lon	OH-	1-
Sulfat-Ion	SO2-	2—
Phosphat-Ion	PO3-	3 —

Bindungswertigkeit

Zahl der Elektronenpaare, die ein Element in einer Verbindung mit einem anderen Element gemeinsam hat (Atombindungen).

H Wasserstoff hat die Bindungswertigkeit 1 :O:H Sauerstoff hat die Bindungswertigkeit 2

Oxydationszahl

Die Oxydationszahl eines Atoms gibt Vorzeichen und Größe der elektrischen Ladung an, die dem Atom zuzuschreiben wäre, wenn man die Elektronen nach bestimmten Regeln auf die Atome verteilt.

Regeln für die Festlegung der Oxydationszahlen

Die Oxydationszahl eines einatomigen lons in einer	■ +1 -1
lonenverbindung ist gleich seiner elektrischen Ladung.	Na+ Cl-
▶ Die Oxydationszahl von Atomen in einer Elementar-	■ ±0
substanz ist gleich Null.	C
▶ In einer Atomverbindung ist die Oxydationszahl jedes Atoms diejenige Ladung, die dem Atom verbleibt, wenn alle gemeinsamen Elektronenpaare vollständig dem stärker elektronegativen Atom zugeschrieben werden. Elektronenpaare, die zwei Atomen desselben Elements gemeinsam angehören, werden auf beide Atome auf- geteilt.	-4+1 CH ₄

2.6. Isomerie

Isomerie

Auftreten von Verbindungen gleicher Zusammensetzung, aber mit unterschiedlichem Molekülbau. Der unterschiedliche Aufbau der Moleküle bedingt auch unterschiedliche Eigenschaften der Verbindungen.

Strukturisomerie

Isomerie, die auf dem unterschiedlichen Aufbau der Kohlenstoffkette beruht.

Name	Summenformel	vereinfachte Strukturformel
Butan Methylpropan	C ₄ H ₁₀ C ₄ H ₁₀	CH _s —CH _s —CH _s —CH _s CH _s —CH—CH _s CH _s

/ Seite 29, 30, 145 ff.

Stellungsisomerie

Sonderfall der Strukturisomerie; beruht auf der unterschiedlichen Stellung von Substituenten oder der unterschiedlichen Lage von Mehrfachbindungen in einer Verbindung.

a) Unterschiedliche Stellung von Substituenten

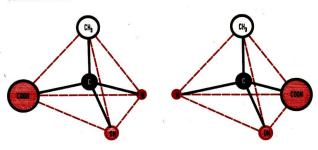
✓ Seite 33, 76, 77, 145 ff.

b) Unterschiedliche Lage von Mehrfachbindungen

CH₂=C=CH—CH₂—CH₃ kumulierte Doppelbindung
Pentadien-(1,2)

CH₂=CH—CH=CH—CH₃ konjugierte Doppelbindung

Pentadien-(1.3)


CH₂=CH—CH₂—CH=CH₃ Isolierte Doppelbindung
Pentadien-(1.4)

<u>Stereoisomerie</u>

Isomerie, die auf der unterschiedlichen räumlichen Anordnung von verschiedenen Atomen oder Atomgruppen an einem Atom eines Moleküls besteht. Stereoisomere Kohlenstoffverbindungen enthalten asymmetrische Kohlenstoffatome. Sie sind optisch aktiv.

Stereoisomere der 2-Hydroxypropansäure

Tetraedermodelle

Konfigurationsformeln

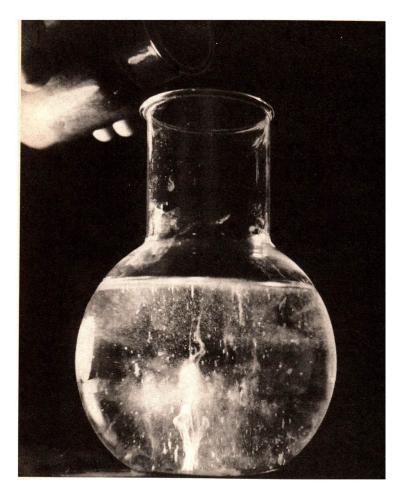
Seite 161

Kohlenstoffatom, das mit vier verschiedenen Atomen oder Atomgruppen verbunden ist.

 Die 2,3-Dihydroxybutandisäure hat zwei asymmetrische Kohlenstoffatome im Molekül.

₹ Seite 161

Optische Aktivität


Eigenschaft einiger Verbindungen, die Ebene des polarisierten Lichtes zu drehen; tritt auf bei Verbindungen mit asymmetrischen Kohlenstoffatomen.

■ L-(+)-2-Hydroxypropansäure: rechtsdrehend;

D-(--)-2-Hydroxypropansäure: linksdrehend;

Gemisch gleicher Anteile beider Formen (razemisches Gemisch): optisch inaktiv.

/ Seite 161

Grundlagen chemischer Reaktionen

Seite 72	3.1.	Reaktionen
Seite 79	3.2.	Elektrolytische Dissoziation
Seite 84	3.3.	Elektrochemische Vorgänge
Seite 89	3.4.	Verbindungsgesetze
Seite 90	3.5.	Wärmeumsetzungen bei chemischen Reaktionen
Seite 90	3.6.	Lösungen
Seite 94	3.7.	Chemisches Gleichgewicht — Massenwirkungsgesetz
Seite 97	3.8.	Katalyse

3.1. Reaktionen

Oxydation

Im engeren Sinne chemischer Vorgang, bei dem sich Stoffe mit dem Sauerstoff verbinden.

2 Cu + O₂
$$\rightarrow$$
 2 CuO
4 NH₃ + 3 O₂ \rightarrow 2 N₂ + 6 H₂O
2 C₂H₂ + 5 O₂ \rightarrow 4 CO₂ + 2 H₂O

Im weiteren Sinne chemischer Vorgang, bei dem Stoffe Elektronen abgeben, also deren positive Ladung zunimmt oder die negative abnimmt.

$$Fe^{2+} \rightarrow Fe^{3+} + e^{-}$$

$$-1 + 0$$

$$2 \text{ CI}^{-} \rightarrow \text{ CI}_{2} + 2 \text{ e}^{-}$$

$$+4 + 0$$

$$2 \text{ SO}_{3} + \text{ O}_{3} \rightarrow 2 \text{ SO}_{3}$$

Reduktion

Im engeren Sinne chemischer Vorgang, bei dem Verbindungen Sauerstoff entzogen wird.

Fe₃O₅ + 3 CO
$$\rightarrow$$
 2 Fe + 3 CO₅
Fe₃O₅ + 2 Al \rightarrow 2 Fe + Al₂O₅
CuO + H₅ \rightarrow Cu + H₆O

Im weiteren Sinne chemischer Vorgang, bei dem Stoffe Elektronen aufnehmen, also deren positive Ladung abnimmt oder die negative zunimmt,

$$2 Fe^{3+} + Fe \rightarrow 3 Fe^{2+}$$

$$2 Fe^{3+} + Fe \rightarrow 3 Fe^{2+}$$

$$+6 CrO_4^{2-} + 8 H^+ + 3 e^- \rightarrow Cr^{3+} + 4 H_2O$$

$$+4 Sn^{4+} + 2 e^- \rightarrow Sn^{3+}$$

✓ Seite 191

Redoxreaktionen

Da der Abgabe von Elektronen stets eine Aufnahme von Elektronen gegenübersteht, sind Oxydation und Reduktion voneinander abhängige Teilvorgänge.

Das Oxydationsmittel (der Elektronen aufnehmende Stoff) wird reduziert, das Reduktionsmittel (der Elektronen abgebende Stoff) wird oxydiert.

✓ Seite 16, 17, 66

Bildung von Hydroxiden

Reaktion	Reaktionsgleichung	
► Metalloxid und Wasser	$CaO + H_2O \rightarrow Ca(OH)_2$	
► Fällung .	$\begin{array}{c} \text{CuSO}_4 + 2 \text{ NaOH} \rightarrow \text{Cu(OH)}_2 \downarrow + \text{Na_8SO}_4 \\ \text{Cu}^{\text{S}^+} + 2 \text{ OH}^- \rightarrow \text{Cu(OH)}_2 \downarrow \end{array}$	

Bildung von anorganischen Säuren

Reaktion	Reaktionsgleichung		
► Nichtmetalloxid und Wasser	SO ₂ + H ₂ O → H ₂ SO ₃		
► Nichtmetall und Wasserstoff	Cl₂ + H₂ →2 HCI		
Metalloxid hoher Oxydations- stufe und Wasser	CrO ₃ + H ₂ O → H ₂ CrO ₄		
 Verdrängung aus ihren Salzen durch schwerer flüchtige Säuren 	2 NaCl + H₂SO₄ →2 HCl + Na₂SO₄		

/ Seite 12, 21 bis 23

Reaktion	Reaktionsgleichung
► Metall und Säure	Zn + 2 HCl → H₂ + ZnCl₂
Hydroxid (oder Metalloxid) und Säure (oder Nichtmetalloxid) Hydroxid und Säure Metalloxid und Säure Hydroxid und Nichtmetalloxid Metalloxid und Nichtmetalloxid	KOH + HNO ₃ \rightarrow H ₂ O + KNO ₃ CaO + 2 HCI \rightarrow H ₂ O + CaCl ₂ 2 NaOH + CO ₂ \rightarrow H ₂ O + Na ₂ CO ₃ CaO + SiO ₃ \rightarrow CaSiO ₃
► Metall und Nichtmetall	2 Na + Cl ₂ → 2 NaCl
▶ Fällung	$CaCl_s + 2 AgNO_s \rightarrow 2 AgCl_{\downarrow} + Ca(NO_s)_{2}$ 2 $Cl^- + 2 Ag^+ \rightarrow 2 AgCl_{\downarrow}$
➤ Verdrängung leichter flüchtiger Säuren aus ihren Salzen durch schwerer flüchtige Säuren	$C_0CO_2+2 HCI \rightarrow C_0CI_2+H_2O+CO_2$
► Hitzespaltung von Salzen	2 KNO ₃ → 2 KNO ₂ + O ₃

✓ Seite 13, 21 bis 23

Neutralisation

Vereinigung von Wasserstoff-lonen und Hydroxid-lonen zu undissoziierten Wassermolekülen.

$$Na^{+} + OH^{-} + H^{+} + CI^{-} \rightarrow H_{2}O + Na^{+} + CI^{-}$$
 $OH^{-} + H^{+} \rightarrow H_{2}O$

Seite 82, 106, 187

Hydrolyse

Ablauf von Ionenreaktionen beim Lösen von Salzen in Wasser, die zu einer basischen oder sauren Reaktion der Lösung führen. Reines Wasser dissoziiert in sehr geringem Maße in Wasserstoff- und Hydroxidlonen (1 Molekül von 550 Millionen Molekülen Wasser):

Bei Lösungen von Salzen schwacher Säuren oder schwacher Hydroxide führt die Reaktion eines Teils ihrer Ionen mit den Ionen des Wassers zu saurer oder basischer Reaktion der Lösung.

Die Hydrolyse kann als Umkehrung der Neutralisation aufgefaßt werden.

$$2 \text{ Na}^+ + \text{CO}_3^{2-} + \text{H}^+ + \text{OH}^- \rightarrow \text{HCO}_3^- + 2 \text{ Na}^+ + \text{OH}^-$$
Natriumkarbonat
$$2 \text{ H}^+ + 2 \text{OH}^- + \text{Zn}^{2+} + 2 \text{CI}^- \rightarrow \text{Zn}(\text{OH})_0 + 2 \text{ H}^+ + 2 \text{CI}^-$$
+ 2 CI^-

2 H⁺ + 2 OH⁻ + Zn²⁺ + 2 Cl⁻ → Zn(OH)₂ + 2 H⁺
Zinkchlorid

saure Reaktion

Salz aus		Dissoziationskonstanten	Reaktion	
Hydroxid	Saure	von Hydroxid und Säure	der Salzlösung	
stark	stark	K _{DHydroxid} = K _{DSāure}	neutral (keine Hydrolyse)	
stark	schwach	K _{DHydroxid} > K _{DSdure}	basisch	
schwach	stark	K _{DHydroxid} < K _{DSdure}	saver	
schwach	schwach	K _{DHydroxid} < K _{DSāure}	sover	
		$K_{D_{Hydroxid}} > K_{D_{Hydroxid}}$	bosisch	

✓ Seite 81, 83, 84

Addition

Bildung einer Verbindung aus zwei oder mehreren Ausgangsstoffen, wobei nur ein Reaktionsprodukt entsteht. Zur Addition sind Verbindungen mit Mehrfachbindungen befähigt.

Halogenierung

Hydrieruna

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2Br - CH_2Br$$

Äthen 1,2-Dibromäthan

$$CH_3-C$$
 U
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

Xabon

Xthanal

$$CH \equiv CH + H_sO \xrightarrow{Kat.} CH_s - CH_t$$
Xthin Xthanal

/ Seite 145 ff.

Substitution

Ersatz von Wasserstoffatomen einer Verbindung durch andere Atome oder Atomgruppen gleicher Wertigkeit; dabei entstehen mehrere Reaktionsprodukte.

Halogenierung

Nitrierung

$$C_6H_5H + HONO_2 \rightarrow C_6H_5-NO_2 + H_2O$$

Salpetersäure Nitrobenzol

Sulfonierung

$$C_6H_5H + HO$$
 $SO_5H \rightarrow C_6H_5-SO_5H + H_2O$
Benzols

Benzolsvifonsdure

/ Seite 145 ff.

Für die Substitution bei Benzolverbindungen gelten folgende Regein:

Benzol

a) Einfiuß der Substituenten. In Benzolverbindungen, die bereits einen Substituenten enthalten, werden neu eintretende Substituenten an bestimmte Plätze dirigiert.

Substituenten 1. Ordnung

dirigieren in 1,2- und 1,4-Stellung.

Substituenten 2. Ordnung

dirigieren in 1,3-Stellung.

$$\begin{array}{ccc}
NO_2 & & & & \\
& & + HNO_2 \\
& & -H_1O & & \\
\end{array}$$

b) Einfluß der Reaktionsbedingungen. Bei Sonnenlicht und Siedetemperatur erfolgt Substitution an der Seitenkette:

Bei Kälte und Anwesenheit von Katalysatoren erfolgt Substitution am Kern:

Kondensation

Vereinigung von zwei Molekülen unter Austritt einfach gebauter Stoffe (z.B. Wasser). Wichtige Beispiele sind Esterbildung und Peptidbildung.

Peptidbildung: Reaktion (der Hydroxylgruppe) von Säuren mit (einem Wasserstoffatom) der Aminogruppe.

$$H_1N-CH_2-CO-OH+H$$
 -NH-CH2-COOH --

Aminodithansdure

 $H_2N-CH_3-CO-NH-CH_3-COOH+H_2O$

Dipeptid

/ Seite 162, 168

 Esterbildung: Reaktion von Alkoholen oder Phenolen mit S\u00e4uren, wobei Ester und Wasser gebildet werden.

$$C_2H_5$$
— $OH + HO$ — OC — $CH_3 \Leftrightarrow C_2H_5$ — O — OC — $CH_3 + H_2O$

Äthanol Äthansäure Äthyläthanat

 C_2H_5 — $OH + H$ $CI \Leftrightarrow C_2H_5$ — $CI + H_2O$

Äthanol Salzsäure Äthylchlorid

✓ Seite 166

Dimerisation

Vereinigung von zwei gleichen Molekülen ohne Bildung von Nebenprodukten.

$$CH_3-CC \bigvee_{H}^O + CH_3-CC \bigvee_{H}^O \rightarrow CH_3-CH-CH_2-C \bigvee_{H}^O \\ OH \\ \hline \text{Xthanal} \qquad \qquad \text{Xthanal} \\ \hline \text{Xthanal} \qquad \qquad \text{3-Hydroxybutanal-(1)}$$

Polykondensation

Verknüpfung von mehreren Molekülen einfach gebauter Verbindungen zu Makromolekülen, wobei auch andere einfach gebaute Stoffe (z.B. Wasser) entstehen.

$$n \longrightarrow + n \text{ HCHO} \rightarrow \left[- \bigcirc - \bigcirc - \bigcirc + n \text{ H}_2 \bigcirc \right]_n + n \text{ H}_2 \bigcirc$$

Phenoplast

Phenol Methanal

Polymerisation

Verknüpfung von mehreren Molekülen einfach gebauter, ungesättigter Verbindungen unter Aufrichtung ihrer Mehrfachbindungen zu Makromolekülen. Dabei entstehen keine Nebenprodukte.

/ Seite 145 ff., 228, 229, 237 bis 239

Seite 145 ff., 229, 237 bis 239

3.2. Elektrolytische Dissoziation

Elektrolyte

Stoffe, die nach dem Lösen in Wasser (bzw. in Schmelzen) frei bewegliche Ionen enthalten und dadurch den elektrischen Strom leiten. Man unterscheidet echte und potentielle Elektrolyte.

Echte Elektrolyte

Elektrolyte, die bereits im Kristallgitter Ionen enthalten. Dazu gehören vor allem die Metallhydroxide und die Salze.

$$Na^{+}[:\ddot{C}I:]^{-} \rightarrow Na^{+} + [:\ddot{C}I:]^{-}$$

Potentielle Elektrolyte

Elektrolyte, die erst durch Reaktion mit den Molekülen des Wassers Ionen bilden. Dazu gehören vor allem die Säuren und ein großer Teil der organischen Basen.

$$H$$
 $H: \ddot{O}: + H: \ddot{C}: \rightarrow \left[H: \ddot{O}: H\right] + \left[: \ddot{C}: \right]^{-1}$

Nichtelektrolyte

Stoffe, die nach dem Lösen in Wasser (bzw. in Schmelzen) keine frei beweglichen lonen enthalten und deshalb den elektrischen Strom nicht leiten.

Alkohole, Aldehyde, Kohlenhydrate, Ester

Elektrolytische Dissoziation

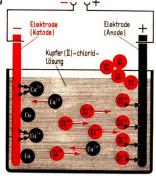
Vorgang, bei dem durch Lösen in Wasser Elektrolyte in frei bewegliche positive und negative Ionen aufgespalten werden (Gleichgewichtsvorgang).

$$H_2SO_4 \Rightarrow 2 H^+ + SO_4^{2-}$$
 $Ca(OH)_2 \Rightarrow Ca^{2+} + 2 OH^ Na^+ Cl^- \Rightarrow Na^+ + Cl^-$

✓ Seite 49 bis 51, 81 bis 84, 95

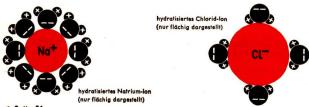
Elektrolyse

Chemische Zersetzung eines Elektrolyten durch den elektrischen Strom. Bei der Elektrolyse wandern die positiven lonen zur Katode und die negativen lonen zur Anode. An den Elektroden werden lonen entladen.


Elektrolyse von Kupfer(II)-chloridlösung

Katode:

 $Cu^{2+} + 2e^{-} \rightarrow Cu$ 2 Cl⁻ \rightarrow 2 Cl + 2 e⁻


2 CI → CI.

/ Seite 186, 203, 210, 218, 219

Hydratation

Anlagerung von Wasser an Ionen durch Dipolwirkung (Hydrathülle).

✓ Seite 51

Amphoterie

Erscheinung, daß ein Oxid oder Hydroxid je nach dem Reaktionspartner basischen oder sauren Charakter haben kann, sich also gegenüber Säuren wie eine Base, gegenüber Basen wie eine Säure verhält.

Aluminiumhydroxid

Aluminiumchlorid

Natriumaluminat

/ Seite 54, 121

Dissoziationskonstante

Gleichgewichtskonstante K_D für die elektrolytische Dissoziation; ist eine für jeden Elektrolyten charakteristische Größe; steigt bei Temperaturerhöhung, ist aber unabhängig von der Konzentration.

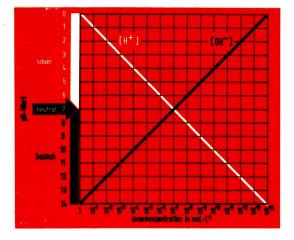
$$\frac{[Kat^+] \cdot [An^-]}{[Kat An]} = K_D$$

Dissoziationskonstanten einiger Verbindungen bei 25°C

Stoff	Dissoziationsgleichgewicht	Dissoziationskonstante K _D	
Kohlensäure			
1. Stufe	H₂CO₃ ≠ H+ + HCO₃-	4,3 · 10-7 mol ¹ · l-1	
2. Stufe	HCO ⁻ ₃ ≠ H+ + CO ² ₃ -	5,6 · 10 ⁻¹⁰ mol ¹ · l ⁻¹	
Gesamtvorgang	H ₂ CO ₃ ≠ 2 H+ + CO ₃ -	2,4 · 10-16 mol ² · 1-2	
Phosphorsäure			
1. Stufe	H₃PO₄ ≠ H+ + H₂PO-	7,5 · 10 ⁻⁸ mol ¹ · l ⁻¹	
2. Stufe	H ₂ PO ₄ ≠ H + + HPO ₄ -	6,2 · 10-8 mol ¹ · l ⁻¹	
3. Stufe	HPO4- ≠ H+ + PO4-	2,2 · 10 ⁻¹⁸ mol ¹ · l ⁻¹	
Gesamtvorgang	H ₃ PO ₄ ≠ 3 H+ + PO ₄ 3-	1 · 10 ⁻²² mol ³ · l ⁻³	
Äthansäure	CH3COOH ≠ H+ + CH3COO-	1,8 · 10-5 mol ¹ · l ⁻¹	
Ammoniak- hydrat	NH ₃ ·H ₂ O ≠ NH ⁺ ₄ + OH ⁻	1,8 · 10 ⁻⁸ mol ¹ · l ⁻¹	
Kalziumhydroxid	Ca(OH) ₂ ≈ Ca ²⁺ + 2 OH ⁻	3,7 · 10 ⁻⁸ mol ² · l ⁻²	

[/] Seite 92, 96

pH-Wert


Maß für die Wasserstoff-Ionenkonzentration: negativer dekadischer Logarithmus der Maßzahl der Wasserstoff-Ionenkonzentration, wenn diese in mol· l^{-1} angegeben wird.

$$pH = -\lg[H^*]$$

pH < 7 saure Reaktion

pH = 7 neutrale Reaktion

pH > 7 basische Reaktion

/ Seite 92, 106, 189, 190

Ionenprodukt des Wassers

Produkt aus der Wasserstoff- und Hydroxid-lonenkonzentration; ist bei allen Reaktionen in wäßrigen Lösungen bei gleichbleibender Temperatur konstant; steigt bei Temperaturerhöhung.

$$[H^{+}] \cdot [OH^{-}] = k_{W} = 1 \cdot 10^{-14} \text{ mol}^{2} \cdot [-2 \text{ (bei 25°C)}]$$

Temperaturabhängigkeit der Dissoziationskonstanten und des Ionenprodukts des Wassers

Temperatur in °C	Dissoziationskonstante KD H _a O in mol·l ⁻¹	lonenprodukt des Wassers k _W in mol ² · l ⁻²	
0	2,3 · 10-17	0,13 · 10-14	
20	1,5 · 10-16	0,86 · 10-14	
25	1,8 · 10-16	1 . 10-14	
40	6,8 · 10-16	3,8 · 10-14	
60	2,3 · 10-15 12,6 · 10-14		
80	6,1 - 10-15	34 . 10-14	
100	1.3 - 10-14	74 - 10-14	

Dissoziationsgrad

Maß für die Dissoziation eines Elektrolyten: Verhältnis der Anzahl der dissozilerten Moleküle zur Anzahl der ursprünglich vorhandenen Moleküle.

Dissoziationsgrad $\alpha = \frac{\text{Anzahl der dissoziierten Moleküle}}{\text{Anzahl der ursprünglich vorhandenen Moleküle}}$

$$\alpha = \frac{x}{2} \qquad \qquad \alpha = \frac{x \cdot 100}{2} \quad \%$$

Beim Verdünnen von Elektrolytlösungen nimmt der Dissoziationsgrad zu (Ostwaldsches Verdünnungsgesetz); bei Temperaturänderung ebenfalls. Durch gleichlonigen Zusatz wird die Dissoziation zurückgedrängt.

/ Seite 79, 81

Starke, mittelstarke und schwache Elektrolyte

Die Stärke von Elektrolyten kann durch die Größe der Dissoziationskonstanten oder des Dissoziationsgrades definiert werden.

Elektrolyt	Dissoziationskonstante	Dissoziationsgrad
schwach mittelstark stark	$K_D < 10^{-4} \text{ mol} \cdot l^{-1}$ $K_D > 10^{-4} \text{ mol} \cdot l^{-1}$ $K_D \to \infty \text{ mol} \cdot l^{-1}$	$\begin{array}{c} \alpha < 0.01 \\ \alpha > 0.001 \\ \alpha \rightarrow 1 \end{array}$

schwacher Elektrolyt: Äthansäure

 $K_D = 1.8 \cdot 10^{-5} \text{ mol} \cdot I^{-1}$ $\alpha = 0.004$

mittelstarker Elektrolyt: Fluorwasserstoffsäure

 $K_D = 3.5 \cdot 10^{-4} \text{ mol} \cdot l^{-1}$ $\alpha = 0.07$

starker Elektrolyt:

Salpetersäure

 $K_D \approx 1.2 \text{ mol} \cdot l^{-1}$ $\alpha = 0.82$

/ Seite 81, 83

Löslichkeitsprodukt

Produkt aus den Maßzahlen der molaren Ionenkonzentration eines Stoffes in einer gesättigten Lösung bei konstanter Temperatur; wird mit steigender Temperatur größer.

$$[Kat^-] \cdot [An^-] = L_{Kat An} = konst.$$

■ Löslichkeitsprodukte bei 25°C

Löslichkeitsprodukt	Elektrolyt	Löslichkeitsprodukt
1,6 · 10 ⁻¹⁰ mol ² · l ⁻²	FeS	4 · 10 ⁻¹⁹ mol ² · [-2
6,1 · 10 ⁻⁵ mol ² · l ⁻²	CuS	4 · 10-28 mol ² · l-2
2 · 10-8 mol ² · l-2	Ca(OH),	3,1 · 10-5 mol3 · 1-3
1,1 · 10 ⁻¹⁰ mol ² · l ⁻²	Fe(OH)	4,8 · 10-16 mol3 · 1-8
4,8 · 10-9 mol ² · l-2	Fe(OH) _a	4 · 10-88 mol4 · 1-4
8 · 10-9 mol ² · l-2	PbCl ₂	1,7 · 10-5 mol ³ · 1-8
	1,6 · 10 ⁻¹⁰ mol ² · l ⁻² 6,1 · 10 ⁻⁵ mol ³ · l ⁻² 2 · 10 ⁻⁵ mol ³ · l ⁻² 1,1 · 10 ⁻¹⁰ mol ² · l ⁻² 4,8 · 10 ⁻⁹ mol ² · l ⁻²	1,6 · 10 ⁻¹⁰ mol ² · l ⁻² 6,1 · 10 ⁻⁵ mol ² · l ⁻² 2 · 10 ⁻⁸ mol ² · l ⁻² 1,1 · 10 ⁻¹⁰ mol ² · l ⁻² 4,8 · 10 ⁻⁹ mol ² · l ⁻² Fe(OH) ₃ Fe(OH) ₃

✓ Seite 90, 91

3.3. Elektrochemische Vorgänge

Lösungsdruck

Tendenz der Metalle, in den Ionenzustand überzugehen; ist für jedes Metall unterschiedlich ausgeprägt.

Wenn Metalle mit Lösungen in Berührung stehen, gehen so lange Metallatome als positiv geladene Ionen in Lösung, bis sich ein Gleichgewicht zwischen ihnen und dem dadurch entstehenden Potential des Metalls eingestellt hat.

Elektrische Doppelschicht

Doppelschicht an der Berührungsfläche von Metall und Lösung zwischen der ein Spannungsunterschied auftritt.

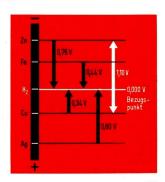
Zink—Zinksulfatlösung

Eigenpotential

Spannungsunterschied zwischen Metall und Lösung der elektrischen Doppelschicht.

Zinksulfatlösung

Standardelektrode (Normalelektrode)


Vergleichselektrode zur Ermittlung des Standardpotentials: ein Metall taucht bei 25°C in die 1-normale Lösung seines Salzes.

Standard-Wasserstoffelektrode (Normal-Wasserstoffelektrode)

Bezugselektrode zur Ermittlung des Standardpotentials: ein Platinblech, das von Wasserstoff unter 760 Torr und bei 25°C umspült wird, taucht in 1n Salzsäure.

Standardpotential (Normalpotential)

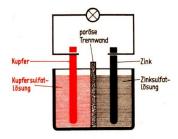
Maß für das Oxydations- beziehungsweise Reduktionsvermögen der Metallsalzlösungen; Spannung zwischen der Standardelektrode eines Metalls und der Standard-Wasserstoffelektrode.

Angabe der Standardpotentiale durch Vergleich mit dem Bezugspunkt

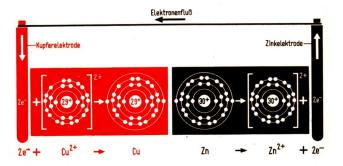
Elektrochemische Spannungsreihe

Reihe der Metalle, geordnet nach den Standardpotentialen

Metali (Standardelektrode)	Standardpotential in Volt	Metall (Standardelektrode)	Standardpotential in Volt
LI/LI+	-2,959	Ni/Ni²+	-0,23
K/K+	-2,924	Sn/Sn2+	-0,136
Ca/Ca2+	-2,76	Pb/Pb2+	-0,122
Na/Na+	-2,715	H/H+	+0,000
Mg/Mg ²⁺	-2,34	Cu/Cu2+	+0,344
Mn/Mn ²⁺	—1,1	Ag/Ag+	+0,799
Zn/Zn2+	0,762	Hg/Hg ²⁺	+0,854
Cr/Cr2+	0,557	Au/Aus+	+1,36
Fe/Fe ²⁺	-0,441		1 .,


Elektrochemische Spannungsreihe und Verhalten von Metallen

Metall	Tendenz zur Ionenbild	Oxydierban keit bzw Reduktions- vermögen des Metalls	keit bzv Oxydat vermög	v. ions- en	Abscheid barkeit Elektrol	aus	Umsetzi mit verdünr Säuren	
LI K Ca Mg Mn Zn Cr Fe I Sn Pb Ha Ca g HA U	zunehmend	Punenhanu z	punehmend		Dushmend		Zunehmend	


Umwandlung chemischer in elektrische Energie

Tritt ein, wenn man die zwei Teilvorgänge eines freiwillig verlaufenden Redoxvorganges getrennt voneinander an geeigneten Elektroden ablaufen läßt.

Zink-Kupfer-Element

Vorgänge im Zink-Kupfer-Element

Galvanisches Element

Anordnung, bei der zwei verschiedene Metalle in Salzlösungen tauchen, die miteinander leitend verbunden sind; dient zur Umwandlung chemischer in elektrische Energie. 3

Leclanche-Element

Kohlestab:

Kohlestift 2 H+ + 2 e- → H. Zn → Zn2+ + 2 e-Zinkhülse: Zinkhülse Mangan (IV)-oxid Ammoniumchloridlösung in Gelatine

Bleiakkumulator

Plus-Platte:

Pb⁴⁺ + 2 e⁻ Entladen → Pb²⁺

Pb2+ + SO2- ≠ PbSO4

Pb Entladen Pb2+ + 2 e-Minus-Platte:

Pb2+ + SO2- ≠ PbSO4

Blei rerdünnte Schwefelsäure

Lokalelement

Galvanische Elemente mit kurzgeschlossenen Elektroden; wirken nur innerhalb eines geringen Umkreises, zum Beispiel durch Spuren anderer Metalle auf metallischen Werkstücken. Das Metall mit dem niedrigeren Standardpotential geht in Lösung; am anderen Metall werden lonen entladen.

Bildung eines Lokalelementes bei einem Eisenteil mit beschädigtem Nickelüberzug

Elektrochemische Korrosion

Vorgang, der infolge der Bildung von Lokalelementen zum Auflösen eines unedleren Metalles führt.

3.4. Verbindungsgesetze

Gesetz von der Erhaltung der Masse

Bei jedem chemischen Vorgang ist die Gesamtmasse der Ausgangsstoffe gleich der Gesamtmasse der Reaktionsprodukte.

NaHCO₃ + HCI
$$\rightarrow$$
 NaCI + H₂O + CO₃
 $\frac{84g}{120.5g}$ + $\frac{36.5g}{120.5g}$ = $\frac{58.5g}{120.5g}$ + $\frac{18g}{120.5g}$ + $\frac{44g}{120.5g}$

Gesetz der konstanten Proportionen

Die Stoffe reagieren miteinander in bestimmten Massenverhältnissen, die durch das Verhältnis ihrer relativen Atom- bzw. Molekülmassen angegeben werden.

Gesetz der multiplen Proportionen

Die Massenverhältnisse zweier sich zu verschiedenen chemischen Verbindungen vereinigender Elemente stehen im Verhältnis einfacher ganzer Zahlen zueinander.

3.5. Wärmeumsetzungen bei chemischen Reaktionen

Reaktionswärme

Bei chemischen Reaktionen aufgenommene oder abgegebene Wärmemenge. Die Reaktionswärme Q wird in Kilokalorien angegeben. Sie bezieht sich auf die Umsetzung eines Grammatoms beziehungsweise eines Mols der beteiligten Stoffe.

Reaktion	Angabe der Reaktionswärme Q	•
endotherm	Q = + n kcal	CO ₂ + C → 2 CO Q = + 41,2 kcal
exotherm	Q = n kcal	$C + O_3 \rightarrow CO_3$ $Q = -94,0$ kcal

Endotherme Reaktionen

Chemische Vorgänge, bei denen die reagierenden Stoffe Wärme aufnehmen.

Exotherme Reaktionen

Chemische Vorgänge, bei denen die reagierenden Stoffe Wärme abgeben.

Aktivierungsenergie

Energiemenge, die zur Auslösung einer chemischen Reaktion benötigt wird.

3.6. Lösungen

Lösung

Im weiteren Sinne homogenes Gemenge von mindestens zwei Stoffen. Im engeren Sinne homogenes Gemenge, bei dem feste, flüssige oder gasförmige Stoffe in einem flüssigen Stoff fein verteilt sind. Man unterscheidet nach der Teilchengröße des gelösten Stoffes:

Bezeichnung	Teilchen	Teilchengröße	
Moleküle, lonen		< 10 ⁻⁷ cm	
kolloide Lösung Zusammenballungen von Molekülen		10 ⁻⁷ bis 10 ⁻⁵ cm	

Nach der Menge an gelöstem Stoff in einer bestimmten Menge Lösungsmittel kann man einteilen:

Bezeichnung	Charakteristik		
verdünnte Lösung	Lösung, die nur sehr wenig gelösten Stoff enthält		
konzentrierte Lösung	Lösung, die viel gelösten Stoff enthält		
gesättigte Lösung	Lösung, die bei der betreffenden Temperatur keine weiteren Mengen des gelösten Stoffes zu lösen vermag (Bodensatz)		

✓ Seite 92

Löslichkeit

Konzentration einer gesättigten Lösung. Die Löslichkeit von festen Stoffen steigt im allgemeinen bei Temperaturerhöhung; die Löslichkeit von Gasen nimmt bei Temperaturerhöhung ab.

Lösungsgeschwindigkeit

Geschwindigkeit des Lösungsvorganges; hängt von der Art des zu lösenden Stoffes, von dessen Oberfläche, von der Temperatur des Lösungsmittels und von der jeweiligen Konzentration der bereits entstandenen Lösung ab.

Lösungsmittel

Im engeren Sinne flüssiger Stoff, in dem andere Stoffe gelöst werden können. Wichtigstes Lösungsmittel ist das Wasser.

Gelöster Stoff

Stoff, der in einem Lösungsmittel gelöst ist. Leichtlöslich sind Stoffe, die sich in einem bestimmten Volumen des Lösungsmittels in großer Menge lösen. Schwerlöslich sind Stoffe, die sich in einem bestimmten Volumen des Lösungsmittels in geringer Menge lösen.

Konzentration

Menge des gelösten Stoffes in einer bestimmten Menge Lösung. Konzentrationsmaße sind: Masseprozent, Volumenprozent, Molarität, Normalität.

Masseprozent

Masse des gelösten Stoffes in Gramm, die in 100 g Lösung enthalten ist:

c Masse-
$$\% = \frac{a \text{ g gelöster Stoff}}{b \text{ g Lösung}} \cdot 100$$

Lösung	Menge	Bestandteile	
10%ige Natriumchlorid- lösung	100 g	10 g Natriumchlorid	90 g Wasser
5%ige Silbernitrat- lösung	100 g	5 g Silbernitrat	95 g Wasser
24%ige Natrium- hydroxidlösung	100 g	24 g Natrium- hydroxid	76 g Wasser

✓ Seite 102, 103

Volumenprozent

Volumen des gelösten Stoffes in ml, das in 100 ml der Lösung enthalten ist:

$$c \text{ Vol.} = \frac{a \text{ ml enthaltener Stoff}}{b \text{ ml Lösung}} \cdot 100$$

Lösung	Menge	Bestandteile	
35 Vol%iges Äthanol	100 ml	35 ml Äthanol	65 ml Wasser
47 Vol%iges Methanol	100 ml	47 ml Methanol	53 ml Wasser
10 Vol%ige Äthansäure	100 ml	10 ml Äthansäure	90 ml Wasser

✓ Seite 103 (Berechnungen entsprechen denen mit Masseprozenten)

Molarität

Anzahl der Mole des gelösten Stoffes in einem Liter Lösung:

Molarität
$$m = \frac{a \text{ Mol gelöster Stoff}}{b \text{ I Lösung}}$$

Lösung	Menge	Gehalt an gelöstem Stoff
1 m Natriumhydroxid- lösung	11	1 Mol ≙ 40 g Natriumhydroxid
0,2 m Schwefelsäure	11	0,2 Mole ≙ 19,6 g Schwefelsäure
2m Kaliumnitratlösung	11	2 Mole ≙ 202,2 g Kaliumnitrat

✓ Seite 104

Normalität

Anzahl der Grammäquivalente des gelösten Stoffes in einem Liter Lösung:

Normalität
$$n=rac{a\ extsf{Val}\ extsf{gelöster}\ extsf{Stoff}}{b\ extsf{i}\ extsf{Lösung}}$$

Lösung	Menge	Gehalt an gelöstem Stoff
1 n Salzsäure	11	1 Val ≙ 36,5 g Chlorwasserstoff
0,1 n Natriumhydroxid	11	0,1 Val ≙ 4 g Natriumhydroxid
2 n Phosphorsäure	11	2 Val ≙ 65 g Phosphorsäure

✓ Seite 105

Molare Lösung

Lösung bestimmter Molarität (z. B. 1 m; 3,5 m; 0,5 m)

Normallösung

Lösung bestimmter Normalität (z. B. 1n; 2n; 0,5n)

Härte des Wassers

Gesamtgehalt natürlicher Wässer an gelösten Salzen; setzt sich zusammen aus temporärer und permanenter Härte.

Temporäre Härte des Wassers

Gehalt des Wassers an gelösten Hydrogenkarbonaten, die beim Sieden des Wassers als schwerlösliche Karbonate ausgefällt werden.

Permanente Härte des Wassers

Gehalt des Wassers an gelösten Sulfaten, Silikaten, Chloriden und anderen Salzen, die beim Sieden des Wassers nicht verändert werden.

Deutscher Härtegrad

Maß für die Härte des Wassers. In deutschen Härtegraden wird die Menge der in einem Liter Wasser gelösten Salze, umgerechnet auf Kalziumoxid, angegeben,

3.7. Chemisches Gleichgewicht — Massenwirkungsgesetz

Reaktionsgeschwindigkeit

Geschwindigkeit, mit der ein chemischer Vorgang abläuft. Sie wird gekennzeichnet durch die Änderung der Konzentration der Ausgangsstoffe der Reaktion in der Zeiteinheit.

Chemisches Gleichgewicht

Bei jeder umkehrbaren chemischen Reaktion bildet sich ein chemisches Gleichgewicht aus. Es ist eingestellt, wenn die Hinreaktion und die Rückreaktion mit gleichen Reaktionsgeschwindigkeiten ablaufen. Dann bleibt ein bestimmtes Mengenverhältnis zwischen Ausgangsstoffen und Reaktionsprodukten erhalten.

$$N_2 + 3 H_2 \rightleftharpoons 2 NH_2$$

Geschwindigkeit der Hinreaktion = Geschwindigkeit der Rückreaktion

✓ Seite 96

Prinzip von Le Chatelier

Wird auf ein System, das sich im Gleichgewicht befindet, durch Änderung der äußeren Bedingungen ein Zwang ausgeübt, so verschiebt sich das Gleichgewicht derart, daß das System dem äußeren Zwang ausweicht.

Die Lage eines chemischen Gleichgewichts kann beeinflußt werden:

		■ N _s + 3 H _s ± 2 NH _s Q = — 22 kcal			
Bedingung	Wirkung auf Gleichgewicht	Tempe-	Druck	Raumanteile ¹	
		ratur		N _s + H _s	NH.
► Temperatur	Bei Temperaturerhöhung verlagert sich das chemische Gleichgewicht nach der Seite der Reaktion, die unter Wärmeverbrauch verläuft	200 °C 700 °C	1 at 1 at	84,7 °/ ₀ 99,98°/ ₀	15,3 °/ ₀ 0,02°/ ₀
Druck Bei Druckerhöhung verlagert sich das chemische Gleichgewicht nach der Seite der Reaktion, die unter Volumenabnahme verläuft		500 °C 500 °C	200 at 1000 at	82,4º/ ₀ 42,5º/ ₀	17,6º/ ₀ 57,5º/ ₀

Auch durch Änderung der Konzentration der Ausgangsstoffe oder der Reaktionsprodukte läßt sich die Lage eines chemischen Gleichgewichts beeinflussen.

¹ nach Einstellung des Gleichgewichts.

Satz von Avogadro

Gleiche Raumteile aller Gase enthalten bei gleicher Temperatur und gleichem Druck die gleiche Anzahl Teilchen.

Volumengesetz von Gay-Lussac

Die Raumteile gasförmiger Stoffe, die an einer chemischen Reaktion teilnehmen, verhalten sich stets wie kleine ganze Zahlen.

Homogenes System

System, bei dem die an der Reaktion beteiligten Stoffe nicht durch Grenzflächen getrennt sind, sondern ein einheitliches Ganzes bilden.

$$Na_2SO_4 + BaCl_2 \rightarrow BaSO_4 \downarrow + 2 NaCl$$

 $N_2 + 3 H_2 \rightarrow 2 NH_3$

Heterogenes System

System, bei dem die an der Reaktion beteiligten Stoffe durch Grenzflächen getrennt sind.

$$Zn + 2 HCI \rightarrow ZnCI_2 + H_3$$

 $C + O_0 \rightarrow CO_0$

Massenwirkungsgesetz

Bei einer Reaktion im Gleichgewichtszustand nimmt der Quotient aus dem Produkt der Konzentrationen der Reaktionsprodukte und dem Produkt der Konzentrationen der Ausgangsstoffe einen konstanten Wert an.

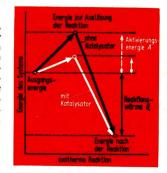
Für die Reaktion A + B ≠ C + D gilt:

$$\frac{[C] \cdot [D]}{[A] \cdot [B]} = K$$

Für die Reaktion 3A+2B 2C+3D gilt:

$$\frac{[C]^2 \cdot [D]^3}{[A]^3 \cdot [B]^2} = K$$

Die Gleichgewichtskonstante K ist von der Temperatur abhängig.


* Seite 81

3.8. Katalyse

Katalysator

Stoff, der eine Reaktion hervorrufen, ihre Geschwindigkeit verändern oder sie in eine bestimmte Richtung lenken kann, ohne sich bei der Reaktion zu verbrauchen. Der Katdiysator verändert die zur Auslösung der Reaktion benötigte Aktivierungsenergie, hat jedoch keinen Einfluß auf den Gleichgewichtszustand und die Reaktionswärme. Viele Katalysatoren haben eine spezifische Wirkung.

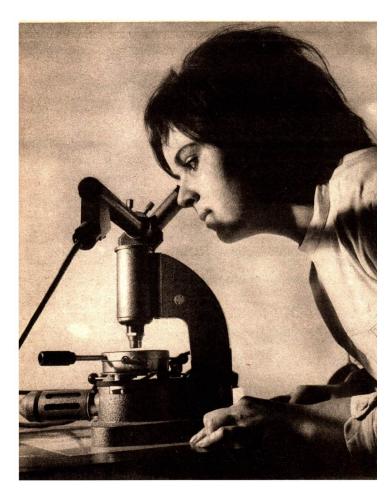
✓ Seite 90

Heterogene Katalyse

Reaktion, bei der Katalysator und reagierende Stoffe durch Grenzflächen getrennt sind.

Schwefeldioxid-Oxydation, Ammoniaksynthese

Homogene Katalyse


Reaktion, bei der Katalysator und reagierende Stoffe ein einheitliches Ganzes bilden und zwischen ihnen Grenzflächen fehlen.

Äthenpolymerisation, Hochdruckhydrierung von Kohlenwasserstoffgemischen

Katalysatorgift

Stoff, der schon in geringen Mengen Katalysatoren unwirksam machen oder ihre Wirksamkeit herabsetzen kann.

Arsenverbindungen, Schwefelwasserstoff

Chemisches Rechnen

Seite	100	4.1.	Stöchiometrie
Seite	102	4.2.	Berechnungen von Lösungen
Seite	106	4.3.	Bestimmung der Summenformel einer Verbindung
			emer verbinding

4

4.1. Stöchiometrie

Die Stoffe reagieren im Verhältnis Ihrer relativen Atommassen bzw. Molekülmassen. Aus diesen bekannten Verhältnissen lassen sich andere errechnen. Das Lösen solcher Aufgaben heißt stöchiometrisches Rechnen.

/ Seite 47, 89

Berechnung prozentualer Anteile von Elementen und Elementoxiden

Teilschritt	Berechnen Sie den prozentualen Stickstoffgehalt von Ammonsulfat!		
Aufschreiben der Formel der gege- benen Verbindung und des Symbols (bzw. der Formel) des zu ermittelnden Stoffes im entsprechenden Verhältnis	(NH ₄) ₂ SO ₄ 2 N		
2. Eintragen der zugehörigen Mole bzw. Grammatome unter den Zeichen	(NH ₄) ₂ SO ₄ 2 N 132 g 28 g		
3. Gesamtmolekül gleich 100 setzen; ge- suchte Größe über das Symbol (bzw. die Formel) schreiben	100 x (NH ₄) ₂ SO ₄ 2 N 132 g 28 g		
4. Aufstellen der Proportion zwischen bekannten und gesuchten Größen	132:100 = 28:x		
5. Ausrechnen der Proportion	$x = \frac{100 \cdot 28}{132} \qquad x = 21,2$		
6. Formulieren des Ergebnisses	Ammonsulfat enthält 21,2% Stickstoff.		

Wie hoch ist der Kaligehalt von reinem Kaliumchlorid, ausgedrückt in Kaliumoxid?

100	×	149,2:100 = 94,2:x
2 KCI	K₂O	 100 - 94,2
(2 · 74,6 g)		149,2
149,2 g	94,2 g	x = 63,1

Der Kaligehalt von Kaliumchlorid entspricht 63,1% K2O.

Berechnung der Masse der Ausgangsstoffe und Reaktionsprodukte

Teilschritt	■ Wieviel Kilogramm Wasser sind nötig, um 50 kg Branntkalk CaO vollständig in Löschkalk Ca(OH), umzuwandeln?
Aufstellen der Reaktionsgleichung für den Vorgang	CaO + H₂O → Ca(OH)₂
Eintragen der bekannten Stoffmengen, die miteinander reagieren (Mol, Grammatom) unter der Gleichung	$CaO + H_2O \rightarrow Ca(OH)_2$ 56g 18g 74g
3. Eintragen der gegebenen und ge- suchten Größen über der Gleichung	$\overset{59}{\text{CaO}} + \overset{6}{\text{H}}_2\text{O} \rightarrow \text{Ca(OH)}_2$
4. Aufstellen der Proportion zwischen bekannten und gesuchten Größen	56:50 = 18:x
5. Ausrechnen der Proportion	$x = \frac{50 \cdot 18}{56}$ $x = 16,1$
6. Formulieren des Ergebnisses	16,1 kg Wasser verbinden sich mit 50 kg Branntkalk zu Löschkalk.

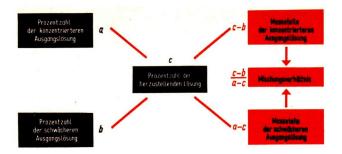
Sind Gase an der Reaktion beteiligt, so kann mit dem Molvolumen auch deren Volumen errechnet werden.

Wieviel Liter Sauerstoff werden benötigt, damit 40 g Kohlenstoff zu Kohlendioxid verbrennen?

$$\begin{array}{rcl}
 & 40 \text{ g} & x \\
 & C & + & O_2 \rightarrow CO_3 \\
 & 12 \text{ g} & 22.41 \\
 & 12:40 & = & 22.4:x \\
 & x & = & \frac{40 \cdot 22.4}{12} \\
 & x & = & 74.7
\end{array}$$

74,7 I Saverstoff verbinden sich mit 40 g Kohlenstoff zu Kohlendioxid.

4.2. Berechnungen von Lösungen


Berechnungen des Mischungsverhältnisses

Das Mischungsverhältnis zweier Lösungen bekannter Konzentration in Masseprozenten zur Herstellung einer Lösung gewünschter Konzentration kann mit Hilfe des Mischungskreuzes ermittelt werden.

✓ Seite 92

Tellschritt	30% ige Natriumhydroxidlösung soll durch Mischen einer 40% igen mit einer 20% igen hergestellt werden. Welche Massetelle beider Lösungen sind zu mischen?
Konzentrationen der zu mischenden Lösungen untereinander schreiben	40 20
2. Konzentration der herzustellenden Lösung daneben schreiben	40 30
3. Prozentzahl der gewünschten Lösung von der Prozentzahl der konzentrier- teren Ausgangslösung subtrahleren	40 30 20 40 30 = 10
4. Prozentzahl der schwächeren Aus- gangslösung von der Prozentzahl der gewünschten Lösung subtrahleren	40 30 - 20 = 10 30 20 40 - 30 = 10
5. Errechnen des Mischungsverhältnisses	10:10 - 1:1
6. Formulieren des Ergebnisses	1 Masseteil 40%ige Lösung ist mit 1 Masseteil 20%ige Lösung zu mischen.

Wenn das Mischungsverhältnis für das Verdünnen einer Lösung mit Wasser zu ermitteln ist, wird in das Mischungskreuz für die Prozentzahl der schwächeren Ausgangslösung der Wert 0 eingesetzt.

Berechnungen mit Masseprozenten

Aufgaben mit Masseprozenten können mit Hilfe von Proportionen gelöst werden. Für das Aufstellen der Proportion sind folgende Beziehungen zugrunde zu legen:

/ Seite 92

Teilschritt	■ Wieviel prozentigi st eine Lösung, die 5 g eines Stoffes in 50 g Lösung enthält?
1. Feststellen der Unbekannten	x = Masseprozent
2. Aufstellen der Proportion zwischen bekannten und gesuchten Größen	x:5 = 100:50
3. Ausrechnen der Proportion	$x = \frac{5 \cdot 100}{50}$ $x = 10$
4. Formulieren des Ergebnisses	Eine Lösung, die 5 g eines Stoffes in 50 g Lösung ent- hält, ist 10% ig.

Berechnungen mit der Molarität

Aufgaben mit der Molarität können mit Hilfe von Proportionen gelöst werden. Auf der Grundlage der folgenden Beziehungen lassen sich zwei Proportionen aufstellen:

Volumen der Lösung in mi ≙ gelöster Stoff in g			
1000 ml Lösung	- ←	gelöster Stoff in g · i-1	≙Mólarität
		Mol in g	→ Molarität 1

Die gesuchte Größe (mit x zu bezeichnen) kommt in einer Proportion vor, außerdem noch eine zweite Unbekannte (mit a zu bezeichnen), die in beiden Proportionen auftritt. a kann aus einer Proportion errechnet und in die zweite eingesetzt werden.

✓ Seite 93

Teilschritt	 Die Molarität einer Lösung, die in 2 Litern 73 g Chlorwasserstoff enthält ist zu errechnen!
1. Feststellen der Unbekannten	x = Molarität
2. Aufstellen der Proportionen	2000:73 = 1000:a a:x = 36,5:1
3. Ausrechnen der Proportion, die nur die Unbekannte a enthält	$a = \frac{73 \cdot 1000}{2000} \qquad a = \frac{73}{2}$
4. Einsetzen des gefundenen Wertes für a in die zweite Proportion und Aus- rechnen	$\frac{73}{2}:x = 36,5:1$ $x = \frac{73}{2 \cdot 36,5}$ $x = 1$
5. Formulieren des Ergebnisses	Eine Lösung, die in 2 Litern 73 g Chlorwasserstoff ent- hält, ist 1-molar.

Berechnungen mit der Normalität

Aufgaben mit der Normalität können mit Hilfe von Proportionen gelöst werden. Auf der Grundlage der folgenden Beziehungen lassen sich zwei Proportionen aufstellen:

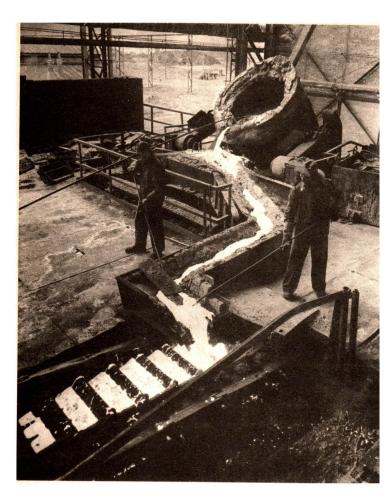
Die gesuchte Größe (mit x zu bezeichnen) kommt in einer Proportion vor, außerdem noch eine zweite Unbekannte (mit a zu bezeichnen), die in beiden Proportionen austritt. a kann aus einer Proportion errechnet und in die zweite eingesetzt werden.

✓ Seite 93

Teilschritt	■ Wieviel Natriumhydroxid ist zur Herstellung von 500 ml 0,1 n Natrium- hydroxidlösung erforderlich?
1. Feststellen der Unbekannten	x = gelöster Stoff in g
2. Aufstellen der Proportionen	500:x = 1000:a a:0,1 = 40:1
3. Ausrechnen der Proportion, die nur die Unbekannte a enthält	$a = \frac{0,1 \cdot 40}{1}$
 Einsetzen des gefundenen Wertes für a in die zweite Proportion und Aus- rechnen 	$500:x = 1000:4$ $x = \frac{500 \cdot 4}{1000}$ $x = 2$
5. Formulieren des Ergebnisses	Zur Herstellung von 500 ml 0,1 n Natriumchlorldläsung sind 2g Natriumhydroxid erforderlich.

Titrationsberechnungen

Teilschritt	10 ml Salpetersäure wurden mit 4,8 ml 0,1 n Natriumhydroxidlösung titriert. Die enthaltene Masse der Salpetersäure ist zu berechnen!	
1. Einsetzen der Werte in die Titrationsformel m _X = a · n · A _X m _X = Masse des unbekannten Stoffes in mg a = Verbrauch an Normallösung n = Normalität A _X = Aquivalentmasse des unbekannten Stoffes	$m_x = 4.8 \cdot 0.1 \cdot 63$	
2. Ausrechnen des Wertes	$m_x = 30,24$	
3. Formulieren des Ergebnisses	10 ml der Lösung enthalten 30,24 mg Salpetersäure.	


Berechnung des pH-Wertes

Teilschritt	■ Der pH-Wert einer 0,01 n Salzsäure ist zu berechnen!	
Ermittlung der Wasserstoff- ionenkonzentration	[H+] = 0,01 mol · -1 = 10 · 2 mol · -1	
2. Berechnen des pH-Wertes	pH = — g [H+] pH = 2	
3. Formulieren des Ergebnisses	0,01 n Salzsäure hat den p H-Wert 2.	

4.3. Bestimmung der Summenformel einer Verbindung

Bei der Elementaranalyse eines Stoffes, der aus Kohlenstoff, Wasserstoff und Sauerstoff zusammengesetzt ist, wurden aus 0,238 g des Stoffes 0,326 g Kohlendioxid und 0,267 g Wasser erhalten. Die Summenformel ist zu bestimmen!

Teilschritt	•
1. Auswerten der Elementaranalyse	CO ₂ C 44 : 12 = 0,326:x x = 0,089 0,238 g des Stoffes enthalten 0,089 g Kohlenstoff.
	H ₂ O O 28 : 2 = 0,267:y
2. Umrechnen der Mengen in Masseprozente	0,238:0,089 = 100:x x = 37,4 Der Stoff enthält 37,4% Kohlenstoff. 0,238:0,030 = 100:y y = 12,6 Der Stoff enthält 12,6% Wasserstoff. 100% -37,4% -12,6% = 50% Der Stoff enthält 50% Sauerstoff.
3. Errechnen des Atom- verhältnisses mittels Division der Prozent- zahlen durch die rela- tiven Atommassen der Elemente	$C \triangleq \frac{37,4}{12} H \triangleq \frac{12,6}{1} O \triangleq \frac{50}{16}$ $C \triangleq 3,12 H \triangleq 12,6 O \triangleq 3,12$ Division durch die kleinste Zahl ergibt: $C: H: O = 1:4:1$
4. Aufstellen der vorläufigen Summenformel und Errechnung der relativen Molekülmassen für x = 1; x = 2 usw.	$C_xH_{ix}O_x$ relative Molekülmasse bei $x=1$ ist 32 relative Molekülmasse bei $x=2$ ist 64 relative Molekülmasse bei $x=3$ ist 96
5. Bestimmung der relativen Molekülmasse und Auswerten des Ergebnisses	Bei der Bestimmung der relativen Molekülmasse wurde für 0,04 g des Stoffes umgerechnet auf den Normzustand ein Volumen von 27,3 ml festgestellt. Errechnung der relativen Molekülmasse: Volumen Masse 27,3: 0,04 = 22,400:z z = 32,8 Innerhalb der Fehlergrenzen entspricht die relative Molekülmasse dem Wert für x=1 in Teilschnitt 4.
6. Aufstellen der end- gültigen Summenformel	CH'O

5

Elemente und anorganische Verbindungen

Seite 110	5.1.	Ubersicht über die chemischen Elemente
Seite 113	5.2.	Wasserstoff und Alkalimetalle
Seite 117	5.3.	Erdalkalimetalle
Seite 120	5.4.	Borgruppe
Seite 122	5.5.	Kohlenstoffgruppe
Seite 125	5.6.	Stickstoffgruppe
Seite 130	5.7.	Chalkogene
Seite 133	5.8.	Halogene
Seite 135	5.9.	Edelgase
Seite 136	5.10.	Kupfergruppe
Seite 138	5.11.	Zinkgruppe
Seite 139	5.12.	Chromgruppe
Seite 140	5.13.	Mangangruppe
Seite 141	5.14.	Eisengruppe

5.1. Übersicht über die chemischen Elemente

Element	Symbol Ordnungszahl relative Atommasse ¹		wichtigste stöchio- metrische Wertigkeiten	
Aktinium	Ac	89	[227]2	III
Aluminium	Al	13	27	l iii
Amerizium	Am	95	[243]	l iii
Antimon	Sb	51	122	III, V
Argon	Ar	18	40	0
Arsen	As	33	75	III, V
Astat	At	85	[210]	1
Barium	Ba	56	137	l ii
Berkelium	Bk	97	[247]	l iii
Beryllium	Be	4	9	l iii
Blei	Pb	82	207	l ii
Bor	В	5	11	l iii
Brom	Br	35	80	I, V
Chlor	CI	17	35,5	I, VII
Chrom	Cr	24	52	III. VI
Dysprosium	Dy	66	162,5	III
Einsteinium	Es	99	[254]	l iii
Eisen	Fe	26	56	11, 111
Erbium	Er	68	167	l iii .
Europium	Eu	63	152	iii
Fermium	Fm	100	[253]	III -
Fluor	F	9	19	i i
Franzium	Fr	87	[223]	i
Gadolinium	Gd	64	157	III
Gallium	Ga	31	70	III
Germanium	Ge	32	72,5	IV
Gold	Au	79	197	III
Hafnium	Hf	72	178,5	IV
Helium	He	2	4	0
Holmium	Ho	67	165	III
Indium	ln	49	115	iii
Iridium	lr .	77	192	III. IV
Jod	J	53	127	I, V, VII
Kadmium	Cd	48	112,5	11

¹ gerundet.

² Die in eckigen Klammern angegebenen Werte sind die relativen Atommassen des längstlebigen z. Z. bekannten Isotops des betreffenden Elements.

Element			relative Atommasse ¹	wichtigste stöchio- metrische Wertigkeiten
Kalifornium	Cf	98	[251]2	III
Kalium	K	19	39	1
Kalzium	Ca	20	40	11
Kobalt	Co	27	59	II, III
Kohlenstoff	C	6	12	IV
Krypton	Kr	36	84	0
Kupfer	Cu	29	63,5	11
Kurium	Cm	96	[247]	III
Lanthan	La	57	139	III
Lawrenzium	Lw	103	[257]	
Lithium	Li	3	7	1
Lutetium	Lu	71	175	III
Magnesium	Mg	12	24	11 ,
Mangan	Mn	25	55	II, IV, VII
Mendelevium	Md	101	[256]	III
Molybdän	Mo	42	96	VI
Natrium	Na	11	23	1
Neodym	Nd	60	144	111
Neon	Ne	10	20	0
Neptunium	Np	93	[237]	IV, VI
Nickel	NI	28	59	II.
Niob	Nb	41	93	V
Nobelium	No	102	[254]	III
Osmium	Os	76	190	VI, VIII
Palladium	Pd	46	106	11
Phosphor	P	15	31	III, V
Platin	Pt	78	195	II, IV
Plutonium	Pu	94	[242]	III, IV
Polonium	Po	84	210	II
Praseodym	Pr	59	141	III
Promethium	Pm	61	[147]	III
Protaktinium	Pa	91	[231]	V
Quecksilber	Hg	80	200,5	1, 11
Radium	Ra	88	[226]	11

¹ gerundet.

³ Die in eckigen Klammern angegebenen Werte sind die relativen Atommassen des längstlebigen z. Z. bekannten Isotops des betreffenden Elements.

Element	Symbol	Ordnungszahl	relative Atommasse ¹	wichtigste stöchio- metrische Wertigkeiten	
Radon	Rn	86	[222]2	0	
Rhenium	Re	75	186	VII	
Rhodium	Rh	45	103	l iii'	
Rubidium	Rb	37	85,5	1 1"	
Ruthenium	Ru	44	101	l iv	١
Samarium	Sm	62	150	l iii	١
Saverstoff	0	8	16	l iii	ı
Schwefel	S	16	32	ii. vı	ı
Selen	Se	34	79	l iv	ı
Silber	Ag	47	108	''	ı
Siliziun.	Si	14	28	liv	ı
Skandium	Sc	21	45	l iii	I
Stickstoff	N	7	14	iii. v	ı
Strontium	Sr	38	87.5		I
Tantal	Ta	73	181	l ÿ	I
Technetium	Te	43	[99]	l vii	ı
Tellur	Te	52	127,5	l iv	ı
Terbium	Tb	65	159	l iii	ı
Thallium	TI	81	204	l iii	ı
Thorium	Th	90	232	l iv	l
Thulium	Tm	69	169	l iii	l
Titan	TI	22	48	l iiv	l
Uran	U	92	[238]	IV. VI	l
Vanadin	V	23	51	V, VI	l
Wasserstoff	H	1	1	i	
Wismut	Bi	83	209	in	
Wolfram	W	74	184	vi	
Xenon	Xe	54	131	0	
Ytterbium	Yb	70	173	iii	
Yttrium	Y	39	89	l iii	
Zäsium	Cs	55	133	i" .	
Zer	Ce	58	140	III, IV	
Zink	Zn	30	65	111, 14	
Zinn	Sn	50	119	ii.ıv	
Zirkonium	Zr	40	91	IV	

¹ gerundet.

Die in eckigen Klammern angegebenen Werte sind die relativen Atommassen des längstlebigen z. Z. bekannten Isotops des betreffenden Elements.

5.2. Wasserstoff und Alkalimetalle

Wasserstoff

Formel: H_s; farbloses, geruchloses Gas; geringste Dichte aller Gase (e = 0.0000899 g·cm⁻³); läßt sich durch starke Abkühlung zu farbloser Flüssigkeit verdichten, die bei weiterer Abkühlung zu einer festen Masse erstarrt; in Wasser wenig löslich, hohe Reaktionsfähigkeit gegenüber Sauerstoff; verbrennt mit bläulicher Flamme unter starker Wärmeentwicklung zu Wasser:

Wasserstoff-Sauerstoff-Gemische (Knallgas) setzen sich beim Erhitzen, Wasserstoff-Chlor-Gemische (Chlorknallgas) schon bei Sonnenlichteinwirkung explosionsartig um.

/ Seite 183, 189, 230

Elemente der I. Hauptgruppe

Element Symbol	Lithium Li	Natrium Na	Kallum K	Robidium Rb	Zāsium Cs
relative Atommasse	6,94	22,97	39,10	85,489	132,91
Dichte in g · cm ^{-s}	0,53	0,97	0,86	1,52	1,87
Schmelztemperatur in °C	179	97,8	63,5	39	28,5
Siedetemperatur in °C	1340	883	760	696	708
Atomradius in nm	0,156	0,186	0,233	0,243	0,262
lonenradius in nm	0,078	0,098	0,133	0,149	0,165
Reaktionsfähigkeit gegenüber Saverstoff	zunehmend				
Hydroxid	LiOH	NaOH	кон	RЬОН	CsOH
Stärke der Base	zunehmend				

Natrium

Symbol: Na; silberweißes, sehr weiches Metall; große Reaktionsfähigkeit gegenüber Sauerstoff; oxydiert an der Luft sehr schnell; Aufbewahrung unter Petroleum oder Paraffinöl; Flammenfärbung: gelb; reagiert heftig mit Wasser unter Bildung von Wasserstoff und Natriumhydroxid:

$$2 \text{ Na} + 2 \text{ H}_{2}\text{O} \rightarrow \text{H}_{2} \uparrow + 2 \text{ NaOH}$$
.

✓ Seite 187

Natriumhydroxid

Formel: NaOH; weißer, kristalliner Stoff; hygroskopisch, zerfließt an der Luft; stark ätzend; in Wasser leichtlöslich unter Wärmeentwicklung; Aufbewahrung in Flaschen mit Gummistopfen.

✓ Seite 210, 230

Natriumkarbonat

Formel: Na₃CO₃; farblose, durchsichtige Kristalle, die an der Luft verwittern; wasserfrei (kalziniert) ein weißes Pulver; in Wasser leichtlöslich; Lösung reagiert durch Hydrolyse stark basisch.

✓ Seite 211, 230

Natriumhydrogenkarbonat

Formel: NaHCO_s; weißes, kristallines Pulver; zersetzt sich beim Erhitzen:

in Wasser etwas schwerer löslich als Natriumkarbonat; Lösung reagiert durch Hydrolyse schwach basisch.

Natriumsilikat

Formel: Na₂SiO₂; weißer, fester Stoff; in Wasser löslich, Lösung ist farblos (Natronwasserglas).

5

Natriumnitrat

Formel: NaNO₃; farblose Kristalle; in Wasser leichtlöslich; hygroskopisch; gibt beim Erhitzen leicht Sauerstoff ab, wobei Natriumnitrit entsteht:

✓ Seite 232

Natriumchlorid

Formel: NaCl; farblose, würfelförmige Kristalle (typisches Beispiel für Ionenkristalle), die sich nach Würfelflächen spalten lassen; in Wasser fast unabhängig von der Temperatur leichtlöslich.

✓ Seite 201

Kalium

Symbol: K; silberweißes, weiches Metall; große Reaktionsfähigkeit gegenüber Sauerstoff; oxydiert an der Luft sehr schnell; Aufbewahrung unter Petroleum; reagiert sehr heftig mit Wasser unter Bildung von Wasserstoff und Kaliumhydroxid:

entstehender Wasserstoff entzündet sich selbst; Flammenfärbung: violett (Beobachtung durch Kobaltglas).

✓ Seite 187, 188

Kaliumhydroxid

Formel: KOH; weißer, kristalliner Stoff; hygroskopisch, zerfließt an der Luft; stark ätzend; leichtlöslich in Wasser unter starker Wärmeentwicklung; Aufbewahrung in Flaschen mit Gummistopfen.

Kallumkarbonat

Formel: K₂CO₅; weißes, stark hygroskopisches Pulver; in Wasser leichtlöslich; Lösung reagiert durch Hydrolyse stark basisch.

Kaliumnitrat

Formel: KNO₅; farblose Kristalle oder kristallines Pulver; in Wasser leichtlöslich; gibt beim Erhitzen leicht Sauerstoff ab, wobei Kaliumnitrit entsteht:

Im Gemisch mit brennbaren Stoffen explosiv.

Kallumchlorld

Formel: KCI; farblose, würfelförmige Kristalle; in Wasser leichtlöslich.

Kaliumchromat

Formel: K₂CrO₄; gelbe Kristalle; in Wasser löslich; Lösung wirkt stark oxydierend:

in angesäverter Lösung schlägt die gelbe Farbe durch Bildung von Dichromatlonen nach Orange um:

Kallumdichromat

Formel: K₂Cr₂O₇; orangerote, große Kristalle; in Wasser leichtlöslich; Lösung wirkt stark oxydierend:

$$Cr_2O_7^{2-} + 14 H^+ + 6 e^- \rightarrow 2 Cr^{8+} + 7 H_2O$$
;

Lösung reagiert sauer infolge teilweiser Bildung von Chromat-lonen:

$$Cr_2O_7^{2-} + H_2O \Rightarrow 2 CrO_4^{2-} + 2 H^+$$
.

Kaliumpermanganat

Formel: KMnO₄; metallisch glänzende, tiefviolette Kristalle; in Wasser mit intensiver violetter Farbe leichtlöslich; starkes Oxydationsmittel; wird in neutraler oder schwach saurer Lösung zu Mangan(IV)-oxid, in saurer Lösung zu Mangan(II)-salz reduziert.

$$MnO_4^- + 4 H^+ + 3 e^- \rightarrow MnO_2 + 2 H_2O$$
,
 $MnO_7^- + 8 H^+ + 5 e^- \rightarrow Mn^{2+} + 4 H_2O$.

5.3. Erdalkalimetalle

Elemente der II. Hauptgruppe

Element Symbol	Beryllium Se	Magnesium Mg	Kalsium Cs	Strontium Sr	Serium Se
relative Atommasse	9,01	24,31	40,08	87,62	137,34
Dichte in g · cm ⁻⁸	1,86	1,74	1,54	2,60	3,65
Schmelztemperatur in °C	1285	650	845	757	710
Siedetemperaturen in °C	2970	1120	1439	1366	1696
Atomradius in nm	0,105	0,162	0,197	0,213	0,21
lonenradius in nm	0,034	0,078	0,106	0,127	0,14
Reaktionsfähigkeit gegenüber Saverstoff	zunehmend				
Hydroxid	Be(OH) ₂	Mg(OH) ₂	Ca(OH) ₂	Sr(OH) ₂	Ba(OH)
Stärke der Base	zunehmend				

Magnesium

Symbol: Mg; silberweißes, glänzendes Metall; in trockener Luft fast unveränderlich; verbrennt mit weißer, sehr heller Lichterscheinung zu Magnesiumoxid; hohe Verbrennungswärme; reagiert mit Säuren unter Bildung von Wasserstoff und Salzen; reagiert beim Erhitzen mit Wasserdampf:

$$Mg + H_2O \rightarrow MgO + H_2 \uparrow$$

Magnesiumoxid

Formel: MgO; weißes, lockeres Pulver von geringer Dichte; reagiert mit Wasser langsam zu Magnesiumhydroxid; zieht aus der Luft Wasser und Kohlendioxid an.

Kalzium

Symbol: Ca; silberweißes, weiches Metall; große Reaktionsfähigkeit gegenüber Sauerstoff; oxydiert an der Luft sehr schnell; Aufbewahrung unter Petroleum oder Paraffinöl; reaglert mit Wasser stärker als Magnesium, allerdings langsamer als die Alkalimetalle:

$$Ca + 2 H_2O \rightarrow H_3 \uparrow + Ca(OH)_3$$

Flammenfärbung: orange bis ziegelrot.

✓ Seite 187, 188

Kalziumoxid

Formel: CaO; weißer, stückiger Stoff; reagiert unter starker Wärmeentwicklung mit Wasser zu Kalziumhydroxid; zieht aus der Luft Wasser und Kohlendioxid an.

/ Seite 210, 230, 231

Kalziumhydroxid

Formel: Ca(OH)_s; weißes Pulver; ätzend; in Wasser etwas löslich zu Kalziumhydroxidlösung (Kalkwasser); Aufschlämmung wird Kalkmilch genannt.

/ Seite 210, 231

Kalzivmkarbonat

Formel: CaCO₃; weißes Pulver; in Wasser unlöslich; reagiert mit kohlensäurehaltigem Wasser zu Kalziumhydrogenkarbonat:

$$CaCO_3 + H_2CO_3 \rightleftharpoons Ca(HCO_3)_3$$
;

zersetzt sich beim Erhitzen (Kalkbrennen):

✓ Seite 201, 231

Kalziumhydrogenkarbonat

Formel: Ca(HCO₃)₂; unbeständiges, leichtlösliches Salz; beständig nur in kohlensäurehaltiger Lösung; Lösung zerfällt an der Luft oder beim Erhitzen:

Kalziumkarbid

Formel: CaC₅; rein ein farbloser, kristalliner Stoff; reagiert mit Wasser heftig und unter starker Wärmeentwicklung, wobei Äthin entsteht:

$$CaC_2 + 2 H_2O \rightarrow C_2H_3 + Ca(OH)_2$$
;

reagiert bei hohen Temperaturen mit Stickstoff zu Kalziumzyanamid (Kalkstickstoff):

✓ Seite 226, 236

Kalziumphosphate

Kalziumdihydrogenphosphat: Formel: Ca(H₂PO₄)₂; weiße Kristalle; hygroskopisch; in Wasser leichtlöslich.

Kalziumhydrogenphosphat: Formel: CaHPO₄; weißes, kristallines Pulver; in Wasser unlöslich.

Trikalzlumphosphat: Formel: Ca₃(PO₄)₂; weißes Pulver; in Wasser unlöslich.

✓ Seite 200, 216, 232

Kalziumsulfat

Formel: CaSO₄·2 H₂O; weißes, kristallines Pulver; in Wasser schwerlöslich; beim vorsichtigen Erhltzen entsteht gebrannter Gips 2 CaSO₄·H₂O, der mit Wasser unter Volumenvergrößerung erhärtet; beim Erhitzen auf 500 bis 600°C wird Gips wasserfrei und erhärtet mit Wasser nicht mehr.

✓ Seite 200

Kalziumchlorid

Formel: CaCl₂; farblose Kristalle; in Wasser und Äthanol leichtlöslich; hygroskopisch; das kristallwasserhaltige Salz CaCl₂·6 H₂O löst sich in Wasser unter starker Abkühlung.

Bariumhydroxid

Formel: Ba(OH),; weiße Kristalle; geruchlos; ätzend; in Wasser löslich zu Bariumhydroxidlösung (Barytwasser).

Bariumsulfat

Formel: BaSO4; weißes Pulver; in Wasser unlöslich.

Bariumchlorid

Formel: BaCl₂; weißes Pulver; in Wasser leichtlöslich.

5.4. Borgruppe

Elemente der III. Hauptgruppe

Element Symbol	Bor	Aluminium	Gallium Ge	Indium In	Thellium Ti
relative Atommasse	10,81	26,98	69,72	114,82	204,37
Dichte in g · cm ^{-s}	2,34	2,70	5,91	7,31	11,83
Schmelztemperatur in °C	2400	660	29,8	156	303
Siedetemperatur in °C	2550	≈2500	2000	2300	1457
Beständigkeit der einwertigen Stufe	zunehmend				
Beständigkeit der dreiwertigen Stufe	zunehmend				
Oxid	B ₂ O ₃	Al ₂ O ₃	Ga ₂ O ₃	In ₂ O ₃	Tl ₂ O ₃
Basencharakter der Oxide			zunehmend		

Bor

Symbol: **B**; Halbmetall (braunes Pulver, schwarzgraue Kristalle); chemisch sehr widerstandsfähig; verbrennt an der Luft bei 700°C zu Bortrioxid B₂O₃.

Aluminium

Symbol: Al; silberweißes Metall; gute elektrische Leitfähigkeit, dehnbar, geringe Festigkeit; große Reaktionsfähigkeit gegenüber Sauerstoff; oxydiert an der Luft, Oxidschicht schützt jedoch vor weiterer Oxydation; reagiert mit starken Säuren oder starken Basen unter Salzbildung (amphoterer Charakter).

✓ Seite 218, 234

Aluminiumoxid

Formel: Al₂O₈; weißes Pulver, in der Natur auch kristallisch; in Wasser unlöslich; reagiert mit starken Säuren oder starken Basen unter Salzbildung (amphoterer Charakter).

Aluminiumhydroxid

Formel: Al(OH)₃; kann aus Lösungen als voluminöser, gallertartiger Niederschlag ausgefällt werden; reagiert mit starken Säuren unter Salzbildung und mit starken Basen ebenfalls unter Bildung von Salzen, den Aluminaten (amphoterer Charakter).

Aluminiumsulfat

Formel: Al₃(SO₄)₃; weißes Pulver, als Hydrat Al₃(SO₄)₅ · 18 H₂O farblose, nadelförmige Kristale; in Wasser leichlöslich; Lösung reagiert durch Hydrolyse sauer.

Aluminiumnitrat

Formel: Al(NO₃)₃; farblose Kristalle; in Wasser leichtlöslich; hygroskopisch; Lösung reagiert durch Hydrolyse sauer.

Aluminiumchlorid

Formel: AICl₃; weißer, kristalliner Stoff; in Wasser leichtlöslich; hygroskopisch; hydratisiert in Wasser zu AICl₃ · 6 H₂O; sublimiert; wäßrige Lösung hydrolysiert.

5.5. Kohlenstoffgruppe

Elemente der IV. Hauptgruppe

Element Symbol	Kohlenstoff C.	Silizium Si	Germanium Ge	Zinn Sn	Blei "Pb	
relative Atommasse	12,01	28,09	72,59	118,69	207,19	
Dichte in g · cm ⁻³	Diamant 3,51 Graphit 2,25	2,33	5,35	7,28	11,34	
Schmelztemperatur in °C	Diamant 3540 Graphit 3800	1413	958	232	327	
Siedetemperatur in °C	4347	2630	2700	2350	1750	
Beständigkeit der zweiwertigen Stufe		zunehmend				
Beständigkeit der vierwertigen Stufe	4	zunehmend				
Oxid der vierwertigen Stufe	CO ₂	SiO ₂	GeO ₂	SnO ₂	PbO ₂	
Säurecharakter	zunehmend					

Kohlenstoff

Symbol: C; Modifikationen: Diamant, Graphit.

Diamant: farblose, durchsichtige, stark lichtbrechende und glänzende Kristalle; härtester in der Natur vorkommender Stoff, jedoch spröde; gegen Säuren und Basen beständig; verbrennt in reinem Sauerstoff über 800°C zu Kohlendioxid.

Graphit: grave, schuppige Masse, die sich fettig anfühlt; sehr weich, färbt leicht ab; guter Leiter für Wärme und Elektrizität; hohe Temperaturbeständigkeit; beständig gegen die meisten Chemikalien; verbrennt in reinem Sauerstoff bei 700°C zu Kohlendioxid.

Beim Verbrennen kohlenstoffreicher Substanzen unter ungenügendem Luftzutritt entsteht Ruß (mikroskopisch kleine Graphitkristalle).

Kohlenmonoxid

Formel: CO; farbloses, geruchloses Gas; geringere Dichte als Luft; in Wasser wenig löslich; gefährliches Atemgift; hohe Reaktionsfähigkeit gegenüber Sauerstoff; verbrennt unter starker Wärmeentwicklung zu Kohlendioxid:

✓ Seite 179

Kohlendioxid

Formel: CO₃; farbloses, geruchloses Gas; größere Dichte als Luft; nicht brennbar, unterhält die Verbrennung nicht, wirkt erstickend; in Wasser löslich, dabei teilweise Reaktion mit Wasser zu Kohlensäure; läßt sich unter Druck zu farbloser Flüssigkeit verdichten; flüssiges Kohlendioxid wird bei starker Abkühlung fest ("Trockeneis").

/ Seite 181 bis 183, 188

١

Kohlensäure

Formel: H₃CO₃; leichtzersetzliche, leichtflüchtige und schwache Säure; bildet Salze: Karbonate und Hydrogenkarbonate; wird von schwerer flüchtigen Säuren aus ihren Salzen verdrängt.

✓ Seite 183, 184, 188

Kohlendisulfid

Formel CS₂; farblose, stark lichtbrechende Flüssigkeit; rein aromatisch riechend, beim Aufbewahren am Licht jedoch äußerst unangenehmer Geruch; starkes Nervengift; verdunstet sehr leicht (Siedetemperatur 46°C); feuergefährlich; in Wasser wenig löslich; mischbar mit den meisten organischen Lösungsmitteln; verbrennt unter starker Wärmeentwicklung:

$$CS_2 + 3 O_2 \rightarrow CO_2 + 2 SO_2$$

Kohlendisulfid-Luft-Gemische setzen sich explosionsartig um.

Silizium

Symbol: SI; braunes Pulver oder dunkelgraue, sehr harte Kristalle; beide Formen sind jedoch keine Modifikationen; reagiert mit anderen Elementen erst bei hohen Temperaturen; beständig gegen Säuren, reagiert aber mit starken Laugen unter Bildung von Silikaten und Wasserstoff.

Siliziumdioxid

Formel: SIO₂; weißer, kristalliner Stoff, auch als gut ausgebildete farblose Kristalle vorkommend (Bergkristall); große Härte; schwerschmelzbar; beständig gegen die meisten Säuren; reagiert mit Alkalimetallhydroxiden unter Bildung von Silikaten und Wasser.

✓ Seite 201

Kieselsäure

Einfachste Formel: **H,SIO**₃; unbeständige, sehr schwache Säure; tritt meist in ihren Salzen, den **Silikaten**, auf; wird von Säuren aus ihren löslichen Salzen verdrängt.

Zinn

Symbol: **Sn**; silberweißes, glänzendes Metall; geringe Härte, große Dehnbarkeit; beim Biegen knirschendes Geräusch (Zinngeschrei); bei Raumtemperatur gegen Luft und Wasser beständig; verbrennt bei starkem Erhitzen mit intensiv weißem Licht zu Zinn(IV)-oxid SnO₂; reaglert mit starken verdünnten Säuren zu Salzen und Wasserstoff; reagiert in der Wärme mit Hydroxidiösungen zu Salzen der Zinnsäure, den Stannaten, und Wasserstoff.

/ Seite 235

Blei

Symbol: Pb; bläulichweißes, glänzendes Metall, an der Luft infolge Oxydation grau; geringe Härle, große Dehnbarkeit; beim Erhitzen an der Luft Oxydation zu Blei(II)-oxid; beständig gegenüber Schwefelsäure; reagiert mit Salpetersäure zu Blei(II)-nitrat.

✓ Seite 234

5.6. Stickstoffgruppe

Elemente der V. Hauptgruppe

Element Symbol	Stickstoff N	Phosphor P	Arsen As	Antimon Sb	Wismut Bi
relative Atommasse	14,07	30,97	74,92	121,75	208,98
Dichte in g · cm ⁻³	0,00125	weiß 1,82	grau 5,72 gelb 1,97	grau 6,69 gelb (unbest.)	9,80
Metallcharakter			zunehmend		
Schmelztemperatur in °C	<u>210</u>	weiß 44,1 rot 590	grau 817 bei 36 at	grau 630	271
Siedetemperatur in °C	—195,8	weiß 280 rot sublimiert bei 416	grav subli- miert bei 633	grau 1635	1560
Oxydations- stufen	+5 +4 +3 -3 +2 -2 +1 -1	+5 +4 +3 -3 -2 +1	+5 +3 —3	+5 +3 —3	+5 +3 —3
Trioxid (+3)	N ₂ O ₃ stark sauer	P ₂ O ₃	As ₂ O ₃ schwach sauer oder basisch	Sb ₂ O ₃ saver oder basisch	Bi ₂ O ₃ basisch
Säure	HNO ₂	HPO ₂	HAsO ₂	HSbO ₂	_
Pentoxid (+5)	N ₂ O ₅	P ₂ O ₅	As ₂ O ₅	Sb ₂ O ₅ schwach sauer	Bi ₂ O ₅
Säure	HNO ₃	H ₃ PO ₄	H ₃ AsO ₄	_	_
Säurecharakter der Oxide	+		zunehmend		-

Stickstoff

Symbol: N, Formel: N₂; farbloses, geruchloses Gas; etwas geringere Dichte als Luft; nicht brennbar, unterhält die Verbrennung nicht; in Wasser kaum löslich; läßt sich bei niedriger Temperatur und unter hohem Druck verflüssigen; bei Normaldruck und Raumtemperatur sehr reaktionsträge; reaglert erst bei hohem Druck und erhöhter Temperatur mit Wasserstoff zu Ammoniak (Gleichgewichtsreaktion):

Stickstoff läßt sich erst bei sehr hohen Temperaturen oxydieren.

/ Seite 191, 202

Stickstoffmonoxid

Formel: NO; farbloses Gas, in Wasser kaum löslich; gefährliches Atemgift; brennt nicht, unterhält die Verbrennung nicht; reagiert an der Luft mit Sauerstoff sofort zu Stickstoffdioxid:

✓ Seite 182, 183

Stickstoffdioxid

Formel: NO₂; rotbraunes Gas; setzt sich mit Wasser zu Salpetersäure und Stickstoffmonoxid um:

gefährliches Atemgift; löst sich in konzentrierter Salpetersäure (rote, rauchende Salpetersäure).

Salpetersäure

Formel: HNO.

Verdünnte Salpetersäure: farbiose, geruchiose Flüssigkeit; reagiert mit unedien Metallen unter Wasserstoffentwicklung; bildet Salze: Nitrate.

Konzentrierte Salpetersäure: farblose Flüssigkeit; zerfällt unter Lichteinwirkung bereits bei Raumtemperatur:

dabei gebildetes Stickstoffdioxid bleibt gelöst und färbt die Säure gelb bis rot; starkes Oxydationsmittel; entzündet leicht entflammbare Stoffe; setzt sich infolge Oxydationswirkung auch mit edleren Metallen zu Salzen um:

$$3 \text{ Cu} + 2 \text{ HNO}_3 \rightarrow 3 \text{ CuO} + \text{H}_2\text{O} + 2 \text{ NO} \uparrow$$

 $\text{CuO} + 2 \text{ HNO}_4 \rightarrow \text{Cu(NO}_4)_6 + \text{H}_4\text{O};$

Gemisch von konzentrierter Salpetersäure und konzentrierter Salzsäure (Königswasser) entwickelt Nitrosylchlorid und Chlor:

$$HNO_3 + 3 HCI \rightarrow NOCI + Cl_3 + 2 H_3O$$
,

durch deren Einwirkung auch Gold und Platin in Chloride übergeführt werden; reagiert mit Eiweißen unter Gelbfärbung (Xanthoproteinreaktion); wirkt auf organische Verbindungen nitrierend (Einführung von Nitrogruppen),

und bildet mit Alkoholen Salpetersäureester:

$$C_2H_4(OH)_2 + 2 HNO_3 \rightarrow C_2H_4(O-NO_2)_2 + 2 H_2O$$
.

✓ Seite 189, 214, 230

Ammoniak

Formel: NH₃; farbloses, stechend riechendes Gas; brennt in Sauerstoff:

in Wasser sehr leicht löslich, setzt sich dabei teilweise mit Wasser um:

Lösung heißt Ammoniakwasser; Ammoniak und Ammoniakwasser reagieren mit Säuren unter Salzbildung (Ammoniumsalze).

/ Seite 181, 182, 190, 214, 215, 230

Ammoniumkarbonat

Formel: (NH₄)₂CO₅; weißer, kristalliner Stoff; in Wasser leichtlöslich; zerfällt an der Luft zu Ammoniak und Ammoniumhydrogenkarbonat, beim Erhitzen weiter zu Ammoniak, Kohlendioxid und Wasser:

$$(NH_4)_2CO_3 \rightarrow NH_4HCO_3 + NH_8$$

 $NH_4HCO_3 \rightarrow NH_3 + H_2O + CO_3$

Ammoniumsulfat

Formel: (NH₄)₂SO₄; farblose Kristalle; in Wasser leichtlöslich; wird beim Erhitzen in Ammoniumhydrogensulfat und Ammoniak zersetzt:

✓ Selte 216, 232

Ammoniumchlorid

Formel: NH₄Cl; weißer, kristalliner Stoff; in Wasser leichtlöslich; zerfällt beim Erhitzen:

reagiert mit schwerer flüchtigen Basen, wobei Ammoniak frei wird:

Phosphor

Symbol: P; Modifikationen: weißer Phosphor, roter Phosphor.

Weißer Phosphor: wachsweich, in Wasser unlöslich, leichtlöslich in Kohlendisulfid; hohe Reaktionsfähigkeit gegenüber Sauerstoff; entzündet sich bei 50°C, in feinverteilter Form bereits bei Raumtemperatür; entwickeit an der Luft weißen Rauch (Phosphoroxide), leuchtet im Dunkein; stark giftig, wirkt ätzend; wandelt sich unter Lichteinwirkung langsam in die rote Modifikation um; wird abgedunkeit unter Wasser außbewahrt.

Roter Phosphor: dunkelrotes Pulver, unlöslich in Wasser und Kohlendisulfid; weniger reaktionsfähig als weißer Phosphor; entzündet sich erst oberhalb 400°C; leuchtet im Dunkeln nicht; ungiftig, ist jedoch häufig mit weißem Phosphor verunreinigt.

Phosphorpentoxid

Formel: P₂O₅; weißes, lockeres Pulver; stark hygroskopisch; zerfließt an der Luft zu einer sirupartigen Masse unter Bildung von Metaphosphorsäure:

reagiert heftig unter Zischen mit Wasser, wobei Phosphorsäure entsteht:

$$P_2O_5 + 3 H_2O \rightarrow 2 H_2PO_4$$

Phosphorsäure

Formel: H₃PO₄; farblose, geruchlose Flüssigkeit; je nach Konzentration dünnflüssig, sirupartig bis fest; mittelstarke Säure, schwerflüchtig; dissoziiert in drei Stufen:

$$H_{9}PO_{4} \Rightarrow H^{+} + H_{9}PO_{4}^{-}$$

 $H_{9}PO_{4}^{-} \Rightarrow H^{+} + HPO_{4}^{3-}$
 $HPO_{4}^{3-} \Rightarrow H^{+} + PO_{4}^{3-}$;

bildet Salze: Dihydrogenphosphate, Hydrogenphosphate und Phosphate.

✓ Seite 188

Arsen

Symbol: As; Modifikationen: gelbes nichtmetallisches Arsen, graues metallisches Arsen.

Gelbes Arsen: kristalline Masse; knoblauchartiger Geruch; giftig; sublimiert beim Erhitzen; in Kohlendisulfid leichtlöslich; unbeständig, geht am Licht oder beim Erwärmen in die graue Modifikation über.

Graves Arsen: kristalliner, blättriger Stoff; sehr spröde; leitet die Elektrizität; an trockener Luft beständig, wird an feuchter Luft zu Arsentrioxid oxydiert.

Arsentrioxid

Formel: As₂O₃; kristalliner oder glasig-amorpher Stoff; sublimiert beim Erhitzen; in Wasser löslich; stark giftig; reaglert mit Säuren und mit Basen unter Salzbildung (amphoterer Charakter).

Antimon

Symbol: Sb; silberweißes, stark glänzendes Metall; geringe Härte; spröde; reagiert beim Erhitzen mit Luft oder Wasserdampf zu Antimon(III)-oxid.

Wismut

Symbol: Bi; rötlichweißes, glänzendes Metall; geringe Härte; spröde; wird beim Erhitzen an der Luft zu Wismut(III)-oxid oxydiert.

5.7. Chalkogene

Elemente der VI. Hauptgruppe

Element Symbol	Severaleff O	Schwelel S	Selon Se	Taller Ta
relative Atommasse	15,999	32,06	78,96	127,60
Dichte in g · cm ⁻²	0,0014	rhombisch 2,06	metallisch 4,82 nichtmetallisch 4,47	metallisch 6,25 nichtmetallisch 6,0
Metalicharakter	zunehmend			→
Schmelztemperatur in °C	<u>219</u>	rh. 113	220	452
Siedetemperatur in °C	—183	445	685	1390
Oxydationsstufen	-2 -1	+6 +4 -2 -1	+6 +4 —2	+6 +4 -2
Reaktionsfähigkeit gegenüber Sauerstoff		zuneh	mend	→
Dioxid (+4)	_	SO ₂	SeO ₂	TeO ₁
Saure	_	H _s SO _s	H ₂ SeO ₃	H ₂ TeO ₃
Trioxid (+6)	-	SO,	SeO ₈	TeO _s
Säure	_	H _s SO ₄	H ₂ SeO ₄	H ₆ TeO ₆
Säurecharakter der Oxide	zunehmend			**
Wasserstoffverbindung (—2)	H₂O	H₂S	H₃Se	H ₂ Te

Saverstoff

Symbol: O; Formel: O₃; farbloses, geruchloses, geschmackfreies Gas; etwas größere Dichte als Luft; in Wasser wenig löslich; brennt nicht, unterhält aber die Verbrennung und verbindet sich dabei, häufig unter Feuererscheinung, mit dem brennenden Stoff (Oxydation).

✓ Seite 72, 181 bis 183, 202

Schwefel

Symbol: S; fester, gelber Stoff; geringe Härte, spröde, in Wasser unlöslich, in Kohlendisulfdi elichtlöslich; Schwefeldampf sublimiert bei schneilem Abkühlen; verbrennt mit blauer Flamme zu Schwefeldioxid; verbindet sich in der Wärme mit Metallen zu Sulfiden, mit Wasserstoff zu Schwefelwasserstoff.

✓ Seite 191, 230

Schwefelwasserstoff

Formel: H₂S; farbloses, unangenehm riechendes Gas; sehr gefährliches Atemgiff; in Wasser löslich, dabei wenig dissoziiert (Schwefelwasserstoffsäure); reagiert mit Schwermetallsalziösungen unter Bildung unlöslicher Sulfide; verbrennt an der Luft mit bläulicher Flamme:

bei ungenügender Luftzufuhr (bei der Verbrennung) scheidet sich elementarer Schwefel ab:

2 H.S + O. - 2 H.O + 2 S

Schwefeldioxid

Formel: SO₂; farbloses, stechend riechendes Gas; Atemgift; nicht brennbar, unterhält die Verbrennung nicht; verbindet sich mit Sauerstoff zu Schwefeltioxid:

In Wasser gut löslich, dabei teilweise Reaktion zu schwefliger Säure:

reagiert mit Metalloxiden oder Hydroxiden unter Salzbildung.

/ Seite 181 bis 184, 212

Schweflige Säure

Formel: H₂SO₃; farblose Flüssigkeit; stechender Geruch nach Schwefeldioxid; schwache, leichtflüchtige Säure; zerfällt beim Erhitzen:

bildet Salze: Hydrogensulfite und Sulfite.

Schwefeltrioxid

Formel: SO₃; farblose Nadeln, die bereits bei etwa 17°C schmelzen; stark hygroskopisch; reagiert mit Wasser sehr heftig unter großer Wärmeentwicklung zu Schwefelsäure; bildet an der Luft dichte, weiße Nebel, die sich schwer in Wasser lösen und dabei nur langsam Schwefelsäure bilden.

✓ Seite 213

Schwefelsäure

Formel: H,SO,.

Verdünnte Schwefelsäure: farblose, geruchlose Flüssigkeit; starke Säure; reagiert mit unedlen Metallen unter Wasserstoffentwicklung; bildet Salze: Hydrogensulfate und Sulfate.

Konzentrierte Schwefelsäure: farblose, geruchlose, ölige Flüssigkeit; Dichte: 1,8 g · cm⁻²; hygroskopisch; stark ätzend; mischt sich mit Wasser unter starker Wärmeentwicklung (Säure in Wasser gießen!); schwerflüchtige Säure; setzt sich infolge Oxydationswirkung auch mit edleren Metallen zu Salzen um:

$$Cu + H_2SO_4 \rightarrow CuO + H_2O + SO_2 \uparrow$$

 $CuO + H_2SO_4 \rightarrow CuSO_4 + H_2O$

✓ Seite 189, 213, 230

Selen

Symbol: Se; Modifikationen: graues metallisches Selen, rotes nichtmetallisches Selen.

Graves Selen: gravschwarzer, kristalliner Stoff; unlöslich in Kohlendisulfid; geringe elektrische Leitfähigkeit, die bei Beleuchtung zunimmt (Selenzelle).

Rotes Selen: roter, kristalliner oder amorpher Stoff; löslich in Kohlendisulfid; wandelt sich oberhalb 100°C in graues Selen um.

5.8. Halogene

Elemente der VII. Hauptgruppe

Element Symbol	Fluor F	Chler Ci	Brom Br	Jod J
relative Atommasse	18,998	35,45	79,91	126,90
Aggregatzustand bei 0 °C	gasförmig	gasförmig	flüssig	fest
Siedetemperatur in °C	—180,0	—34,0	58,8	184,5
Dichte in g·cm ⁻³	1,51 (bei Siede- temperatur)	1,57 (bei Siede- temperatur)	3,14	4,94
Ionenradius (X-) in nm	0,133	0,181	0,196	0,220
Oxydationsstufen		+7 +5 +4	+5	+7 +5 +4
	— 1	+3 +1 —1	+1 —1	+1 —1
Wasserstoffverbindung (—1)	HF	нсі	HBr	нл
Reaktionsfähigkeit gegenüber Wasserstoff	-	zunehmend		
Natriumverbindung (—1)	NaF	NaCl	NaBr	NaJ
Reaktionsfähigkeit gegenüber Metallen	4	zunel	nmend	

Fluor

Symbol: \mathbf{F} ; Formel: \mathbf{F}_2 ; schwach grünlichgelbes Gas von durchdringendem Geruch, giftig; das reaktionsfähigste aller Elemente; verbindet sich mit fast allen Elementen, teilweise schon bei tiefen Temperaturen und explosionsartig;

setzt sich mit Wasser schon im Dunkeln explosionsartig zu Fluorwasserstoff und Sauerstoff um:

Fluorwasserstoff

Formel: HF; farbloses Gas (Siedetemperatur 19,5°C); starkes Ätzgift; stark wasseranziehend, bildet an der Luft Nebel; in wäßriger Lösung dissoziiert; leichtflüchtige Säure: Flußsäure; bildet Salze: Flußride; reagiert mit Kieselsäure und Silikaten, darf daher nicht in Glasgefäßen aufbewahrt werden.

Chlor

Symbol: CI; Formel: CI₃; gelbgrünes, stechend riechendes Gas; größere Dichte als Luft; nicht brennbar, unterhält die Verbrennung nicht; starkes Atemgift; feucht wirkt es desinfizierend und bleichend; in Wasser gut löslich: Chlorwasser; reagiert mit den meisten Elementen schon bei niedrigen Temperaturen unter starker Wärmeentwicklung und teilweise Feuererscheinungen; Chlor-Wasserstoff-Gemisch setzt sich bei Einwirkung des Sonnenlichts explosionsartig (Chlorknallgas) zu Chlorwasserstoff um:

/ Seite 182, 183, 190, 210, 230

Chlorwasserstoff

Formel: HCI; farbloses, stechend riechendes Gas; Atemgift; stark wasseranziehend, bildet an der Luft Nebel; in wäßriger Lösung stark dissoziiert; starke, leichtflüchtige Säure: Salzsäure; wird von schwerer flüchtigen Säuren aus ihren Salzen verdrängt; bildet Salze: Chloride.

/ Seite 182, 183, 188

Brom

Symbol: **Br**; Formel: **Br**_s; dunkelbraune Flüssigkeit, entwickelt schon bei Raumtemperatur rotbraune, schwere Dämpfe von unangenehmem, erstickendem Geruch; gefährliches Atemgift, wirkt stark ätzend; in Wasser weniger löslich als Chlor: **Bromwasser**; reagiert mit den meisten Elementen, teilweise unter Feuererscheinung; verbindet sich mit Wasserstoff zu Bromwasserstoff.

Bromwasserstoff

Formel: HBr; farbloses, stechend riechendes Gas; giftig; stark wasseranziehend, bildet an der Luft Nebel; in wäßriger Lösung stark dissoziiert; starke, leichtflüchtige Säure: Bromwasserstoffsäure; bildet Salze: Bromide.

✓ Seite 188

lod

Symbol: J; Formel: (Im gasförmigen Aggregatzustand) J₂; grauschwarze, metallisch glänzende Kristallplättchen; bildet beim Erhitzen violette, ätzende Dämpfe, die beim Abkühlen festes Jod bilden (Sublimation); giftig; in Wasser wenig löslich: Jodwasser (gelbe Färbung); in Äthanol gut löslich: Jodvanktur (braune Färbung); reagiert mit Wasserstoff zu Jodwasserstoff.

Jodwasserstoff

Formel: HJ; farbloses Gas; giftig; stark wasseranziehend; bildet an der Luft Nebel; in wäßriger Läsung stark dissoziiert; starke, jedoch leicht zersetzliche Säure: Jodwasserstoffsäure: bildet Salze: Jodide.

✓ Seite 188

5.9. Edelgase

Elemente der VIII. Hauptgruppe

Element Symbol	Hallem He	120	Argen Ar	Krypton Kr	Xenon Xe
relative Atommasse	4,003	20,18	39,95	83,80	131,30
Dichte in g · cm ⁻⁸	0,00018	0,0009	0,00178	0,0037	0,00589
Schmelzlemperatur in °C	272,1	-248,6	—189,4	<u>—157</u>	111,8
Siedetemperatur in °C	-268,9	-246,0	—185,8	—152,9	-107,1

5.10. Kupfergruppe

Elemente der I. Nebengruppe

Elemente Symbol	Kupter Co	Biber As	Gold Au
relative Atommasse	63,54	107,87	196,97
Dichte in g · cm²	8,92	10,50	19,30
Schmelztemperatur in °C	1083	960,5	1063
Siedetemperatur in °C	2550	2200	2700
Atomradius in nm	0,128	0,144	0,144
Oxydationsstufen	+2		+3
	+1	+1 •	+1

Kupfer

Symbol: Cu; rötliches bis gelbrotes Halbedelmetall; verhältnismäßig weich, dabei zäh und dehnbar; sehr gute Leitfähigkeit für Wärme und Elektrizität; oxydiert an der Luft oberflächlich zu Kupfer(I)-oxid, beim Erhitzen zu Kupfer(II)-oxid; bei Gegenwart von Kohlendioxid Bildung eines Überzuges aus basischem Kupferkarbonat (Patina); reagiert mit oxydierenden Säuren unter Bildung von Salzen.

✓ Seite 187, 189, 219, 235

Kupfer(I)-oxid

Formel: Cu₂O; rotbraunes, kristallines Pulver; in Wasser unlöslich; reagiert mit nicht oxydierenden Säuren zu Kupfer(I)-salzen, mit oxydierenden Säuren zu Kupfer(II)-salzen:

$$\begin{split} \text{Cu}_2\text{O} + 2 \text{ HCI} &\rightarrow 2 \text{ CuCI} + \text{H}_2\text{O} \,, \\ \text{Cu}_2\text{O} + \text{H}_2\text{SO}_4 &\rightarrow \text{CuSO}_4 + \text{Cu} + \text{H}_2\text{O} \end{split}$$

Kupfer(II)-oxid

Formel: CuO; schwarzes, amorphes Pulver; in Wasser unlöslich; beim Erhitzen an der Luft beständig; wird leicht von organischen Stoffen reduziert; reagiert mit oxydierenden Säuren zu Kupfer(II)-salzen.

Kupfer(II)-sulfat

Formel: CuSO₄ · 5 H₂O; blaue Kristalle; in Wasser löslich; wandelt sich beim Erhitzen in wasserfreies, farbloses Pulver um; zerfällt bei starkem Erhitzen:

Silber

Symbol: Ag; weißglänzendes Edelmetall; verhältnismäßig weich; äußerst dehnbar; sehr gute Leitfähigkeit für Wärme und Elektrizität; gegen Luft, Wasser und nichtoxydierende Säuren beständig; reagiert mit Schwefel oder Schwefelwasserstoffverbindungen zu Silbersulfid, mit oxydierenden Säuren zu Silbersalzen.

✓ Seite 235

Silbernitrat

Formel: AgNO₅; farblose Kristalle; lichtempfindlich; in Wasser leichtlöslich; ätzend (Höllenstein).

Silberchlorid

Formel: AgCl; weißer Stoff; in Wasser sehr wenig löslich; leichtlöslich in Ammoniaklösungen zu Silberamminkomplexen; wird an der Luft langsam zersetzt.

Gold

Symbol: Au; gelbes, weiches Edelmetall; große Dehnbarkeit; gute Leitfähigkeit für Wärme und Elektrizität; beständig gegen Luft, Wasser und die meisten Chemikalien; reagiert mit starken Oxydationsmitteln, wie Chlorwasser und Königswasser, oder mit Komplexbildnern, wie Kaliumzyanidiösung.

5.11. Zinkgruppe

Elemente der II. Nebengruppe

Element Symbol	Zink Zo	Kedmium Cd	Greekeliber Hg
relative Atommasse	65,37	112,40	200,59
Dichte in g · cm ^{-a}	7,13	8,64	13,59
Schmelztemperatur in °C	419,4	320,9	-38,8
Siedetemperatur in °C	907	767	356,9
Atomradius in nm	0,133	0,149	0,150
Oxydationsstufen	+2	+2	+2 +1

Zink

Symbol: Zn; bläulichweißes Metall; geringe Härte; spröde, läßt sich jedoch zwischen 100°C und 150°C leicht walzen und ziehen; oberhalb 205°C wiederum spröde; an der Luft beständig, da es sich mit einer dünnen Schutzschicht von Zinkoxid oder Zinkkarbonat überzieht; verbrennt bei Siedetemperatur mit heller, bläulichweißer Flamme zu einem weißen Rauch von Zinkoxid; wird von heißem Wasser oder Wasserdampf angegriffen; reagiert mit Säuren unter Bildung von Salzen und Wasserstoff.

✓ Seite 219, 235

Zinkoxid

Formel: ZnO; weißes Pulver, in der Wärme gelblich; in Wasser unlöslich; reagiert mit verdünnten Säuren unter Bildung von Salzen und Wasser; reagiert mit verdünnten Alkalimetallhydroxidlösungen zu salzartigen Verbindungen, den Zinkaten.

Quecksilber

Symbol: Hg; silberweiß, glänzend; einziges bei Raumtemperatur flüssiges Metall; elektrische Leitfähigkeit gering, steigt jedoch unterhalb der Erstarrungstemperatur beträchtlich an; stark giftig; an der Luft beständig; reaglert mit verdunnter Säuren nicht, mit verdünnter Salpetersäure jedoch langsam; reaglert mit oxydierenden Säuren unter Salzbildung; reagiert mit Schwefel und Halogenen; bildet mit vielen Metallen Legierungen (Amalgame).

Quecksilber(II)-oxid

Formel: **HgO**; rotes, kristallines oder gelbes, amorphes Pulver; sehr schwer löslich in Wasser; Lösung reagiert schwach basisch; leicht reduzierbar; zerfällt beim Erhitzen über 400°C in Quecksilber und Sauerstoff; reagiert mit Säuren unter Bildung von Salzen und Wasser.

5.12. Chromgruppe

Elemente der VI. Nebengruppe

Element Symbol	Chrom Cr	Melybdiin Me	Wolfram W
relative Atommasse	51,996	95,94	183,85
Dichte in g · cm ⁻⁸	7,19	10,2	19,3
Schmelztemperatur in °C	≈190Q	≈2600	≈3400
Siedetemperatur in °C	≈2300	≈4800	≈6000
Oxydationsstufen	+6 +5 +4 +3 +2 +1	+6 +5 +4 +3 +2	+6 +5 +4 +3 +2

Chrom

Symbol: Cr; silberweißes bis stahlblaues Mefall; sehr hart, zäh, dehnbar; beständig an der Luft und unter Wasser, verbrennt erst im Sauerstoffgebläse; wird von Salpetersäure und oxydierenden Säuregemischen nicht angegriffen; reaglert langsam mit wenig verdünnter Salzsäure, Bromwasserstoffsäure und Schwefelsäure.

/ Seite 234

5.13. Mangangruppe •

Elemente der VII. Nebengruppe

Element Symbol	Mengen Me	Technotium Te	Rhenium Re
relative Atommasse	54,94	[99]	186,2
Dichte in g · cm ^{-s}	7,21	11,50	20,9
Schmelztemperatur in °C	1244	≈2200	≈3150
Siedetemperatur in °C	≈2100		≈5500
Oxydationsstufen	+7 +6 +5 +4 +3 +2 +1		+7 +6 +5 +4 +3 +2 +1

Mangan

Symbol: Mn; silbergraues bis stahlgraues Metall; sehr hart und spröde; reagiert mit Säuren unter Bildung von Salzen und Wasserstoff; verbrennt beim Erhitzen an der Luft zu Mangan(II,III)-oxid Mn₃O₄.

Mangan(IV)-oxid

Formel: MnO.: schwarzes Pulver: zerfällt oberhalb 530°C:

geht beim stärkeren Glühen in Mangan(II,III)-oxid Mn₂O₄ über; amphoter: reagiert mit Säuren zu sehr unbeständigen Mangan(IV)-salzen:

mit Hydroxidlösungen zu Salzen der manganigen Säure H₂MnO₃:

$$MnO_2 + Ca(OH)_2 \rightarrow CaMnO_3 + H_2O$$

Mangan(II)-sulfat

Formel: MnSO₄; wasserfrei fast weißes Pulver, als Hydrat MnSO₄·7 H₂O rosafarbene Kristalle; in Wasser leichtlöslich.

5.14. Eisengruppe

Elemente der VIII. Nebengruppe

Elemente Symbol	Bloom Po	Kebalt Co	Minhal Mi
relative Atommasse	55,85	58,93	58,71
Dichte in g · cm ^{-s}	7,86	8,83	8,90
Schmelztemperatur in °C	1535	1490	1453
Siedetemperatur in °C	≈3000	≈3000	≈2900
Atomradius in nm	0,126	0,125	0,124
Oxydationsstufen	+6 +3 +2	+3 +2	+2

Eisen

Symbol: Fe; silberweißes, glänzendes Metall; verhältnismäßig weich und zäh, dehnbar; stark magnetisch; unedles Metall, rostet an feuchter Luft; zersetzt in der Wärme Wasserdampf; wird beim Glühen an der Luft zu Eisen(III)-oxid, in reinem Sauerstoff zu Eisen(II,III)-oxid oxydiert; reaglert mit verdünnten Säuren unter Bildung von Salzen und Wasserstoff; wird von oxydierenden Säuren nicht angegriffen.

/ Seite 189, 217, 218, 233, 234

Eisen(II)-oxid

Formel: FeO; schwarzes Pulver; in reinem Zustand nicht bekannt, enthält stets weniger Eisen als der stöchiometrischen Zusammensetzung entspricht; reagiert mit verdünnten Säuren unter Bildung von Eisen(II)-salzen und Wasser.

Eisen(III)-oxid

Formel: Fe,Oa; rotes Pulver; spaltet an der Luft oberhalb 1200°C Sauerstoff ab:

reagiert nur schwer mit Säuren.

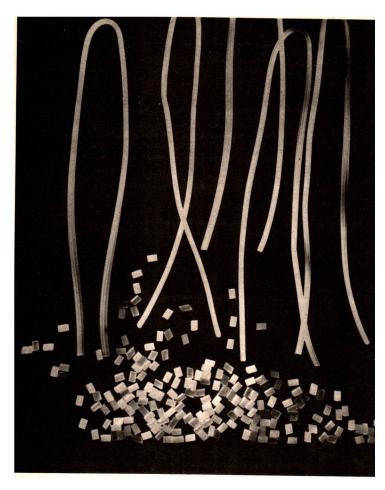
/ Seite 201

Eisen(II)-sulfid

Formel: FeS; kristalline, metallglänzende bis graugelbe Masse; in Wasser unlöslich; schmelzbar; reagiert mit Säuren unter Bildung von Salzen und Schwefelwasserstoff:

Eisen(II)-sulfat

Formel: FeSO₄; wasserfrei grauweißes Pulver, als Hydrat FeSO₄·7 H₃O hellgrüne Kristalle; Kristalle zerfallen an der Luft, wobei schwerlösliches, gelbbraunes, basisches Eisen(III)-sulfat entsteht; in Wasser löslich; gibt beim Erhitzen Schwefeldioxid ab.


Kobalt

Symbol: Co; silberweißes, glänzendes Metall; hart, zäh, dehnbar; schwach magnetisch; gegenüber feuchter Luft beständig; reagiert mit Säuren unter Bildung von Salzen und Wasserstoff.

Nickel

Symbol: NI; silberweißes, glänzendes Metall; hart, zäh, dehnbar; schwach magnetisch; gegenüber feuchter Luft und Hydroxidlösungen beständig; reagiert mit Säuren unter Bildung von Salzen und Wasserstoff.

/ Seite 235

Organische Verbindungen

Seite 146	6.1. Kohlenwasserstoffe
Seite 149	6.2. Halogenderivate der Kohlenwasserstoffe
Seite 150	6.3. Hydroxylderivate der Kohlenwasserstoffe
Seite 153	6.4. Aldehyde
Seite 155	6.5. Ketone
Seite 156	6.6. Monokarbonsäuren
Seite 159	6.7. Dikarbonsäuren
Seite 161	6.8. Hydroxysäuren
Seite 162	6.9. 2-Aminosäuren
Seite 163	6.10. Amine
Seite 164	6.11. Nitroverbindungen
Seite 165	6.12. Säureamide
Seite 166	6.13. Ester
Seite 167	6.14. Kohlenhydrate
Seite 168	6.15. Eiweiße
Seite 169	6.16. Fette

6.1. Kohlenwasserstoffe

Charakteristik der Kohlenwasserstoffe

Verbindungen aus Kohlenstoff und Wasserstoff, die sich durch die Bindungsverhältnisse im Molekül sowie die Anzahl der Atome, aus denen sie bestehen, unterscheiden.

Name charakteristische Merkmale		allgemeine Formel
Alkane (Paraffine)	kettenförmig, gesättigt	C _n H _{sn+s}
Alkene (Olefine)	kettenförmig, ungesättigt, 1 Doppelbindung	C _n H _{an}
Alkadiene (Diolefine)	kettenförmig, ungesättigt, 2 Doppelbindungen	C _n H _{an—a}
Alkine (Azetylene)	kettenförmig, ungesättigt, 1 Dreifachbindung	C _n H _{an-4}
Zykloalkane (Naphthene)	ringförmig, gesättigt	C _n H _{an}
Aromatische Kohlen- wasserstoffe	ringförmig, Bindungssystem des Benzols C₅H ₆	-

/ Seite 28 bis 30

Name	ältere Bezeichnung	Summenformel	vereinfachte Strukturformel
Methan Äthan Propan Butan		CH ₄ C ₂ H ₆ C ₃ H ₈ C ₄ H ₁₀	CH ₄ CH ₃ —CH ₃ CH ₃ —CH ₂ —CH ₃ CH ₃ —CH ₂ —CH ₃
Äthen Propen Buten-(1)	Äthylen Propylen Butylen	C ₂ H ₄ C ₃ H ₆ C ₄ H ₈	CH ₂ = CH ₂ CH ₂ = CH—CH ₃ CH ₂ = CH—CH ₂ —CH ₃

Name	ältere Bezeichnung	Summen- formel	vereinfachte Strukturformel
Propadien Butadien-(1,3) 2-Methyl- butadien-(1,3)	Allen Butadien Isopren	C ₃ H ₄ C ₄ H ₆ C ₅ H ₈	CH ₃ =C=CH ₂ CH ₂ =CH—CH=CH ₃ CH ₂ =C—CH=CH ₃ CH ₃
Äthin Propin Butin-(1) Pentin-(1)	Azetylen Methylazetylen Äthylazetylen Propylazetylen	C,H, C,H, C,H,	CH≡CH CH≡C—CH₃ CH≡C—CH₃—CH₃ CH≡C—CH₃—CH₃—CH₃
Zyklopropan	Trimethylen	C₃H₅	CH ₂ —CH ₃
Zyklobutan	Tetramethylen	C₄H ₈	CH ₂ —CH ₂ CH ₂ —CH ₂
Zyklopentan	Pentamethylen	C₅H ₁₀	CH ₂ —CH ₃ CH ₃ CH ₃
Benzol		C ₆ H ₆	\Diamond
Methylbenzol	Toluol	C,H ₈	Ç—CH₄
1,2-Dimethyl- benzol	o-Xylol	C ₈ H ₁₀	CH,
Äthenylbenzol	Styrol	C ₈ H ₈	CH=CH _s
Naphthalin		C ₁₀ H ₈	$\Diamond\Diamond$
Anthrazen		C ₁₄ H ₁₀	∞

Methan

Formel: CH₄; farbloses, geruchloses Gas; brennbar, verbrennt zu Kohlendioxid und Wasser; bildet mit dem doppelten Volumen Sauerstoff oder mit dem zehnfachen Volumen Luft hochexplosive Gemische; reagiert mit Halogenen unter Bildung von Halogenderivaten und Chlorwasserstoff (Substitution).

Äthen

Formel: C_2H_4 ; farbloses, süßlich riechendes Gas; brennt mit leuchtender, schwach rußender Flamme; bildet mit Sauerstoff explosive Gemische; ist durch seine Doppelbindung sehr reaktionsfähig.

Addition von Wasserstoff
$$CH_3 = CH_3 + H_2 \xrightarrow{Kat.} CH_3 - CH_3$$
Xihan

Polymerisation
$$n \text{ CH}_3 = \text{CH}_2 \rightarrow [\text{—CH}_3\text{—CH}_3\text{—}]_n$$
Polyathen
(Polyathylen)

Äthin

Formel: C₂H₃; farbloses Gas von ätherischem Geruch; löslich in Wasser; sehr gut löslich in Propanon (Azeton); brennt mit leuchtender, stark rußender Flamme; bildet mit Sauerstoff oder Luft hochexplosive Gemische; ist durch seine Dreifachbindung sehr reaktionsfähig (vor allem Additionsreaktionen).

Äthanal

Addition von Wasser
$$CH \equiv CH + H_2O \xrightarrow{Kat.} CH_3 - CHO$$

Addition von Chlorwasserstoff
$$CH \equiv CH + HCI \xrightarrow{Kat.} CH_z = CHCI \xrightarrow{Monochlorätheid} (Vinylchlorie)$$

Benzol

Formel: C_eH₆; leichtbewegliche, farblose Flüssigkeit; eigenartiger Geruch; in Wasser kaum löslich; gutes Lösungsmittel für Fette, Öle, Harze und andere organische Stoffe; geringere Dichte als Wasser; bildet schon bei Raumtemperatur leicht entzündliche Dämpfe; brennt mit leuchtender, stark rußender Flamme; Dämpfe sind giftig; läßt sich verhältnismäßig leicht sulfonieren und nitrieren.

Sulfonierung
$$C_6H_8H + HO$$
 $SO_2H \rightarrow C_6H_5 - SO_2H + H_2O$
Benzolaulfonsdure

Nitrierung $C_6H_8H + HO$ $NO_2 \rightarrow C_6H_6 - NO_2 + H_2O$
Nitrobenzol

6.2. Halogenderivate der Kohlenwasserstoffe

Charakteristik der Halogenderivate

Derivate der Kohlenwasserstoffe mit mindestens einem Halogenatom als Substituent.

Name	ältere Bezeichnung	Summenformel	vereinfachte Strukturformel
Monochlormethan	Methylchlorid	CH ₃ CI	CH₃CI
Dichlormethan	Methylenchlorid	CH ₂ Cl ₂	CH ₂ Cl ₂
Trichlormethan	Chloroform	CHCI ₃	CHCI ₈
Tetrachlormethan	Tetrachlorkohlenstoff	CCI4	CCI₄
Monochloräthan	Äthylchlorid	C₂H₅CI	CH₃—CH₂CI
1,2-Dichloräthan	Äthylendichlorid	C ₂ H ₄ Cl ₂	CH ₂ CI—CH ₂ C
Monochloräthen	Vinylchlorid	C₂H₃CI	CH ₂ =CHCI
1,2-Dichlorbenzol	o-Dichlorbenzol	C ₆ H ₄ Cl ₂	Ů-cı

✓ Seite 31, 32

Trichlormethan

Formel: CHCl₃; süßlich riechende Flüssigkeit; unbrennbar; wird unter Einfluß von Licht und Sauerstoff langsam zu Phosgen COCl₂ (gifftig) und Chlorwasserstoff umgesetzt; in Wasser wenig löslich; gutes Lösungsmittel für Harze, Fette und andere Stoffe; leichtflüchtig; Trichlormethandämpfe wirken betäubend.

Tetrachlormethan

Formel: CCl₄; ätherisch riechende, farblose Flüssigkeit, unbrennbar; wirkt auf Flammen erstickend (dabei jedoch Phosgenbildung); in Wasser fast unlöslich; gutes Lösungsmittel für Fette, Öle, Harze und Wachse; Dämpfe wirken betäubend.

Monochloräthen

Formel: CH₂=CHCl; bei Raumtemperatur gasförmiger Stoff; läßt sich polymerisieren:

$$n \text{ CH}_2 = \text{CHCI} \rightarrow (\text{--CH}_2 \text{--CHCI}\text{--})_n$$

6.3. Hydroxylderivate der Kohlenwasserstoffe

Charakteristik der Hydroxylderivate

Derivate der Kohlenwasserstoffe mit mindestens einer Hydroxylgruppe — OH als Substituent.

Name	charakteristische Merkmale	allgemeine Formel
Alkanole	kettenförmig, gesättigt, 1 Hydroxylgruppe	C _n H _{en+1} OH
Alkandiole	kettenförmig, gesättigt, 2 Hydroxylgruppen	
Alkantriole	kettenförmig, gesättigt, 3 Hydroxylgruppen	C _n H _{9n-1} (OH) ₉
Phenole	Derivate des Benzols mit mindestens einer Hydroxylgruppe	-

Seite 31 bis 33

Name	ältere Bezeichnung	Formel	vereinfachte Strukturformel
Methanol Äthanol Propanol-(1) Propanol-(2) 2-Methylpro- panol-(2)	Methylalkohol Äthylalkohol Propylalkohol i-Propylalkohol tertiärer Butylalkohol	CH ₅ —OH C ₂ H ₅ —OH C ₃ H,—OH C ₄ H,—OH C ₄ H ₈ —OH	CH ₅ —OH CH ₅ —CH ₅ —OH CH ₅ —CH ₇ —CH ₇ —OH CH ₅ —CH(OH)—CH ₅ CH ₅ —C(OH)—CH ₅
Äthandiol-(1,2)	Glykol	C ₂ H ₄ (OH) ₂	сн,он—сн,он
Propantriol- (1, 2, 3)	Glyzerin	C _a H ₆ (OH) _a	CH ₂ OH-CH(OH)-CH ₂ OH
Phenol		C ₆ H ₅ —OH	он он
1,2-Dihydroxy- benzol	Brenzkatechin	C ₆ H ₄ (OH) ₃	он
1,3-Dihydroxy- benzol	Resorzin	C ₆ H ₄ (OH) ₂	он он
1,4-Dihydroxy- benzol	Hydrochinon	C ₆ H ₄ (OH) ₃	ОН
1,2,3-Tri- hydroxybenzol	Pyrogaliol	C ₆ H ₅ (OH) ₅	OH OH
Benzylalkohol		C₀H₅—CH₃OH	Отсн₃он

Methanol

Formel: CH_s—OH; farblose Flüssigkeit; charakterischer Geruch; brennt mit blaßblauer Flamme; löslich in Wasser und anderen Lösungsmitteln; Lösungsmittel für Harze und andere Stoffe; sehr giftig; einige wichtige Reaktionen sind:

Oxydation
$$2 CH_3$$
—OH + O₃ \xrightarrow{Kat} 2 HCHO + 2 H₃O

Methanal

Dehydrierung
$$CH_3$$
— $OH \xrightarrow{CU} HCHO + H_2 \uparrow$

Methanal

✓ Seite 227, 236

Äthanol

Formel: C₂H₅—OH; farblose Flüssigkeit; charakteristischer Geruch; leicht entzündbar; brennt mit schwach leuchtender Flamme; löslich in Wasser, Benzin und Benzol; setzt als Genußmittel schon in geringen Mengen die Empfindlichkeit der Sinnesorgane herab, in größeren Mengen gesundheitsschädigend; einige wichtige Reaktionen sind:

Oxydation
$$CH_3$$
— CH_2 — $OH + O_2$ $Garung$ CH_3 — $COOH + H_2O$ $Xthansaure$

Dehydrierung
$$CH_3$$
— CH_3 — OH $\xrightarrow{Kat.}$ CH_3 — $CHO + H_2 \uparrow$

Esterbildung
$$C_2H_5$$
— $OH + HOOC$ — $CH_3 \rightleftharpoons C_2H_5$ — O — OC — $CH_3 + H_2O$
 $X_{thylathanat}$

✓ Seite 227, 228, 236

Propantriol-(1,2,3)

Formel: CH₂OH—CH(OH)—CH₂OH; farblose, ölige, geruchlose Flüssigkeit; süßer Geschmack; hygroskopisch; mit Wasser oder Äthanol in jedem Verhältnis mischbar; läßt sich mit anorganischen und organischen Säuren verestern.

✓ Seite 196, 237

6

Formel: C₆H₅—OH; farblose, zerfließende Kristalle, die sich an der Luft nach einiger Zeit rötlich färben; eigenartiger Geruch; in Wasser wenig löslich; leichtlöslich in Äthanol; giftig, wirkt ätzend; reagiert sehr schwach sauer; bildet mit Hydroxidlösungen der Alkalimetalle salzartige Verbindungen: Phenolate.

✓ Seite 237

6.4. Aldehyde

Charakteristik der Aldehyde

Derivate der Kohlenwasserstoffe mit einer Aldehydgruppe; allgemeine Formel:

Name	ältere Bezeichnung	Formel	vereinfachte Strukturformel
Methanal	Formaldehyd	нсно	HC H
Äthanal	Azetaldehyd	СН₃—СНО	CH ₃ —C
Propanal	Propionaldehyd	C₂H₅—CHO	CH ₃ —CH ₂ —C
Butanal	Butyraldehyd	C₃H ₇ —CHO	CH ₃ —CH ₂ —CH ₂ —C
Benzaldehyd	Bittermandelöl	C₀H₅—CHO	Q-c<€

✓ Seite 31, 32, 191

Methanal

Formel: HCHO; farbloses, stechend riechendes Gas; in Wasser leichtlöslich, 35 bis 40% lge Lösung heißt Formalin; polymerisiert zu einer weißen, schwerlöslichen Masse (Paraformaldehyd), die beim Erhitzen wieder in Methanal zerfällt; reagiert mit Eiweißen unter Bildung unlöslicher, oft harter Massen; wirkt desinfizierend; reduziert Fehlingsche Lösung und ammoniakalische Silbersalzlösung; durch seine Doppelbindung sehr reaktionsfähig.

Addition von Wasserstoff

Oxydation

Methansaure

Polykondensation mit Phenol

$$n \rightarrow + n \text{ HCHO} \rightarrow \left[\rightarrow \text{CH}_3 - \right]_n + n \text{ H}_3\text{C}$$
Phenoplast

✓ Seite 236

Äthanal

Formel: CH_s—CHO; leichtbewegliche, farblose Flüssigkeit mit eigentümlichem Geruch; brennbar; leichtlöslich in Wasser, Äthanol, Benzol; reduziert Fehlingsche Lösung und ammoniakalische Silbersalzlösung; durch seine Doppelbindung sehr reaktionsfähig.

■ Addition von Wasserstoff

Oxydation

Athansaur

✓ Seite 236

Formel: C_eH₅—CHO; farblose, ölige Flüssigkeit; Bittermandelgeruch; in Wasser wenig löslich; reduziert ammoniakalische Silbersalzlösung, nicht aber Fehlingsche Lösung; wird an der Luft zu Benzolkarbonsäure oxydiert; addiert Natriumhydrogensulfit unter Bildung einer schwerlöslichen kristallinen Verbindung.

Benzolkarbonsäure

$$C_eH_e-C$$
 H
 $+$
 $NaHSO_s$
 $+$
 C_eH_s-C
 $+$
 SO_sNa
 H

6.5. Ketone

Charakteristik der Ketone

Derivate der Kohlenwasserstoffe mit einer Oxogruppe; allgemeine Formel:

Name	ältere Bezeichnung	Formel	vereinfachte Strukturformel
Propanon	Azeton, Dimethylketon	CH ₈ —CO—CH ₈	сн _я —с—сн _я
Butanon	Methyläthylketon	CH ₃ -CO—C ₃ H ₅	СН"—С—СН"—СН"
Pentanon-(2)	Methylpropylketon	CH ₃ —CO—C ₃ H ₇	сн,-с-сн,-сн,-сн, 0
Benzophenon	Diphenylketon	C ₆ H ₅ -CO-C ₆ H ₅	♦

/ Seite 31, 32

Formel: CH₃—CO—CH₃; farblose Flüssigkeit, angenehm erfrischender Geruch; verdampft leicht (Siedetemperatur 56°C), feuergefährlich; mit Wasser, Äthanol und anderen organischen Lösungsmitteln in Jedem Verhältnis mischbar; Lösungsmittel für viele organische Stoffe; verbrennt mit heller Flamme; läßt sich zu Propanol-(2) hydrieren.

Hydrierung
$$CH_s$$
— CO — CH_s + H_s \rightarrow CH_s — $CH(OH)$ — CH_s
 \nearrow Seite 191, 237

6.6. Monokarbonsäuren

Charakteristik der Monokarbonsäuren

Derivate der Kohlenwasserstoffe mit einer Karboxylgruppe; allgemeine Formel:

Name	ältere Bezeichnung	Formel	vereinfachte Strukturformel
Methansäure	Ameisensäure	нсоон	нсон
Äthansäure	Essigsäure	СН ₈ —СООН	сн₃–с он
Propansäure	Propionsäure	C₂H₅—COOH	сн _я —сн _я —с
Hexadekan- säure	Palmitinsäure	C ₁₈ H ₈₁ -COOH	CH ₈ —(CH ₈) ₁₈ —COH
Oktadekan- säure	Stearinsäure	C ₁₇ H ₃₅ -COOH	CH ₈ —(CH ₂) ₁₆ —COH

Name	ältere Bezeichnung	Formel	vereinfachte Strukturformel
Propensäure	Akrylsäure	C₂H₃—COOH	CH ₂ =CH—COOH
Oktadezen- (9)-säure	Ölsäure	C ₁₇ H ₃₃ —COOH	CH ₃ —(CH ₂) ₇ —CH = CH— —(CH ₂) ₇ —C OH
Propinsäure	Propargyl- säure	C₂H—COOH	CH≡C—COOH
Benzolkarbon- säure	Benzoesäure	C₄H₅—COOH	Q-c ^o OH

✓ Seite 31, 32

Methansäure

Formel: HCOOH; leichtbewegliche, farblose Flüssigkeit; stechender Geruch; mit Wasser und Äthanol in jedem Verhältnis mischbar; stark ätzend, erzeugt auf der Haut Blasen; bildet Salze: Methanate; wirkt reduzierend, da auch die Aldehydgruppe enthalten ist.

Dissoziation

Salzbildung

Zinkmethanat

Zersetzung

Oxydation

Esterbildung

✓ Seite 236

Äthansäure

Formel: CH₃—COOH; klare, farblose Flüssigkeit; stechender Geruch; erstarrt bei 16,6°C zu einer eisartigen Masse (konzentrierte Äthansäure wird deshalb auch als Eisessig bezeichnet); löslich in Wasser, Äthanol; stark ätzend; bildet Salze: Äthanate; leichtflüchtig; dissoziiert.

Salzbildung 2 CH₈—COOH + Mg
$$\rightarrow$$
 (CH₈—COO)₂Mg + H₃ \uparrow

Magnesiumäthanat

Esterbildung
$$C_2H_3$$
— $OH + HOOC$ — $CH_3 \rightleftharpoons C_2H_5$ — O — OC — $CH_3 + H_3O$

Xinyidihanat

✓ Seite 236

Propensäure

Formel: C₃H₃—COOH; farblose Flüssigkeit; stechender Geruch; mit Wasser und den meisten organischen Lösungsmitteln mischbar; läßt sich leicht polymerisieren:

Benzolkarbonsäure

Formel: C_eH_e—COOH; farblose, geruchlose Kristalle; in Wasser wenig löslich; leichtlöslich in Äthanol und Äthoxyäthan (Äther); sublimiert bei 100°C; in Wasserdampf flüchtig; Dämpfe wirken stark hustenreizend; bildet Salze: Benzoate; dissozilert.

Salzbildung
$$\bigcirc$$
 COOH + NaOH \rightarrow \bigcirc COONa + H₂O

Natriumbenzoat

Esterbildung
$$CH_a$$
— $OH + HOOC$ — \longrightarrow \Rightarrow CH_a — $O-OC$ — \longrightarrow $+$ H_aO

Methylbenzoat

6.7. Dikarbonsäuren

Charakteristik der Dikarbonsäuren

Derivate der Kohlenwasserstoffe mit zwei Karboxylgruppen; allgemeine Formel:

HOOC-R-COOH

Name	ältere Bezeichnung	Formel	vereinfachte Strukturformel
Äthandisäure Propandisäure Butandisäure	Oxalsäure Malonsäure Bernsteinsäure	(COOH) ₂ CH ₂ (COOH) ₂ C ₂ H ₄ (COOH) ₃	HOOC—COOH HOOC—(CH ₂) ₂ —COOH
Benzoldikarbon- säure-(1,2)	Phthalsäure	C ₆ H ₄ (COOH) ₂	Соон
Benzoldikarbon- säure-(1,4)	Terephthal- säure	C _e H ₄ (COOH) ₂	СООН

✓ Seite 31 bis 33

Äthandisäure

Formel: HOOC—COOH; weiße Kristalle; geruchlos; in Wasser löslich; wirkt reduzierend und wird dabei zu Kohlendioxid und Wasser oxydiert; dissoziiert; bildet Salze: Äthandlate.

Salzbildung
$$Ca^{2+} + (OOC-COO)^{2-} \rightarrow COO$$

Kalziumäthandiat

Propandisäure

Formel: CH₂(COOH)₂; weiße Kristalle; geruchlos; in Wasser löslich; wird oberhalb der Schmelztemperatur in Kohlendioxid und Äthansäure gespalten; dissoziiert; bildet Salze: **Propandiate**.

Benzoldikarbonsäure-(1,2)

Formel: C_eH₄(COOH)₂; farblose Kristalle; in Wasser wenig löslich; dissoziiert; bildet Salze: Phthalate; wird von stärkeren Säuren aus ihren Salzen verdrängt; beim Erhitzen wird Wasser abgespalten, wobei Phthalsäureanhydrid entsteht.

Dissoziation

$$C_6H_4(COOH)_2 \Rightarrow C_6H_4(COO)_2^{2-} + 2 H^+$$

Salzbildung

Natriumphthalat

Phthalsäureanhydrid

Dehydratisierung

/ Seite 237

Benzoldikarbonsäure-(1,4)

Formel: C₅H₄(COOH)₂; farblose, nadelförmige Kristalle; in Wasser und Äthanol schwerlöslich; dissoziiert; bildet Salze: Terephthalate; sublimiert bei 300°C; bildet beim Erhitzen kein Anhydrid; reagiert mit Alkandiolen zu Polyestern.

Dissoziation

$$C_6H_4(COOH)_2 \rightleftharpoons C_6H_4(COO)_2^{2-} + 2 H^+$$

Polykondensation

$$n \text{ HOOC}$$
 — COOH + $n \text{ HO}$ — CH₂—CH₂—OH →
$$\left[-\text{OC} - \text{CO} - \text{O} - \text{CH}_2 - \text{CH}_2 - \text{O} - \right]_n + n \text{ H}_2 \text{O}$$

6.8. Hydroxysäuren

Charakteristik der Hydroxysäuren

Derivate der Kohlenwasserstoffe mit mindestens einer Karboxylgruppe — COOH sowie mindestens einer Hydroxylgruppe — OH.

Name	ältere Bezeichnung	Formel	vereinfachte Strukturformel
2-Hydroxy- propansäure	Milchsäure	C _s H ₄ (OH)COOH	СН₃—СН—СООН
2,3-Dihydroxy- butandisäure	Weinsäure	C _a H _a (OH) _a (COOH) _a	соон сн—он сн—он соон
2-Hydroxy- benzolkarbon- säure-(1)	Salizylsäure	С ₆ Н ₄ (ОН)СООН	Соон

₹ Seite 32, 236

2-Hydroxypropansäure

Formel: CH_s—CH(OH)—COOH; farblose, klare, sirupartige Flüssigkeit; in Wasser leichtlöslich; wirkt hemmend auf die Lebensvorgänge von Bakterien; bildet Salze: Laktate (Trivialname); enthält ein asymmetrisches Kohlenstoffatom Molekül; zwei (optisch aktive) stereoisomere Formen sind vorhanden: D(—)-2-Hydroxypropansäure und L(+)-2-Hydroxypropansäure.

2,3-Dihydroxybutandisäure

Formel: C₃H₂(OH)₂(COOH)₂; farblose Kristalle, in Wasser und Äthanol leichtlöslich; enthält zwei asymmetrische Kohlenstoffatome im Molekül; drei stereoisomere Formen sind vorhanden; bildet Salze: Tartrate (Trivialname); Kaliumnatriumtartrat (Seignettesalz) ist Bestandteil der Fehlingschen Lösung.

11 [031701]

6.9. 2-Aminosäuren

Charakteristik der 2-Aminosäuren

Karbonsäuren mit einer Aminogruppe —NH, an dem der Karboxylgruppe —COOH benachbarten Kohlenstoffatom.

2-Aminosäuren sind Bausteine der Eiweiße; liegen in wäßriger Lösung als Zwitterionen vor; sind amphoter und bilden sowohl mit Säuren als auch mit Basen Salze.

Name	Trivialnamen, ältere Bezeichnung	vereinfachte Strukturformel
Aminoäthansäure	Glykokoll, Glyzin, Aminoessigsäure	CH _s —COOH
2-Aminopropansäure	Alanin, α-Aminopropion- säure	СН ₃ —СН—СООН NH ₃
2-Amino-3-methyl- butansäure	Valin, α-Aminoisovalerian- säure	CH _s —CH—CH—COOH CH _s NH _s
2-Aminopentan- disäure-(1,5)	Glutaminsäure, α-Aminoglutarsäure	HOOC-CH ₂ -CH ₂ -CH-COOH NH ₂
2-Amino-3-hydroxy- propansäure	Serin; α -Amino- β -oxypropionsäure	CH ₂ —CH—COOH OH NH ₂
2-Amino-3-phenyl- propansäure	Phenylalanin, α-Amino-β-phenyl- propionsäure	—————————————————————————————————————

6.10. Amine

Charakteristik der Amine

Amine sind stickstoffhaltige organische Verbindungen, die vom Ammoniak abgeleitet sind.

Nach der Anzahl der Wasserstoffatome des Ammoniaks, die durch Kohlenwasserstoffreste substituiert sind, unterscheidet man:

primäre Amine

R-NH.

sekundäre Amine

R-NH-R

tertiäre Amine

Name	Formel	vereinfachte Strukturformel
Methylamin	CH ₃ —NH ₃	CH ₃ —NH ₂
Aminobenzol (Anilin, Phenylamin)	C ₆ H ₅ —NH ₅	CH ₃ —NH ₂
Diäthylamin	(C₂H₅)₂NH	CH ₃ —CH ₂ CH ₃ —CH ₃
Diphenylamin	(C ₆ H ₅)₂NH	N-W-O
Trimethylamin	(CH _s) _s N	CH _s —N—CH _s

Aminobenzol

Formel: C₆H₅—NH₂; farblose, leicht ölige Flüssigkeit, die sich an der Luft schnell bräunt; erstarrtbei—6,2°C; eigenartiger Geruch; in Wasserwenig löslich; mit vielen organischen Lösungsmitteln unbegrenzt mischbar; Aminobenzoldämpfe sind giftig.

6.11. Nitroverbindungen

Charakteristik der Nitroverbindungen

Nitroverbindungen sind Derivate der Kohlenwasserstoffe, die die Nitrogruppe —NO₂ enthalten; allgemeine Formel:

✓ Seite 32, 33

Name	Formel	vereinfachte Strukturformel
Nitrobenzol	C ₆ H ₅ —NO ₂	O-NO ₂
1-Methyl-2,4,6-trinitrobenzol (2,4,6-Trinitrotoluol, Trotyl)	C ₆ H ₃ (NO ₃) ₃ CH ₃	O ₂ N

Nitrobenzol

Formel: C₆H₅—NO₂; gelbliche Flüssigkeit; bittermandelähnlicher Geruch; in Wasser nur spurenweise löslich; gut löslich in Äthanol und Benzol; größere Dichte als Wasser; Nitrobenzoldämpfe sind giftig; wird von atomarem Wasserstoff zu Aminobenzol reduziert.

Reduktion
$$C_eH_s$$
— $NO_s + 6 H \rightarrow C_eH_s$ — $NH_s + H_sO$

1-Methyl-2,4,6-trinitrobenzol

Formel: C₆H₂(NO₂)₂CH₃; blaßgelbes Pulver; in Wasser wenig löslich; gut löslich in Äthanol; schmilzt bereits bei 80,8 °C; unempfindlich gegen Stoß, explodiert jedoch nach Initialzündung mit hoher Brisanz.

6.12. Säureamide

Charakteristik der Säureamide

Säureamide sind Derivate von Karbonsäuren, bei denen das Hydroxyl der Karboxylgruppe durch die Aminogruppe ersetzt ist; allgemeine Formel:

Name	Formel	vereinfachte Strukturformel
Kohlensäurediamid (Harnstoff, Karbamid)	CO(NH ₂) ₂	O=C NH ₂
ε-Aminokaprolaktam (Laktam)	(CH ₂) ₅ NH	H ₂ CCH ₂ —CH ₂ —NH

Harnstoff

Formel: CO(NH₂)₂; prismenförmige Kristalle; in Wasser und Äthanol leichtlöslich; äußerst schwache Base, reagiert mit Säuren unter Salzbildung; wird beim Erhitzen mit starken Hydroxidlösungen hydrolytisch gespalten; beim trockenen Erhitzen entstehen Ammoniak und Biuret.

Hydrolytische Spaltuna

Zersetzung

$$2 CO(NH_2)_2 \xrightarrow{Erhitzen} H_2N-CO-NH-CO-NH_2 + NH_3$$

✓ Seite 192, 238

ϵ -Aminokaprolaktam

Formel: (CH₂), Weiße Substanz: in Wasser löslich; polymerisiert bei

Anwesenheit von Katalysatoren zu kettenförmigen Makromelekülen (Polykaprolaktam).

/ Seite 192, 193, 239

6.13. Ester

Charakteristik der Ester

Stoffe, die durch Reaktion von Alkoholen oder Phenolen mit Säuren entstehen.

> Selte 78, 169

Name	ältere Bezeichnung	Formel
Dimethylsulfat	Schwefelsäuredimethyl- ester	(CH ₃) ₂ —O— SO ₃
Äthylnitrit	Salpetrigsäureäthyl- ester	C₂H₅—O—NO
Methyläthanat	Methylazetat, Essigsäuremethylester	CH ₃ —O—OC—CH ₃
Äthyläthanat	Äthylazetat, Essigsäureäthylester	C ₂ H ₅ —O—OC—CH ₃
Pentyläthanat	Amylazetat, Essigsäureamylester	C ₅ H ₁₁ —O—OC—CH ₃
Methylbenzoat	Benzoesäuremethylester	CH ₃ —O—OC—C ₆ H ₅ CH ₂ —O—NO ₂
Propantrioltrinitrat	Glyzeryltrinitrat, "Nitroglyzerin"	CH_O_NO ₂ CH ₂ _O_NO ₃

Äthyläthanat

Formel: C₃H₅—O—OC—CH₃; farblose, leichtbewegliche Flüssigkeit; fruchtartiger Geruch; mit Wasser nur wenig mischbar; geringere Dichte als Wasser; niedrige Siedetemperatur (78°C).

Propantrioltrinitrat

Formel: CH₂(O-NO₂)-CH(O-NO₂)-CH₂(O-NO₂); ölartige, farblose Flüssigkeit; hochexplosiv, explodiert bereits bei Schlag, Stoß, Reibung sowie bei Einwirkung von Wärme oder Kälte äußerst heftig.

6.14. Kohlenhydrate

Charakteristik der Kohlenhydrate

Gruppe von Naturstoffen der allgemeinen Formel: C,H2mOm

Name	allgemeine Formel	charakteristische Merkmale	
Monosacharide C _s H ₁₅ O _s		Moleküle werden nicht durch Säure- hydrolyse gespalten	
Disacharide	C ₁₂ H ₂₂ O ₁₁	Moleküle werden durch Säurehydrolyse in je zwei Moleküle Monosacharide ge- spalten	
Polysacharide	(C ₆ H ₁₀ O ₅) _n	Moleküle werden durch Säurehydrolyse in jeweils mehrere Moleküle Mono- sacharide gespalten	

Glukose

Formel: $C_6H_{12}O_6$; ältere Bezeichnung: Traubenzucker; weißes Pulver; geruchlos; süßer Geschmack; in Wasser leicht, in Äthanol nur wenig löslich; wirkt reduzierend; Moleküle sind ketten- oder ringförmig gebaut:

Kettenform

Ringform

In der wäßrigen Lösung liegt zwischen beiden Formen ein Gleichgewicht vor, das stark nach der Seite der Ringform verschoben ist. Glukose wandelt sich beim Erhitzen auf 210 °C in eine schwarzbraune bitterschmeckende Masse um (Zuckerfarbe).

Sacharose

Formel: C₁₅H₂₅O₁₁; ältere Bezeichnung: Rohrzucker; große, farblose Kristalle (Kandiszucker) oder weißes, kristallines Pulver (Kristallzucker); sehr süßer Geschmack; in Wasser leicht, in Äthanol nur wenig löslich; wirkt nicht reduzierend; bildet bei vorsichtigem Erhitzen eine braune, angenehm schmeckende Masse (Karamelzucker); wird beim Sieden mit stark verdünnten Säuren in Glukose und Fruktose (Fruchtzucker) zerlegt.

Stärke

Formel: (C_eH₃₀O_s)_n; feines, weißes Pulver; geruchlos und geschmackfrei; in kaltem Wasser unlöslich; teilweise löslich in 60 bis 80 °C heißem Wasser (Stärkekleister); Lösung wirkt nicht reduzierend; wird durch Enzyme oder durch Erhitzen mit verdünnten Säuren in reduzierende Stoffe umgewandelt.

Hydrolytische Spaltung
$$(C_6H_{10}O_6)_n + n H_2O \rightarrow n C_6H_{15}O_6$$
Glukom

Zellulose

Formel: (C₆H₁₀O₆)_m; weißer, fester Stoff; geruchlos und geschmackfrei; auch in siedendem Wasser unlöslich; gegen verdünnte Laugen beständig; kann durch kombinierte Behandlung mit konzentrierten und verdünnten anorganischen Säuren abgebaut werden; reagiert mit konzentrierten, wasserfreien Säuren unter Esterbildung (Salpetersäureester, Äthansäureester).

✓ Seite 191, 193, 228, 237, 239

6.15. Eiweiße

Charakteristik der Eiweiße

Gruppe hochmolekularer organischer Verbindungen, deren Moleküle im wesentlichen aus Kohlenstoff, Wasserstoff, Sauerstoff, Stickstoff und Schwefel bestehen. Durch besondere Verknüpfung von 2-Aminosäuren (Peptidbindung) entstehen Polypeptide, die die Eiweiße aufbauen.

/ Seite 77, 162

Proteine

Einfache Elweiße, die nur aus 2-Aminosäuren aufgebaut sind; werden nach ihrer Löslichkeit in Wasser und anderen Eigenschaften unterteilt.

Proteide

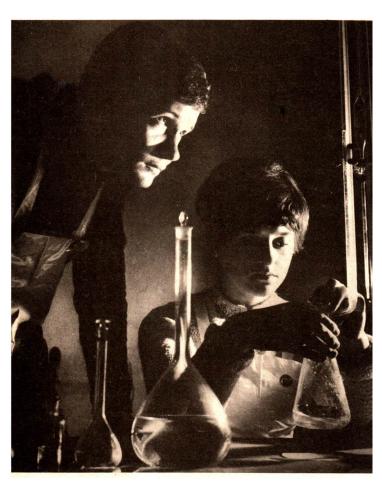
Zusammengesetzte Eiweiße, die außer dem Eiweißbestandteil noch andere Verbindungen enthalten; werden nach der Art des zweiten Bestandteils in Untergruppen eingeteilt.

6.16. Fette

Charakteristik der Fette

Gruppe von Naturstoffen, die aus Gemischen von Estern des Propantriols mit mittleren und höheren Monokarbonsäuren (Fettsäuren) bestehen.

Am häufigsten kommen in den Fetten die Hexadekansäure $C_{18}H_{31}$ —COOH, die Oktadekansäure $C_{17}H_{33}$ —COOH und die Oktadezensäure $C_{17}H_{33}$ —COOH vor.

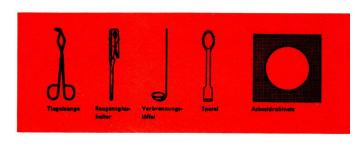

/ Seite 78, 166

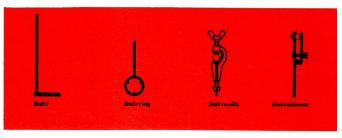
Fett

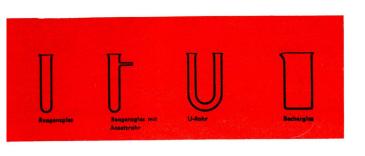
Bei Raumtemperatur festes Fett, enthält vorwiegend Reste gesättigter Monokarbonsäuren.

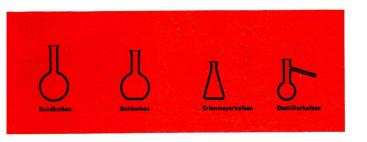
Fettes Öl

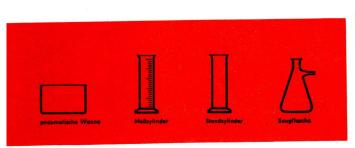
Bei Raumtemperatur flüssiges Fett; enthält vorwiegend Reste ungesättigter Monokarbonsäuren.

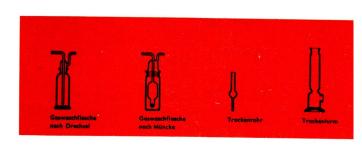


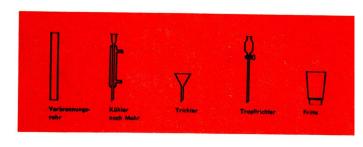

Chemische Experimente

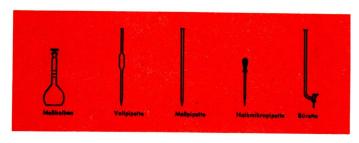

Seite 176	7.2.	Allgemeine Experimentierregeln
Seite 176	7.3.	Arbeitsmethoden und Versuchsapparaturen
Seite 176	7.3.1.	Stofftrennung
Seite 180	7.3.2.	Auffangen von Gasen
Seite 181	7.3.3.	Durchführung von Reaktionen
Seite 187	7.4.	Nachweisreaktionen
Seite 187	7.4.1.	Anorganische Stoffe
Seite 190	7.4.2.	Organische Stoffe
Salta 402	7 =	I Infalls on hither a

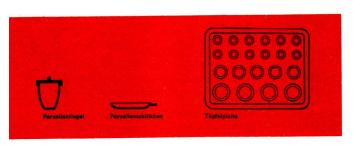

Seite 172 7.1. Laborgeräte











7.2. Allgemeine Experimentierregeln

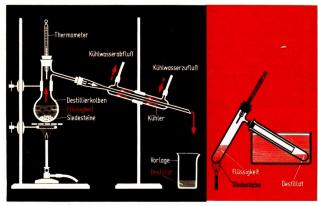
Vorbereitung eines Versuches

Seite 193 bis 195

- 1. Durchdenken der Versuchsaufgabe, bis diese vollständig erkannt ist.
- 2. Überlegen, in welcher Weise die Versuchsaufgabe gelöst werden kann.
- Auswahl der zweckmäßigsten Versuchsapparatur und Anfertigung einer Versuchsskizze.
- Überlegen, welche Gefahren bei dem Versuch auftreten können, und welche Vorsichtsmaßnahmen getroffen werden müssen.
- 5. Bereitstellen der erforderlichen Geräte und Chemikalien.
- 6. Zusammenbau und Überprüfen der Versuchsapparatur.
- Überlegen, in welchen Teilschritten der Versuch durchzuführen ist, und was dabei beobachtet werden muß.

Durchführung und Auswertung des Versuches

- 1. Durchführen des Versuches und Beobachten des Versuchsablaufs.
- Stillegen der Versuchsapparatur und unfallsichere Aufbewahrung aller Reaktionsprodukte.
- 3. Festhalten des Beobachtungsergebnisses (Versuchsprotokoll).
- 4. Deutung beziehungsweise Auswertung des Versuchsergebnisses.
- Aufräumen des Arbeitsplatzes, Reinigen der benutzten Geräte, danach Reinigen der Hände.


7.3. Arbeitsmethoden und Versuchsapparaturen

7.3.1. Stofftrennung

Destillieren

Der Destillierkolben darf höchstens bis zur Hälfte gefüllt sein. Bevor die Flüssigkeit im Destillierkolben erhitzt wird, stellt man den Kühlwassserzufluß an. Das Kühlwasser muß meist im Gegenstrom fließen. Die zu erwartende Temperatur im Destillierkolben wird mit einem Thermometer (Meßbereich beachten!) ge-

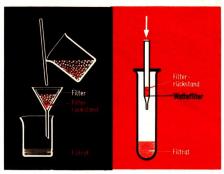
b Schülerversuchsapparatur

messen, dessen Ende bis kurz unter das Ansatzrohr reichen muß. Man erwärmt den Kolben zunächst vorsichtig mit größerer Flamme, beim Sieden jedoch mit kleinerer Flamme. Etwaiger Siedeverzug wird vermieden, wenn man Siedesten in die Flüssigkeit gibt. Bei der fraktionierten Destillation läßt man die Temperatur langsam ansteigen und wechselt bei Überschreiten der jeweiligen Siedebereiche die Vorlage.

Eindampfen einer Lösung

Die Abdampfschale wird höchstens bis etwa zur Hälfte mit der Lösung gefüllt. Unter ständigem Umrühren mit einem Glasstab erwärmt man mit kleiner Flamme. Der Brenner wird entfernt, nachdem das Lösungsmittel bis auf geringe Reste verdampft ist. Die Reste verdampfen schnell

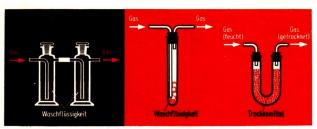
in der noch heißen Abdampfschale.



177

12 [031701]

Filtrieren


Ein gefaltetes Filter wird in einen entsprechend großen Trichter eingelegt, mit destilliertem Wasser befeuchtet und an die Trichterwand gedrückt. Man läßt die zu filtrierende Flüssigkeit an einem Glasstab in das Filter laufen. Das Filter wird nur bis 1 cm unterhalb des Filterrandes gefüllt. Man gießt erst nach, wenn die Flüssigkeit aus dem Filter abgelaufen ist. Das schräge Ende des Trichterrohres soll an der Wand des Auffanggefäßes anliegen (a).

b Schülerversuchsapparatur

Reinigen und Trocknen von Gasen

Gase werden vor der Verwendung meist gereinigt oder getrocknet. Flüssige Trocken- beziehungsweise Reinigungsmittel setzt man in Gaswaschflaschen,

Gaswaschflaschen

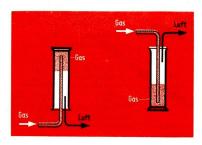
Gaswaschgerät für Schülerversuche

Trockenrohr

7

feste in Trockenrohren ein. Drückt man ein Gas durch die Waschflasche, so wird das Gas in das in die Flüssigkeit tauchende Rohr geführt.

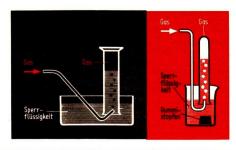
Saugt man ein Gas durch eine Flüssigkeit in der Waschtlasche, so wird die Pumpe an das Rohr angeschlossen, das nicht in die Flüssigkeit taucht. Überschüssige Gase, die giftig oder gefährlich sind, müssen unschädlich gemacht werden.


Gas	Waschflüssigkeit	Treckenmittel	Unschädlichmachen
Äthen	Wasser, Natrium- hydroxidlösung	At M	Ableiten ins Freie
Åthin	Natrium- hydroxidlösung, Kalium- dichromatlösung und Schwefelsäure		Ableiten ins Freie
Chlor	gesättigte Kaliumperman- ganatlösung	konz. Schwefelsäure oder Kalziumchlorid	Durchleiten durch Natronkalk
Chlor- wasserstoff		konz. Schwefelsäure oder Kalziumchlorid	Durchleiten durch Natronkalk
Kohlen- dioxid	Wasser	konz. Schwefelsäure oder Kalziumchlorid	Durchleiten durch Natronkalk
Kohlen- monoxid	Natrium- hydroxidlösung	konz. Schwefelsäure oder Kalziumchlorid	Verbrennen (Knallgasprobe!)
Saverstoff	Wasser	konz. Schwefelsäure oder Kalziumchlorid	
Schwefel- dioxid		konz. Schwefelsäure oder Kalziumchlorid	Durchleiten durch Natronkalk
Schwefel- wasserstoff	Wasser	Kalziumchlorid	Durchleiten durch Natronkalk
Wasserstoff	gesättigte Kaliumperman- ganatlösung, Kalium- hydroxidlösung	konz. Schwefelsäure	Verbrennen (Knallgasprobe!)

7.3.2. Auffangen von Gasen

Auffangen von Gasen durch Luftverdrängung

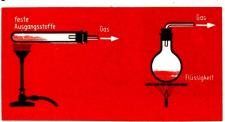
Bei Gasen mit kleinerer Dichte als Luft muß die Öffnung des Auffanggefäßes nach unten, bei größerer Dichte nach oben gerichtet sein. Das Gas ist genügend lange in das Auffanggefäß zu leiten. Bei giftigen Gasen muß man unter dem Abzug arbeiten.


✓ Seite 197

aufzufangendes Gas	Dichte im Verhältnis zu Luft
Ammoniak, Methan, Wasserstoff	kleinere Dichte als Luft
Chlor, Chlorwasserstoff, Kohlendioxid, Schwefeldioxid	größere Dichte als Luft

Pneumatisches Auffangen von Gasen

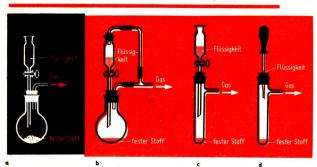
Das Auffanggefäß muß vollständig mit Sperrflüssigkeit gefüllt sein. Die Flüssigkeitsmenge in der pneumatischen Wanne ist so zu bemessen, daß die aus dem Auffanggefäß herausgedrückte Sperrflüssigkeit noch aufgenommen wird. Nachdem das pneumatische Auffangen beendet ist, nimmt man das Ableitungsrohr aus der Sperrflüssigkeit, damit diese nicht in den Gasentwicklungsraum eindringen kann. Für Schülerversuche werden an Stelle der pneumatischen Wanne und des Standzylinders kleinere Geräte verwendet.



aufzufangendes Gas	Sperrflüssigkeit
Äthin, Äthen, Kohlenmonoxid, Methan, Sauer- stoff, Stickstoff, Stickstoffmonoxid, Wasserstoff	Wasser
Chlor, Kohlendioxid, Schwefelwasserstoff	konzentrierte Natrium- chloridlösung

7.3.3. Durchführung von Reaktionen

Gasentwicklung durch Erhitzen von Stoffen

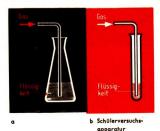

Feste Ausgangsstoffe werden im Reagenzglas und flüssige im Rundkolben erhitzt. Bei Flüssigkeiten soll man die Temperatur nicht zu hoch wählen, damit sich Dampf nicht übermäßig entwickelt.

Gas ¹	Ausgangsstoff	Reaktion
Ammoniak	Ammoniakwasser	NH ₃ ·H ₂ O → H ₂ O + NH ₃ ↑
Kohlendloxid	Kohlensäurelösung	H₂CO₃ → H₂O + CO₂↑
Kohlendioxid	Natriumhydrogen- karbonat	2 NaHCO ₃ → Na ₂ CO ₃ + H ₂ O + CO ₂ ↑
Methan	Natriumäthanat und Natronkalk	CH ₃ —COONa + NaOH → Na ₂ CO ₃ + CH ₄ ↑
Methanal	Paraformaldehyd	(CH ₂ O) _n → n HCHO↑
Sauerstoff	Kaliumnitrat	2 KNO ₃ → 2 KNO ₂ + O ₂ ↑
Saverstoff	Kaliumchlorat und Mangan(IV)-oxid	2 KCIO ₃
Saverstoff	Quecksilber(II)-oxid	2 HgO → 2 Hg + O ₂ ↑
Schwefeldioxid	schweflige Säure	H ₂ SO ₃ → H ₂ O + SO ₂ ↑

¹ alphabetisch geordnet.

Gasentwicklung durch Reaktion fester und flüssiger Substanzen

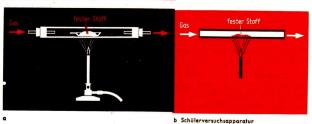
Schülerversuchsapparaturen


Man läßt die Flüssigkeit langsam auf den festen Stoff tropfen. Wenn an die Apparatur Gaswaschflaschen anzuschließen sind, sollte man einen Gasentwickler mit Druckausgleich (b) verwenden. Dadurch kann Gas nicht durch den Hahn des Tropftrichters austreten.

Gas ¹	Ausgangsstoffe	
Gas*	flüssig	fest
Äthin	Wasser	Kalziumkarbid
Chlor	Salzsäure, konzentriert	Kaliumpermanganat
Chlorwasserstoff	Schwefelsäure, konzentriert	Natriumchlorid
Kohlendioxid	Salzsäure, verdünnt	Karbonat
Saverstoff	Wasserstoffperoxid	Mangan(IV)-oxid
Schwefeldioxid	Salzsäure	Sulfite
Schwefelwasserstoff	Salzsäure, halbkonzentriert	Sulfide
Stickstoffmonoxid	Salpetersäure, halbkonzentriert	Kupfer
Wasserstoff	Salzsäure, verdünnt	Zink

¹ alphabetisch geordnet.

Reaktion gasförmiger mit flüssigen Stoffen


Der gasförmige Stoff wird durch ein Glasrohr in die Flüssigkeit eingeleitet. Das Rohr soll möglichst tief eintauchen, damit der gasförmige Stoff beim Durchperlen durch die Flüssigkeit in genügender Menge aufgenommen wird. Bei Gasen, die von der Flüssigkeit stark absorbiert werden, darf das Rohr nicht eintauchen!

Ausgangsstoffe		Parking at the	
gasförmig ¹	flüssig	Reaktionsprodukte	
Äthin	Wasser	Äthanal	
Kohlendioxid	Kalziumhydroxidlösung	Kalziumkarbonat (Kalziumhydrogen- karbonat), Wasser	
Kohlendioxid	Wasser	Kohlensäure	
Schwefeldioxid	Wasser	schweflige Säure	
Schwefelwasserstoff	Bleinitratlösung	Bleisulfid, Salpetersäure	
Stickstoffdioxid und Sauerstoff	Wasser	Salpetersäure	

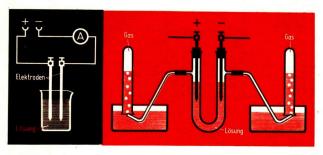
¹ alphabetisch geordnet.

Reaktion gasförmiger mit festen Stoffen

b Scholerversuchsapparatur

Gasförmige Stoffe werden über den festen Stoff in einem Verbrennungsrohr geleitet. Die festen Stoffe sind im Verbrennungsrohr entweder als Häufchen, in einem Porzellanschiffchen oder in einer (oft durch Glaswolle festgehaltenen) Schicht angeordnet. Sie müssen meist erhitzt werden.

Ausgangsstoffe		Reaktionsprodukte	Bemerkungen
gasförmig ¹	fest	neukilolispi odokie	Series Ronger
Ammoniak	Kupfer(II)-oxid	Stickstoff, Wasserdampf, Kupfer	Ammoniak durch Natriumhydroxid trocknen!
Ammoniak– Luft-Gemisch	Katalysator	Stickstoff- monoxid, Wasserdampf	Reaktionsgemisch durch Natriumhydroxid trocknen!
Äthanoldampf	Aluminiumoxid (Katalysator)	Äthen, Wasserdampf	
Chlor	Natrium	Natrium- chlorid	Überschüssiges Chlor durch Natronkalk binden!
Kohlendioxid	Zink	Kohlenmon- oxid, Zinkoxid	Nicht reduziertes Kohlen- dioxid durch Natrium- hydroxid binden!
Luft	Holzkohle (längere Schicht)	Generatorgas	Kohlendioxidreste durch Kalziumhydroxidlösung binden!
Luft	Kupferdrahtnetz	Stickstoff, Kupfer(II)-oxid	Kohlendioxid der Luft vor dem Überleiten durch Natriumhydroxid binden!
Methanol- dampf-Luft- Gemisch	Kupferwolle (Katalysator)	Methanal, Wasserdampf	
Saverstoff (Luft)	Pyrit	Schwefeldioxid, Eisen(III)-oxid	
Saverstoff (Luft)	Schwefel (Katalysator)	Schwefel- trioxid	
Saverstoff (Luft)	Schwefel	Schwefel- dioxid	


alphabetisch geordnet.

Ausgangsstoffe		Reaktionsprodukte	Bemerkungen
gasförmig ¹	fest	- ReakHolispi odokie	Demerkungen
Saverstoff (Luft) Schwefeldioxid	Katalysator	Schwefel- trioxid	
Wasserdampf	Holzkohle	Wassergas	Kohlendioxidreste durch Kalziumhydroxidlösung binden!
Wasserstoff	Kupfer(II)-oxid	Wasserdampf, Kupfer	Nichtoxydierten Wasserstoff entzünden! (Knallgasprobe!
Wasserstoff	Schwefel	Schwefel- wasserstoff	

¹ alphabetisch geordnet.

Elektrolyse einer Lösung

In die Lösung tauchen zwei Elektroden, die mit einer Stromquelle verbunden sind. In den Stromkreis kann man ein Strommeßgerät oder eine Glühlampe einschalten. Sollen gasförmige Elektrolyseprodukte aufgefangen werden, so verwendet man zweckmäßig ein U-Rohr mit seitlichen Ansatzrohren, leitet die Gase ab und fängt sie pneumatisch auf.

Titration (Neutralisationsanalyse)

Maßanalytisches Verfahren, bei dem die Konzentration einer Säure (Azidimetrie) oder einer Hydroxidlösung (Alkalimetrie) durch Zugabe einer Normallösung quantitativ bestimmt werden kann. Eine bestimmte Menge (etwa 10 ml) der zu untersuchenden Lösung wird in ein Becherglas oder einen Weithals-Erlenmeyerkolben gegeben. Man setzt einige Tropfen Indikatorlösung hinzu. Dann läßt man langsam die Normallösung aus einer Bürette in die Flüssigkeit tropfen, bis der Farbumschlag des Indikators anzeigt, daß die Reaktion beendet ist. Das Becheralas wird dabei ständig geschwenkt, um die zugetropfte Flüssigkeit ausreichend zu verteilen. Nach Beendigung der Reaktion schließt man sofort den Hahn der Bürette. An der Skale ist die verbrauchte Flüssigkeitsmenge abzulesen. Der Verbrauch von einem Milliliter 1 n

Der Verbrauch von einem Milliter 1 n Lösung entspricht einem Milligrammäquivalent der zu bestimmenden Substanz.

✓ Seite 106

7.4. Nachweisreaktionen

7.4.1. Anorganische Stoffe

Flammenfärbungen (Vorproben)

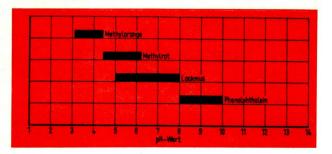
Färben der entleuchteten Flamme eines Gasbrenners, nachdem die Substanz in die Flamme mit Hilfe eines ausgeglühten Magnesiastäbchens eingebracht wurde.

Metall	Lithium	Natrium	Kalium	Kalzium	Barium	Kupfer
Flammen- färbung	rot	gelb	violett	ziegelrot	gelbgrün	grün

Fällungsreaktionen

Chemische Umsetzungen, bei denen in wäßrigen Lösungen Ionenreaktionen ablaufen, die zur Bildung eines Niederschlages führen.

Nachweis für	Reagens	Reaktionsmerkmal
Bromid-Ionen	Silbernitratlösung	Fällung: gelbliches Silberbromid Ag+ + Br- → AgBr↓ löslich in konzentrierter Ammoniaklösung
Chlorid-lonen	Silbernitratlösung	Fällung: weißes Silberchlorid Ag+ + Cl- → AgCl↓ löslich in verdünnter Ammoniaklösung
Jodid-Ionen	Silbernitratlösung	Fällung: gelbes Silberjodid $Ag^+ + J^- \to \underset{\text{unlöslich in Ammoniaklösung}}{\text{AgJ}} \downarrow$
Kalium-Ionen	Perchlorsäure	Fällung: farbloses, kristallines Kaliumperchlorat $K^+ + CIO_4^- \rightarrow \underline{KCIO_4} \downarrow$
Kalzium-lonen	Ammoniumäthan- diatlösung	Fällung: weißes Kalziumäthandiat Ca ²⁺ + (COO) ₂ ²⁻ → Ca(COO) ₂ ↓ löslich in Salzsäure unter Kohlendioxidentwicklung
Kohlendloxid	Kalziumhydroxid- lösung Bariumhydroxid- lösung	Fällung: weißes Kalziumkarbonat Ca ²⁺ + CO ₃ ²⁻ → CaCO ₃ ↓ Fällung: weißes Bariumkarbonat Ba ²⁺ + CO ₃ ²⁻ → BaCO ₃ ↓
Phosphat-lonen	Ammoniummolybdat in salpetersaurer Lösung	Fällung: gelbes Ammoniumphosphormolybdat (NH ₄) ₃ PO ₄ · 12 MoO ₃ · x H ₂ O
	Ammoniumchlorid- Magnesiumchlorid- Lösung mit Ammoniak- wasser versetzt	Fällung: weißes Magnesium-Ammonium- phosphat Mg(NH ₄)PO ₄ · 6 H ₂ O


Nachweis für	Reagens	Reaktionsmerkmal
Sulfat-lonen	Bariumchlorid in salzsaurer Lösung	Fällung: weißes Bariumsulfat Ba ²⁺ + SO ₄ ² → BaSO ₄ ↓
Sulfid-lonen	Bleiäthanatlösung Bleinitratlösung	Fällung: schwarzes Bleisulfid Pb²+ + S²- → PbS ↓

<u>Farbreaktionen</u>

Reaktionen, bei denen durch Zusammengießen von Lösungen (bzw. Eintauchen von Indikatorpapieren in Lösungen) eine Farbänderung auftritt, ohne daß ein Niederschlag ausfällt.

Nachweis für	Reagens	Reaktionsmerkmal
Eisen(III)-Ionen	Kaliumthiozyanat- lösung	Färbung: rot Fe³+ + 3 SCN− → Fe(SCN) ₃
Hydroxid-lonen	Lackmus Phenolphthalein Methylrot pH-Papier	Färbung: blau Färbung: rot Färbung: gelb Färbung: Feststellung des pH-Wertes durch Vergleich mit Farbskale
Kupfer(II)-lonen	Ammoniak im Überschuß	Fărbung: tiefblau $Cu^{2+} + 2 OH^- \rightarrow Cu(OH)_3$ $Cu(OH)_2 + 4 NH_3 \rightarrow [Cu(NH_3)_4]^{2-} + 2 OH^-$
Nitrat-lonen	Schwefelsäure, Eisen(II)-sulfat; konzentrierte Schwefelsäure	violett bis brown gefärbter Ring von Nitrosoeisen(II)-sulfat [Fe(NO)]SO ₄
Wasserstoff-lonen	Lackmus Methylorange pH-Papier	Färbung: rot Färbung: rot Färbung: Feststellung des pH-Wertes durch Vergleich mit Farbskale

Umschlagbereiche von Indikatoren

Nachweis von Ammoniak und Ammonium-Ionen

Nachweis für	Reagens	Reaktionsmerkmal
Ammoniak	Salzsäure	weiße Nebel von Ammoniumchlorid NH₃ + HCl → NH₄Cl
Ammonium-lonen	starke Basen	Ammoniak entweicht

7.4.2. Organische Stoffe

Elementaranalyse organischer Stoffe

Nachweis für	Reagens	Reaktionsmerkmal	
Halogene	Glühen auf einer Kupferdrahtöse	Flammenfärbung: grün	
Wasserstoff Erhitzen mit Kupfer(II)-oxid		Reduktion zu Kupfer; Wasserstoff als Wasser (Tröpfchen an kälteren Stellen des Reaktions- gefäßes), Kohlenstoff als Kohlendioxid nach- weisbar	

Nachweis für Reagens		Reaktionsmerkmal	
Stickstoff	Erhitzen mit Kupfer(II)-oxid; Grieß-Reagens	Bildung von Stickoxiden; Färbung von Grieß-Reagens: rot	
Schwefel	Glühen mit Natriumkarbonat	Bildung von Natriumsulfid; Nachweis der Sulfid-Ionen als Bleisulfid	

Nachweisreaktionen organischer Verbindungen

Nachweis für	Reagens	Reaktionsmerkmal
Alkanale	Schiffs Reagens	Färbung: rotviolett (infolge Bildung einer Additionsverbindung)
Eiweiße	konzentrierte Salpetersäure	Färbung: gelb; bei Zusatz basischer Lösungen: orange (Xanthoprotein- Reaktion)
Elweißlösung	Kaliumhydroxidlösung, Kupfersulfatlösung	Färbung: rotviolett
Mehrfach-	Brom	Entfärbung infolge Addition von Brom
bindungen	Baeyers Reagens	Ausflockung: braunes Mangan(IV)- oxidhydrat
Propanon Dinatriumpentazyano- nitrosoferrat in basischer Lösung		Färbung: rot; bei Zusatz von Äthansäure: kirschrot
Reduktions-	Fehlingsche Lösung	Beim Erhitzen zu <mark>nä</mark> chst Verfärbung, dann ziegelroter Niederschlag von Kupfer(I)- oxid
wirkung	ammoniakalische Silbersalzlösung	Beim Erwärmen Schwarzfärbung durch Ausscheidung von feinverteiltem Silber; Silberspiegel an der Gefäßwand
Stärke	Jod-Kaliumjodid-Lösung	Färbung: blau
Zellulose	Chlorzinkjodlösung	Färbung: blau

Brennprobe bei Plasten

Plast ¹	Verhalten beim Einbringen in die Flamme bei der Verbren- nung auftretende Gerüche		Besonderheiten
Aminoplaste	brennt schwer, wobei das Material unter knackendem Geräusch verkohlt Methanal		Füllstoffe können brennen und Gerüche stark beeinflussen
Epoxidharze	brennt langsam mit hellorangefarbiger, blävlich gesävmter, rußender Flamme	etwas nach Phenol	
Phenoplaste	brennt schwer, wobei das Material platzt und verkohlt; gelbe Flamme	nach Phenol und Methanal	Füllstoffe können brenner und Gerüche stark beeinflussen
Polyamid	brennt mit bläulicher, gelbgesäumter Flamme; schmilzt beim Brennen	iumter Flamme; Benzol	
Polyäthylen	brennt am Anfang mit bläu- licher, dann mit gelber Flamme; schmilzt beim Brennen		tropft beim Brennen; Tropfen brennen weiter
Polyester	schwer zu entzünden; brennt dann mit gelber, rußender Flamme		kann durch Zusätze fast unentflammbar sein
Polymethakryl- säureester (Piacryl)	brennt mit gelber, fruchtartig, knisternder Flamme süßlich		
Polystyrol	brennt mit leuchtend gelber, rußender Flamme; schmilzt beim Brennen	süßlich und nach Benzol	
Polyvinyl- chlorid (PVC)	brennt schwer; die Flamme ist etwas grün- lich gefärbt	stechend nach Chlorwasserstoff	brennt nicht weiter, wenn die Probe aus der Brennerflamme genom- men wird
Zelluloid	brennt sehr heftig mit gelber Flamme	nach Kampfer	feuergefährlich
Zellulose- azetat	brennt mit etwas sprühender Flamme	nach Essig	tropft beim Brennen, Tropfen brennen weiter

¹ alphabetisch geordnet.

Brennprobe bei Fasern

Faserart ¹	Verbrennungsweise Geruch		Rückstand	
Azetatseide	entzündlich ; schmilzt beim Erhitzen	stechend saver	zunächst blasige Kugeln schließlich weiße Asche	
Baumwolle	leicht entzündlich ;	nach verbrennen-	weißgrau bis gelblich;	
	brennt ziemlich rasch	dem Papier	fühlt sich glatt an	
PC-Faser	nicht entflammend;	stechender Geruch	schwarz;	
(Piviacid)	schmort zusammen		zusammengeschmort	
Polyakryinitrii- faser (Wolpryla)	schmilzt erst zusammen; schwach brennt dann ziemlich rasch mit rußender Flamme		schwarzbraun, blasig-kohlig	
Polyamidfaser	schmilzt zusammen; schwach amidartig		braun;	
(Dederon)	brennt schwer		zusammengeschmolzen	
Polyesterfaser	schmilzt zusammen; süßlich		braun;	
(Grisuten)	brennt weiter		zusammengeschmolzen	
Viskosefaser	leicht entzündlich ;	nach verbrennen-	weißgrau;	
und -seide	brennt ziemlich rasch	dem Papier	fühlt sich glatt an	
Wolle	weniger leicht entzündlich;	nach verbrannten	blasig-kohlig;	
	brennt langsam	Haaren	fühlt sich sandig an	

¹ alphabetisch geordnet.

7.5. Unfallverhütung

Allgemeine Regeln

Schülerexperimente erfordern besondere Aufmerksamkeit und Sorgfalt. Vor allem sollten folgende Regeln beachtet werden:

- Für Ordnung und Sauberkeit am Arbeitsplatz sorgen!
- Alle Geräte sorgsam und pfleglich behandeln! Beschädigungen und Verluste sind unverzüglich dem Lehrer zu melden.

7

- Diszipliniert verhalten und aufmerksam die Erläuterungen des Lehrers verfolgen!
- ▶ Rechtzeitig über die Gefährlichkeit der verwendeten Stoffe und über Gefahren informieren, die bei einem Versuch auftreten können!
- ▶ Jeweils nur geringe Substanzmengen verwenden!
- Den Versuch erst beginnen, wenn klar ist, was zu tun ist und wie man vorgehen muß!
- Kleidung durch eine Schürze oder einen Kittel schützen! Auch weitere vorgeschriebene Schutzvorrichtungen (Schutzbrille, Abzug, Schutzscheibe usw.) verwenden!
- ▶ Alle Verletzungen sofort dem Lehrer melden!
- Bei irgendwelchen außergewöhnlichen Zwischenfällen die Ruhe bewahren und die Anordnungen des Lehrers befolgen.
- Informieren, wo sich die Feuerlöschgeräte und der Kasten für die Erste Hilfe befinden.
- Die Vorsichtsmaßnahmen für den Umgang mit Chemikalien einhalten!

Gifte der Abteilung 1 und explosible Stoffe sind für Schülerexperimente nicht erlaubt.

Gifte der Abteilungen 2 und 3 sowie feuergefährliche Stoffe dürfen in Schülerexperimenten nur nach Anleitung durch den Lehrer verwendet werden.

Vorsichtsmaßnahmen für den Umgang mit Chemikalien

Phosphor Gift

Gifte der Abteilung 1

Kaliumhydroxid Gift

Gifte der Abteilung 2 und der Abteilung 3 (rote Schrift)

- Chemikalien nicht in Flaschen oder Gläser füllen, die auch für Lebensmittel verwendet werden (z. B. Bierflaschen, Marmeladengläser)!
- Vorratsgefäße, in denen Chemikalien aufbewahrt werden, sind besonders zu kennzeichnen!
- Chemikalien möglichst nicht mit den Händen berühren! Nach dem Experimentieren sind die Hände aründlich zu säubern!
- ► Im Arbeitsraum keine Speisen und Getränke einnehmen!
 - Laborgeräte nicht für Nahrungsmittel verwenden!
- Nicht den Geschmack der Chemikalien pr
 üfen! Auf Ausnahmen wird der Lehrer besonders hinweisen.

- ► Geruchsproben nur durch Zufächeln mit der Hand durchführen!
- Die Einwirkung gesundheitsschädigender Gase auf den menschlichen Organismus verhindern. Am besten unter dem Abzug arbeiten!
- Beim Arbeiten mit feuergefährlichen Stoffen dürfen sich in der Nähe keine offenen Flammen befinden!
- Vorratsgefäße mit feuergefährlichen Stoffen sofort nach Benutzung verschließen!

Erste Hilfe bei Schädigungen durch Chemikalien und Verbrennungen

Schäd i gung	Erste Hilfe
Verätzungen der Haut	Mit viel Wasser spülen, bei Hydroxidlösungen danach mit 1%iger Äthansäure, bei Säuren danach mit 1%iger Natrium- hydrogenkarbonatlösung!
Verätzungen der Augen	Mit viel Wasser spülen!
Verätzungen des Mundes und der Verdauungsorgane	durch Säuren: Magnesiumoxidaufschlämmung trinken! durch Basen: Zitronenwasser oder stark verdünntes Essig- wasser trinken!
Vergiftungen durch eingenommene feste oder flüssige Stoffe	Erbrechen hervorrufen, zum Beispiel durch Trinken 1%iger Kupfersulfallösung!
Vergiftungen durch Gase	Betroffene Person sofort an die frische Luft bringen!
Brandwunden	Nicht mit Wasser behandeln; wenn nötig, Schmerzlinderung durch Öl oder Stärkemeh!! Brandblasen nicht öffnen!

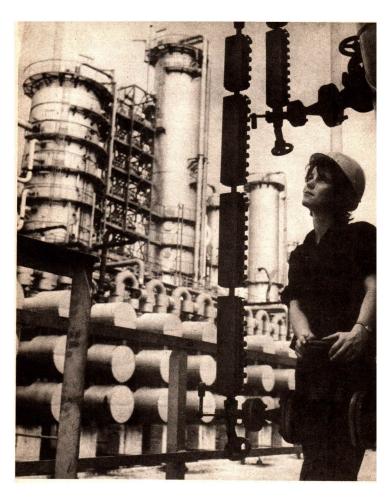
Gifte

Stoffe, die den lebenden Organismus schon in verhältnismäßig kleinen Mengen schädigen. Sie können äußerlich wirken oder wenn sie, über Verdauungsorgane, Atemorgane oder Wunden, in den Körper gelangen. Aber auch andere Chemikalien, die nicht zu den Giften zählen, haben gesundheitsschädigende Wirkungen.

Eintellung	wichtige Vertreter		
Abtellung 1	Arsen und seine Verbin- dungen Phosphor Phosphorsäureester mit insektizider Wirkung	Propantrioitrinitrat Quecksilber und seine Verbindungen Zyanwasserstoffsäure	
Abteilung 2	Brom Fluorwasserstoffsäure Monobromäthan Nitrobenzol Paraldehyd	Pentylnitrit Tribrommethan Trichlormethan Uranverbindungen	
Abtellung 3	Aminobenzol Ammoniaklösungen Antimonverbindungen Äthandisdure und Äthandiate Äthansäure Bariumverbindungen Bleiverbindungen Bromwasserstoffsdure Chlorsäure und Chlorate Chromsäure und Chromate Goldverbindungen Hexazyklohexan Hexazyanoferrate(II), lösliche Hexazyanoferrate(III), lösliche 2-Hydroxypropansäure (ab 80%lg) Jod Kadmlumverbindungen Kalium Kalium	Kaliumhydroxidlösung Kohlendisulfid Kresole Methanal Methanal Methansäure Natrium Natriumhydroxid Natriumhydroxid Natriumhydroxidlösung Nitrite Pentanol Phenol Phosphorsäure (ab 50% lg) Pikrinsäure Salpstersäure Salzsäure Schwefelsäure Silbersalze (außer Chlorid, Bromid, Jodid) Strontlumverbindungen Zinksalze Zinnsalze	

Einteilung	wichtige Vertreter		
Giffige Gase	Aminobenzoldämpfe Ammoniak Benzoldämpfe Chlor Chlorwasserstoff Fluor Kohlenmonoxid	Nitrobenzoldämpfe Schwefeldioxid Schwefelwasserstoff Stickstoffdioxid Stickstoffmonoxid Tetrachlormethandämpfe	

Feuergefährliche Stoffe


Substanzen, die eine niedrige Entzündungstemperatur besitzen.

Äthanal Äthyläthanat Äthanol Benzin Äthansäure Benzol Äthoxyäthan Butanol	Brennspiritus Kohlendisulfid Methanol Methylbenzol	Propanol Propanon
---	---	----------------------

Explosible Stoffe

Stoffe, die sich leicht durch Explosion umsetzen.

Gasgemische	Wasserstoff mit Luft oder Sauerstoff, Chlor mit Wasserstoff, Methan mit Luft oder Sauerstoff, Äthin mit Luft oder Sauerstoff, Dämpfe feuergefährlicher Stoffe mit Luft oder Sauerstoff
Feste Stoffe	Chlorate mit brennbaren Stoffen, Natrium oder Kalium auf Wasser

Chemische Technologie

Seite	202	8.2.	Apparate der chemischen Produktion
Seite	207	8.3.	Allgemeine Verfahrensprinzipien und Arbeitsmethoden
Seite	208	8.4.	Chemisch-technische Verfahren
Seite	208	8.4.1.	Allgemeines
Seite	210	8.4.2.	Verfahren zur Erzeugung anorganischer Grundchemikalien
Seite	216	8.4.3.	Verfahren zur Erzeugung von Düngemitteln
Seite	217	8.4.4.	Verfahren zur Erzeugung von Metallen
Seite	220	8.4.5.	Verfahren zur Veredlung von Kohle und Erdöl
Seite	226	8.4.6.	Verfahren zur Erzeugung organischer Grundchemikalien
Seite	228	8.4.7.	Verfahren zur Erzeugung von makromolekularen Werkstoffen
	220	0 F	Industrianrodukta

Industrieproduktion der DDR

8.6.

8.1. Rohstoffe der chemischen Produktion

Seite 200

Seite 241

8.1. Rohstoffe der chemischen Produktion

Bergbauprodukte

Rohstoff	Erläuterung	Verwendung
Anhydrit	Kalziumsulfat CaSO ₄	Ausgangsstoff für die Herstellung von Schwefelsäure und Ammoniumsulfat
Apatit	Phosphatmineral, Phosphorgehalt etwa 42% P ₃ O ₃ , enthält Trikalzium- phosphat Ca ₅ (PO ₄) ₂	Ausgangsstoff für die Herstellung von Phosphatdüngemitteln, Phosphorsäure und Phosphor
Bauxit	Aluminiumerz, Aluminiumgehalt 50 bis 70% Al ₂ O ₄ , enthált an Alumi- niumverbindungen unter anderem Aluminiumhydroxid Al(OH), und Aluminiumoxidhydroxid AlO(OH), Verunreinigungen: Eisen(III)-oxid, Siliziumdioxid	Ausgangsstoff für die Erzeugung von Aluminium
Bleiglanz	Bleierz, Bleigehalt etwa 86% Pb, besteht im wesentlichen aus Bleisulfid PbS	Ausgangsstoff für die Erzeugung von Blei und Schwefeldioxid
Braunkohle	Mineralkohle, enthält in der wasser- freien Kohle etwa 68% C und 5% H; Wassergehalt etwa 55% H,O; etwa 40%, brennbare Substanz, Heizwert 1500 bis 3500 kcal·kg ⁻¹	Ausgangsstoff für die Vergasung, Verkokung, Schwelung, Hoch- druckhydrierung und Kohlen- wasserstoffsynthese; Brennstoff
Erdgas	Gemisch gasförmiger Alkane, Haupt- bestandteil meist Methan, Methan- gehalt bis zu 95% CH ₄	Heizgas; Ausgangsstoff für die Petrolchemie
Erdöl	Gemisch kettenförmiger und ring- förmiger Kohlenwasserstoffe; Kohlen- stoffgehalt des Rohöles 80 bis 87% C, Wasserstoffgehalt 9 bis 14% H	Ausgangsstoff für die Herstellung von Kraftstoffen, Schmierstoffen, Heizölen, Paraffin, Erdölpech und Grundchemikalien für die Petrolchemie
Kalisalze	Kalium- und Magnesiummineralien der Satzlagerstätten; enthalten Kaliumchlorid, Magnesiumchiorid, Natriumchlorid, Magnesiumsulfat, geringe Mengen Bromide	Düngemittel; Ausgangsstoff für die Herstellung von Kal ¹ umhydroxid, Kaliumkarbonat, Explosivstoffen, anderen Kaliumverbindungen und Brom

Rohstoff	Erläuterung .	Verwendung
Kalkstein	Kalziumkarbonat CaCO ₄ ; durch Ton, Eisenoxide, Siliziumdioxid und andere Stoffe verunreinigt	Ausgangsstoff für die Erzeugung von Branntkalk, Zement, Glas, Kalziumkarbid; Zuschlagstoff bei der Roheisen- und Stahlerzeugung; Düngemittel, Hilfsstoff für die Er- zeugung von Zellstoff
Kupferschiefer	bitumenhaltiger, schiefriger Mergel, Kupfergehalt 0,6 bis 3% Cu, enthält sulfidische Kupfererze (Cu _F eS ₂ , CuFeS ₂ , Cu ₂ S, die Sulfide anderer Metalle (Eisen, Zink, Blei, Silber u. a.) u. a. Verbindungen	Ausgangsstoff für die Erzeugung von Kupfer, wobei zahlreiche Nebenprodukte anfallen, zum Beispiel Schwefelsäure, Silber, Blei, Germanium, Selen
, Magneteisenstein	oxidisches Eisenerz, Eisengehalt 50 bis 70% Fe, enthalt Eisen(II,III)-oxid Fe ₈ O ₄	Ausgangsstoff für die Erzeugung von Roheisen; Zuschlagstoff bei der Stahlherstellung (Herdfrisch- verfahren)
Pyrit	sulfidisches Eisenerz, Eisengehalt 33 bis 45% Fe, Schwefelgehalt 32 bis 48% S, enthält Eisen(II)-disulfid FeS,	Ausgangsstoff für die Erzeugung von Schwefeldioxid und Roheisen
Quarzsand	Siliziumdioxid SiO ₃	Ausgangsstoff für die Herstellung von Glas; zur Herstellung von Mörtel
Roteisenstein	oxidisches Eisenerz, Eisengehalt 35 bis 60% Fe, enthält Eisen(III)-oxid Fe ₂ O ₃	Ausgangsstoff für die Erzeugung von Roheisen
Steinkohle	Mineralkohle, enthält in der wasser- freien Kohle etwa 83% C und 5% H, Wassergehalt 2 bis 20%; etwa 90% brennbare Substanz, Heizwert 7000 bis 8000 kcal·kg ⁻¹	Ausgangsstoff für die Vergasung und Verkokung; Brennstoff
Steinsalz	Mineral der Salzlagerstätten, besteht aus Natriumchlorid NaCl	Ausgangsstoff für die Erzeugung von Natriumkarbonat, Natrium- hydroxid, Chlor, Saltzäure und anderen Chemikalien; Hilfsstoff bei der Seifenherstellung: Zusatz zur Nahrung; Konservierungs- mittel
Zinkblende	Zinkerz, enthält Zinksulfid ZnS und Beimengungen von Eisensulfid	Ausgangsstoff für die Erzeugung von Zink und Schwefeldioxid

Produkte der Land- und Forstwirtschaft

Rohstoff	Erläuterung	Verwendung
Fette	Gemische von Propantriolestern bestimmter kettenförmiger Karbonsäuren	Nahrungsmittel; Ausgangsstoffe für die Herstellung von Seifen, Anstrichmitteln, Kosmetika, Fettsäuren, Propantriol
Holz	pflanzliches Zellgewebe; wasserfreies Holz enthält Zellulose (biš 50%), Polysacharide und andere Substanzen	Ausgangsstoff für die Herstellung von Holzkohle, Zellstoff, Äthanol, Klebstoffen, Appreturmitteln, Pech

Stoffe der Luft- und Wasserhülle

Rohstoff	Erläuterung	Verwendung
Wasser	H ₂ O; enthält meist anorganische Salz e	Ausgangsstofffür die Erzeugung von Löschkalk, Synthesegasen, Äthin, Äthanal; für die Spaltung von Fetten und Kohlenhydraten; als Reinigungs- mittel, Lösungsmittel, Wärmeüberträger (Dampt), Kühlmittel
Luft	Hauptbestandteile: 78,1% Stickstoff, 20,9% Saverstoff	Ausgangsstoff für Reaktionen mit Sauerstoff und Stickstoff; Kühlmittel

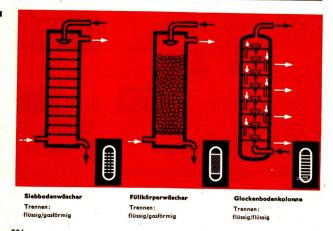
8.2. Apparate der chemischen Produktion

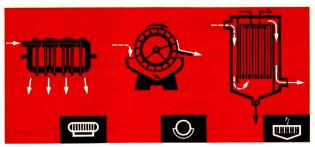
Reaktionsapparate

Apparate zur chemischen Umsetzung der Ausgangsstoffe zu Zwischen- oder Endprodukten. Anwendung in der 2. Phase chemisch-technischer Verfahren.

Druck, Temperatur	≤ 1 αt, ≤ 400°C	≤ 1 at, >400°C	> 1 at, ≦400°C bzw. >400°C
rohrförmig	Reaktionsturm	Reaktionsofen	Druckrohr
wannenförmig	Reaktionsgefäß	Gefäßofen	Autoklav

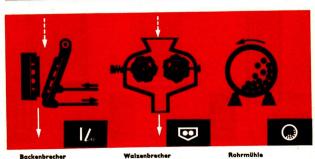
Schachtofen rohrförmig, Typ: Reaktionsofen Kontaktofen rohrförmig, Typ: Reaktionsofen **Kontaktofen** rohrförmig, Typ: Druckrohr


Drehrohrofen

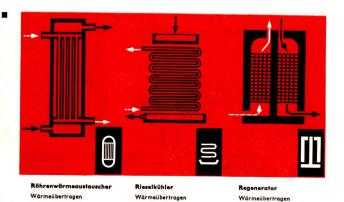

rohrförmig, Typ: Reaktionsofen Elektrolysezelle wannenförmig

Apparate zur Aufbereitung und Aufarbeitung

Apparate, in denen vorwiegend die physikalischen Bearbeitungsprozesse der 1. und der 3. Phase chemisch-technischer Verfahren, die **Grundoperationen**, durchgeführt werden.


Grundoperation	Aggregatzustand der zu bearbeitenden Stoffe	Operationen
Trennen	fest/fest	Sieben, Schlämmen, Magnetscheiden
	fest/flüssig	Zentrifugieren, Dekantieren, Filtrieren, Auspressen, Trocknen, Extrahieren, Absetzen
	fest/gasförmig und flüssig/gasförmig	Waschen, Elektroreinigen, Absetzen
	flüssig/flüssig	Destillieren
	gasförmig/gasförmig	Adsorbieren, Absorbieren Kondensieren
		*

Filterpresse Trennen: fest/flüssig Drehfilter Trennen: fest/flüssig Elektrofilter Trennen: fest/gasförmig


Grundoperation	Aggregatzustand der zu bearbeitenden Stoffe	Operationen
Zerteilen	fest (Hart- zerkleinerung)	Brechen, Schroten, Mahlen
	fest (Weich- zerkleinerung)	Schneiden, Schnitzeln
	flüssig	Zerstäuben, Tropfenbilden, Verschäumen

Zerteilen: fest

Walzenbrecher Zerteilen: fest Rohrmühle Zerteilen: fest

Grundoperation	Aggregatzustand der zu bearbeitenden Stoffe	Operationen
Vereinigen	fest/fest	Vermengen, Zusammen- schmelzen, Sintern
	fest/flüssig flüssig/flüssig	Lösen, Suspendieren, Kneten Lösen
	flüssig/gasförmig	Adsorbieren
Agglomerieren	fest	Sintern, Pressen, Granulieren
Formgeben	fest flüssig	Walzen, Pressen, Kalandrieren Gießen, Filmbilden, Spinnen
Wärme- übertragen	-	Wärmezufuhr: Erwärmen, Schmelzen, Verdampfen Wärmeabfuhr: Abkühlen, Kondensieren, Gefrieren

Grundoperation	Aggregatzustand der zu bearbeitenden Stoffe	Operationen
Fördern	fest	Fördern durch Schwerkraft; mechanische, pneumatische, hydraulische Förderung
	flüssig	Fördern durch Schwerkraft;
	4	mechanische, pneumatische Förderung
	gasförmig	Fördern durch Auftrieb, mechanische Förderung
Lagern	fest	Lagern in Halden, Stapeln, Behältern
	flüssig	Lagern in Behältern
	gasförmig	Lagern in Behältern

8.3. Allgemeine Verfahrensprinzipien und Arbeitsmethoden

Kontinuierliche Arbeitsweise

Arbeitsweise chemisch-technischer Verfahren, bei der die Ausgangsstoffe fortlaufend den Reaktionsapparaten zugeführt werden und das Reaktionsgut unter gleichbleibenden Arbeitsbedingungen ununterbrochen chemisch umgesetzt wird.

Periodische Arbeitsweise

Arbeitsweise chemisch-technischer Verfahren, bei der Beschickung mit Ausgangsstoffen, chemische Umsetzung und Entnahme der Reaktionsprodukte nacheinander in sich ständig wiederholendem Arbeitsrhythmus vorgenommen werden.

Gegenstromprinzip

Prinzip chemisch-technischer Verfahren, nach dem man verschiedene Stoffe einander entgegenströmen läßt. Das Gegenstromprinzip wird angewendet, damit sich Stoffe oder Energie unter optimalen Bedingungen austauschen.

Gleichstromprinzip

Prinzip chemisch-technischer Verfahren, nach dem verschiedene Stoffe einen Apparat der chemischen Produktion in gleicher Fließrichtung durchlaufen.

Kreislaufprinzip

Prinzip chemisch-technischer Verfahren, nach dem man nicht umgesetzte und zurückgewonnene Anteile der Ausgangsstoffe beziehungsweise Hilfsstoffe den Apparaten erneut zuführt. Das Kreislaufprinzip dient zur rationeilen Stoffausnutzung. Es wird häufig bei kontinuierlichen Verfahren angewendet.

Regenerativprinzip

Prinzip chemisch-technischer Verfahren, nach dem man die Abgaswärme aus Reaktionsapparaten in Regeneratoren speichert und zum Vorwärmen von Verbrennungsluft oder Heizgasen ausnutzt. Das Regenerativprinzip dient zur rationellen Energieumsetzung.

Erhöhung der Reaktionsgeschwindigkeit

Bei chemisch-technischen Verfahren dienen zur Erhöhung der Reaktionsgeschwindigkeit Temperatursteigerung, Druckerhöhung, Konzentrationserhöhung, Vergrößerung der Oberfläche, Anwendung von Katalysatoren oder die Kombination dieser Methoden.

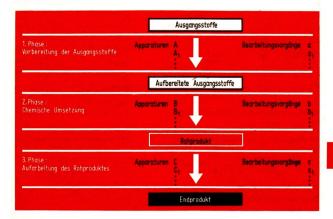
8.4. Chemisch-technische Verfahren

8.4.1. Allgemeines

Fließbild

Übersichtliche Darstellung über den Produktionsverlauf eines chemisch-technischen Verfahrens.

Die Fließbilder enthalten außer Apparatesymbolen und dem Stofffluß noch die Ausgangsstoffe, Hilfsstoffe, Zwischenprodukte, Nebenprodukte und Hauptprodukte.


In den Fließbildern zu chemisch-technischen Verfahren werden die verschiedenen Stoffe und der Stofffluß folgendermaßen dargestellt:

Einige häufiger auftretende Apparatetypen und ihre Fließbildsymbole sind im Abschnitt 8.2. des Buches zusammengestellt.

✓ Seite 203 bis 206

Einteilung in Phasen

14 [031701] 209

8

8.4.2. Verfahren zur Erzeugung anorganischer Grundchemikalien

Kalkbrennen

Ausgangsstoff: Kalkstein Hilfsstoffe: Koks, Luft

Hauptprozesse: Kalkstein wird im Schachtofen bei etwa 1000 °C thermisch zersetzt. Die dazu notwendige Wärme entsteht durch die Verbrennung von

Koks:

$$CaCO_s \rightarrow CaO + CO_s$$

 $C + O_s \rightarrow CO_s$

Hauptprodukt: Branntkalk Nebenprodukt: Kohlendioxid

✓ Seite 230

Kalklöschen

Ausgangsstoffe: Branntkalk, Wasser

Hauptprozeß: Branntkalk reagiert in Löschsilos mit Wasser:

$$CaO + H_{\bullet}O \rightarrow Ca(OH)_{\bullet}$$

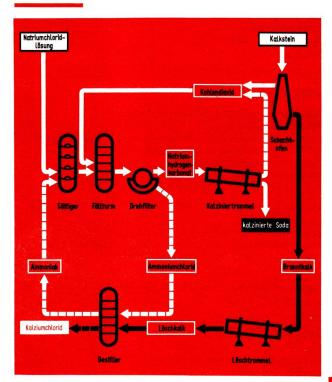
Produkt: Löschkalk

✓ Seite 231

Natriumchloridelektrolyse (Quecksilberverfahren)

Ausgangsstoff: Natriumchloridlösung

Hilfsstoff: Quecksilber


Hauptprozeß: Der Ausgangsstoff wird in der Elektrolysezelle (Graphitanode,

Quecksilberkatode) elektrolytisch zersetzt:

Hauptprodukte: Chlor, Natriumhydroxidlösung

Nebenprodukt: Wasserstoff

✓ Seite 230

Ausgangsstoffe: Natriumchloridlösung, Kalkstein

Hilfsstoff: Ammoniak

Hauptprozesse: Im Fällturm wird Kohlendioxid in eine mit Ammoniak gesättigte Natriumchloridlösung eingeleitet. Natriumhydrogenkarbonat fällt aus, wird abfiltriert und kalziniert:

$$NaCI + NH_3 + H_2O + CO_2 \rightarrow NaHCO_3 \downarrow + NH_4CI$$

 $2 NaHCO_3 \rightarrow Na_2CO_3 + H_2O + CO_2 \uparrow$

8

Ammoniak wird zurückgewonnen:

$$2 \text{ NH}_4\text{Cl} + \text{Ca}(\text{OH})_2 \rightarrow \text{CaCl}_2 + 2 \text{ NH}_3 \uparrow + 2 \text{ H}_2\text{O}$$

Hauptprodukt: kalzinierte Soda Nebenprodukt: Kalziumchlorid

✓ Seite 230

Herstellung von Natrium-Kalzium-Glas

Ausgangsstoffe: Sand, Soda, Kalkstein, Scherbenglas

Hilfsstoffe: Heizgase, Luft

Hauptprozeß: Die im bestimmten Verhältnis gemischten Ausgangsstoffe werden

im Wannenofen oder Hafenofen in der Schmelze umgesetzt.

Hauptprodukt: Natrium-Kalzium-Glas

Nebenprodukt: Abgase

Abrösten sulfidischer Erze

Ausgangsstoffe: sulfidische Erze (z. B. Pyrit), Luft

Hauptprozeß: Sulfidische Erze werden in einem Reaktionsofen (z. B. Drehrohrröstofen, Wirbelschichtofen) bei etwa 650 °C oxydiert.

4 FeS₂ + 11 O₂ → 2 Fe₂O₃ + 8 SO₄

Produkte: schwefeldioxidhaltige Röstgase, Abbrände

/ Seite 213

Müller-Kühne-Verfahren

Ausgangsstoffe: Anhydrit oder Gips, Sand, Ton, Kohle

Hilfsstoffe: Koks, Luft

Hauptprozesse: Die Ausgangsstoffe werden im Drehrohrofen auf 1200 °C

erhitzt. Dabei reagiert Kalziumsulfat mit Kohlenstoff:

 $2 CaSO_4 + C \rightarrow 2 CaO + 2 SO_2 \uparrow + CO_2 \uparrow$

Aus dem Kalziumoxid, Ton und Sand entstehen Klinker. Produkte: schwefeldioxidhaltige Gase, Zementklinker

✓ Seite 213

Ausgangsstoffe: schwefeldioxidhaltige Gase, Luft Hilfsstoffe: Wasser, Schwefelsäure, Katalysatoren

Hauptprozesse: Die schwefeldioxidhaltigen Gase werden gereinigt, getrocknet und zusammen mit Luft im Kontaktofen bei 450 °C an Vanadinmischkatalysatoren umgesetzt:

$$2 SO_2 + O_2 \xrightarrow{Kat., 450 °C} 2 SO_3$$

8

Schwefeltrioxid wird in Absorptiumstürmen in konzentrierter Schwefelsäure gelöst. Durch Zusatz von Wasser zur Lösung erhält man Schwefelsäure.

Hauptprodukt: Schwefelsäure

✓ Seite 230

Salpetersäureherstellung

Ausgangsstoffe: Ammoniak, Luft, Wasser

Hilfsstoffe: Katalysatoren

Hauptprozesse: Ammoniak wird im Verbrennungsofen mit dem Sauerstoff der Luft zu Stickstoffmonoxid und Wasser oxydiert:

Stickstoffmonoxid wird mit Luft gemischt und in Absorptionstürmen mit Wasser umgesetzt:

$$2 \text{ NO} + \text{O}_2 \rightarrow 2 \text{ NO}_2$$

 $4 \text{ NO}_2 + \text{O}_2 + 2 \text{ H}_2\text{O} \rightarrow 4 \text{ HNO}_3$

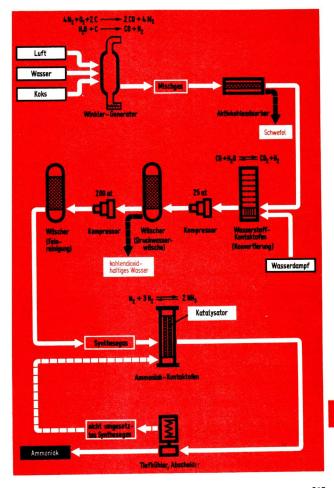
Hauptprodukt: Salpetersäure

/ Seite 230

Ammoniaksynthese nach Haber und Bosch

Ausgangsstoffe: Wasser, Luft, Braunkohlenkoks

Hilfsstoffe: Katalysatoren


Hauptprozesse: Mischgas wird gereinigt und im Wasserstoff-Kontaktofen konvertiert. Das Synthesegas (Stickstoff-Wasserstoff-Gemisch) reagiert im Kontaktofen katalytisch zu Ammoniak:

Ammoniak wird von nicht umgesetzten Anteilen des Synthesegases getrennt, die man anschließend erneut dem Ammoniak-Kontaktofen (Kreislaufprinzip) zuführt.

Hauptprodukt: Ammoniak

Nebenprodukte: Schwefel, Kohlendioxid

✓ Seite 230

8.4.3. Verfahren zur Erzeugung von Düngemitteln

Kalisalz-Aufbereitung

Ausgangsstoffe: Kalisalze

Hilfsstoffe: Wasser, kalt gesättigte Salzlösung

Hauptprozesse: Rohsalz wird in kalt gesättigter, heißer Salzlösung gelöst. Die

Salze trennt man auf Grund ihrer unterschiedlichen Löslichkeit.

Hauptprodukt: Kaliumchlorid oder Kalidüngemittel

Nebenprodukte: Magnesiumchlorid, Magnesiumsulfat, Natriumchlorid, Natrium-

sulfat, Bromide

Seite 231

Ammonsulfatherstellung

Ausgangsstoffe: Anydrit, Ammoniumkarbonatlösuna

Hauptprozesse: Gemahlener Anhydrit wird in Rührkesseln mit Ammonium-

karbonatlösung umgesetzt:

$$(NH_4)_2CO_3 + CaSO_4 \rightarrow (NH_4)_2SO_4 + CaCO_3 \downarrow$$

Die Ammoniumsulfatlösung trennt man durch Filtrieren vom Kalziumkarbonatschlamm und dampft sie anschließend ein.

Hauptprodukt: Ammonsulfat

Nebenprodukt: Düngekalk (Leunakalk)

/ Seite 232

Superphosphatherstellung

Ausgangsstoffe: Phosphatmineralien, Schwefelsäure

Hauptprozeß: Trikalziumphosphat der Phosphatmineralien setzt sich mit

Schwefelsäure zu Kalziumdihydrogenphosphat und Kalziumsulfat um:

$$Ca_3(PO_4)_2 + 2 H_2SO_4 \rightarrow Ca(H_2PO_4)_0 + 2 CaSO_4$$

Hauptprodukt: Superphosphat

/ Seite 232

8.4.4. Verfahren zur Erzeugung von Metallen

Roheisenerzeugung

Ausgangsstoffe: Eisenerze

Hilfsstoffe: Zuschläge, Koks, Luft

Hauptprozesse: Erze werden durch Brechen, gegebenenfalls auch durch Sintern, auf die erforderliche Korngröße gebracht und mit den Zuschlägen zum Möller gemischt. Im Hochofen (Niederschachtofen u. a.) werden die Eisenoxide durch Kohlenmonoxid und Kohlenstoff reduziert:

$$Fe_2O_3 + 3 CO \rightarrow 2 Fe + 3 CO_2$$

 $FeO + C \rightarrow Fe + CO$

Das Eisen nimmt in kleinen Mengen elementaren Kohlenstoff oder Eisenkarbid Fe,C auf, das sich aus Eisen und Kohlenstoff bildet. Koks verbrennt zu Kohlendioxid; dabei entsteht die notwendige Wärme für das Schmelzen des Eisens und den Reaktionsablauf. Kohlendioxid wird zu Kohlenmonoxid reduziert.

$$C + O_2 \rightarrow CO_3$$

 $CO_2 + C \rightarrow 2 CO_3$

Hauptprodukt: Roheisen

Nebenprodukte: Schlacke, Gichtgas

✓ Seite 233

Stahlerzeugung durch Windfrischen (Thomas-Verfahren)

Ausgangsstoffe: flüssiges Roheisen, Luft Hilfsstoffe: Zuschläge (z. B. Branntkalk)

Hauptprozeß: Roheisen wird im Konverter mit Hilfe von Luft gefrischt. Dabei

oxydieren beziehungsweise verschlacken die Begleitelemente.

Hauptprodukt: Thomas-Stahl

Nebenprodukte: Thomas-Schlacke, Abgase

✓ Seite 234

Stahlerzeugung durch Herdfrischen

Ausgangsstoffe: Roheisen, Schrott

Hilfsstoffe: Zuschläge (Kalkstein oder Branntkalk, Magneteisenstein), Heizgase,

Luft

Hauptprozeß: Die Ausgangsstoffe werden im Siemens-Martin-Ofen geschmolzen und durch chemisch gebundenen Sauerstoff gefrischt. Die Begleitelemente oxydieren beziehungsweise verschlacken.

Hauptprodukt: Siemens-Martin-Stahl

Nebenprodukte: Siemens-Martin-Schlacke, Abgase

✓ Seite 234

Elektrostahlverfahren

Ausgangsstoffe: Roheisen, Schrott, Stahlveredler

Hilfsstoffe: Zuschläge

Hauptprozeß: Die Ausgangsstoffe werden im Lichtbogenofen geschmolzen und gefrischt (Oxydation beziehungsweise Verschlackung der Begleitelemente).

Hauptprodukte: Qualitäts- und Edelstähle

Nebenprodukte: Schlacke, Abgase

✓ Seite 234

Aluminothermisches Verfahren

Ausgangsstoffe: Manganerz Mn₅O₄ (beziehungsweise andere Metalloxide), Aluminiumarieß

Hilfsstoff: Zündmischung

Hauptprozeß: Ein Manganoxid-Aluminiumgrieß-Gemisch wird in Tontiegeln gezündet und umgesetzt.

Hauptprodukt: flüssiges Mangan (beziehungsweise andere Metalle)

Nebenprodukte: Abgase, Schlacke

Aluminiumerzeugung durch Schmelzflußelektrolyse

Ausgangsstoff: Aluminiumoxid

Hilfsstoffe: Kryolith, Kohlenelektroden

Hauptprozesse: Aluminiumoxid wird in der Elektrolysezelle in einer Kryolith-

schmelze elektrolytisch zersetzt:

Katode: Al³+ + 3 e⁻ → Al Anode: O³- — 2 e⁻ → O $C + O \rightarrow CO$

Hauptprodukt: Aluminium Nebenprodukt: Abgase

✓ Seite 234

Kupfererzeugung (trockenes Verfahren)

Ausgangsstoffe: Kupferschiefer, Luft

Hilfsstoffe: Flotationsmittel, Zuschläge (Koks und Quarz), Kupfersulfat, Schwefel-

säure

Hauptprozesse: Kupferschiefer wird durch Flotation angereichert, dann teilweise abgeröstet und im Schachtofen in Kupferstein und Schlacke getrennt. Kupferstein wird im Trommelkonverter verblasen, wobei Rohkupfer und schwefeldioxidhaltige Abgase entstehen. Rohkupfer wird elektrolytisch raffiniert.

Hauptprodukt: Elektrolytkupfer

Nebenprodukte: schwefeldioxidhaltige Gase, Flugstaub (enthält Blei, Zink, Rhenium u. a. Elemente), Gichtgas, Schlacke, Anodenschlamm (enthält Selen, Silber, Gold u. a. Elemente)

✓ Seite 235

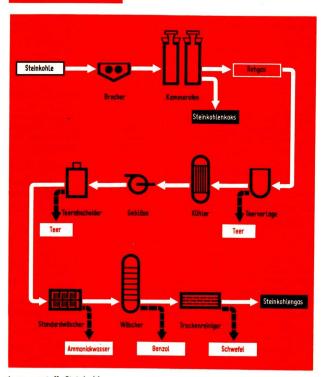
Zinkerzeugung (nasses Verfahren)

Ausgangsstoffe: Zinkblende, Luft

Hilfsstoffe: Schwefelsäure, Zinkstaub, Zinksulfat

Hauptprozesse: Zinkblende wird abgeröstet. Das Röstgut setzt man mit Schwefelsäure um. Es entsteht Zinksulfatlösung, die von Begleitelementen gereinigt

und dann elektrolysiert wird. Hauptprodukt: Elektrolytzink


Nebenprodukte: schwefeldioxidhaltige Gase, Rückstände (enthalten Kupfer,

Kobalt, Kadmium, Indium und andere Elemente)

✓ Seite 235

8.4.5. Verfahren zur Veredlung von Kohle und Erdöl

Verkokung von Steinkohle

Ausgangsstoff: Steinkohle Hilfsstoffe: Heizgase, Luft

Hauptprozesse: Steinkohle wird im Kammerofen unter Luftabschluß bei 1100 °C verkokt. Es entstehen Rohgas und Koks. Das Rohgas wird gekühlt und gereinigt.

Hauptprodukte: Steinkohlenkoks, Steinkohlengas

Nebenprodukte: Teer, Ammoniakwasser, Benzol, Schwefel

✓ Seite 240

Saverstoffdruckvergasung von Braunkohle

Ausgangsstoffe: Braunkohle, Sauerstoff, Wasser

Hauptprozeß: Im Generator reagiert bei etwa 500 °C und 24 at ein heißes

Wasserdampf-Sauerstoff-Gemisch mit Kohlenstoff:

$$C + H_2O \rightarrow CO + H_3$$
 $Q = + 31,4 \text{ kcal}$
 $C + 2 H_3 \rightarrow CH_4$

Hauptprodukt: Druckgas

Nebenprodukte: Teer, Benzin

/ Seite 240

Generatorgaserzeugung

Ausgangsstoffe: Luft und Koks, Braunkohle oder gasarme Steinkohle

Hauptprozeß: Im Generator reagieren Saverstoff und glühender Brennstoff:

$$C + O_3 \rightarrow CO_2$$

 $CO_3 + C \rightarrow 2 CO$

$$Q = -94,0 \text{ kcal}$$

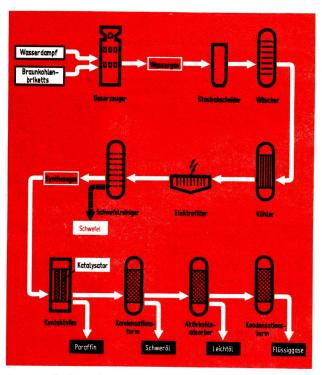
 $Q = +41.2 \text{ kcal}$

Hauptprodukt: Generatorgas

✓ Seite 240

Wassergaserzeugung

Ausgangsstoffe: Braunkohle oder Koks, Wasser, Sauerstoff


Hauptprozeß: Im Generator reagieren Wasserdampf (zusammen mit etwas

Saverstoff) und glühender Brennstoff:

$$C + H_2O \rightarrow CO + H_2$$
 $Q = + 31.4 \text{ kcal}$
 $C + O_2 \rightarrow CO_3$ $Q = - 94.0 \text{ kcal}$

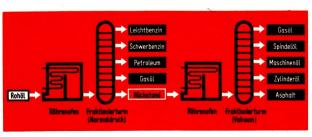
Hauptprodukt: Wassergas

✓ Seite 240

Ausgangsstoffe: Wasserdampf und Braunkohlenbriketts, Koks oder Rohbraunkohle.

Hilfsstoffe: Katalysator, Aktivkohle

Hauptprozeß: Synthesegas (1 Raumteil Kohlenmonoxid, 2 Raumteile Wasserstoff) wird im Kontaktofen an Kobaltkatalysatoren bei etwa 200 °C zu Kohlenwasserstoffen und Wasser umgesetzt:


Die Kohlenwasserstoffe trennt man aus dem Reaktionsgemisch ab.

Hauptprodukte: Paraffin, Leichtöl, Schweröl, Flüssiggase

Nebenprodukt: Schwefel

✓ Seite 240, 241

Aufarbeitung von Erdöl

Ausgangsstoff: Erdöl

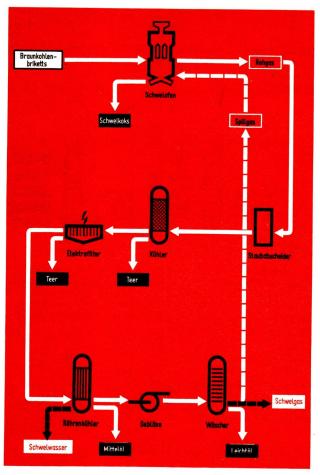
Hauptprozesse: Begleitstoffe (Sand, Wasser) und gasförmige Alkane werden aus dem Erdöl entfernt. Im Röhrenofen erhitzt man das gereinigte Erdöl und trennt es anschließend in Fraktioniertürmen in Destillate bestimmter Siedebereiche.

Produkte: Leichtbenzin, Schwerbenzin, Petroleum, Gasöl, Schmieröle, Asphalt

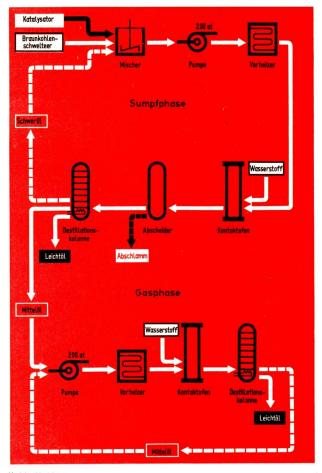
✓ Seite 240, 241

Krackverfahren

Ausgangsstoffe: höhersiedende Erdölfraktionen


Hilfsstoffe: Katalysatoren

Hauptprozeß: Moleküle von Kohlenwasserstoffen werden bei etwa 500 °C und unter 5 bis 80 at Druck (katalytisch, thermisch) in kleinere gespalten:


C14H30 -Kat. C7H16 +2 C2H4 + C3H6

Produkte: niedrigsiedende Kohlenwasserstoffe

✓ Seite 240, 241

Spülgasschwelung der Braunkohle

Hochdruckhydrierung

Spülgasschweiung der Braunkohle

Ausgangsstoff: Braunkohlenbriketts

Hilfsstoff: Spülgas

Hauptprozeß: Briketts aus bitumenreichen Braunkohlen werden im Schwelofen bei 250 °C vorgetrocknet und dann von etwa 600 °C heißen Gasen "umspült".

Die Schwelprodukte trennt man aus dem Rohgas ab. Hauptprodukte: Teer, Schwelkoks, Mittelöl, Leichtöl

Nebenprodukte: Schwelgas, Schwelwasser

✓ Seite 224, 240, 241

Hochdruckhydrierung

Ausgangsstoffe: Braunkohlenschwelteere oder höher siedende Erdölfraktionen,

Wasserstoff

Hilfsstoff: Katalysator

Hauptprozesse: Die Ausgangsstoffe werden im Kontaktofen bei etwa 500°C und 200 at Druck katalytisch hydriert (Sumpfphase). Das Reaktionsgemisch zerlegt man durch Destillation in Schweröl, Mittelöl und Leichtöl. Schweröl wird in den Prozeß zurückgeführt, Mittelöl in der nachfolgenden Gasphase erneut katalytisch hydriert. Das Reaktionsgemisch der Gasphase trennt man in Leichtöl und Mittelöl und führt letzteres in die Gasphasenhydrierung zurück.

Produkte: Leichtöl, Mittelöl

✓ Seite 225, 240, 241

8.4.6. Verfahren zur Erzeugung organischer Grundchemikalien

Karbidherstellung

Ausgangsstoffe: Branntkalk, Koks

Hauptprozeß: Branntkalk und Koks werden im Elektroofen bei etwa 2000 °C zu

Kalziumkarbid und Kohlenmonoxid umgesetzt:

Hauptprodukt: Kalziumkarbid Nebenprodukt: Kohlenmonoxid

✓ Seite 236

Äthinherstellung

Ausgangsstoffe: Kalziumkarbid, Wasser

Hauptprozeß: Kalziumkarbid reagiert in geschlossenen Behältern mit Wasser:

$$CaC_2 + 2 H_2O \rightarrow Ca(OH)_2 + C_0H_0$$

Hauptprodukt: Äthin

Nebenprodukt: Kalziumhydroxid (Karbidkalkhydrat)

/ Seite 231

Methanolsynthese

Ausgangsstoffe: Kohlenmonoxid, Wasserstoff

Hilfsstoffe: Katalysatoren

Hauptprozeß: Das Synthesegas wird bei etwa 370°C und unter 200 at Druck katalytisch (Zinkoxid-Chromoxid-Katalysatoren) zu Methanol umgesetzt:

Hauptprodukt: Methanol

✓ Seite 236

Äthanolgärung

Ausgangsstoffe: Stärke, Zellulose, Zucker, Fruchtsäfte oder Ablaugen der Zellstoffaewinnung

Hilfsstoffe: Hefe, Wasser

Hauptprozesse: Die Ausgangsstoffe werden, soweit erforderlich, in vergärbare Zucker übergeführt. Die zuckerhaltigen Flüssigkeiten läßt man in Gärkesseln unter Zusatz von Hefe bei 25°C einige Tage gären:

Aus der gewonnenen äthanolhaltigen Lösung wird Äthanol durch Destillation abgetrennt.

Hauptprodukt: Äthanol

Nebenprodukte: Hefe, Kohlendioxid, höhere Alkanole

✓ Seite 236

Äthanolsynthese

Ausgangsstoffe: Äthin, Wasserstoff

Hilfsstoffe: Katalysatoren

Hauptprozesse: An Äthin lagert man katalytisch Wasser an:

$$HC \equiv CH + H_2O \xrightarrow{Kat.} CH_3$$
—CHO

Äthanal

Äthanal wird dann katalytisch mit Wasserstoff zu Äthanol hydriert:

Hauptprodukt: Äthanol

✓ Seite 236

Zellstoffgewinnung (Sulfitverfahren)

Ausgangsstoffe: Holz, Kalziumhydrogensulfit

Hilfsstoff: Wasser

Hauptprozesse: Zerkleinertes Holz und Kochsäure (Kalziumhydrogensulfitlösung) werden in Kochern unter 3 at Druck auf etwa 130°C erhitzt. Dann trennt man den Zellstoffbrei von der Kochsäure, reinigt, bleicht und entwässert ihn.

Hauptprodukt: Zellstoff

Nebenprodukt: Sulfitablaugen

✓ Seite 237

8.4.7. Verfahren zur Erzeugung von makromolekularen Werkstoffen

Herstellung von PVC (Emulsionsverfahren)

Ausgangsstoffe: Äthin, Chlorwasserstoff

Hilfsstoffe: Katalysatoren

Hauptprozesse: Äthin reagiert katalytisch mit Chlorwasserstoff zu Monochlor-

äthen (Vinylchlorid).

$$HC \equiv CH + HCI \xrightarrow{Kat.} CH_2 = CHCI$$

Monochloräthen wird in Autoklaven bei etwa 45 °C katalytisch polymerisiert:

$$n \text{ CH}_2 = \text{CHCI} \xrightarrow{\text{Kat.}} (\text{--CH}_2\text{--CHCI}\text{---})_n$$

Aus der Emulsion erhält man durch Zerstäubungstrocknung PVC-Pulver.

Hauptprodukt: PVC-Pulver

✓ Seite 238

Herstellung von Phenoplasten

Ausgangsstoffe: Phenol, Methanal

Hilfsstoffe: Katalysatoren

Hauptprozeß: Ausgangsstoffe und Katalysatoren werden gemischt und im Auto-

klaven umgesetzt, bis die erste Kondensationsstufe erreicht ist.

Hauptprodukt: Phenolharz

/ Seite 238

Kautschuksynthese

Ausgangsstoffe: Äthin, Wasser, Wasserstoff

Hilfsstoffe: Katalysatoren

Hauptprozesse: Aus den Ausgangsstoffen wird über mehrere Zwischenprodukte [Äthanal, 3-Hydroxybutanal, Butandiol-(1,2)] Butadien-(1,3) hergestellt, das dann zu einem synthetischen Kautschuk polymerisiert:

$$n ext{ CH}_2 = \text{CH} - \text{CH} = \text{CH}_2 \xrightarrow{\text{Polymerisation}} [\text{--CH}_2 - \text{CH} = \text{CH} - \text{CH}_2 -]_n$$
Butadien (1,3)

Hauptprodukt: Synthesekautschuk

✓ Seite 238

Herstellung von Viskoseseide

Ausgangsstoffe: Zellstoff, Natriumhydroxidlösung, Kohlendisulfid

Hauptprozesse: Zellstoff wird mit Natriumhydroxidlösung in Natronzellulose umgewandelt. Natronzellulose reagiert mit Kohlendisulfid zu Xanthogenat, das man in Natriumhydroxidlösung zu Viskose löst. Die Viskose wird durch Spinndüsen in ein Fällbad gepreßt.

Hauptprodukt: Viskoseseide

✓ Seite 239

8.5. Industrieprodukte

Anorganische Grundchemikalien

Anorganische Verbindungen, die industriell hergestellt werden und die man vorzugsweise als Ausgangsstoffe für chemisch-technische Verfahren verwendet.

Name bzw. Handelsbezeichnung ¹	Erläuterung	Verwendung
Ammoniak	NH ₃	Herstellung von Salpetersäure, Düngemitteln, Soda; Kühlmittel
Ätznatron	Natriumhydroxid NaOH	Herstellung von Seifen und Chemikalien; Hilfsstoff zur Zellstoffherstellung und zur Reinigung von Fetten und Mineralölen
Branntkalk	Kalziumoxid CaO	Zuschlagstoff bei der Stahlerzeugung; Hilfsstoff bei der Zuckergewinnung und für die Sodaerzeugung; zur Herstellung von Löschkalk und Kalziumkarbid; Düngemittel
Chlor	Cl ₂	Herstellung von Plasten, Farbstoffen, Arzneimitteln, Schädlingsbekämpfungsmitteln; Desinfektions- und Bleichmittel
Salpetersäure	HNO ₃	Herstellung von Düngemitteln, Farbstoffen, Lacken, Plasten, Arzneimitteln, Explosivstoffen, Chemie- fasern
Schwefel	S	Herstellung von Kohlendisulfid, Farbstoffen, Arznei- mitteln, Desinfektionsmitteln, Schädlings- bekämpfungsmitteln; Vulkanisation von Kautschuk
Schwefelsäure	H ₂ SO ₄	Herstellung von Düngemitteln, Farbstoffen, Chemie- fasern, Plasten, Arzneimitteln; Aufbereitung von Erzen; Reinigung von Erdöl; Trockenmittel
Soda	Natriumkarbonat Na ₂ CO ₈	Herstellung von Seifen, Glas, Natriumverbindungen, Düngemitteln; Wasserenthärtung
Wasserstoff	H _s	Synthese von Ammoniak, Kohlenwasserstoffen, Methanoi, Zyanwasserstoffsäure, Salzsäure u. a.; Fetthärtung; autogenes Schweißen und Schneiden; Ballonfüllung

¹ alphabetisch geordnet.

Düngemittel

Industriell hergestellte anorganische oder organische Verbindungen, in denen Pflanzennährstoffe enthalten sind und die zur Pflanzendüngung dienen.

Gruppe	Name (Handels- bezeichnung)	Hauptbestandteile Verbindung	Gehalt in%
Kalkdünge- mittel	Branntkalk Karbidkalk-	Kalziumoxid CaO Kalziumhydroxid Ca(OH)₂	75 bis 90 70 bis 90
	hydrat kohlensaurer	Kalziumkarbonat CaCO ₃	80
	Kalk	Kalziumkarbonat CaCOs	70
	Leunakalk Löschkalk	Kalziumhydroxid Ca(OH) ₂	70 bis 90
Kalidüngemittel	Emgekali	Kaliumchlorid KCl Magnesiumsulfat MgSO ₄ Natriumchlorid NaCl Kalziumsulfat CaSO ₄	56 15 17 3,5
	Kalidüngesalz 40%	Kaliumchlorid KCI Magnesiumsulfat MgSO ₄ Natriumchlorid NaCl Kalziumsulfat CaSO ₄	63 1,5 26 ·5
	Kalidüngesalz 60% grob- körnig	Kaliumchlorid KCl Natriumchlorid NaCl	95 3
	Reformkali	Kaliumchlorid KCI Kaliumsulfat K₂SO₄ Magnesiumsulfat MgSO₄ Natriumchlorid NaCl Kalziumsulfat CaSO₄	21 25 32 2 8
	schwefel- saures Kali	Kaliumchlorid KCI Kaliumsulfat K₃SO₄ Magnesiumsulfat MgSO₄ Kalziumsulfat CaSO₄ Natriumchlorid NaCl	3 89 4,5 1

Gruppe	Name (Handels- bezeichnung)	Hauptbestandteile Verbindung	Gehalt in %
Stickstoff-	Ammonsulfat	Ammoniumsulfat (NH ₄) ₂ SO ₄	100
düngemittel	Kalkammon- salpeter	Ammoniumnitrat NH ₄ NO ₃	60
	Kalkstickstoff	Kalziumkarbonat CaCO ₃ Kalziumzyanamid CaCN ₃	35 62
	110110110110101	Kalziumoxid CaO	17
		Kohlenstoff C	12
	Natronsalpeter	Natriumnitrat NaNO ₃	100
	Harnstoff	Kohlensäurediamid CO(NH ₂) ₂	100
Phosphat-	Alkalisinter-	säurelösliche Alkali-	
düngemiffel	phosphat	phosphate	
	Mg-Phosphat	Trimagnesiumphosphat Mg ₃ (PO ₄) ₂	37
		Kalziumsulfat CaSO ₄	43
	Superphosphat	Kalziumdihydrogen- phosphat Ca(H ₂ PO ₄) ₂	45
	in the second	Kalziumsulfat CaSO ₄	50
	Thomasphosphat	säurelösliche Phosphate	
Mehrnährstoff-	Am-Sup-Ka	Ammoniumsulfat (NH ₄) ₂ SO ₄	46
dünger		Kaliumchlorid KCI	33
		Kalziumdihydrogen- phosphat Ca(H ₂ PO ₄) ₂	21
	Kaliammon-	Kaliumnitrat KNO	55
	salpeter	Kaliumchlorid KCI	7
		Ammoniumchlorid NH ₄ CI	28
43 34 360	- 91	Kalziumkarbonat CaCO ₃	7

Angabe des Nährstoffgehaltes in Düngemitteln

Nährstoff	Angabe des Nährstoffgehaltes	Nährstoff	Angabe des Nährstoffgehaltes	
Kalzium	Kalziumoxid CaO	Kalium	Kaliumoxid	K₂O
Phosphor	Phosphorpentoxid P ₂ O ₅	Stickstoff	Stickstoff	N

Düngermischungstafel

Branntkalk, kalziumhydro- xidhaltige Düngemittel	Karbonathaltige Kalk- düngemittel	Kainit, Sylvinit, Kalidünge- salze, Emgekali, Reform-Kali	Natronsalpeter	Kalkammonsalpeter	Ammonsulfat	Kalkstickstoff	Superphosphat, Am-Sup-Ka	Thomasphosphat	Mg-Phosphat, schwefelsaures Kali	Kaliammonsalpeter	Mischen ist zu empfehlen Mischen darf nicht erfolgen Nach dem Mischen sofort ausstreuen
											Branntkalk, kalziumhydro- xidhaltige Düngemiftel
				+							Karbonathaltige Kalk- düngemittel
											Kainit, Sylvinit, Kalidünge- salze, Emgekali, Reform-Kali
											Natronsalpeter
	-										Kalkammonsalpeter
							*	4-			Ammonsulfat
					7						Kalkstickstoff
											Superphosphat, Am-Sup-Ka
		9									Thomasphosphat
, i											Mg-Phosphat, schwefelsaures Kali
											Kaliammonsalpeter

Eisenmetalle

/ Seite 11

Name	Erläuterung	Verwendung		
Roheisen	Eisen-Kohlenstoff-Legierung mit etwa 4% Kohlenstoff; graues Roheisen weißes Roheisen	Gußeisen Ausgangsstoff für die Stahlerzeugung		

Name	Erläuterung	Verwendung
Kohlenstoff- stähle	Eisen–Kohlenstoff- Legierungen mit einem Kohlenstoffgehalt bis 1,7%	Herstellung von Stahlerzeugnissen durch Gießen, Walzen, Ziehen, Schmieden
Legierte Stähle	Eisenlegierungen mit Metallen und Kohlenstoff Legierungszusätze:	
	Mangan bis 14% (Verschleißfestigkeit)	Eisenbahnschienen
	Chrom über 13% (Härte, Rostbeständigkeit)	Werkzeuge und Kugellager
	Nickel etwa 25 bis 36% (Zähigkeit, fast keine Aus- dehnung beim Erwärmen)	Bau von Meßinstrumenten
	Chrom und Nickel (Härte, Zähigkeit, chemische Widerstandsfähigkeit)	Kurbelwellen, Achsen, Bau chemisch-technischer Apparate
	Wolfram 15 bis 18% (Festigkeit in der Wärme)	Zerspanungswerkzeuge

Nichteisenmetalle

✓ Seite 11

ı

Name	Erläuterung	Verwendung		
Aluminium	Al	Leitermaterial für die Elektroindustrie; Herstellung von Haushaltgeräten, Behältern, Profilen, Formteilen; Folie für Verpackungszwecke ; aluminothermische Verfahren; Leglerungsmetall; Baustoff		
Blei	РЬ	Legierungsmetall; Material zum Schutz gegen radioaktive Strahlen; Herstellung von Kabeln und Rohren; für Bielakkumulatoren		
Chrom	Cr	Legierungsmetall; als Überzug für andere Metalle. (Verschleiß- und Korrosionsschutz)		

Name	Erläuterung	Verwendung
Kupfer	Cu	Leitermetall für die Elektroindustrie; Herstellung von Rohren für Heizungs- und Kältetechnik, Apparaten für die chemische Industrie; Legierungsmetall
Mangan	Mn	Legierungsmetall
Nickel	Ni	Legierungsmetall; als Überzug für andere Metalle (Verschleiß- und Korrosionsschutz); Akkumulatorplatten; Herstellung von Rundfunkröhren
Silber	Ag	Legierungsmetall; Herstellung von Schmuck, Geräten, Spiegelbelägen, Schaltkontakten; Silberverbindungen für photographische Zwecke
Zink	Zn	Oberflächenschutzmittel für Bleche, Rohre, Drähte, Nägel aus Eisenlegierungen; Herstellung von Blechen, Taschen- lampenbatterien; Legierungsmetall
Zinn	Sn	Legierungsmetall; Oberflächenschutzmittel für Stahlbleche (Weißblech)

Legierungen der Nichteisenmetalle

Legierungen sind homogene Gemenge von mindestens zwei Metallen. Sie können auch Nichtmetalle oder Verbindungen enthalten.

Name	Erläuterung	Verwendung		
Bronzen	70 bis 96% Kupfer, 30 bis 4% Zinn	Herstellung von hochbeanspruchten Maschinenteilen, Armaturen		
Konstantan	60% Kupfer, 40% Nickel	elektrisches Widerstandsmaterial		
Messinge	54 bis 90% Kupfer, 46 bis 10% Zink	Herstellung von Drähten, Blechen, Profilen; Armaturen; Formteile für die Elektroindustrie		
Neusliber 60% Kupfer, 18% Zink, 22% Nickel		Material für feinmechanische und medizinische Geräte		
Rotguß	86% Kupfer, 4% Zink, 10% Zinn	Herstellung von Maschinenteilen		

Organische Grundchemikalien

Industriell hergestellte organische Verbindungen, die vorzugsweise als Ausgangsstoffe für chemisch-technische Verfahren dienen.

Name ¹	Erläuterung	Verwendung
Äthanal	CH₃—CHO	Zwischenprodukt zur Herstellung von synthetischem Kautschuk, Äthanol, Äthansäure, Farbstoffen, Arzneimitteln
Äthanol	C₂H₅—OH	Lösungsmittel, Raketentreibstoff, Brennstoff, Ausgangsstoff für chemisch-technische Verfahren
Äthansäure	СН₃—СООН	Herstellung von Chemiefasern, Sicherheitsfilmen, Farbstoffen, Arzneimitteln, Riechstoffen, Lösungsmitteln; Speisewürze und Konservierungsmittel
Benzol	C₅H₅	Lösungsmittel; Zusatz für Kraftstoffe; Herstellung von Schädlingsbekämpfungs- mitteln, Chemiefasern, Farbstoffen, Arzneimitteln, Waschmitteln, synthetischem Kautschuk
Harnstoff	CO(NH ₂) ₂	Herstellung von Aminoplasten, Medikamenten; Zusatz zum Viehfutter
2-Hydroxy- propansäure	СН₃—СН(ОН)—СООН	Konservierungsmittel; in der Zahnheil- kunde und Gerberei
Kalziumkarbid	CaC ₂	Herstellung von Kalkstickstoff, Plasten, synthetischem Kautschuk, Chemiefasern, Lösungsmitteln, Arzneimitteln, Äthanol, Äthansäure
Methanal	нсно	Desinfektionsmittel, Konservierungsmittel; Herstellung von Plasten
Methanol	СН₃—ОН	Lösungsmittel, Raketentreibstoff, Brennstoff, Ausgangsstoff für chemisch- technische Verfahren
Methansäure	нсоон	Desinfektionsmittel, Konservierungsmittel; in der Textilveredlung und Gerberei

¹ alphabetisch geordnet.

Name ¹	Erläuterung	Verwendung
Naphthalin	C ₁₀ H ₈	Herstellung von Farbstoffen, Lösungs- mitteln, Plasten, Weichmachern, Ruß
Paraffin	Gemisch fester Alkane	Herstellung von Kerzen, Polituren, Kunstblumen, Fettsäuren; Isolierstoff, Imprägnierungsmittel, Salbengrundlage
Phenol	C ₆ H ₅ —OH	Herstellung von Plasten, Chemiefasern, Schädlingsbekämpfungsmitteln, Gerbstoffen, Farbstoffen, Arzneimitteln
Phthalsaure	C ₆ H ₄ (COOH) ₂	Herstellung von Farbstoffen, Weichmachern
Propanon	CH _s —CO—CH _s	Lösungsmittel; Quellungsmittel für Zelluloid; Herstellung von rauchlosem Pulver; Ausgangsstoff für chemisch- technische Verfahren
Propantriol	CH ₂ OH_CH(OH)_CH ₂ OH	Zusatz zu Zahnpasten, Stempelfarben, Modelliermassen, Tubenfarben, Schuh- creme, Seifen, Kosmelika; Frostschutz- mittel, Druckflüssigkeit in hydraulischen Pressen, Füllung von Gasmeßuhren, Lösungsmittel, Ausgangsstofffür chemisch- technische Verfahren
Styrol	C_6H_5 — $CH = CH_2$	Herstellung von Plasten und synthetischem Kautschuk
Zellstoff	fast reine Zellulose	Herstellung von Chemiefasern, Papier, Folien, Plasten, Kleb- und Appreturmitteln, Lacken, Explosivstoffen, Verbandmaterial

¹ alphabetisch geordnet.

Plaste und Elaste

- Thermoplaste sind makromolekulare Werkstoffe, die sich durch Erwärmen beliebig oft plastisch verformen lassen.
- Duroplaste sind makromolekulare Werkstoffe, die auf einer Verarbeitungsstufe plastisch sind, durch thermische oder andere Weiterbehandlung jedoch bleibend hart, unlöslich und unschmelzbar werden.
- Elaste sind makromolekulare Werkstoffe mit elastischen Eigenschaften, die beim Erwärmen nicht plastisch formbar werden.

Name ¹	Erläuterung	Verwendung			
Aminoplaste	Polykondensationsprodukte von Aminen (Melamin, Dizyandiamid, Harnstoff) und Methanal; Duroplast	Herstellung von Lacken, Leimen, Kitten, Schichtpreßstoffen, Preßmasse Isolierstoffen			
Epoxidharze	Polykondensationsprodukte von Epoxiden; Duroplast	Gießharze, Lackrohstoff, Isolierstoff für die Elektrotechnik, Metallkleber			
Gummi	Synthesekautschuk (Buna) oder Naturkautschuk, mit Schwefel vulkanisiert; Elast	Fahrzeugreifen, Regen- und Arbeits- schutzbekleidung, Schläuche, Treib- riemen, Massenbedarfsartikel			
Phenoplaste	Polykondensationsprodukte von Phenol (bzw. seinen Homologen) und Methanal; Duroplast	Herstellung von Gießharzen, Lacken, Leimen, Kitten, Schichtpreßstoffen, Glakresit, Preßmassen			
Polyamide	Polykondensationsprodukte von &-Aminokaprolaktam und anderen Stoffen; Thermoplast	Herstellung von Formteilen für die Industrie, Massenbedarfsartikeln, Möbelbeschlägen, Armaturen, Haushaltgeräten, Seilen, Folien			
Polyäthylen	Polymerisationsprodukt des Äthens; Thermoplast	Herstellung von Haushaltgeräten, Verpackungsmaterial, Rohren, Schläuchen; Isolierstoff in der Elektrotechnik			
Polyester	Polykondensationsprodukte von mehrwertigen organischen Säuren mit mehrwertigen Alkoholen; Duroplast	Herstellung von Behältern, Wasch- becken, Booten, Fahrzeugkarosserien; Klebemittel für Metalle und andere Werkstoffe			
Polystyrol	Polymerisationsprodukt des Styrols; Thermoplast	Herstellung von Haushaltgeräten, Spielwaren, Verpackungsmaterial, Formteilen für die Industrie			
Hart-PVC	Polymerisationsprodukt des Chloräthens; Thermoplast	Herstellung von Armaturen, Dich- tungen, Rohrleitungen, Apparaturen für die chemische Industrie, Ver- packungsmaterial, Haushaltgeräten, Platten, Folien; Isolierstoff für die Elektrotechnik			
Weich-PVC	Polymerisationsprodukt des Chlor- äthens, mit Weichmachern verknetet; Thermoplast	Herstellung von Polstern, Polster- bezügen, Fußbodenbelag, Arbeits- schutz- und Regenbekleidung, Täschnerwaren, Bucheinbänden, Spielwaren, Förderbändern, Schläuchen, Kabelisolierungen			
Silikone	siliziumorganische Verbindungen	Herstellung von Ölen, Fetten, synthetischem Kautschuk, Lacken			

¹ alphabetisch geordnet.

Chemiefasern

Hochmolekulare Faserstoffe, die durch chemisch-technische Verfahren hergestellt werden.

Nach der Herkunft der Ausgangsstoffe, die man zur Produktion einsetzt, werden die Chemiefasern eingeteilt in:

- "halbsynthetische" Chemiefasern, hergestellt aus natürlichen Ausgangsstoffen, und
- "vollsynthetische" Chemiefasern, hergestellt aus synthetischen Ausgangsstoffen.

Nach der textilen Verarbeitung unterscheidet man:

Chemiefäden, das sind endlose Fäden, die zur Herstellung seidenartiger Textilwaren dienen, und

Chemiespinnfasern, das sind auf Stapellängen geschnittene Fasern, die zu baumwoll- und wollähnlichen Textilwaren verarbeitet werden.

Name (Handels- bezeichnung)	Erläuterung, Zusammensetzung	Verwendung
PC-Faser (Piviacid)	Chemiespinnfaser auf Basis von nachchloriertem Poly- vinylchlorid	Unterbekleidung, Arbeitsschutz- bekleidung, Planen, Vorhänge, Schläuche, Seile, technische Gewebe
Polyakrylnitril- fasern (Wolpryla)	Chemiespinnfasern auf Basis von Polyakrylnitril	Unterbekleidung, Oberbekleidung, Dekorationsstoffe, Planen, technische Gewebe
Polyamidfasern (Dederon)	Chemiefäden und Chemie- spinnfasern auf Basis von E-Aminokaprolaktam	Strümpfe, Unterbekleidung, Ober- bekleidung, Dekorationsstoffe, Teppiche, Seile, Schläuche, technische Gewebe
Polyesterfasern (Grisuten)	Chemiefäden und Chemiespinn- fasern auf Basis von Polyestern	Oberbekleidung, Gardinen, Deko- rationsstoffe, Planen, technische Gewebe
Viskosefasern (Regan)	Chemiefäden und Chemie- spinnfasern auf Basis von Zellulose	Strümpfe, Unterbekleidung, Ober- bekleidung, Dekorationsstoffe, technische Gewebe

Gasförmige Brennstoffe

Gase, die auf Grund ihres Heizwertes zur Erzeugung von Wärmeenergie genutzt werden können.

Name	Erläuterung	Verwendung		
Braunkohlen- druckgas	enthält 35 bis 50% Wasserstoff, 16 bis 22% Kohlenmonoxid, 16 bis 24% Methan; Heizwert etwa 3800 kcal·m ⁻³	Stadtgas, Industriegas		
Braunkohlen- kokereigas	enthält etwa 35% Wasserstoff, etwa 20% Kohlenmonoxid, etwa 15% Methan, etwa 18% Kohlendioxid, etwa 11% Stickstoff; Heizwert etwa 3000 kcal · m ⁻³	Stadtgas, Industriegas		
Generatorgas	enthält etwa 30% Kohlenmonoxid, etwa 60% Stickstoff, etwa 5% Kohlendioxid; Heizwert etwa 1200 bis 1400 kcal·m ⁻³	Industriegas		
Propan	enthält 95% Propan C₃H₅; Heizwert etwa 22000 kcal· m⁻²	Heizgas für bewegliche Heizgeräte		
enthält etwa 50% Wasserstoff, etwa 40% Kohlenmonoxid; Heizwert etwa 2500 kcal·m ⁻³		Industriegas		
Steinkohlen- kokereigas	enthält etwa 50% Wasserstoff, etwa 30% Methan, etwa 10% Kohlenmonoxid; Heizwert etwa 3000 bis 4200 kcal·m ⁻³	Stadtgas, Industriegas		

Kraftstoffe

Brennbare Stoffe, die zum Betrieb von Verbrennungsmotoren verwendbar sind.

Name	Erläuterung	Verwendung		
Dieselkraftstoff	Gemisch aus Alkanen und ringförmigen Kohlenwasserstoffen des Siedebereichs 190 bis 345°C	Kraftstoff für Dieselmotoren		

Name	Erläuterung	Verwendung		
Petroleum	Kohlenwasserstoffgemisch (Siedebereich 150 bis 300°C)	Brennstoff, Raketentreibstoff, Kraftstoff		
Treibgas	Gemisch aus Buten, Propan, Äthan, Pentan	Kraftstoff für Ottomotoren		
Vergaser- kraftstoff	Gemisch aus Alkanen (Pentan bis Dodekan), Alkenen, ringförmigen Kohlenwasserstoffen und Antiklopfmitteln	Kraftstoff für Ottomotoren		

8.6. Industrieproduktion der DDR

Industrielle Bruttoproduktion

Industriebereich	1955	1960	1965	1965		
ingustriebereich	Angat	Angaben in Mill. DM (gerundet)				
Grundstoffindustrie davon	13598	20203	23 305	28,5		
Energiebetriebe	706	1137	1 481	1,7		
Bergbau	2 286	2626	2 5 9 7	2,9		
Metallurgie	2962	4 578	4 272	4,8		
Chemische Industrie	6 864	10470	15 056	17,0		
Baumaterialindustrie Metallverarbeitende	780	1 392	1 899	2,1		
Industrie	13103	23 585	32 209	37,4		
Leichtindustrie	10773	15514	18446	20,8		
Nahrungs- und Genußmittelindustrie	7323	10128	11 898	13,3		
Industrie insgesamt	44797	69430	88 876	100		

16 [031701] 241

Bruttoproduktion, Beschäftigte und Betriebe der chemischen Industrie

1965	Bruttopro	duktion	Anzahl der	Anzahl de	
1705	in Mill. DM	in %	Beschäftigten	Betriebe	
Chemische Industrie	15056	100	280 654	1014	
davon		_			
Grundchemikalien	3702	24,6	76745	73	
Chemische und chemisch-					
technische Spezialerzeugnisse	3146	20,9	52486	421	
Plaste und Plasterzeugnisse	937	6,5	25 994	264	
Pharmazeutika	1121	7,4	14341	112	
Gummi und Asbestwaren	2813	18,7	47 436	104	
Chemiefasern	883	5,9	22850	8	
Mineralöle, Teerprodukte	2418	16,6	40699	32	

Produktion ausgewählter Erzeugnisse

Erzeugnis	Einheit	1950	1955	1958	1960	1965
Stadtgas	Md. m³	1,50	2,41	3,07	3,05	3,41
BHT-Koks	Mill. t	_	0,46	0,99	1,01	1,05
Braunkohlen- briketts Braunkohlen-	Mill. t	38	51	54	56	60
schwelkoks	Mill. t	5,22	6,37	6,58	6,69	6,29
Kalisalze	Mill. † K ₂ O	1,34	1,55	1,65	1,67	1,93
Rohbraunkohle	Mill. t	137	201	215	225	251
Steinkohle	Mill. t	2,81	2,68	2,90	2,72	2,21
Steinkohlenkoks	Mill. t	1,53	2,71	3	3,21	3,21
Rohelsen	Mill. t	0,34	1,52	1,77	1,99	2,34
Rohstahl	Mill. t	1,0	2,51	3,04	3,34	3,89
Branntkalk	Mill. †	1,50	2,45	2,77	3,05	3,44
Fensterglas (Einheitsdicke)	Mill. m²	13,21	14,28	14,70	16,09	21,28
Zement	Mill. t	1,41	2,97	3,56	5,03	6,09

Erzeugnis	Einheit	1950	1955	1958	1960	1965
Ammoniak Atzkali	1000 t NH ₃	294 21	408 30	444	477 35	533 37
Ätznatron	1000 t	150	257	296	327	364
Salzsäure	1000 † HCI	56	80	67	75	66
Schwefel	1000 t	66	96	106	112	125
Schwefelsäure	1000 t SO ₃	245	483	531	596	804
Soda	1000 t	103	458	533	594	682
Ammonsulfat Kalkammonsal-	1000 † N	132	166	171	178	171
salpeter	1000 t N	62	97	115	122	123
Kalkstickstoff	1000 t N	23	14	16	16	17.5
Superphosphat	1000 t P ₂ O ₅	18	52	75	100	152
Äthansäure (100%) Kalziumkarbid Methanol	1000 t 1000 t 1000 t	24 606 38	32 793 60	47 831 64	51 923 73	88 1193 114
Palystyral PVC-Pulver Rohfilm Synthesekautschuk	1000 t 1000 t Mill. m ² 1000 t	1,0 21,6 13,8 39,8	2,0 42,0 17,2 72,2	3,7 54,5 21,8 85,0	4,0 58,6 25,3 86,8	12,3 104,6 29,5 94,8
Dieselkraftstoff	Mill. t	0,45	0,71	1,07	1,29	2,26
PC-Faser Polyakrylnitril-	1000 t	0,4	0,5	1,0	0,9	3,0
faser	1000 t	_	0,03	0,76	0,98	5,9
Polyamidfaser	1000 t	0,3	2,9	4,7	5,8	9,4
Polyesterfaser	1000 t			0,13	0,15	0,5
Kunstseide	1000 t	9,0	22,3	25,1	27,0	29,7
Viskosefaser	1000 t	78,0	96,9	111,2	110,6	112,5
Zellstoff	1000 t	226,1	303,0	325,0	336,5	360,1
Selfen (berechnet						
auf 40%)	1000 t	34,3	40,7	53,3	54,4	52,4
Waschpulver	1000 t	72,3	78,6	101,0	120,1	178,1

Angaben in diesem Abschnitt nach den Statistischen Jahrbüchern der DDR (gerundet).

Stichwortregister

A

Abhängigkeit chemischer Eigenschaften von den physikalischen 56 Abrösten 212 Addition 75 Agglomerieren 206 Akrylsäure s. Propensäure Aktivität, optische 69 Aktivität, optische 69 Aldebyde, Charakteristik 153

Aktivität, optische 69
Aldehyde, Charakteristik 153
—, Nachweis 191
Alkadiene 146
Alkalimetalle 113
Alkandiole 150
Alkane 146
Alkanole 150
Alkantriole 150
Alkantriole 150
Alkine 150
Alkine 150
Alkine 146
Aluminium 120

—, Eigenschaften 121 —, Erzeugung 218 —, Verwendung 234 Aluminiumchlorid, Eigenschaften 121

Aluminiumnitrat, Eigenschaften 121 Aluminiumoxid, Eigenschaften 121 Aluminiumsulfat, Eigenschaften 121 aluminothermisches Verfahren 218 Ameisensäure s. Methansäure Amine, Charakteristik 163 Aminobenzol, Eigenschaften 163 e-Aminoplaste, Nachweis 192

Aluminiumhydroxid, Eigenschaften 121

-, Verwendung 238

2-Aminosäuren, Charakteristik 162 Ammoniak, Eigenschaften 127

—, Herstellung 214, 215 —, Nachweis 190

—, Verwendung 230 Ammoniumchlorid, Eigenschaften 128

Ammonium-lonen, Nachweis 190 Ammoniumkarbonat, Eigenschaften

Ammoniumsulfat, Eigenschaften 128

—, Herstellung 216 Amphoterie 80 Anhydrit 200

Anilin s. Aminobenzol Anionen 51

Anlagerungskomplex 64

anorganische Verbindungen 109 bis 143 Antimon 125

—, Eigenschaften 129

Apatit 200

Apparate der chemischen Produktion 202 bis 207

Äquivalentgewicht(Äquivalentmasse)48 Äquivalentmasse 48

Arbeitsmethoden 176 bis 187 Arbeitsweise, kontinuierliche 207

—, periodische 207

Argon 135 Arsen 125

—, Eigenschaften 129

Arsentrioxid, Eigenschaften 129 Äthanal, Eigenschaften 154

—, Verwendung 236 Äthanate 158

Äthandiate 159 Äthandisäure, Eigenschaften 159 Äthanol, Eigenschaften 152 —, Herstellung 227, 228 -, Verwendung 236 Äthansäure, Eigenschaften 158 Äthen, Eigenschaften 148 Äthin, Eigenschaften 148 -, Herstellung 227 Äthylalkohol s. Äthanol Äthyläthanat, Eigenschaften 166 Atom 36 Atomaufbau der Elemente 38 bis 43 Atombindung 59 Atomgewicht (relative Atommasse) 47 Atomkern 36 Atommasse, relative 47 Atommodell, wellenmechanisches 44 Ätznatron 230 Aufbereitung und Aufarbeitung, Apparate 203 bis 207 Auffangen von Gasen, Luftverdrängung 180 ----, pneumatisches 180, 181 Außenelektronen 37 Avogadro, Satz von 96 Azetaldehyd s. Äthanal Azetatseide, Nachweis 193 Azeton s. Propanon Azetylene s. Alkine

Barium 117 -, Nachweis 187 Bariumchlorid, Eigenschaften 120

Bariumhydroxid, Eigenschaften 119 Bariumsulfat, Eigenschaften 120 Baumwolle, Nachweis 193 Bauxit 200 Benzaldehyd 155

Benzoate 158

Benzoesäure s. Benzolkarbonsäure

Benzol, Eigenschaften 149 -, Verwendung 236 Benzolhomologe und -derivate, Nomenklatur 33

Benzoldikarbonsäure-(1,2), Eigenschaften 160

-, Verwendung 237

Benzoldikarbonsäure-(1,4), Eigenschaften 160

Benzolkarbonsäure 158 Benzolring, Bindung 61 Bergbauprodukte 200, 201

Beryllium 117

Bindung, chemische 58 bis 63

-, Atom- 59 bis 61 -, Doppel- 60

-, Dreifach- 61

-, Einfach- 60

—, metallische 62 σ-Bindung 59

π-Bindung 60

Bindung im Benzolring 61 Bindungsarten, Übergänge 62, 63

-, lonenbeziehung/Atombindung 62

- , lonenbeziehung/metallische Bindung 63

-, metallische Bindung/Atombindung 63 Bindungswertigkeit 66

Biochemie 8 Blei 122

—, Eigenschaften 124

-, Verwendung 234 Bleiakkumulator 88 Bleiglanz 200

Bor 120

Borgruppe 120 Branntkalk 230

Braunkohle, Sauerstoffdruckvergasung 221

—, Spülgasschwelung 224, 226

-, Verwendung 200 Braunkohlendruckgas 240 Braunkohlenkokereigas 240 Brennprobe bei Fasern 193

— bei Plasten 192
Brennstoffe, gasförmige 240
Brom 133

— Eigenschaften 134
Bromide 135

— Nachweis 188
Bromwasserstoff, Eigenschaften 135
Bronze 235
Bruttoproduktion der DDR, industrielle 241

C

Chalkogene 130 Chemie 8 —, allgemeine 8

—, analytische 8 —, anorganische 8

-, Bio- 8

—, organische 8 —, physikalische 8

—, physiologische 8 —, präparative 8

—, theoretische 8

Chemiefäden 239

Chemiefasern, halbsynthetische 239

—, vollsynthetische 239

Chemiespinnfasern 239

Chemikalien, Vorsichtsmaßnahmen 194, 195

-, Erste Hilfe 195

chemische Industrie der DDR 242

Chlor 133

—, Eigenschaften 134

—, Verwendung 230

Chloride 134

—, Nachweis 188

Chloroform s. Trichlormethan Chlorwasserstoff, Eigenschaften 134

Chrom 139

—, Eigenschaften 140 —, Verwendung 234

Chromgruppe 139

D

Dederon s. Polyamidfaser Derivate 27 - Nomenklatur 31 bis 33 Destillieren 176, 177 Diamant 122 Dieselkraftstoff 240 2,3-Dihydroxybutandisäure 161 Dikarbonsäuren, Charakteristik 159 **Dimerisation 78** Dipol 51 Disacharide 167 Dissoziation, elektrolytische 79 Dissoziationsgrad 83 Dissoziationskonstante 81 Doppelbindung 60 Doppelschicht, elektrische 85 Dreifachbindung 61 Düngemittel 231 bis 233 -, Angabe des Nährstoffgehalts 232 -. Kalk- 231 -. Kali- 231 -. Mehrnährstoff- 232 -, Phosphat- 232

E

-, Stickstoff- 232

Duroplaste 237

Düngermischungstafel 233

Durchdringungskomplex 64

Edelgase 135
Eigenpotential 85
Eindampfen einer Lösung 177
Einfachbindung 60
Eisen 141
—, Eigenschaften 142
—, Herstellung 217
—, Verwendung 233
Eisengruppe 141
Eisen(III)-lonen, Nachweis 189
Eisenmetalle 11
—, Verwendung 233
Eisen(III)-oxid, Eigenschaften 142

R

Eisen(III)-oxid, Eigenschaften 142 Eisen(II)-sulfat, Eigenschaften 142 Eisen(II)-sulfid, Eigenschaften 142 Eiweiße, Charakteristik 168 -, Nachweis 191 Elaste 237 Elektrolyse 80 -, Durchführung 186 Elektrolyte 79 -, echte 79 -, mittelstarke 83 -, potentielle 79 -, schwache 83 -, starke 83 Elektronen 37 Elektronenhülle 37 Element, galvanisches 87 -, Leclanché-88 —. Lokal- 88 Elementaranalyse 106, 107, 190 Elemente 9 -, amphotere 54 -, Atomaufbau 38 bis 43 -, basenbildende 54 -. Misch- 10 -. Rein- 10 —, säurenbildende 54 -, Übersicht 110 bis 112 Energie, Umwandlung chemischer in elektrische 87 Energieniveauschema 37 Epoxidharze, Nachweis 192 -, Verwendung 238 Erdalkalimetalle 117 Erdgas 200 Erdöl, Aufarbeitung 223 -, Verwendung 200 Erste Hilfe 195 Essigsäure s. Äthansäure Essigsäureäthylester s. Äthyläthanat

F

Fasern, Brennprobe 193 Fällungsreaktionen 188, 189 Farbreaktionen 189 Fette, Charakteristik 169 -, Verwendung 202 fettes Öl 169 feuergefährliche Stoffe 197 Filtrieren 178 Flammenfärbung 187 Fließbild 208, 209 Fluor 133 -, Eigenschaften 133 Fluorwasserstoff, Eigenschaften 134 Fördern 207 Formaldehyd s. Methanal Formeln 14 -. Aufstellen 15 Formgeben 206 Formiate s. Methanate funktionelle Gruppen 28

Gallium 120

Gase, Auffangen 180, 181

-, Molvolumen 49

-, Reinigen und Trocknen 178, 179 Gasentwicklung durch Erhitzen von Stoffen 181, 182 durch Reaktion fester und flüssiger Substanzen 182, 183 Gegenstromprinzip 207 Generatorgas, Erzeugung 221 -, Verwendung 240 Gesetz der konstanten Proportionen 89 Gesetz der multiplen Proportionen 89 Gesetz von der Erhaltung der Masse 89 Gifte 195 bis 197 Glas, Herstellung 212 Gleichgewicht, chemisches 95 Gleichstromprinzip 208 Glukose 167

Ester, Bildung 78

-, Charakteristik 166

explosible Stoffe 197

Experimentierregeln, Vorbereitung 176

-, Durchführung und Auswertung 176

Glyzerin s. Propantriol-(1,2,3)
Glyzerytrinitrat s. Propantrioltrinitrat
Gold 136
—, Eigenschaften 137
Grammäquivalent 48
Grammatom 48
Grammolekül 48
Graphit 122
Grisuten s. Polyesterfaser
Gruppen des Periodensystems 52
Gruppen, funktionelle 28
Grundchemikalien, anorganische 230
—, organische 236, 237

Н

Gummi 238

Halbmetall 12, 55 Halogenderivate der Kohlenwasserstoffe, Charakteristik 149 Halogene 133 Halogenierung 75, 76 Harnstoff, Eigenschaften 165 -, Verwendung 236 Härte des Wassers 94 — —, permanente 94 — — , temporäre 94 Härtegrad, deutscher 94 Hauptgruppe, I., Übersicht 113 -, II., Übersicht 117 -, III., Übersicht 120 -, IV., Übersicht 122 __, V., Übersicht 125 -, VI., Übersicht 130 -, VII., Übersicht 133 -, VIII., Übersicht 135 Hauptquantenzahl 44 Helium 135 Hochdruckhydrierung 225, 226 Holz 202 homologe Reihe 26 Hydratation 80 Hydratisierung 76 Hydrierung 75

Hydrierung, Hochdruck- 225, 226
Hydrolyse 74
Hydroxide 12
—, Bildung 73
—, Nomenklatur 21
Hydroxylderivate der Kohlenwasserstoffe, Charakteristik 150
2-Hydroxypropansäure, Eigenschaften 161
—, Verwendung 236
Hydroxysäuren, Charakteristik 161

ı

Indium 120
Industrieproduktion der DDR
241 bis 243
Ionen 49, 50
—, Zentral- 63
—, Zwitter- 152
Ionenbeziehung 58
Ionenbidung 50
Ionenprodukt des Wassers 82
Ionenwertigkeit 65, 66
Isomerie 67 bis 69
—, Stellungs- 67, 68
—, Stereo- 68
—, Struktur- 67
Isotope 44

Indikatoren, Umschlagbereiche 190

J

Jod 133, 135 —, Eigenschaften 135 Jodide 135 —, Nachweis 188 Jodwasserstoff, Eigenschaften 135

Kadmium 138 Kalium 113 -, Eigenschaften 115 Nachweis 187 Kaliumchlorid, Eigenschaften 116 Katiumchromat, Eigenschaften 116 Kaljumdichromat, Eigenschaften 116 Kaliumhydroxid, Eigenschaften 115 Kalium-Ionen, Nachweis 188 Kaliumkarbonat, Eigenschaften 115 Kaliumnitrat, Eigenschaften 116 Kaliumpermanganat, Eigenschaften 116 Kalisalze 200 -, Aufbereitung 216 Kalkbrennen 210 Kalklöschen 210 Kalkstein 201 Kalzium 117 -, Eigenschaften 118 - Nachweis 187 Kalziumchlorid, Eigenschaften 119 Kalziumhydrogenkarbonat, Eigenschaften 118 Kalziumhydroxid, Eigenschaften 118 -, Herstellung 210 Kalzium-Ionen, Nachweis 188 Kalziumkarbid, Eigenschaften 119 -, Herstellung 226 -, Verwendung 236 Kalziumkarbonat, Eigenschaften 118 Kalziumoxid, Eigenschaften 118 -, Herstellung 210 -, Verwendung 230

Kalziumphosphate, Eigenschaften 119

Kalziumsulfat, Eigenschaften 119

Katalysator 97

Katalysatorgift 97

-, homogene 97

Kationen 51

Katalyse, heterogene 97

Kautschuk, Herstellung 229

Ketone, Charakteristik 155

Kieselsäure, Eigenschaften 124 Kobalt 141 —, Eigenschaften 143 Kohlendioxid, Eigenschaften 123 -, Nachweis 188 Kohlendisulfid, Eigenschaften 123 Kohlenhydrate, Charakteristik 167 Kohlenmonoxid, Eigenschaften 123 Kohlensäure, Eigenschaften 123 Kohlenstoff, Eigenschaften 122 Kohlenstoffatom, asymmetrisches 69 Kohlenstoffgruppe 122 Kohlenstoffverbindung, gesättigte 25 -, kettenförmige 25 -, ringförmige 25 -, ungesättigte 26 Kohlenwasserstoffe, aromatische 146 -. Charakteristik 146 -, Nomenklatur 28 bis 30 Kohlenwasserstoffsynthese nach Fischer und Tropsch 222, 223 Komplex, Anlagerungs- 64 -, Durchdringungs- 64 Komplexverbindungen 63 -. Nomenklatur 23, 24 —, Koordinationszahl 64 Komplexzerfallskonstante 65 Kondensation 77, 78 Konstantan 235 kontinuierliche Arbeitsweise 207 Konzentration 92 Konzentrationsmaße 92, 93 Koordinationszahl in Komplexverbindungen 64 Korrosion, elektrochemische 89 Krackverfahren 223 Kraftstoffe 240, 241 Kreislaufprinzip 208 Krypton 135 Kupfer 136 -, Eigenschaften 136 -, Erzeugung 219 -, Nachweis 187 Kupfergruppe 136 Kupfer(II)-Ionen, Nachweis 189

Kupfer(I)-oxid, Eigenschaften 136 Kupfer(II)-oxid, Eigenschaften 137 Kupferschiefer 200 Kupfer(II)-sulfat, Eigenschaften 137

Laborgeräte 172 bis 175

L

Lagern 207 Laktam s. ε-Aminokaprolaktam Laktate 161 Leclanché-Element 88 Leichtmetalle 11 Legierungen der Nichteisenmetalle 235 Ligand 64 Lithium 113 —, Nachweis 187 Lokalelement 88 Loschmidtsche Zahl 49 Löslichkeit 91 Löslichkeitsprodukt 84 Lösung 9, 90 _, echte 91 -, gesättigte 91 -, kolloide 91 -, konzentrierte 91 -, molare 94 - Normal- 94 -, verdünnte 91 —, Berechnungen 102 bis 106 -, Eindampfen 177 Lösungsdruck 84 Lösungsgeschwindigkeit 91 Lösunasmittel 91 Luft 202

M

Magnesium, Eigenschaften 117 Magnesiumoxid, Eigenschaften 117 Magneteisenstein 201 Malonsäure s. Propandisäure Mangan 140 —, Eigenschaften 140 —, Verwendung 235 Mangangruppe 140 Mangan(IV)-oxid, Eigenschaften 141 Mangan(II)-sulfat, Eigenschaften 141 Massenwirkungsgesetz 96 Massenzahl 36 Masseprozent 92 -, Berechnungen 103 Mehrfachbindungen, Nachweis 191 Metalle 11 -. edle 11 -, Eisen- 11 — —, Verwendung 233 -, Leicht- 11 —, leichtschmelzende 11 -, Nichteisen- 11 — —, Verwendung 234, 235 __. Schwer- 11 -, schwerschmelzende 11 -, unedle 11 -, Verteilung im Periodensystem 55 Methan, Eigenschaften 148 Methanal, Eigenschaften 154 -, Verwendung 236 Methanate 157 Methanol, Eigenschaften 152 -, Herstellung 227 -, Verwendung 236 Methansäure, Eigenschaften 157 -, Verwendung 236 Methylalkohol s. Methanol 1-Methyl-2,4,6-trinitrobenzol 164 Messing 235 Milchsäure s. 2-Hydroxypropansäure Mischelemente 10 Mischungsverhältnis von Lösungen 102, 103 Mol 48 Molarität 93 -, Berechnungen 104 Molekül 47 Molekulargewicht (relative Molekülmasse) 47

Molekülmasse, relative 47

Molvolumen von Gasen 49 Monochloräthen, Eigenschaften 150 Monokarbonsäuren, Charakteristik 156 Monosacharide 167 Müller-Kühne-Verfahren 212

N

Nachweisreaktionen 187 bis 193 Naphthalin, Eigenschaften 237 Naphthene s. Zykloalkane Natrium 113 -, Eigenschaften 114 -, Nachweis 187 Natriumchlorid, Eigenschaften 115 Natriumchloridelektrolyse 210 Natriumhydrogenkarbonat, Eigenschaften 114 Natriumhydroxid, Eigenschaften 114 -, Verwendung 230 Natriumkarbonat, Eigenschaften 114 -, Herstellung 211 -, Verwendung 230 Natriumnitrat, Eigenschaften 115 Natriumsilikat, Eigenschaften 114 Nebengruppe, I., Übersicht 136 -, II., Übersicht 138 -, VI., Übersicht 139 -, VII., Übersicht 140 -, VIII., Übersicht 141 Nebenquantenzahl 45 Neon 135 Neusilber 235 Neutralisation 74 Neutralisationsanalyse 187 Neutronen 36 Nichteisenmetalle 11 -, Legierungen 235 -, Verwendung 234, 235 Nichtelektrolyte 79 Nichtmetall 11, 55 Nickel 141 -, Eigenschaften 143 -, Verwendung 235 Nitrate 126 Nitrat-Ionen, Nachweis 189

Nitrierung 76 Nitrobenzol, Eigenschaften 164 Nitroverbindungen, Charakteristik 164 Nomenklatur anorganischer ' Verbindungen 18 bis 24 — — —, Hydroxide 21 — — —, Komplexverbindungen 23, 24 — — —, Säuren und Salze 21 bis 23 — — —, Verbindungen aus zwei Elementen 18, 19 Nomenklatur organischer Verbindungen 28 bis 33 - - -, Benzolhomologe und -derivate 33 — — —, Derivate kettenförmiger Kohlenwasserstoffe 31, 32 — — —, Kohlenwasserstoffe 28 bis 30 — — —, Zykloalkane 30 Normalelektrode (Standardelektrode) Normalität 93 -, Berechnungen 105 Normallösung 94 Normalpotential (Standardpotential) Normal-Wasserstoffelektrode (Standard-Wasserstoffelektrode) 85 Nukleonen 36 0 Olefine s. Alkene

Öl, fettes 169 optische Aktivität 69 Orbital 44 Ordnungszahl 52 organische Verbindungen 145 bis 169 — —, Nachweisreaktionen 191 Oxalate s. Äthandiate Oxalsäure s. Äthandisäure Oxid 12 Oxydation 72 Oxydationsmittel 73 Oxydationszahl 66

Paraffin 237 Paraffine s. Alkane Pauli-Prinzip 46 PC-Faser, Nachweis 193 -, Verwendung 239 Peptidbildung 77 Perioden 52 Periodensystem der Elemente 52 bis 57 — und Atomaufbau 52 periodische Arbeitsweise 207 Periodizität chemischer Eigenschaften in den Nebengruppen 56 - chemischer und physikalischer Eigenschaften in den Hauptgruppen Petroleum 241 Phaseneinteilung 209 Phenol, Eigenschaften 153 -, Verwendung 237 Phenole 150 Phenoplaste, Herstellung 229 -, Nachweis 192 -, Verwendung 238 Phosphate 129 -, Nachweis 188 Phosphor 125 —, Eigenschaften 128 Phosphorpentoxid, Eigenschaften 128 Phosphorsäure, Eigenschaften 129

Phthalate 160 Phthalsäure s. Benzoldikarbonsäure-(1,2) pH-Wert 82, 106, 190 Piviacid s. PC-Faser Plaste 237 -, Duro- 237

-, Thermo- 237

-, Brennprobe 192 Polyakrylnitrilfaser, Nachweis 193 -, Verwendung 239

Polyamide, Nachweis 192 -, Verwendung 238 Polyamidfaser, Nachweis 193

Polyamidfaser, Verwendung 239 Polyäthylen, Nachweis 192 -, Verwendung 238 Polyester, Nachweis 192 -, Verwendung 238 Polyesterfaser, Nachweis 193 -, Verwendung 239

Polykondensation 78 Polymerisation 78

Polymethakrylsäureester, Nachweis

Polysacharide 167 Polystyrol 238 Prinzip von Le Chatelier 95 Produkte der Land- und Forstwirtschaft

Produktion ausgewählter Erzeugnisse 242, 243

Propan 240 Propandisäure, Eigenschaften 160 Propanon, Eigenschaften 156

-, Nachweis 191 -, Verwendung 237

Propantriol-(1,2,3), Eigenschaften 152 -, Verwendung 152 Propantrioltrinitrat, Eigenschaften 166 Proteide 169

Proteine 169 Protonen 36 PVC, Herstellung 228, 229

-, Nachweis 192

-, Verwendung 238 Pyrit 201

Quantenzahl 44 bis 46 -, Haupt- 44 -, magnetische 46 -, Neben- 45 -, Spin- 45 Quarzsand 201 Quecksilber 138 -, Eigenschaften 139 Quecksilber(II)-oxid 139 R

Radikale 27 Reaktionen 72 bis 78 -, Durchführung 181 bis 187 -, endotherme 90 -, exotherme 90 —, Fällungs- 188, 189 -, Farb- 189 - gasförmiger mit festen Stoffen 184, - gasförmiger mit flüssigen Stoffen 183, 184 -, Wärmeumsetzungen 90 Reaktionsapparate 202, 203 Reaktionsgeschwindigkeit 94 -, Erhöhung 208 Reaktionsgleichungen 15, 16 -, Aufstellen 16 bis 18 Reaktionswärme 90 Redoxreaktionen 72 Reduktion 72 Reduktionsmittel 73 Reduktionswirkung, Nachweis 191 Regenerativprinzip 208 Reihe, homologe 26 Reinelemente 10 Rhenium 140 Roheisen, Erzeugung 217 -, Verwendung 233 Rohrzucker s. Sacharose Rohstoffe der chemischen Produktion 200 bis 202 Roteisenstein 201 Rotguß 235 Rubidium 113 **Ruß 123**

Sacharose 168
Salpetersäure, Eigenschaften 126, 127
—, Herstellung 214
—, Verwendung 230

-, Bildung 74 -, Nomenklatur 21 bis 23 Satz von Avogadro 96 Saverstoff 130 —, Eigenschaften 131 Saverstoffdruckvergasung von Braunkohle 221 Säureamide, Charakteristik 165 Säuren 12 -, Bildung 73 -. Nomenklatur 21 bis 23 Schwefel 130 —, Eigenschaften 131 -, Verwendung 230 Schwefeldioxid, Eigenschaften 131 —, Herstellung 212 Schwefelsäure, Eigenschaften 132 -, Herstellung 213 -, Verwendung 230 Schwefeltrioxid, Eigenschaften 132 Schwefelwasserstoff, Eigenschaften 132 schweflige Säure, Eigenschaften 132 Schwermetalle 11 Selen 130 —, Eigenschaften 132 Silber 136 —, Eigenschaften 137 -, Verwendung 235 Silberchlorid, Eigenschaften 137 Silbernitrat, Eigenschaften 137 Silikone 238 Silizium 122 -, Eigenschaften 124 Siliziumdioxid, Eigenschaften 124 Spannungsreihe, elektrochemische Spinquantenzahl 45 Stahl, Erzeugung 217, 218 -, Verwendung 234 Standardelektrode 85 Standardpotential 85 Standard-Wasserstoffelektrode 85 Stärke, Eigenschaften 168 -, Nachweis 191 Steinkohle, Verkokung 220

Salze 13

Steinkohle, Verwendung 201 Steinkohlenkokereigas 240 Steinsalz 201 Stickstoff 125 —, Eigenschaften 126 Stickstoffdioxid, Eigenschaften 126 Stickstoffgruppe 125 Stickstoffmonoxid 126 Stellungsisomerie 67, 68 Stereoisomerie 68 Stöchiometrie 100, 101 Stoff, gelöster 92 -, heterogener 9 -, homogener 9 -, reiner 9 Stoffe der Luft- und Wasserhülle 202 -, feuergefährliche 197

Strukturisomerie 67 Styrol 237 Substitution 76, 77 Substitutionsregeln 76, 77 Sulfate 132 — Nachweis 189

Stofftrennung 176 bis 179 Strontium 117

-, Übersicht 9

Sulfide 131

—, Nachweis 189
Sulfine 132
Sulfonierung 76
Summenformel, Bestlmmung 106, 107
Superphosphat, Herstellung 216
System, heterogenes 96

—, homogenes 96

T

Tartrate 161
Technetium 140
Technologie, chemische 8, 199 bis 243
Tellur 130
Terephthalate 160
Terephthalsäure s. Benzoldikarbonsäüre-(1,4)

Tetrachlorkohlenstoff s. Tetrachlormethan
Tetrachlormethan 150
Thallium 120
Thermoplaste 237
Titration 187
—, Berechnungen 106
Traubenzucker s. Glukose
Treibgas 241
Trennen 204, 205
Trichlormethan 150
2,4,6-Trinitrobenzol

u

Umschlagbereiche von Indikatoren 190 Umwandlung chemischer in elektrische Energie 87 Unfallverhütung, allgemeine Regeln 193. 194

Val 48

Verbindung 10
Verbindungsgesetze 89
Vereinigen 206
Verfahren, chemisch-technische 208
Verfahrensprinzipien, allgemeine 207, 208
Vergaserkraftstoff 241
Verkokung der Steinkohle 220
Vinylchlorid s. Monochloräthen
Viskoseselde, Herstellung 229
—, Nachweis 193
Volumengesetz von Gay-Lussac
Volumenprozent 92

Wärmeübertragen 206 Wärmeumsetzungen bei chemischen Reaktionen 90 Wasser 202 -, lonenprodukt 82 Wassergas, Erzeugung 221 -, Verwendung 240 Wasserstoff, Eigenschaften 113 —, Verwendung 230 Wasserstoff-lonen, Nachweis 189 Weinsäure s. 2,3-Dihydroxybutandisäure Wertigkeit-, Bindungs- 66 -, lonen- 65, 66 -, stöchiometrische 56, 65 Wismut 125 —, Eigenschaften 129 Wolle, Nachweis 193 Wolpryla s. Polyakrylnitrilfaser

Xenon 135

Z

Zäsium 113 Zeichensprache, chemische 13 bis 18 Zellstoff, Herstellung 228 -, Verwendung 237 Zelluloid, Nachweis 192 Zellulose, Eigenschaften 168 -, Nachweis 191 Zelluloseazetat, Nachweis 192 Zentralion 63 Zerteilen 205 **Zink 138** —, Eigenschaften 138 -, Erzeugung 219 -, Verwendung 235 Zinkblende 201 Zinkgruppe 138 Zinkoxid, Eigenschaften 138 Zinn 122 -, Eigenschaften 124 -, Verwendung 235 Zwitterionen 51 Zykloalkane 146 -, Nomenklatur 30

iode	Hauptgruppe	Nebengruppe			Peri	odei	nsvst	em c	ler E
1 Periode	1 1,000 2,1 H Wasserstoff		Hauptgruppe	II. Nebengruppe		III.		IV.	Hauptgruppe
2	3 6,94 1,0 Li Lithium		4 9,01 1,5 Be Beryllium		5 10,8 2,0 B		6 12,0 2,5 C	1	7 14,00 3,0 N
3	11 22,989 0,9 Na Natrium		12 24,31 1,2 Mg Magnesium		13 26,98 1,5 A l Aluminium		1,8 Si Silizium		15 30,9° 2,1 P Phosphor
4	19 39,10 0,8 K Kalium		20 40,08 1,0 Ca Kalzium			21 44,96 1,3 Sc Skandium		22 47,90 1,5 Ti Titan	
		29 63,54 1,9 Cu Kupfer		30 65,37 1,6 Zn Zink	31 69,72 1,6 Ga Gallium		32 72,59 1,8 Ge Germanium		33 74,92 2,0 As Arsen
5	37 85,47 0,8 Rb Rubidium		38 87,62 1,0 Sr Strontium			39 88,91 1,3 Y Yttrium		40 91,22 1,4 Zr Zirkonium	
		47 107,87 1,9 Ag Silber		48 112,40 1,7 Cd Kadmium	49 114,82 1,7 In Indium		50 118,69 1,8 Sn Zinn		51 121,75 1,9 Sb Antimon
6	55 132,91 0,7 Cs Züsium		56 137,34 0,9 Ba Barium			57° 138,91 1,1 La Lanthan		72 178,49 1,3 Hf Hafnium	
		79 196,97 2,4 Au Gold		80 200,59 1,9 Hg Quecksilber	81 204,37 1,8 T I Thallium		82 207,19 1,8 Pb Blei		83 208,98 1,9 Bi Wismut
7	87 [223] 0,7 Fr Franzium		88 [226] 0,9 Ra Radium			89°° [227] 1,1 Ac Aktinium		104 [200] Kur-(Ku) tschatowium	
	Charakter	Schlüssel	rel	ative	Lanthanide	59 140,91			
	der Oxide: basisch	Orde Elektro- negativität	nungszahl Ato	ommasse 6	^{1,1} Ce Zer	1,1 Pr Praseodym	60 144,24 1,2 Nd Neodym	Pm	62 150,35 1,2 Sm Samarium
	amphoter	Farbe —	Stickstoff	'\ i	* Aktinide 90 232,04	91 [231]	92 238,03	93 [237]	94 [242]
	sauer Edelgase			7 Symbol	1,3 Th	1,5 Pa	1,7 U	1,3 Np	1,3 PL
	Euelgase		Name			- rotukungul	oruli	Neptunium	Plutonium

VIII

Houptgruppe Nebengruppe

Y. Nebengruppe		/I. Nebengruppe		II. Nebengruppe	Helium			
	8 15,000 3,5 O Soserstoff		9 15,998 4,0 F Fluor		10 20,18 Ne Neon			
	16 32,00 2,5 S Schwefel		17 35,45 3,0 C I		18 39,95 Ar Argon			
23 50,94 1,6 V Vanadin		24 51,996 1,6 Cr Chrom		25 54,94 1,5 Mn Mangan		26 55,85 1,8 Fe Eisen	27 58,93 1,8 Co Kobalt	28 58,71 1,8 Ni Nickel
	34 78,96 2,4 Se Selen		35 79,91 2,8 Br Brom		36 83,80 Kr Krypton			
41 92,91 1,6 Nb Niob		42 95,94 1,8 Mo Molybdön		43 [99] 1,9 T C Technetium		44 101,07 2,2 Ru Ruthenium	45 102,91 2,2 Rh Rhodium	46 106,4 2,2 Pd Palladium
	52 127,60 2,1 Te Tellur		53 126,90 2,5 J Jod		54 131,30 Xe Xenon			
73 180,95 1,5 Ta Jantal		74 183,85 1,7 W Wolfram		75 186,2 1,9 Re Rhenium		76 190,2 2,2 Os 0smium	77 192,2 2,2 r Iridium	78 195,09 2,2 Pt Platin
	84 209 2,0 Po Polonium		85 [210] 2,2 At Astat		86 [222] Rn Radon			
63 151,96 Eu	64 157.25 1,1 Gd Gadolinium	65 158,92 1,2 Tb Terbium		67 164,93 1,2 Ho Holmium				71 174,97 1,2 Lu Lutetium
75 [243] Am	96 [247] Cm Kurium	97 [247] Bk Berkelium	98 [251] Cf Kalifornium	99 [254] Es Einsteinium	100 [253] Fm Fermium	101 [256] Md Mendelevium	102 [254] (No) Nobelium	103 [257] Lr Lawrenzium

