
1st Putnam 1938 

Problem A1 
A solid in Euclidean 3-space extends from z = -h/2 to z = +h/2 and the area of the section z = k is a polynomial in k 
of degree at most 3. Show that the volume of the solid is h(B + 4M + T)/6, where B is the area of the bottom (z = -
h/2), M is the area of the middle section (z = 0), and T is the area of the top (z = h/2). Derive the formulae for the 
volumes of a cone and a sphere. 

Solution 

Let the polynomial be az3 + bz2 + cz + d. Then the volume is ∫-h/2
h/2 (az3 + bz2 + cz + d) dz = bh3/12 + dh. But B + T 

= bh2/2 + 2d, M = d, so h(B + 4M + T)/6 = bh3/12 + dh, which proves the formula. For a sphere radius R, we have 
h = 2R, B + T = 0 and M = πR2, so the formula gives 4/3 πR3, as usual. For a cone height h, base area A, we have B 
= A, T = 0, M = A/4, so the volume is hA/3, as usual. 

Problem A2 
A solid has a cylindrical middle with a conical cap at each end. The height of each cap equals the length of the 
middle. For a given surface area, what shape maximizes the volume? 

Solution 
Let the radius be R and the height H. The area is 2πRH + 2πR√(R2+H2). The volume is 5/3 πR2H. 

The area is fixed, so for some fixed k, we have R ( H + √(R2+H2) ) = k. This gives H = (k2 - 
R4)/(2kR). We must now choose R to maximise f(R) = R2H = R (k2 - R4)/2k. Evidently the 
allowed range for R is from R = 0 up to √k (corresponding to H = 0). But f(0) = 0 and f(√k) = 0, 
so the maximum is at some interior point of the interval. Differentiating, we find it is at Rmax = 
(k2/5)1/4. In terms of the area A, we have A = 2πk, so Rmax = (A/(π 2√5) )1/2. 

 

Problem A3 
A particle moves in the Euclidean plane. At time t (taking all real values) its coordinates are x = 
t3 - t and y = t4 + t. Show that its velocity has a maximum at t = 0, and that its path has an 

inflection at t = 0. 

Solution 
The speed squared is (dx/dt)2 + (dy/dt)2 = 16t6 + 9t4 + 8t3 - 6t2 + 2. Let this be f(t). We have f '(t) = 12t(8t4 + 3t2 + 2t 
- 1). So f '(t) = 0 at t = 0. Also for t small (positive or negative), 8t4 + 3t2 + 2t - 1 is close to -1 and hence negative, 
so f '(t) is positive for t just less than 0 and negative for t just greater than 0. Hence f(t) has a maximum at t = 0. 
Hence the speed does also. 

The gradient dy/dx = (4t3 + 1)/(3t2 - 1). Let this be g(t). Then g'(t) = 6t(2t3 - 2t - 1)/(3t2 - 1)2. Hence g'(0) = 0. Also 
g'(t) is positive for t just less than 0 and negative for t just greater than 0, so it is a point of inflection. 

Problem A4 
A notch is cut in a cylindrical vertical tree trunk. The notch penetrates to the axis of the cylinder and is bounded by 
two half-planes. Each half-plane is bounded by a horizontal line passing through the axis of the cylinder. The angle 
between the two half-planes is θ. Prove that the volume of the notch is minimized (for given tree and θ) by taking 
the bounding planes at equal angles to the horizontal plane. 

Solution 
We find the volume of the notch above the horizontal plane. Suppose that the upper bounding half-plane is at an 
angle φ to the horizontal. We may take the radius of the tree to be 1. A vertical section through the notch at a 
distance x from its widest extent is a right-angled triangle with base √(1 - x2) and area 1/2 (1 - x2) tan φ. Hence the 
volume is 2/3 tan φ. So the total volume of the notch is 2/3 (tan φ + tan(θ-φ) ). So we have to find the angle φ 
which minimises (tan φ + tan(θ - φ). Differentiating, or otherwise, we easily find that the minimum is at φ/2. 

Problem A5 
(1)   Find limx->inf x

2/ex. 
(2)   Find limk->0 1/k  ∫0

k   (1 + sin 2x)1/x dx. 



Solution 
(1) Let f(x) = x3e-x. Then f '(x) = (3x2 - x3) e-x < 0 for x > 3. Hence f(x) < f(3) for x > 3, so x2 e-x < f(3)/x for x > 3. 
Hence x2 e-x tends to zero. 

(2) We use L'Hôpital's rule lim f(x)/g(x) = lim f '(x)/g'(x). Applied to the expression given it gives lim (1 + sin 
2x)1/x. Write (1 + sin 2x)1/x = exp( 1/x ln(1 + sin 2x) ). So apply the rule again to 1/x ln( 1 + sin 2x) to get 2 cos 
2x/(1 + sin 2x) which tends to 2. Hence (1 + sin 2x)1/x tends to e2 and so does the original expression. 

Problem A6 
A swimmer is standing at a corner of a square swimming pool. She swims at a fixed speed and runs at a fixed speed 
(possibly different). No time is taken entering or leaving the pool. What path should she follow to reach the 
opposite corner of the pool in the shortest possible time? 

Solution 
Answer: let k be the running speed divided by the swimming speed. For k > √2, the unique solution is to run round 
the outside. For k < √2, the unique solution is to swim direct. For k = √2 there is no unique solution. Run along a 
side to X, swim to Y equidistant from the corner between X and Y, then run from Y. The time taken is independent 
of X. 

We may take the side of the square to be 1, the swimming speed to be 1 and the running speed to be k. Let the 
square be ABCD. Suppose the start is at A and the finish at C. Possible routes are (1) run to X on AB, swim to Y 
on BC, run to C, (2) run to X on AD, swim to Y on CD, run to C, (3) run to X on AB, swim to Y on CD, run to C. 
We start by considering case (1). Take BX to be x, BY to be y. Then the time taken is (2 - x - y)/k + √(x2 + y2). 
Note that this includes the extreme cases of running all the way (x = y = 0) and swimming all the way (x = y = 1). 

Now (x - y)2 >= 0, with equality iff x = y, so (x + y)2 <= 2(x2 + y2) and hence (x + y) ≤ √2 √(x2 + y2), with equality 
iff x = y. So if k > √2, then (x + y) < k √(x2 + y2) and hence 2/k < (2 - x - y)/k + √(x2 + y2) unless x = y = 0 (when 
we have equality). Hence for k > √2, the unique solution is to run all the way. 

If k < √2, then (x + y) ≤ √2 √(x2 + y2) implies √2 (√2 - √(x2 + y2) ≤ 2 - x - y and hence k (√2 - √(x2 + y2) < 2 - x - y 
unless x = y = 1 (when we have equality). So √2 < (2 - x - y)/k + √(x2 + y2) unless x = y = 1. In other words, for k < 
√2 the unique solution is to swim all the way. 

For k = √2 we have equality (in both the previous paragraphs) iff x = y. So any solution with x = y is optimal in this 
case. 

Problem A7 
Do either (1) or (2) 
(1)   S is a thin spherical shell of constant thickness and density with total mass M and center O. P is a point outside 
S. Prove that the gravitational attraction of S at P is the same as the gravitational attraction of a point mass M at O. 

(2)   K is the surface z = xy in Euclidean 3-space. Find all straight lines lying in S. Draw a diagram to illustrate 
them. 

Solution 
(1) Let Q be a point on S. The obvious coordinate is the angle θ = angle QOP. The density is ρ = M/4πr2. By 
symmetry the attraction on P is towards O. Let the distance PO be d and the radius of the sphere be r. Let the 
gravitational constant be G. The component of the attraction towards O (per unit mass at P) is G ∫0

π r dθ 2 π r sin θ 
ρ (d - r cos θ) (d2 + r2 - 2dr cos θ)-3/2. Note that the factor (d - r cos θ) (d2 + r2 - 2dr cos θ)-1/2 is needed to resolve the 
force in the direction PO. Writing x = cos θ, this becomes 2G π r2ρ ∫-1

1 (d - r x)/(d2 + r2 - 2dr x)3/2 dx. 

This is not as bad as it looks. It is just the sum of a (1 - x)-1/2 and a (1 - x)-3/2 integral, both of which are 
straightforward. Moreover, when we come to substitute x = ±1, the factor (d2 + r2 - 2dr x)1/2 becomes just d - r or d 
+ r. So we get after a little simplification 4 π r2ρ/d2 = MG/d2, which is the same result as if all the mass was 
concentrated at O. 

(2) We can write a general line as x = at + b, y = ct + d, z = et + f, for some constants a, b, c, d, e, f and a parameter 
t which takes all real values. If this lies in z = xy, then et + f = ac t2 + (bc + ad) t + bd for all t. Hence a or c must be 



zero. If a is 0, then z = by, so the line can be written as x = b, z = by. Similarly, if c = 0, then the line can be written 
as y = d, z = dx. Conversely, it is easy to see that these two families of lines lie in the surface. 

Problem B1 
Do either (1) or (2) 
(1)   Let A be matrix (aij), 1 ≤ i,j ≤ 4. Let d = det(A), and let Aij be the cofactor of aij, that is, the determinant of the 
3 x 3 matrix formed from A by deleting aij and other elements in the same row and column. Let B be the 4 x 4 
matrix (Aij) and let D be det B. Prove D = d3. 

(2)   Let P(x) be the quadratic Ax2 + Bx + C. Suppose that P(x) = x has unequal real roots. Show that the roots are 
also roots of P(P(x)) = x. Find a quadratic equation for the other two roots of this equation. Hence solve (y2 - 3y + 
2)2 - 3(y2 - 3y + 2) + 2 - y = 0. 

Solution 
Answer: (2) The quadratic is A2x2 + (AB + A)x + (AC + B + 1) = 0. The quartic in y has roots 0, 1, 2, 2. 

(1) We have ai1Ai1 + ai2Ai2 + ai3Ai3 + ai4Ai4 = d. But ai1Aj1 + ai2Aj2 + ai3Aj3 + ai4Aj4 = 0 for i not equal to j (because it 
can be considered as an expansion of the determinant for the matrix derived from A by replacing row i by row j - 
the resulting matrix has two identical rows and hence zero determinant). So if we multiply the transpose of A by 
the matrix (Aij) then we get d down the diagonal and zeros elsewhere. Hence d D = d4, so D = d3. 

(2) It is obvious that if P(x) = x, then P(P(x)) = x. 

P(P(x)) = x is A(Ax2 + Bx + C)2 + B(Ax2 + Bx + C) + C = x. This is evidently a quartic and two of its roots are 
those of Ax2 + (B - 1)x + C = 0. We could obtain the quadratic for the other two roots by multiplying out P(P(x)) - 
x and factorising it. But it is sufficient to obtain the coefficients of x4, x3 and x0. This gives us the sum of the four 
roots as -2B/A and their product as (AC + B + 1)C/A3. The sum and product of the two known roots are -B/A - 1/A 
and C/A. Hence the sum and product of the other two roots are -B/A + 1/A and (AC + B + 1)/A2, so the roots are 
the roots of the quadratic A2x2 + (AB + A)x + (AC + B + 1) = 0. 

y2 - 3y + 2 = 0 has roots 1 and 2. So these values are also roots of (y2 - 3y + 2)2 - 3(y2 - 3y + 2) + 2 - y = 0. The 
other two roots are also the roots of x2 + (-3 + 1)x + (2 - 3 + 1) = 0. These are obviously 0 and 2. 

Problem B2 
Find all solutions of the differential equation zz" - 2z'z' = 0 which pass through the point x=1, z=1. 

Solution 
Answer: z = 1/( A(x - 1) + 1). 

We have z''/z' = 2 z'/z. Integrating, ln z' = 2 ln z + const, so z' = - A/z2. Integrating again: 1/z = Ax + B. But z(1) = 
1, so B = 1 - A. 

Problem B3 
A horizontal disk diameter 3 inches rotates once every 15 seconds. An insect starts at the southernmost point of the 
disk facing due north. Always facing due north, it crawls over the disk at 1 inch per second. Where does it again 
reach the edge of the disk? 

Solution 
Answer: at the northernmost point of the disk. 

Take polar coordinates with r = 3/2, θ = 0 at the start. The equations of motion are dr/dt = - cos θ, r dθ/dt = 2rπ/15 + 
sin θ. 

Differentiating the second equation: (dr/dt) (dθ/dt) + r d2θ/dt2 = (2π/15) dr/dt + (dθ/dt) cos θ. Substituting from the 
first equation, 2 (dr/dt) (dθ/dt) + r d2θ/dt2 = (2π/15) dr/dt. Multiplying through by r and integrating wrt t, we get r2 
dθ/dt = (π/15) r2 + C, for some constant C. At t = 0, r = 3/2 and dθ/dt = 2π/15, so C = 3π/20. Thus r2 dθ/dt = (π/15) 
r2 + 3π/20. But the original equation gives r2 dθ/dt = 2r2π/15 + r sin θ. Hence π r2/15 + r sin θ = 3π/20 (**). Hence if 
r = ±3/2, we have sin θ = 0 and hence θ = 0 or π. 



That is not quite enough to show that the insect reaches the edge again at θ = π. But we can treat (**) as a quadratic 
in r and solve to get r2 = (sin2θ + (π/5)2)1/2 - sin θ. This shows that r first decreases, but then increases again to ±1 at 
θ = π. We can rule out -1 because r2 is always positive, and r starts positive. So by continuity it must always remain 
positive. Thus the insect next reaches the edge at the northenmost point of the disk. 

Problem B4 
The parabola P has focus a distance m from the directrix. The chord AB is normal to P at A. What is the minimum 
length for AB? 

Solution 
Answer: 3√3 m. 

We may take the equation of P as 2my = x2. The gradient at the point A (a, a2/2m) is a/m, so the normal at (a, b) is 
(y - a2/2m) = -m/a (x - a). Substituting in 2my = x2, it meets P at (x, y) where x2 + 2m2/a x - (2m2 + a2) = 0, so the 
other point B has x = -(2m2/a + a). 

Thus AB2 = (2a + 2m2/a)2 + 4m2(1 + m2/a2)2 = 4a2(1 + m2/a2)3. Differentiating, we find the minimum is at a2 = 2m2 
and is AB2 = 27m2. 

Problem B5 
Find the locus of the foot of the perpendicular from the center of a rectangular hyperbola to a tangent. Obtain its 
equation in polar coordinates and sketch it. 

Solution 
Answer: r2 = 2k2 sin 2θ. It is a figure of 8 with its axis along the line y = x and touching the x-axis and y-axis at the 
origin. 

Take the hyperbola as xy = k2. Then the tangent at (a, k2/a) is (y - k2/a) = - k2/a2 (x - a). The perpendicular line 
through the origin is y = a2/k2 x. They intersect at x = 2k2/(a (a2/k2 + k2/a2) ), y = 2a/(a2/k2 + k2/a2). So the polar 
coordinates r, θ satisfy tan θ = y/x = a2/k2, r2 = x2 + y2 = 4a2(k4/a4 + 1)/(k2/a2 + a2/k2) = 4a2(cot2θ + 1)/(tan θ + cot θ)2 
= 4 a2 cos2θ/(sin2θ + cos2θ)2 = 4a2cos2θ = 4k2sin θ cos θ = 2k2 sin 2θ. Thus the polar equation of the locus is r2 = 2k2 
sin 2θ. 

Problem B6 
What is the shortest distance between the plane Ax + By + Cz + 1 = 0 and the ellipsoid x2/a2 + y2/b2 + z2/c2 = 1. 
You may find it convenient to use the notation h = (A2 + B2 + C2)-1/2, m = (a2A2 + b2B2 + c2C2)1/2. What is the 
algebraic condition for the plane not to intersect the ellipsoid? 

Solution 
The tangent plane to the ellipsoid at (X, Y, Z) is Xx/a2 + Yy/b2 + Zz/c2 = 1. It is parallel to Ax + By + Cz + 1 = 0 iff 
X/a2 = kA, Y/b2 = kB, Z/c2 = kC for some k. But 1 = X2/a2 + Y2/b2 + Z2/c2 = k2(a2A2 + b2B2 + c2C2) = k2m2, so k = 
±1/m. There are two values corresponding to two parallel tangent planes (one on either side of the ellipse). The 
equation of the tangent plane is k(Ax + By + Cz) = 1. 

The distance of the origin from the plane Ax + By + Cz + 1 = 0 is 1/(A2 + B2 + C2)1/2 = h. The distance of the origin 
from the tangent plane k(Ax + By + Cz) = 1 is h/|k| = hm. So if m ≥ 1, the plane Ax + By + Cz + 1 = 0 lies between 
the two tangent planes and hence intersects the ellipse. So in this case the minimum distance is zero. If m < 1, then 
the distance between the plane Ax + By + Cz + 1 = 0 and the nearer tangent plane is h(1 - m) and that is the 
required shortest distance. 



2nd Putnam 1939 

Problem A1 
Let C be the curve y2 = x3 (where x takes all non-negative real values). Let O be the origin, and A be the point 
where the gradient is 1. Find the length of the curve from O to A. 

Solution 
Ans: 8/27 (2√2 - 1). Trivial integration. 

Problem A2 
Let C be the curve y = x3 (where x takes all real values). The tangent at A meets the curve again at B. Prove that the 
gradient at B is 4 times the gradient at A. 

Solution 
Trivial. [Take the point as (a,a3). Write down the equation of the tangent. Write down its point of intersection with 
the curve: (x3 - a3) = 3a2(x - a). We know this has a repeated root x = a. The sum of the roots is zero, so the third 
root is x = - 2a. Finally, 3(-2a)2 = 4 times 3 a2.] 

Problem A3 
The roots of x3 + a x2 + b x + c = 0 are α, β and γ. Find the cubic whose roots are α3, β3, g3. 

Solution 
x3 + (a3 - 3ab + 3c) x2 + (b3 - 3abc + 3c2)x + c3 = 0. 

A routine manipulation. Suppose the roots are α, β, γ. Then α + β + γ = - a, αβ + βγ + γα = b, αβγ = -c. So to get the 
coefficients of the desired polynomial we have to find the corresponding expressions in the cubes: α3 + β3 + γ3 etc. 
You obviously start with (α + β + γ)3 etc and then add additional terms to get the desired expressions. 

Problem A4 
Given 4 lines in Euclidean 3-space: 

L1:   x = 1, y = 0;  L2:   y = 1, z = 0;  L3:   x = 0, z = 1;  L4:   x = y, y = -6z. 

Find the equations of the two lines which both meet all of the Li. 

Solution 
A routine computation. Assume the line meets L1 at (1,0,a) and L2 at (b,1,0). Then it is (x - 1) = t(x - b), y = t(y - 1), 
(z - a) = tz. So it can only cut L3 if 1/b = 1 - a, and L4 if 6a = 6ab - 1. This gives a quadratic for a, which we can 
solve to get a = -1/2 or 1/3. Hence the possible lines are (1,0,-1/2) + t(-1/3,1,1/2) and (1,0,1/3) + t(1/2,1,-1/3). 

Problem A5 
Do either (1) or (2) 
(1)   x and y are functions of t. Solve x' = x + y - 3, y' = -2x + 3y + 1, given that x(0) = y(0) = 0. 

(2)   A weightless rod is hinged at O so that it can rotate without friction in a vertical plane. A mass m is attached to 
the end of the rod A, which is balanced vertically above O. At time t = 0, the rod moves away from the vertical 
with negligible initial angular velocity. Prove that the mass first reaches the position under O at t = √(OA/g) ln (1 + 
√2). 

Solution 
(1) Differentiate the first equation, use the second equation to eliminate y', and then the (undifferentiated) first 
equation to eliminate y, giving: 
  x'' - 4 x' + 5x = 10. Solving: x = 2 + A e2t sin t + B e2t cos t. But x(0) = 0, so B = -2. The first equation now gives y 
= x' - x + 3 = 1 + (A + 2) e2t sin t + (A - 2) e2t cos t. But y(0) = 1, so A = 1. The final solution is thus: x = 2 + e2t sin 
t - 2 e2t cos t; y = 1 + 3 e2t sin t - e2t cos t. 

(2)   Trivial, except for the integral, which is moderately hard, unless you happen to know it. 



Let the angle the rod makes with the (upward) vertical be θ. Conservation of energy gives immediately: 1/2 
OA2(dθ/dt)2 = OA.g(1 - cos θ). 
Now for the first time in this exam we come up against something that is not completely obvious. How do we do 
the integral? 

You need the half-angle formulae, eg (1 - cos θ) = 2 sin2θ/2. Now if you can remember the integral for 1/sin z (eg 
ln sin z - ln(1 + cos z), or equivalently ln(cosec z - cot z), then you are home. 

If not, use the half-angle formulae again: sin θ/2 = 2 sin θ/4 cos θ/4. Putting c = cos θ/4, we have to integrate 1/(c(1 
- c2)). Expand using partial fractions and now the integral is just a sum of logs. 

Problem A6 
Do either (1) or (2): 
(1)   A circle radius r rolls around the inside of a circle radius 3r, so that a point on its circumference traces out a 
curvilinear triangle. Find the area inside this figure. 

(2)   A frictionless shell is fired from the ground with speed v at an unknown angle to the vertical. It hits a plane at 
a height h. Show that the gun must be sited within a radius v/g (v2 - 2gh)1/2 of the point directly below the point of 
impact. 

Solution 
(1)   This is moderately difficult. It is not immediately obvious what coordinates to use (or at least, after meeting an 
integral I did not immediately recognize, I started worrying that there might be a better choice of coordinates), and 
it is not immediately obvious how to do the resulting integral. 

Let C be the center of the large circle and let O be the initial point of contact between the two circles. Take O as the 
origin and OC as the x-axis, take the y-axis so that P the point of contact gets a positive y-coordinate just after 
rolling starts. The easiest parameter is to take angle OCP = θ. Then it is not hard to see that x/r = 3 - 2 cos θ - cos 
2θ, y/r = 2 sin θ - sin 2θ. 

Evidently we need something like ∫ y dx. We need a little care on the limits of integration. Let A, B be the other 
vertices of the curvilinear triangle (A corresponding to θ = 2π/3, B to θ = 4π/3). Let X be the point where the curve 
AB cuts the x-axis and Y the point where the line AB cuts the x-axis. ∫O

A gives the area under the curve OA, in 
other words the area OAX plus the area AXY. Then ∫A

X gives minus the area AXY (because x is decreasing, so dx 
is negative). ∫X

B gives minus area BXY (x increasing, but y negative), and ∫B
O gives plus area BXY plus area OBX 

(x decreasing and y negative). So the entire integral ∫θ=0
2π gives the required area inside the curvilinear triangle 

OAB. In other words we need: 
    2r2 ∫θ=0

2π (2 sin θ - sin 2θ)(sin θ + sin 2θ) dθ. 

This is the point at which we are likely to get stuck. Changing variable to z = cos θ does not apparently help. The 
trick is to put things in terms of sin nx or cos nx. We may remember that sin2z = (1 - cos 2z)/2, and cos(w +/- z) = 
cos w cos z -/+ sin w sin z, so that sin z sin 2z = (cos z - cos 3z)/2. 

Expanding the integrand gives: 2 sin2θ + sin θ sin 2θ - sin22θ. Using the two formulae above transforms this to: 1 - 
cos 2θ + (cos θ - cos 3θ)/2 - 1/2 + 1/2 cos 4θ. The cos terms all integrate to zero and the constant term 1/2 
integrates to π, so the final answer is 2πr2. 

(2)   There is a slight trap here. We may be tempted to argue that the extreme case is where the shell reaches the 
plane with zero vertical velocity. The horizontal velocity does not change during the trajectory, so taking u as the 
horizontal velocity and w as the vertical, we can write down immediately that w2 = 2gh (energy) and hence the 
radius r = w/g (v2 - 2gh)1/2, which is unfortunately wrong. Notice that it is smaller than the answer sought. The 
reason is that impact at zero vertical velocity is not the extreme case. We can usually do better by having the shell 
peak before the plane, so that it hits it on the way down - the extra time to travel horizontally outweighs the loss of 
horizontal velocity. 

So we have to write down the equations: r = tu, h = tw - gt2/2. Squaring to eliminate u, w in favor of v, gives: 
  g2t4/4 + (gh - v2)t2 + (h2 + r2) = 0.  (*) 



For this to have a real root we require (gh - v2)2 ≥ g2(h2 + r2) and hence r ≤ v/g (v2 - 2gh)1/2. 

We are not asked to prove that the plane can be hit from anywhere within this radius, so we could stop here. But v2 
≥ 2gh > gh, so (*) is a quadratic of the form a z2 - b z + c = 0, with a, b, c positive. Hence if r satisfies the condition, 
it has two positive roots for z and (*) has two real (positive) roots for t. Having solved for t, we can then solve for 
the angle (or equivalently for u, w), which shows that we can hit the plane from anywhere inside the radius. 

Problem A7 
Do either (1) or (2): 
(1)   Let Ca be the curve (y - a2)2 = x2(a2 - x2). Find the curve which touches all Ca for a > 0. Sketch the solution and 
at least two of the Ca. 

(2)   Given that (1 - hx)-1(1 - kx)-1 = ∑i≥0  ai x
i, prove that (1 + hkx)(1 - hkx)-1(1 - h2x)-1(1 - k2x)-1 = ∑i≥0  ai

2 xi. 

Solution 
(1)   It is not hard to see that C1 is a figure 8 lying on its side with the double point at (1,0), vertical tangents at (1,1) 
and (-1,1) and horizontal tangents at (1/√2, 1/2), (1/√2, 3/2), (-1/√2,1/2), (-1/√2,3/2). Ca is obtained from C1 by 
transforming (x,y) to (ax,a2y) (so stretching by a factor a in the x-direction and a factor a2 in the y-direction). So we 
get a sequence of ever-larger horizontal 8s centered ever-further up the y-axis. This suggests that the envelope is 
something like a parabola y = k x2. 

At this point it is distinctly helpful to know more classical differential geometry than today's undergraduate. The 
classical method for finding the envelope for a 1-parameter family of curves (which usually works) is to 
differentiate wrt the parameter. Thus we eliminate a from: 

  (y - a2)2 - x2(a2 - x2) = 0, and   4a(y - a2) + 2a x2 = 0 

giving y = 3/4 x2 (or the y-axis, which is presumably a spurious solution arising from the double points). 

Alternatively, we might guess that that the envelope is a curve y = k x2 for some k. The intersection of this with Ca 
is given by: 
  (k2 + 1)x4 - (2k + 1) a2x2 + a4 = 0, or x2 = (2k + 1)a2/(2k2 + 2) +/- a2(4k - 3)1/2/(2k2 + 2). 

For this to be a tangent we need double roots and hence k = 3/4. It is now easy to check that this parabola meets Ca 
at (2a/√5,3a2/5), (-2a/√5,3a2/5) and to check that the gradients match. 

(2)   Fairly easy. 

This is obviously not a general result (whereby we derive ∑ ai
2xi from ∑ aix

i), so we need to evaluate the ai. In fact, 
it is easily seen that ai = (hi+1 - ki+1)/(h - k). [For example, multiply the expansions of (1 - hx)-1 and (1 - kx)-1 to get ai 
= hi + hi-1k + ... + h ki-1 + ki = (hi+1 - ki+1)/(h - k).] 

Multiplying across to try to show that higher powers of (1 - hkx)(1 - h2x)(1 - k2x) ∑ ai
2xi   have zero coefficients is 

a mistake (doable, but much algebra). It is better to evaluate ∑ ai
2xi directly. After substituting for ai, we are going 

to get terms of the form   ∑ zi   which evaluates immediately to (1 - z)-1, giving the expression in the question in 
partial fraction form.   

Problem B1 
The points P(a,b) and Q(0,c) are on the curve y/c = cosh (x/c). The line through Q parallel to the normal at P cuts 
the x-axis at R. Prove that QR = b. 

Solution 
Trivial. [Let O be the origin. Then OR/OQ = sinh a/c, so QR2 = c2(1 + sinh2a/c), so QR = b.] 

Problem B2 
Evaluate   ∫1

3  ( (x - 1)(3 - x) )-1/2 dx   and   ∫1
inf  (ex+1 + e3-x)-1 dx. 



Solution 
(1)   π. Trivial. [Write (x - 1)(3 - x) = 1 - (x - 2)2. So we have a standard sin-1z integral.] 

(2)   π/(4 e2). Trivial. [Multiply top and bottom by ex. Change variable to y = ex-1. We now have a standard tan-1z 
integral.] 

Problem B3 
Given   an = (n2 + 1) 3n, find a recurrence relation an + p an+1 + q an+2 + r an+3 = 0. Hence evaluate ∑n≥0 an x

n 

Solution 

We can solve formally to get the recurrence relation, but it is quicker to get there informally. We look for a relation 
between bn = an, bn+1 = an+1/3, bn+2 = an+2/9, bn+3 = an+3/27, because that takes care of the powers of 3. So, ignoring the 
3n, we are looking at: 

n2 + 1 
n2 + 2n + 2 
n2 + 4n + 5 
n2 + 6n + 10 

We try to get a linear combination of the first three which is constant. But that is easy: subtracting twice the second 
from the third gets rid of the n term, then adding the first gets rid of the n2 term. So, bn+2 - 2bn+1 + bn = 2.3n. But bn+3 
- 2bn+2 + bn+1 has the same value, so subtracting: 

  an+3 - 9an+2 + 27an+1 - 27an = 0, which is the required recurrence relation. 

Let the power series sum to y. Then taking y - 9x + 27x2y - 27x3y will give an+3 - 9an+2 + 27an+1 - 27an as the 
coefficient of xn+3, so we need only worry about the early terms: a0 + (a1 - 9a0)x + (a2 - 9a1 + 27a0)x

2 = (1 - 3x + 
18x2). Hence y = (1 - 3x + 18x2)/(1 - 9x + 27x2 - 27x3). 

Using the ratio test, the original series evidently converges for |x| < 1/3, which may prompt us to notice that   1 - 9x 
+ 27x2 - 27x3 = (1 - 3x)3. 

That in turn may prompt us to try solving the problem backwards. We know that: 

1/(1 - z) = ∑ zn; 1/(1 - z)2 = ∑ (n+1)zn; 1/(1 - z)3 = ∑ (n+1)(n+2)/2 zn. 

Hence   2/(1 - z)3 - 3/(1 - z)2 + 2/(1 - z) = ∑ (n2 + 1)zn. Replacing z by 3x gives ∑ an x
n = (1 - 3x + 18x2)/(1 - 3x)3. 

Multiplying across by (1 - 3x)3 now gives the required recurrence relation. 

Problem B4 
The axis of a parabola is its axis of symmetry and its vertex is its point of intersection with its axis. Find: the 
equation of the parabola which touches y = 0 at (1,0) and x = 0 at (0,2); the equation of its axis; and its vertex. 

Solution 
The general equation of the a parabola is:   (ax + by)2 + cx + dy + e = 0. Its intersection with y = 0 is given by a2x2 
+ cx + e = 0. This must have a double root, so c = -2a2, e = -a2. Considering the other tangent, we find: d = -4b2, e = 
4b2. So (up to an irrelevant constant factor) we have: a = 2, b = 1, c = -8, d = -4, e = 4; or a = 2, b = -1, c = -8, d = -
4, e = 4. But in the first case the equation can be written as (2x + y - 2)2 = 0, which is a double line. It is debatable 
whether this qualifies as a parabola, but it would not normally be said to touch the points (1,0) and (0,2). So we are 
left with the parabola: (2x - y)2 - 8x - 4y + 4 = 0. 

We want to put this in the form u = kv2. The line x + 2y = 0 is perpendicular to the line 2x - y = 0, so we change 
variables to X = 2x - y, Y = x + 2y, giving: X2 - 16/5 Y - 12/5 X + 4 = 0, or 16/5 (Y - 4/5) = (X - 6/5)2, which is the 
equation of a parabola with vertex X = 6/5, Y = 4/5, axis X = 6/5. Changing back to the original coordinates, x = 
(2X + Y)/5, y = (2Y - X)/5, the vertex is (16/25, 2/25) and the axis is 10x - 5y = 6. 

Problem B5 
Do either (1) or (2): 



(1)   Prove that ∫1
k [x] f '(x) dx = [k] f(k) - ∑1

[k] f(n), where k > 1, and [z] denotes the greatest integer ≤ z. Find a 
similar expression for:   ∫1

k [x2] f '(x) dx. 

(2)   A particle moves freely in a straight line except for a resistive force proportional to its speed. Its speed falls 
from 1,000 ft/s to 900 ft/s over 1,200 ft. Find the time taken to the nearest 0.01 s. [No calculators or log tables 
allowed!] 

Solution 
(1)  [x] is constant over the interval [i, i+1) for i an integer, so we split the range of integration to get   ∫1

k = ∫[k]
k + ∫1

2 
+ ∫2

3 + ... + ∫[k]-1
[k]. We can write down each of these integrals, collect terms and get the result. 

The same idea works the second integral, except that we divide at √2, √3, √4, ... , √[k2], giving the result: [k2] f(k) - 
( f(1) + f(√2) + f(√3) + ... + f(√[k2]) ). 

(2)   Easy. 1.26 s. 

The equation of motion is x'' = - k x'. Integrating: x' = k A e-kt. Integrating again, and putting x(0) = 0, x = A(1 - e-

kt). Suppose T is the required time. Then from the speed   e-kT = 0.9. x(T) = 1200, so A = 12000. The initial speed is 
1000, so k = 1/12 and T = -12 ln 0.9. The only slight snag is that in the exam calculators did not exist and log tables 
were not allowed. So we have to use the expansion ln(1 + x) = x - x2/2 + x3/3 - ... , or more usefully: - ln(1 - x) = x 
+ x2/2 + x3/3 + ... , giving T = 1.2 + 0.06 + 0.004 + 0.0003 + ... or 1.26 s. 

Problem B6 
Do either (1) or (2): 

(1)   f is continuous on the closed interval [a, b] and twice differentiable on the open interval (a, b). Given x0 ∈ (a, 
b), prove that we can find ξ ∈ (a, b) such that ( (f(x0) - f(a))/(x0 - a) - (f(b) - f(a))/(b - a) )/(x0 - b) = f ''(ξ)/2. 

(2)   AB and CD are identical uniform rods, each with mass m and length 2a. They are placed a distance b apart, so 
that ABCD is a rectangle. Calculate the gravitational attraction between them. What is the limiting value as a tends 
to zero? 

Solution 
(1)  We obviously have to use the mean value theorem. So we need to construct a suitable auxiliary function to 
apply it to. It is usually easiest to apply the MVT in cases where the function has equal values at the two ends of the 
interval. So we want to find some function g, such that g' has equal values at two different points. Let the value of 
the expression given, ( (f(x0) - f(a))/(x0 - a) - (f(b) - f(a))/(b - a) )/(x0 - b), be y0. Then we are looking for g''(x) to be 
something like 1/2 f ''(x) - y0. 

Let us start by rearranging the expression for y0 to give   f(x0) = f(a) + ( f(b) - f(a) )(x0 - a)/(b - a) + y0(x0 - a)(x0 - b). 
After a little experimentation we may try looking at: 

    g(x) = f(x) - f(a) - ( f(b) - f(a) )(x - a)/(b - a) - y0(x - a)(x - b). 

We notice that g(a) = 0, g(b) = 0, g(x0) = 0, g'(x) = f '(x) - ( f(b) - f(a) )/(b - a) - y0(2x - a - b), g''(x) = f ''(x) - 2 y0. 
At this point we should realize that we are home, because we have to show that we can find ξ such that g''(ξ) = 0. 
But the mean value theorem gives us a value in the interval (a, x0) at which g' is zero and another in (x0, b). Hence 
there must be a value between the two (and a fortiori in (a, b) ) at which g'' is zero. 

(2)   Straightforward, apart from an awkward integral. Answer: Gm2( 1 - (1 + 4a2/b2)1/2 )/(2a2), which tends to 
Gm2/b2 as the rods shorten to become point masses. 

By symmetry the net force must be perpendicular to the rods, so we just calculate the perpendicular component. 
Take coordinates x along one rod and y along the other. Then we can write down immediately that the 
perpendicular component is: 

    Gm2/(4a2)   ∫ (b2 + (x - y)2)-1 b (b2 + (x - y)2)-1/2 dx dy. 



The integrand is of the form   (1 + z2)-3/2. It helps to know that this integrates to   z/(1 + z2)1/2 (as is easily checked). 
People used to mess around with trigonometric substitutions (eg tan θ reduces it to cos θ, which integrates 
immediately to sin θ, which one has to remember to think of as tan θ/sec θ). But it was always easier simply to 
learn a large number of integrals by rote. Nowadays, of course, one tends to look them up or use 
Mathematica/Maple. 

So integrating first by y, we get Gm2/(4a2)   ∫ dx/b { (x - 2a)/b (1 + (x - 2a)2/b2)-1/2 - x/b (1 + x2/b2)-1/2 }. This is 
much less horrible than it looks, because we are just faced with integrating   z/(1 + z2)1/2 which is obviously   (1 + 
z2)1/2. So we get the expression above. For the limit, just expand the square root as a power series 1 + 2a2/b2 - 
a4/(4b4) + ... . 

Problem B7 
Do either (1) or (2): 

(1)   Let ai = ∑n=0
∞ x3n+i/(3n+i)!   Prove that a0

3 + a1
3 + a2

3 - 3 a0a1a2 = 1. 

(2)   Let O be the origin, λ a positive real number, C be the conic   ax2 + by2 + cx + dy + e = 0, and Cλ the conic   
ax2 + by2 + λcx + λdy + λ2e = 0. Given a point P and a non-zero real number k, define the transformation D(P,k) as 
follows. Take coordinates (x',y') with P as the origin. Then D(P,k) takes (x',y') to (kx',ky'). Show that D(O,λ) and 
D(A,-λ) both take C into Cλ, where A is the point (-cλ/(a(1 + λ)), -dλ/(b(1 + λ)) ). Comment on the case λ = 1. 

Solution 
(1)   Moderately hard, unless differentiating is a reflex, in which case it is easy. 

The series are all absolutely convergent for all x, so we can carry out whatever operations we want. But it is not at 
all obvious what to do. Multiplying out the power series to get a complicated sum for the coefficient of xn is 
offputting. Much scope for algebraic error, and no guarantee that the eventual simplification will be obvious. So we 
look for some trick. The ai are closely related to the exponential series, eg a0 + a1 + a2 = ex, and the prevalence of 3 
in the question may eventually suggest looking at ω, the cube root of 1. Indeed, a0 + ωa1 + ω2a2 = eωx. Since ω2 is 
also a root, we also have a0 + ω2a1 + ωa2 = eω2x. Remembering that 1 + ω + ω2 = 0 might prompt us to multiply 
these three expressions together, but it helps to remember the product of the three left hand sides: (a0 + a1 + a2)(a0 + 
ωa1 + ω2a2)(a0 + ω2a1 + ωa2) = a0

3 + a1
3 + a2

3 - 3a0a1a2. Otherwise, you are faced with multiplying this out the hard 
way: after collecting terms, you get (a0

3 + a1
3 + a2

3), then 6 expressions of the type a0
2(1 + ω + ω2), which are all 

zero, and 3a0a1a2(ω + ω2), which is -3a0a1a2. 

A more general approach, which is more likely to work, is to differentiate the expression   a0
3 + a1

3 + a2
3 - 3 a0a1a2. 

Provided you notice that a0' = a2 etc, this gives the result almost immediately (the derivative is zero, so the 
expression must be constant, but its value for x = 0 is 1). 

(2)   Trivial. [D(O,λ) takes (x,y) to (λx,λy). So if (x,y) satisfies the equation for C, just check that (λx,λy) satisfies 
the equation for Cλ. Similarly, D(A,-λ) takes (x,y) to (-λx - λc/a, -λy - λd/b). Again, just check by substituting this 
into the equation for Cλ and using the fact that (x,y) satisfies the equation for C. If λ = 1, then Cλ = C, D(O,λ) is the 
identity transformation, and D(A,-λ) the central symmetry.] 



3rd Putnam 1940 

Problem A1 
p(x) is a polynomial with integer coefficients. For some positive integer c, none of p(1), p(2), ... , p(c) are divisible 
by c. Prove that p(b) is not zero for any integer b. 

Solution 
Suppose p(b) = 0. Then p(x) = (x - b)q(x), where q is a polynomial with integer coefficients. Put b = cd + r, where 1 
≤ r ≤ c (note that this is different from the conventional 0 ≤ r < c, but still possible because 1, 2, ... c are a complete 
set of residues mod c). Then p(r) = p(b - cd) = - cd q(r) which is divisible by c. Contradiction. 

Problem A2 
y = f(x) is continuous with continuous derivative. The arc PQ is concave to the chord PQ. X is a point on the arc 
PQ for which PX + XQ is a maximum. Prove that XP and XQ are equally inclined to the tangent at X. 

Solution 
Take s to be the arc-length PX and z to be PX + XQ. Suppose the tangent is WXY, so that angle WXP = θ and 
angle YXQ = φ. Then to first order if we vary X, the change δz = δs (cos θ - cos φ), which is can be made positive 
(by choosing the sign of δs appropriately), thus contradicting the maximality of X, unless θ = φ. 

The official solution. If X is a point of S such that PX + XQ ≥ PY + YQ for all points Y of S, then we can easily 
show that S lies in the half-plane bounded by external angle bisector of PXQ. If X lies on PQ, then S must be a 
subset of the segment PQ and the result is trivial. So assume it does not. Now reflect Q in the bisector to get Q', 
with PXQ' a straight line. Then if Y is any point in the same half-plane as Q', we have YQ' < YQ and hence PY + 
YQ > PY + YQ' ≥ PQ' = PX + XQ' = PX + XQ, so Y is not in S. 

This argument depends upon X achieving a global maximum. The original wording of the question, "a point ... for 
which ... is a maximum" (which on this point I quoted exactly), is somewhat ambiguous. Does it mean a local or a 
global maximum? If it means a local, then we have to take S to be a small arc for which the maximum is global. 
Then that arc lies on one side of the line. Since it also has a point in common (X) and is differentiable, the line must 
be the tangent to the arc at X. 

This solution is somewhat harder and less obvious (unless you have seen it before), so I prefer the simpler solution. 

Problem A3 
α is a fixed real number. Find all functions f: R → R (where R is the reals) which are continuous, have a continuous 
derivative, and satisfy   ∫b

y fα(x) dx = ( ∫b
y f(x) dx )α for all y and some b. 

Solution 
Straightforward to get the basic idea, but care is needed with the details. It is quite hard to get the answer exactly 
right (the official solution gives a spurious solution for the case (2) - overlooking the problem with the integration 
limits). 

Answer: 
(1) No solutions for α = 0; 
(2) No solutions for α < 0; 
(3) Any continuous f with continuous derivative is a solution for α = 1; 
(4) For α > 0 and not of the form p/q, with p and q odd positive integers, f = A ekx, where A is any real, and k is the 
positive real value of α1/(α -1); 
(5) For α = p/q, with p and q odd positive integers (but not both 1), f = A ekx or A e-kx, where A is any real, and k is 
the positive real value of α1/(α -1). 

Case (3) is obvious. Case (1) is almost obvious: if α = 0, then the lhs varies with y ( = y - b), but the rhs does not ( = 
1), so there are no solutions. Assume now that α is not 0 or 1. 

Differentiate wrt y and put g(y) = ∫b
y f(x) dx. Then f = g' and we have fα = α gα -1 f. So f = k g, where k = α1/(α -1). 

Since f = g', we can integrate immediately to get f(x) = A ekx (*). 



However, we have to consider how many real values k can have. If α > 0, then k certainly has a positive value, but 
we can also take the corresponding negative value if 1/(α - 1) involves an even root, in other words if α = p/q with p 
and q both odd. Finally, (*) is clearly necessary, but not necessarily sufficient, so we have to subsitute (*) back into 
the original equation. For k > 0, we find the solution works provided b = -∞. If k < 0, then it works with b = ∞. This 
gives cases (4) and (5). [Note, however, that we can only allow A negative for α not of the form p/q with p and q 
odd, provided we are content for both sides of the original equation to have complex values (even though f is real 
valued).] 

For α < 0, all values of α1/(α -1) are complex unless α = - p/q with p an even positive integer and q an odd positive 
integer. If α has that form, then we may take k = - 1/|α|1/(|α|+1). But now there is a problem with b. Taking A = 1 for 
simplicity, the fα(x) = e|αk|x, so the lhs = const (e|αk|y - e|αk|b) and the rhs = const /(e- |k|y - e- |k|b)|α|. The constants are the 
same, but we need b = -∞ to get rid of the b term on the lhs and b = ∞ to get rid of the term on the rhs. So there are 
no solutions in case (2).   

Problem A4 
p is a positive constant. Let R is the curve y2 = 4px. Let S be the mirror image of R in the y-axis (y2 = - 4px). R 
remains fixed and S rolls around it without slipping. O is the point of S initially at the origin. Find the equation for 
the locus of O as S rolls. 

Solution 
Answer: x(x2 + y2) + 2p y2 = 0. 

Take the point of contact as (X, Y), so Y2 = 4pX. The tangent at to R at this point has gradient 2p/Y, and hence has 
equation (y - Y) = 2p/Y (x - X). The perpendicular to the tangent through the origin has equation x = - 2p/Y y. If (x, 
y) is their point of intersection, then (2x, 2y) is the point O (since S in its new position is the reflection of R in the 
tangent). 

Solving for x, y: y = Y3/(2(Y2 + 4p2) ), x = - 2p/Y = - pY/(Y2 + 4p2). So the point O is (-2pY2/(Y2 + 4p2), Y3/(Y2 + 
4p2) ) (*). Using Y = -2py/x, we get x = -2py2/(x2 + y2), or x(x2 + y2) + 2p y2 = 0 (**). We have shown that the 
locus is given by (*) and that all points on (*) are on (**). However, we must check that (**) does not include 
additional points. Writing (**) as y2 = - x3/(x + 2p), shows that for each value of x in the range (-2p, 0) there are 
exactly two possible values of y, and the only other point on (**) is the origin. Inspection shows that the same is 
true for (*), so the two expressions are equivalent. 

Problem A5 
Prove that the set of points satisfying x4 - x2 = y4 - y2 = z4 - z2 is the union of 4 straight lines and 6 ellipses. 

Solution 
x4 - x2 = (x2 - 1/2)2 - 1/4, so x4 - x2 = y4 - y2 is equivalent to (x2 - 1/2)2 = (y2 - 1/2)2 and hence to x2 - 1/2 = +/- (y2 - 
1/2), which is equivalent to x = y, or x = -y, or x2 + y2 = 1. Similarly, for y4 - y2 = z4 - z2. So the equation given is 
equivalent to: (1) x = y and y = z, or (2) x = y and y = -z, or (3) x = -y and y = z, or (4) x = -y and y = -z, or (5) x = 
y and y2 + z2 = 1, or (6) x = -y and y2 + z2 = 1, or (7) x2 + y2 = 1 and y = z, or (8) x2 + y2 = 1 and y = -z, or (9) x2 + 
y2 = 1 and y2 + z2 = 1. 

Clearly (1) - (4) are straight lines. (5) is the intersection of a plane and a cylinder, which is an ellipse. Similarly (6), 
(7) and (8). (9) is slightly harder to see. If one's visualization is good, then one can see that the intersection of two 
cylinders with the same radius and axes intersecting at right angles is two perpendicular ellipses with a common 
minor axis. Otherwise, subtracting the two equations we see that x = z or -z and the intersection is also given by the 
intersection of a cylinder with two planes. 

Problem A6 
p(x) is a polynomial with real coefficients and derivative r(x) = p'(x). For some positive integers a, b, ra(x) divides 
pb(x). Prove that for some real numbers A and α and for some integer n, we have p(x) = A(x - α)n. 

Solution 
Write p(x) = A ∏ (x - αi)

n
i. 

Then r(x) = p(x) ∑ ni/(x - αi) = (A ∏ (x - αi)
n
i
-1 ) q(x), where no αi is a root of q(x). This is easily seen, because q(x) 



is a sum of terms, all but one of which has a factor (x - αi). But q(x) divides p(x)b which has no roots except the αi. 
Hence q(x) must be a constant. But now the degree of r(x) is wrong unless there is just one αi. 

Problem A7 
ai and bi are real, and ∑1

∞ ai
2 and ∑1

∞ bi
2 converge. Prove that ∑1

∞ (ai - bi)
p converges for p ≥ 2. 

Solution 
Notice first that it is sufficient to prove the result for p = 2. For that is equivalent to the statement that ∑ |ai - bi|

2 
converges. Hence for sufficiently large i, |ai - bi| < 1, and hence |ai - bi|

p ≤ |ai - bi|
2. So ∑ (ai - bi)

p is absolutely 
convergent and hence convergent. 

(ai - bi)
2 = ai

2 - 2aibi + bi
2. The only tricky part is the middle term. It may be positive, so we cannot simply argue that 

0 ≤ (ai - bi)
2 ≤ ai

2 + bi
2. However, it is true that 0 ≤ (ai - bi)

2 = 2ai
2 + 2bi

2 - (ai + bi)
2 ≤ 2ai

2 + 2bi
2. That suffices, since 

∑ ai
2 and ∑ bi

2 are absolutely convergent, hence also ∑ (2ai
2 + 2bi

2).   

Problem A8 
Show that the area of the triangle bounded by the lines aix + biy + ci = 0 (i = 1, 2, 3) is Δ2/|2(a2b3 - a3b2)(a3b1 - 
a1b3)(a1b2 - a2b1)|, where  is the 3 x 3 determinant with columns ai, bi, ci. 

Solution 
Fairly easy if you remember some formulae for determinants (which people did in those days). Of course, you can 
just slog through the expression (*) below in terms of ai, bi, ci. That is doable, but completely mindless, the only 
required skill is doing elementary algebra fast without mistakes. I suppose I am fairly out of sympathy with the 
rather common Putnam style of problem where the basic idea is obvious, but you have to be skilful at evaluating 
integrals, determinants etc, often using tricks. 

Take Ai be the cofactor of ai in Δ. Similarly, Bi and Ci. [So, for example, A1 = b2c3 - b3c2, A2 = b3c1 - b1c3, A3 = b1c2 
- b2c1.] 

The lines a2x + b2y + c2 = 0 and a3x + b3y + c3 = 0 intersect at (A1/C1, B1/C1). Similarly, the other two points of 
intersection are (A2/C2, B2/C2) and (A3/C3, B3/C3). 

The area of the triangle is therefore (the absolute value of) the determinant K with rows A1/C1, B1/C1, 1; A2/C2, 
B2/C2, 1; A3/C3, B3/C3, 1. (*) [For example, take a z-coordinate perpendicular to the plane, and take the cross 
product of the vectors along two sides.] But K |C1C2C3| is the determinant whose elements are the cofactors of the 
original determinant. This has value equal to Δ2. For example, on multiplying it by Δ, we get Δ down the diagonal 
and zeros elsewhere, and hence Δ3. 

Problem B1 
A stone is thrown from the ground with speed v at an angle θ to the horizontal. There is no friction and the ground 
is flat. Find the total distance it travels before hitting the ground. Show that the distance is greatest when sin θ ln 
(sec θ + tan θ) = 1. 

Solution 

Take coordinates (time and distance) zeroed on the peak of the trajectory. After time t, the stone travels a distance x 
= v t cos θ horizontally and a distance 1/2 g t2 vertically. So the trajectory is a parabola 2y = k x2, where k = g/(v 
cos θ)2. The stone is on the ground at t = +/- v/g sin θ, at a horizontal distance +/- a from the peak, where a = v2/g 
sin θ cos θ. 

The length of the parabola y = k/2 x2 between x = -a and x = a is 2 ∫0
a (1 + k2x2)1/2 dx. 

To do the integral it helps to remember that 1 + sinh2z = cosh2z. So substituting kx = sinh z, will essentially give us 
the integral of cosh2z. That is doable, using the analog of the double angle formulae. So setting I = ∫ (1 + k2x2)1/2 dx, 
and substituting x = sinh z, we have I = 1/k ∫ cosh2 z dz = 1/(2k) ∫ (cosh 2z + 1) dz = 1/(4k) sinh 2z + 1/(2k) z = 
1/(2k) sinh z cosh z + 1/2 z = x/2 (1 + k2x2)1/2 + 1/(2k) sinh-1(kx). We have k = g/(v cos θ)2, and a = v2/g sin θ cos θ, 
so ka = tan θ. So the required path length is p(θ) = a(1 + k2a2)1/2 + 1/k sinh-1a = v2/g (sin θ + cos2θ sinh-1 tan θ). 



To find the maximum, we differentiate, getting p'(θ) = cos  - 2 cos θ sin θ sinh-1 tan θ + cos2θ (1 + tan2θ)-1/2 sec2θ = 
2 cos θ(1 - sin θ sinh-1tan θ). In the range [0, /2], tan θ is monotone increasing. Sinh-1z is strictly monotone 
increasing for positive z, so sinh-1tan θ is strictly monotone increasing on (0, π/2). Indeed it evidently tends to ∞ as 
θ tends to π/2. Hence (1 - sin θ sinh-1tan θ) is strictly monotone decreasing on (0, π/2) and crosses zero once. Cos θ 
is monotone decreasing and positive, so p'(θ) is strictly monotone decreasing and crosses zero once. Hence p(θ) has 
a single maximum on [0, π/2], which is achieved for the value φ in (0, π/2) for which (1 - sin φ sinh-1tan φ) = 0. 
Rearranging, sinh(1/sin φ) = tan φ. Squaring, adding 1, and taking the square root: cosh(1/sin φ) = sec φ. Adding 
the last two equations: e1/sin φ = tan φ + sec φ, or 1/sin φ = ln(tan φ + sec φ), or sin φ ln(tan φ + sec φ) = 1. 

Problem B2 
C1, C2 are cylindrical surfaces with radii r1, r2 respectively. The axes of the two surfaces intersect at right angles 
and r1 > r2. Let S be the area of C1 which is enclosed within C2. Prove that S = 8r2

2A = 8r1
2C - 8(r1

2 - r2
2)B, where A 

= ∫0
1 (1 - x2)1/2(1 - k2x2)-1/2 dx, B = ∫0

1 (1 - x2)-1/2(1 - k2x2)-1/2 dx, and C = ∫0
1 (1 - x2)-1/2(1 - k2x2)1/2 dx, and k = r2/r1. 

Solution 
It is hard to see the point of the second half [ 8r2

2A = 8r1
2C - 8(r1

2 - r2
2)B ], which is trivial. Multiply top and bottom 

of the integrand in A by (1 - x2)1/2, so that we get (1 - x2) on the top. Then note that k2(1 - x2) = 1 - k2x2 + (k2 - 1). 

For the first half, the part of C1 enclosed inside C2 comprises two bent ovals, one at each end. It is tempting to think 
that when rolled flat, each piece is an ellipse. If that were true, then the problem would be trivial - the semi-axes are 
r2 and r1sin-1k, so the total area would be 2π r1r2sin-1k. But conics only remain conics when projected onto flat 
surfaces and here we are projecting onto a curved surface. 

So we have to use integration. Take C1 to be x2 + y2 = r1
2, and C2 to be y2 + z2 = r2

2. We calculate the area of the 
quarter of the piece with x > 0 having y, z > 0. We may divide it into strips parallel to the z-axis. Take the angle θ 
to be the axial angle - the angle by which the strip has to be rotated about the z-axis from the y = 0 position 
(keeping in the surface C1). [Points on the strip have the same x and y coordinates, but varying z-coordinates.] The 
strip has y-coordinate r1sin θ and hence length (r2

2 - r1
2sin2θ)1/2 and width r1dθ. Thus the area of the quarter-oval is 

∫0
sin-1k (r2

2 - r1
2sin2θ)1/2 r1 dθ. Put t = 1/k sin θ, and the integral becomes r2

2 ∫0
1 (1 - t2)1/2 (1 - k2t2)-1/2 dt. Hence the 

complete oval is 4 times this, and the total area 8 times. 

Comments. The original question was badly worded, because at first sight it appeared to be about volumes, not 
areas, which may have confused some. It is important to get a clear picture of the geometry - the easiest way to do 
this is to roll a piece of paper into a cylinder. 

Problem B3 
Let p be a positive real, let S be the parabola y2 = 4px, and let P be a point with coordinates (a, b). Show that there 
are 1, 2 or 3 normals from P to S according as 4(2p - a)2 + 27 pb2 >, = or < 0. 

Solution 
The general point on the parabola is (pt2, 2pt). The slope of the tangent is 2p/y = 1/t, and so the slope of the normal 
is -t. Hence the equation of the normal is   (y - 2pt) = -t(x - pt2). This passes through (a, b) iff   pt3 + (2p - a)t - b = 0 
(*). 

This is a cubic, so it has 1, 2 or 3 real roots. We have to decide which. If (2p - a) > 0, then pt3 + (2p - a)t is strictly 
increasing and takes all values in (-∞, ∞), so (*) has just one real root. The same is true if (2p - a) = 0, unless b = 0, 
in which case there are three coincident roots. 

If (2p - a) < 0, then pt3 + (2p - a)t has a maximum and a minimum. Differentiating, we find that these are at t = ± √( 
-(2p - a)/(3p) ), with values ± 2(2p - a)/3 √( -(2p - a)/(3p) ). So there are 1, 2 or 3 real roots according as b2 >, = or < 
4(2p - a)2/9 -(2p - a)/3p, which is the condition in the question. Note that if (2p - a) ≥ 0, then this expression is 
certainly > 0, so the same rule applies. 

Problem B4 
Let S be the surface ax2 + by2 + cz2 = 1 (a, b, c all non-zero), and let K be the sphere x2 + y2 + z2 = 1/a + 1/b + 1/c 
(known as the director sphere). Prove that if a point P lies on 3 mutually perpendicular planes, each of which is 
tangent to S, then P lies on K. 



Solution 
Let f(x, y, z) = ax2 + by2 + cz2. Then the normal vector is the vector grad f, so the tangent plane at (u, v, w) is a.u.x 
+ b.v.y + c.w.z = 1. 

Note that this does not pass through the origin. The general plane not through the origin has equation p.(x - λp) = 0 
or p.x = λ, where x is the vector (x, y, z) representing a general point on the plane, p = (p, q, r) is a unit vector 
normal to the plane, and λ > 0 is the distance of the plane from the origin. If this is a tangent plane at some point of 
the quadric, then a(p/λa)2 + b(q/λb)2 + c(r/λc)2 = 1, or p2/a + q2/b + r2/c = λ2. 

So suppose P is the point of intersection of three perpendicular tangent planes pix + qiy + riz = λi, i = 1, 2, 3, where 
pi are orthonormal vectors. The squared distance of P from the origin is λ1

2 + λ2
2 + λ3

2 = (p1
2 + p2

2 + p3
2)/a + (q1

2 + 
q2

2 + q3
2)/b + (r1

2 + r2
2 + r3

2)/c = 1/a + 1/b + 1/c, since pi are orthonormal. [This is the key trick: if the rows of a 
matrix are orthonormal vectors, then the matrix is orthogonal and hence its columns are also orthonormal vectors.]. 

Problem B5 
Find all rational triples (a, b, c) for which a, b, c are the roots of x3 + ax2 + bx + c = 0. 

Solution 
Answer: (0, 0, 0); (1, -1, -1), (1, -2, 0). 

We require (1) a + b + c = -a, (2) ab + bc + ca = b, and (3) abc = -c. 
From (3), either c = 0, or ab = -1. If c = 0, then (1) becomes b = -2a, and (2) becomes b(a - 1) = 0. Hence either a = 
b = 0, or a = 1, b = -2. 
So assume c ≠ 0, and ab = -1. (1) becomes c = - b - 2a. Substituting in (2), we get: -1 - (2a + b)(a + b) = b, so -a2 -
2a4 + 3a2 - 1 = -a, or 2a4 - 2a2 - a + 1 = 0. So a = 1, or 2a3 + 2a2 - 1 = 0 (*). The first possibility gives a = 1, b = -1, c 
= -1. Suppose a = m/n is a root of (*) with m, n relatively prime integers. Then 2m3 + 2m2n - n3 = 0. So any prime 
factor of n must divide 2 and any prime factor of m must divide 1. Hence the only possibilities are a = 1, -1, 1/2, -
1/2, and we easily check that these are not solutions. So (*) has no rational roots. 

Problem B6 
The n x n matrix (mij) is defined as mij = aiaj for i ≠ j, and ai

2 + k for i = j. Show that det(mij) is divisible by kn-1 and 
find its other factor. 

Solution 
Answer: det(mij) = kn-1(k + ai

2). 

Induction on n. Clearly true for n = 1. 
Expanding by the first row we get k. kn-2(k + i>1ai

2) + det(m'ij), where m'ij is the same as mij except that m'11 = a1
2. 

Subtracting appropriate multiples of the first row from the others we zero all the elements outside the first row 
except those on the diagonal, which become k. Hence det(m'ij) = kn-2a1

2. 

Problem B7 
Given n > 8, let a = √n and b = √(n+1). Which is greater ab or ba? 

Solution 
Answer: ab is greater. 

ab = eb ln a and ba = ea ln b. So we have to decide which of b ln a and a ln b is greater, or, equivalently, which of (ln 
a)/a and (ln b)/b is greater. The latter is clearly more promising. So set f(x) = (ln x)/x. Then f '(x) = 1/x2 - (ln x)/x2 
which is negative for x > e. Obviously b > a, so provided a > e, (ln a)/a > (ln b)/b and hence b ln a > a ln b and ab > 
ba. But e2 < 9, so the result is certainly true for n ≥ 9. 



4th Putnam 1941 

Problem A1 
Prove that (a - x)6 - 3a(a - x)5 + 5/2 a2(a - x)4 - 1/2 a4(a - x)2 < 0 for 0 < x < a. 

Solution 
Change variables to t = 1 - x/a and the polynomial becomes a6(t6 - 3t5 + 5/2 t4 - 1/2 t2). This obviously has a factor 
t2, and almost obviously (t - 1). Dividing these out, we see that the resulting cubic has another factor (t - 1). So we 
can write the original as a6t2(t - 1)2(t(t - 1) - 1/2), which evidently has the same sign as t(t - 1) - 1/2. But that is 
clearly negative for t between 0 and 1. 

Problem A2 
Define f(x) = ∫0

x ∑i=0
n-1 (x - t)i / i! dt. Find the nth derivative f (n)(x). 

Solution 
Note that x appears both in the integrand and in the limits, so a little care is needed. Write gr(x, t) = ∑i=0

r-1 (x - t)i / i! 
so that f(x) = ∫0

x gn(x, t) ent dt. By definition f '(x) = limδx -> 0 (∫0
x+δx gn(x+δx, t) ent dt - ∫0

x gn(x, t) ent dt) / δx = enx gn(x, 
x) + ∫0

x gn'(x,t) ent dt, where the ' denotes the partial derivative wrt the first variable. But gn(x, x) = 1, and gr'(x, t) = 
gr-1(x, t), so f '(x) = enx + ∫0

x gn-1(x, t) ent dt. Hence by an easy induction f (n)(x) = enx( 1 + n + n2 + ... + nn-1 ). 

Problem A3 
A circle radius a rolls in the plane along the x-axis the envelope of a diameter is the curve C. Show that we can find 
a point on the circumference of a circle radius a/2, also rolling along the x-axis, which traces out the curve C. 

Solution 
Consider a circle radius a/2 with center initially at (0,a/2) rolling along the x-axis. After rolling through an angle θ, 
the point initially at (0,a) is at a/2 sin θ, a/2 cos θ relative to the center and hence at P (aθ/2 + (a/2) sin θ, a/2 + (a/2) 
cos θ). The tangent at P is (y - (a/2)(1 + cos θ)/(x - (a/2)(θ + sin θ) = (-sin θ)/(1 + cos θ), or x sin θ + y(1 - cos θ) = 
(a/2)(θ sin θ + 2 cos θ + 2). 

If we put θ = 2φ, then sin θ = 2 sin φ cos φ, 1 + cos θ = 2 cos2φ, so the tangent at P has equation, x sin φ + y cos φ = 
a(φ sin φ + cos φ). 

Now consider the circle radius a with center initially at (0,a). When it has rolled through an angle φ, its center is at 
(aφ, a), so the diameter which is initially horizontal lies on the line (y-a)/(x-aφ) = -tan φ, or x sin φ + y cos φ = a(φ 
sin φ + cos φ). In other words, the diameter is tangent to the point P of the curve traced out by the point on the 
circumference of the circle radius a/2. Hence the envelope of the diameter is that curve. 

Problem A4 
The real polynomial x3 + px2 + qx + r has real roots a ≤ b ≤ c. Prove that f ' has a root in the interval [b/2 + c/2, b/3 
+ 2c/3]. What can we say about f if the root is at one of the endpoints? 

Solution 
p(x) = (x - a)(x - b)(x - c), so p'(x) = (x - a)(x - b) + (x - b)(x - c) + (x - a)(x - c). 

We can write p'(x) = (x - b)(x - c) + (x - a)(2x - b - c), so p'(b/2 + c/2) = -1/4 (c - b)2 ≤ 0, with equality iff b = c. 

p'(b/3 + 2c/3) = -2/9 (c - b)2 + (x - a) 1/3 (c - b) = 1/3 (c - b) (b - a) ≥ 0 with equality iff a = b or b = c. 

If b = c, then b is a repeated root and p'(b) = 0. If a = b, then p'(b/3 + 2c/3) = 0. Otherwise, p'(x) is negative at b/2 + 
c/2 and positive at b/3 + 2c/3, so it has a zero in the interior of the interval. 

Problem A6 
f is defined for the non-negative reals and takes positive real values. The centroid of the area lying under the curve 
y = f(x) between x = 0 and x = a has x-coordinate g(a). Prove that for some positive constant k, f(x) = k g'(x)/(x - 
g(x))2 e ∫ 1/(t - g(t)) dt. 

  



Problem A7 
Do either (1) or (2): 

(1)   Do either (1) or (2): 

(1)   Let A be the 3 x 3 matrix 

1+x2-y2-z2     2(xy+z)    2(zx-y) 

 

  2(xy-z)    1+y2-z2-x2   2(yz+x) 

 

  2(zx+y)     2(yz-x)   1+z2-x2-y2 

 

Show that det A = (1 + x2 + y2 + z2)3. 

(2)   A solid is formed by rotating about the x-axis the first quadrant of the ellipse x2/a2 + y2b2 = 1. Prove that this 
solid can rest in stable equilibrium on its vertex (corresponding to x = a, y = 0 on the ellipse) iff a/b ≤ √(8/5). 

Solution 
(1) subtract z times row 2 from row 1 and add y times row 3 to row 1. After taking out the common factor 
1+x2+y2+z2 from row 1 we get: 

     1           z         -y 

 

  2(xy-z)    1+y2-z2-x2   2(yz+x) 

 

  2(zx+y)     2(yz-x)   1+z2-x2-y2 

 

Subtract z times col 1 from col 2 and add y times col 1 to col 3. We get: 
     1           0            0 

 

  2(xy-z)   1+y2+z2-x2-2xyz   2x(1+y2) 

 

  2(zx+y)     -2x(1+z2)   1+z2-x2+y2+2xyz 

 

Multiplying this out, we get (1-x2+y2+z2)2 - 4x2y2z2 + 4x2(1+y2+z2+y2z2) = (1+x2+y2+z2)2. Hence with the additional 
factor we took out, we get the result. 

(2) We first have to find the position of the centre of mass on the axis. The moment about the y-axis of the solid is 
∫0

a πy2 x dx = πb2 ∫0
a (x - x3/a2) dx = πb2a2/4. The volume is ∫0

a πy2 dx = πb2 ∫0
a (1 - x2/a2) dx = 2/3 πb2a. Hence the 

centre of mass is a distance 3a/8 from the flat surface or 5a/8 from the point of contact. 

Now suppose the point of contact is at (a cos t, b sin t). The tangent has gradient - b/a cot t, so the normal has 
gradient a/b tan t. So the equation of the normal is y - b sint = a/b tan t (x - a cos t). This meets the x-axis at a(1 - 
b2/a2) cos t. For stability we want this to be closer to the origin than the centre of mass, in other words we want (1 - 
b2/a2) cos t < 3/8. The point of contact is at cos t = 1, so we require (1 - b2/a2) < 3/8 or b/a > √(5/8). 

Problem B1 
A particle moves in the plane so that its angular velocity about the point (1, 0) equals minus its angular velocity 
about the point (-1, 0). Show that its trajectory satisfies the differential equation y' x(x2 + y2 - 1) = y(x2 + y2 + 1). 
Verify that this has as solutions the rectangular hyperbolae with center at the origin and passing through (±1, 0). 

Solution 
The angular momentum (for unit mass) about (1, 0) is (x - 1) dy/dt - y dx/dt. Hence the angular velocity is ( (x - 1) 
dy/dt - y dx/dt )/( (x - 1)2 + y2). Similarly, the angular velocity about (-1, 0) is ( (x + 1) dy/dt - y dx/dt )/( (x + 1)2 + 
y2). Hence the trajectory satisfies: ( (x - 1) y' - y)(x2 + y2 + 1 + 2x) + ( (x + 1) y' - y)(x2 + y2 + 1 - 2x) = 0 or 2x y' 
(x2 + y2 + 1) - 4x y' - 2y(x2 + y2 + 1) = 0, or x y' (x2 + y2 - 1) = y (x2 + y2 + 1). 



We see immediately that xy = 0 is a solution and almost immediately that x2 - y2 = 1 is a solution. Hence also all 
linear combinations x2 + k xy - y2 = 1. These are rectancular hyperbolae because the sum of the coefficients of 
x2 and y2 are zero. 

Problem B2 
Find: 
(1) limn→∞ ∑1≤i≤n 1/√(n2 + i2); 
(2) limn→∞ ∑1≤i≤n 1/√(n2 + i); 
(3) limn→∞ ∑1≤i≤n

2 1/√(n2 + i); 

Solution 
(1) 1/√(n2 + i2) = (1/n) / √(1 + (i/n)2). So the sum is just a Riemann sum for the integral ∫0

1 dx/√(1 + x2) = sinh-11 = 
ln(1 + √2) = 0.8814. 

(2) 1/√(n2 + i) = (1/n) / √(1 + i/n2). Each term is less than 1/n, so the (finite) sum is less than 1. But each term is at 
least (1/n) / √(1 + 1/n). So the sum is at least 1/√(1 + 1/n), which tends to 1. Hence the limit of the sum is 1. 

(3) 1/√(n2 + i) = n (1/n2) / √(1 + i/n2). Now ∑ (1/n2) / √(1 + i/n2) is just a Riemann sum for ∫0
1 dx/√(1 + x) = 2√(1 + 

x) |0
1 = 2(√2 - 1). So the sum given tends to 2(√2 - 1) n, which diverges to infinity. [Or simpler, there are n2 terms, 

each at least 1/√(2n2) = 1/(n √2 ), so the sum is at least n/√2 which diverges.] 

Problem B3 
Let y and z be any two linearly independent solutions of the differential equation y'' + p(x) y' + q(x) y = 0. Let w = 
y z. Find the differential equation satisfied by w. 

Solution 
We have w = yz, w' = y'z + yz', w'' = y''z + 2y'z' + yz''. Hence w'' + pw' + 2qw = 2y'z' (1). Now (y'z')' = y''z' + y'z'', 
2py'z' = py'z' + py'z', qw' = qyz' + qy'z, so (y'z')' + 2py'z' + qw' = 0 (2). 

Differentiating (1) we get: w''' + p'w' + pw'' + 2q'w + 2qw' = 2(y'z')' = -4py'z' - 2qw' (using (2) ), = -2p(w'' + pw' + 
2qw) - 2qw'. Rearranging, this gives: w''' + 3p w'' + (p' + 2p2 + 4q) w' + (4pq + 2q')w = 0. 

Problem B4 
Given an ellipse center O, take two perpendicular diameters AOB and COD. Take the diameter A'OB' parallel to 
the tangents to the ellipse at A and B (this is said to be conjugate to the diameter AOB). Similarly, take C'OD' 
conjugate to COD. Prove that the rectangular hyperbola through A'B'C'D' passes through the foci of the ellipse. 

Solution 
Take the ellipse as x2/a2 + y2/b2 = 1 and the point A as (a cos t, b sin t). Then AB has slope b/a tan t, so CD has 
slope -a/b cot t. The tangent at A has slope -b/a cot t. Suppose C is (a cos u, b sin u), then b/a tan u = -a/b cot t and 
the tangent at C has slope -b/a cot u = b3/a3 tan t. Hence the line pair A'B', C'D' has equation (y + x b/a cot t)(y - x 
b3/a3 tan t). Now we have the equations for two distinct conics through A'B'C'D': the original ellipse and the line 
pair A'B',C'D'. The equation of any other conic through these four points must be a linear combination of the 
equations of these two, in other words, (x2/a2 + y2/b2 - 1) + k(y + x b/a cot t)(y - x b3/a3 tan t) = 0 for some k. 

The criterion for a rectangular hyperbola is that the coefficients of x2 and y2 should have sum zero, or that 1/a2 + 
1/b2 + k - k b4/a4 = 0. Hence k = a2/(b4-b2a2) and the equation of the rectangular hyperbola is x2 - y2 + (b/a tan t - a/b 
cot t) xy = a2 - b2. But the foci are at (±(a2 - b2)1/2, 0), so they lie on the rectangular hyperbola. 

Problem B5 
A wheel radius r is traveling along a road without slipping with angular velocity ω > √(g/r). A particle is thrown off 
the rim of the wheel. Show that it can reach a maximum height above the road of (rω + g/ω)2/(2g). [Ignore air 
resistance.] 

Solution 
Suppose the pebble leaves the wheel from a point on the rim which is at an angle θ to the vertical. Its point of 
departure is a distance r + r cos θ above the road. Its upward velocity is r ω sin θ, so it ascends a further (r ω sin 
θ)2/2g. Thus the total height is r + r2ω2/2g + r cos θ - r2ω2/2g cos2θ = r + g/2ω2 + r2ω2/2g - r2ω2/2g (cos θ - g/rω2) 



(*). We are given that g/rω2 < 1, so (*) has a maximum when cos θ = g/rω2 and the maximum value is 1/2g (r2ω2 + 
2gr + g2/ω2) = (rω + g/ω)2/2g. 

Problem B6 
f is a real valued function on [0, 1], continuous on (0, 1). Prove that ∫x=0

x=1 ∫y=x
y=1 ∫z=x

z=y f(x) f(y) f(z) dz dy dx = 1/6 ( 
∫x=0

x=1 f(x) dx )3. 

Solution 
Let Sxyz be the points in the cube for which x ≤ y ≤ z, let Syxz be the points for which y ≤ x ≤ z and so on. Then the 
union of the six sets is the cube and the intersection of any two has measure zero. Also by changing the variables of 
integration we see that the integral of f(x) f(y) f(z) over each set is the same. Hence the integral over Sxzy is 1/6 of 
the integral over the cube. But the integral over Sxzy is just ∫x=0

x=1 ∫y=x
y=1 ∫z=x

z=y f(x) f(y) f(z) dz dy dx and the integral 
over the cube is ( ∫x=0

x=1 f(x) dx )3. 

Problem B7 
Do either (1) or (2): 

(1)   f is a real-valued function defined on the reals with a continuous second derivative and satisfies f(x + y) f(x - 
y) = f(x)2 + f(y)2 - 1 for all x, y. Show that for some constant k we have f ''(x) = ± k2 f(x). Deduce that f(x) is one of 
±cos kx, ±cosh kx. 

(2)   ai and bi are constants. Let A be the (n+1) x (n+1) matrix Aij, defined as follows: Ai1 = 1; A1j = xj-1 for j ≤ n; A1 

(n+1) = p(x); Aij = ai-1
j-1 for i > 1, j ≤ n; Ai (n+1) = bi-1 for i > 1. We use the identity det A = 0 to define the polynomial 

p(x). Now given any polynomial f(x), replace bi by f(bi) and p(x) by q(x), so that det A = 0 now defines a 
polynomial q(x). Prove that f( p(x) ) is a multiple of &prodc; (x - ai) plus q(x). 

Solution 
(1) Putting y = 0 gives f(0)2 = 1, so f(0) = ±1. Differentiating wrt y gives f '(x+y) f(x-y) - f(x+y) f '(x-y) = 2 f(y) f 
'(y). Putting y = 0 gives f '(0) = 0. Differentiating wrt x gives f ''(x+y) f(x-y) = f(x+y) f ''(x-y). Putting x = y = z/2 
gives f ''(z) = h f(z), where h = ± f ''(0). If h is positive, we may put h = k2 and integrate, using f(0) = ±1, f '(0) = 0 to 
get f(x) = ± cos kx. If h is negative, we may put h = - k2 and integrate to get f(x) = ± cosh kx. 

(2) 



5th Putnam 1942 

Problem A1 
ABCD is a square side 2a with vertices in that order. It rotates in the first quadrant with A remaining on the 
positive x-axis and B on the positive y-axis. Find the locus of its center. 

Solution 
Answer: the segment (a, a) to (a√2, a√2). 

Let AB make an angle θ with the x-axis. Then we find that the coordinates of the center to be x = y = a cos θ + a sin 
θ. But a cos θ + a sin θ = a √2 sin(θ + π/4). 

Problem A2 
a and b are unequal reals. What is the remainder when the polynomial p(x) is divided (x - a)2(x - b). 

Solution 
Suppose the remainder is cx2 + dx + e. We have p(a) = ca2 + da + e, p(b) = cb2 + db + e. Also, differentiating, we 
get p'(a) = 2ca + d. Solving, c = p'(a)/(a - b) - p(a)/(a - b)2 + p(b)/(a - b)2, d = (2a p(a) - 2a p(b) - (a2 - b2)p'(a) )/(a - 
b)2, e = p(a) - a2(p(a) - p(b))/(a - b)2 + ab p'(a) /(a - b). 

Problem A3 
Does ∑n≥0 n! kn/(n + 1)n converge or diverge for k = 19/7? 

Solution 
The nth term divided by the n-1th term is k n nn-1/(n+1)n = k/(1 + 1/n)n which tends to k/e. But k/e < 1, so the series 
converges by the ratio test. 

Problem A4 
Let C be the family of conics (2y + x)2 = a(y + x). Find C', the family of conics which are orthogonal to C. At what 
angle do the curves of the two families meet at the origin? 

Solution 
For most points P in the plane we can find a unique conic in the family passing through the point. Thus we should 
be able to find the gradient of members of the family at (x, y) in a formula which is independent of a. We then use 
this to get a formula for the gradient of the orthogonal family and solve the resulting first-order differential 
equation to get the orthogonal family. 

Thus we have 8y y' + 4x y' + 4y + 2x = ay' + a = (y' + 1)(2y + x)2/(y + x). So y'(2y+x)( 4(x+y) - (2y+x) ) = 
(2y+x)2 - (x+2y)(x+y), or y'(2y+x)(2y+3x) = -2x(2y+x), so y' = -x/(2y+3x). Hence the orthogonal family satisfies y' 
= (2y+3x)/x. So y'/x2 - 2y/x3 = 3/x2. Integrating y = bx2 - 3x. These are all parabolas. 

All members of both families pass through the origin. Changing coordinates to X = x + 2y, Y = y - 2x, the equation 
of a member of the first family becomes X2 = a(3X-Y)/5 or Y = - 5/a (X - 3a/10)2 + 9a/20. This has gradient 3 (in 
the new system) at the origin. In the old system the tangent is y = -x. The orthogonal set obviously has gradient -3 
at the origin. If the angle between them is k, then tan k = (-1 +3)/(1+3) = 1/2. So k = tan-11/2. 

Problem A5 

C is a circle radius a whose center lies a distance b from the coplanar line L. C is rotated through π about L to form 
a solid whose center of gravity lies on its surface. Find b/a. 

Answer 
(π + √(π2+2π-4))/(2π-4) = about 2.9028 

Solution 
The solid is half a torus. We can divide it into a large number of thin disks. Each disk has variable thickness, with 
thickness proportional to the distance from L. So we must integrate to find the distance of the centroid of the disk 
from L. Take the density to be kd, where d is the distance from L. 



Take x to be distance along the line perpendicular to x, and θ to be the angle between the 
radius vector and the x-axis. We have x = a cos θ, so dx = - a sin θ dθ. The mass is ∫0

π 2a 
sin θ (a sin θ dθ) k(b + a cos θ) = 2a2bk ∫0

π sin2θ dθ + 2a3k ∫0
π sin2θ cos θ dθ = a2bkπ + 0. 

So the mass times the centroid distance is ∫0
π 2a2k sin2θ (a cos θ + b)2 dθ = 2a4k ∫0

π sin2θ 
cos2θ dθ + 4a3bk ∫0

π sin2θ cos θ dθ + 2a2b2k ∫0
π sin2θ dθ = ½a4k ∫0

π sin22θ dθ + 0 + a2b2kπ = 
ka2π(a2/4 + b2). So the centroid distance is b + a2/4b. Thus we can regard the mass as 
uniformly spread over a semicircle radius b + a2/4b. 

We need another integration to find the distance of the mass of a semicircle radius r from its center. It is (1/πr) 
∫0

π r2 sin θ dθ = 2r/π. Thus the cm of the half-torus is a distance (2/π)(b + a2/4b) from L. We want it to be a distance 
b-a from L so that it lies on the surface. Thus (2/π)(b + a2/4b) = b - a, so (2π-4)b2 - 2πab - a2 = 0. Hence b/a = (π + 
√(π2+2π-4))/(2π-4) = about 2.9028. 

Problem A6 
P is a plane and H is the half-space on one side of P. K is a fixed circle in P. C is a circle in P which cuts K at an 
angle α. Let C have center O and radius r. f(C) is the point in H on the normal to P through O and a distance r from 
O. Show that the locus of f(C) is a one-sheet hyperboloid and that it has two families of rulings in it.  
 

Problem B1 
S is a solid square side 2a. It lies in the quadrant x ≥ 0, y ≥ 0, and it is free to move around provided a vertex 
remains on the x-axis and an adjacent vertex on the y-axis. P is a point of S. Show that the locus of P is part of a 
conic. For what P does the locus degenerate? 

Solution 
Let A be the vertex that moves along the x-axis and B the vertex that moves along the y-axis. Suppose that when 
AB is horizontal P has coordinates b, c. In the general configuration let be the angle BAO be θ. Then P has 
coordinates x = (2a - b) cos θ + c sin θ, y = b sin θ + c cos θ. Hence cx - (2a - b)y = (b2 + c2 - 2ab) sin θ, bx - cy = 
(2ab - b2 - c2) cos θ. Squaring and adding we eliminate θ to get: (b2 + c2) x2 - 4ac xy + (4a2 + b2 + c2 - 4ab) y2 = 
(b2 + c2 - 2ab)2, which is the equation of a conic. So the locus of P must form part of this conic. 

The conic degenerates if b2 + c2 = 2ab. In this case, the equation becomes 2ab x2 - 4ac xy + (4a2 - 2ab)y2 = 0, or 
bx2 - 2c xy + (2a - b)y2 = 0, or b2x2 - 2bc xy + c2 y2 = 0, or bx = cy. So in this case the locus lies on a straight line. 
We may write the condition b2 + c2 = 2ab as (a - b)2 + c2 = a2, which shows that such P lie on the semicircle 
diameter AB. 

Problem B2 
Let Pa be the parabola y = a3x2/3 + a2x/2 - 2a. Find the locus of the vertices of Pa, and the envelope of Pa. Sketch the 
envelope and two Pa. 

Solution 
We can write the equation of Pa as (y + 35a/16) = (a3/3)(x + 3/4a)2, so the vertex is x = -3/4a, y = -35a/16. The 
locus of the vertex is xy = 105/64. 

 



The graph shows P3, P2, P1, P1/2, P1/3 and the two hyperbolae yx = -7/6, yx = 10/3. It shows that for positive a, the 
parabolas touch the lower branches of the hyperbolae. For negative a they touch the upper branches. 

That is not hard to verify. We claim that Pa and xy = 10/3 touch at x = -2/a, y = -5a/3. The point obviously lies on 
xy = 10/3. We have (a3/3)(x + 3/4a)2 = (1/3)(-2 + 3/4)2 a = 25a/48 = (-5a/3 + 35a/16), so the point also lies on Pa. 
The gradient of xy = 10/3 at the point is -10/(3x2) = -5a2/6. The gradient of Pa at the point is 2a3x/3 + a2/2 = -5a2/6. 

Similarly, we claim that Pa and xy = -7/6 touch at x = 1/a, y = -7a/6. The point obviously lies on xy = -7/6. We have 
(a3/3)(x + 3/4a)2 = (a/3)(1 + 3/4)2 = 49a/48 = (-7a/6 + 35a/16), so the point also lies on Pa. The gradient of xy = -7/6 
at the point is 7/(6x2) = 7a2/6. The gradient of Pa at the point is 2a3x/3 + a2/2 = a2(2/3 + 1/2) = 7a2/6. 

It is less clear how you get the hyperbolas. One standard approach is to look for the singular points of the mapping 
f(a,t) = (t, a3t2/3 + a2t/2 - 2a). The matrix for the derivative is: 

    1           0 

2a3t/3+a2/2   a2t2+at-2 

which has zero determinant when at = 1 or -2, so xy = 7/6 or -10/3. 

Problem B3 

f(x, y) and g(x, y) satisfy the differential equation f1(x, y) g2(x, y) - f2(x, y) g1(x, y) = 1 (*). Taking r = f(x, y) and y 
as independent variables, and x = h(r, y), g(x, y) = k(r, y), show that k2(r, y) = h1(r, y). Integrate and hence obtain a 
solution to (*). What other solutions does (*) have? 
 

Problem B4 
A particle moves in a circle through the origin under the influence of a force a/rk towards the origin (where r is its 
distance from the origin). Find k. 

Solution 
The equations of motion are r (θ ')2 - r'' = a/rk, r2θ ' = A (conservation of angular momentum). 

If the particle moves in a circle as described, then we can write its orbit as r = B cos θ. Differentiating, r' = - B θ ' 
sin θ = -AB/r2 sin θ. Differentiating again, r'' = -AB cos θ A/r2 + 2AB/r3 sin θ r' = -A2/r3 - 2A2B2/r5 sin2θ = -A2/r3 - 
2A2B2/r5 (1 - r2B2) = A2/r3 - 2A2B2/r5. So substituting back in the equation of motion we get: 2A2B2/r5 = a/rk. Hence 
k = 5. 
Note that this is unphysical, since we require infinite velocity as we reach the origin. 

Problem B5 

Let f(x) = x/(1 + x6sin2x). Sketch the curve y = f(x) and show that ∫0
∞ f(x) dx exists. 

Solution 

Obviously f(x) is positive for positive x. But it has an 
infinite number of spikes at x = nπ. The spike at nπ is 
height nπ, so we have to show that the integral is bounded 
above. 

We have sin x > ½x near x = 0 (certainly for x < π/3). So 
|sin x| > 1/(nπ)k except possibly for |x| < 2/(nπ)k. Let In be 
the interval centered on nπ width 4/(nπ)k. For x ∈ In we 
have f(x) < 2nπ, so the integral of f(x) over the interval is 
less than 8/(nπ)k-1. The total integral over all such 
intervals is bounded provided that k > 2. Outside such 

intervals, x6 sin2x > ½ x6/x2k, so f(x) < 2/x2k-5. Hence the interval of f(x) over 0 to ∞ excluding the intervals In is 
bounded provided k > 5/2. By taking k = 2 1/4, for example, we get that the whole integral is bounded. 

  



6th Putnam 1946 

Problem A1 
p(x) is a real polynomial of degree less than 3 and satisfies |p(x)| ≤ 1 for x ∈ [-1, 1]. Show that |p'(x)| ≤ 4 for x ∈ 
[-1, 1]. 

Solution 
Let p(x) = ax2 + bx + c, so p'(x) = 2ax + b. It is evidently sufficient to show that |2a + b| and |2a - b| ≤ 4. p(0) = c, 
p(1) = a + b + c, p(-1) = a - b + c, so 2a + b = 3/2 p(1) + 1/2 p(-1) + 2 p(0). But |p(1)|, |p(-1)|, |p(0)| ≤ 1, so |2a + b| ≤ 
4. Similarly, 2a - b = 1/2 p(1) + 3/2 p(-1) + 2 p(0). 

Problem A2 
R is the reals. For functions f, g : R → R and x ∈ R define I(fg) = ∫1

x f(t) g(t) dt. If a(x), b(x), c(x), d(x) are real 
polynomials, show that I(ac) I(bd) - I(ad) I(bc) is divisible by (x - 1)4. 

Solution 

Let F(x) = I(ac) I(bd) - I(ad) I(bc). Then clearly F(1) = 0 (since all the integrals are over an empty range). 
Differentiating, we get, F' = acI(bd) + bdI(ac) - adI(bc) - bcI(ad). So F'(1) = 0. Differentiating again: F'' = a'cI(bd) + 
ac'I(bd) + abcd + b'dI(ac) + bd'I(ac) + abcd - a'dI(bc) - ad'I(bc) - abcd - b'cI(ad) - bc'I(ad) - abcd = a'cI(bd) + 
ac'I(bd) + b'dI(ac) + bd'I(ac) - a'dI(bc) - ad'I(bc) - b'cI(ad) - bc'I(ad). So F''(1) = 1. 

Differentiating again: F''' = a''cI(bd) + 2a'c'I(bd) + ac''I(bd) + a'bcd + abc'd + b''dI(ac) + 2b'd'I(ac) + bd''I(ac) + ab'cd 
+ abcd' - a''dI(bc) - 2a'd'I(bc) - ad''I(bc) - a'bcd - abcd' - b''cI(ad) - 2b'c'I(ad) - bc''I(ad) - ab'cd - abc'd = a''cI(bd) + 
2a'c'I(bd) + ac''I(bd) + b''dI(ac) + 2b'd'I(ac) + bd''I(ac) - a''dI(bc) - 2a'd'I(bc) - ad''I(bc) - b''cI(ad) - 2b'c'I(ad) - 
bc''I(ad). So F'''(1) = 1. 

That is sufficient to prove the result. But notice that if we differentiate again, then just collecting the terms that do 
not involve I(fg) we get (after some cancellation) 2a'bc'd + 2ab'cd' - 2a'bcd' - 2ab'c'd, which is not, in general, zero 
for x = 1. So in general we do not have F(x) divisible by (x - 1)5. 

Problem A3 
ABCD are the vertices of a square with A opposite C and side AB = s. The distances of a point P in space from A, 
B, C, D are a, b, c, d respectively. Show that a2 + c2 = b2 + d2, and that the perpendicular distance k of P from the 
plane ABCD is given by 8k2 = 2(a2 + b2 + c2 + d2) - 4s2 - (a4 + b4 + c4 + d4 - 2a2c2 - 2b2d2)/s2. 

Solution 
Let Q be the point of the plane ABCD closest to P. Let O be the center of the square ABCD. Let QO make an angle 
θ with AC. Then using the cosine rule we have: AQ2 = AO2 + OQ2 - 2AO·OQ cos θ, CQ2 = CO2 + OQ2 + 2CO.OQ 
cos θ (*). Adding: AQ2 + CQ2 = 2AO2 + 2QO2. But a2 = AQ2 + k2 etc, so a2 + c2 = 2k2 + s2 + 2QO2. Similarly, b2 + 
d2 = 2k2 + s2 + 2QO2. We have established that a2 + c2 = b2 + d2. 

We have also established that 8k2 = 2(a2 + b2 + c2 + d2) - 4s2 - 8QO2 (**). The angle φ between QO and BD is π/2 - 
θ. So cos φ = sin θ. Hence, going back to (*), AQ2 - CQ2 = -4 AO·OQ cos θ, and BQ2 - DQ2 = ± 4 AO·OQ sin θ. 
But AQ2 - CQ2 = a2 - c2 etc. So (a2 - c2)2 + (b2 - d2)2 = 16 AO2OQ2 = 8s2OQ2. Substituting in (**) gives the required 
result. 

Problem A4 
R is the reals. f : R → R has a continuous derivative, f(0) = 0, and |f '(x)| <= |f(x)| for all x. Show that f is constant. 

Solution 
Suppose f is not constant. Then take an interval [a, b] of length < 1/2 such that f(a) = 0, f(b) ≠ 0, and |f(b)| ≥ |f(x)| 
for x ∈ [a, b]. Now applying the mean value theorem to the interval gives an immediate contradiction. 

Problem A5 
Let T be a tangent plane to the ellipsoid x2/a2 + y2/b2 + z2/c2 = 1. What is the smallest possible volume for the 
tetrahedral volume bounded by T and the planes x = 0, y = 0, z = 0? 



Solution 
Answer: √3 abc/2. 

The normal at (x0, y0, z0) is (xx0/a
2, yy0/b

2, zz0/c
2). So the tangent plane is x x0/a

2 + y y0/b
2 + z z0/c

2 = 1. This cuts 
the three axes at x = a2/x0, y = b2/y0, z = c2/z0. We can regard two of these lengths as defining the base of the 
tetrahedron, and the third as forming its height. Hence its volume is a2b2c2/(6x0y0z0). 

We wish to maximize x0y0z0. That is equivalent to maximising x0
2/a2 y0

2/b2 z0
2/c2. But we know that the sum of 

these three numbers is 1, so their maximum product is 1/27 (achieved when they are all equal - the 
arithmetic/geometric mean result). Hence x0y0z0 has maximum value abc/(3√3). 

Problem A6 
A particle moves in one dimension. Its distance x from the origin at time t is at + bt2 + ct3. Find an expression for 
the particle's acceleration in terms of a, b, c and its speed v. 

Solution 
Differentiating, v = 3ct2 + 2bt + a (*), and hence the acceleration f = 6ct + 2b. So t = (f - 2b)/6c. Substituting in (*) 
gives v = (f - 2b)2/12c + b(f - 2b)/3c + a. Hence 12cv = f2 - 4b2 + 12ac. So f = 2√(b2 + 3cv - 3ac). 

Problem B1 
Two circles C1 and C2 intersect at A and B. C1 has radius 1. L denotes the arc AB of C2 which lies inside C1. L 
divides C1 into two parts of equal area. Show L has length > 2. 

Solution 
Let O1 be the center of C1, and O2 the center of C2. Let the line O1O2 meet the arc AB of C2 at P. If P lies between 
O1 and O2, then the tangent to C2 at P divides C1 into two unequal parts and the area C1 ∩ C2 lies inside the smaller 
part. Contradiction. So O1 must lie between P and O2. But now the arc AP is greater than the segment AP, which is 
greater than AO1 = 1. Hence L > 2. 

Problem B2 
P0 is the parabola y2 = mx, vertex K (0, 0). If A and B points on P0 whose tangents are at right angles, let C be the 
centroid of the triangle ABK. Show that the locus of C is a parabola P1. Repeat the process to define Pn. Find the 
equation of Pn. 

Solution 
The gradient at the point (x1 , y1) is 1/2 m/y1. So the tangents at (x1 , y1), (x2 , y2) are perpendicular iff y1y2 = -m2/4. 
So we may take one point as (x, y) = (t2/m, t) and the other as (1/16 m3/t2, -1/4 m2/t). Hence the centroid is (x, y), 
where x = 1/3 (t2/m + 1/16 m3/t2), y = 1/3 (t - 1/4 m2/t). But this lies on the parabola y2 = m/3 (x - m/6). But since 
any value of t was possible and hence any value of y, any point of this parabola is a centroid from some pair of 
points A, B. 
Repeating, we get that the equation for Pn is y2 = m/3n(x - m/6(1 + 1/3 + ... + 1/3n-1) ) = m/3n(x - m/4 (1 - 1/3n) ). 

Problem B3 
The density of a solid sphere depends solely on the radial distance. The gravitational force at any point inside the 
sphere, a distance r from the center, is kr2 (where k is a constant). Find the density (in terms of G, k and r), and the 
gravitational force at a point outside the sphere. [You may assume the usual results about the gravitational 
attraction of a spherical shell.] 

Solution 
A shell exerts no net attraction on a point inside and acts on a point outside as if all its mass was concentrated at its 
center. So let the density at a radial distance r be ρ(r). Then G/r2 ∫0

r 4πt2ρ(t) dt = kr2. Hence ∫0
r t2ρ(t) dt = k/(4Gπ) r4. 

Differentiating: r2ρ(r) = k/(Gπ) r3. So ρ(r) = k/(Gπ) r. 

The force at the surface of the sphere (R) is kR2. Hence the force at a distance r > R from the center of the sphere is 
kR4/r2. [We know the force is a simple inverse square law outside the sphere and it must be continuous at the 
surface.] 

  



Problem B4 
Define an = 2(1 + 1/n)2n+1/( (1 + 1/n)n + (1 + 1/n)n+1). Prove that an is strictly monotonic increasing. 

Solution 
an = 2 (n+1)n+1/(nn (2n+1) ). Let f(n) = ln an/2 = (n + 1) ln(n + 1) - n ln n - ln(2n+1). Regard f as a function of a real 
variable and differentiate. f '(x) = ln(x + 1) - ln x - 2/(2x + 1). Differentiate again: f ''(x) = 1/(x + 1) - 1/x + 4/(2x + 
1)2 = -1/( x(x+1)(2x+1)2). 

So f ''(x) < 0 for all x > 0. Hence f '(x) is decreasing. But we can write f '(x) = ln(1 + 1/x) - 2/(2x + 1) which tends 
to 0 as x tends to infinity. So f '(x) > 0 for all x > 0. Hence f(x) is strictly increasing for all positive x. Hence f(n+1) 
> f(n) and so exp f(n+1) > exp f(n), which is the result we want. 

Problem B5 
Let m be the smallest integer greater than (√3 + 1)2n. Show that m is divisible by 2n+1. 

Solution 
This is a fairly well-known problem. (√3 - 1) < 1 and (we will show) (√3 + 1)2n + (√3 - 1)2n (*) is an integer. Hence 
it must be the required integer. 

But it is easy to check that (*) is the solution of a recurrence relation, in fact the relation un = 8un-1 - 4un-2, u0 = 2, 
u1 = 8. That establishes that (*) is an integer, and a trivial induction shows that (*) is divisible by 2n+1. 

Problem B6 
The particle P moves in the plane. At t = 0 it starts from the point A with velocity zero. It is next at rest at t = T, 
when its position is the point B. Its path from A to B is the arc of a circle center O. Prove that its acceleration at 
each point in the time interval [0, T] is non-zero, and that at some point in the interval its acceleration is directly 
towards the center O. 

Solution 
This is almost trivial. Take polar coordinates with origin O. Let the radius of the circular arc be k. The particle's 
radial acceleration is k (dθ/dt)2 towards O. Its tangential acceleration is k d2θ/dt2. Since the particle is not at rest 
between A and B, (dθ/dt) is non-zero, so the radial acceleration is non-zero (and hence its total acceleration). 

(dθ/dt) is zero at A and at B, so its derivative (and hence the tangential acceleration) must be zero at some point 
between. 



7th Putnam 1947 

Problem A1 
The sequence an of real numbers satisfies an+1 = 1/(2 - an). Show that limn→∞an = 1. 

Solution 
This is slightly messy. First, since k = 1/(2 - k) implies k = 1, it is obvious that if the sequence tends to a limit, then 
the limit is 1. 

Next, if 0 < an < 1, then 1 < 2 - an < 2, so 1/2 < an+1 < 1. So once the sequence gets into the interval (0, 1) it stays 
there. But an+1 - an = (an - 1)2/(2 - an) > 0 for an < 2   (*). So once the sequence gets into the interval (0, 1) it is 
monotonic increasing and bounded above by 1, and hence tends to a limit (which must be 1). 

If an < 0, then 0 < an+1 < 1, so we are also home if a member of the sequence is negative. Similarly, an > 2 implies 
an+1 < 0. If an = 1, then all following terms are 1 and so the limit is 1. So the only issue is if 1 < a1 < 2. 

But then (*) shows that whilst the sequence remains in the interval (1, 2) it is monotonic increasing. It cannot tend 
to a limit, because that limit would have to be 1, which is impossible. So it cannot stay in the interval. We cannot 
have am = 2, because then we would not have am+1 = 1/(2 - am), so we must have am > 2 for some m and then we are 
home. 

Problem A2 
R is the reals. f : R → R is continuous and satisfies f(r) = f(x) f(y) for all x, y, where r = √(x2 + y2). Show that f(x) = 
f(1) to the power of x2. 

Solution 
Induction on n shows that f(x √n) = f(x)n, and hence f(n x) = f(x) to the power of n2. In particular, taking x = 1/n, 
f(1) = f(1/n) to the power of n2. Hence, provided f(1) is non-zero, f(1/n) = f(1) to the power of 1/n2. Hence f(m/n) = 
f(1) to the power of (m/n)2. So we have established that f(x) = f(1) to the power of x2 for all rational x. But f is 
continuous, so the relation holds for all x. 
If f(1) = 0, then the same reasoning establishes that f(x) = 0 for all x. 

Problem A3 
ABC is a triangle and P an interior point. Show that we cannot find a piecewise linear path K = K1K2 ... Kn (where 
each KiKi+1 is a straight line segment) such that: (1) none of the Ki do not lie on any of the lines AB, BC, CA, AP, 
BP, CP; (2) none of the points A, B, C, P lie on K; (3) K crosses each of AB, BC, CA, AP, BP, CP just once; (4) K 
does not cross itself. 

Solution 
Each time K crosses the boundary of a triangle it moves from the outside to the inside or vice versa. K has two 
endpoints, so we can find one of the three triangles ABP, BCP, CAP in which it does not start or finish. But that is 
impossible - on the first crossing it must go from outside to inside, on the second from inside to outside and on the 
third from outide to inside. 

Problem A4 
Take the x-axis as horizontal and the y-axis as vertical. A gun at the origin can fire at any angle into the first 
quadrant (x, y ≥ 0) with a fixed muzzle velocity v. Assuming the only force on the pellet after firing is gravity 
(acceleration g), which points in the first quadrant can the gun hit? 

Solution 
Let the angle of the gun to the x-axis be θ. Then the equations of motion are: x = t v cos θ, y = t v sin θ - 1/2 g t2. So 
the pellet moves along the parabola y = x tan θ - x2 g/2v2 sec2θ (*). 

We can view (*) as an equation for θ given x, y. Put k = tan θ, then the equation becomes g/2v2 x2 k2 - x k + y + 
gx2/2v2. This has real roots iff x2 ≥ 2g/v2 x2y - g2/v4 x4 and hence iff y ≤ 2g2/v2 - x2/v4 x2 (**). Since x ≥ 0, we see 
directly from the quadratic that the sum and the product of the roots are both non-negative, so (**) is the condition 
for the equation to have at least one non-negative root in k and hence at least one root for θ in the range 0 to π/2. 
Thus the gun can hit points in the first quadrant under (or on) the parabola given by (**). 



Problem A5 
The sequences an, bn, cn of positive reals satisfy: (1) a1 + b1 + c1 = 1; (2) an+1 = an

2 + 2bncn, bn+1 = bn
2 + 2cnan, cn+1 = 

cn
2 + 2anbn. Show that each of the sequences converges and find their limits. 

Solution 
an+1 + bn+1 + cn+1 = (an + bn + cn)

2, so by a trivial induction an + bn + cn = 1. There appears to be symmetry between 
the three sequences, so we conjecture that each converges to 1/3. 

Suppose an ≤ bn ≤ cn. We have an+1 = an
2 + 2bncn ≤ ancn + bncn + cncn = cn(an + bn + cn) = cn. Similarly, bn+1 = bn2 + 

2ancn ≤ bncn + ancn + cn
2 = cn, and cn+1 = cn

2 + 2anbn ≤ cn
2 + ancn + bncn = cn. Hence the largest of an+1, bn+1, cn+1 is no 

bigger than the largest of an, bn, cn. An exactly similar argument works for the smallest. Hence the largest forms a 
monotonic decreasing sequence which is bounded below and the smallest forms a monotonic increasing sequence 
which is bounded above. 

Let bn - an = h ≥ 0, cn - bn = k ≥ 0. Then an+1 - bn+1 = (an - bn)(an + bn - 2cn), so |an+1 - bn+1| = h(h + 2k) ≤ (h + k)2. 
Similarly, |bn+1 - cn+1| = |bn - cn| |bn + cn - 2an| = k(2h + k) ≤ (h + k)2, and |cn+1 - an+1| = |cn - an| |cn + an - 2bn| = |(h + 
k)(k - h)| ≤ (h + k)2. So for n+1 the difference between the biggest and the smallest is the square of the difference 
for n. But a1, b1, c1 are all positive and hence, by a trivial induction, an, bn, cn are positive. Their sum is 1 so the 
difference between the biggest and smallest must be less than 1. Hence the difference tends to zero. Hence an, bn, 
cn all tend to 1/3. 

Problem A6 
A is the matrix 
a  b  c 

 

d  e  f 

 

g  h  i 

 

det A = 0 and the cofactor of each element is its square (for example the cofactor of b is fg - di = b2). Show that all 
elements of A are zero. 

Solution 
a2e2 - b2d2 = (ei - fh)(ai - cg) - (fg - di)(ch - bi) = (ae - bd) i2 + (cd - af) hi + (bf - ce) gi = (g3 + h3 + i3) i = 0, since 0 
= det A = g3 + h3 + i3. Hence ae = ±bd. Similarly cd = ±af, bf = ±ce. Multiplying the three equations together we get 
abcdef = - abcdef unless at least one of the equations has a plus sign. In the first case, at least one of a, b, c, d, e, f is 
zero. In the second case, the element corresponding to the cofactor is zero - for example ae = bd implies i2 = 0 and 
hence i = 0. So either a member of the first two rows is zero, or a member of the last row is zero. 

wlog we may assume a = 0. That implies b or d = 0 also. [Note that if, for example, i was the zero element, then we 
would have ei = ±fh, by an argument similar to that above and hence f or h = 0). If b = 0, then since a3 + b3 + c3 = 0, 
we have also c = 0. Similarly, if d = 0, then g = 0. So we now have a complete row or column zero. But now the 
square of any other element is a linear combination of elements in the that row or column and hence zero. Suppose, 
for example, a = b = c = 0. Then g2 = bf - ce = 0, and similarly for the other five elements. 

Problem B1 
Let R be the reals. f : [1, ∞) → R is differentiable and satisfies f '(x) = 1/(x2 + f(x)2) and f(1) = 1. Show that as x → 
∞, f(x) tends to a limit which is less than 1 + π/4. 

Solution 
Clearly f '(x) is always positive. But f(1) = 1, so f(x) > 1 for all x. Hence f '(x) < 1/(x2 + 1) for all x. Hence f(x) = 1 
+ ∫1

x f '(t) dt < 1 + 1 + ∫1
x 1/(1 + t2) dt = 1 + (tan-1t)|1

x = 1 + tan-1x - π/4 < 1 + π/2 - π/4 = 1 + π/4. Since f '(x) is 
positive, f(x) is monotone increasing. It is bounded above by 1 + π/4, so it must tend to a limit less than 1 + π/4. 

Problem B2 
R is the reals. f :(0, 1) → R is differentiable and has a bounded derivative: |f '(x)| <= k. Prove that : |∫0

1 f(x) dx - 
∑1

n f(i/n) /n| ≤ k/n. 



Solution 
The worst case for the difference between 1/n f(i/n) and ∫i/n-1/n

i/n f(x) dx is if f '(x) = k (or -k) for the entire range, in 
which case the difference is the area of a triangle base 1/n and height k/n. Hence the difference for the complete 
Riemann sum is at worst k/(2n). 

Problem B3 
Let O be the origin (0, 0) and C the line segment { (x, y) : x ∈ [1, 3], y = 1 }. Let K be the curve { P : for some Q 
∈ C, P lies on OQ and PQ = 0.01 }. Let k be the length of the curve K. Is k greater or less than 2? 

Solution 
Answer: less. 
If we use polar coordinates, then r = cosec θ - .01, so the length is ∫π/4

arctan(1/3) √( (cosec θ - .01)2 + cosec2θcot2θ) dθ. 
This is obviously horrendous. 

The trick is that if we just remove the .01, then the integral gives the curve length for the line segment C, which is 
2. But the presence of the -.01 obviously reduces the integrand at every point of the range, so the integral above 
must have value less than 2. 

Problem B4 
p(z) ≡ z2 + az + b has complex coefficients. |p(z)| = 1 on the unit circle |z| = 1. Show that a = b = 0. 

Solution 
In particular, |p(1)| = |p(-1)| = 1, so 1 + a + b and 1 - a + b lie on the unit circle. Hence their midpoint 1 + b lies in 
the unit disk. Similarly, |p(i)| = |p(-i)| = 1, so -1 + ia + b and -1 - ia + b lie on the unit circle and hence their 
midpoint -1 + b lies in the unit disk. But 1 + b and -1 + b are a distance 2 apart, so they must lie at either end of a 
diameter of the unit circle and hence b = 0. Now 1 + a and 1 - a lie on the unit circle, as does their midpoint 1. 
Hence they must coincide and so a = 0. 

Problem B5 
Let p(x) be the polynomial (x - a)(x - b)(x - c)(x - d). Assume p(x) = 0 has four distinct integral roots and that p(x) 
= 4 has an integral root k. Show that k is the mean of a, b, c, d. 

Solution 
a, b, c, d must be integers. (k - a)(k - b)(k - c)(k - d) = 4 and all of (k - a), (k - b), (k - c), (k - d) are integers. They 
all divide 4, so they must belong to {-4, -2, -1, 1, 2, 4}. They are all distinct, so at most two of them have absolute 
value 1. Hence none of them can have absolute value 4 - or their product would be at least 8. Hence they must be -
2, -1, 1, 2. Hence their sum is 0, so 4k = a + b + c + d. 

Problem B6 
P is a variable point in space. Q is a fixed point on the z-axis. The plane normal to PQ through P cuts the x-axis at 
R and the y-axis at S. Find the locus of P such that PR and PS are at right angles. 

Solution 
Answer: sphere centre Q, radius QO, where O is the origin, excluding the two circles formed by the intersection of 
the sphere with the y-z plane and the x-z plane. 

Let Q be (0, 0, r). Let P be (a, b, c). If R is (x, 0, 0), then PR and PQ are perpendicular, so their dot product is 0, so 
a(a - x) + b2 + c(c - r) = 0, hence ax = (a2 + b2 + c2 - cr). Similarly, if S is (0, y, 0), then by = (a2 + b2 + c2 - cr). We 
require PR and PS perpendicular so a(a - x) + (b - y)b + c2 = 0, hence ax + by = a2 + b2 + c2. So a2 + b2 + c2 - 2cr = 
0 and hence a2 + b2 + (c - r)2 = r2, which shows that P lies on the sphere centre Q radius QO. 

Conversely, suppose P lies on the sphere. Then SP and SO are tangents to the sphere and hence equal. Similarly, 
RP = RO, so PRS and ORS are similar. Hence ∠RPS = ∠ROS = 90o. However, if P lies in the z-x plane, then S is 
not a finite point and if P lies in the y-z plane, then R is not a finite point. So we must exclude points lying on these 
two circles of the sphere. 
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Problem A1 
C is the complex numbers. f : C → R is defined by f(z) = |z3 - z + 2|. What is the maximum value of f on the unit 
circle |z| = 1? 

Solution 
Answer: √13. 
Put z = eiθ, and use cos 2θ = 2 c2 - 1, cos 3θ = 4 c3 - 3c, where cos θ = c, to get: |f(z)|2 = 6 - 2 cos(3θ - θ) + 4 cos3θ - 
4 cos θ = 4(4c3 - c2 - 4c + 2). The cubic has stationary points where 12c2 - 2c - 4 = 0 or c = 2/3 or -1/2. So the 
maximum value is at c = 1 or -1 (the endpoints), or 2/3 or -1/2 (the stationary points). Substituting in, we find that 
the maximum is actually at c = -1/2 with value 13. 

Problem A2 
K is a cone. s is a sphere radius r, and S is a sphere radius R. s is inside K touches it along all points of a circle. S is 
also inside K and touches it along all points of a circle. s and S also touch each other. What is the volume of the 
finite region between the two spheres and inside K? 

Solution 
A straight slog is fairly long and tiresome. 
Slice off the top of a sphere radius r by a cut a distance d from the surface. A simple integration shows that the 
volume removed is π d2(3r - d)/3. 

Let h be the distance from the vertex of the cone along the axis to the nearest sphere. Similar triangles gives (h+r)/r 
= (h+2r+R)/R. Hence h = 2r2/(R-r). Let the plane through the circle of contact between the small sphere and the 
cone cut the cone's axis at a distance h+d from its vertex. Similarly, let the plane through the circle of contact of the 
other sphere cut the cone's axis a distance D from the point of contact between the two spheres. Let t be the 
distance from the cone's vertex to the circle of contact with the small sphere. Then t2 = h(h+2r). By similar triangles 
(h+d)/t = t/(h+r), so d = 2r2/(R+r). Hence by similar triangles D = 2rR/(R+r). 

Let v be the volume in the cone between the vertex and the small sphere. We find this as the volume of a cone with 
circular base less the volume of a slice of sphere. The cone has height h+d. The square of the radius of the base is 
(2rd-d2). Hence v = π/3 ( (h+d)(2rd-d2) - d2(3r-d) ). This simplifies to 4r5π/(3(R2-r2)). 

Hence V the volume of the corresponding region between the vertex and the large sphere (assuming the small 
sphere is temporarily removed) is 4r2R3π/(3(R2-r2)). Hence the required volume is V - v - 4πr3/3 = 4πr2R2/3(R+r). 

Problem A3 
an is a sequence of positive reals decreasing monotonically to zero. bn is defined by bn = an - 2an+1 + an+2 and all 
bn are non-negative. Prove that b1 + 2b2 + 3b3 + ... = a1. 

Solution 
We have that b1 + 2b2 + 3b3 + ... + n bn = a1 - (n+1)an+1 + nan+2 = a1 - (n+1)(an+1 - an+2) - an+2. Also we are given that 
all bi are non-negative. So S n bn is monotonic increasing and bounded above by a1. So it converges to a limit L ≤ 
a1. 

bn = (an - an+1) - (an+1 - an+2). Hence bn + bn+1 + bn+2 + ... + bn+m = (an - an+1) - (an+m+1 - an+m+2). But am tends to zero, so 
(an+m+1 - an+m+2) tends to zero as m tends to infinity. Hence bn + bn+1 + bn+2 + ... converges to an - an+1. Hence 
(n+1)(bn+1 + bn+2 + bn+3 + ... ) converges to (n + 1)(an+1 - an+2). Hence L ≥ b1 + 2b2 + 3b3 + ... + n bn + (n+1)(bn+1 + 
bn+2 + bn+3 + ... ) = a1 - (n+1)an+1 + n an+2 + (n+1)(an+1 - an+2) = a1 - an+2. But an+2 tends to zero. Hence L = a1. 

Problem A4 
Let D be a disk radius r. Given (x, y) ∈ D, and R > 0, let a(x, y, R) be the length of the arc of the circle center (x, 
y), radius R, which is outside D. Evaluate limR→0 R

-2 ∫D a(x, y, R) dx dy. 

Solution 
Answer: 4πr. 
Let P be a point in the disk a distance x from its centre. Suppose that the circle centre P radius R cuts the disk 



perimeter at A and B. Let angle APB be 2θ. We have r2 = x2 + R2 + 2xR cos θ. Hence the length of arc outside the 
disk is 2R cos-1( (r2-x2-R2)/2xR). This applies for r-R <= x <= r. For smaller x the small circle lies entirely in the 
disk. Thus we have to evaluate 1/R2 ∫ 2π x 2R cos-1( (r2-x2-R2)/2xR) dx. Put x = r - yR, and we get 4πr ∫0

1 (1 - y R/r) 
cos-1( (2Rry - (y2+1)R2)/2R(r - yR) ) dy. As R tends to 0, (1 - y R/r) tends to 1 and (2Rry - (y2+1)R2)/2R(r - yR) 
tends to y, so we get 4πr ∫0

1 cos-1y dy = 4πr (y cos-1y - √(1-y2) )|0
1 = 4πr. 

Problem A5 
Let α1, α2, ... , αn be the nth roots of unity. Find ∏i<j (αi - αj)

2. 

Solution 
Let αk = exp(2pi(k-1)/n). So α1 = 1, and the other αk are roots of xn-1 + xn-2 + ... + x + 1 = 0. Hence (1 - α2), ... , (1 - 
αn) are roots of (1 - x)n-1 + ... + (1 - x) + 1 = 0. The coefficient of x0 is n and the coefficient of xn-1 is (-1)n-1. Hence 
∏2

n(1 - αk) = n. 

Hence n/αk = (αk - α1)(αk - α2) ... (αk - αn), where the product excludes (αk - αk). Hence nn/(α2...αn) = ∏i not equ j(αi - αj) 
= (-1)n(n-1)/2 ∏i<j(αi - αj)

2. But (α2...αn) = (-1)n-1. Hence ∏i<j(αi - αj)
2 = (-1)(n-1)(n-2)/2nn. 

Problem A6 
Do either (1) or (2): 

(1) On each element ds of a closed plane curve there is a force 1/R ds, where R is the radius of curvature. The force 
is towards the center of curvature at each point. Show that the curve is in equilibrium. 

(2) Prove that x + 2/3 x3 + 2·4/3·5 x5 + ... + 2·4· ... .2n/(3·5. ... .2n+1) x2n+1 + ... = (1 - x2)-1/2 sin-1x. 

Solution 
(2) Let f(x) = x + 2/3 x3 + 8/15 x5 + ... + 1/2 n! n!/2n+1! (2x)2n+1 + ... . 
Hence x f(x) = x2 + 2/3 x4 + 8/15 x6 + ... + 1/4 n! n!/2n+1! (2x)2n+2 + ... . 
Also f '(x) = 1 + 2x2 + 8/3 x4 + ... + n! n!/2n! (2x)2n + ... . 
and (1 - x2) f '(x) = 1 + x2 + 2/3 x4 + ... + n-1! n-1!/2n! n/2 (2x)2n + ... 
  = 1 + x2 + 2/3 x4 + ... + 1/4 n-1!n-1!/2n-1! (2x)2n + ... . 

Hence the derivative of √(1 - x2) f(x) is 1/√(1 - x2) (- x f(x) + (1 - x2) f '(x) ) = 1/√(1 - x2). So √(1 - x2) f(x) = const + 
sin-1(x). Putting x = 0, we find that the constant is 0. 

Problem B1 
p(x) is a cubic polynomial with roots α, β, γ and p'(x) divides p(2x). Find the ratios α : β : γ. 

Solution 
p(x) = (x - α)(x - β)(x - γ). Hence p'(x) = 3x2 - 2(α+β+γ)x + βγ+γα+aβ. This must have roots α/2, β/2. Hence 
2(α+β+γ)/3 = (α+β)/2 and αβ/4 = (βγ+γα+αβ)/3. This leads to α = (-2 + 2i/√3)γ, β = (-2 - 2i/√3)γ. 

Probloem B2 

A circle radius r is tangent to the three coordinate planes (x =0, y =0, z = 0) in space. Find the locus of its center. 

Problem B3 
Show that [√n + √(n + 1)] = [√(4n + 2)] for positive integers n. 

Solution 
We have ( √n + √(n + 1) )2 = 2n + 1 + 2 √(n2 + n). Now n2 < n2 + n < n2 + n + 1/4 = (n + 1/2)2, so √(4n+1) < √n + 
√(n+1) < √(4n+2). Hence [ √(4n+1) ] ≤ [ √n + √(n+1) ] ≤ [ √(4n+2) ]. But a square must be congruent to 0 or 1 mod 
4, so [ √(4n+2) ] = [ √(4n+1) ]. Hence result. 

Problem B4 

R is the reals. For what λ can we find a continuous function f : (0, 1) → R, not identically zero, such that ∫0
1 min(x, 

y) f(y) dy = λ f(x) for all x ∈ (0, 1)? 



Problem B5 
Find the area of the region { (x, y) : |x + yt + t2| ≤ 1 for all t ∈ [0, 1] }. 

Solution 
We cannot have |x| > 1, for then the inequality is not satisfied at t = 0. We cannot have y > 1 for then yt + t2 > 2 at t 
= 1 and hence x + yt + t2 > 1. Similarly, we cannot have y < -3 for then yt + t2 < -2 at t = 1 and hence x + yt + t2 < -
1. 

We can write x + yt + t2 = x - y2/4 + (t + y/2)2. So for -3 ≤ y ≤ -2, the maximum of (t + y/2)2 occurs at t = 0 with 
value y2/4, and its minimum is (1 + y/2)2 at t = 1. Hence the minimum of x + yt + t2 is 1 + x + y and the maximum 
is x. So the region is bounded by x ≤ 1 and x + y ≥ -2. 

For -2 ≤ y ≤ -1, the maximum of (t + y/2)2 is y2/4 at t = 0, but the minimum is 0 at t = -y/2. Hence the maximum of 
x + yt + t2 is x and the minimum is x - y2/4. So the region is bounded by x ≤ 1 and x - y2/4 ≥ -1. 

For -1 ≤ y ≤ 0, the maximum of (t + y/2)2 is (1 + y/2)2 and the minimum is 0 at t = -y/2. Hence the maximum of x + 
yt + t2 is 1 + x + y and the minimum is x - y2/4. So the region is bounded by x + y ≤ 0 and x - y2/4 ≥ -1. 

For 0 ≤ y ≤ 1, the maximum of (t + y/2)2 is (1 + y/2)2 and the minimum is y2/4. Hence the maximum of x + yt + t2 is 
1 + x + y and the minimum is x. So the region is bounded by x + y ≤ 0 and x ≥ -1. 

Thus the region is the rhombus with vertices at (1, -1), (1, -3), (-1, -1), (-1, 1), except that the vertex (-1, -1) is cut 
off by the curve x = y2/4 - 1, which forms the boundary between (0, -2) and (-1, 0). The rhombus has area 4 (base 2 
and height 2). The area between the parabola and the lines x = -1 and y = -2 is ∫0

2 y2/4 dy = 8/12. The area between 
the line y = -2 -x and the lines x = -1 and y = -2 is 1/2, so the area cut off the rhombus by the parabola is 2/3 - 1/2 = 
1/6. Hence the area required is 4 - 1/6 = 3 5/6. 

Problem B6 
Do either (1) or (2): 

(1) Take the origin O of the complex plane to be the vertex of a cube, so that OA, OB, OC are edges of the cube. 
Let the feet of the perpendiculars from A, B, C to the complex plane be the complex numbers u, v, w. Show that 
u2 + v2 + w2 = 0. 

(2) Let (aij) be an n x n matrix. Suppose that for each i, 2 |aii| > ∑1
n |aij|. By considering the corresponding system of 

linear equations or otherwise, show that det aij ≠ 0. 

Solution 
(2) If the det is non-zero, then we can find xinot all zero so that ∑ xi aij = 0 for each j. Take k so that |xk| ≥ |xi| for all 
i. Then |∑i not k xiaik| ≤ ∑i not k |xi aik| ≤ |xk| ∑i not k |aik| < |xk| |akk|, so we cannot have ∑ xiaik = 0. Contradiction. 
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Problem A1 

Do either (1) or (2) 
(1)   Let L be the line through (0, -a, a) parallel to the x-axis, M the line through (a, 0, -a) parallel to the y-axis, and 
N the line through (-a, a, 0) parallel to the z-axis. Find the equation of S, the surface formed from the union of all 
lines K which intersect each of L, M and N. 
(2)   Let S be the surface xy + yz + zx = 0. Which planes cut S in circles? In parabolas? 
 

Problem A2 

Take points O, P, Q, R in space. Let the volume of the parallelepiped with edges OP, OQ, OR be V. Let V' be the 
volume of the parallelepiped which has O as one vertex and which has OP, OQ, OR as altitudes to three faces. 
Show that V V' = OP2OQ2OR2. Generalize to n dimensions. 
 

 
Problem A3 
All the complex numbers zn are non-zero and |zm - zn| > 1 (for any m ≠ n). Show that ∑ 1/zn

3 converges. 

Solution 
We show that it is absolutely convergent. Take a disk radius 1/2 centred on each zn. The disks must be disjoint 
since |zm - zn| > 1 for distinct m, n. Now consider how many zn can lie in the annulus N ≤ |z| < N+1. If zn lies in the 
annulus, then at least half the corresponding disk must also, so if M is the number of zn, then M π/8 < π ( (N+1)2 - 
N2) = (2N+1) π, and the sum of 1/|zn|

3 for these zn is at most M/N3 = 8(2N + 1)/N3. But ∑ 8(2N + 1)/N3 converges, 
since ∑ 1/N2 converges. 

Problem A4 

Take P inside the tetrahedron ABCD to minimize PA + PB + PC + PD. Show that ∈APB = ∈CPD and that the 
bisector of APB also bisects CPD. 

Problem A5 
Let p(z) ≡ z6 + 6z + 10. How many roots lie in each quadrant of the complex plane? 

Solution 
There are no real roots, since p(z) has a minimum (for real value of z) at z = -1 of 5. Similarly there are no purely 
imaginary roots, since p(i y) has imaginary part 6iy (and z = 0 is not a root). Also a + ib is a root iff a - ib is a root, 
so either there is one root in each of the 1st and 4th quadrants and two in each of the 2nd and 3rd, or vice versa. 

The argument principle states that the change in arg p(z) as we move (anti-clockwise) round a closed contour which 
passes through no zeros and contains k zeros is 2 π k. Take a contour in the first quadrant from z = 0 to z = X, then 
around the arc |z| = X to iX, then back along the imaginary axis to z = 0. Moving along the real axis, arg p(z) does 
not change. Moving along the arc the change will be the same as that in arg z6 for X sufficiently large and hence 
will be 3π. As we move back down the imaginary axis, the imaginary part remains positive, so p(z) is confined to 
the upper half plane, and we end up at p(z) = 10, so the change must be -π. Thus the change for a complete circuit 
is 2π, and so there is just one root in the first quadrant. 

Problem A6 
Show that ∏1

∞ (1 + 2 cos(2z/3n)/3 = (sin z)/z for all complex z. 

Solution 
For z = 0, we may take (sin z)/z = 1 by continuity. In this case, each term on the lhs is 1, so the relation holds. 
Assume now that z is non-zero. 

We have sin z = sin(2z/3 + z/3) = sin 2z/3 cos z/3 + cos 2z/3 sin z/3, and sin z/3 = sin(2z/3 - z/3) = sin 2z/3 cos z/3 
- cos 2z/3 sin z/3. Hence sin z = (1 + cos 2z/3) sin z/3. Hence (sin z)/z = (sin z/3)/(z/3)   (1 + cos 2z/3)/3. Iterating: 
(sin z)/z = (sin z/3N)/(z/3N)   ∏1

N (1 + 2 cos(2z/3n) )/3. But as N tends to infinity z/3N tends to zero and hence (sin 
z/3N)/(z/3N) tends to 1. Hence the result. 



Problem B1 
Show that for any rational a/b ∈ (0, 1), we have |a/b - 1/√2| > 1/(4b2). 

Solution 

If |a/b - 1/√2| ≤ 1/(4b2), then |a2/b2 - 1/2| = |a/b - 1/√2| |a/b + 1/√2| < |a/b - 1/√2| (1 + 1) < 1/2b2. So |2a2 - b2| < 1. 
Hence 2 a2 = b2. But that is impossible since √2 is irrational. Note that the restriction to the interval (0, 1) is 
unnecessary. 

Problem B2 
Do either (1) or (2) 

(1)   Prove that ∑2
∞ cos(ln ln n) / ln n diverges. 

(2)   Let k, a, b, c be real numbers such that a, k > 0 and b2 < ac. Show that ∫U (k + ax2 + 2bxy + cy2)-2 dx dy = π/( k 
√(ac - b2) ), where U is the entire plane. 

Solution 
(1) We have ln n2 = 2 ln n, so for any m in the range n, n+1, n+2, ... , n2 we have 1/ln m > 1/2 1/ln n. Also ln ln n2 = 
ln ln n + ln 2 < ln ln n + π/3. So given any sufficiently large integer N, take x > N so that ln ln x = a multiple of 2 π, 
then we can find at least N2/2 consecutive integers n in the range x to x2such that (A) 1/ln n > 1/(2 ln N) and (B) ln 
ln n lies between 2k π and 2k π + π/3 (for some integer k) and hence so that cos ln ln n > 1/2. Hence for each such 
integer (cos ln ln n)/ln n > 1/(4 ln N). So ∑ (cos ln ln n)/ln n over all these terms is at least N2/(8 ln N) which can be 
made arbitrarily large. Hence the sequence does not converge. 

(2) ax2 + 2bxy + cy2 = h is the equation of an ellipse. If we rotate the axes to line up with its axes we get new 
coordinates X, Y so that it becomes AX2 + BY2 = h with AB = ac - b2. Thus the integral is transformed to ∫U (k + 
AX2 + BY2)-2 dX dY. Take u = X√A, v = Y√B and the integral becomes 1/√(ac - b2) ∫U (k + u2 + v2)-2 du dv. Now 
take u = r cos θ, v = r sin θ and we get 1/√(ac - b2) ∫U (k + u2 + v2)-2 du dv = 1/√(ac - b2) ∫U (k + r2)-2 r dr dθ = 2 π 
/√(ac - b2) ∫ (k + r2)-2 r dr = 2 π /(k √(ac - b2) ) ∫ (1 + s2)-2 s ds = π /(k √(ac - b2) ) (-1/(1 + s2)|0

inf = 2 π /(k √(ac - b2) ). 

Problem B3 
C is a closed plane curve. If P, Q ∈ C, then |PQ| < 1. Show that we can find a disk radius 1/√3 which contains C. 

Solution 
C can be any set of points in the plane. The usual proof uses Helly's theorem. Given any three points of the set we 
can find a circle radius 1/√3 which contains them. This is fairly obvious. Take the points to be P, Q, R with PQ the 
longest side of the triangle. Take S on the same side of PQ as R so that PQS is equilateral. Then R must lie inside 
the bounding circle of PQS (in fact it must lie inside the region bounded PQ, the arc of the circle centre P from S to 
Q, and the arc of the circle centre Q from S to P, and this region lies entirely inside the bounding circle of PQS). 

Another way of expressing this is that the three circles radius 1/√3 and centres P, Q, R have a point in common. We 
can now apply Helly's theorem to the set of circles radius 1/√3 and with centres at all the points of the set C. Every 
three of these circles have a point in common (proved above) and hence by Helly's theorem there is a point 
common to all of them. But this point can be taken as the centre of the required circle. 

Problem B4 
Let (1 + x - √(x2 - 6x + 1) )/4 = ∑1

∞ anx
n. Show that all an are positive integers. 

Solution 
We have 1 + x - √(x2 - 6x + 1) ) = 4 ∑ an x

n, and hence 1 + x + √(x2 - 6x + 1) ) = 2x + 2 - 4 ∑ an x
n. Multiplying, 1 + 

2x + x2 - x2 + 6x - 1 = 8 x = 8(a1x + a2x
2 + ... ) (1 + (1 - 2a1)x - 2a2x

2 - 2a3x
3 - ... ). Hence: 

a1 = 1 
a2 + a1(1 - 2a1) = 0 
a3 + a2(1 - 2a1) - 2a1a2 = 0 
a4 + a3(1 - 2a1) - 2a2a2 - 2a1a3 = 0 ... 
The nth equation has the form an + combination of a1, ... , an-1 with integer coefficients, so by a simple induction, 
an is integral. 



Problem B5 
an is a sequence of positive reals. Show that lim supn→∞( (a1 + an+1)/an)

n ≥ e. 

Solution 
It is sufficient to show that (a1 + an+1)/an ≥ 1 + 1/n for infinitely many n. For these n then form a sequence for which 
( (a1 + an+1)/an )

n has a limit point (possibly infinity) not less than lim (1 + 1/n)n = e. 

If that were false, then we would have (a1 + an+1)/an < 1 + 1/n for all n not less than some N. In particular, taking n = 
N, N+1, N+2, ... we get a1/N+1 + aN+1/N+1 < aN/N, a1/N+2 + aN+2/N+2 < aN+1/N+1, a1/N+3 + aN+3/N+3 < aN+2/N+2, 
... . Hence an/N > a1(1/N+1 + 1/N+2 + ... + 1/N+M) + aN+M/N+M > a1(1/N+1 + 1/N+2 + ... + 1/N+M). But this 
holds for any M and (1/N+1 + 1/N+2 + ... ) diverges. Contradiction. 

Problem B6 

C is a closed convex curve. If P lies on C and TP is the tangent at P, then TP varies continuously with P. Let O be a 
point inside C. Given a point P on C, define f(P) to be the point where the perpendicular from O to TP intersects C. 
Given P1, define the sequence Pn by Pn+1 = f(Pn). Assume that f is continuous and that, for each P, C lies entirely on 
one side of TP. Show that Pn converges. Find S = { P : P = limn→∞Pn for some P1}. 



10th Putnam 1950 

Problem A1 
a and b are positive reals and a > b. Let C be the plane curve r = a - b cos θ. For what values of b/a is C convex? 

Solution 
The curvature is (x'y'' - x''y')/(x'2 + y'2)3/2. So for convexity we require x'y'' ≥ x''y'. Putting k = b/a, c = cos θ, s = sin 
θ, we have x/a = c - k c2, x'/a = - s + 2kcs, x''/a = - c - 2ks2 + 2kc2 and y/a = s - ksc, y'/a = c - kc2 + k s2, y''/a = -s + 
4ksc. Thus the condition becomes after a little cancellation, 1 + 2k2 - 3kc ≥ 0. c takes values in the range -1 to 1, so 
for the condition to be true for all points of the curve we require 1 + 2k2 - 3k ≥ 0. But 1 + 2k2 - 3k = (2k - 1)(k - 1). 
We are given that k < 1, so we must have k < 1/2. 

For small k, the curve is approximately a circle centred on the origin. As k increases it develops a flattening near x 
= a, y = 0. For k > 1/2, this becomes a dimple in the surface, so that convexity is broken. For k = 1, the depression 
in the surface extends as far as the centre (the origin). For k > 0, the curve intersects itself at the origin so that it 
comprises two ovals one inside the other.   

Problem A2 
Does the series ∑2

∞ 1/ln n! converge? Does the series 1/3 + 1/(3 31/2) + 1/(3 31/2 31/3) + ... + 1/(3 31/2 31/3 ... 31/n) + ... 
converge? 

Solution 
(1) ln n! < n ln n, so ∑2

∞ 1/ln n! > ∑2
∞ 1/(n ln n), which diverges. For ∫ 1/(x ln x) = ln ln x. 

(2) We have 1 + 1/2 + 1/3 + ... + 1/n is approx ln n, and 1/3ln nis approx 1/nln 3. But ln 3 > 1, so we expect this to 
converge. In fact 1 +1/2 + 1/3 + ... + 1/n > ∫1

n+1 dx / x = ln(n + 1) > ln n. So 1/3 + 1/(3 31/2) + 1/(3 31/2 31/3) + ... + 
1/(3 31/2 31/3 ... 31/n) + ... < 1/3ln 1 + 1/3ln 2 + 1/3ln 3 + ... = 1/1 + 1/2k + 1/3k + ... , where k = ln 3, which converges. 

Problem A3 
The sequence an is defined by a0 = α, a1 = β, an+1 = an + (an-1 - an)/(2n). Find lim an. 

Solution 
an+1 - an = -1/2n (an - an-1), hence an+1 - an = (-1)n/(2·4·6 ... .2n) (a1 - a0). Then an = (an - an-1) + (an-1 - an-2) + ... + (a1 - 
a0) + a0. 
Hence the limit is β + (β - α)/2 - (β - α)/2·4 + (β - α)/2·4·6 - ... . But 1/2 -1/2·4 + 1/2·4·6 - ... = 1 - 1/√e, so the limit 
is α + (β - α)/√e. 

Problem A4 
Do either (1) or (2) 

(1)   P is a prism with triangular base. A is a vertex. The total area of the three faces containing A is 3k. Show that 
if the volume of P is maximized, then each of the three faces has area k and the two lateral faces are perpendicular 
to each other. 

(2)   Let f(x) = x + x3/(1·3) + x5/(1·3·5) + x7/(1·3·5·7) + ... , and g(x) = 1 + x2/2 + x4/(2·4) + x6/(2·4·6) + ... . Show 
that ∫0

x exp( - t2/2) dt = f(x)/g(x). 

Solution 
(1) Let the sides of the base at A be a, b with angle between them θ. Let the height be h. Then the volume is V = 
1/2 abh sin θ and 3k = ah + bh + 1/2 ab sin θ. Now V2 = (1/2 ab sin θ) (ah) (bh) 1/2 sin θ. By the arithmetic 
geometric mean theorem we have that (1/2 ab sin θ) (ah) (bh) ≤ k3, with equality iff ah = bh = 1/2 ab sin θ. So V2 ≤ 
k3/2 sin θ. Hence V ≤ √(k3/2) with equality iff θ = π/2 and ah = bh = 1/2 ab. 

(2) exp(- t2/2) = 1 - t2/2 + t4/2·4 - t62·4·6 + ... . We notice that this is similar to g(t). In fact g(t) = exp( t2/2). So the 
required relation is f(x) = exp( x2/2) ∫0

x exp( -t2/2) dt. Differentiating gives f '(x) = x f(x) + 1. All that is just 
motivation. 



We start from the series for f(x). By the ratio test it is absolutely convergent, so we may differentiate term by term 
to get f '(x) = 1 + x2/1 + x4/1·3 + x6/1·3·5 + ... = x f(x) + 1. Multiplying this by exp(-x2/2) we get exp(-x2/2) f '(x) - x 
exp(-x2/2) f(x) = exp(-x2/2). Integrating and using f(0) = 0, we get exp(-x2/2) f(x) = ∫0

x exp( -t2/2) dt or f(x)/g(x) = 
∫0

x exp( -t2/2) dt. 

Problem A5 
Let N be the set of natural numbers {1, 2, 3, ... }. Let Z be the integers. Define d : N → Z by d(1) = 0, d(p) = 1 for p 
prime, and d(mn) = m d(n) + n d(m) for any integers m, n. Determine d(n) in terms of the prime factors of n. Find 
all n such that d(n) = n. Define d1(m) = d(m) and dn+1(m) = d(dn(m)). Find limn→∞ dn(63). 

Solution 
d(pa) = a pa-1 by a trivial induction on a. Hence for n = paqb ... we have d(n) = n ( a/p + b/q + ... ) by a trivial 
induction on the number of primes. 

Hence d(n) = n iff a/p + b/q + ... = 1. Multiplying through by all the prime denominators gives integral terms. All 
but the first are clearly divisible by p, so the first must be also. Hence a/p = 1 and b/q etc are zero. In other words, n 
= pp for some prime p. 

We find d1(63) = 51, d2(63) = 20, d3(63) = 24, d4(63) = 44, d5(63) = 48. Now suppose n is divisible by 16. Then n = 
2kpaqb ... , where p, q, ... are all odd and k >= 4. Hence d(n) = n( 4/2 + a/p + b/q + ... ). Now all of 2n, na/p, nb/q, ... 
are integral and multiples of 16. So d(n) is at least twice n and a multiple of 16. So if we have dk(m) divisible by 16, 
then dh+k(m) ≥ 2h which diverges. Hence dk(63) tends to infinity. 

Problem A6 
Let f(x) = ∑0

∞ anx
n and suppose that each an = 0 or 1. Do either (1) or (2): 

(1)   Show that if f(1/2) is rational, then f(x) has the form p(x)/q(x) for some integer polynomials p(x) and q(x). 

(2)   Show that if f(1/2) is not rational, then f(x) does not have the form p(x)/q(x) for any integer polynomials p(x) 
and q(x). 

Solution 
(1) f(1/2) is the binary expansion of some real in the closed interval [0, 1]. So if it is rational, then the binary 
expansion is periodic after some point. In other words, there are positive integers N and k such that an = an+k for n > 
N. Hence f(x) = a0 + a1x + ... + aNxN + (aN+1x

N+1 + ... + aN+k-1x
N+k-1)(1 + xk + x2k + ... ) = a0 + a1x + ... + aNxN + 

(aN+1x
N+1 + ... + aN+k-1x

N+k-1)/(1 - xk). Hence we can take q(x) = 1 - xk and p(x) = (a0 + a1x + ... + aNxN)(1 - xk) + 
(aN+1x

N+1 + ... + aN+k-1x
N+k-1). 

(2) is trivial. If f(x) = p(x)/q(x), then f(1/2) = p(1/2)/q(1/2) which is rational. The only slight complication is if 
q(1/2) = 0. But we can assume that p(x)/q(x) is in lowest terms, so if q(1/2) = 0, then p(x) is non-zero, but then p(x) 
= f(x) q(x). We know that f(1/2) ≤ 1/2 + 1/4 + 1/8 + ... = 1, so f(1/2) q(1/2) = 0. Hence p(1/2) = 0. Contradiction. 

Problem B1 
Given n, not necessarily distinct, points P1, P2, ... , Pn on a line. Find the point P on the line to minimize ∑ |PPi|. 

Solution 
Assume that the points are in the order given. For two points A and B, |PA| + |PB| = AB for P on the segment AB 
and |PA| + |PB| > AB for P outside it. Thus we minimise |PP1| + |PPn| by placing P between P1 and Pn. Similarly, we 
minimise |PP2| + |PPn-1| by placing P between P2 and Pn-1. And so on. But note that if we minimise |PP2| + |PPn-1| 
then we also minimise |PP1| + |PPn|. Thus for n odd we must take P to be the central point, for n even we can take P 
to be any point on the segment between the two central points. 

Problem B2 
An ellipse with semi-axes a and b has perimeter length p(a, b). For b/a near 1, is π(a + b) or 2π √(ab) the better 
approximation to p(a, b)? 

Solution 
Answer: π(a + b). 



Put b2 = a2(1 - ε). The perimeter is 4 ∫0
π/2 (a2sin2t + b2cos2t)1/2 dt = 4a ∫ (1 - ε cos2t)1/2 dt = 4a ∫ ( 1 - 1/2 ε cos2t - 1/8 

ε2 cos4t + O(ε4) dt = 2π a ( 1 - ε/4 - 3ε2/64 + O(ε4) ). 

b = a(1 - ε)1/2 = a(1 - ε/2 - ε2/8 + O(ε3) ). Hence π (a + b) = 2π a (1 - ε/4 - 4ε2/64 + O(ε3) ). Whilst 2π√(ab) = 2π a (1 
- ε/2 - ε2/8 + O(ε3) )1/2 = 2π a (1 - ε/4 - 6ε2/64 + O(ε3) ). 

Hence the error in π (a + b) is π a ε2/32 + O(ε3), and the error in 2π√(ab) is 3π a ε2/32 + O(ε3), which is roughly 
three times as large for small ε. 

Problem B3 
Leap years have 366 days; other years have 365 days. Year n > 0 is a leap year iff (1) 4 divides n, but 100 does not 
divide n, or (2) 400 divides n. n is chosen at random from the natural numbers. Show that the probability that 
December 25 in year n is a Wednesday is not 1/7. 

Solution 
365 = 52.7 + 1, so in non-leap years Christmas day is a day later in the week than the previous year. In leap years it 
is two days later. Now consider a period of 400 years. There are 100 multiples of 4, 3 or which are multiples of 100 
but not 400, so there are 97 leap years. Thus after 400 years the day has advanced 303·1 + 97·2 = 497 days or 
exactly 41 weeks. In other words after 400 years Christmas is on the same day of the week. This cycle then repeats 
indefinitely. But 400 is not a multiple of 7, so each day cannot occur with exactly probability 1/7. 

If we look in more detail at the 400 years we find that Su, Tu, Fr each occur 58 times, We and Th each occur 57 
times, and Mo and Sa each occur 56 times (compared with the expected 57 1/7). 

Problem B4 
A long, light cylinder has elliptical cross-section with semi-axes a > b. It lies on the ground with its main axis 
horizontal and the major axes horizontal. A thin heavy wire of the same length as the cylinder is attached to the line 
along the top of the cylinder. [We could take the cylinder to be the surface |x| ≤ L, y2/a2 + z2/b2 = 1. Contact with 
the ground is along |x| ≤ L, y = 0, z = -b. The wire is along |x| ≤ L, y = 0, z = b.] For what values of b/a is the 
cylinder in stable equilibrium? 

Solution 
Take the ellipse to be x2/a2 + y2b2 = 1. We need the normal to the ellipse at a point near (0, -b) to meet the y-axis 
above (0, b) (because then the heavy wire will be the correct side of the vertical through the point of contact to right 
the cylinder). 

The gradient at (a cos t, b sin t) is -b/a cot t, so the normal has slope a/b tan t, so its equation is (y - b sin t) = a/b tan 
t (x - a cos t). This meets the y-axis at y = b sin t - a2/b sin t. For points near (0, -b), sin t is -(1 - ε) so we need a2/b - 
b > b or a > b√2. 

Problem B5 
Do either (1) or (2): 

(1)   Show that if ∑(an + 2an+1) converges, then so does ∑ an. 
(2)   Let S be the surface 2xy = z2. The surface S and the variable plane P enclose a cone with volume πa3/3, where 
a is a positive real constant. Find the equation of the envelope of P. What is the envelope in the case of a general 
cone? 

Solution 
(1) Suppose an + 2an+1 converges to 3k. We show that anconverges to k. 
Given any ε > 0, take N so that an + 2an+1 is within ε of 3k for all n ≥ N. Take a positive integer M such that aN is 
within (2M + 1)ε of k. 

Then aN+1 is within ( (2M + 1)ε + ε)/2 = (2M-1 + 1)ε of (3k - k)/2 = k. By a trivial induction aN+M is within 2ε of k. 
Then aN+M+1 is within (2ε + ε)/2, and hence within 2ε, of k. So by a trivial induction, an is within 2ε of k for all n > 
N + M. 

(2) Answer: the 2-sheet hyperboloid u2 = v2 + z2 + a2. 
The nature of the surface S becomes much clearer if we change coordinates to u, v, z with z unchanged and the x, y 



axes rotated through π/4 to u = (x + y)/√2, v = (-x + y)/√2 (or inversely, x = (u - v)/√2, y = (u + v)/√2 ). Now S 
becomes u2 - v2 = z2 or v2 + z2 = u2, which is evidently a right circular cone with vertex the origin and axis the u-
axis. 

Evidently the plane u = a forms a cone volume 1/3 πa3 with the surface (the base is a circle radius a and the height 
is a). If the plane moves round to be almost tangent to the sides of the cone it should still cut off a cone with the 
same volume, so we might suspect that the envelope is a two sheet hyperboloid asymptotic to the cone and passing 
through the points u = ±a, v = z = 0. This has equation u2 = v2 + z2 + a2. This is a surface of revolution formed by 
rotating the hyberbola u2 = v2 + a2 about the u-axis, so it is sufficient to look at tangent planes that are parallel to (ie 
do not intersect) the z-axis. We need to show that these cut off cones volume 1/3 πa3. 

The tangent to the hyperbola at u = a cosh t, v = a sinh t is (v - a sinh t) = coth t (u - a cosh t) or v sinh t - u cosh t + 
a = 0 (*). It cuts v = u at u = v = a/(cosh t - sinh t) and it cuts v = -u at u = -v = a/(cosh t + sinh t). So the 
corresponding plane cuts the hyperboloid in an ellipse with major axis length 2A, where 2A is the distance between 
these two points of intersection, which is 2a cosh 2t. At the centre of the ellipse (which we find as midway between 
the two points of intersection) we have u = a cosh t, v = a sinh t, so the extremities of minor axis have z2 = u2 - v2 = 
a2. Thus the minor axis has length 2a. Hence the area of the ellipse is πa2√(2 cosh 2t). The distance of the origin 
from the plane is its distance from the line (*) which is a/√(2 cosh 2t). Hence the volume of the cone is 1/3 area of 
base x height = 1/3 πa3, as we had guessed. 
Finally, if we have a general cone (which does not have circular cross-section or right-angle), we can transform it 
into a right circular cone by an affine transformation. Such transformations preserve the ratios of distances and 
hence the ratios of volumes. They also preserve tangency, so the envelope in this more general case will still be a 
hyperboloid asymptotic to the cone. 

Problem B6 
(1)   The convex polygon C' lies inside the polygon C. Is it true that the perimeter of C' is no longer than the 
perimeter of C? 
(2)   C is the convex polygon with shortest perimeter enclosing the polygon C'. Is it true that the perimeter of C is 
no longer than the perimeter of C' ? 
(3)   The closed convex surface S' lies inside the closed surface S. Is it true that area S' ≤ area S? 
(4)   S is the smallest convex surface containing the closed surface S'. Is it true that area S ≤ area S'? 

Solution 
(1) True. On each side of C' take a semi-infinite strip perpendicular to the side and extending outwards from C'. 
Since C' is convex, these strips are all disjoint. But the intersection of C with each strip is at least as long as the 
corresponding side of C', hence the total length of C that intersects the strips is at least as long as the perimeter of 
C'. 

(2) True. Take C as the convex hull of C'. If is sufficient to prove that the perimeter of C is no longer than the 
perimeter of C'. Evidently the vertices of C form a subset of the vertices of C'. If C' includes a vertex P which is not 
a vertex of C, then removing it does not increase the perimeter of C' (by the triangle inequality) and leaves C 
unaffected. So we can assume that C and C' have the same vertices. If C' just has the vertices of C permuted 
cyclically (or in reverse order), then its perimeter is the same. If not, then there are vertices A, B which are adjacent 
in C' but not in C. We show that in this case we can permute the vertices of C' so as to shorten the perimeter. We 
can repeat this process, shortening the perimeter each time. But there are only finitely many permutations so we 
must eventually reach a perimeter with the same length as C. 
Suppose C' has vertices in the order X1X2 ... Xn. wlog we may assume that X1 and X2 are not adjacent in C, so we 
can find Xi on one side of X1X2 and Xj on the other. Then one of the pairs XiXi+1, Xi+1Xi+2, ... , Xj-1Xj must straddle 
X1X2. Suppose it is XkXk+1. Consider the quadrilateral X1XkX2Xk+1. Suppose its diagonals X1X2 and XkXk+1 meet at 
O. Then X1X2 + XkXk+1 = X1O + OX2 + XkO + OXk+1 = (X1O + OXk) + (X2O + OXk+1) > X1Xk + X2Xk+1. So if we 
take C'' to have vertices in the order X1XkXk-1 ... X3X2Xk+1Xk+2 ... Xn, then C'' has shorter perimeter. 

(3) True. The same argument as (1) works. Take semi-infinite columns on each face of the inner polyhedron. 

(4) False. Take the 4 vertices of a regular tetrahedron and its centre. We can find a surface S' with arbitrarily small 
area which contains these 5 points, but the convex hull S is the tetrahedron. 
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Problem A1 
A is a skew-symmetric real 4 x 4 matrix. Show that det A ≥ 0. 

Solution 

Let A = 

 0  a  b  c 

-a  0  d  e 

-b -d  0  f 

-c -e -f  0 

 

Then det A = a2f2 + 2acdf - 2abef + b2e2 - 2bcde + c2d2. 
At this point it is helpful to notice that a only appears with f, b with e, and c with d. So putting X = af, Y = cd, Z = 
be, we have that det A = X2 + Y2 + Z2 + 2XY - 2XZ - 2YZ. This easily factorizes as (X + Y - Z)2. 
 

Problem A2 
k is a positive real and P1, P2, ... , Pn are points in the plane. What is the locus of P such that ∑ PPi

2 = k? State in 
geometric terms the conditions on k for such points P to exist. 

Solution 

Let Pi have coordinates (ai, bi). Take the origin at the centroid of the points, so that ∑ ai = ∑ bi = 0. Then if P has 
coordinates (x, y), we have ∑ PPi

2 = ∑( (x - ai)
2 + (y - bi)

2 ) = n (x2 + y2) + ∑(ai
2 + bi

2). Let the origin be O, so that 
∑(ai

2 + bi
2) = ∑ OPi

2. Then if ∑ OPi
2 > k, the locus is empty. Otherwise it is the circle with centre at the centroid of 

the n points and radius √( (k - ∑ OPi
2)/n ). 

Problem A3 
Find ∑0

∞ (-1)n/(3n + 1). 

Solution 
We have ln(1 + x) = x - x2/2 + x3/3 - x4/4 + ... (1). Put ω = e2πi/3, so that ω3 = 1 and 1 + ω + ω2 = 1. Then ω2 ln(1 + 
ωx) = x - ωx2/2 + ω2x3/3 - x4/4 + ... (2) and  ln(1 + ω2x) = x - ω2x2/2 + ωx3/3 - x4/4 + ... (3). 

Adding (1), (2), (3) we get 3(x - x4/4 + x7/7 - ... ) = ln(1 + x) + ω2 ln(1 + ωx) + ω ln(1 + ω2x). Hence the required 
series sums to 1/3 (ln 2 + ω2 ln(1 + ω) + ω ln(1 + ω2) ). 

If k = ln(1 + ω), then ek = 1 + ω = - ω2 = eiπ/3, so k = iπ/3. Hence ω2 ln(1 + ω) = -(1 + i√3)/2 iπ/3 = π/2√3 - iπ/6. 
Similarly, ω ln(1 + ω2) = -iπ/3 (-1/2 + i√3/2) = π/2√3 + iπ/6. Hence the series sums to 1/3 ln 2 + π/3√3. 

Problem A4 
Sketch the curve y4 - x4 - 96y2 + 100x2 = 0. 

Solution 
The graph is in three parts. It is symmetrical on reflection in the x-axis and on reflection in the y-axis. The central 
part is a figure of 8 with crossing point at the origin and touching the lines y/x = ±√(100/96). The top and bottom of 
the figure of 8 are at (0, ±√96). The right hand part is a sort of dimpled hyperbola with asymptotes y/x = ±1. It 
comes in along each asymptote and touches the line x = 8 at y = ±√48, then it dimples back away from the origin to 
cut the x-axis at x = 10. The left hand part of the curve is just the reflection of this in the y-axis. 

Problem A5 
Show that a line in the plane with rational slope contains either no lattice points or an infinite number. Show that 
given any line L of rational slope we can find δ > 0, such that no lattice point is a distance k from L where 0 < k < 
δ. 

Solution 
The first part is obvious. If the line passes through (m, n) and has slope a/b (where m, n, a, b are all integers), then 



it also passes through (m + kb, n + ka) for any integer a. Although not required, we note that there are lines with 
rational slope passing through no lattice points, for example, y = 1/2 and y = x + 1/2. 

Suppose L is bx - ay + c = 0. The distance of L from (x, y) is |bx - ay + c|/√(a2 + b2). If (x, y) is a lattice point then 
bx - ay is an integer. Hence |bx - ay + c| is either zero or at least 1 if c is an integer, or at least the distance of c from 
the nearest integer if c is not an integer. So we can find k > 0, so that |bx - ay + c| > k for all lattice points not on L. 
Hence the distance |bx - ay + c|//√(a2 + b2) is at least k/√(a2 + b2) for all lattice points not on L. So we can take δ to 
be k/√(a2 + b2). 

Problem A6 
Let C be a parabola. Take points P, Q on C such that (1) PQ is perpendicular to the tangent at P, (2) the area 
enclosed by the parabola and PQ is as small as possible. What is the position of the chord PQ? 

Solution 
We may take the parabola as y = x2 and P as (a, a2). The tangent at P has slope 2a, so the normal has slope -1/2a 
and equation (y - a2) + 1/2a (x - a) = 0. This meets the parabola at x2 + x/2a - a2 - 1/2 = 0, so the other root is x = -
1/2a - a and Q is (-1/2a - a, (a + 1/2a)2). The area under the curve between P and Q is 1/3 (a3 + (a + 1/2a)3 ). The 
area under the chord PQ is (2a + 1/2a) (a2 + (a + 1/2a)2)/2 = 2a3 + 3a/2 + 1/2a + 1/16a3. Hence the area enclosed is 
4/3 a3 + a + 1/4a + 1/48a3. We wish to minimise this. The gradient is 4a2 + 1 -1/4a2 - 1/16a4 = 1/16a4 (4a2 + 1)2(2a - 
1)(2a + 1). Hence there is a minimum at a = 1/2 (and another at a = -1/2). In the minimum position P is (1/2, 1/4) or 
(-1/2, 1/4), so the minimum positions are the intersection of the parabola with the perpendicular to the axis through 
the focus (0, 1/4). 

Problem A7 
Show that if ∑ an converges, then so does ∑ an/n. 

Solution 
Put sn = a1 + a2 + ... + an. Then sn - sn-1 = an, and so a1/1 + a2/2 + a3/3 + ... + an/n = s1(1/1 - 1/2) + s2(1/2 - 1/3) + ... + 
sn(1/n - 1/n+1) + sn/n+1. Now s1(1/1 - 1/2) + s2(1/2 - 1/3) + ... + sn(1/n - 1/n+1)+ ... is absolutely convergent, 
because the sequence |sn| is bounded, say by B. Hence |s1(1/1 - 1/2)| + |s2(1/2 - 1/3)| + ... + |sn(1/n - 1/n+1)| <= B( 
(1/1 - 1/2) + (1/2 - 1/3) + ... + (1/n - 1/n+1) ) = B(1 - 1/n+1) < B. Obviously sn/n+1 tends to zero, so ∑ an/n is 
absolutely convergent and hence convergent. 

Problem B1 
R is the reals. f, g : R2 → R have continuous partial derivatives of all orders. What conditions must they satisfy for 
the differential equation f(x, y) dx + g(x, y) dy = 0 to have an integrating factor h(xy)? 

Solution 
If h(xy) is an integrating factor, then f(x, y) h(xy) dx + g(x, y) h(xy) dy is an exact form. In other words, ∂/∂y (f(x, 
y) h(xy) ) = ∂/∂x (g(x, y) h(xy). So h ∂f/∂y + x f h' = h ∂g/∂x + y g h'. Hence h'/h = (∂f/∂y - ∂g/∂x) / (yg - xf). 

The lhs is a function of xy, so the rhs must be also. Equally if the rhs is a function of xy, then we can immediately 
integrate to get h(xy). Thus the required necessary and sufficient condition for the existence of an integrating factor 
is that (∂f/∂y - ∂g/∂x) / (yg - xf) should be a function of xy. 

Problem B2 
R is the reals. Find an example of functions f, g : R → R, which are differentiable, not identically zero, and satisfy 
(f/g)' = f '/g' . 

Solution 
Suppose we take f = gh. Then we require h' = h + g/g' h'. If we take g/g' = 2, then h' = -h. So this suggests f(x) = e-

x/2, g(x) = ex/2. Checking, we see that that works. 

Problem B3 
Show that ln(1 + 1/x) > 1/(1 + x) for x > 0. 

 



Solution 
We have the well-known ey > 1 + y for all y not equal to 1. [Prove, for example, by differentiating.] So ln(1 + y) < 
y. Put y = -1/(1 + x), so 1 + y = x/(1 + x). Hence 1/(1 + x) < - ln( x/(1+x) ) = ln(1 + 1/x). 

Problem B4 
Can we find four distinct concentric circles all touching an ellipse? 

Solution 
Answer: yes, we can find four such circles for any ellipse except the circle. 

We show first that we can find four such circles for any non-circular ellipse. Let the ellipse have centre O, major 
axis AB (length 2a) and minor axis CD (length 2b). Take a point P with OP < (a - b)/2. Then using the triangle 
inequality we have PA > OA - OP = (a + b)/2, PB > OB - OP = (a + b)/2. PC < OC + OP = (a + b)/2, PD < OD + 
OP = (a + b)/2. Put k = (a + b)/2. Then, if Q is a point on the ellipse, (PQ - k) is positive at A and B and negative at 
C and D. Hence there must be at least four points Q on the ellipse at which it is stationary and hence at which PQ is 
normal to the ellipse. There is a point A' near A which is a maximum and hence has PA' > k. Similarly, there is a 
point B' near B with PB' > k. There is a point C' near C with PC' < k and a point D' near D with PD' < k. Let us 
assume that P is in the quadrant AOC and not on either axis. The reflection D'' of D' in the line AB lies at or near C' 
and hence has PD'' >= PC' (which is known to be a minimum). Put P lies closer to D'' than to D'. Hence PC' < PD'. 
A similar argument shows that PB' > PA'. So we have PB' > PA' > k > PD' > PC'. Thus the circles centre P through 
A', B', C' and D' are all distinct and all touch the ellipse. 

Note that we cannot find 4 circles in the case when the ellipse is circular. For given a point P and a circle E centre 
O, a circle centre P can only touch E on the line OP, but that implies there can only be two such circles. 

Problem B5 
T is a torus, center O. The plane P contains O and touches T. Prove that P ∪ T is two circles. 

Solution 
We may take the torus to be ( √(x2 + y2) - a )2 + z2 = b2, where a > b. Viewed in the x-z plane the torus appears as 
two circles each radius b and centred at x = ±a, z = 0. The plane P appears as the line through the origin tangent to 
both circles and hence having equation c z = b x, where c = √(a2 - b2). P also contains the y-axis which is 
perpendicular to the line z = k x. Hence the equation of the plane P is z = k x. 

It is far from obvious that P meets T in two circles. If we draw the plane P we see that T contains the four points on 
the y-axis, y = ±a ± b, and also the points a distance c either side of the origin. The obvious way to put these onto 
two circles is to take circles radius c, centred at (x, y, z) = (0, ±b, 0). These can be written as (x, y, z) = (c cos t, ±b 
+ a sin t, b cos t). Hence √(x2 + y2) = a ± b sin t. So ( √(x2 + y2) - a )2 = b2sin2t and ( √(x2 + y2) - a )2 + z2 = b2sin2t + 
b2cos2t = b2. Thus these circles do indeed lie on the torus. 

We may write the equation of T as 2a √(x2 + y2) = x2 + y2 + z2+ c2. Hence 4a2(x2 + y2) = ( x2 + y2 + z2+ c2 )2. So 
(x2 + y2 + z2 - c2)2 = 4a2x2 + 4a2y2 - 4c2(x2 + y2 + z2) = 4b2x2 + 4b2y2 - 4c2z2. Hence (x2 + y2 + z2 - c2)2 - (2by)2 = 
4b2x2 - 4b2c2. So (x2 + (y + b)2 + z2 - a2)(x2 + (y - b)2 + z2 - a2) = 4(bx - cz)(bx + cz). 

So if a point lies on the plane P, which has equation bx - cz = 0 and on the torus T, then it also lies on one of the 
two spheres (x2 + (y + b)2 + z2 - a2) = 0 and (x2 + (y - b)2 + z2 - a2) = 0. But a plane always intersects a sphere in a 
circle (or not at all) so the intersection of P and T is at most two circles. We have already established that it 
contains two circles, so it cannot contain any other points. 

Problem B6 
The real polynomial p(x) ≡ x3 + ax2 + bx + c has three real roots α < β < γ. Show that √(a2 - 3b) < (γ - α) ≤ 2 √(a2/3 
- b). 

Solution 
a2 - 3b = (α+β+γ)2 - (αβ + βγ + γα) = (γ - α)2 - (γ - β)(β - α) < (γ - α)2. Hence √(a2 - 3b) < (γ - α). 

Also 4(a2 - 3b) - 3 (γ - α)2 = (γ - α)2 - 4(γ - β)(β - α) = ( (γ - β) + (β - α) )2 - 4(γ - β)(β - α) = ( (γ - β) - (β - α) )2 ≥ 0. 
Hence (γ - α) ≤ 2 √(a2/3 - b). 



Problem B7 
In 4-space let S be the 3-sphere radius r: w2 + x2 + y2 + z2 = r2. What is the 3-dimensional volume of S? What is the 
4-dimensional volume of its interior? 

Solution 
Answer: 2π2 r3, 1/2 π2r4. 

A hyperplane perpendicular to the x-axis will cut S in a sphere. If the hyperplane is at a distance k from the origin, 
then the radius of the sphere will be √(r2 - k2). So the 4-dimensional volume = ∫-r

r 4π/3 (r2 - x2)3/2 dx = 4π r4/3 ∫-1
1 (1 

- t2)3/2 dt. 

Let K = (1 - t2)3/2 dt. We find that A = t(1 - t2)3/2 differentiates to K - 3t2(1 - t2)1/2. B = t(1 - t2)1/2 differentiates to (1 - 
t2)1/2 - t2(1 - t2)-1/2. C = sin-1t differentiates to (1 - t2)-1/2. Hence B + C differentiates to 2(1 - t2)1/2, so 2A + 3(B + C) 
differentiates to 8K. So ∫-1

1 (1 - t2)3/2 dt = ( terms involving powers of (1 - t2)1/2 + 3/8 sin-1t )|-1
1 = 3 π /8. Hence the 4-

dimensional volume is π2 r4/2. 

The volume of the 3-dimensional surface is the derivative wrt r of the 4-dimensional volume (because the 4-
dimensional volume for r + δr is the 4-dimensional volume for r + the 3-dimensional volume of the bounding 
sphere times δr). Hence the 3-dimensional volume is 2 π2 r3 . 
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Problem A1 

p(x) is a polynomial with integral coefficients. The leading coefficient, the constant term, and p(1) are all odd. 
Show that p(x) has no rational roots. 

Solution 
Suppose there is a rational root p/q. Let p(x) = ∑0

narx
r. Then ∑arp

rqn-r = 0. So p divides a0 and hence is odd, and q 
divides an and must also be odd. But now ∑arp

rqn-r = ar = 1 (mod 2). Contradiction. 

Problem A2 
Show that the solutions of the differential equation (9 - x2) (y')2 = 9 - y2 are conics touching the sides of a square. 

Solution 
We have dy/dx = ± √(1 - (y/3)2) / √(1 - (x/3)2. Integrating, sin-1y/3 = ± sin-1x/3 + A, where A is a constant. Hence 
y/3 = sin A cos(±sin-1x/3) ± x/3 cos A = sin A √(1 - (x/3)2) ± x/3 cos A. So y = k (9 - x2) ± h x, where h2 + k2 = 1. 
So y2 ± 2hxy + x2 = 9(1 - h2). This is evidently a family of conics. Note that h is not restricted to being less than 1. 
By taking a suitable complex constant A we can get any value for h. But since negative values are possible, there is 
no benefit in retaining the ± sign. So we can write the family of conics simply as y2 + 2hxy + x2= 9(1 - h2). 

We might guess that the square is x = ±3, y = ±3. If we substitute x = 3 in the equation for the conic, we get y2 + 
6hy + 9 = 9 - 9 h2, or (y - 3h)2 = 0. This has a repeated root y = 3h, which shows that the line x = 3 touches the 
conic. Similarly for the other four sides of the square. 

Problem A3 
Let the roots of the cubic p(x) ≡ x3 + ax2 + bx + c be α, β, γ. Find all (a, b, c) so that p(α2) = p(β2) = p(γ2) = 0. 

Solution 
Answer: (0, 0, 0) roots 0, 0, 0 
(-1, 0, 0) roots 0, 0, 1 
(-2, 1, 0) roots 0, 1, 1 
(0, -1, 0) roots 0, 1, -1 
(1, 1, 0) roots 0, ω, ω2, where ω = e2i/3 
(-3, 3, -1) roots 1, 1, 1 
(-1, -1, 1) roots 1, 1, -1 
(1, -1, -1) roots 1, -1, -1 
(0, 0, -1), roots 1, ω, ω2 
(i, 1, -i), roots 1, -1, -i 
(-i, 1, i), roots 1, -1, i 
(1-ω, 1-ω, -ω, roots ω, ω, ω2 
(1-ω2, 1-ω2, -ω2), roots ω, ω2, ω2 
(1+ω, 1+ω, ω), roots ω, -ω, ω2 
(1+ω2, 1+ω2, ω2), roots ω, ω2, -ω2 
((1-i√7)/2, (-1-i√7)/2, -1), roots k, k2, k4, where k = e2iπ/7 
((1+i√7)/2, (-1+i√7)/2, -1), roots k3, k5, k6. 

p(x) = 0 has only three roots, so the squares must all be found in { α, β, γ }. Let α be the root with the largest 
modulus, then |α|2 > |α| unless |α| ≤ 1. Let γ be the root with the smallest non-zero modulus, then |γ|2 < |β| unless |γ| 
≥ 1. Hence all non-zero roots have modulus 1. 
All roots zero is possible and gives (a, b, c) = (0, 0, 0). 

Suppose β = γ = 0 and α is non-zero. Then α2 = α, so α = 1. This gives (a, b, c) = (-1, 0, 0). 

Suppose γ = 0, and α, b are non-zero. If α2 = α, then α = 1. Then β2 = 1 or β, so β = 1 or -1. This gives (a, b, c) = (-2, 
1, 0) or (0, -1, 0). If α2 is not α (and β2 not β), then we must have α4 = α, so α and β are ω and ω2, where ω = e2iπ/3. 
This gives (a, b, c) = (1, 1, 1). 



The remaining possibility is that all roots are non-zero (and have modulus 1). There might be 3, 2, 1 or 0 roots 
equal to 1. The first case gives (-3, 3, -1). In the second case the third root must satisfy γ2 = 1 or γ and hence must 
be -1, giving (a, b, c) = (-1, -1, 1). 

We consider the third case (just one root equal to 1). If both the roots not equal to 1 have square 1, then they must 
both be -1 and (a, b, c) = (1, -1, -1). If one has square 1 and one not. Then they must be -1 and ±i. This gives (a, b, 
c) = (i, 1, i) or (-i, 1, -i). If neither have square 1, then we must have β2 = γ, γ2 = β, hence β3 = 1 and β and γ are ω 
and ω2. 

The final case is that no roots are 1. If we have α2 = β and β2 = α, then α and β are ω and ω2 and γ2 = ω or ω2, so γ = 
±ω or ±ω2. So the roots are ω, ω, ω2 or ω, ω2, ω2 or ω, -ω, ω2 or ω, ω2, -ω2. This gives (a, b, c) = (1-ω, 1-ω, ω) or (1-
ω2, 1-ω2, ω2) or (1+ω, 1+ω, ω) or (1+ω2, 1+ω2, ω2). 

The final possibility is α2 = β, β2 = γ, γ2 = α. Hence α7 = 1. If we put k = ei2π/7, then the roots could be k, k2, k4 or k6, 
k5, k3. This corresponds to (a, b, c) = ((1-i√7)/2, (-1-i√7)/2, -1), ((1+i√7)/2, (-1+i√7)/2, -1). 

Problem A4 
A map represents the polar cap from latitudes -45o to 90o. The pole (latitude 90o) is at the center of the map and 
lines of latitude on the globe are represented as concentric circles with radii proportional to (90o - latitude). How 
are east-west distances exaggerated compared to north-south distances on the map at a latitude of -30o? 

Solution 
Answer: too high by a factor 4π/√27 = 2.42. 

Let the globe have radius R. Then the distance from the pole to the circle of latitude at -30 is 2πR/3. The 
circumference of the circle is 2πR (√3)/2. The ratio of circumference to distance is (√27)/2. On the map the 
corresponding ratio is 2π. Thus the map overstates by a factor 4π/√27. 

Problem A5 
ai are reals ≠ 1. Let bn = 1 - an. Show that a1 + a2b1 + a3b1b2 + a4b1b2b3 + ... + anb1b2 ... bn-1 = 1 - b1b2 ... bn. 

Solution 
Induction on n. Obvious for n = 1. Suppose true for n. Then a1 + a2b1 + a3b1b2 + a4b1b2b3 + ... + an+1b1b2 ... bn = 1 - 
b1b2 ... bn + an+1b1b2 ... bn = 1 - b1b2 ... bn(1 - an+1) = 1 - b1 ... bn+1, which is the result for n+1. 

Problem A6 
Prove that there are only finitely many cuboidal blocks with integer sides a x b x c, such that if the block is painted 
on the outside and then cut into unit cubes, exactly half the cubes have no face painted. 

Solution 
It is sufficient to show that abc = 2(a - 2)(b -2)(c - 2) has only finitely many solutions in integers c ≤ b ≤ a. If c ≤ 4, 
then c ≥ 2(c - 2), but ab > (a - 2)(b - 2), so there are no solutions. If c ≥ 10, then c/(c - 2) ≤ 10/8, so D ≤ 125/64 < 2, 
where for convenience we have written abc/( (a - 2)(b - 2)(c - 2) ) as D, so there are no solutions. Hence c = 5, 6, 7, 
8, or 9. 

If c = 5 and b ≥ 24, then D ≤ 5/3 (24/22)2 < 2, so there are no solutions. Now a/(a - 2) is strictly monotonic 
decreasing, so there is at most one solution for given b, c. Hence there are only finitely many solutions for c = 5. 

Similarly, for c = 6, we find that are only solutions for b < 16; for c = 7, we find b < 14; for c = 8, b < 12 and for c 
= 9, b < 12. Hence there are only finitely many solutions in each case. 

Problem A7 
Let O be the center of a circle C and P0 a point on the circle. Take points Pn on the circle such that angle PnOPn-1 = 
+1 for all integers n. Given that π is irrational, show that given any two distinct points P, Q on C, the (shorter) arc 
PQ contains a point Pn. 

  



Solution 
All the points must be distinct, for if we had Pn = Pm for n < m, then the integer m - n would be a multiple of 2π and 
hence π would be rational. 

Choose N so that the arc length PQ < 2πR/N, where R is the radius of the circle. Divide the circle into N equal arcs 
length 2πR/N. Then at least two of the points P1, P2, ... , PN+1 must lie in the same arc. Suppose the points are Pn and 
Pn+m (with m, n positive), so that PnPn+m is an arc of length less than 2πR/N. Hence the arcs Pn+mPn+2m, Pn+2mPn+3m ... 
have the same length. So for some k, Pn+km will lie in the arc PQ. 

Problem B1 
ABC is a triangle with, as usual, AB = c, CA = b. Find necessary and sufficient conditions for b2c2/(2bc cos A) = 
b2 + c2 - 2bc cos A. 

Solution 
Answer: BC = AB or CA. 

We have that a2 = b2 + c2 - 2bc cos A. So the condition implies that (b2 + c2 - a2)/(2bc) = cos A = bc/(2a2). Hence, 
b2c2 = a2(b2 + c2 - a2), so (a2 - b2)(a2 - c2) = 0. Hence a = b or c. 

Conversely, if a = b, then the altitude from C meets AB at its midpoint and so cos A = cos B = c/(2a) = bc/(2a2). 
Hence a2 = bc/(2 cos A), so (b2 + c2 - 2bc cos A) = b2c2/(2bc cos A). 

Problem B2 
Find the surface comprising the curves which satisfy dx/(yz) = dy/(zx) = dz/(xy) and which meet the circle x = 0, 
y2 + z2 = 1. 

Solution 
We have x dx = y dy = z dz. Integrating, y2 = x2 + h, z2 = x2 + k (*). We are told that some point of the circle x = 0, 
y2 + z2 = 1 belongs to the curve, so h and k must be non-negative with sum 1. Hence the curve (*) lies in the surface 
2 x2 + 1 = y2 + z2, which is a one-sheet hyperboloid with the x-axis as an axis of symmetry. However, not all points 
of this surface lie on a curve (*). Clearly we require |y| >= |x| and |z| ≥ |x|. Equally, it is clear that this is a sufficient 
condition for we can then find h, k to satisfy (*). 

Problem B3 
Let A(x) = be the matrix 
 

 0    a-x   b-x 

-a-x   0    c-x 

-b-x  -c-x   0 

 

For which (a, b, c) does det A(x) = 0 have a repeated root in x? 

Solution 
Multiplying out, we find that det A(x) = -2x3 + 2(bc - ac + ab)x. This has roots 0 and ±√(ab + bc - ac). This has a 
repeated root iff ac = ab + bc. 

Problem B4 
The solid S consists of a circular cylinder radius r, height h, with a hemispherical cap at one end. S is placed with 
the center of the cap on the table and the axis of the cylinder vertical. For some k, equilibrium is stable if r/h > k, 
unstable if r/h < k and neutral if r/h = k. Find k and show that if r/h = k, then the body is in equilibrium if any point 
of the cap is in contact with the table. 

Solution 
Let O be the centre of the base of the hemispherical cap. As the solid rolls, O is always a height r above the table. 
Consider a point P on the axis a distance d from O and inside the cap. If the solid is rolled to a position where the 
axis is at an angle θ to the vertical, then P ends up a vertical distance d cos θ below O, so its height has increased. 
Similarly, a point on the axis a distance d above O would end up a vertical distance d cos θ above O, so its height 



would decrease. So equilibrium will be stable, neutral or unstable according as the centre of mass is below, at or 
above O. 

We start by finding the position of the centre of mass of the cap. Take the x-axis along the axis with the origin at O. 
Assume the density is ρ. The moment about an axis perpendicular to the x-axis is ∫0

r π(r2 - x2)ρ x dx = π ρ r4/4. The 
centre of mass of the cylindrical portion of the solid is obviously a distance h/2 from O, so we require (π ρ r2h) h/2 
= π ρ r4/4 or r/h = √2 get get the centre of mass at O. Thus k = √2. 

If the centre of mass is at O, then the centre of mass is always at the same height above the table, so the solid is in 
equilibrium however far it is tilted from the vertical. 

Problem B5 
The sequence an is monotonic and ∑ an converges. Show that ∑ n(an - an+1) converges. 

Solution 
The sum of the first n terms is (a1 - a2) + 2(a2 - a3) + ... + n(an - an+1) = a1 + a2 + a3 + ... + an - n an+1. We are given 
that ∑ an converges, so it is sufficient to show that the sequence n an+1 converges to zero. 

But since ∑ an converges, |an+1 + an+2 + ... + a2n| is arbitrarily small for n sufficiently large. Since an is monotonic, 
this implies that n an+1 is arbitrarily small for n sufficiently large. 

Problem B6 
A, B, C are points of a fixed ellipse E. Show that the area of ABC is a maximum iff the centroid of ABC is at the 
center of E. 

Solution 
Take the ellipse as x2/a2 + y2b2 = 1. Take the three points as A (a cos u, b sin u), B (a cos v, b sin v), C (a cos w, b 
sin w). If the area is a maximum then the tangent at A must be parallel to BC (otherwise we could keep B and C 
fixed and move A to increase the altitude and hence the area). So we have - b/a cot u = (b sin v - b sin w)/(a cos v - 
a cos w) and hence cos(u - v) = cos(u - w). Similarly, cos(v - u) = cos(v - w). 

Hence 2u = v + w (mod 2π). Similarly 2v = u + w (mod 2π), so 3u = 3v (mod 2π). Hence u, v, w are (in some order 
and for some k) k, k + 2π/3, k - 2π/3. Hence the centroid is at x = a cos k + a cos(k+2π/3) + a cos(k-2π/3) = 0, y = b 
sin k + b sin(k+2π/3) + b sin(k-2π/3) = 0. 

Conversely, if the centroid of A, B, C is at the centre, then cos u + cos v + cos w = 0, sin u + sin v + sin w = 0. 
Hence cos(u - v) = cos u (- cos u - cos w) + sin u (- sin u - sin w) = -1 - cos(u - w). Hence cos(u - v) + cos(u - w) = -
1. Similarly, cos(v - u) + cos(v - w) = -1, hence cos(u - w) = cos(v - w). So cos w (cos u - cos v) = sin w (sin v - sin 
u), so -b/a cot w = (b sin v - b sin u)/(a cos v - a cos u), and hence the tangent at C is parallel to AB. Simiarly, the 
tangent at A is parallel to BC and the tangent at B is parallel to AC. Hence the area is a maximum. 

Problem B7 
Let R be the reals. Define an by a1 = α ∈ R, an+1 = cos an. Show that an converges to a limit independent of α. 

Solution 
|cos x| ≤ 1, so -1 ≤ a2 ≤ 1. Hence 0 < a3 < 1 and so 0 < an < 1 for n ≥ 3. 

cos x is strictly monotonic decreasing over the range 0 to 1, so if an < an+1 then an+2 < an+1. Now the gradient of cos x 
is greater than -1 throughout the interval (0, 1), so if an < an+1 then cos an - cos an+1 < an+1 - an. Hence an < an+2 < an+1. 
Similarly, if an > an+1, then an > an+2 > an+1. Thus either a2n is an increasing sequence bounded above and a2n+1 is a 
decreasing sequence bounded below or vice versa. Hence both a2n and a2n+1 converge. 

By the mean value theorem |an+1 - an+2| = |cos an - cos an+1| = sin k |an - an+1| for some k in (0, 1). But sin k < sin 1 < 
0.9. So a2n and a2n+1 must converge to the same limit. Suppose this limit is h. Then h = cos h. But cos x is strictly 
decreasing in (0, 1) and x is strictly increasing, so they have a single point of intersection in (0, 1). Thus h must be 
the unique point in (0, 1) at which h = cos h. 
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Problem A1 
Show that (2/3) n3/2 < ∑1

n √r < (2/3) n3/2 + (1/2) √n. 

Solution 
The gradient of √x is falling from x = 0 to x = n, so 2/3 n3/2 = ∫0

n √x dx < √1 + √2 + √3 + ... + √n. That gives the 
first inequality. 

To get the second, we note that the chords joining (r, √r) to (r+1, √(r+1) ) all lie under the curve, so if we subtract 
the area of the little triangles from ∑1

n √r then we get something less than the integral. The triangles have area 1/2 
√1 + 1/2 (√2 - √1) + 1/2 (√3 - √2) + ... + 1/2 (√n - √(n-1) ) = 1/2 √n. That gives the second inequality. 

Problem A2 
The complete graph with 6 points and 15 edges has each edge colored red or blue. Show that we can find 3 points 
such that the 3 edges joining them are the same color. 

Solution 
Take any point A. It has 5 edges, so at least 3 of them must be the same color. wlog it is red. So we have B, C, D 
with AB, AC, AD all red. Now if any of the three edges BC, CD, DB is red, then that gives us a red triangle. But if 
they are all blue, then BCD is a blue triangle. 

Problem A3 
a, b, c are real, and the sum of any two is greater than the third. Show that 2(a + b + c)(a2 + b2 + c2)/3 > a3 + b3 + 
c3 + abc. 

Solution 
wlog we may take a ≥ b ≥ c. c (and hence also a and b) must be positive. For if c ≤ 0, then a ≥ b + c. Contradiction. 

Multiplying out the required relation and cancelling, we must prove that 2(a2b + a2c + b2a + b2c + c2a + c2b) > a3 + 
b3 + c3 + 3abc. But we have a2(b + c) > a3, b2(c + a) > b3, c2(a + b) > c3. So it is sufficient to prove that a2b + a2c + 
b2a + b2c + c2a + c2b > 3abc. But a2b ≥ abc and ab2 ≥ abc. Also b2c + bc2 = bc(b + c) > abc. Similarly, ac(a + c) > 
abc. So we have in fact proved the slightly stronger result with abc replaced by 4abc/3. 

Problem A4 
Using sin x = 2 sin x/2 cos x/2 or otherwise, find ∫0

π/2 ln sin x dx. 

Solution 
Let I = ∫0

π/2 ln sin x dx. Making the suggested substitution, we get I = π/2 ln 2 + ∫0
π/2 ln sin x/2 cos x/2 dx. Putting y 

= x/2 we get ∫0
π/2 ln sin x/2 cos x/2 dx = 2 ∫0

π/4 ln sin y + ln cos y dy. But cos y = sin(π/2 - y), so ∫0
π/4 ln cos y dy = 

∫π/4
π/2 ln sin y dy. Hence I = π/2 ln 2 + 2I, so I = - π/2 ln 2. 

Problem A5 
S is a parabola with focus F and axis L. Three distinct normals to S pass through P. Show that the sum of the angles 
which these make with L less the angle which PF makes with L is a multiple of π. 

Solution 
We start by finding a formula for tan(A+B+C+D). Applying tan(A+B) = (tan A + tan B)/(1 - tan A tan B) twice and 
writing a = tan A, b = tan B, c = tan C, d = tand D, we get tan(A+B+C+D) = (∑a - ∑abc)/(1 - ∑ab + abcd). 

Take the parabola as y = x2. The gradient at (k, k2) is 2k, so the normal has slope -1/2k. The normal has equation 
2k3 + (1 - 2y)k - x = 0. For given x, y this is a cubic in k, so has 1 or real 3 roots. Their slopes satisfy the cubic 4x 
h3 + 2(1 - 2y) h2 + 1 = 0 (*). 

The focus is at (0, 1/4), so the line joining (x, y) has slope (y - 1/4)/x and negative is (1/4 - y)/x. The quartic with 
this root and the 3 roots of (*) is (h + (y - 1/4)/x )(4x h3 + 2(1 - 2y) h2 + 1) (**). So the angles the normals make 
with L less the angle which PF makes with L is a multiple of π iff (∑a = ∑abc), where a, b, c, d are the slopes of the 



four lines and hence iff the coefficients of h3 and h in (**) are the same. But the coefficient of h3 is 2(1 - 2y) + 4x (y 
- 1/4)/x = 1 and the coefficient of h is 1. 

Problem A6 
Show that √7, √(7 - √7), √(7 - √(7 + √7)), √(7 - √(7 + √(7 - √7))), ... converges and find its limit. 

Solution 
Answer: 2. 
Let xn be the nth number in the sequence. We have xn+2 = √(7 - √(7 + xn)). Hence if xn < 2, then xn+2 > 2, and if xn > 
2, then xn+2 < 2. So if the sequence converges, its limit must be 2. 

If xn = 2 + ε, with 0 < ε < 1, then 9 + ε < 9 + ε + ε2/36 = (3 + ε/6)2, so xn+2 > √(7 - (3 + ε/6)) = √(4 - ε/6). But 
certainly ε/6 < ε/3 - ε2/144, so √(4 - ε/6) > 2 - ε/12. Thus xn+2 differs from 2 by less than ε/12. Similarly, if xn = 2 - 
ε, with 0 < ε < 1, then 9 - ε > 9 - ε/2 + ε2/144 = (3 - ε/12)2, so xn+2 < √(4 + ε/12) < 2 + ε/48. 

So we have established that if |xn - 2| < 1, then |xn+2 - 2| < 1/12 |xn - 2|. But we certainly have |x1 - 2| < 1, and |x2 - 2| 
< 1, so xn converges to 2. 

Problem A7 
p(x) ≡ x3 + ax2 + bx + c has three positive real roots. Find a necessary and sufficient condition on a, b, c for the 
roots to be cos A, cos B, cos C for some triangle ABC. 

Solution 
If A + B + C = 180o, then cos A = - cos(B + C) = sin B sin C - cos B cos C. Squaring, we get cos2A + cos2B + 
cos2C + 2 cos A cos B cos C = 1. So a necessary condition is a2 - 2b - 2c = 1. 

Conversely, suppose that this condition holds. Then if the roots are p, q, r, we have p2 + q2 + r2 + 2pqr = 1 (*). We 
are given that the roots are all positive, so 2pqr > 0, hence p2 < 1 and so p < 1. Similarly for q and r. So we can find 
angles A, B, C greater than 0 and less than 90o such that p = cos A, q = cos B, r = cos C. Now we can rewrite (*) as 
(1 - cos2B)(1 - cos2C) = cos2A + 2 cos A cos B cos C + cos2B cos2C = (cos A + cos B cos C)2. But (1 - cos2B) = 
sin2B, (1 - cosC) = sin2C, so we have sin B sin C = ±(cos A + cos B cos C). But we know that A, B, C are between 
0 and 90o, so cos A, cos B, cos C, sin B, sin C are all positive. Hence we must use the + sign and we have cos A = 
sin B sin C - cos B cos C, so A + B + C = 180o. Hence the condition is also sufficient. 

Problem B1 
Does ∑1

∞ 1/n1 + 1/n converge? 

Solution 
Answer: no. 
x < ex for all x ≥ 0, so x1/x < e < 3. Hence 1/n1 + 1/n > 1/3n. But ∑ 1/n diverges. 

Problem B2 
p(x) is a real polynomial of degree n such that p(m) is integral for all integers m. Show that if k is a coefficient of 
p(x), then n! k is an integer. 

Solution 
Note that n! is best possible, because 1/n! x(x + 1) ... (x + n - 1) is always integral for integral x (it is the binomial 
coefficient (x+n-1)Cn ). 

We need a standard result from the calculus of differences. Let Δf(x) = f(x + 1) - f(x). Then p(x) = p(0) + Δ1x + 1/2! 
Δ2 x(x - 1) + 1/3! Δ3 x(x - 1)(x - 2) + ... + 1/n! Δn x(x - 1) ... (x - n + 1) (*), where Δm = Δmp(0) (thus Δ1 = p(1) - 
p(0), Δ2 = p(2) - 2p(1) + p(0) etc). 

Assume this is true. Then if p(x) is integral for all integral x, all the Δm must be integral. So the result above gives 
n! p(x) = an integral combination of integral polynomials. Hence all the coefficients of n! p(x) are integral. 

To prove the result, notice first that if f(x) = x(x - 1)(x - 2) ... (x - m + 1), then Δrf(0) = m! for r = m and 0 
otherwise. So if we call the rhs of (*) q(x) , then Δmq(0) is a sum of terms which are all zero except for Δm(1/m! 



Δm x(x - 1) ... (x - m + 1) )(0) = Δm. Hence Δmp(0) = Δmq(0) for m = 1, 2, ... , n. Also p(0) = q(0), so by a simple 
induction p(m) = q(m) for m = 0, 1, 2, ... , n. But q(x) is a polynomial of degree at most n. If polyomials of degree 
at most n agree at n+1 points, then they must be identical. Hence p(x) = q(x). 

Problem B3 
k is real. Solve the differential equations y' = z(y + z)k, z' = y(y + z)k subject to y(0) = 1, z(0) = 0. 

Solution 
Adding, (y + z)' = (y + z)k+1. Integrating (y + z)k = 1/(1 - kx) (1). 

Multiplying opposite sides of the two given equations together, we get yy'(y + z)k = zz' (y + z)k. Hence yy' = zz'. 
Integrating y2 - z2 = 1. Hence (y + z)k(y - z)k = 1, so (y - z)k = 1 - kx (2). 

For k non-zero, we can immediately solve (1) and (2) to get y = 1/2 ( (1 - kx)1/k + 1/(1 - kx)1/k ), z = 1/2 ( (1 - kx)1/k - 
1/(1 - kx)1/k ). 

For k = 0, the original equations simplify to y' = z, z'= y. So y'' = y. So y = A cosh x + B sinh x, z = A cosh x + B 
sinh x. Applying the initial conditions, y = cosh x, z = sinh x. 

Problem B4 
R is the reals. S is a surface in R3 containing the point (1, 1, 1) such that the tangent plane at any point P ∈ S cuts 
the axes at three points whose orthocenter is P. Find the equation of S. 

Solution 
Consider a plane cutting the axes at a = (a, 0, 0), b = (0, b, 0), c = (0, 0, c). If the orthocentre is at p = (x, y, z), then 
we have (p - a).(b - c) = (p - b).(a - c) = 0. But a.b = b.c = c.a = 0, so we have p.(b - c) = p.(a - c) = 0. In other 
words the line from the origin (0, 0, 0) to (x, y, z) is normal to the plane. So the surface satisfies the condition that 
all its normals pass through the origin and it passes through (1, 1, 1). This implies that it is the sphere x2 + y2 + z2 = 
3. 

Note, however, that for points with one coordinate zero, the tangent plane will meet one axis at infinity, so we 
should arguable exclude all such points. That divides the sphere into 8 disconnected pieces. The piece containing 
(1, 1, 1) is that in the positive octant (x > 0, y > 0, z > 0). 

Problem B5 
The coefficients of the complex polynomial z4 + az3 + bz2 + cz + d satisfy a2d = c2 ≠ 0. Show that the ratio of two 
of the roots equals the ratio of the other two. 

Solution 
We start with a straight slog. Let the roots be p, q, r, s. We have a2d - c2 = (p + q + r + s)2pqrs - (pqr + pqs + prs + 
qrs)2. The terms like 2p2q2rs all cancel, leaving p3qrs + pq3rs + pqr3s + pqrs3 - p2q2r2 - p2q2s2 - p2r2s2 - q2r2s2. 

The trick now is to factorise this. We might suspect that pq - rs is a factor. But in that case pr - qs and ps - qr would 
presumably also be factors. (pq - rs)(pr - qs)(ps - qr) has degree 6, as required. It also has the correct number of 
terms (8). So we try multiplying it out and find that it is the same. 

So (pq - rs)(pr - qs)(ps - qr) = 0. But that means that at least one factor must be zero, which gives the result. Note 
that the only reason for giving us that a2d is non-zero, is because that implies that none of the roots are zero (their 
product d is non-zero) and so having got pq = rs, we can divide to get p/r = s/q. 

Problem B6 
A and B are equidistant from O. Given k > OA, find the point P in the plane OAB such that OP = k and PA + PB is 
a minimum. 

Solution 
Let C be the circle centre O radius k. Take A' on the ray OA such that OA·OA' = k2 and B' on the ray OB such that 
OB·OB' = k2. If A'B' intersects the circle C, then the points of intersection give the positions where PA + PB is a 



minimum. If not then the nearest point of C to A'B' (which is on the perpendicular bisector of AB) gives the 
minimum. 

For given P on C, the triangles OAP and OPA' are similar, so PA = (AO/PO) PA'. Similarly, PB = (BO/PO) PB', so 
PA + PB = (AO/k) (PA' + PB'), so minimising PA + PB is equivalent to minimising PA' + PB'. If A'B' intersects C, 
then clearly the points of intersection minimise. If not, let Q be the point on C closest to A'B'. Let L be the tangent 
to the circle at that point (so that L is parallel to A'B'). Then QA + QB < RA + RB for other points R on L. Given 
another point P on C, take the perpendicular to L through P. If it intersects L at R, then PA + PB > RA + RB > QA 
+ QB. 

Problem B7 
Show that we can express any irrational number α ∈ (0, 1) uniquely in the form ∑1

∞ (-1)n+1 1/(a1a2 ... an), where 
ai is a strictly monotonic increasing sequence of positive integers. Find a1, a2, a3 for α = 1/√2. 

Solution 
Answer: a1 = 1, a2 = 3, a3 = 8. 

Let sn be the sum of the first n terms. The terms alternate in sign and decrease in absolute value, so the odd terms of 
the sequence sn decrease and the even terms increase. Every odd term exceeds every even term, so the odds and the 
evens must each converge. But sn - sn+1 < 1/2n which tends to zero, so they tend to a common limit. 

Choose an as follows. Take a1 to be the smallest integer whose inverse exceeds α. Having chosen a2n-1, take a2n to be 
the largest integer such that s2n < α. Having chosen a2n, take a2n+1 to be the largest integer such that s2n+1 > α. 

We have to show that these choices are always possible, or, in other words, that they yield a strictly increasing 
sequence an. This depends on the relation 1/k - 1/k(k+1) = 1/(k+1) (*). For suppose we have just chosen a2n-1. Then 
we know that s2n-1 > α, but that if increased a2n-1 by 1, then s2n-1 would be < α. Hence, using (*), taking a2n = a2n-1 + 1 
certainly gives s2n < α. On the other hand, if we take a2n to be sufficiently large, then s2n will be close to s2n-1 and 
hence exceed α (note that α is irrational so it cannot equal any sm). So the choice of a2n will exceed a2n-1. A similar 
argument shows that a2n+1 exceeds a2n. 

So we have established that we can find a sequence an such that all the odd partial sums sn exceed α and all the even 
partial sums are less than α. But we have also established that sn tends to a limit, so that limit must be α. That 
establishes existence. 

Suppose there is another expansion so that α = 1/a1 - 1/a1a2 + ... = 1/b1 - 1/b1b2 + ... . As above, we have that 1/(a1 + 
1) < α < 1/a1 and also 1/(b1 + 1) < α < 1/b1. But since a1 and b1 are both integers that implies that a1 = b1. Suppose 
now that we have established that ai = bi for i ≤ n. Then we have that β = (-1)n a1 ... an(α - 1/a1 + 1/a1a2 - ... + (-
1)n/a1...an ) = 1/an+1 - 1/an+1an+2 + ... . But we also have β = 1/bn+1 - 1/bn+1bn+2 + ... . We now argue as before that β 
lies between 1/(an+1 + 1) and 1/an+1 and also between 1/(bn+1 + 1) and 1/bn+1. Hence an+1 = bn+1. That establishes 
uniqueness. 

Finally, consider α = 1/√2. We have 1/2 < 1/√2 < 1, so a1 = 1. We must pick a2 as the largest integer so that 1 - 
1/a2 < 1/√2, or a2 < 2 + √2 = 3.4. So a2 = 3. We must pick a3 as the largest integer so that 1 - 1/3 + 1/3a3 > 1/√2 or 2 
+ 1/x > 3/√2 or x < 3√2 + 4 = 8.2. So a3 = 8. 



14th Putnam 1954 

Problem A1 
Let N be the set {1, 2, ... , n}, where n is an odd integer. Let f : N x N → N satisfy: (1) f(r, s) = f(s, r) for all r, s; (2) 
{f(r, s) : s ∈ N} = N for each r. Show that {f(r, r) : r ∈ N} = N. 

Solution 
We have a square array of numbers aij = f(i, j). Each member of N occurs just once in each row (by (2) ), so it 
occurs n times in all. But the array is symmetric (by (1) ), so each member occurs an even number of times off the 
main diagonal. Hence it must occur an odd number of times, and hence at least once, on the main diagonal. But the 
main diagonal only has n entries, so if each of n numbers occurs at least once, then each must occur exactly once. 

Problem A2 
Given any five points in the interior of a square side 1, show that two of the points are a distance apart less than k = 
1/√2. Is this result true for a smaller k? 

Solution 
Let the square be ABCD and O its midpoint. Let the midpoints of AB, BC, CD, DA be P, Q, R, S respectively. 
Then ABCD is the union of the 4 smaller squares: APOS, BQOP, CROQ, DSOR, each with diameter k. At least 
one of the smaller squares must contain two points. So the two points are a distance apart ≤ k. However, they 
cannot be a distance k apart, because the only pairs of points in a square realizing the diameter distance are 
opposite corners and they are not in the interior of ABCD. Hence the two points are a distance < k. 
Take one point at O and the others on the main diagonals a distance ε from the corners. Then shortest distance 
between two points is k - ε which can be made arbitarily close to k. 

Problem A3 
Let S be the set of all curves satisfying y' + a(x) y = b(x), where a(x) and b(x) are never zero. Show that if C ∈ S, 
then the tangent at the point x = k on C passes through a point Pk which is independent of C. 

Solution 
Let Ch be the curve with y(k) = h. Then the gradient of Ch at (k, h) is b(k) - a(k) h, so the tangent at (k, h) is (y - h) 
= (b(k) - a(k) h)(x - k). This may be written as (a(k) x - a(k) k - 1) h = (b(k) (x - k) - y). Evidently, this always 
passes through the point (k + 1/a(k), b(k)/a(k) ) whatever the value of h. 

Problem A4 
A uniform rod length 2a is suspended in midair with one end resting against a smooth vertical wall at X and the 
other end attached by a string length 2b to a point on the wall above X. For what angles between the rod and the 
string is equilibrium possible? 

Solution 
Answer: always 0; additionally, if b > a > b/2, cos-1((b2 + 2 a2)/(3ab)). 

Let the other end of the rod be Y. Let the string be ZY (with Z on the wall) and M its midpoint. The line along 
which the rod's weight acts passes through the midpoint of the rod and hence also through M. So a necessary 
condition for equilibrium is that the normal force at X also passes through M, in other words that MX is normal to 
the wall. 
By the cosine rule: MX2 = b2 + 4a2 - 4ab cos θ (where θ = angle XYZ). Similarly, XZ2 = 4b2 + 4a2 - 8ab cos θ. But 
MX2 + XZ2 = b2, so solving, cos θ = (b2 + 2a2)/(3ab) (*). 
Hence this is also a sufficient condition for equilibrium, because the geometry is now fixed. So we can solve for the 
tension in terms of the weight (resolving vertically) and then for the normal force (resolving horizontally). Hence 
the three forces have vector sum zero and the rod is in equilibrium. 
Returning to (*), we know that 0 < a < b. Put x = a/b, then cos θ = (1 + 2x2)/(3x). But it is easy to see that for (1 + 
2x2)/(3x) < 1, we require x > 1/2. 

Problem A5 
R is the reals. f : (0, 1) → R satisfies limx→0 f(x) = 0, and f(x) - f(x/2) = o(x) as x→0. Show that f(x) = o(x) as x→0. 



Solution 
We wish to show that given δ > 0, |f(x)| < x δ for sufficiently small x. Certainly we can find ε > 0, such that for x < 
ε, |f(x/2r) - f(x/2r+1)| < x/2r+2 δ. Summing, |f(x)| < x δ (1/4 + 1/8 + ... ) + |f(x/2n)| = x δ/2 + |f(x/2n)|. But since f(x/2n) 
tends to zero, for any given x we can take n sufficiently large that |f(x/2n)| < x δ/2 and hence |f(x)| < x δ as required. 

Problem A6 
The real sequence an satisfies an = ∑n+1

∞ ak
2. Show ∑ an does not converge unless all an are zero. 

Solution 
Clearly an ≥ 0. If any an = 0, then all subsequent ai must be zero, and, by a trivial induction, all previous ai. So 
assume no an = 0. 
Notice that an+1 = an

2 + an. But we have just shown that an
2 > 0, so an+1 > an. 

If the sum converges, then we can take n sufficiently large that an+1 + an+2 + an+3 + ... < 1. Then an = an+1
2 + an+2

2 + 
an+3

2 + ... < an(an+1 + an+2 + an+3 + ... ) < an. Contradiction. So the sum does not converge. 

Problem A7 
Prove that the equation m2 + 3mn - 2n2 = 122 has no integral solutions. 

Solution 
If m, n is a solution, then 4m2 + 12mn - 8n2 = 488, so (2m + 3n)2 - 17n2 = 488, so (2m + 3n)2 = 12 (mod 17). But 12 
is not a quadratic residue of 17 [check: 02, 12, 22, 32, 42, 52, 62, 72, 82 = 0, 1, 4, 9, 16, 8, 2, 15, 13 (mod 17)]. 

Problem B1 
Show that for any positive integer r, we can find integers m, n such that m2 - n2 = r3. 

Solution 
We notice that m2 - n2 = (m + n)(m - n). This suggests taking m + n = r2, m - n = r. This works: m = r(r + 1)/2, n = 
r(r - 1)/2. 

Problem B2 
Let an = ∑1

n (-1)i+1/i. Assume that limn→∞ an = k. Rearrange the terms by taking two positive terms, then one 
negative term, then another two positive terms, then another negative term and so on. Let bn be the sum of the first 
n terms of the rearranged series. Assume that limn→∞ bn = h. Show that b3n = a4n + a2n/2, and hence that h ≠ k. 

Solution 
If we simply write out a4n = (1 - 1/2 + 1/3 - 1/4 + ... - 1/4n) and a2n/2 = (1/2 - 1/4 + 1/6 - 1/8 + ... - 1/4n) and add 
term by term we find that a4n + a2n/2 = b3n. 
Taking the limit, we have immediately that h = 3k/2. But clearly k > 0, since if we group the terms in pairs, each 
pair is positive. Hence h ≠ k. 

Problem B3 
Let S be a finite collection of closed intervals on the real line such that any two have a point in common. Prove that 
the intersection of all the intervals is non-empty. 

Solution 
Let [A, B] be the interval with the largest left-hand endpoint, and let [a, b] be the interval with the smallest right-
hand endpoint. Then since [A, B] and [a, b] overlap, we must have A ≤ b, so [A, b] is non-empty. 

Now given any interval [x, y] in S, we have x ≤ A and y ≥ b, so [A, b] ⊆ [x, y]. 

Problem B4 
Let F be a point, and L and D lines, in the plane. Show how to construct the point of intersection (if any) between L 
and the parabola with focus F and directrix D. 

Solution 
If L and D are parallel and a distance d apart, then take the circle center F radius d. If it meets L, then the point(s) 
of intersection are the required points. If it does not, then there are none. 



So assume L and D meet at O. If F lies on D, then the (degenerate) parabola is the line through F perpendicular to 
D. If it meets L, then the point of intersection is the required point. So assume F does not lie on D. 

If L and D are perpendicular, then there is just one point. Take any point P (except O) on L and let the circle center 
P radius PO cut the line OF again at Q. Let the line through F parallel to PQ cut L at G. Then G is the required 
point (because an expansion center O takes the circle center P radius PO into a circle center G radius GO = GF). 

So assume L and D are neither perpendicular nor parallel and meet at O. Take D' through O making the same angle 
with L as D. D and D' divide the plane into 4 sectors. If F lies in one of the two sectors containing L, then the 
required points exist. There are two required points unless F lies on D', when there is just one. [Any circle with 
center on L, touching D, must lie entirely within these two sectors, and hence F must also if the points exist.] 

Take any point P on L (except O) and draw a circle center P touching D. Let the circle meet the line OF at Q. Let 
the line through F parallel to PQ cut L at G. Then G is the required point. If F does not lie on D', then there will be 
two possibilities for Q and hence two possibilities for G. 

Problem B5 
Let R be the reals. Let f : (-1, 1) → R be a function with a derivative at 0. Let an be a sequence in (-1, 0) tending to 
zero and bn a sequence in (0, 1) tending to zero. Show that limn→∞ (f(bn) - f(an)/(bn - an) = f '(0). 

Solution 
From the definition of derivative, we have that ( f(bn) - f(0) )/bn → f '(0), and ( f(0) - f(an) )/-an → f '(0). So f(bn) - 
f(0) lies within ε/2 of bnf '(0) for sufficiently large n, and f(0) - f(an) lies within ε/2 of -anf '(0) for sufficiently large 
n. Hence, adding, f(bn) - f(an) lies within ε of (bn - an)f '(0) for sufficiently large n, which is what we need. 

Problem B6 
If x is a positive rational, show that we can find distinct positive integers a1, a2, ... , an such that x = ∑ 1/ai. 

Solution 
Rather surprisingly, the simplest possible algorithm - the greedy algorithm - works: take an to be the smallest 
integer not already chosen so that the sum does not exceed x. This terminates after a finite number of steps. 

Note that the numbers involved can be quite large even in simple cases. For example: 4 = 1/1 + 1/2 + 1/3 + ... + 
1/30 + 1/200 + 1/77706 + 1/16532869712 + 1/3230579689970657935732 + 
1/36802906522516375115639735990520502954652700 

The key idea is that the numerator of the difference gets smaller each time and hence the process must terminate. 

First, we have to get the difference under 1. So take m such that 1 + 1/2 + ... + 1/m ≤ x < 1 + 1/2 + ... + 1/(m+1). 
This is possible since the harmonic series diverges. If we have equality, then we are home. If not then the 
difference x - (1 + 1/2 + ... + 1/m) < 1/(m+1). 

Let the difference x - (1/a1 + 1/a2 + ... + 1/an) be dn = rn/sn (where rn and sn are integers). 
So we may assume that we have picked a1, ... , an and that dn < 1/(an + 1). We now take an+1 so that 1/an+1 ≤ dn < 
1/(an+1 - 1). Now dn+1 = dn - 1/an+1 = (rnan+1 - sn)/(snan+1). This expression may not be in lowest terms, but it is 
certainly sufficient to show that (rnan+1 - sn) < rn or dnan+1 - 1 < dn. But that is true since dn(an+1 - 1) < 1. Finally, we 
notice that dn+1 < 1/(an+1 + 1) is equivalent to dn - 1/an+1 < 1/(an+1 + 1), which is true since 1/(an+1 - 1) - 1/an+1 < 
1/(an+1 + 1), since an+1 > 1. 

Problem B7 
Let α be a positive real. Let an = 1

n (α/n + i/n)n. Show that lim an ∈ (eα, eα+1). 

Solution 
The largest term is (1 + α/n)n which tends to eα. The next largest is (1 + (α - 1)/n)n which tends to eα - 1 and so on. 
All terms are positive, so the limit is at least eα + eα - 1 > eα. Also the limit is at most eα(1 + 1/e + 1/e2 + ... ) < eα(1 + 
1/2 + 1/4 + ... ) = 2eα < eα + 1. 



15th Putnam 1955 

Problem A1 
Prove that if a, b, c are integers and a√2 + b√3 + c = 0, then a = b = c = 0. 

 

Solution 

√3 is irrational. For if not, let √3 = r/s with r and s having no common factor. But now 3s2 = r2, so 3 divides r2 and 
hence r. Hence 3 divides s2 and hence s. So r and s have a common factor 3. Contradiction. Similarly √2 is 
irrational. 

If a√2 + b√3 + c = 0, then 2a2 - 3b2 - c2 = 2bc √3. But √3 is irrational, so b or c = 0. If b = 0, then a √2 + c = 0. But 
√2 is irrational, so a = c = 0 also. 

Hence c = 0. So a √2 + b √3 = 0. We may take a and b to be relatively prime (divide out any common factor). 
Squaring: 2a2 = 3b2. 

Problem A2 
O is the center of a regular n-gon P1P2 ... Pn and X is a point outside the n-gon on the line OP1. Show that 
XP1 XP2 ... XPn + OP1

n = OXn. 

Solution 
Evidently it is sufficient to prove the result for the case OP1 = 1. So represent Pk by the complex number ωk, where 
ω = ei 2π/n an nth root of unity. Represent X by the real number r. Then we have to show that |r - 1||r - ω| ... |r - ωn-1| = 
rn - 1, but that follows immediately because rn - 1 = (r - 1)(r - ω) ... (r - ωn-1). 

Problem A3 
an is a sequence of monotonically decreasing positive terms such that ∑ an converges. S is the set of all ∑ bn, where 
bn is a subsequence of an. Show that S is an interval iff an-1 ≤ ∑n

∞ ai for all n. 

 Solution 
The condition is certainly necessary. For suppose an-1 = k2 > k3 = ∑n

∞ ai. Let k1 = ∑1
n-2 ai. Then k1 and k1 + 

k2 belong to S, but no number in the non-empty interval (k1 + k3, k1 + k2) belongs to S, so S cannot be an interval. 

Now assume that the condition holds. Let k = ∑an. We show that S = [0, k]. We get the endpoints by taking the 
subsequence to be the empty set or the whole sequence. So take h ∈ (0, k). Define bn to be the earliest member of 
the sequence not so far chosen such that ∑1

n bi ≤ h. This is clearly possible since am → 0. If at any point we get 
equality we are home. 

So assume that the resulting {bn} is infinite. Clearly ∑ bn ≤ h. If {bn} is missing infinitely many members of {an}, 
then given any ε > 0, we can find am < ε missing from the subsequence. But that means that for some n, we rejected 
am because b1 + b2 + ... + bn + am > h. So ∑ bi ≥ b1 + b2 + ... + bn > h - ε. Hence ∑ bi = h. 

It remains to consider the case where only finitely many members are missing from the subsequence. Let am be the 
largest such. Then for some n we have that b1 + b2 + ... + bn + am > h. We also have that b1 + b2 + ... + bn + 
∑m+1

∞ ai ≤ h. But am ≤ ∑m+1
∞ ai. So we have a contradiction and this case cannot occur. 

Problem A4 
n vertices are taken on a circle and all possible chords are drawn. No three chords are concurrent (except at a 
vertex). How many points of intersection are there (excluding vertices)? 

Solution 
Answer: nC4. 



Every 4 vertices correspond to a unique point of intersection (the intersection of the two diagonals defined by the 4 
points). 

[Actually, I got this the hard way. Take one of the vertices. Consider the diagonals from it. The diagonal to the next 
vertex but one has one vertex on one side and (n - 3) on the other. So it has 1(n - 3) points of intersection on it. The 
next diagonal has 2(n - 4) and so on up to (n - 3)1. We repeat for each vertex. That gives a total of n[1(n - 3) + 2(n - 
4) + ... + (n - 3)1] points of intersection. But we count each diagonal twice and then each point of intersection 
twice. So the number of points of intersection is n/4 ∑1

n-3 r(n - 2 - r) = n/4 [ (n - 2) 1/2 (n - 3)(n - 2) - 1/6 (n - 3)(n - 
2)(2n - 5) ] = 1/24 n(n - 2)(n - 3) [3(n - 2) - (2n - 5)] = nC4. 
Of course, at this point, one wonders why the answer has such a nice form!] 

Problem A5 
Given a parabola, construct the focus (with ruler and compass). 

Solution 
You need to know two facts: 
(1) Rays from infinity come to a focus at the focus. In other words, if a line L parallel to the axis of the parabola 
meets it at X and the focus is F, then L and XF are equally inclined to the normal at X; 
(2) The line joining the midpoints of two parallel chords is parallel to the axis. 

The construction is then fairly obvious. Take two parallel chords. Join their midpoints and extend to meet the 
parabola at X. Take a line M through X parallel to the chords. Then M is a tangent. The line perpendicular to M 
through X is the normal. Hence find the line XF (although not yet F). Repeat for another pair of parallel chords. 
The two lines interesect at F. 

Problem A6 
For what positive integers n does the polynomial p(x) ≡ xn + (2 + x)n + (2 - x)n have a rational root. 

Solution 
Answer: n = 1. 

There are no roots at all if n is even. If n = 1, then -4 is the root. So suppose n is odd and at least 3. 
We can use a similar argument to that showing that √2 is irrational. Suppose x = r/s with r and s having no common 
factor is a root. Then rn + (2s + r)n + (2s - r)n = 0. The last two terms expand and add to give terms with even 
coefficients, so r must be even. So set r = 2t and we have tn + (s + t)n + (s - t)n = 0. The same argument shows that t 
must be even. But now we have tn + 2(sn + nC2 sn-2 t2 + ... ) = 0. Since n ≥ 3, s must be even also. Contradiction. So 
there are no rational roots for n odd ≥ 3. 

Problem A7 
k is a real constant. y satisfies y'' = (x3 + kx) y with initial conditions y = 1, y' = 0 at x = 0. Show that the solutions 
of y = 0 are bounded above but not below. 

Solution 
For some x0, x

3 + kx > 0 for all x > x0. [For example, if k ≥ 0, then we may take x0 = 0. If k < 0, then we may take 
x0 = -k.] Now suppose that a < b are two consecutive zeros greater than x0. If y(x) > 0 on (a, b), then y'' must be 
negative for at least part of the interval (a, b), but that is impossible, since (x3 + kx) y > 0 for the whole interval. 
Similarly, if y(x) < 0 on (a, b), then y'' must be positive for at least part of the interval (a, b), but that is impossible, 
since (x3 + kx) y < 0 for the whole interval. So there is at most one root greater than x0 and that provides a bound. 
[For completeness, we note that we require y not to be identically zero on a non-zero interval, but that is not 
possible because y(0) is non-zero.] 

Suppose the second part is false. Then we can find x2 such that for any x < x2, y(x) is non-zero. There are two 
cases. Suppose first that y(x) > 0 for all x < x2. We can take x3 < x2 such that x3 + kx < -2 for all x < x3. Hence, in 
particular, y''(x) < 0 for x < x3. Take arbitary a < b < x3, then as usual we can find ξ ∈ (a, b) such that y(a) = y(b) - 
(b - a) y'(b) + 1/2 (b - a)2 y''(ξ) < y(b) - (b - a) y'(b). If y'(b) > 0, then for (b - a) sufficiently large y(a) < 0 
(contradiction). So y'(b) ≥ 0. So y(a) ≤ y(b) + 1/2 (b - a)2 y''(ξ). But now we use the stronger assumption that ξ3 + kξ 
< -2 and hence y(a) < y(b)( 1 - (b - a)2), which becomes negative for sufficiently large (b - a). Contradiction. 



The remaining case is y(x) < 0 and y''(x) > -2 y(x) for all x < x3. In particular, y''(x) > 0 for x < x3. So arguing as 
before, y'(b) ≤ 0. As before y(a) ≥ -y(b) ( (b - a)2 - 1), which becomes positive for sufficiently large (b - a). 
Contradiction. 

Problem B1 
The lines L and M are horizontal and intersect at O. A sphere rolls along supported by L and M. What is the locus 
of its center? 

Solution 
Let the angle between the two lines be 2θ. Evidently the center rolls above the angle bisector. Let its projection 
onto the angle bisector have length x and let it be a height y above the angle bisector. Suppose the sphere has radius 
r. Then (x sin θ)2 + y2 = r2. So the locus is an ellipse with semi-axes r and r/sin θ. 

If we assume the rolling is under gravity, then the sphere falls off when it reaches x = r/sin θ, so the locus is just the 
upper half of the ellipse. If we assume the sphere is somehow kept in contact with the lines, then it can roll back 
underneath and so the locus is the whole ellipse. That is the ambiguity. 

The trap is that it can also roll the other way, over the other angle bisector, giving another ellipse (or upper half) 
with semi-axes r and r/cos θ. 

Problem B2 
Let R be the reals. f : R → R is twice differentiable, f '' is continuous and f(0) = 0. Define g : R → R by g(x) = 
f(x)/x for x ≠ 0, g(0) = f '(0). Show that g is differentiable and that g' is continuous. 

Solution 
The only issue is x = 0, because elsewhere we have simply g'(x) = f '(x)/x - f(x)/x2. 

Given x, we can find ξ such that f(x) = f(0) + x f '(0) + 1/2 x2 f ''(ξ) = x f '(0) + 1/2 x2 f ''(ξ). Hence limx→0 (g(x) - f 
'(0) )/x = limx→0 1/2 f ''(ξ) = 1/2 f ''(0). So g'(0) exists. 

Now limx→0 g'(x) = limx→0 (x f '(x) - f(x))/x2. But f '(x) = f '(0) + x f ''(ζ), and f(x) = x f '(0) + 1/2 x2 f ''(ξ) with ξ, ζ 
∈ (0, x). So limx→0 g'(x) = limx→0 f ''(ζ) - 1/2 f ''(ξ) = 1/2 f ''(0) = g'(0). So g' is continuous at 0. 

Problem B3 
Let S be a spherical cap with distance taken along great circles. Show that we cannot find a distance preserving 
map from S to the plane. 

Solution 
Let O be the center of the cap and C its perimeter. Then C is a circle center O. Its image must also be a circle with 
the same radius R, since the distance between each point of C and O is preserved. The circumference of the circle is 
also preserved. But the circumference is not equal to 2π R. 

Problem B4 
Can we find n such that μ(n) = μ(n + 1) = ... = μ(n + 1000000) = 0? [The Möbius function μ(r) = 0 iff r has a square 
factor > 1.] 

Solution 
Answer: yes. 

Let pn be the nth prime. We show how to find an such that p1
2 divides an, p2

2 divides an + 1, p3
2 divides an + 2, ... , 

pn
2 divides an + n - 1. 

Evidently we can take a1 = 4. We now use induction. an + k p1
2 ... pn

2 has the same property as an. So we need to 
pick k such that an + k p1

2 ... pn
2 = 0 (mod pn+1

2). But that is always possible (by Euclid's algorithm, for example) 
since pn+1

2 is relatively prime to p1
2 ... pn

2. 

  



Problem B5 
n is a positive integer. An infinite sequence of 0s and 1s is such that it only contains n different blocks of n 
consecutive terms. Show that it is eventually periodic. 

Solution 
We use induction on n. It is obvious for n = 1. Suppose it is true for n. Let S be a sequence with just n + 1 different 
(n+1)-blocks. Consider the n-blocks formed by taking the first n elements of each (n+1)-block. These evidently 
form all the possible n-blocks in S. So if there are at most n of them, then we are home by induction. 

But if there are n + 1 of them (all distinct), then the first n elements of each (n+1)-block determine the last element. 
So an n-block determines the entire sequence from that point on (because having fixed the (n + 1)th element, we 
move the n-block along one place and hence fix the (n + 2)nd element and so on). But there are only finitely many 
possible n-blocks, so there are two the same (in S). That gives a period, since the elements r places after the start of 
each block must be the same. 

Note that the result is the best possible in the sense that we can construct a non-periodic sequence with just n + 1 
different n-blocks. Take, for example, the n-blocks to be those with no or just one 1. Then if we take 1 followed by 
n + 1 zeros, followed by a 1, followed by n + 2 zeros, followed by a 1, followed by n + 3 zeros and so on, we have 
a non-periodic sequence involving only those n + 1 n-blocks. 

Problem B6 
Let N be the set of positive integers and R+ the positive reals. f : N → R+ satisfies f(n) → 0 as n → ∞. Show that 
there are only finitely many solutions to f(a) + f(b) + f(c) = 1. 

Solution 
We show first that there are only finitely many solutions to f(a) + f(b) = k (> 0). Take a to be < b. Since f(n) → 0 
we can find N such that f(n) < k/2 for n > N. So a must be ≤ N. Now for each such a0, we can find M such that f(n) 
< k - f(a0) for n ≥ M, so there are only finitely many b such that f(a0) + f(b) = k. Hence there are only finitely many 
solutions to f(a) + f(b) = k. 

Now consider f(a) + f(b) + f(c) = 1. We can find N such that f(n) < 1/3 for n > N. So at least one of a, b, c must be ≤ 
N. But for each such a we then have only finitely many solutions to f(b) + f(c) = 1 - f(a). Hence there are only 
finitely many solutions in total. 

Problem B7 
A three-dimensional solid acted on by four constant forces is in equilibrium. No two lines of force are in the same 
plane. Show that the four lines of force are rulings on a hyperboloid. 

Solution 
Let the lines be L1, L2, L3, L4. If the line L intersects each of L1, L2, L3, then the moment of the first three forces 
about L is zero. Hence the moment of the fourth force about L is also zero and so L must also intersect L4. This is 
sufficient to prove that L1, L2, L3, L4 lie in a ruled quadric. 

In fact the union of all the lines which intersect L1, L2, L3 is a ruled quadric. Let P be a point on L4. For a point X 
and a line L not containing it we take XL to be the unique plane containing X and L. If L and L' are skew lines and 
X does not lie on either, then XL ∩ XL' is the unique line through X which meets L and L'. So PL1 ∩ PL2 is the 
unique line through P which meets L1 and L2. Suppose it meets L1 at Q. Now QL2 ∩ QL3 meets L1, L2 and L3 so it 
must also meet L4. But there is a unique line through Q meeting L2 and L4, so QL2 ∩ QL3 = PL1 ∩ PL2. Hence P 
lies on the line QL2 ∩ QL3 which is a line of the quadric. P was arbitrary, so we have shown that L4 lies in the 
quadric. 

  



16th Putnam 1956 

Problem A1 
α ≠ 1 is a positive real. Find limx→∞ ( (αx - 1)/(αx - x) )1/x. 

Solution 
limx→∞ (1/x)1/x = limy→0 y

y = 1. If α > 1, then lim 1/(α - 1)1/x = 1, and lim (αx - 1)1/x = lim (αx)1/x = α, so the whole 
expression tends to α. If α < 1, then (αx - 1)/(α - 1) tends to 1/(1 - α), so the whole expression tends to 1. 

Problem A2 
Given any positive integer n, show that we can find a positive integer m such that mn uses all ten digits when 
written in the usual base 10. 

Solution 
Let n have d digits. Take N = 12345678900 ... 0, ending in d+1 digits. One of N+1, N+2, ... , N+n must be a 
multiple of n and its first 10 digits are all different. 

Problem A3 
Find the trajectory of a particle which moves from rest in a vertical plane under (constant) gravity and a force 
kv perpendicular to its velocity v. 

Solution 
Take the x-axis horizontal and the y-axis vertically downwards. Then the equations of motion are: y'' = g - kx', x'' = 
ky'. If k = 0, then we have the usual constant acceleration downwards (x = 0, y = 1/2 gt2). So suppose k ≠ 0. 

By inspection, x = A (cos kt - 1) + B (sin kt - kt) (we have chosen the terms - A and -kBt to give x(0) = x'(0) = 0). 
Hence (integrating x'' = ky') we have y = - A sin kt + B(cos kt - 1). But y'(0) = 0, so A = 0. Finally, to satisfy y'' = g 
- kx', we B = -g/k2. So x = gt/k - g/k2 sin kt, y = g/k2 (1 - cos kt). This is the equation of a cycloid. Note that the 
particle is never able to fall more than a finite distance, it keeps being returned to its starting level. 

Problem A4 
Let p(x) be a real polynomial of degree n with leading coefficient 1 and all roots real. Let R be the reals and f : [a, 
b] → R be an n times differentiable function with at least n + 1 distinct zeros. Show that p(D) f(x) has at least one 
zero on [a, b], where D denotes d/dx. 

Solution 
The basic tool is Rolle's theorem which tells us that there is a zero of f '(x) between any two zeros of f(x). But we 
would like a zero of (D - α)f between any two zeros of f. For that, notice that the zeros of f(x) are also zeros of e-α 

x f(x). So if f(x) has n + 1 zeros, then the derivative of e-α x f(x) has at least n zeros. But the dervative of e-α x f(x) is 
e-α x times (D - α) f(x). e-α x is never zero, so (D - α) f(x) has at least n zeros. 

That (more than) proves the result for p(x) of degree 1. We now use induction on n, the degree of p(x). Suppose it 
is true for n. Let p(x) be a real polynomial with real roots and degree n + 1. Then p(x) = q(x) (x - α) for some α and 
q(x) of degree n. Let f be an n+1 times differentiable real function on [a, b] with at least n + 2 distinct zeros. Then 
we proved above that (D - α) f(x) has at least n + 1 distinct zeros. It is also at least n times differentiable. So, by the 
inductive hypothesis, q(D) (D - α) f(x) has at least one zero, which proves the result is true for n + 1. 

Problem A5 
Show that there are just (n-k+1)Ck subsets of {1, 2, ... , n} with k elements and not containing both i and i+1 for 
any i. 

Solution 
There is a bijection between subsets of {1, 2, ... , n} with k elements not containing both i and i+1 for any i and 
subsets of {1, 2, ... , n - k + 1} with k elements. Namely, associate r1 < r2 < ... < rk and r1, r2 - 1, r3 - 2, ... , rk - k + 1. 
But there are obviously just (n-k+1)Ck such subsets of {1, 2, ... , n - k + 1}. 

  



Problem A6 
Let R be the reals. Find f : R → R which preserves all rational distances but not all distances. Show that if f : R2 → 
R2 preserves all rational distances then it preserves all distances. 

Solution 
Let f(x) = x for x rational, x + 1 for x irrational. If x - y is rational, then either both x and y are rational in which 
case f(x) - f(y) = x - y, or neither are in which case f(x) - f(y) = (x + 1) - (y + 1) = x - y. So f preserves rational 
distances. But f does not preserve all distances. For example f(√2) - f(0) ≠ √2 - 0. 

Given points A and B in the plane a distance k apart, and any ε > 0, we can find a point C such that AC and BC are 
rational and |AC - k| < ε/2, |BC| < ε/2. Let A' = f(A), B' = f(B), C' = f(C). Then |A'C'| = |AC|, |B'C'| = |BC|, and 
hence |A'B'| lies within ε of k. This is true for all ε > 0, so |A'B'| = k and f preserves all distances. 

Problem A7 
Show that for any given positive integer n, the number of odd nCm with 0 ≤ m ≤ n is a power of 2. 

Solution 
(2n)C(2m+1) = 2n/(2m+1) (2n-1)C2m, which is even. There are n even factors in the numerator of 2nC2m and n 
even factors in its denominator. If we cancel 2 from each of these even factors, then we get nCm. So 2nC2m has 
the same parity as nCm. Hence there are the same number of odd binomial coefficients for 2n as for n. 

(2n+1)C2m =2nC(2m-1) + 2nC2m, so (2n+1)C2m has the same parity as 2nC2m. Similarly, (2n+1)C(2m+1) = 
2nC2m + 2nC(2m+1), so (2n+1)C(2m+1) has the same parity as 2nC2m. Hence there are twice as many odd 
binomial coefficients for 2n+1 as for 2n. 
The required result now follows by a trivial induction. 

Problem B1 
The differential equation a(x, y) dx + b(x, y) dy = 0 is homogeneous and exact (meaning that a(x, y) and b(x, y) are 
homogeneous polynomials of the same degree and that ∂a/∂y = ∂b/∂x). Show that the solution y = y(x) satisfies x 
a(x, y) + y b(x, y) = c, for some constant c. 

Solution 
d(x a + y b) = (a dx + b dy) + x( ∂a/∂x dx + ∂a/∂y dy) + y( ∂b/∂x dx + ∂b/∂y dy). 

Using exactness, this becomes: (a dx + b dy) + x( ∂a/∂x dx + ∂b/∂x dy) + y( ∂a/∂y dx + ∂b/∂y dy). Homogeneity 
implies that for some integer k we have x ∂a/∂x + y ∂a/∂y = k a, and x ∂b/∂x + y ∂b/∂y = k b. So we get finally d(x 
a + y b) = (a dx + b dy) + k (a dx + b dy). So if y is a solution, then d(x a + y b) = 0 and hence x a + y b = c for 
some constant c. 

Problem B2 
Let P be the set of all subsets of the plane. f : P → P satisfies f(X ∪ Y) ⊇ f( f(X) ) ∪ f(Y) ∪ Y for all X, Y ∈ P 
(*). Show that (1) f(X) ⊇ X, (2) f( f(X) ) = f(X) , (3) if X ⊇ Y, then f(X) ⊇ f(Y), for all X, Y ∈ P. Show 
conversely that if f : P → P satisfies (1), (2), (3), then f satisfies (*). 

Solution 
Taking Y = X in (*) gives immediately that f(X) = f(X ∪ Y) ⊇ f( f(X) ) ∪ f(X) ∪ X ⊇ X, which proves (1). 
It also shows that f(X) ⊇ f( f(X) ). Now put Y = f(X) in (*). Then X ∪ Y = f(X) (by (1) ), so (*) gives f( f(X) ) ⊇ 
Y = f(X). So we have proved (2). 

Finally, if X ⊇ Y, then X ∪ Y = X, so f(X) = f(X ∪ Y) ⊇ f(Y), which proves (3). 

Now assume (1), (2) and (3) and take any X, Y. Then X ∪ Y ⊇ Y, so f(X ∪ Y) ⊇ f(Y) (using (3) ). But f(Y) ⊇ 
Y (using (1) ), so also f(X ∪ Y) ⊇ Y. Similarly, f(X ∪ Y) ⊇ f(X). But f(X) = f( f(X) ) (using (2) ), so f(X ∪ Y) 
⊇ f( f(X) ), which establishes (*). 

  



Problem B3 
ABCD is an arbitrary tetrahedron. The inscribed sphere touches ABC at S, ABD at R, ACD at Q and BCD at P. 
Show that the four sets of angles {ASB, BSC, CSA}, {ARB, BRD, DRA}, {AQC, CQD, DQA}, {BPC, CPD, 
DPB} are the same. 

Solution 
The key is to notice that the two angles in the sets subtended by the same side of the tetrahedron are the same. For 
example ∠ASC = ∠AQC. Let O be the centre of the sphere and r its radius. Then AQ2 + r2 = AO2 = AS2 + r2, so 
AQ = AS. Similarly, CQ = CS. So the triangles AQC, ASC are similar. 

Now the sum of the angles in each set is the same. But ∠ASB in the first set equals ∠ARB in the second set, so ∠
BSC + ∠CSA = ∠BRD + ∠DRA. Similarly, ∠CQD in the third set equals ∠CPD in the fourth, so ∠AQC + ∠
DQA = ∠BPC + ∠DPB. Adding these two equations and using ∠BSC = ∠BPC, ∠CSA = ∠AQC, ∠BRD = ∠
DPB, ∠DRA = ∠DQA gives ∠CSA = ∠BRD. In other words, the angles in the set subscribed by opposite sides 
of the tetrahedron are also the same. 
That gives us all we need: ∠ASC = ∠BRD = ∠AQC = ∠BPD; ∠ASB = ∠ARB = ∠CQD = ∠CPD; ∠BSC = 
∠ARD = ∠AQD = ∠BPC. 

Problem B4 
Show that for any triangle ABC, we have sin A cos C + A cos B > 0. 

Solution 
The result is obviously true unless B or C is obtuse. If C is obtuse, then |cos C| < cos B (because |cos C| = cos(A + 
B) < cos B). But sin A < A, so the result follows. So assume that B is obtuse. 

We have A acute and hence A < tan A. So A cos A < sin A. But C is acute, so cos C is positive and A cos A cos C 
< sin A cos C. Now A sin A sin C is positive, so A cos(A + C) = A cos A cos C - A sin A sin C < A cos A cos C < 
sin A cos C. But cos(A + C) = -cos B, so - A cos B < sin A cos C. 

Problem B5 
Show that a graph with 2n points and n2 + 1 edges necessarily contains a 3-cycle, but that we can find a graph with 
2n points and n2 edges without a 3-cycle. 

Solution 
Induction. For n = 2, the result is obviously true, because there is only one graph with 4 points and 5 edges and it 
certainly contains a triangle. Suppose the result is true for n. Consider a graph G with 2n + 2 points and n2 + 2n + 2 
edges. Take any two points P and Q joined by an edge. We now consider two cases. If there are less than 2n + 1 
other edges to P and Q, then if we remove P and Q, we get a graph with 2n points and at least n2 + 1 edges, which 
must contain a triangle, so G does also. If there are at least 2n + 1 other edges then at least one point must be joined 
to both P and Q, but that gives a triangle. 

Let G and H be disjoint sets each with n points. Join every point of G to every point of H by an edge. Then the 
resulting graph has n2 edges, but it does not contain any triangles, because two points of any triangle must belong to 
G or to H and in either case there is no edge connecting them. 

Problem B6 
The sequence an is defined by a1 = 2, an+1 = an

2 - an + 1. Show that any pair of values in the sequence are relatively 
prime and that ∑ 1/an = 1. 

Solution 
We show by induction on k that an+k = 1 (mod an). Obviously true for k = 1. Suppose it is true for k. Then for some 
m, an+k = m an + 1. Hence an+k+1 = an+k(m an + 1 - 1) + 1 = an+km an + 1 = 1 (mod an). So the result is true for all k. 
Hence any pair of distinct an are relatively prime. 

We show by induction that ∑1
n 1/ar = 1 - 1/(an+1 - 1). For n = 2, this reduces to 1/2 = 1 - 1/(3 - 1), which is true. 

Suppose it is true for n. Then ∑1
n+1 1/ar = 1 - k, where k = 1/(an+1 - 1) - 1/an+1 = 1/(an+1

2 - an+1) = 1/(an+2 - 1), so it is 
true for n + 1. But an → ∞, so ∑ 1/an = 1. 



Problem B7 
p(z) and q(z) are complex polynomials with the same set of roots (but possibly different multiplicities). p(z) + 1 
and q(z) + 1 also have the same set of roots. Show that p(z) ≡ q(z). 

Solution 
This is much easier than it looks. We just have to consider p - q and p' - q'. Suppose that p has A roots, of which B 
are distinct, and that p(z) + 1 has A roots, of which C are distinct. Without loss of generality we may assume the 
degree of q is at most A, so that p - q has at most A roots. Clearly the roots of p(z) and p(z) + 1 do not overlap. The 
B distinct roots of p(z) and the C distinct roots of p(z) + 1 must all be roots of p - q. So B + C ≤ A. On the other 
hand, p' has at least A - B roots in common with p and at least A - C in common with p(z) + 1, so it has at least 2A - 
(B + C) in total. But its degree is A - 1, so (B + C) ≥ A + 1. Contradiction. 



17th Putnam 1957 

Problem A1 
A surface S in 3-space is such that every normal intersects a fixed line L. Show that we can find a surface of 
revolution containing S. 

Solution 
Unfortunately, this is false. 

It is not hard to paste together pieces of different surfaces of revolution. A simple example is as follows. Take a 
cylinder terminated at one end by a circle C. For part of the circumference of C continue the cylinder. Leave a gap 
either side and then on the rest join a portion of a cone (so that the surface is angled outwards away from the central 
axis). 
It is possible, but hard, certainly too hard for a qu. 1, to prove that S is locally a surface of revolution. For details 
see Gleason et al. 

Problem A2 
k is a real number greater than 1. A uniform wire consists of the curve y = ex between x = 0 and x = k, and the 
horizontal line y = ek between x = k - 1 and x = k. The wire is suspended from (k - 1, ek) and a horizontal force 
applied at the other end, (0, 1) to keep it in equilibrium. Show that the force is directed towards increasing x. 

Solution 
If d is the density per unit length, then the total mass of wire is d(1 + ∫0

k √(1 + e2x) dx ). The moment about the y-
axis is d(k - 1/2) + d ∫0

k x √(1 + e2x) dx. We require that the x-coordinate of the centre of mass exceeds k - 1. In 
other words, k - 1/2 + ∫0

k x √(1 + e2x) dx > (k - 1) ( 1 + ∫0
k √(1 + e2x) dx ). 

Set f(k) = ∫0
k x √(1 + e2x) dx - (k - 1) ∫0

k √(1 + e2x) dx. Then we require f(k) > -1/2 for all k > 1. Clearly f(0) = 0. We 
try differentiating, and get f '(k) = √(1 + e2k) - ∫0

k √(1 + e2x)dx. 

One possibility is to evaluate the integral explicitly (substitute y = e2x, then z2 = 1 + y, we end up with a messy but 
doable integral). But it is maybe easier to approximate. We have 1 + e2x < 1 + e2x + e-2x/4 = (ex + e-x/2)2. So ∫0

k √(1 + 
e2x)dx < ∫0

k (ex + e-x/2) dx = (ex - e-x/2) |0
k = ek - e-k/2 - 1/2 < ek < √(1 + e2k). So f '(k) > 0. Hence f(k) > f(0) > 0 > -

1/2. 

Problem A3 
A and B are real numbers such that cos A ≠ cos B. Show that for any integer n > 1, |cos nA cos B - cos A cos nB| < 
(n2 - 1) |cos A - cos B|. 

Solution 
It is not clear how to use induction, expanding cos (n+1)A = cos nA cos A - sin nA sin A gives a profusion of sines 
and it is not clear how to get rid of them. So some other approach is needed. 

An ingenious manipulation puts the expression entirely in terms of sines. Put x = (A + B)/2, y = (A - B)/2. Then A 
= x + y, B = x - y. Now 2 cos nA cos B = cos(nA + B) + cos(nA - B). Similarly, 2 cos A cos nB = cos(nB + A) + 
cos(nB - A). Switch to x and y and then go back to products of cosines. We have cos(nA + B) - cos(nB + A) = cos( 
(n+1)x + (n-1)y) - cos( (n+1)x - (n-1)y ) = -2 sin(n+1)x sin(n-1)y. Similarly, cos(nA - B) - cos(nB - A) = - 2 sin(n-
1)x sin(n+1)y. Hence |cos nA cos B - cos A cos nB| = |sin(n+1)x sin(n-1)y + sin(n-1)x sin(n+1)y|. Obviously |cos A 
- cos B| = |2 sin x sin y|, so we have to prove that |sin(n+1)x sin(n-1)y + sin(n-1)x sin(n+1)y| < 2(n2 - 1) |sin x sin y|. 

If would evidently be sufficient to show that |sin mx| < m |sin x|. Unfortunately, that is not true. We have equality if 
sin x = 0 or if m = 1. However, we can easily prove by induction that we have strict inequality in all other cases. 

For m = 2, we have sin 2x = 2 sin x cos x, which establishes the result since |cos x| < 1 for sin x non-zero. Suppose 
it is true for m. Then sin(m+1)x = sin mx cos x + sin x cos mx, so |sin(m+1)x| <= |sin mx| |cos x| + |sin x| |cos mx| 
<= |sin mx| + |sin x| < (m+1) |sin x|, so it is true for m+1. 
Now if sin x = 0, then A + B is a multiple of 2π, so cos A = cos B. Similarly if sin y = 0, then A - B is a multiple of 
2π, so cos A = cos B. But we are told that cos A ≠ cos B, so sin x and sin y are both non-zero. Also we are given 



that n > 1, so we have strict inequality on |sin(n+1)x| > (n+1) |sin x| and |sin(n+1)y| > (n+1) |sin y|, whilst |sin(n-1)x| 
≥ (n-1) |sin x| and |sin(n-1)y| ≥ (n-1) |sin y|. Thus we get the required strict inequality. 

Problem A4 
p(z) is a polynomial of degree n with complex coefficients. Its roots (in the complex plane) can be covered by a 
disk radius r. Show that for any complex k, the roots of n p(z) - k p'(z) can be covered by a disk radius r + |k|. 

Solution 
Let the roots of p(z) be a1, a2, ... , an. Suppose they all lie in the disk centre c, radius r. Then |c - an| ≤ r. Suppose that 
|c - w| > r + |k|. We show that w is not a root of n p(z) - k p'(z). We have |w - ai| ≥ |w - c| - |c - ai| > r + |k| - r = |k|. 
Now p'(z)/p(z) = ∑ 1/(z - ai) (note that this is still true if we have repeated roots), so |p'(w)/p(w)| < n/|k| and hence |k 
p'(w)/p(w)| < n. So |n - k p'(w)/p(w)| > 0. But |p(w)| > 0 (since w lies outside the disk containing all the roots of p(z) 
), so |n p(w) - k p'(w)| = |p(w)| |n - k p'(w)/p(w)| > 0. 

Problem A5 
Let S be a set of n points in the plane such that the greatest distance between two points of S is 1. Show that at most 
n pairs of points of S are a distance 1 apart. 

Solution 
Induction on n. Obviously true for n ≤ 3. Suppose it is true for n. Take n+1 points. If no point is a distance 1 from 
more than 2 points, then we are done. So assume that A, B and C are all a distance 1 from P. wlog the largest of the 
three angles APB, APC, BPC is APB. It must be at most 60o, since AB ≤ 1. So the ray PC lies between the rays PA 
and PB. 

Now suppose there is another point D (apart from P) such that CD = 1. Then CD must intersect PA, because 
otherwise one of CP, CA, DP and DA would exceed 1. Similarly, it must intersect PB. But that is impossible. So 
there is no such point D. Hence if we remove C we lose only one realisation of the distance 1. But the remaining n 
points have at most n realisations, so the result is established. 

Problem A6 
Define an by a1 = ln α, a2 = ln(α - a1), an+1 = an + ln(α - an). Show that limn→∞ an = α - 1. 

Solution 
Unfortunately, this does not quite work as stated. If α is too small then a2 > α and hence a3 is undefined. The limit is 
just under 0.3442. So assume that α is sufficiently large that a2 < α. 

For all non-zero x we have ex > 1 + x. Hence for all positive x not equal to 1 we have ln x < x - 1. 

Suppose that a2 = α - 1. Then an = α - 1 for all n > 2, which gives the result. So assume a2 is not equal to α - 1. Then 
for all n ≥ 2 we have ln(α - an) < α - an - 1, so an+1 = an + ln(α - an) < α - 1. 

Also for n >= 3, we have that α - an > 1, so ln(α - an) > 0, so an+1 > an. Thus for n ≥ 3, an is a monotonic increasing 
sequence bounded above by α - 1. So it must converge. 

But an+1 - an = ln(α - an), so ln(α - an) tends to 0 and hence an tends to α - 1. 

Problem A7 
Show that we can find a set of disjoint circles such that given any rational point on the x-axis, there is a circle 
touching the x-axis at that point. Show that we cannot find such a set for the irrational points. 

Solution 
Two disjoint circles touching the x-axis at A and B and each with radius r cannot have AB < 2r. Now suppose a 
circle radius R ≥ r touches at A and a disjoint circle radius r touches at B. The circle radius r touching at A does not 
extend outside the circle radius R, so the circle at B must also be disjoint from it. Hence we still have AB ≥ 2r. 
Hence there can only be countably many disjoint circles radius r or more touching the x-axis. But a countable set of 
countable sets is still countable, so there can only be countably many disjoint circles touching the x-axis (any such 
circle has radius > 1/n for some n). There are uncountably many irrational points, so we cannot have disjoint circles 
touching at all the irrational points. 



For the rational points take the circle touching at m/n (in lowest terms) to have radius 1/(3n2). Now suppose the 
circles at m/n and a/b have centres P and Q. We have PQ2 = (m/n - a/b)2 + (1/(3n2) - 1/(3b2) )2. If they intersect, 
then PQ ≤ (1/(3n2) + 1/(3b2) ) and hence (m/n - a/b)2 ≤ (1/(3n2) + 1/(3b2) )2 - (1/(3n2) - 1/(3b2) )2 = 4/9 1/(n2b2), so 
(mb - an)2 < 4/9. But (mb - an) must be integral, so mb - an = 0 and hence m/n = a/b. So distinct circles do not 
intersect. 

Problem B1 
Let A be the 100 x 100 matrix with amn = mn. Show that the absolute value of each of the 100! products in the 
expansion of det A is congruent to 1 mod 101. 

Solution 
Each product is 100! 100! . But 101 is prime, so the numbers 1, 2, ... , 100 can be divided into pairs with the 
product of each pair being 1 mod 101. 

Problem B2 
The sequence an is defined by its initial value a1, and an+1 = an(2 - k an). For what real a1 does the sequence converge 
to 1/k? 

Solution 
Answer: For a1 strictly between 0 and 2/k. 

Suppose an has the opposite sign to k. Then 2 - k an is positive, and so an+1 also has the opposite sign to k, so we 
cannot get convergence. Similarly, if an = 0, then an+1 = 0 and we cannot get convergence. So it is a necessary 
condition that a1 should be non-zero and have the same sign as k. 

If k is positive and a1 > 2/k, then a2 is negative and so the sequence does not converge to 1/k (as above). Similarly, 
if k is negative and a1 < 2/k, then a2 is positive and so we do not have convergence. Thus it is a necessary condition 
for a1 to lie strictly between 0 and 2/k. 

Suppose an = 1/k + h. Then an+1 = (1/k + h)(2 - (1 + kh)) = 1/k - kh2 (*). This is all we need. But to spell it out, 
consider first k positive. If a1 lies strictly between 0 and 1/k, then h lies strictly between -1/k and 1/k. Now (*) 
shows that for n ≥ 2, an ≤ 1/k and is monotonic increasing. Hence it tends to a positive limit. If this limit is L, then 
referring to the original equation, L = L(2 - kL), so L = 1/k. Similarly for k negative. 

Problem B3 
R+ is the positive reals, f : [0, 1] → R+ is monotonic decreasing. Show that ∫0

1 f(x) dx ∫0
1 x f(x)2 dx ≤ ∫0

1 x f(x) dx 
∫0

1 f(x)2 dx. 

Solution 
(f(x) - f(y) )(y - x) ≥ 0. Also f(x), f(y) ≥ 0, so ∫ ∫ f(x) f(y) (f(x) - f(y) )(y - x) dx dy ≥ 0. But f(x) f(y) (f(x) - f(y) )(y - 
x) = ( f(x)2 y f(y) - f(x) y f(y)2 ) + ( f(y)2 x f(x) - f(y) x f(x)2). So if we take the same limits of integration, 0 and 1, 
for both integrals, then we have ∫ ∫ f(x) f(y) (f(x) - f(y) )(y - x) dx dy = 2 ∫ f(x)2 y f(y) - f(x) y f(y)2 dx dy = 2 ∫ 
f(x)2 dx ∫ y f(y) dy - 2 ∫ f(x) dx ∫ y f(y)2 dy. 

Problem B4 

Show that the number of ways of representing n as an ordered sum of 1s and 2s equals the number of ways of 
representing n + 2 as an ordered sum of integers > 1. For example: 4 = 1 + 1 + 1 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 2 + 1 
= 1 + 1 + 2 (5 ways) and 6 = 4 + 2 = 2 + 4 = 3 + 3 = 2 + 2 + 2 (5 ways). 

Solution 
We can establish a bijection as follows. Given a representation of n as an ordered sum of 1s and 2s, proceed as 
follows. Add a final 2 at the end. Now group together all summands up to and including the first 2, then all 
following summands up to and including the next 2, and so on. Add the members in each group. This gives us an 
ordered set of integers each at least 2 and summing to n+2. 

Conversely, given a representation of n+2, write a summand m as m-2 1s followed by a 2. This gives an ordered 
sum of 1s and 2s. Finally remove the final 2. This gives us a representation of n. It is clear that these two operations 
are inverse and hence each is a bijection. 



Problem B5 
Let S be a set and P the set of all subsets of S. f : P → P is such that if X ⊆ Y, then f(X) ⊆ f(Y). Show that for 
some K, f(K) = K. 

Solution 
Let K be the union of all subsets A of S such that A ⊆ f(A). We show that K ⊆ f(K). Take any x in K. Then x 
belongs to some A which satisfies A ⊆ f(A). But A ⊆ K, so f(A) ⊆ f(K). So x belongs to A ⊆ f(A) ⊆ f(K), so x 
belongs to f(K). 
Since K ⊆ f(K), we have f(K) ⊆ f( f(K) ). Hence by definition f(K) ⊆ K. 

Problem B6 
y is the solution of the differential equation (x2 + 9) y'' + (x2 + 4)y = 0, y(0) = 0, y'(0) = 1. Show that y(x) = 0 for 
some x ∈ [√(63/53) π, 3π/2]. 

Solution 
We compare the equation given with (1) z'' = -4/9 z, z(0) = 0, z'(0) = 1, and (2) w'' = -53/63 w, w(0) = 0, w'(0) = 1. 

For all x > 0 we have (x2 + 4)/(x2 + 9) > 4/9, so y''z - yz'' = (4/9 - (x2 + 4)/(x2 + 9) ) yz. Integrating gives y'z - 
yz'|0

3π/2 = ∫ (4/9 - (x2 + 4)/(x2 + 9) ) yz dx (*). Now y(0) = z(0) = 0, z = sin 2x/3, so z(3π/2) = 0, z'(3π/2) = -2/3, 
hence y'z - yz'|0

3π/2 = 2/3 y(3π/2). Now if y has no zeros on the open interval (0, 3π/2), then y(3π/2) ≥ 0 and the 
integrand (4/9 - (x2 + 4)/(x2 + 9) ) yz is negative for the entire interval. Hence lhs (*) ≥ 0 and rhs (*) < 0. 
Contradiction. So y has at least on zero on (0, 3π/2). 

Turning to (2), we note that π2 < 10, so (3π/2)2 < 22.5. Hence on the interval [0, 3π/2] we have (x2 + 4)/(x2 + 9) < 
26.5/31.5 = 53/63. Now w = sin (√(53/63) x), so w(x) > 0 on the interval (0, k), where k = √(63/53) π. 

Now suppose that y has a root in (0, k]. Let h be the smallest such root, so that y(x) is positive on (0, h) and y(h) = 
0, y'(h) ≤ 0. Integrate w''y - w y'' = ( (x2 + 4)/(x2 + 9) - 53/63). The lhs is w'y - w y' |0

h = w(h) y'(h) ≥ 0. The rhs is 
∫0

h ( (x2 + 4)/(x2 + 9) - 53/63) y w dx. But the integrand is negative on (0, h), so the rhs < 0. Contradiction. Hence y 
has no roots on (0, k]. So it must have a root on (k, 3π/2). 

Problem B7 
Let P be a regular polygon and its interior. Show that for any n > 1, we can find a subset Sn of the plane such that 
we cannot translate and rotate P to cover Sn but we can translate and rotate P to cover any n points of Sn. 

Solution 
Let the radius of the inscribed circle in P be 1. Let P have m sides. We take Sn to be a circle of radius slightly 
greater than 1. Clearly it cannot fit inside P. Place it so that its centre is at the centre of P. Suppose it cuts each side 
a distance tan-1θ either side of the midpoint, where θ is small. Then the arcs lying outside P subtend a total angle 
2mθ at the centre. Now rotate the circle about its centre. Let φ measure the angle of rotation from the starting point. 
In order to keep a given point of the circle inside P, φ must avoid intervals of total length 2mθ. So to keep any 
given n points of the circle inside P, φ must avoid intervals of total length 2mnθ. The worst case is that these 
intervals are all disjoint, but provided θ < π/mn they cannot exhaust the available 2π, so we can find angles φ for 
which all n points are inside P. 

  

  

 



18th Putnam 1958 

Problem A1 
Show that the real polynomial ∑0

n aix
i has at least one real root if ∑ ai/(i + 1) = 0. 

Solution 
Integrate from 0 to 1. We get zero. Hence the polynomial has at least one zero between 0 and 1. 

Problem A2 
A rough sphere radius R rests on top of a fixed rough sphere radius R. It is displaced slightly and starts to roll off. 
At what point does it lose contact? 

Solution 
Let the top of the fixed sphere be T and its centre O. Let X be the point of contact. Take angle XOT = θ. Let the 
mass be M and the normal force between the two spheres N. Resolving radially, MR(d<θ/dt)2 = Mg cos θ - N (1). 
Taking moments about an axis through X, MgR sin θ = I d2θ/dt2 (2), where I is the moment of inertia of the sphere 
about X = the moment about a diameter + MR2 = 7/5 MR2. 

Integrating equation (2) gives g(1 - cos θ) = 7/10 R (dθ/dt)2. Substituting in (1) gives N = g cos θ - 10/7 (1 - cos θ). 
Contact is lost when N becomes 0. In other words at the angle θ = cos-1 10/17. 

Problem A3 
A sequence of numbers αi ∈ [0, 1] is chosen at random. Show that the expected value of n, where ∑1

n αi > 1,     
∑1

n-1 αi ≤ 1 is e. 

Solution 
We can consider the possible values of α1, α2, ... , αn as points of the n-cube. The points corresponding to sum at 
most 1 are those in the corner at the origin, bounded by the hyperplane through (1, 0, ... , 0), (0, 1, 0, ... , 0) , ... , (0, 
... , 0, 1). By an easy induction this has volume 1/(n-1)! . Let pn = the prob that the sum of the first n numbers is at 
most 1. We have just shown that pn = 1/(n-1)! . 

Now the required expected value is (1/1! - 1/2!) 2 + (1/2! - 1/3!) 3 + (1/3! - 1/4!) 4 + ... = 2 + (3 - 2)/2! + (4 - 3)/3! 
+ (5 - 4)/4! + ... = e. 

Problem A4 
z1, z2, ... , zn are complex numbers with modulus a > 0. Let f(n, m) denote the sum of all products of m of the 
numbers. For example, f(3, 2) = z1z2 + z2z3 + z3z1. Show that |f(n, m)| /am= |f(n, n-m)| /an-m. 

Solution 
It is obviously sufficient to take a = 1. Then if z = eiθ we have 1/z = e-iθ = the complex conjugate of z. Now f(n, 
m)/(z1z2 ... zn) = the sum of the inverses of the terms in f(n, n-m) = the sum of the complex conjugates of the terms 
in f(n, n-m) = complex conjugate of f(n, n-m). But a number and its complex conjugate have the same modulus. 

Problem A5 
Let R be the reals. Show that there is at most one continuous function f : [0, 1]2 → R satisfying f(x, y) = 1 + 
∫0

x∫0
y f(s, t) dt ds. 

Solution 
If there are two, then their difference d(x, y) satisfies d(x, y) = ∫0

x∫0
y d(s, t) dt ds (*). 

The domain is compact and d is continuous, so |d| has some upper bound k. Now applying (*) gives |d(x, y)| ≤ k xy. 
Applying (*) again gives |d(x, y)| ≤ k x2/2 y2/2. So by a simple induction |d(x, y)| ≤ k xn/n! yn/n! . Hence |d(x, y)| ≤ 
k/(n! n!) for all n, and so d(x, y) = 0. 

Problem A6 
Assume that the interest rate is r, so that capital of k becomes k(1 + r)n after n years. How much do we need to 



invest to be able to withdraw 1 at the end of year 1, 4 at the end of year 2, 9 at the end of year 3, 16 at the end of 
year 4 and so on (in perpetuity)? 

Solution 
To meet the withdrawal at the end of year n we need to invest n2/(1+r)n. Thus the total investment required is 
1/(1+r) + 4/(1+r)2 + 9/(1+r)3 + 16/(1+r)4 + ... . Now we know that 1 + x + x2 + ... = 1/(1 - x). Differentiating, we get: 
x/(1 - x)2 = x + 2x2 + 3x3 + ... . Differentiating again: x(1 + x)/(1 - x)3 = 12x + 22x2 + 32x3 + ... . Substituting x = 
1/(1+r) gives (1 + r)(2 + r)/r3 as the required investment. 

Problem A7 
Show that we cannot place 10 unit squares in the plane so that no two have an interior point in common and one 
has a point in common with each of the others. 

Solution 
Note that we can place 9 squares - arrange them in a regular 3 x 3 array. Then the centre square touches 4 at the 
corners and the other 4 along the sides. 

Consider first placing squares to touch a line. If neither square has a side in contact with the line, then it is easy to 
see that the two points of contact are more than 1 apart. If square U has a side in contact and square V does not, 
then together they occupy more than a length 1 of the line (from the far side of U to the point of contact of V). 

So the only way to get three squares in contact with AB, a side of a fixed square S = ABCD, is to place one square 
so that its side is AB. One can then place a second square with its corner touching A and a third with its corner 
touching B. 

So to get more than 8 = 4 x 2 squares touching S, we must get three squares to touch one side as above. Call them 
T2 in contact with AB, T1 touching at A and T3 touching at B. Now consider the side BC. T3 has a side BD. The 
most favourable case is that angle CBD = 90o - T3 may be placed so that angle CBD is less than 90o. But certainly 
any square touching BC (apart from T3) cannot extend beyond the ray BD which is perpendicular to BC. But it is 
easy to see that this means we can get only one additional square to touch BC unless we place T4 with so that its 
side is BC and T5 touching C at a corner, which gives 2. 

In particular, if 3 squares touch AB, then at most 2 (additional) squares touch each of BC and DA. 

Hence at most 2 sides, which must be opposite, can have three squares touching. But in that case it is easy to see 
that the other two sides each have at most 1 additional square touching, so we get only 8 in total. Hence the only 
way to get 9 is to have 3 squares touching AB and 2 (additional) squares touching each of the other three sides. But 
those touching BC and DA must then be placed as indicated above and it is easy to see that we then get at most 1 
(additional) square touching CD. 

Problem B1 
Do both (1) and (2): 

(1)   Given real numbers a, b, c, d with a > b, c, d, show how to construct a quadrilateral with sides a, b, c, d and the 
side length a parallel to that length b. What conditions must a, b, c, d satisfy? 

(2)   H is the foot of the altitude from A in the acute-angled triangle ABC. D is any point on the segment AH. BD 
meets AC at E, and CD meets AB at F. Show that ∠AHE = ∠AHF. 

Solution 
(1) A necessary and sufficient condition is that we should be able to form a triangle with sides c, d, (a - b). Hence 
we require b + c + d ≥ a, a + d ≥ b + c, and a + c ≥ b + d. Construct two such triangles, one at each end of the 
segment a, then join the two tops to get the required quadrilateral. 

(2) Take a line through A parallel to BC and project CF, HF, HE, BE to meet it in W, X, Y, Z. Then using similar 
triangles, we deduce that AY/CH = AZ/BC = BH·AW/CH (1/BC) = BH/CH AW/BC = BH/CH AX/BH = AX/CH, 
so AX = AY. But AH is perpendicular to XY, so the result follows. 



Problem B2 
Let n be a positive integer. Prove that n(n + 1)(n + 2)(n + 3) cannot be a square or a cube. 

Solution 
(n+1)(n+2) = n2 + 3n + 2 and n(n+3) = n2 + 3n. So their product is (n2 + 3n + 1)2 - 1. Hence n(n + 1)(n + 2)(n + 3) is 
1 less than a square, so it cannot be a square. 

One of n+1, n+2 must be odd. Suppose it is n+1. Then n+1 has no factor in common with n(n + 2)(n + 3), so n(n + 
2)(n + 3) = n3 + 5n2 + 6n must be a cube. But (n + 1)3 = n3 + 3n2 + 3n + 1 < n3 + 5n2 + 6n < n3 + 6n2 + 12n + 8 = (n 
+ 2)3, so n3 + 5n2 + 6n cannot be a cube. 

Similarly, suppose n + 2 is odd. Then it has no factor in common with n(n + 1)(n + 3) = n2 + 4n2 + 3n, so n2 + 4n2 + 
3n must be a cube. But for n ≥ 2, (n + 1)3 < n2 + 4n2 + 3n < (n + 2)3, so n2 + 4n2 + 3n cannot be a cube for n ≥ 2. 
The case n = 1 is checked by inspection: 24 is not a cube. 

Problem B3 
In a tournament of n players, every pair of players plays once. There are no draws. Player i wins wi games. Prove 
that we can find three players i, j, k such that i beats j, j beats k and k beats i iff ∑ wi

2 < (n - 1)n(2n - 1)/6. 

Solution 
Suppose there are no such three players. Let A be the (or one of the) top-scoring players. We claim that A has n-1 
wins. Suppose not, then he is beaten by some B. Now if every player beaten by A is also beaten by B, then B would 
have a higher score than A, so we must be able to find C who is beaten by A, but who beats B (who beats A). But 
we assumed there were no such triads. So A has n-1 wins. But we can now consider the remaining players. The 
same argument shows that the top scoring player amongst them beat n-2 of them. He did not beat A (who beat 
everyone), so his score is n-2. The argument repeats to show that the scores are n-1, n-2, ... , 1, 0. The sum of the 
squares is thus (n-1)n(2n-1)/6. 

Conversely, it is clear that if the scores are n-1, n-2, ... , 1, 0 then there can be no triad. For the player with n-1 beats 
everyone, so he cannot be part of a triad. But now the player with n-2 beats everyone else, so he cannot either and 
so on. 

Thus we have shown that there is a triad iff the scores are not n-1, n-2, ... , 1, 0. It remains to show that if the scores 
are not n-1, n-2, ... , 1, 0, then sum of the squares is less than (n-1)n(2n-1)/6. But if the scores are not n-1, n-2, ... , 
1, 0, then two players must have the same score m. Changing the scores to m-1, m+1 (by changing the result of the 
match between the two players) increases the sum of the squares by 2. After a finite number of repetitions we must 
arrive at n-1, n-2, ... , 1, 0, so the starting sum must be strictly less. 

Problem B4 
Let S be a spherical shell radius 1. Find the average straight line distance between two points of S. [In other words 
S is the set of points (x, y, z) with x2 + y2 + z2 = 1). 

Solution 
Answer: 4/3. 

It is sufficient to fix one point and to find the average distance of the other points from it. Take the point as P and 
the centre as O. Now consider a general point Q on the surface. Let angle POQ = θ. The distance PQ is 2 sin θ/2 
and this is the same for all points in a band angular width dθ at the angle θ. The band has radius sin θ. Hence the 
average distance is 1/4π ∫0

π (2π sin θ) (2 sin θ/2) dθ = ∫ 4 sin2θ/2 d(sin θ/2) = 4/3. 

Problem B5 
S is an infinite set of points in the plane. The distance between any two points of S is integral. Prove that S is a 
subset of a straight line. 

Solution 
Suppose not. Take three non-collinear points A, B, C. Suppose AB = n. Any point P has PA + AB ≥ PB, so PB - 
PA ≤ n. Similarly PB - PA ≥ -n. But PB - PA is integral, so it must take one of the values -n, -(n-1), ... , 0, 1, ... , n. 
So P must lie on one of a finite number of hyperbolae |PB - PA| = k (regarding the allowed line pair as a degenerate 



hyperbola). Similarly it must lie on one of a finite number of hyperbolae |PA - PC| = h. But each pair of hyperbolae 
intersect in at most 4 points, so the number of points in addition to A, B, C is finite. Contradiction. 

Problem B6 
A particle of unit mass moves in a vertical plane under the influence of constant gravitational force g and a resistive 
force which is in the opposite direction to its velocity and with magnitude a function of its speed. The particle starts 
at time t = 0 and has coordinates (x, y) at time t. Given that x = x(t) and is not constant, show that y(t) = - g x(t) 
∫0

t ds/x'(s) + g ∫0
t x(s) / x'(s) ds + a x(t) + b, where a and b are constants. 

Solution 
We can write the equations of motion as x'' = - f(x',y') x', y'' = - f(x', y') y' - g. If x'(t) = 0 at some t, then a possible 
solution to the equations would be x = constant (and y found by integrating y'' = - f(0, y') y' - g). But solutions are 
unique, so this would be the solution. But we are told that x is not constant. So x'(t) is never zero. 

We do not know anything about f, so we resolve perpendicular to it to get x'' sin θ - y'' cos θ = g cos θ, or x'' tan θ - 
y'' = g. But tan θ = dy/dx = y'/x', so x'' y'/x' - y'' = g (*). 

Dividing by x' gives x'' y'/(x')2 - y''/x' = g/x'. Integrating, y'/x' = A - g ∫ dt/x'. So y' = Ax' - g x' ∫ dt/x'. Integrating 
again, y(T) = A x + B - g ∫0

T x' ∫0
t ds/x' dt. Now we can integrate the last integral by parts: ∫0

T x' ∫0
t ds/x' dt = 

∫t=0
T ∫0

t ds/x' dx = x(T) ∫0
T ds/x' - ∫0

T x/x' dt. So we get finally the expression in the question. 

Problem B7 
R is the reals. f : [a, b] → R is continuous and ∫a

b xnf(x) dx = 0 for all non-negative integers n. Show that f(x) = 0 
for all x. 

Solution 
We deduce immediately that ∫a

b xnf(x) p(x) dx = 0 for any polynomial p(x). We now need the Weierstrass 
approximation theorem: we can uniformly approximate any continuous function on a compact set by polynomials. 
In other words, we can find a polynomial p(x) such that |f(x) - p(x)| < ε for all x in [a, b]. Also, since [a, b] is 
compact, f must be bounded, say by k, so |f(x)| < k for all x in [a, b]. Now we have that |∫a

bf(x)2 dx| = |∫ f(x) (f(x) - 
p(x)) dx| ≤ ∫ |f(x)| |f(x) - p(x)| dx ≤ (b - a) k ε, which can be made arbitrarily small by choosing ε sufficiently small. 
Hence ∫a

bf(x)2 dx = 0, so f(x) = 0 throughout the interval. 



19th Putnam 1958 

A1.  Define f(i, j) as follows: f(i, 1) = f(1, j) = 1, f(i+1, j+1) = f(i, j+1) + f(i+1, j) + f(i, j). Let d(n) = f(1, n-1) + f(2, 
n-2) + ... + f(n-1, 1). Show that d(n + 2) = d(n) + 2 d(n + 1).  
 
A2.  Define a1 = 1, an+1 = 1 + n/an. Show that √n ≤ an < 1 + √n.  
 
A3.  Assuming that there is a unique function f(x) satisfying f(0) = 1, f '(x) = f(x) + ∫0

1 f(t) dt, find it.  
 
A4.  Find the general solution in real numbers a, b, c, d to the inequalities 2a > a + b > a + c > 2b > b + c > a + d > 
2c > b + d > c + d > d + d. Find the smallest solution in positive integers.  
A5.  Let A = (aij) be the n x n matrix with aij = 1 if i ≠ j, and aii = 0. Show that the number of non-zero terms in the 
expansion of det A is n! ∑o

n (-1)i/i! .  
A6.  R is the reals. α ∈ [0, 1). f : [0, 1] → [0, α] and g : [0, 1] → R are continuous. β satisfies β = max (g(x) + f(x) 
β). When do we have β = max g(x)/(1 - f(x) )?  
 
A7.  m, n are relatively prime positive integers with n even. Given any positive integer r, define f(r) to be the 
integer which minimizes |f(r)/r - m/n|. Show that limk→∞ ∑1

k |f(r)/r - m/n| r/k = 1/4.  
B1.  Let an = ∑0

n 1/nCr. Show that an = 1 + an-1 (n + 1)/(2n). Deduce that lim an = 2.  
B2.  Let X be the set {1, 2, 3, ... , 2n}, take Y ⊆ X with |Y| = n + 1. Show that we can find a, b ∈ Y with a 
dividing b.  
B3.  Show that if X is a square side 1 and X = A ∪ B, then A or B has diameter at least √5 /2. Show that we can 
find A and B both having diameter ≤ √5 /2.  
 
B4.  Let R be the reals. f : R → R is three times differentiable. As x → ∞, f(x) tends to a finite limit, and f '''(x) 
tends to zero. Show that f '(x) and f ''(x) also tend to zero.  
B5.  A sequence of points Pn in the plane is defined by: P0 is at the origin; P1 is at (1, 0); and Pn-1Pn is length 1/n and 
at an angle θ to the previous segment. Find the coordinates of lim Pn.  
B6.  A graph has n vertices {1, 2, ... , n} and a complete set of edges. Each edge is oriented, as either i → j or j → i. 
Show that we can find a permutation of the vertices ai so that a1 → a2 → a3 → ... → an.  
B7.  Let N = {1, 2, ... , n}. Given a permutation f : N → N, define d(f) = no. of i such that f(i) > f(j) for all j > i. 
Find the mean of d(f) over all permutations f on N.  



20th Putnam 1959 

Problem A1 
Prove that we can find a real polynomial p(y) such that p(x - 1/x) = xn - 1/xn (where n is a positive integer) iff n is 
odd. 

Solution 
Take n odd. For n = 1 the result is obvious. Now suppose the result is true for odd n ≤ 2m - 1. Expand (x - 
1/x)2m+1 by the binomial theorem. Since (2m+1)C0 = (2m+1)C(2m+1), (2m+1)C1 = (2m+1)C2m, (2m+1)C2 = 
(2m+1)C(2m-1), ... , (2m+1)Cm = (2m+1)C(m+1), we may group these pairs of terms together to get: (x - 
1/x)2m+1 = (x2m+1 - x-(2m+1)) - (2m+1)C1 (x2m-1 - x-(2m-1)) + ... + (-1)m (2m+1)Cm (x - 1/x). This gives the polynomial 
for n = 2m+1 in terms of the lower order polynomials. 

Note that x - 1/x has the same value 3/2 for x = -1/2 and x = 2. But x2m - 1/x2m is negative for x = -1/2 and positive 
for x = 2, so we cannot express x2m - 1/x2m as a function of (x - 1/x), polynomial or otherwise. 

Problem A2 
Let ω3 = 1, ω ≠ 1. Show that z1, z2, -ωz1 - ω

2z2 are the vertices of an equilateral triangle. 

Solution 
Let A be the point z1, B the point z2. Then z2 - z1 represents the vector from A to B. Now -ω2 has unit length and 
makes an angle ±π/3 with the positive real axis, so multiplying z2 - z1 by it rotates AB through an angle π/3 
(clockwise or counterclockwise). Adding the result to z2 - z1 gives a point C such that AC is at an angle π/3 to AB. 
In other words ABC is equilateral. It is easily checked that C is then z1 - ω

2(z2 - z1) = -ωz1 - ω
2z2 (since 1 + ω + ω2= 

0). 

Problem A3 
Let C be the complex numbers. f : C → C satisfies f(z) + z f(1 - z) = 1 + z for all z. Find f. 

Solution 
Putting z = 1 - w we have f(1 - w) + (1 - w) f(w)= 2 - w. Hence w f(1 - w) + (w - w2) f(w) = 2w - w2. Hence (1 + w 
- f(w) ) + (w - w2) f(w) = 2w - w2, giving (w2 - w + 1) f(w) = (w2 - w + 1). So provided w is not (1 ± i √3)/2, we 
have f(w) = 1. 

But at these two values f can be different. We can take one of them to be arbitrary. For example, take f( (1 + i √3)/2 
) = k, any complex number. Then f( (1 - i √3)/2 ) = 1 + (1 - k)(1 - i √3)/2. 

Problem A4 
R is the reals. f, g : [0, 1] → R are arbitary functions. Show that we can find x, y such that |xy - f(x) - g(y)| ≥ 1/4. 

Solution 
It is enough to consider the values at 0 and 1. If the pairs (0, 0), (0, 1), (1, 0) do not work for (x, y), then we have 
|f(0) + g(0)| < 1/4, |f(0) + g(1)| < 1/4, and |f(1) + g(0)| < 1/4. Hence f(1) + g(1) ≤ f(1) + g(0) + f(0) + g(1) - (f(0) + 
g(0)) < 1/4 + 1/4 + 1/4. So 1 - f(1) - g(1) > 1 - 3/4 = 1/4. Hence the pair (1, 1) does work. 

Problem A5 
At a particular moment, A, T and B are in a vertical line, with A 50 feet above T, and T 100 feet above B. T flies in 
a horizontal line at a fixed speed. A flies at a fixed speed directly towards B, B flies at twice T's speed, also directly 
towards T. A and B reach T simultaneously. Find the distance traveled by each of A, B and T, and A's speed. 

Solution 
Answer: A travels 25(3 + √73)/3 = 96.2 ft, B travels 400/3 ft = 133.3 ft, T 200/3 ft = 66.7 ft, A's speed is (3 + 
√73)/8 = 1.443 times T's speed. 

Take the x-axis vertical and the y-axis horizontal, so that at t = 0, the target is at (0, 0) and the pursuer is at (a, 0). 
Assume the target (T) has speed v and the pursuer (A or B) has speed kv with k > 1. At time t, the target is at (0, 



vt). The equations of motion are: (dx/dt)2 + (dy/dt)2 = kv and y' = (y - vt)/x. The first equation gives kv/(dx/dt) = -
√(1 + y'2) (negative because x decreases with time). 

Differentiating the second equation gives xy'' = - v/(dx/dt). So kxy'' = √(1 + y'2). Integrating, ln(y' + √(1 + y'2) ) = ln 
x + const. At x = a, y = 0, so (x/a)1/k = y' + √(1 + y'2). Hence 2y' = (x/a)1/k - (x/a)-1/k. Integrating again, 2y = 
a/(1+1/k) (x/a)1+1/k - a/(1-1/k) (x/a)1-1/k - a/(1+1/k) + a/(1-1/k), since y = 0 at x = a. When pursuit ends, x = 0 and 
hence y = ak/(k2 - 1). 

For B, k = 2, so y = 2a/3 = 200/3 ft. That is the distance travelled by T. B is travelling at twice the speed, so B 
travels a distance 400/3 ft. For A reaches T at the same y, hence 200/3 = 50 k/(k2 - 1), so 4k2 - 3k - 4 = 0, so k = (3 
+ √73)/8. 

Problem A6 
Given any real numbers α1, α2, ... , αm, β, show that for m, n > 1 we can find m real n x n matrices A1, ... , Am such 
that det Ai = αi, and det(∑ Ai) = β. 

Solution 
Start by setting Ai to be the matrix with 1, 1, ..., 1, αi down the main diagonal and zeros elsewhere. Modify A1 by 
changing the n, n-1 element to 1. Modify Am by changing the n-1, n element to m(α1 + ... + αm) - β/mn-2. It is clear 
that this gives det Ai = αi. 

A1 + ... + Am has m, m, ... , m, (α1 + ... + αm) down the main diagonal. The only other non-zero elements are n, n-1, 
which is 1 and n-1, n, which is m(α1 + ... + αm) - β/mn-2. Hence its determinant evaluates to β. 

Problem A7 
Let R be the reals. Let f : [a, b] → R have a continuous derivative, and suppose that if f(x) = 0, then f '(x) ≠ 0. Show 
that we can find g : [a, b] → R with a continuous derivative, such that f(x)g'(x) > f '(x)g(x) for all x ∈ [a, b]. 

Solution 
We note that the derivative of f/g is - (fg' - f 'g)/g2 so if we take g so that f/g is decreasing, then we are almost 
home. Not quite, because of the difficulty that f may be zero. For example, if we take g(x) = x f(x), then fg' - f 'g is 
zero whenever f(x) = 0. 

f has only finitely many zeros, for otherwise the zeros would have a limit point c and then by continuity we would 
have f(c) = f '(c) = 0. So we may take a polynomial p(x) such that p(x) f '(x) = -1 at each zero of f. Now consider 
g(x) = x f(x) + k p(x). We have f(x) g'(x) - f '(x) g(x) = f(x)2 + k(f(x) p'(x) - f '(x) p(x) ). Now f(x) p'(x) - f '(x) p(x) 
= 1 at each zero of f, so we can find an open set K containing all these zeros such that f(x) p'(x) - f '(x) p(x) > 1/2 on 
K. Now [a, b] - K is compact and contains no zeros of f(x)2, which is continuous, so we can find ε > 0, so that 
f(x)2 > ε on [a, b] - K. But [a, b] is compact, so |f(x) p'(x) - f '(x) p(x)| < some M on [a, b]. Take k < ε/M. Then on 
[a, b] - K, f(x)2 > ε and k|f(x) p'(x) - f '(x) p(x)| < ε, so f(x) g'(x) - f '(x) g(x) > 0. On K, f(x)2 is non-negative and k( 
f(x) p'(x) - f '(x) p(x) ) is positive, so f(x) g'(x) - f '(x) g(x) > 0. 

Problem B1 
Join each of m points on the positive x-axis to each of n points on the positive y-axis. Assume that no three of the 
resulting segments are concurrent (except at an endpoint). How many points of intersection are there (excluding 
endpoints)? 

Solution 
Answer: mn(m-1)(n-1)/4. 

Let us call the points on the y-axis y1 < y2 < ... < yn and the points on the x-axis x1 < x2 < ... < xm. Let us join first 
y1 to each xi, then y2 and so on. Joining y1 to each of the xi creates no intersections. Joining y2 to x1 creates m-1 
intersections. Joining it to x2 creates m-2 intersections and so on. So, in all, joining y2 gives 1 + 2 + ... + m-1 = 
m(m-1)/2 intersections. 

Similarly joining y3 to x1 gives 2(m-1) intersections. Joining it to x2 gives 2(m-2) and so on. So, in all, y3 gives 2 x 
m(m-1)/2. Similarly, yr+1 gives r x m(m-1)/2. So in total we get m(m-1)/2 (1 + 2 + ... + n-1) = mn(m-1)(n-1)/4. 



Problem B2 
Show that any positive real can be expressed in infinitely many ways as a sum ∑ 1/(10 an), where a1 < a2 < a3 < ... 
are positive integers. 

Solution 
∑ 1/n diverges, so ∑ 1/(10n) diverges. Let k be any positive real. Take N such that 1/(10N) < k. Let M be any 
integer > N. We show how to find an expression k = ∑ 1/(10an) with a1 = M. Take enough terms a2 = 1/(10(M+1)), 
a3 = 1/(10(M+2)), ... so that ∑ 1/(10an) < k, but adding another term would give a sum ≥ k. Let the difference k - ∑ 
1/(10an) be k1 > 0. Now take M1 so that 1/(10 M1) < k1 and repeat. [In other words, take as many terms 1/(10 M1) + 
1/(10(M1+1)) + ... as we can whilst keeping the sum < k1.] Let k2 be the new difference, and so on. This process 
gives a sum which converges to k. Each such sum is different because it has a different starting term. 

Problem B3 
Find a continuous function f : [0, 1] → [0, 1] such that given any β ∈ [0, 1], we can find infinitely many α such 
that f(α) = β. 

Solution 
We use an adapted space-filling curve. Let g(x) be a piecewise linear function with period 2: g(x) = 0 on [0, 1/3], 1 
on [2/3, 4/3] and 0 on [5/3, 2] with linear connecting pieces. For t any real in the range 0 ≤ t ≤ 1 let f(t) = g(t)/2 + 
g(9t)/4 + g(81t)/8 + g(729t)/16 + ... . The series is obviously uniformly convergent, so f is continuous. 

Now suppose that in base 3 we have t = 0.c1c2c3 ... with all cn = 0 or 2. Then 9nt = even integer + 0.c2n+1c2n+2... . 
Now 0.c2n+1c2n+2... lies in [0, 1/3] if c2n+1 = 0 and in [2/3, 1] if c2n+1 = 2, so g(9nt) = 0 if c2n+1 = 0, 1 if c2n+1 = 2. Thus 
f(t) has the binary expansion 0.a1a2a3 ... , where an = c2n-1/2. So given any s in [0, 1] we can find infinitely many t 
with f(t) = s, for odd n pick cn to give the correct binary expansion and for even n pick cn arbitrarily. 

Problem B4 
A is the 5 x 5 array: 
 

11 17 25 19 16 

24 10 13 15  3 

12  5 14  2 18 

23  4  1  8 22 

 6 20  7 21  9 

 

Pick 5 elements, one from each row and column, whose minimum is as large as possible (and prove it so). 

Solution 

Answer: 25, 23, 20, 18, 15. 

We can only pick one of 16, 17, 19, 25; only one of 23, 24; only one of 18, 22; and only one of 20, 21. That only 
gives 4 elements, so the minimum cannot be larger than 15. The answer shows that 15 can be achieved. 

Problem B5 
L1 is the line { (t + 1, 2t - 4, -3t + 5) : t real } and L2 is the line { (4t - 12, -t + 8, t + 17) : t real }. Find the smallest 
sphere touching L1 and L2. 

Solution 
The sphere has diameter PQ, where P(s + 1, 2s - 4, -3s + 5) is on L1, and Q(4t - 12, -t + 8, t + 17) is on L2. PQ is as 
short as possible. It can also be characterised as perpendicular to L1 and L2. 

PQ2/2 = 7s2 + st + 9t2 + 25s - 52t + 457/2. At the minimum the two partial derivatives must be zero, so 14s + t + 25 
= 0, s + 18t - 52 = 0. Solving s = -2, t = 3. This gives P (-3, -12, 11), Q(0, 5, 20), the radius (= PQ/2) as 1/2 √251 
and the centre as (-3/2, -7/2, 31/2). 

Problem B6 
α and β are positive irrational numbers satisfying 1/α + 1/β = 1. Let an = [n α] and bn = [n β], for n = 1, 2, 3, ... . 
Show that the sequences an and bn are disjoint and that every positive integer belongs to one or the other. 



Solution 
β positive implies α > 1, so [α (n+1)] > [α n] and the sequence does not contain any integers twice. Similarly for 
[βn]. 

If k appears in both sequences, then for some m, n we have: k < n α < k + 1, k < m β < k + 1. Hence k/α < n < 
(k+1)/α, k/β < m < (k+1)/β. Adding gives k < m+n < k + 1. Contradiction. So an integer appears in at most one 
sequence. 

Suppose k does not appear in the sequence [n α]. Then for some n we have n α < k, and k + 1 < (n + 1) α. The first 
inequality implies that n < k/α = k - k/β. Hence (k - n) β > k. The second inequality implies that n + 1 > (k + 1)/α = 
k + 1 - (k + 1)/β. Hence (k - n) β < k + 1. So [(k - n) β ] = k. 

Problem B7 
Given any finite ordered tuple of real numbers X, define a real number [X], so that for all xi, α: 
(1)  [X] is unchanged if we permute the order of the numbers in the tuple X; 

 

(2)  [(x1 + α, x2 + α, ... , xn + α)] = [(x1, x2, ... , xn)] + α;  

 

(3)  [(-x1, -x2, ... , -xn)] = - [(x1, x2, ... , xn)];  

 

(4)  for y1 = y2 = ... = yn = [(x1, x2, ... , xn)], we have [(y1, y2, ... , yn, 

xn+1)] = [(x1, x2, ... , xn+1)].  

Show that [(x1, x2, ... , xn)] = (x1 + x2 + ... + xn)/n. 

Solution 
It is convenient to write [(x1, ... , xn)] simply as [x1, ... , xn]. We use induction on n. For n = 1, we have [0] = - [0], 
so [0] = 0. Then (3) gives that [x] = x, which establishes the result for n = 1. 

[x, 0] = - [-x, 0] = - [0, -x] = - [x, 0] + x, so [x, 0] = x/2. Hence [x, y] = y + [x - y, 0] = y + (x - y)/2 = (x + y)/2, 
which establishes the result for n = 2. Now suppose it is true for n. 

We have that [x, -x, 0, 0, ... ,0] = - [-x, x, 0, 0, ... , 0] by (3), = - [x, -x, 0, 0, ... ,0] by (1), so [x, -x, 0, 0, ... ,0] = 0. 
Now suppose x1 + x2 + ... + xn+1 = 0, then the n numbers x1, x2, ... , xn and the n numbers 0, 0, ... , 0, -xn+1 have the 
same sum, so by (4) we have for any z that [x1, ... , xn, z] = [0, 0, ... , 0, -xn+1, z]. Take z = xn+1, then [0, ... 0, -xn+1, 
xn+1] = 0, so [x1, ... , xn, xn+1] = 0. 

Finally, given arbitrary x1, ... , xn+1, let k be their mean, then x1 - k, x2 - k, ... , xn+1 - k have zero sum, so [x1 - k, x2 - 
k, ... , xn+1 - k] = 0. Hence [x1, ... , xn+1] = k, as required. 



21st Putnam 1960 

Problem A1 
For n a positive integer find f(n), the number of pairs of positive integers (a, b) such that ab/(a + b) = n. 

Solution 
ab = n(a + b) implies a(b - n) = nb > 0, so a and b must both exceed n. Let b = n + d, then a = n(n+d)/d = n + n2/d. 
This is a solution iff d divides n2. So f(n) = the number of divisors of n2. 

Problem A2 
Let S be the set consisting of a square with side 1 and its interior. Show that given any three points of S, we can 
find two whose distance apart is at most √6 - √2. 

Solution 
Suppose we can find three points of S so that their three distances exceed k = √6 - √2. If one of the points is not on 
the top side of S and another on the bottom side, we can expand S by a combination of translation and expansion in 
the direction perpendicular to those sides to get three points with larger minimum distance. Similarly, if one of the 
points is not on each of the other two sides of S, we can expand S by a combination of expansion and translation to 
get three points with larger minimum distance. So we end up with a point on each side. But there are only three 
points, so one point must be at a vertex of the square. The other points on the two sides meeting at the vertex are all 
a distance <= 1 < k from the vertex, so the other two points must be on the other two sides. Let the vertices be A, B, 
C, D (in order). Assume the vertex point is at A. Let X be the point on BC a distance 2 - √3 from B. Then AX = k, 
so the point on BC must lie on the segment XC. Similarly, let Y be the point on DC a distance 2 - √3 from D. Then 
AY = k, so the point on DC must lie on the segment YC. But XY = k, so the two points will be closer than k unless 
one is at X and the other at Y but in that case the distances AX, AY do not exceed k. So it is not possible to arrange 
for the three points to have all distances > k. 

Problem A3 
Let  be arbitary reals. Show that (1 - α) eα + (1 - β) eα+β + (1 - γ) eα+β+γ + (1 - δ) eα+β+γ+δ + (1 - ε) 
eα+β+γ+δ+ε ≤ k4, where k1 = e, k2 = k1

e, k3 = k2
e, k4 = k3

e (so k4 is 10k with k approx 1.66 million). 

Solution 
Differentiating shows that the maximum of (1 - x)ex is 1 and occurs at x = 0. Now consider (1 - α) eα + (1 - β) eα + 

β = eα ( 1 - α + (1 - β) eβ). For any given α, the maximum over β is 1, so we have to maximise eα(2 - α). 
Differentiating shows that this has maximum k1 = e at α = 1. 

Now consider (1 - α) eα + (1 - β) eα + β + (1 - γ) eα + β + γ = eα ( 1 - α + (1 - β) eβ + (1 - γ) eβ + γ). We have just shown 
that the maximum of (1 - β) eβ + (1 - γ) eβ + γ is k1 at β = 1, γ = 0. So we have to maximise (1 - α + k1) e

α. 
Differentiating shows that this is k2 at α = k1. 

Similarly, the maximum of (1 - α) eα + (1 - β) eα + β + (1 - γ) eα + β + γ + (1 - δ) eα + β + γ + δ is k3 at α = k2, β = k1, γ = 1, δ 
= 0. Finally, the maximum of the desired expression is k4 at α = k3, β = k2, γ = k1, δ = 1, ε = 0. 

Problem A4 
Given two points P, Q on the same side of a line l, find the point X which minimises the sum of the distances from 
X to P, Q and l. 

Solution 
wlog take P to the right of Q and Q to be closer to the line than P. Take A on the line so that PA makes a 30o angle 
with the line and A is to the left of P. Similarly, take B on the line so that QB makes a 30o angle with the line and B 
is to the right of Q. There are three cases to consider. 
(1) If the two segments PA and QB intersect, then their point of intersection X is the required point. 
(2) If A is to the right of B, then join P to Q' the reflection of Q in the line. X is the point at which PQ' meets the 
line. 
(3) If PA and QB do not meet, but A is to the left of B, then take X = Q. 

We must now prove these statements. It is convenient to take the line l to be the x-axis. Take Q to be (a, b) and P to 
be (c, d). We assume that d > b > 0. Notice first that the sum of the three distances from the point X with 



coordinates (x, y) , which we will write as f(x, y), is a continuous and differentiable function of x and y. Also it 
tends to infinity as x or y tends to infinity. Hence the minimum must occur either (A) at a point where grad f = 0, or 
(B) on the boundary of the allowed region, in other words on y = 0, or (C) at a point where grad f does not exist. 

We have f(x, y) = y + √( (x - a)2 + (y - b)2) + √( (x - c)2 + (y - d)2). Hence grad f = ( (x - a)/QX + (x - c)/PX, 1 + (y - 
b)/QX + (y - d)/PX) = r + q + p, where r is the unit vector along the perpendicular line from the line l to X, q is the 
unit vector from Q to X, and p is the unit vector from P to X. By resolving along the line perpendicular to r we find 
that the angles between q and r and between p and r must be equal. Similarly, the other pairs of angles. Hence the 
angle between each pair of p, q, r is 120o. But it is clear that the only possible such point is the intersection H of the 
segments PA and QB (if it exists). H is thus the only candidate of type (A). 

It is obvious that for points X on the line l, f(x, y) is minimised at K, the intersection of the line with PQ' (joining P 
to the reflection of Q), so that is the only candidate of type (B). Finally, the only points were the existence of grad f 
is doubtful are P and Q and indeed it is easy to see that grad f is not well defined there (for example, the limits as 
we approach parallel to the two axes are different). But clearly the distance sum is lower at Q than at P, so Q is the 
only candidate of type (C). 

We now look separately at cases (1), (2) and (3). In case (1) all three candidates H, K and Q are available. We show 
first that H is better than Q. Let the perpendicular from Q to l meet l at C and the perpendicular from H 
to l meet l at D. Then angle HQC is 60o, so QC = HD + QH/2. By the cosine rule we have PQ2 = PH2 + QH2 + 
PH·QH > (PH + QH/2)2. Hence PQ + QH/2 > PH + QH and so PQ + QC = PQ + QH/2 + HD > PH + QH + HD. 
Next we show that H is better than K. As before let HD be the perpendicular to l. It is sufficient to show that PH + 
QH + HD < PD + QD, since we know that PD + QD <= PK + QK. Now PD2 = PH2 + HD2 + PH·HD > (PH + 
HD/2)2, so PD > PH + HD/2. Similarly, QD > QH + HD/2. Adding gives the required result. That shows that H 
minimises the distance sum for case (1). 

In case (2) only candidates K and Q are available. Take QC and PE as the perpendiculars to l. Then PQ2 = CE2 + 
(PE - QC)2, PQ'2 = CE2 + (PE + QC)2. We wish to show that PQ' < PQ + QC, or CE2 + (PE + QC)2 < CE2 + (PE - 
QC)2 + QC2 + 2 QC √(CE2 + (PE - QC)2), or (4 PE - QC)2 < 4(CE2 + PE2 - 2 PE QC + QC2), or 4 CE2 > 12 PE2 - 3 
QC2. That is certainly true since we have CE > (PE + QC) √3. 

Finally, in case (3) the only candidates are K and Q. So as in the previous paragraph we wish to show that 4 CE2 < 
12 PE2 - 3 QC2. Now we have CE < √3 (PE - QC) from which the inequality follows. 

Problem A5 
The real polynomial p(x) is such that for any real polynomial q(x), we have p(q(x)) = q(p(x)). Find p(x). 

Solution 
Take q(x) = x + k and set x = 0. Then we have p(k) = p(0) + k. This is true for all k, so p(x) must be x + c for some 
c. Now take q(x) = x2. We get x2 + c = (x + c)2 = x2 + 2cx + c2. Hence c = 0 and p(x) = x. 

Problem A6 
A player throws a fair die (prob 1/6 for each of 1, 2, 3, 4, 5, 6 and each throw independent) repeatedly until his total 
score ≥ n. Let p(n) be the probability that his final score is n. Find lim p(n). 

Solution 
Answer: 2/7. 

For i = 1, 2, 3, 4, 5, let pi(n) = prob that the final score is n+i if the player stops when his total score is at least n. We 
note that p(n) is also the probability that the player's total equals n on some throw if he throws repeatedly. Now we 
can see that p5(n) = 1/6 p(n-1), because the only way to achieve a final score of n+5 without passing through n, 
n+1, n+2, n+3, n+4 is to reach n-1 and then throw a 6. Similarly, p4(n) = 1/6 p(n-1) + 1/6 p(n-2), because to reach 
n+4 without passing through n, n+1, n+2, n+3 you must either to through n-1, which requires reaching n-1 and then 
throwing a 5, or not, in which case you must reach n-2 and then throw a 6. Similarly, p3(n) = 1/6 p(n-1) + 1/6 p(n-2) 
+ 1/6 p(n-3), p2 = 1/6 p(n-1) + 1/6 p(n-2) + 1/6 p(n-3) + 1/6 p(n-4), and p1(n) = 1/6 p(n-1) + 1/6 p(n-2) + 1/6 p(n-3) 
+ 1/6 p(n-4) + 1/6 p(n-5). Adding, we get: 1 = p(n) + p1(n) + p2(n) + p3(n) + p4(n) + p5(n) = p(n) + 5/6 p(n-1) + 4/6 
p(n-2) + 3/6 p(n-3) + 2/6 p(n-4) + 1/6 p(n-5). 



In the limit, p(n-5) = p(n-4) = ... = p(n). Hence we get: p1(n) = 5/6 p(n), p2(n) = 4/6 p(n), p3(n) = 3/6 p(n), p4(n) = 
2/6 p(n), p5(n) = 1/6 p(n). But they sum to 1, so p(n) = 2/7. 

We have (as above) p(n) = 1/6 p(n-1) + 1/6 p(n-2) + 1/6 p(n-3) + 1/6 p(n-4) + 1/6 p(n-5) + 1/6 p(n-6) (*). Let m(n) 
= min{ p(n-1), p(n-2), p(n-3), p(n-4), p(n-5), p(n-6) }. Then (*) establishes that p(n) ≥ m(n), and so m(n+1) ≥ m(n). 
Similarly, let M(n) = max{ p(n-1), p(n-2), p(n-3), p(n-4), p(n-5), p(n-6) }. Then (*) shows that p(n) ≤ M(n), so 
M(n+1) ≤ M(n). Thus m(n) is a monotonic increasing sequence and M(n) is a monotonic decreasing sequence. But 
m(n) is obviously bounded above by any M(m), and M(n) is bounded below by any m(m). So both sequences 
converge. Suppose they converged to different limits. So m(n) converges to m and M(n) converges to M with M - 
m > 36k > 0. Take n sufficiently large that m(n) > m - 6k. At least one of the terms on the rhs of (*) must equal 
M(n) and the others are at least m(n), so p(n) ≥ 5/6 m(n) + 1/6 M(n) > 5/6 (m - 6k) + 1/6 M > 5/6 m - 5k + 1/6 (m + 
36k) = m+ k. But that means that m(n) > m+k for all sufficiently large n. Contradiction. Hence M and m are the 
same and p(n) must have the same limit. 

Problem A7 
Let f(n) be the smallest integer such that any permutation on n elements, repeated f(n) times, gives the identity. 
Show that f(n) = p f(n - 1) if n is a power of p, and f(n) = f(n - 1) if n is not a prime power. 

Solution 
A permutation on n elements can be written as a product of disjoint cycles of length <= n. So f(n) is the smallest 
number divisible by 2, 3, ... , n. 

If n is not a power of a prime, then we can write n = rs, with r and s relatively prime and each greater than 1. Then 
r, s < n - 1, so r and s divide f(n-1) and hence n divides f(n-1). So f(n) = f(n-1). If n = pm+1, then pm divides f(n-1), 
but not pm+1, so f(n) = p f(n). 

Problem B1 
Find all pairs of unequal integers m, n such that mn = nm. 

Solution 
Answer: (2, 4), (4, 2), (-2, -4), (-4, -2). 

Suppose first that m and n are both positive. Assume m > n. Then we can put m = n + k with k > 0. Hence (1 + 
k/n)n = nk. But for x > 1 we have 1 + x < ex (the derivative of f(x) = ex - x - 1 is positive and f(0) = 0) and hence (1 
+ k/n)n < ek. So there are no solutions for n > 2. If n = 1, then nm = 1 and hence m = 1, contradicting the fact that m 
and n are unequal. If n = 2, then m must be a power of 2. Suppose m = 2h. Then we find h = 1 or 2. h = 1 is invalid 
(because m and n are unequal), so m = 4. There is also the corresponding solution with m < n. 

If n < 0 and m > 0, then nm = 1/m-n. So m divides 1 and hence m = 1. But m must be even for to make nm positive. 
Contradiction. So there are no solutions of this type. If m and n are both negative, then -m, -n is a solution, so the 
only possibilities are (-2, -4) and (-4, -2) and it is readily checked that these are indeed solutions. 

Problem B2 
Let f(m, n) = 3m+n+(m+n)2. Find ∑0

∞∑0
∞ 2-f(m, n). 

Solution 
Answer: 4/3. 

The obvious approach is to sum over n and then over m (or vice versa). But it is not obvious how to sum xN where 
N runs through the squares. So we wonder just what values f(m, n) can take. A little experimentation suggests that 
it takes each even value just once. 

In fact, it is clear that r(r+1) is always even and that the difference between r(r+1) and the next number in the 
sequence, (r+1)(r+2) is 2r+2, so any positive even number can be uniquely expressed as r(r+1) + 2s with 0 ≤ s ≤ r. 
But taking m = s, n = r-s, this is equivalent to the statement that any positive even number can be uniquely 
expressed as 3m+n+(m+n)2. 

Hence the sum is just 1 + 1/4 + 1/42 + ... = 4/3. 



Problem B3 
Fluid flowing in the plane has the velocity (y + 2x - 2x3 - 2xy2, - x) at (x, y). Sketch the flow lines near the origin. 
What happens to an individual particle as t → ∞ ? 

Solution 
The key insight is that the unit circle centre the origin is one possible trajectory. [The velocity is (y + 2x - 2xr2, - x) 
= (y, -x) on r = 1.] Hence fluid starting inside this circle remains inside it and fluid starting outside it remains 
outside. Differentiating r2 = x2 + y2 gives r dr/dt = 2x2(1 - r2). Hence if r < 1, then dr/dt is positive, so points inside 
the unit circle move outwards towards it. Similarly, if r > 1, then dr/dt is negative, so points outside the unit circle 
move inwards towards it. 

To find the behaviour close to the origin, we drop the cubic terms. The equations are then linear and can be solved 
to get x = (at + b)et, y = (-at + a - b)et. This gives S shaped curves centred on the origin at a 45o angle touching the 
line y = -x. 

Problem B4 
Show that if an (infinite) arithmetic progression of positive integers contains an nth power, then it contains 
infinitely many nth powers. 

Solution 
Let the difference between adjacent terms of the progression be d. Suppose that Nn is an nth power in the 
progression. Then (N+d)n is a larger nth power in the progression (it is obvious from the binomial expansion that it 
has the form N + kd). 

Problem B5 
Define an by a0 = 0, an+1 = 1 + sin(an - 1). Find lim (∑0

n ai)/n. 

Solution 
Answer: 1. 

Note that 1 - an+1 = sin (1 - an). Put cn = 1 - an. Note that c0 belongs to the interval (0, 1]. Now for x in (0, 1] we have 
that sin x < x and sin x is also in (0 , 1]. So it follows (by a trivial induction) that 1 = c0 > c1 > c2 > ... > cn > 0. So 
cn is a monotonically decreasing sequence bounded below by 0. Hence it must tend to a limit c ≥ 0. But c must 
satisfy c = sin c. Hence c = 0. Hence an converges to 1. Hence (∑0

n ai)/n converges to 1 also. 

Problem B6 
Let 2f(n) be the highest power of 2 dividing n. Let g(n) = f(1) + f(2) + ... + f(n). Prove that ∑ exp( -g(n) ) converges. 

Solution 
If n is odd, then f(n) = 0. If n is even, then f(n) ≥ 1. Hence g(n+2) ≥ g(n) + 1. So the series is dominated by 1 + (1/e 
+ 1/e) + (1/e2 + 1/e2) + ... < 2/(1 - 1/e). So the sums are bounded above. All terms are positive, so it must converge. 

Problem B7 
Let R' be the non-negative reals. Let f, g : R' → R be continuous. Let a : R' → R be the solution of the differential 
equation: a' + f a = g, a(0) = c. Show that if b : R' → R satisfies b' + f b ≥ g for all x and b(0) = c, then b(x) ≥ a(x) 
for all x. Show that for sufficiently small x the solution of y' + f y = y2, y(0) = d, is y(x) = max ( d e-h(x) - ∫0

x e-(h(x)-h(t) 

) u(t)2 dt ), where the maximum is taken over all continuous u(t), and h(t) = ∫0
t (f(s) - 2u(s)) ds. 

Solution 
Put F(x) = ∫0

x f(t) dt. Put A(x) = a(x) eF(x), B(x) = b(x) eF(x). Then A' = (a' + f a) eF = g eF, and B' = (b' + f b) eF ≥ g 
eF, since eF > 0. Hence B' ≥ A' for all x. But B(0) = A(0), so B(x) ≥ A(x) for all x and hence b(x) ≥ a(x) for all x. 
Let u be any continuous function on R'. Put U(x) = ∫0

x u(t) dt. Put h(x) = F(x) - 2 U(x) = ∫0
x f(t) - 2u(t) dt. Then h(0) 

= 0. We have (y - u)2 ≥ 0, so y2 - 2uy ≥ -u2. Now put z = y eh, so that z(0) = y(0) eh(0) = d. 

z' = (y' + h'y) eh = (y' + (f - 2u)y) eh = (y2 - 2uy) eh ≥ -u2 eh. Hence z(x) = z(0) + ∫0
x z'(t) dt ≥ d - ∫0

x u(t)2 eh(t) dt. 
Hence y(x) = z(x) e-h(x) ≥ d e-h(x) - ∫0

x e-(h(x) - h(t) ) u(t)2 dt. So z(x) ≥ the maximum over all u. 
If we put u = y (the solution), then we get equality. 



22nd Putnam 1961 

Problem A1 
The set of pairs of positive reals (x, y) such that xy = yx form the straight line y = x and a curve. Find the point at 
which the curve cuts the line. 

Solution 
Put y = kx. Then we get x = k1/(k-1), y = kk/(k-1). This gives a curve which cuts y = x at x = lim k1/(k-1), where the limit 
is taken as k tends to 1. Put k = 1 + 1/n, then the limit is (1 + 1/n)n, which is e. So the point of intersection is (e, e). 

Problem A2 
For which real numbers α, β can we find a constant k such that xαyβ < k(x + y) for all positive x, y? 

Solution 
Answer: α, β ≥ 0 and α + b = 1. 

If α < 0, then taking x sufficiently small and y = 1 gives xαyβ > k(x + y) for any k. Similarly for β < 0. If α + b > 1, 
then taking x = y sufficiently large gives xαyβ > k(x + y) for any k. On the other hand, if α + β < 1, then taking x = y 
sufficiently small gives xαyβ > k(x + y) for any k. Suppose, on the other hand that α, b ≥ 0 and α + β = 1. Take x ≥ 
y. Then xαyβ ≤ xα+β = x, so the result holds with k = 1. 

Problem A3 
Find limn→∞ ∑1

N n/(N + i2), where N = n2. 

Solution 
As usual, we try integration. We can write the sum as 1/n ∑1

N 1/(1 + (i/n)2). This is a Riemann sum for the integral 
∫0

n 1/(1 + x2) dx and hence tends to ∫0
∞ 1/(1 + x2) dx = tan-1x |0

∞ = π/2. 

Problem A4 
If n = ∏pr be the prime factorization of n, let f(n) = (-1)∑ r and let F(n) = ∑d|n f(d). Show that F(n) = 0 or 1. For 
which n is F(n) = 1? 

Solution 
Answer: F(n) = 1 for n square. 

If some r is odd, then the factors of n can be grouped into pairs pam, pr-am with f(pam), f(pr-am) having opposite 
signs. So in this case F(n) = 0. 

If all r are even, so that n is a square, then we may use induction on the number N of prime factors. For N = 1, we 
have n = p2m, so there are m+1 factors p2r with f = 1 and m factors p(2r+1) with f = -1. So the result is true for N = 
1. Suppose it is true for N. Take n = p2mP, where P has m prime factors. Each divisor of n has the form p2rs or p2r+1s, 
where s is a divisor of P. For the first type f(p2rs) = f(s), so summing over s gives 1. Then summing over r gives 
m+1. For the second type f(p2r+1s) = -f(s), so summing over s gives -1. Then summing over r gives -m. Hence F(n) 
= 1 and the result is true for N+1. 

Problem A5 
Let X be a set of n points. Let P be a set of subsets of X, such that if A, B ∈ P, then X - A, A ∪ B, A ∩ B ∈ P. 
What are the possible values for the number of elements of P? 

Solution 
Answer: 2, 4, 8, ... , 2n. 

Take 0 ≤ r < n. Let A1 = {1}, A2 = {2} , ... , Ar = {r}, Ar+1 = {r+1, r+2, ... , n}. Consider the collection of all unions 
of sets Ai. This collection has 2r+1 elements and satisfies the conditions. So this shows that we can achieve the 
values 2, 4, 8, ... , 2n. 



To prove the converse we use induction on n. It is obviously true for n = 1. Suppose it is true for all n < N. Let X 
have N points and P be a set of subsets of X satisfying the condition. If |P| = 2, then there is nothing to prove. 
Otherwise we can find a member Y of P other than the empty set and X which has no non-trivial subsets in P. Now 
consider the collection Q of subsets of X - Y which are in P. It is easy to check that (1) P is just the collection of all 
A and A ∩ Y, where A is in Q, so that |P| = 2|Q|, and (2) Q satisfies the conditions, so |Q| is a power of 2 by 
induction. 

Problem A6 
Consider polynomials in one variable over the finite field F2 with 2 elements. Show that if n + 1 is not prime, then 1 
+ x + x2 + ... + xn is reducible. Can it be reducible if n + 1 is prime? 

Solution 
Let n+1 = ab, then 1 + x + x2 + ... + xn = (1 + x + x2 + ... + xa-1)(1 + xa + x2a + ... + xab-a). Note that this does not 
depend upon the field having two elements. 

Yes. For example, (1 + x + x3)(1 + x2 + x3) = 1 + x + x2 + x3 + x4 + x5 + x6. 

Problem A7 
S is a non-empty closed subset of the plane. The disk (a circle and its interior) D ⊇ S and if any disk D' ⊇ S, then 
D' ⊇ D. Show that if P belongs to the interior of D, then we can find two distinct points Q, R ∈ S such that P is 
the midpoint of QR. 

Solution 
The existence of D imposes strong restrictions on S. In fact, we will show that S must contain the entire perimeter 
C of D. For suppose it does not contain a point X on C. Then since S is closed, it does not contain a neighbourhood 
of X. So we can find a small circle C' centre X so that the disk D' enclosed by C' lies entirely outside S. Let C' meet 
C at A and B. Take a circle C'' through A and B with centre on the same side of AB as the centre of C, but further 
away (so that it has a larger radius than C). Then C'' contains all points of D - D' and hence all points of S. But it 
does not contain all points of D. Contradiction. 

Finally, note that any point in the interior of D lies on the midpoint of some chord of C. 

Problem B1 
an is a sequence of positive reals. h = lim (a1 + a2 + ... + an)/n and k = lim (1/a1 + 1/a2 + ... + 1/an)/n exist. Show that 
h k ≥ 1. 

Solution 
Apply the arithmetic-geometric mean theorem to each sum. We get that (a1 + a2 + ... + an)/n ≥ (a1a2 ... an)

1/n, (1/a1 + 
1/a2 + ... + 1/an)/n = 1/(a1a2 ... an)

1/n. Hence their product is at least 1. Hence the product of the limits also. 

Problem B2 
Two points are selected independently and at random from a segment length β. What is the probability that they are 
at least a distance α (< β) apart? 

Solution 
Consider which points (x, y) of the square x = 0 to β, y = 0 to β have |x - y| ≥ α. Evidently the acceptable points lie 
in the two right-angled triangles: (0, α), (0, β), (β-α, β) and (α, 0), (β, 0), (β, β-α). These fit together to give a square 
side β-α, so the area of the acceptable points is (β-α)2 out of a total area of β2. Thus the probability is (β-α)2/(β)2. 

Problem B3 
A, B, C, D lie in a plane. No three are collinear and the four points do not lie on a circle. Show that one point lies 
inside the circle through the other three. 

Solution 
If the convex hull is a triangle, then the fourth point lies inside its circumcircle. So suppose ABCD is convex. One 
pair of opposite angles must have sum greater than 180o (otherwise the points would lie on a circle). Suppose they 
are A and C. Then we claim that C lies inside the circle through A, B, D. Take a point C' on the ray DC on the far 



side of C from D such that ∠CBC' = ∠A + ∠C - 180o. Then ∠C' = 180o - ∠A. So C' lies on the circle. Hence C 
which lies on the segment C'D lies inside the circle. 

Problem B4 
Given x1, x2, ... , xn ∈ [0, 1], let s = 1≤i<j≤n |xi - xj|. Find f(n), the maximum value of s over all possible {xi}. 

Solution 
Answer: f(2m) = m2 (half the points 0, half 1); f(2m+1) = m2 + m (m+1 points 0, m points 1). 

It remains to prove that we cannot do better than this. We prove that this is best possible by induction. It is obvious 
for n = 2, 3. Suppose it is true for n. Take n+2 points. Let A be the leftmost point and B the rightmost point. Then 
the new terms in the sum the n+2 points are AB and AC, CB for each existing C. But these 2n + 1 terms sum to at 
most n + 1 (AC + CB = AB ≤ 1). So f(n+2) ≤ f(n) + n + 1. For n = 2m this gives f(2m+2) ≤ m2 + 2m + 1 = (m + 1)2. 
For n = 2m + 1, it gives f(2m+3) ≤ m2 + m + 2m + 1 + 1 = (m+1)2 + (m+1). 

Problem B5 
Let n be an integer greater than 2. Define the sequence am by a1 = n, am+1 = n to the power of am. Either show that 
am < n!! ... ! (where the factorial is taken m times), or show that am > n!! ... ! (where the factorial is taken m-1 
times). 

Solution 
If it was true that nk < k!. then the upper limit on am would be almost trivial. Unfortunately, nk > k! for small k, 
which results in a few complications. Let nm = n! ... ! (m times). We will prove that am < nm by induction on m. For 
m = 1, the result just states that n < n!, which is obviously true. Suppose now that n ≥ 5. Then n! ≥ n(n-1)3 > 2n2. 
So, a fortiori, nm > 2n2 for m ≥ 1. It is easy to check that for n = 3, a2 = 27 < n2 = 3!! = 720, so the result is true for 
m = 2. Also n2 > 2n2 = 18. Similarly, for n = 4, a2 = 256 < n2 = 4!! = 24! which establishes the result for m = 2. 
Also n2 > 2n2 = 32. So for all n we have a starting case m for which also nm > 2n2. 

If k ≥ 2n2, then half the terms in k! are at least n2, so their product is at least n2 k/2 = nk. In other words k! > nk. So 
suppose that am < nm, (*). Then since nm > 2n2, we may take (*) to the power of n to get am+1 = nlhs < nrhs < nm+1. 
Hence the result is true for all m. 

The lower limit is harder because it is not true that nk > k! , so the result for m+1 does not follow in an immediate 
way from that for m. 

Let f0(n) = n, f1(n) = f0(n) n!, f2(n) = f1(n) n!! , f3(n) = f2(n) n!!!, ... . We show that fm+1(n) < n to the power of fm(n). 
We use induction on m. For m = 0, this reads n n! < nn, which is obviously true. Now assume it is true for m and all 

n. Then we have fm+1(n) = n fm(n!) < n (n! to the power of fm-1(n!) ) < (n n!) to the power of fm-1(n!) < nn to the 
power of fm-1(n!) = n to the power of fm(n). 

It is now an easy induction that fm(n) < am+1. For m = 1, this just states that n n! < nn. Suppose it is true for m, then 
fm+1(n) < n to the power of fm(n) < n to the power of am+1 = am+2. But obviously n! ... ! (! taken m times) < fm(n) and 
hence < am+1. 

Problem B6 
Let y be the solution of the differential equation y'' = - (1 + √x) y such that y(0) = 1, y'(0) = 0. Show that y has 
exactly one zero for x ∈ (0, π/2) and find a positive lower bound for it. 

Solution 
Let z be the solution of z'' = -z with z(0) = 1, z'(0) = 0. Suppose y > 0 for 0 <= x <π/2. Then since y''z - yz'' = -(1 + 
√x) yz + yz = - √x yz, we have ∫0π/2 - √x yz dx = ∫0

π/2 (y''z - yz'') dx = (y'z - yz') |0
π/2 = y(π/2) ≥ 0. But - √x yz < 0 

throughout the range, so ∫0
π/2 - √x yz dx < 0. Contradiction. Hence y has at least one zero in (0, π/2). 

Let w be the solution of w'' = -3w with w(0) = 1, w'(0) = 0. Then w = cos (√3)x. Suppose y had a zero in (0, 
π/(2√3)). Then the same argument would show that w had a root in (0, π/(2√3) which is false. So π/(2√3)is a 
positive lower bound for any zero of y. 



Finally, suppose that y has more than one zero in (0, π/2). Let the first be at x = h and the second at x = k. Take v(x) 
to be A cos( (√3) x + B). We select A and B so that v(h) = 0 and v'(h) = y'(h). Now v cannot have another zero in 
(h, k), so we can establish a contradiction by a similar argument to the above. We have v'' = -3v. Hence y''v - yv'' = 
( -(1 + √x) + 3) yv which is strictly positive on (h, k). Hence ∫h

k (y''v - yv'') dx > 0. But ∫h
k (y''v - yv'') dx = (y'v - yv') 

|h
k = y'(k)v(k) < 0. [y' must be positive since y is zero and y(x) < 0 for x just less than k, whilst we know that v(k) is 

negative). Contradiction. Hence y has exactly one zero. 

Problem B7 
The sequence of non-negative reals satisfies an+m ≤ anam for all m, n. Show that lim an

1/n exists. 

Solution 
an ≤ a1an-1 ≤ a1

2an-2 ≤ ... ≤ a1
n. So an

1/n ≤ a1. All an are non-negative, so an
1/n ≥ 0. Thus we have established that {an

1/n} 
is bounded. 

Fix n. Take any N > n. Then we may write N = nq + r, with 0 ≤ r < n. We have aN ≤ an
q ar , so aN

1/N ≤ an
s ar

1/N, where 
s = q/N = (1 - r/N)/n. But (1 - r/N) tends to 1 as N tends to infinity, as does ar

1/N. Hence lim sup aN
1/N ≤ an

1/n. This is 
true for all n, so the sequence cannot have more than one limit point and hence converges. 



23rd Putnam 1962 

Problem A1 
5 points lie in a plane, no 3 collinear. Show that 4 of the points form a convex quadrilateral. 

Solution 
If the convex hull has 4 or 5 vertices, then we are done. If not, then two of the points, say D and E, must lie inside 
the triangle ABC formed by the other three. DE must intersect just two of AB, BC and CA. Suppose that it does not 
intersect AB. Then the four points A, B, D, E form a convex quadrilateral. 

Problem A2 
Let R be the reals. Find all f : K → R, where K is [0, ∞) or a finite interval [0, a), such that (1/k ∫0

k f(x) dx )2= f(0) 
f(k) for all k in K. 

Solution 
Answer: for [0, ∞) f(x) = b/(cx + 1)2 with c non-negative. For [0, a), f(x) = b/(cx + 1)2 with c >= -1/a. 

Put y = ∫0
x f(t) dt. Then the given equation becomes y2/x2 = by', where b = f(0). Integrating, b/y = c + 1/x, or y = 

bx/(cx + 1). Differentiating gives f(x) = y' = b/(cx + 1)2. 

f(-1/c) is undefined, so if K is the half-line, then c cannot be negative. If K is the finite interval [0, a), then we 
require c ≥ -1/a. Note that we can have equality because k must be strictly less than a. On the other hand, b can 
have any value. 

Problem A3 
ABC is a triangle and k > 0. Take A' on BC, B' on CA, C' on AB so that AB' = k B'C, CA' = k A'B, BC' = k C'A. 
Let the three points of intersection of AA', BB', CC' be P, Q, R. Show that the area PQR (k2 + k + 1) = area ABC (k 
- 1)2. 

Solution 
There does not seem to be a geometric solution, so one is faced with a messy algebraic calculation. There are 
various ways of doing it. The worst is probably to use ordinary Cartesian coordinates. 

Let us use points in the Argand diagram. Take A to be the origin and C to be the real point 1+k. Take B to be 
z(1+k). Then B' is k and A' is zk+1 (check: ( (zk+1) - (1+k) )/( (z(1+k) - (zk+1) ) = (zk-k)/(z-1) = k). We want to 
find R, the intersection of AA' and BB'. It lies on AA', so it is r(zk+1) for some 0 < r < 1. But it lies on BB', so it is 
k + s(zk+z-k) for some 0 < s < 1. After some manipulation, we get r = (k2+k)/(k2+k+1). 

Now take k < 1. Then area ARB = (AR/AA') area AA'B = r area AA'B (this is where we need k < 1, because if k > 
1, then the geometry changes). But area AA'B = (A'B/CB) area ABC, so area ARB = r/(1+k) area ABC = 
k/(k2+k+1) area ABC. Similarly, taking P as the intersection of BB' and CC' and Q as the intersection of AA' and 
CC', we have that area AQC = k/(k2+k+1) area ABC, and area CPB = k/(k2+k+1) area ABC. Adding we get (area 
ABC - area PQR), so area PQR/area ABC = 1 - 3k/(k2+k+1) = (1 - k)2/(k2+k+1). 

If k > 1, then we get the result with 1/k replacing k, but multiplying through by k2 gives the same formula. 

Problem A4 
R is the reals. [a, b] is an interval with b ≥ a + 2. f : [a, b] → R is twice differentiable and |f(x)| ≤ 1 and |f ''(x)| ≤ 1. 
Show that |f '(x)| ≤ 2. 

Solution 
Take the interval to be [-1, 1]. Taylor's formula gives f(1) = f(x) + (1 - x) f '(x) + (1 - x)2f ''(h)/2, f(-1) = f(x) + (-1 - 
x) f '(x) + (-1 - x)2f ''(k)/2 for some h, k in the interval (note that we are expanding about x). 

Subtracting, f(1) - f(-1) = 2 f '(x) + (1 - x)2f ''(h)/2 - (1 + x)2f ''(k)/2. Hence 2 |f '(x)| ≤ |f(1)| + |f(-1)| + (1 - x)2|f ''(h)|/2 
+ (1 + x)2|f ''(k)|/2 ≤ 2 + (1 - x)2/2 + (1 + x)2/2 = 3 + x2 ≤ 4. So |f '(x)| ≤ 2. 

  



Problem A5 
Find nC1 12 + nC2 22 + nC3 32 + ... + nCn n2 (where nCr is the binomial coefficient). 

Solution 
Answer: n(n+1)2n-2. 
Differentiate (1 + x)n, multiply by x and differentiate again. Set x = 1. 

Problem A6 
X is a subset of the rationals which is closed under addition and multiplication. 0 ∉ X. For any rational x ≠ 0, just 
one of x, -x ∈ X. Show that X is the set of all positive rationals. 

Solution 
Either x or -x belongs to X. X is closed under multiplication, so the square x2 = (-x)2 belongs to X. In particular, 1 
belongs to X. Hence by repeated addition all positive integers must belong to X. Suppose positive rational m/n does 
not belong to X. Then -m/n does, and hence by repeated addition -m. So m does not belong to X. Contradiction. So 
X contains all positive rationals. But if x is in X, -x is not, so X does not contain any negative rationals and hence X 
is just the set of all positive rationals. 

Problem B1 
Define x(n) = x(x - 1)(x - 2) ... (x - n + 1) and x(0) = 1. Show that (x + y)(n) = nC0 x(0)y(n) + nC1 x(1)y(n-1) + nC2 x(2)y(n-

2) + ... + nCn x(n)y(0). 

Solution 
Induction on n. It is obviously true for n = 1. Suppose it is true for n. We now multiply the rhs by (x + y - n). We 
now write: 

nC0 x(0)y(n)(x + y - n) = (nC0 x(0)y(n) (y-n) )  + (nC0 x(0)y(n) x ); 

nC1 x(1)y(n-1) (x + y - n)  = (nC1 x(1)y(n-1) (y-n+1) ) + (nC1 x(1)y(n-1) (x-1) ); 

nC2 x(2)y(n-2) (x + y - n) = (nC2 x(2)y(n-2) (y-n+2) ) + (nC2 x(2)y(n-2) (x-2) );  

... 

nCn x(n)y(0) (x + y - n) = (nCn x(n)y(0) y ) + (nCn x(n)y(0) (x-n) ). 

 

Now the first term in the 1st equation gives (n+1)C0 x(0)y(n+1). The second term in the 1st equation and the first term 
in the 2nd equation give (n+1)C1 x(1)y(n). Then the second term in the 2nd equation and the first in the 3rd equation 
gives (n+1)C2 x(2)y(n-1) and so on. Finally the second term in the last equation gives (n+1)C(n+1) x(n+1)y(0). So we 
have the result for n+1. 
 

Problem B2 
Let R be the reals, let N be the set of positive integers, and let P = {X : X ⊆ N}. Find f : R → P such that f(a) ⊂ 
f(b) (and f(a) ≠ f(b) ) if a < b. 

Solution 
Let Q be the rationals. Define g: Q → N as follows. For m/n where m and n are positive integers without any 
common factor, let g(m/n) = 2m3n and let g(-m/n) = 2m5n. Now define f: R → P by f(x) = { g(r) : r <= x is rational }. 
We claim that f has the required property. 

Clearly g is injective. Now suppose x < y are reals. We can find a rational r such that x < r < y. So g(r) belongs to 
f(y) but not to f(x). But S belongs to f(x), then S = g(q) for some q in Q with q < x. So q < y and hence S belongs to 
f(y) also. So f(x) is a subset of f(y). 

Problem B3 
Show that a convex open set in the plane containing the point P, but not containing any ray from P, must be 
bounded. Is this true for any convex set in the plane? 

Solution 
Answer: no. 
Let S be the convex set. Take any ray R from P. We can find X on R not in S. Since S is open we can take a small 
segment AB perpendicular to R through P with AP = PB which is entirely contained in S. Take A' on the line AX, 



the opposite side to A, and B' on BX the opposite side to B, with A'B' perpendicular to R. Then no point C' on the 
segment A'B' can be in S. For if it was, then we could project C'X to meet the segment AB in C and X would lie 
between two points of S and hence would have to be in S. But the angle A'PB' is greater than zero. So we have 
found an open interval about the direction PX (measured as a polar angle at P) such that S extends at most a 
distance AA' for directions within that interval. 

The interval [0, 2π] is compact and is covered by these open intervals, so a finite number of them cover it. Hence 
there is a finite distance d such that we can find a point not in S within a distance d of P in any direction. That 
means that no point Q a distance greater than d from P can be in S (otherwise all points on the segment QP would 
be in S and there would be no point not in S within a distance d in that direction). So S lies inside the disk radius d 
on P and hence is bounded. 

Take the slab 0 < y < 1 together with the point (0, 0). It is convex and unbounded but does not contain any ray 
through the origin. 

Problem B4 
A finite set of circles divides the plane into regions. Show that we can color the plane with two colors so that no 
two adjacent regions (with a common arc of non-zero length forming part of each region's boundary) have the same 
color. 

Solution 
Color points inside an odd number of circles blue and points inside an even number of circles red. Then we change 
color whenever we cross a circle. 

Problem B5 
Show that for n > 1, (3n + 1)/(2n + 2) < ∑1

n rn/nn < 2. 

Solution 
Suppose m <= n, then expanding by the binomial theorem, mn = ( (m-1) + 1)n = (m-1)n + n (m-1)n-1 + further 
positive terms > (m-1)n + n (m-1)n-1 > 2 (m-1)n. Hence nn > (n-1)n + (n-1)n > (n-1)n + (n-2)n + (n-2)n > ... > (n-1)n + 
(n-2)n + ... + 1n. So 2 nn > ∑1

n rn, which is one of the two required inequalities. 

The other is slightly harder. We approximate the integral of f(x) = xn between 0 and 1. We have to do slightly better 
than the usual Riemann sums. We also take into account the small triangles. The curve has increasing gradient, so 
the area under the curve between (r-1)/n and r/n is less than the area under the chord joining ( (r-1)/n, f( (r-1)/n ) ) 
and (r/n, f(r/n) ). Summing those areas gives: (1/n) ∑1

n (r/n)n - (1/2n) ∑1
n ( (r/n)n - ( (r-1)/n )n = (1/n) K - (1/2n) 

(n/n)n, where K = ∑1
n (r/n)n. The integral is just 1/(n+1), so we have: 1/(n+1) < K/n - 1/(2n), or K > n/(n+1) + 1/2 = 

(3n+1)/(2n+2). 

Problem B6 
f : [0, 2π) → [-1, 1] satisfies f(x) = ∑0

n (aj sin jx + bj cos jx) for some real constants aj, bj. Also |f(x)| = 1 for just 2n 
distinct values in the interval. Show that f(x) = cos(nx + k) for some k. 

Solution 
We call f(x) a trigonometric sum of degree n. Let x1, x2, ... , x2n be the points at which f(x) = 1 or -1. Two insights 
are needed. The first is that f '(xi) = 0. For if the value was non-zero, then f(x) would lie outside [-1, 1] for points 
sufficiently close (and on the correct side). [Note that there is a minor complication at 0. If f(0) = 1 and f '(0) < 0, 
then the aberrant points would be just less than 2π.] 

The second is that if a trigonometric sum of degree n has 2n roots (counting multiplicities), then it is determined up 
to a multiplicative constant (and if it has more than 2n roots then it is identically zero). We will establish that later. 
But 1 - f(x)2 has the 2n roots xi. Also, they all have multiplicity at least 2 since f '(xi) = 0. So we have at least 4n 
roots (counting multiplicities). Using the familiar formulae cos(A + B) etc we can write 1 - f(x)2 in the same form 
as f(x) but with the sum from 0 to 2n. 

Similarly, f '(x) is a trigonometric sum of degree n with the 2n roots xi. If we square it, each root is doubled, so f 
'(x)2 is a trigonometric sum of degree 2n with the 4n roots xi (each counted twice). Hence we must have f '(x)2 = 
multiple of (1 - f(x)2). Both are non-negative, so it must be a positive multiple. Hence we can take the square root 



to get f '(x) = N √(1 - f(x)2 ) for some fixed N. Solving, we get f(x) = cos(Nx + k). But for this to have just 2n 
values ±1 we must have N = n. 

To prove the result about trigonometric polynomials put z = eix, then f(x) = z-n p(z), where p is a polynomial in z of 
degree 2n. Hence p has at most 2n roots and is determined by those roots up to a multiplicative constant. Note that 
if f '(x) = 0 and f(x) = 0, then p(z) = 0 and since 0 = f '(x) = combination of p(z) and p'(z), then p'(z) = 0 also, so 
double roots of f have corresponding roots of multiplicity at least 2 in p. 
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Problem A1 
Dissect a regular 12-gon into a regular hexagon, 6 squares and 6 equilateral triangles. Let the regular 12-gon have 
vertices P1, P2, ... , P12 (in that order). Show that the diagonals P1P9, P12P4 and P2P11 are concurrent. 

Solution 
Take squares on the inside of alternate sides of the 12-gon. Each angle of the 12-gon is 150o, so the remaining 
angles after placing the squares are all 60o, so we have equilateral triangles on the inside of the remaining 6 sides of 
the 12-gon. Now the opposite sides of the squares form a hexagon. (As a check we may notice that if A, B, C, D are 
adjacent vertices of the 12-gon and we place squares ABPQ on AB and CDRS on CD, then S and P coincide and 
the equilateral triangle ABP and the two squares take 60o + 90o + 90o out of the 360o angle at P leaving 120o, which 
is the angle between sides of a regular hexagon.) 

Let O be the centre of the 12-gon. P1P9 and P12P4 have the same length and one is obtained from the other by 
rotation about O through 90o. Thus they intersect on the perpendicular bisector of P12P1 a distance P12P1/2 from 
P12P1. P11P2 is parallel to P12P1 and its midpoint lies on the perpendicular bisector of P12P1. The angle P11P2P1 is 
180o - angle P12P1P2 = 30o, so the distance between of the midpoint along the bisector is P12P1sin 30o = P12P1/2. 
Hence the three lines intersect at this point. 

Problem A2 
The sequence a1, a2, a3, ... of positive integers is strictly monotonic increasing, a2 = 2 and amn = aman for m, n 
relatively prime. Show that an = n. 

Solution 
The key observation is that if aN = N for N odd, then a2N = 2N, and hence aN+1 = N+1, aN+2 = N+2, ... , a2N-1 = 2N-1 
(because an is strictly increasing, so there are only N-1 holes for N-1 pegs. But we can now repeat using 2N-1 
(provided 2N-1 > N, or N > 1) and the result is established for all n. 

So we just need to get started with a3. Suppose a3 = m. Then a6 = 2m. So m+2 ≤ a5 ≤ 2m-1. Hence a10 ≤ 4m-2 and 
a9 ≤ 4m-3. So a18 ≤ 8m-6 and hence a15 ≤ 8m-9. But a15 = a3a5 ≥ m2+2m, so m2+2m ≤ 8m-9 or (m-3)2 ≤ 0. Hence m 
= 3. 

Problem A3 
Let D be the differential operator d/dx and E the differential operator xD(xD - 1)(xD - 2) ... (xD - n). Find an 
expression of the form y = ∫1

x g(t) dt for the solution of the differential equation Ey = f(x), with initial conditions 
y(1) = y'(1) = ... = y(n)(1) = 0, where f(x)is a continuous real-valued function on the reals. 

Solution 
The first step is to try to simplify Ey. Experimenting with small n, we soon suspect that Ey = xn+1y(n+1) and that is 
easily proved by induction. 

So we seek a solution to xn+1y(n+1) = f(x), subject to y(1) = y'(1) = ... = y(n)(1) = 0. The trick is to use the Taylor 
expansion: y(x) = y(1) + (x-1)y'(1) + (x-1)2/2! y''(1) + ... + (x-1)ny(n)(1) + ∫1

x g(t) dt, where g(t) = (x - t)nyn+1(t)/n! = 
(x - t)nf(t)/(n! tn+1). 

Problem A4 
Show that for any sequence of positive reals, an, we have lim supn→∞ n( (an+1 + 1)/an - 1) ≥ 1. Show that we can find 
a sequence where equality holds. 

Solution 
Suppose lim sup < 1. Then we cannot find an infinite subsequence with n( (an+1 + 1)/an - 1) ≥ 1, so we must have n( 
(an+1 + 1)/an - 1) < 1 for all sufficiently large n. Suppose it is true for all n ≥ N. Then (aN+1 + 1)/aN < (N + 1)/N and 
hence aN/N > (aN+1 + 1)/(N + 1) = aN+1/(N+1) + 1/(N+1). But similarly, aN+1/(N+1) > aN+2/(N+2) + 1/(N+2) and so 
on. Hence aN ≥ 1/(N+1) + 1/(N+2) + ... , which is impossible since the rhs diverges. So we have established that lim 
sup ≥ 1. 



We can experiment with various series. an = n gives 2. an = n2 also gives 2. Higher powers give higher values. So 
we try looking at exponents between 1 and 2. an = n1+k gives 1+k. So by taking k arbitrarily small we can get close 
to 1, but we cannot reach it. It is often helpful to think of log n as nk with k infinitesimally small. So we try an = n 
log n. That gives n( (an+1 + 1)/an - 1) = (1 + n log (1 + 1/n) + log(n + 1) )/log n = (1 + n log (1 + 1/n) + (log(1 + 1/n) 
)/log n + 1. But 1 + n log(1 + 1/n) + log (1 + 1/n) is bounded and so n( (an+1 + 1)/an - 1) has limit 1 (and hence also 
lim sup = 1). 

Problem A5 
R is the reals. f : [0, π] → R is continuous and ∫0

π f(x) sin x dx = ∫0
π f(x) cos x dx = 0. Show that f is zero for at least 

two points in (0, π). Hence or otherwise, show that the centroid of any bounded convex open region of the plane is 
the midpoint of at least three distinct chords of its boundary. 

Solution 
sin x > 0 for all x in (0, π), so if f did not change sign, then we could not have ∫0

π f(x) sin x dx = 0. If there was only 
one sign change, at k say, then sin(x - k) would also have only one sign change and f(x) sin(x - k) would not change 
sign in the interval, so ∫0

π f(x) sin(x - k) dx = cos k ∫0
π f(x) sin x dx - sin k ∫0

π f(x) cos x dx would be non-zero. 
Contradiction. So f must have at least two sign changes and hence at least two zeros in the interval. 

Take polar coordinates with the centroid as origin. Let the boundary be f(θ) for 0 ≤ θ ≤ π and -g(θ) for 0 > -θ > -π. 

Taking moments about the x-axis gives ∫0
π f(θ)sin θ dθ = ∫0

π g(θ) sin θ dθ = ∫0
π h(θ) sin θ dθ, where h(θ) = g(π - θ). 

So ∫ (f(θ) - h(θ) ) sin θ dθ = 0. 

Similarly, taking moments about the y-axis gives ∫ f(θ) cos θ dθ + ∫ g(θ) cos θ dθ = 0 or ∫ (f(θ) - h(θ) ) dθ = 0. So the 
result proved in the first part gives that f(θ) = g(π-θ) for at least two values in (0, π). In other words, the centroid is 
the midpoint of at least two chords. But we could take the x-axis to be one of these chords and then repeat the result 
to get two more, giving three in total. 

Problem A6 
M is the midpoint of a chord PQ of an ellipse. A, B, C, D are four points on the ellipse such that AC and BD 
intersect at M. The lines AB and PQ meet at R, and the lines CD and PQ meet at S. Show that M is also the 
midpoint of RS. 

Solution 
The key is to generalise and think of the ellipse and the line pair as conics. Take M as the origin and PQ as the x-
axis. The ellipse has equation ax2 + bxy + cy2 + dx + ey + f = 0. If P is (k, 0), then Q must be (-k, 0), so ak2 + dk + f 
= ak2 - dk + f = 0. Hence d = 0. The line AC must have equation y = gx for some g and the line BD must have 
equation y = hx for some h. So the line pair AC, BD is the conic with equation (y - gx)(y - hx) = 0. The ellipse and 
the line pair are two distinct conics through A, B, C, D, so any conic through those four points has equation r(ax2 + 
bxy + cy2 + ey + f) + s(y - gx)(y - hx). This conic meets PQ (which is y = 0) at the points given by r(ax2 + f) + sgh 
x2. This has no x term, so the two points of intersection are equally spaced about M. In particular, this is true for the 
line pair AB, CD. 

Problem B1 
Find all integers n for which x2 - x + n divides x13 + x + 90. 

Solution 
Answer: n = 2. 

If n is negative or zero, then the quadratic has two real roots. But we can easily check that the other polynomial has 
derivative everywhere positive and hence only one real root. So n must be positive. 

If x2 - x + n divides x13 + x + 90, then x13 + x + 90 = p(x) (x2 - x + n), where p(x) is a polynomial with integer 
coefficients. Putting x = 0, we see that n must divide 90. Putting x = 1, we see that it must divide 92. Hence it must 
divide (92 - 90) - 2. So the only possibilities are 1 and 2. Suppose n = 1. Then putting x = 2, we have that 3 divides 
213 + 92. But 2odd is congruent to 2 mod 2, so 213 + 92 is congruent to 1 mod 3. So n cannot be 1. 



To see that n = 2 is possible, we write explicitly: (x2 - x + 2) (x11 + x10 - x9 - 3 x8 - x7 + 5 x6 + 7 x5 - 3 x4 - 17 x3 - 11 
x2 + 23 x + 45) = x13 + x + 90. 

Problem B2 
Is the set { 2m3n

: m, n are integers } dense in the positive reals? 

Solution 
Answer: yes. 

It is easier to consider the set X = { m log 2 + n log 3: m, n integers }. We note first that there is no pair of integers 
m, n (except (0, 0) ) such that m log 2 + n log 3 = 0. For we would then have 2m3n = 1. That is clearly impossible if 
m and n have the same sign. If m and n have opposite signs, then it would imply that 2|m| = 3|n|, but a power of 2 is 
not divisible by 3. 

If X has a least positive member k, then log 2 must be an integral multiple of k (for we can write log 2 = q k + r for 
some integer q and 0 <= r < k, but then r must be zero). Similarly log 3. So if log 2 = nk and log 3 = mk, then m log 
2 - n log 3 = 0, contradicting what we just proved. 

X contains the positive member log 2. But log 2 cannot be the least member, so it contains another member in (0, 
log 2). That cannot be the least member, so we can find another smaller positive member, and so on. So we get a 
countable infinity of members in (0, log 2). Hence for any ε > 0, there are infinitly many members in a subinterval 
of (0, log 2) of length ε. The difference between any two of these must also lie in X and will lie in the interval (0, 
ε). Now the multiples of this number all lie in X and form a grid of mesh less than ε, so at least one of them is 
within ε of any given real. 

That establishes that X is dense in the reals. But the map ex maps the reals to the positive reals and is continuous, so 
the set { 2m3n

: m, n are integers } is dense in the positive reals. 

Problem B3 
R is the reals. Find all f : R → R which are twice differentiable and satisfy: f(x)2 - f(y)2 = f(x + y) f(x - y). 

Solution 
Differentiate wrt x: 2 f(x) f '(x) = f '(x + y) f(x - y) + f(x + y) f '(x - y). Differentiate the result wrt y: 0 = f ''(x + y) 
f(x - y) - f '(x + y) f '(x - y) + f '(x + y) f '(x - y) - f(x + y) f ''(x - y). Put X = x + y, Y = x - y. Then we have f ''(X) 
f(Y) = f(X) f ''(Y). 

If f(X) = 0 for all X, then we have a solution. So suppose for some X0, f(X0) is non-zero and put k = f ''(X0)/f(X0), 
then f ''(Y) = k f(Y). Now we consider separately k = 0, k ≤ 0 and k > 0. If k = 0, then integrating gives f(Y) = AY 
+ B. But putting y = 0 in the original relation gives immediately that f(y) = 0, so B = 0 and we have the solution 
f(Y) = AY. This includes the solution f(Y) = 0 noticed earlier. 

If k < 0, put k = - a2. Then f(Y) = A sin aY + B cos aY. But f(0) = 0, so B = 0 and we have the solution f(Y) = A sin 
aY. If k > 0, put k = a2. Then f(Y) = A sinh aY + B cosh aY. Again B = 0 and we have the solution f(Y) = A sinh 
aY. 

It remains to check that these are solutions. It is obvious that f(Y) = AY is a solution. If f(Y) = A sin aY, then f(x + 
y)f(x - y) = A2(sin ax cos ay + cos ax sin ay)(sin ax cos ay - cos ax sin ay) = A2(sin2ax cos2ay - cos2ax sin2ay) = 
A2(sin2ax - sin2ay) = f(x)2 - f(y)2, as required. Similarly for the sinh expression. 

Problem B4 
Γ is a closed plane curve enclosing a convex region and having a continuously turning tangent. A, B, C are points 
of Γ such that ABC has the maximum possible perimeter p. Show that the normals to Γ at A, B, C are the angle 
bisectors of ABC. If A, B, C have this property, does ABC necessarily have perimeter p? What happens if Γ is a 
circle? 

Solution 
Let L be the external bisector of angle C (so that it is perpendicular to the internal bisector of angle ACB). Let B' be 
the reflection of B in the line L. If X is any point on the other side of L from ABC, then BX > B'X, so AX + BX > 



AX + B'X. But AX + B'X ≥ AB' (with equality iff X lies on AB'), and AB' = AC + CB. So AX + BX > AC + CB. 
Thus the perimeter of AXB > p. Hence X cannot belong to the region. But if L does not coincide with the tangent at 
C then it will intersect the region in further points and so the region will contain points on both sides of L. So L 
must be the tangent. 

No, this is not a sufficient condition. For example, take the curve Γ to be an equilateral triangle with rounded 
corners. Then take A, B, C to be the midpoints of the sides. In this case the perimeter is certainly not maximal. 

If Γ is a circle, then the achieve the maximum by taking ABC to be equilateral. 

Problem B5 
The series ∑ an of non-negative terms converges and ai ≤ 100an for i = n, n + 1, n + 2, ... , 2n. Show that 
limn→∞ nan = 0. 

Solution 
We need to invert the inequality given. We are given a collection of ai which are less than a fixed an. We want to fix 
an and find a collection of aj such that an ≤ 100 aj. 

Evidently, a2n ≤ 100 a2n-1, a2n ≤ 100 a2n-2, a2n ≤ 100 a2n-3, ... , a2n ≤ 100 an. Adding and multiplying by two, 2n a2n ≤ 
200 (an + an+1 + ... + a2n-1). But ∑ an converges, so (an + an+1 + ... + a2n-1) < ε/200 for all sufficiently large n, and 
hence 2n a2n < ε for sufficiently large n. Similarly for (2n+1) a2n+1. So n an tends to zero. 

Problem B6 
Let S = S0 be a set of points in space. Let Sn = { P : P belongs to the closed segment AB, for some A, B ∈ Sn-1}. 
Show that S2 = S3. 

Solution 
We have to show that S2 is already the convex hull of S. We can define the convex hull of points xi i = 1, 2, ... , n as 
the collection of all points ∑ λixi with all λi non-negative and ∑ λi = 1. Given two such points P = ∑ λixi and Q = ∑ 
μixi, any point on the closed segment PQ can be written as λP + μQ with λ, μ non-negative and λ + μ = 1, but λP + 
μQ = ∑ (λ λi + μ μi) xi and ∑ (λ λi + μ μi) = 1. So it follows immediately that all Sn are subsets of the convex hull. 

Now we claim that any point in the convex hull can be written as a sum ∑ λixi with at most 4 non-zero terms. 
Suppose not. Then some point P requires at least m ≥ 5 terms. wlog we may take these to be the first m terms, so 
that P = ∑1

mλixi. But now we can find μi not all zero so that ∑1
m μixi = 0 (3 equations, one for each coordinate) and 

∑ μi = 0 (1 equation). But now P = ∑1
m(λi + k μi)xi for all k and we still have ∑ (λi + k μi) = 1. Take the smallest 

λi/μi and set k as its negative. Then λi + k μi = 0 but the other terms λj + k μj remain non-negative, so we have 
expressed P as a sum of less than m terms. Contradiction. 

So given any P in the convex hull we may write (wlog) P = λ1x1 + ... + λ4x4 for some non-negative λi with sum 1. If 
two or three of the λi are zero, then this shows that P is in S1. So suppose λ1, λ2, λ3 are all positive. Then P = (λ1 + 
λ2) (λ1x1/(λ1 + λ2) + λ2x2/(λ1 + λ2) ) + (λ3 + λ4) (λ3x3/(λ3 + λ4) + λ4x4/(λ3 + λ4) ), which shows that P is in S2. 
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Problem A1 
Let A1, A2, A3, A4, A5, A6 be distinct points in the plane. Let D be the longest distance between any pair, and d the 
shortest distance. Show that D/d ≥ √3. 

Solution 
Let ABC be a triangle with sides a = BC ≥ b = CA ≥ c = AB. Suppose that angle A ≥ 2π/3. It follows immediately 
from the cosine formula we have a2 = b2 + c2 - 2bc cos A ≥ b2 + c2 + bc ≥ 3c2, and hence that a/c ≥ √3. So it is 
sufficient to find a triangle with an angle of at least 2π/3. 

If the 6 points form a convex hexagon, then the six angles of the hexagon sum to 4π so at least one is at least 2π/3. 
If not then one point is inside the convex hull of the others. Draw diagonals to triangulate the hull. Then the inside 
point must lie inside (or on) one of the triangles. But if P lies inside (or on) the triangle ABC, then at least one of 
the angles APB, BPC, CPA is at least 2π/3. 

Problem A2 
α is a real number. Find all continuous real-valued functions f :[0, 1] → (0, ∞) such that ∫0

1 f(x) dx = 1, ∫0
1 x f(x) dx 

= α, ∫0
1 x2 f(x) dx = α2. 

Solution 
We have ∫0

1 (α - x)2f(x) dx = α2 - 2α2 + α2 = 0. But the integrand is positive, except possibly for one point of the 
range, so the integral must also be positive. Contradiction. So there are no functions with this property. 

Problem A3 
The distinct points xn are dense in the interval (0, 1). x1, x2, ... , xn-1 divide (0, 1) into n sub-intervals, one of which 
must contain xn. This part is divided by xn into two sub-intervals, lengths an and bn. Prove that ∑ anbn(an + bn) = 1/3. 

Solution 
The trick is to notice that 3anbn(an + bn) = (an + bn)

3 - an
3 - bn

3. The first n-1 points x1, ... , xn-1 divide the interval into 
n sub-intervals. Let cn be the sum of the cubes of these sub-intervals. Then 3 ∑1

n-1 aibi(ai + bi) = 1 - cn. So it is 
sufficient to prove that cn tends to zero. 

Take ε > 0 and < 1. Since the points xn are dense, we can take N so that for n > N all the subintervals are smaller 
than ε. Then cn < ε2 times the sum of the sub-interval lengths = ε2 < ε. 

Problem A4 
The sequence of integers un is bounded and satisfies un = (un-1 + un-2 + un-3un-4)/(un-1un-2 + un-3 + un-4). Show that it is 
periodic for sufficiently large n. 

Solution 
This is almost trivial. The un are bounded and integral, so there are only finitely many possible values. Hence there 
are only finitely many possible values for the 4-tuples (un-1, un-2, un-3, un-4). So we must eventually get a repeat. 
Suppose the t-tuples are the same for n = N and n = N+M. Then the recurrence relation implies that they must also 
be the same for n = N+1 and n = N+M+1, and for n = N+2 and N+M+2 and so on. In other words the sequence is 
periodic (with period M) from this point onwards. 

Problem A5 
Find a constant k such that for any positive ai, ∑1

∞ n/(a1 + a2 + ... + an) ≤ k ∑1
∞1/an. 

Solution 
Let us write sn = a1 + a2 + ... + an and bn= n/sn. If ∑ 1/an diverges, then there is nothing to prove. So assume it 
converges. Hence an must diverge, so there are only finitely many values less than any given K, so we can arrange 
the terms in increasing order c1 ≤ c2 ≤ c3 ... . Since all the terms are positive ∑ 1/an is absolutely convergent and 
equal to ∑ 1/cn. Also we have sn ≥ c1 + c2 + ... + cn. The trick is to notice that half the ci are at least cn/2. It is 
convenient to consider separately n = 2m and n = 2m+1. So s2m ≥ m cm. Hence b2m < 2/cm. Similarly, s2m-1 > m cm, 
so b2m-1 < 2/cm. Hence ∑1

2m bi ≤ 4 ∑1
m 1/ci, which gives the required result with k = 4. 



Problem A6 
S is a finite set of collinear points. Let k be the maximum distance between any two points of S. Given a pair of 
points of S a distance d < k apart, we can find another pair of points of S also a distance d apart. Prove that if two 
pairs of points of S are distances a and b apart, then a/b is rational. 

Solution 
Since we are only interested in ratios, we may take k = 1 and the points to have coordinates x1 = 0, x2 ... , xn-1, xn = 
1. Let these points generate a vector space V of dimension m over Q. 

If m = 1, then every xi is a rational multiple of xn and hence rational, so the ratio of any two distances is rational. 

Suppose that m > 1. Take a basis b1, b2, ... , bm for V as follows. Take b1 = 1. Let b2 = xt, for some irrational xt, then 
extend {b1, b2} to a basis. Then each xi is a unique rational linear combination of the bj. In particular, x1 = 0, xt = 
b2 and xn= b1. Now define a linear map f from V to Q as follows. Let f(b2) = r b2, where r is rational and sufficiently 
large that f(b2) > 1, and f(bi) = bi/2 for all other i. 

Now suppose we take two distinct points in S, we can write them as ∑ ribi and ∑sibi, where all ri and si are rational. 
Hence their images under f are r r2b2 + ∑ ribi/2 and r s2b2 + ∑ sibi/2, where the summations exclude i = 2. These 
must be unequal, otherwise we would have a linear combination of bi with rational coefficients which was zero. 

So there is a unique point x in S with f(x) maximum and a unique point y in S with f(y) minimum. Then f(x - y) is 
greater than f(d) where d is any other difference xi - xj. But every difference except xn - x1 and x1 - xn occurs at least 
twice, so x and y must be the endpoints. Now f(x1) = 0 and f(xn) = 1/2, so f(x - y) = 1/2. But f(xt - x1) = f(xt) = f(b2) 
> 1. Contradiction. 

Problem B1 
an are positive integers such that ∑ 1/an converges. bn is the number of an which are <= n. Prove lim bn/n = 0. 

Solution 
If not, then for some k > 0 we can find arbitrarily large N such that bN > kN. Then at least kN of the integers a1, ... , 
aN do not exceed N. Let S be the set of indices i from 1, 2, ... N with ai ≤ N. Then since S has at least kN members, 
the sum over S of 1/ai is at least k. 
The idea is to take N' > N with bN' > kN' and to ensure that half the indices i with ai ≤ N' were not included in S. 
Take S' to be these new indices. Then since S' does not overlap S, the sum over S and S' of 1/ai is at least k + k/2. 
We then repeat always choosing the new set of indices not to overlap any of the previous sets. So at each stage we 
will add k/2 to the sum of 1/ai, which must therefore diverge, establishing a contradiction. 

We can do this by taking the successor N' to N sufficiently big. In fact, it is sufficient to take N'/2 > N/k because we 
know that all of the previous index sets are contained in {1, 2, ... , N}, so to avoid them we do not have to drop 
more than N < kN'/2 indices, leaving at least kN'/2 new indices. 

Problem B2 
S is a finite set. A set P of subsets of S has the property that any two members of P have at least one element in 
common and that P cannot be extended (whilst keeping this property). Prove that P contains just half of the subsets 
of S. 

Solution 
For any subset X of S, P can contain at most one of X and S-X, so P cannot contain more than half the subsets. 

Suppose P contains less than half the subsets. Then for some X, neither X nor S-X are in P. Hence there must be Y 
in P such that X and Y have no elements in common (otherwise we could extend P to include X). So Y is a subset 
of S-X. Similarly, P must contain a subset Z of X (otherwise we could extend P to include S-X). But that means Y 
and Z cannot overlap, contradicting the fact that as members of P they must have an element in common. 

Problem B3 
R is the reals. f : R → R is continuous and for any α > 0, limn→∞ f(nα) = 0. Prove limx→∞ f(x) = 0. 



Solution 
Take ε > 0. Let An = {x : |f(nx)| ≤ ε}. Let Bn be the intersection of all Am with m ≥ n. The function f is continuous, 
so each An is closed. Hence also each Bn. Now suppose we can show that an open interval (a, b) is contained in 
some BN. That means that for any x in (a, b) and any n > N we have |f(nx)| < ε. Hence |f(x)| < ε for any x in (na, 
nb). But the intervals (na, nb) expand in size as they move to the right, so for n sufficiently large they overlap and 
we have that their union includes all sufficiently large x. In other words, for any sufficiently large x we have |f(x)| < 
ε. But ε was arbitrary, so we have established that lim f(x) = 0 as x tends to infinity. 

It remains to show that we can find such an open interval (a, b). Now we are given that for any given x, lim f(nx) = 
0 (as n tends to infinity), so x belongs to some Bn for n sufficiently large. In other words, the union of the Bn is the 
entire line. 

We now need the Baire category theorem which states that if a union of closed sets covers the line, then one of the 
sets contains an open interval. This is bookwork. [But straightforward. Assume none of the Bn contain an open 
interval. Take a point not in B1. Since B1 is closed we may take a closed interval C1about the point, not meeting B1. 
Having chosen Cn, there must be a point in it not in Bn+1 (or Bn+1 would contain an open interval - the interior of 
Cn). Hence we may take Cn+1, a closed subinterval of Cn which does not meet Bn+1. Now Cn is a nested sequence of 
closed intervals, so there must be a point X in all the Cn But Bn cover the line, so X must be in some Bn. 
Contradiction.]. 

Problem B4 
n great circles on the sphere are in general position (in other words at most two circles pass through any two points 
on the sphere). How many regions do they divide the sphere into? 

Solution 
Answer: n2 - n + 2. 

We use the well-known formula E + 2 = V + F, where E is the number of edges, V the number of vertices and F the 
number of faces. It is true for a sphere provided V > 1, so certainly for n > 1. 
Each circle intersects every other circle in 2 vertices, so V = n(n - 1). Each vertex has degree 4, so E = 2V. Hence F 
= V + 2 = n2 - n + 2. It is easy to check that the formula also holds for n = 1. 

Problem B5 
Let an be a strictly monotonic increasing sequence of positive integers. Let bn be the least common multiple of a1, 
a2, ... , an. Prove that ∑ 1/bn converges. 

Solution 
We need a crude upper bound on the number of divisors for N. N is too crude. But we can do better by noticing that 
N has at most √N divisors ≤ √N and hence at most 2√N divisors in total (every divisor d > √N has a matching 
divisor N/d < √N). Now we know that bn has at least n distinct divisors (namely a1, ... , an). Hence bn ≥ n2/4. But we 
know that ∑ 1/n2 converges. 

Problem B6 
D is a disk. Show that we cannot find congruent sets A, B with A ∩ B = ∅, A ∪ B = D. 

Solution 
It is easy to find two congruent sets which overlap only at the centre O of the disk, so this suggests that the centre is 
the key. 

Wlog we may assume O is in A and that the radius is 1. Let O' be the corresponding point in B. Let PQ be the 
diameter perpendicular to OO'. Then PO' and QO' are both greater than 1. But OX ≤ 1 for any point X in A, so O'Y 
≤ 1 for any point Y in B. So P and Q must both be in A. Let P' and Q' be the corresponding points in B. Then P'Q' = 
PQ = 2, so P'Q' must be a diameter. But O'P' = OP = 1 and O'Q' = OQ = 1, so O' must be the midpoint of P'Q' and 
hence the centre of the disk. So O' = O. Contradiction. 

  



26th Putnam 1965 

Problem A1 
The triangle ABC has an obtuse angle at B, and angle A is less than angle C. The external angle bisector at A meets 
the line BC at D, and the external angle bisector at B meets the line AC at E. Also, BA = AD = BE. Find angle A. 

Solution 
Answer: 12 degrees. 

Let angle BAC = k. Then since BA = BE, angle BEA = k. Take B' on BA the opposite side of B to A. Then angle 
B'BE = 2k. Angle B'BC is bisected by BE, so angle CBE = 2k. Hence angle ACB = 3k. So angle DBA = 4k. But 
AD = BA, so angle BDA = 4k. But AD is the exterior bisector, so angle BAD = 90 - k/2. The angles in BAD must 
sum to 180 deg, so k = 12 deg. 

Problem A2 
Let k = [(n - 1)/2]. Prove that ∑0

k ( (n - 2r)/n )2 (nCr)2 = 1/n (2n-2)C(n-1) (where nCr is the binomial coefficient).  
 

Problem A3 
{ar} is an infinite sequence of real numbers. Let bn = 1/n ∑1

n exp(i ar). Prove that b1, b2, b3, b4, ... converges to k iff 
b1, b4, b9, b16, ... converges to k. 

Solution 
If a sequence converges to k, then any subsequence also converges to k. 

So suppose that the square terms converge to k. Let cr = exp(i ar). Take two consecutive squares N = n2 and N' = 
n2 + 2n + 1 and m between them. Then |bN - bm| ≤ |bN - 1/N ∑ cr| + |(1/N - 1/m) ∑ cr |, where the sums are over m 
terms. But |bN - 1/N ∑ cr| ≤ 1/N ∑N+1

m |cr| = (m - N)/N ≤ 2n/n2 = 2/n. Also |(1/N - 1/m) ∑ cr | ≤ (1/N - 1/m) ∑ |cr| < 
(1/n2 - 1/(n+1)2) (n+1)2 = (2n+1)/n2 < 3/n. So the difference |bm - bN| is arbitrarily small for n sufficiently large. 
Thus if we take m sufficiently large, then |bm - bN| < ε and |bN - k| < ε. So |bm - k| < 2ε and the sequence converges. 

Problem A4 
S and T and finite sets. U is a collection of ordered pairs (s, t) with s ∈ S and t ∈ T. There is no element s ∈ S 
such that all possible pairs (s, t) ∈ U. Every element t ∈ T appears in at least one element of U. Prove that we can 
find distinct s1, s2 ∈ S and distinct t1, t2 ∈ T such that (s1, t1), (s2, t2) ∈ U, but (s1, t2), (s2, t1) ∉ U. 

Solution 
Suppose that we cannot find such si, ti. We will establish a contradiction. 

Take t in T. Suppose that there are n distinct s in S such that (s, t) is in U. Suppose n > 0. Then take a specific s' 
such that (s', t) is in U. There must be some t' such that (s', t') is not in U. Now consider whether we have (s, t') in 
U. If (s, t) is not in U, then (s, t') cannot be in U (or we would have found si, ti). But there are at most n-1 distinct s 
such that (s, t') is in U (the only candidates are the cases for which (s, t) is in U, and one of those, namely s', does 
not work). 

Iterating, we must eventually get some x in T for which there is no s in S with (s, x) in U. Contradiction. 

Problem A5 
How many possible bijections f on {1, 2, ... , n} are there such that for each i = 2, 3, ... , n we can find j < n with f(i) 
- f(j) = ± 1? 

Solution 
Answer: 2n-1. 

Consider the last element f(n). Suppose it is m, not 1 or n. Then the earlier elements fall into two non-empty sets A 
= {1, 2, ... , m-1} and B = {m+1, m+2, ... , n}. But the difference between an element of A and an element of B is at 
least 2. So if f(1) is in A, then the first time we get an element of B it has only elements of A preceding it. 
Contradiction. Similarly, if f(1) is in B. 



So we conclude that the last element is always 1 or n. We can now prove the result by induction. Clearly given an 
arrangement for n we can derive one for n+1 by adding n+1 at the end. We can also derive one for n+1 by 
increasing each element by 1 and adding 1 at the end. Equally it is clear that all these are distinct and that there are 
no other arrangements for n+1 that end in 1 or n+1. So thee are twice as many arrangements for n+1 as for n. 

Problem A6 
α and β are positive real numbers such that 1/α + 1/β = 1. Prove that the line mx + ny = 1 with m, n positive reals is 
tangent to the curve xα + yα = 1 in the first quadrant (x, y ≥ 0) iff mβ + nβ = 1. 

Solution 
Suppose mx + ny = 1 is tangent to the curve. Suppose it touches at (a, b). Differentiating, we see that the tangent at 
(a, b) is aα-1x + bβ-1 = 1, so m = aα-1, n = bβ-1. Hence, using αβ - β = α, we have that mβ + nβ = aα + bα = 1. 

Conversely, suppose that mβ + nβ = 1. Take a = mβ/α, b = nβ/α. Then aα + bα = 1, so (a, b) lies on the curve in the first 
quadrant. Its tangent is Mx + Ny = 1, where M = aα-1, N = bβ-1. But a = mβ/α and β/α (α - 1)= 1, so M = m. Similarly, 
N = n. Thus we have established that mx + ny = 1 is tangent to the curve in the first quadrant as required. 

Problem B1 
X is the unit n-cube, [0, 1]n. Let kn = ∫X cos2( π(x1 + x2 + ... + xn)/(2n) ) dx1 ... dxn. What is limn→∞ kn ? 

Solution 
Let yi = 1 - xi and change variables from xi to yi. The sum (x1 + x2 + ... + xn)/(2n) becomes 1/2 - (y1 + y2 + ... + 
yn)/(2n), so the integrand becomes sin2( π(y1 + y2 + ... + yn)/(2n) ). So the integral is identical to the original except 
that cos has been changed to sin. Thus we can add it to the original to get 2kn = ∫X dx1 dx2 ... dxn = 1. So kn = 1/2 for 
all n. 

Problem B2 
Every two players play each other once. The outcome of each game is a win for one of the players. Player n wins 
an games and loses bn games. Prove that ∑ an

2 = ∑ bn
2. 

Solution 
Suppose there are N players in total. Each player plays N-1 games, so bn = N - 1 - an. Hence ∑ bn

2 = ∑ (N - 1)2 - 
2(N - 1) ∑ an + ∑ an

2 = N(N - 1)2 - 2(N - 1) ∑ an + ∑ an
2. 

Each game is won by just one player, so ∑ an = no. of games = N(N - 1)/2. Hence ∑ bn
2 = N(N - 1)2 - 2(N - 1)N(N - 

1)/2 + ∑an
2 = ∑an

2. 

Problem B3 
Show that there are just three right angled triangles with integral side lengths a < b < c such that ab = 4(a + b + c). 

Solution 
Answer: 12, 16, 20; 10, 24, 26; 9, 40, 41. 

We need the result that for some integral d, m, n we have c = d(m2 + n2) and b = 2dmn, a = d(m2 - n2) or b = d(m2 - 
n2), a = 2dmn (*). 

It follows that 4(a + b + c) =4d(2m2 + 2mn), ab = 2d2mn(m2 - n2). Hence, 4 = dn(m - n). So we must have n = 1, 2 
or 4 and (d, m, n) = (1, 5, 1), (2, 3, 1), (4, 2, 1), (1, 4, 2), (2, 3, 2) or (1, 5, 4), giving the three answers above. 

It remains to prove (*). Let d be the gcd of a and b. It follows that d also divides c. Put a = dA, b = dB, c = dC, so 
that A, B, C are relatively prime in pairs. C cannot be even, for then A and B would both be odd and hence A2 + 
B2 would be congruent to 2 mod 4, which is impossible, since C is a square. So C must be odd and just one of A, B 
must be even. Assume A is odd. Then A2 = (C - B)(C + B). If an odd prime p divides A, then it must divide C - B 
or C + B. It cannot divide both, for then it would also divide B and C. So C - B and C + B must both be odd 
squares. Say C + B = h2, C - B = k2. Then A = hk, B = (h2 - k2)/2, C = (h2 + k2)/2, with h and k odd. Put m = (h + 
k)/2, n = (h - k)/2, then h = m + n, k = m - n and A = m2 - n2, B = 2mn, C = m2 + n2, so we have put a, b, c, in the 
form (*). On the other hand, it is obvious that if a, b, c have this form then they satisfy a2 + b2 = c2. 



Problem B4 
Define fn :R → R by fn(x) = (nC0 + nC2 x + nC4 x2 + ... ) / (nC1 + nC3 x + nC5 x2 + ... ), where nCm is the 
binomial coefficient. Find a formula for fn+1(x) in terms of fn(x) and x, and determine limn→∞fn(x) for all real x. 

Solution 
It is almost obvious that fn+1 = (fn + x)/(fn + 1) (*). So if fn(x) tends to a limit k(x), then k(x) = ( k(x) + x) /( k(x) + 
1), and hence k(x) = √x. 

Obviously, fn(0) = 1/n, so k(0) = 0. We notice also that fn(x) = (√x) N/D, where N = (1 + √x)n + (1 - √x)n and D = (1 
+ √x)n - (1 - √x)n. 

Suppose 0 < x ≤ 1. Then put y = (1 - √x)/(1 + √x). We have 0 ≤ y < 1 and N/D = (1 + yn)/(1 - yn) which tends to 1, 
so in this case also k(x) = √x. 

Similarly if x > 1, put y = (√x - 1)/(1 + √x) and we again get k(x) = √x. 
It is clear from (*), that for x < 0, fn(x) does not tend to a limit. 

Problem B5 
Let S be a set with n > 3 elements. Prove that we can find a collection of [n2/4] 2-subsets of S such that for any 
three distinct elements A, B, C of the collection, A ∪ B ∪ C has at least 4 elements. 

Solution 
This is just another form of finding a graph without triangles. If n = 2m, then take S to be the disjoint union of U 
and V, where U and V each have m elements. Now take K to be the collection all sets {u, v} with u in U and v in 
V. Evidently K has m2 = [n2/4] members. Suppose we have three distinct elements A, B, C of K. A ∪ B ∪ C 
cannot have less than three elements, for then two of A, B, C would be identical. So if it has less than 4 elements, 
then it has just three elements. But that means that for some a, b, c, we have A = {b, c}, B = {a, c}, C = {a, b}. 
Suppose a is in U. Then, considering B and C, c and b must be in V, but then A has two elements in V. 
Contradiction. Similarly if a is in V. So K has the required property. 

Similarly, if n = 2m+1, take S to be the disjoint union of U and V, where U has m+1 elements and V has m 
elements. Then K, the set of all {u, v} with u in U and v in V has m(m+1) = [n2/4] elements and has the required 
property by the same argument. 

Problem B6 
Four distinct points A1, A2, B1, B2 have the property that any circle through A1 and A2 has at least one point in 
common with any circle through B1 and B2. Show that the four points are collinear or lie on a circle. 

Solution 
The trick is to take concentric circles. If A1A2 is not parallel to B1B2 then their perpendicular bisectors must 
intersect at some point O. Take circles centre O through A1, A2 and through B1, B2. These must either coincide, in 
which case the 4 points lie on a circle, or have no points in common. 

In the case where A1A2 is parallel to B1B2. Assume they do not coincide (otherwise the 4 points would be 
collinear). Then take a point O on the perpendicular bisector of A1A2 on the opposite side of A1A2 to B1B2 and 
sufficiently distant from A1A2 that the circle through A1, A2 centre O only extends less than halfway towards the 
line B1B2. Similarly, take a circle through B1, B2 which extends less than halfway towards A1A2. Then these circles 
will not meet. 



27th Putnam 1966 

Problem A1 
Let f(n) = ∑1

n [r/2]. Show that f(m + n) - f(m - n) = mn for m > n > 0. 

Solution 
It is a trivial induction to show that f(2k) = k2, f(2k+1) = k2 + k. So if m and n have the same parity, then f(m+n) + 
f(m-n) = (m+n)2/4 + (m-n)2/4 = mn. If m and n have opposite parity, then f(m+n) + f(m-n) = (m+n-1)(m+n+1)/4 + 
(m-n-1)(m-n+1)/4 = mn. 

Problem A2 
A triangle has sides a, b, c. The radius of the inscribed circle is r and s = (a + b + c)/2. Show that 1/(s - a)2 + 1/(s - 
b)2 + 1/(s - c)2 ≥ 1/r2. 

Solution 
Let A = s-a, B = s-b, C = s-c. Then (A-B)2 ≥ 0 with equality iff a = b. Hence 2/(AB) ≤ 1/A2 + 1/B2. Similarly for 
2/(BC) and 2/(CA). Hence 1/(BC) + 1/(CA) + 1/(AB) ≤ 1/A2 + 1/B2 + 1/C2 with equality iff the triangle is 
equilateral. 

Now 1/(BC) + 1/(CA) + 1/(AB) = (A + B + C)/(ABC). But A + B + C = s. By Heron's theorem, sABC = k2, where 
k is the area of the triangle. Also (dividing the triangle into three by connecting the incentre to each vertex, and 
considering the area of each part) k = rs. Hence s/(ABC) = 1/r2, giving the required result. 

Problem A3 
Define the sequence {an} by a1 ∈ (0, 1), and an+1 = an(1 - an). Show that limn→∞n an = 1. 

Solution 
We show first that an < 1/(n+1) for all n > 1. We have a1(1 - a1) = 1/4 - (a1 - 1/2)2 < 1/3, so it is true for n = 2. Also, 
the quadratic expression shows that an(1 - an) is an increasing function of an for an < 1/2. Hence if an < 1/(n+1), then 
an+1 < (1 - 1/(n+1) )/(n+1) = n/(n2 + 2n + 1) < n/(n2 + 2n) = 1/(n + 2). Hence, by induction it is true for all n. 

Suppose that 1/2 > an > 1/(k + √k). Then an+1 > ( 1/(k + √k) )(1 - 1/(k + √k) ). We show that this is greater than 
1/(k+1 + √(k+1) ) for k sufficiently large. We require k2 - 1 + (k + 1)√k + (k - 1)√(k + 1) + √(k2 + k) > k2 + k√k + k. 
Obviously √(k2 + k) > k, so it is sufficient to show that (k - 1)√(k + 1) > (k - 1)√k + 1. But this is almost obvious 
since √(k + 1) > √k + 1/(3√k), and (k - 1) > 3√k for k > 11. 

Now a1 > 0, so a1 > 1/(k + √k) for some k. Increasing k if necessary, we can take k > 11. It then follows by 
induction that an > 1(n + k + √(n + k)) for all n, where k is fixed. Hence n an lies between n/(n + k + √(n + k)) and 
n/(n + 1). But both n/(n + k + √(n + k)) and n/(n + 1) converge to 1, so n an does also. 

Problem A4 
Delete all the squares from the sequence 1, 2, 3, ... . Show that the nth number remaining is n + m, where m is the 
nearest integer to √n. 

Solution 
Any integer N in the sequence lies between k2 and (k + 1)2 for some k, and hence N = k2 + h for some k and some h 
such that 1 ≤ h ≤ 2k. 
Since there are just k squares smaller than N, N is the (N - k)th number in the sequence. But (k - 1/2)2 < k2 - k + 1 ≤ 
N - k ≤ k2 + k < (k + 1/2)2, so the nearest integer to the square root of (N - k) is k and N = n + m, where n = N - k 
and m is the nearest integer to the square root of n. 

Problem A5 
Let S be the set of continuous real-valued functions on the reals. φ :S → S is a linear map such that if f, g ∈ S and 
f(x) = g(x) on an open interval (a, b), then φf = φg on (a, b). Prove that for some h ∈ S, (φf)(x) = h(x)f(x) for all f 
and x. 

  



Solution 
Obviously if f = 0 on an open interval (a, b) then φf = 0 on (a, b). But we need the stronger result that if f(x0) = 0, 
then φf(x0) = 0. 

So take any f and any x0 such that f(x0) = 0. Let L(x) = f(x) for x < x0 and 0 for x ≥ x0, and le R(x) = 0 for x ≤ 
x0 and f(x) for x > x0. Then f = L + R. Also φL(x) = 0 for any x > 0. But φL is continuous, so φL(x0) = 0. Similarly, 
φR(x0) = 0. Hence φf(x0) = 0. 

Let u be the function which has value 1 for all x. Let h = φu. Then h is continuous. Also for any f and any x0 the 
function f - f(x0)u is zero at x0 and hence φf(x0) = h(x0)f(x0). 

Problem A6 
Let an = √(1 + 2 √(1 + 3 √(1 + 4 √(1 + 5 √( ... + (n - 1) √(1 + n) ... ) ) ) ) ). Prove lim an = 3. 

Solution 
Clearly an < an+1. Also, if we replace the final (1 + n) in an by (1 + n)2, then a simple induction shows that the 
resulting expression simplifies to 3. Hence an < 3. An increasing sequence which is bounded above must converge. 
So an tends to a limit which is at most 3. 

However, it is harder to show that the limit is 3. We need a new idea. Put f(x) = lim √(1 + x √(1 + (x+1) √(1 + 
(x+2) √(1 + (x+3) √( ... + (x+n-1) √(1 + x+n) ... ) ) ) ) ). Then we may guess that f(x) = x + 1. The same idea as 
before shows that f(x) exists and is at most x + 1. Also, we have that f(x)2 = x f(x+1) + 1 (*). 

The trick is that a crude lower limit works, because we can use (*) to refine it repeatedly. Removing all the 1s and 
replacing (x+1), (x+2) ... by x gives that f(x) ≥ lim √( x √( x √( x √( x ... )))) = x > 1/2 (x + 1). Now (*) gives f(x)2 ≥ 
1/2 (x2 + 2x) + 1 > 1/2 (x + 1)2, so f(x) > (x + 1)√(1/2). Using (*) again gives f(x) > (x + 1) (1/2)1/4 and so on. 
Hence f(x) ≥ x + 1 as required. 

Problem B1 
A convex polygon does not extend outside a square side 1. Prove that the sum of the squares of its sides is at most 
4. 

Solution 
Form a right-angled triangle on each side of the polygon (and outside it), by taking the other two sides parallel to 
the sides of the square. The sum of the squares of the polygon's sides equals the sum of the squares of the non-
hypoteneuse sides of the triangles. Because the polygon is convex, these triangle sides form 4 sets, one for each 
side of the square, and each set having lengths totalling less than 1 (the side of the square). So the sum of the 
squares in each set is less than 1 (∑x2 < (∑x)2 = 1). 

Problem B2 
Prove that at least one integer in any set of ten consecutive integers is relatively prime to the others in the set. 

Solution 
There are 5 odd numbers in the set. At most 2 are multiples of 3, at most 1 is a multiple of 5 and at most 1 is a 
multiple of 7. So there is at least one odd number, k, that is not divisible by 3, 5 or 7. Now if k has a common factor 
with another member in the set, then that factor must divide their difference, which is at most 9. But the common 
factor cannot be divisible by 2, 3, 5 or 7, so it must be 1. 

Problem B3 
an is a sequence of positive reals such that ∑ 1/an converges. Let sn = ∑1

n ai. Prove that ∑ n2an/sn
2 converges. 

Solution 
Let A = (∑1/an)

1/2 and BN = ∑1
N n2an/sn

2. 
Since all an are positive, sn-1 < sn and hence BN < ∑1

N n2an/(snsn-1). But an = sn - sn-1, so for n > 1 we may write the 
summand as n2(1/sn-1 - 1/sn). Hence BN < 1/a1 + (4/s1 - 4/s2) + (9/s2 - 9/s3) + ... + (N2/sN-1 - N

2/sN) < 5/a1 + 5/s2 + 
7/s3 + 9/s4 + ... + (2N-1)/sN-1 - N

2/sN < 2/a1 + 3(1/s1 + 2/s2 + 3/s3 + ... + N/sN). 



Now ∑1
N n/sn= ∑ (1/√an) (n(√an)/sn ) <= (∑ 1/an)

1/2 (∑ n2an/sn
2)1/2 < A BN

1/2. So we have BN < 2/a1 + 3A BN
1/2. That 

implies that BN is bounded above. For example, we certainly have BN < (1 + 3/a1 + 3A)2. But any increasing 
sequence which is bounded above must converge. 

Problem B4 
Given a set of (mn + 1) unequal positive integers, prove that we can either (1) find m + 1 integers biin the set such 
that bi does not divide bj for any unequal i, j, or (2) find n+1 integers ai in the set such that ai divides ai+1 for i = 1, 2, 
... , n. 

Solution 
Given any a1 in the set, let f(a1) be the length of the longest sequence a1, a2, ... , ak taken from the set such that a1|a2, 
a2|a3, ... , ak-1|ak. If f(a1) > n, then we are done, so assume that for all a in the set, f(a) <= n. Thus f can only have n 
possible values (1, 2, ... , n). There are mn+1 members in the set, so there must be at least m+1 members b1, b2, ... , 
bm+1 with the same value of f, say h. Now we cannot have any one of these members divide another, for if bi|bj, then 
we could extend the sequence length h for bj to give a sequence length h+1 for bi (in which each element divides 
the next). 

Problem B5 
Given n points in the plane, no three collinear, prove that we can label them Pi so that P1P2P3 ... Pn is a simple 
closed polygon (with no edge intersecting any other edge except at its endpoints). 

Solution 
Take arbitrary x, y axes. Take P to be the point with the smallest x-coordinate, or if there are two such, the one with 
the smaller y-coordinate. Take Q to be the point with the largest x-coordinate, or if there are two such the one with 
the smaller y-coordinate. Join P to Q by a path p along the lower part of the convex hull of the points (so that all 
other points are above the path). 

Now order the remaining points not in the path according to the size of their x-coordinate (with the largest first). 
Continue the path from Q back to P by taking the remaining points in this order. We can never intersect the existing 
path p without going outside the convex hull and we cannot intersect the later part of the path because it has smaller 
x-coordinate. 

Problem B6 
y = f(x) is a solution of y'' + exy = 0. Prove that f(x) is bounded. 

Solution 
We have 2 e-x y' y'' + 2 y y' = 0. Integrating from 0 to k gives y(k)2 = y(0)2 - 2 ∫0

k e-x y' y'' dx. Integrating by parts 
gives 2 ∫0

k e-x y' y'' dx = e-x (y')2|0
k + ∫0

k (y')2 e-x dx = e-ky'(k)2 - y'(0)2 + ∫0
k (y')2 e-x dx = A - y'(0)2, where A > 0. 

Hence y(k)2 = y(0)2 + y'(0)2 - A < y(0)2 + y'(0)2, which establishes that y is bounded. 



28th Putnam 1967 

Problem A1 

We are given a positive integer n and real numbers ai such that |∑1
n ak sin kx| ≤ |sin x| for all real x. Prove |∑1

n k ak| 
≤ 1.  

SolutionPut f(x) = ∑1
n ak sin kx. We note that ∑1

n k ak = f '(0).  

We also have f '(0) = lim ( f(x) - f(0) )/x = lim f(x)/x = lim f(x)/sin x lim (sin x)/x = lim f(x)/sin x. But |f(x)| ≤ |sin 
x|, so |f(x)/sin x| ≤ 1 and hence |f '(0)| = |lim f(x)/sin x| ≤ 1.  

Problem A2 

Let un be the number of symmetric n x n matrices whose elements are all 0 or 1, with exactly one 1 in each row. 
Take u0 = 1. Prove un+1 = un + n un-1 and ∑0

∞ un x
n/n! = ef(x), where f(x) = x + (1/2) x2.  

Solution 
There is an obvious bijection between (1) n x n matrices satisfying the conditions and (2) (n+1) x (n+1) matrices 
satisfying the conditions which have 1 at the top left. [Just delete the first row and column to get from (2) to (1) ).  

Similarly for any i = 2, 3, ... or n+1, there is an obvious bijection between (1) (n-1) x (n-1) matrices satisfying the 
conditions and (2) (n+1) x (n+1) matrices satisfying the conditions which have a 1 in row 1, col i (and hence also in 
row i, col 1). Just delete rows 1 and i and cols 1 and i to get from (2) to (1).  
That establishes that un+1 = un + n un-1. Also, we are given that u0 = 1 and it is clear that u1 = 1.  

We have that ef(x) = 1 + (x + 1/2 x2) + (x + 1/2 x2)2/2! + ... which is clearly 1 + v1x/1! + v2x
2/2! + ... for some vn. 

Differentiating, we get that (1 + x) (1 + v1x/1! + v2x
2/2! + ...) = v1 + v2x/1!+ v3x

2/2! + ... . Hence v1 = 1, v2 = v1 + 1, 
vn+1 = vn + n vn-1. A trivial induction now shows that vn = un.  

Problem A3 

Find the smallest positive integer n such that we can find a polynomial nx2 + ax + b with integer coefficients and 
two distinct roots in the interval (0, 1).  

Solution 
Answer: n = 5 with equation 5x2 - 5x + 1 with roots (1 ± √(1/5) )/2.  
The product of the roots lies in the interval (0, 1), so b must be 1, 2, 3, ... or n-1 (1). The larger root is (-a + √(a2 - 
4bn) )/(2n). This must be less than 1, so -a < b + n (2). The roots are real and distinct, so a2 > 4bn (3).  

Putting (2) and (3) together we get: (n + b - 1)2 ≥ a2 ≥ 4bn + 1. So if b = 1, then n ≥ 5. If b = 2, then n ≥ 6. If b = 3, 
then n ≥ 8. If b = 4, then n ≥ 10. Thus there are no solutions for n < 5 (which requires b < 4 by (1) ). If n = 5, then 
the only possible solution is 5x2 - 5x + 1, which is easily verified to be a solution.  

Problem A4 

Let 1/2 < α ∈ R, the reals. Show that there is no function f : [0, 1] → R such that f(x) = 1 + α ∫x
1 f(t) f(t - x) dt for 

all x ∈ [0, 1].  

Solution 
Suppose there is such a function. Let K = ∫0

1 f(x) dx. Then K = 1 + α ∫0
1∫x

1 f(t) f(t - x) dt dx.  
Interchanging the order of integration gives ∫0

1∫x
1 f(t) f(t - x) dt dx = ∫0

1∫0
t f(t) f(t - x) dx dt = ∫0

1 f(t) ∫0
t f(x) dx dt (*).  

Put g(x) = ∫0
x f(t) dt. Then g'(x) = f(x), so (*) gives ∫0

1 g'(t) g(t) dt = 1/2 g(1)2 - 1/2 g(0)2. But g(1) = K and g(0) = 0. 
Thus we have K = 1 + α/2 K2, or rearranging (K - 1/α)2 = -2/α2 (α - 1/2). But that is impossible for α > 1/2.  

Problem A5 

K is a convex, finite or infinite, region of the plane, whose boundary is a union of a finite number of straight line 
segments. Its area is at least π/4. Show that we can find points P, Q in K such that PQ = 1.  

Solution 
Suppose the result is false, so that the maximum distance is 2d < 1. Take a diameter of K (in other words two points 



A, B for which AB = 2d). Let the x-axis lie along this diameter with the origin at its midpoint. Take the y-axis 
perpendicular to the x-axis as usual. Then K lies entirely between x = -d and x = +d. Let t(x) be the top boundary of 
K (above the x-axis) and -b(x) be the bottom boundary of K (below the x-axis).  

The area A of K is the area under the curve t(x) plus the area between b(x) and the x-axis. In other words A = ∫-d
d 

t(x) dx + ∫-d
d b(x) dx = ∫-d

d t(x) dx + ∫-d
d b(-x) dx = ∫-d

d( t(x) + b(-x) ) dx. Now (t(x) + b(-x))2 = D2 - (2x)2, where D is 
the distance between the two points (x, t(x)) and (-x, b(-x)). Certainly, D < 1, so ∫-d

d( t(x) + b(-x) ) dx < ∫-d
d √( 1 - 

4x2 ) dx.  
The indefinite integral is 1/2 √( 1 - 4x2) + (1/4) sin-1(2x), so integrated between -1/2 and 1/2 it gives π/4. The 
integrand is positive, so between -d and d it gives a smaller result. In other words we have established that if 2d < 
1, then A < π/4. Contradiction.  

Problem A6 

ai and bi are reals such that a1b2 ≠ a2b1. What is the maximum number of possible 4-tuples (sign x1, sign x2, sign x3, 
sign x4) for which all xi are non-zero and xi is a simultaneous solution of a1x1 + a2x2 + a3x3 + a4x4 = 0 and b1x1 + 
b2x2 + b3x3 + b4x4 = 0. Find necessary and sufficient conditions on ai and bi for this maximum to be achieved.  

Solution 
Solving in terms of x3, x4 gives x1 = s23/s12 x3 + s24/s12 x4, x2 = s31/s12 x3 + s41/s12 x4, x3 = x3, x4 = x4, where sij = (aibj - 
ajbi). Plot the 4 lines s23/s12 x3 + s24/s12 x4 = 0, x2 = s31/s12 x3 + s41/s12 x4 = 0, x3 = 0, x4 = 0 in the x3, x4 plane. We get 
4 lines through the origin. Evidently x1 changes sign if we cross the first, x2 changes sign if we cross the second, x3 
changes sign if we cross the third and x4 changes sign if we cross the fourth. So we have a different combination of 
signs in each sector, but the same combination throughout any given sector.  

Thus the maximum is achieved when the four lines are distinct, giving 8 sectors (and hence 8 combinations). This 
requires that s23 and s24 are non-zero (otherwise the first line coincides with one of the last two) and that s31 and s41 
are non-zero (otherwise the second line coincides with one of the last two). Finally, the first two lines must not 
coincide with each other. That requires that s31/s41 is not equal to s23/s24. After some slightly tiresome algebra that 
reduces to s34 non-zero. So a necessary and sufficient condition to achieve 8 is that all sij are non-zero.  

Problem B1 

A hexagon is inscribed in a circle radius 1. Alternate sides have length 1. Show that the midpoints of the other three 
sides form an equilateral triangle.  

Solution 
Each side length 1 forms an equilateral triangle with the centre. Let the other three sides subtend angles 2A, 2B, 2C 
at the centre. The midpoints of the sides subtending 2A and 2B are distances cos A and cos B from the centre and 
the line joining them subtends an angle A+B+60 at the centre. So, using the cosine formula, the square of the 
distance between them is cos2A + cos2B - 2 cos A cos B cos(A+B+60) (*). But A + B + C = 90, so cos(A+B+60) = 
cos(150-C) = -√3/2 cos C + 1/2 sin C. Hence we may write (*) as (cos2A + cos2B + cos2C) + √3 cos A cos B cos C 
- cos A cos B sin C - cos2C. But we can write cos C as sin(A + B) = sin A cos B + cos A sin B and hence cos2C as 
sin A cos B cos C + cos A sin B cos C. Thus (*) has the symmetrical form (cos2A + cos2B + cos2C) + √3 cos A cos 
B cos C - (cos A cos B sin C + cos A sin B cos C + sin A cos B cos C), which establishes that the triangle is 
equilateral.  

Problem B2 

A, B ∈ [0, 1] and we have ax2 + bxy + cy2 ≡ (A x + (1 - A )y)2, (A x + (1 - A)y )(B x + (1 - B)y) ≡ dx2 + exy + fy2. 
Show that at least one of a, b, c ≥ 4/9 and at least one of d, e, f ≥ 4/9.  

Solution 
For the first part, a = A2, b = 2 A (1 - A), c = (1 - A)2. If a < 4/9, then A < 2/3. If c < 4/9 then A > 1/3. But b > 4/9 
for 1/3 < A < 2/3.  
For the second part, d = A B, f = (1 - A )(1 - B ), e = A + B - 2 AB.  
Measure A along the x-axis and B along the y-axis. Consider the regions of the square for which each of d, e, f are 
≥ 4/9. d ≥ 4/9 for points above the hyperbola y = 4/(9x) which passes through the points (4/9, 1), (2/3, 2/3), (1, 4/9). 
Similarly f ≥ 4/9 for points below the hyperbola y = 1 - 4/(9 - 9x), which passes through the points (0, 5/9), (1/3, 
1/3), (5/9, 0). Finally, e > 4/9 for points lying between the two branches of the hyperbola y = (4 - x)/(9 - 18x). The 
bottom branch passes through (0, 4/9), (1/3, 1/3), (4/9, 0) and the top branch passes through (5/9, 1), (2/3, 2/3), (1, 



5/9). Thus the bottom branch is entirely below the d = 4/9 hyperbola, except at the point of intersection (1/3, 1/3), 
and the top branch is entirely above the f = 4/9 hyperbola, except at the point of intersection (2/3, 2/3). This is 
easily checked by solving d = e = 4/9 and d = f = 4/9. Thus the three areas d ≥ 4/9, e ≥ 4/9, f ≥ 4/9 cover the unit 
square.  

Problem B3 

R is the reals. f, g are continuous functions R → R with period 1. Show that limn→∞ ∫0
1 f(x) g(nx) dx = (∫0

1 f(x) dx) 
(∫0

1 g(x) dx).  

Solution 
The idea is to split the integration range into n equal parts. Thus we get ∫0

1 f(x) g(nx) dx = ∑ ∫r/n
r/n+1/n f(x) g(nx) dx. 

For large n, f is roughly constant over the range, so we get ∈ f(r/n) ∫r/n
r/n+1/n g(nx) dx. Changing the integration 

variable to t = nx, gives ∑ f(r/n) 1/n ∫0
1 g(t) dt since g is periodic. But lim ∑ f(r/n) 1/n is just ∫0

1 f(x) dx, so we get 
the required (∫0

1 f(x) dx) (∫0
1 g(x) dx).  

It remains to look at the error involved in approximating f. The function f is continuous and [0, 1] is compact, so it 
must be uniformly continuous on [0, 1]. Thus we given any ε > 0, we can find N such that for n > N, we have |f(x) - 
f(r/n)| < ε on [r/n, r/n + 1/n] for each of r = 0, 1, 2, ... , n-1. So the error is at most ∑ ∫r/n

r/n+1/n |f(x) - f(r/n)| |g(nx)| dx 
< ∑ ε 1/n ∫0

1 |g(t)| dt = ε ∫0
1 |g(t)| dt, which can be made arbitrarily small.  

Problem B4 

We are given a sequence a1, a2, ... , an. Each ai can take the values 0 or 1. Initially, all ai = 0. We now successively 
carry out steps 1, 2, ... , n. At step m we change the value of ai for those i which are a multiple of m. Show that after 
step n, ai = 1 iff i is a square. Devise a similar scheme give ai = 1 iff i is twice a square.  

Solution 
ai is changed once for each divisor of i. If i is non-square then it has an even number of divisors (they come in pairs 
d, i/d), so ai ends as 0. If i is square it has an odd number of divisors and so ai ends as 1.  
We change those that a multiple of 2, then those that are a multiple of 4, then those that are a multiple of 6 and so 
on. This only affects the even numbers and indeed a2i is changed once for each divisor of i, so the same argument as 
before shows that a2i ends as 1 iff i is a square. Note that a2i+1 is never changed, so it remains 0.  

Problem B5 

The first n terms of the exansion of (2 - 1)-n are 2-n ( 1 + n/1! (1/2) + n(n + 1)/2! (1/2)2 + ... + n(n + 1) ... (2n -2)/(n - 
1)! (1/2)n-1 ). Show that they sum to 1/2.  

Solution 
Consider a random walk on a two dimensional lattice. The particle starts at (0, 0). At each step it moves up 1 step 
with probability 1/2 and right one step with probability 1/2. Suppose that we stop when the particle reaches x = n or 
y = n.  

Suppose the particle first reaches x = n at y = m (0 ≤ m < n). Then its final move must be from (n-1, m) to (n, m). In 
order to reach (n-1, m) it must make n+m-1 moves, m of which must be upwards. So the probability is (n+m-
1Cm)(1/2)n+m. Thus the probability that it reaches x = n is (n-1)C0 (1/2)n + nC1 (1/2)n+1 + ... + (2n-2)C(n-1) (1/2)2n-

1. The probability that it reaches y = n is the same. Note that it cannot reach the point (n, n) (because it reaches (n, 
n-1) or (n-1, n) first and stops). So each series must total 1/2.  

Problem B6 

R is the reals. D is the closed unit disk x2 + y2 = 1 in R2. The function f : D → R has partial derivatives f1(x, y) and 
f2(x, y) and all f(x, y) ∈ [-1, 1]. Show that there is a point (a, b) in the interior of D such that f1(a, b)2 + f2(a, b)2 ≤ 
16.  

Solution 
Consider f(x, y) + 2x2 + 2y2. It is at least 1 on the entire boundary of D and at most 1 at the centre. So it is either 
constant at an interior point of D or has a minimum at an interior point. In either case, there is an interior point (a, 
b) at which its two partial derivatives are zero. So f1(a, b) = -4a, f2(a, b) = -4b and f1

2 + f2
2 = 16(a2 + b2) < 16.  

  



29th Putnam 1968 

Problem A1 

Prove that ∫0
1 x4(1 - x)4/(1 + x2) dx = 22/7 - π.  

Solution 
Divide the denominator by the numerator to get: (x8 - 4x7 + 6x6 - 4x5 + x4) = (1 + x2)(x6 - 4x5 + 5x4 - 4x2 + 4) - 4.  
Now we can integrate to get (x7/7 - 2x6/3 + x5 - 4x3/3 + 4x)|0

1 - ∫0
1 4dx/(1 + x2) = 22/7 - π.  

Problem A2 

Given integers a, b, c, d such that ad - bc ≠ 0, integers m, n and a real ε > 0, show that we can find rationals x, y, 
such that 0 < |ax + by - m| < ε and 0 < |cx + dy - n| < ε.  

Solution 
Take k rational such that 0 < k < ε. Now solve the simultaneous equations: ax + by = m + k, cx + dy = n + k. We 
get x = (dm - bn + dk - bk)/(ad - bc), y = (an - cm + ak - ck)/(ad - bc). Clearly x and y are rational and satisfy the 
required inequalities.  

Problem A3 

S is a finite set. P is the set of all subsets of S. Show that we can label the elements of P as Ai, such that A1 = ∅ and 
for each n >= 1, either An-1 ⊂ An and |An - An-1| = 1, or An-1 ⊃ An and |An-1 - An| = 1. 

Solution 
Let N = 2n and let A1, ... , AN be a solution for n with AN = {n}. Now take AN+m = A2N+1-m union {n+1} for m = 
N+1, ... , 2N. This gives a solution for n+1. 

Problem A4 

Let S2 be the 2-sphere { (x, y, z) : x2 + y2 + z2 = 1}. Show that for any n points on S2, the sum of the squares of the 
n(n - 1)/2 distances between them (measured in space, not in S2) is at most n2.  

Solution 

Let the points be (xi, yi, zi) for i = 1, 2, ... n. The square of the distance between the pair i, j is (xi - xj)
2 + (yi - yj)

2 + 
(zi - zj)

2 = (xi
2 + yi

2 + zi
2) + (xj

2 + yj
2 + zj

2) - 2(xixj + yiyj + zizj) = 2 - 2 (xixj + yiyj + zizj). Hence the sum of the 
squares of the distances is n(n-1) - 2 ∑ (xixj + yiyj + zizj). 

Now (x1 + x2 + ... + xn)
2 = ∑ xi

2 + 2 ∑ xixj. So 2 ∑ (xixj + yiyj + zizj) = X2 + Y2 + Z2 - ∑ (xi
2 + yi

2 + zi
2) = X2 + Y2 + 

Z2 - n, where X = ∑ xi, Y =  yi, Z = ∑ zi. Hence the sum of the squares is n2 - (X2 + Y2 + Z2), which is at most n2. 

Problem A5 

Find the smallest possible α such that if p(x) ≡ ax2 + bx + c satisfies |p(x)| ≤ 1 on [0, 1], then |p'(0)| ≤ α.  

Solution 
Answer: 8. Extreme case is ±(8x2 - 8x + 1).  
Note that |p'(0)| = |b|. So the question is how large we can make |b| and still be able to find a and c such that p(x) 
lies between -1 and 1 on [0 ,1].  

wlog a > 0. Write p(x) = a(x + b/2a)2 + c. If -b/2a ≤ 0, then p(x) has its minimum on [0, 1] at 0 and its maximum at 
1, so we require p(1) - p(0) ≤ 2 (we can then adjust c to get |p(x)| ≤ 1 on the entire interval). But p(1) - p(0) = a + b, 
so b ≤ 2 (and the extreme case is p(x) = 2x - 1).  

If -b/2a ≥ 1, then p(x) has its maximum at 0 and its minimum at 1 (on the interval). So we require p(0) - p(1) < 2 
and hence a + b ≥ -2. But -b ≥ 2a, so a ≤ 2 and b ≥ -4 (and the extreme case is 2x2 - 4x + 1).  
If 0 < -b/2a ≤ 1/2, then p(x) has its minimum at -b/2a and its maximum at 1. So we require a + b + b2/4a ≤ 2 or (b + 
2a)2/4a ≤ 2. But 0 < -b ≤ a, so (b + 2a)2 ≥ a2 and hence a2/4a ≤ 2 or a ≤ 8 and 0 < -b ≤ 8.  
Finally, if 1/2 ≤ -b/2a < 1, the p(x) has its minimum at -b/2a and its maximum at 0. So we require b2 /4a ≤ 2. So 
again a2 ≤ b2/4a ≤ 2. Hence a ≤ 8. But b2 ≤ 8a, so -b < 8. Hence -8 ≤ b < 0.  



Problem A6 

Find all finite polynomials whose coefficients are all ±1 and whose roots are all real.  

Solution 
Answer: ±(x + 1), ±(x - 1), ±(x2 + x - 1), ±(x2 - x - 1), ±(x3 + x2 - x - 1), ±(x3 - x2 - x + 1).  

The linear and quadratic polynomials are easy to find (and it is easy to show that they are the only ones).  
Suppose the polynomial has degree n ≥ 3. Let the roots be ki. Then ∑ ki

2 = (∑ ki)
2 - 2 ∑ kikj = a2 ± 2b, where a is 

the coefficient of xn-1 and b is the coefficient of xn-2. Hence the arithmetic mean of the squares of the roots is (a2 ± 
2b)/n. But it is at least as big as the geometric mean which is 1 (because it is an even power of c, the constant term). 
So we cannot have n > 3. For n = 3, we must have b the opposite sign to the coefficient of xn and it is then easy to 
check that the only possibilities are those given above.  

Problem B1 

The random variables X, Y can each take a finite number of integer values. They are not necessarily independent. 
Express prob( min(X, Y) = k) in terms of p1 = prob( X = k), p2 = prob(Y = k) and p3 = prob( max(X, Y) = k).  

Solution 
Let q1 = prob(X = k, Y = k), q2 = prob(X = k, Y > k), q3 = prob(X > k, Y = k), q4 = prob(X = k, Y < k), q5 = prob(X 
< k, Y = k). These are all probabilities for disjoint events, so we can add them freely to get: prob( min(X, Y) = k) = 
q1 + q2 + q3, p1 = q1 + q2 + q4, p2 = q1 + q3 + q5, p3 = q1 + q4 + q5. Hence prob( min(X, Y) = k) = p1 + p2 - p3.  

Problem B2 

(G, *) is a finite group with n elements. K is a subset of G with more than n/2 elements. Prove that for every g ∈ 
G, we can find h, k ∈ K such that g = h * k.  

Solution 
Take any g in G. Let H be the set of elements of the form h-1*g where h is in K. Since G is a group, H has the same 
number of elements as K. Hence it must overlap K (since between them they have more than n elements). So for 
some h, k in K we have k = h-1*g, or g = h*k.  

Problem B3 

Given that a 60o angle cannot be trisected with ruler and compass, prove that a 120o/n angle cannot be trisected 
with ruler and compass for n = 1, 2, 3, ... .  

Solution 
This is a trap.  

The obvious answer is that if we could trisect an angle 120o/n, that would give us an angle 40o/n and hence 60o/3. 
But we are told we cannot trisect 60o.  
This does not work for a slightly subtle reason. We are given the angle 120o/n. That in itself may help us to trisect 
60o. For example, it certainly allows us to trisect 60o if n = 6.  

So we have to use the standard Galois theory approach. It is not hard to show that a straight-edge allows us to get 
rational distances and compasses allow us to get any finite number of square roots. So we can construct distances 
which are in an extension K of the rationals of degree 2n for some n. Constructing an angle is equivalent to 
constructing its cosine.  

So if we are given an angle A, then we can construct distances which are in any extension K of degree 2nover 
Q(cos A). Now if K is an extension of L of degree r and L is an extension of F of degree s, then K is an extension 
of degree rs of F. So suppose Q(cos A) has degree u and Q(cos(A/3 ) has degree v. If we can construct A/3 given 
A, then cos(A/3) must lie in an extension K of Q(cos A) of degree 2n. But K is also an extension of Q(cos(A/3) ) so 
v/u must be a power of 2.  

Finally, it is well-known that Q(cos(360/m) ) has degree φ(m) over Q, where φ is Euler's function (so that φ(m) is 
the number of 1, 2, ... m-1 relatively prime to m). So we have to show that φ(9n)/φ(3n) is not a power of 2. But 
φ(m) = m ∏(1 - 1/p), where the product is taken over all primes p dividing m. But 3n and 9n have the same prime 
divisors, so φ(9n) = 3 φ(3n), and 3 is not a power of 2.  



Problem B4 

R is the reals. f : R → R is continuous and L = ∫-∞
∞ f(x) dx exists. Show that ∫-∞

∞ f(x - 1/x) dx = L.  

Solution 
Substitute x = y - 1/y. As y increases from -∞ to 0, x increases (monotonically) from -∞ to +∞. Also dx = (1 + 1/y2) 
dy, so we have L = ∫-∞

0 f(y - 1/y) (1 + 1/y2) dy = ∫-∞
0 f(y - 1/y) dy + ∫-∞

0 f(y - 1/y) 1/y2 dy.  

In the last integral we may substitute z = -1/y to get ∫0
∞ f(z - 1/z) dz or, using y instead of z, ∫0

∞ f(y - 1/y) dy.  

Problem B5 

Let F be the field with p elements. Let S be the set of 2 x 2 matrices over F with trace 1 and determinant 0. Find |S|.  

Solution 
Answer: p2 + p.  Let the matrix be  

a  b 
c  d 
 
If we take any a not 0 or 1, then d is fixed as 1 - a and is also not 0. Hence bc is fixed as a(1 - a) and is non-zero. So 
we can take any b not 0 and d is then fixed. Altogether that gives us (p - 2)(p - 1) possibilities.  

If we take a as 0 or 1, the d is fixed as 1 - a and bc must be 0. That gives 2p-1 possibilities for bc, or 4p-2 
possibilities in all.  
So in total we have (p - 2)(p - 1) + 4p - 2 = p2 + p.  

Problem B6 

A compact set of real numbers is closed and bounded. Show that we cannot find compact sets A1, A2, A3, ... such 
that (1) all elements of An are rational and (2) given any compact set K whose members are all rationals, K ⊆ some 
An.  

Solution 
Use a diagonalisation argument.  

Suppose we can find such An. Let Sn be the interval [1/22n, 1/22n-1], and let Tn be the set of rational points in Sn. 
Then the closure of Tn is Sn, which contains irrational points, so there must be points of Tn which are not in An. Let 
xn be one such. Now consider {xn}. Its only limit point is 0, so K, the union of {xn} and {0}, is a compact set of 
rationals. But K is not contained in any of the An, because it has a member xn not in An for each n. Contradiction.  



30th Putnam 1969 

Problem A1 

R2 represents the usual plane (x, y) with -∞ < x, y < ∞. p: R2 → R is a polynomial with real coefficients. What are 
the possibilities for the image p(R2)?  

Solution 
Answer: [k, k], [k, inf), (-inf, k], (-inf, inf), (k, inf), (-inf, k) for all real k.  

The first four possibilities given in the answer are easily realised: p(x, y) = k gives [k, k]; p(x, y) = x2 + k gives [k, 
inf); p(x, y) = k - x2 gives (-inf, k]; p(x, y) = x gives (-inf, inf).  
If p is not constant, then wlog there is a positive power of x. Let n be the highest such power. Fix y so that the p 
becomes a polynomial in x with a non-zero term in xn (this must be possible since only finitely many values of y 
can give a zero term). As x tends to inf, this term will dominate and tend to +inf or -inf. The domain R2 is 
connected and p is continuous, so the image must be connected also. So certainly there are no other possibilities 
apart from those given in the Answer.  

It is tempting to think that we cannot get (k, inf), but attempts to prove it fail. The trick is to use two square terms 
which cannot be zero simultaneously. For example, (xy - 1)2 + x2 + k. We can make x arbitrarily small and choose 
y to make the first term zero, but if we make x zero, then the first term is 1.  

Problem A2 

A is an n x n matrix with elements aij = |i - j|. Show that the determinant |A| = (-1)n-1 (n - 1) 2n-2.  

Solution 
For i = 1, 2, 3, ... , n-2 subtract twice row i+1 from row i and add row i+2 to row i. For i < n-1, row i becomes all 0s 
except for a 2 in column i+1.  
Now expand successively by the first, second, third ... rows to get (-2)n-2 times the 2 x 2 determinant with first row 
n-2, 1 and second row n-1, 0. This 2 x 2 determinant has value -(n-1), so the |A| = (-1)n-1 (n-1) 2n-2.  

Problem A3 

An n-gon (which is not self-intersecting) is triangulated using m interior vertices. In other words, there is a set of N 
triangles such that: (1) their union is the original n-gon; (2) the union of their vertices is the set consisting of the n 
vertices of the n-gon and the m interior vertices; (3) the intersection of any two distinct triangles in the set is either 
empty, a vertex of both triangles, or a side of both triangles. What is N?  

Solution 
Answer: N = n + 2m - 2.  

We use the well-known relation F = E + 2 - V (*), where F is the number of faces, E the number of edges and V the 
number of vertices. In this case, F = N + 1, because there are N triangles and one n-gon (the exterior polygon). So 
3N + 1.n gives each edge twice, in other words 2E = 3N + n. Clearly V = m + n. So (*) gives: N + 1 =3N/2 + n/2 + 
2 - m - n. Hence N = n + 2m - 2.  

Problem A4 

Prove that ∫0
1 xx dx = 1 - 1/22 + 1/33 - 1/44 + ... .  

Solution 
The rhs is a series, so this suggests that we should expand the integrand as a series and integrate term by term.  
We have that xx = ex ln x, so the obvious approach is to expand this as a series: 1 + (x ln x) + (x ln x)2/2! + ... . For 
this to work we need that ∫0

1 (x ln x)n dx = n! (-1)n/(n+1)n+1 (*).  
The integral is easy to evaluate by parts. Each step reduces the exponent on the log term without affecting the 
exponent on the x term and the non-integral term always vanishes at both endpoints. In other words, we have ∫0

1 xn 
lnmx dx = -m/(n+1) ∫0

1 xn lnm-1x dx, which gives (*).  

Problem A5 

u(t) is a continuous function. x(t), y(t) is the solution of x' = -2y + u(t), y' = -2x + u(t) satisfying the initial condition 



x(0) = x0, y(0) = y0. Show that if x0 ≠ y0, then we do not have x(t) = y(t) = 0 for any t, but that given any x0 = y0 and 
any T > 0, we can always find some u(t) such that x(T) = y(T) = 0.  

Solution 
Subtracting, we have z' = 2z, where z = x - y. So z(t) = Ae2t. If x0 ≠ y0, then A ≠ 0 and so z(t) ≠ 0 for any t. Hence, 
in particular, we do not have x(t) = y(t) = 0 for any t.  

If x0 = y0 = k, then z(0) = 0, so A = 0, so x(t) = y(t) for all t. Take (for example) u(t) = -(k/T) e-2t. Then we may 
solve x' + 2x = u with x(0) = k to get x(t) = k(1 - t/T) e-2t. This has x(T) = 0 as required.  

Problem A6 

The sequence a1 + 2a2, a2 + 2a3, a3 + 2a4, ... converges. Prove that the sequence a1, a2, a3, ... also converges.  

Solution 
Note that the result is not true for ai + a2, a2 + a3, ... or for 2a1 + a2, 2a2 + a3, ... . In the first case, we could have 1, -
1, 1, -1, 1, ... . In the second case, we could have 1, -2, 4, -8, 16, -32, ... .  

Suppose an + 2an+1 converges to 3k. We show that anconverges to k.  
Given any ε > 0, take N so that an + 2an+1 is within ε of 3k for all n >= N. Take a positive integer M such that aN is 
within (2M + 1)ε of k.  
Then aN+1 is within ( (2M + 1)ε + ε)/2 = (2M-1 + 1)ε of (3k - k)/2 = k. By a trivial induction aN+M is within 2ε of k. 
Then aN+M+1 is within (2ε + ε)/2, and hence within 2ε, of k. So by a trivial induction, an is within 2ε of k for all n > 
N + M.  

Problem B1 

The positive integer n is divisible by 24. Show that the sum of all the positive divisors of n - 1 (including 1 and n - 
1) is also divisible by 24.  

Solution 
Let n = 24m. We show first that if d is a divisor of n - 1 = 24m - 1, then d2 - 1 is divisible by 24. Clearly d is not a 
multiple of 3 (because n is), so 3 must divide d2 - 1. Also d must be odd (like n - 1), so d - 1 and d + 1 are 
consecutive even numbers, so one must be a multiple of 4, and there product d2 - 1 must be a multiple of 8.  

Now 24m - 1 cannot be a square (because squares are congruent to 0 or 1 mod 4), so its divisors come in pairs d, 
(24m - 1)/d. But d + (24m - 1)/d is divisible by 24 (because d2 - 1 and 24m are and no factor of 24 can divide d). 
Hence the sum of all the divisors of n - 1 is divisible by 24.  

Problem B2 

G is a finite group with identity 1. Show that we cannot find two proper subgroups A and B (≠ {1} or G) such that 
A ∪  B = G. Can we find three proper subgroups A, B, C such that A ∪  B ∪  C = G?  

Solution 
We have |A| divides |G| and hence |A| ≤ |G|/2. Similarly, |B| ≤ |G|/2. But 1 belongs to both A and B, so |A union B| 
< |G|.  

For three subgroups, sometimes we can and sometimes we cannot. For example, if G is the group of order 4 
defined by ba = ab, a2 = b2 = 1, then we can: A = {1, a}, B = {1, b}, C = {1, ab}. On the other hand, if G is a cyclic 
group of prime order, then it has no proper subgroups. [But these are far from the only exceptions. For example 
take G to be cyclic of order 15. Then any proper subgroup must have order 3 or 5. All subgroups contain 1, so any 
three subgroups contain at most 13 elements between them.]  

Problem B3 

The sequence a1, a2, a3, ... satisfies a1a2 = 1, a2a3 = 2, a3a4 = 3, a4a5 = 4, ... . Also, limn→∞an/an+1 = 1. Prove that a1 = 
√(2/π).  

Solution 
Let a1 = 1/k. Then we deduce successively that a2 = k, a3 = 2/k, a4 = (3/2) k. By a trivial induction, a2n = (3.5.7 ... 
2n-1)/(2.4.6 ... 2n-2) k and a2n+1 = (2.4.6 ... 2n)/(3.5.7 ... 2n-1) 1/k. Hence a2n+1/a2n+2 = (2/1) (2/3) (4/3) (4/5) (6/5) ... 



(2n/2n-1) 1/k2. We are given that this has limit 1, so (2/1) (2/3) (4/3) (4/5) (6/5) ... (2n/2n-1) has limit k2.  
So we need to establish that (2/1) (2/3) (4/3) (4/5) (6/5) (6/7) ... (2n/2n-1) (2n)/(2n+1) ... =  /2. This is the well-
known Wallis product. It is usually established by proving the product representation for sin z, but that requires 
relatively advanced complex analysis, which is outside the Putnam syllabus, so we need a simpler approach. The 
following is rather unmotivated unless you have seen it before.  

Let In = ∫0π/2 sinnx dx. Integrating by parts, we have that In = -∫ sinn-1x d(cos x) = (n-1) In-2 + (n-1) In. Hence In = (n-
1)/n In-2. But I0 = π/2, I1 = 1. So we find that I2n = (1/2)(3/4)(5/6) ... (2n-1)/2n π/2, I2n+1 = (2/3)(4/5)(6/7) ... 
(2n/2n+1).  
Now 0 < sin x < 1 on (0, π/2), so I2n-1 < I2n < I2n+1. Dividing by I2n+1, we get (2n+1)/2n > I2n/I2n+1 > 1. So I2n/I2n+1 
tends to 1 as n tends to infinity, which estabishes the Wallis product.  

Problem B4 

Γ is a plane curve of length 1. Show that we can find a closed rectangle area 1/4 which covers Γ.  

Solution 
Let the endpoints of the curve be A and B. Take lines p, q parallel to AB and on opposite sides of it so that the band 
between them just covers the curve. Similarly take lines r, s perpendicular to AB so that the band between them just 
covers the curve (and so that r is nearer to A than to B).  

Reflect A in q to get A1. Reflect A1 in r to get A2. Similarly, reflect B in p to get B1, then B1 in s to get B2. Consider 
the line segment A2B2. By reflection we can derive from it a curve from A to B consisting of five straight line 
segments which intersects p, q, r and s. Moreover it is evidently the shortest curve with this property.  

Let X be the distance between r and s, Y the distance between p and q, and Z the distance between A and B. We 
have (X - 2Y)2 + (X - Z)2 + 2X(X - Z) ≥ 0 (*). Hence (2X - Z)2 + (2Y)2 ≥ 4XY, which tells us that the square of the 
length A2B2 is greater than or equal to four times the area of the rectangle formed by the intersection of the two 
bands. Thus if the curve Γ has length 1, then A2B2 must have length at least 1 and hence we have found a rectangle 
with area at most 1/4 which covers Γ. Note that (*) shows the area will be less than 1/4 unless Z = X (so that r goes 
through A and s through B) and X = 2Y.  

Problem B5 

The sequence ai, i = 1, 2, 3, ... is strictly monotonic increasing and the sum of its inverses converges. Let f(x) = the 
largest i such that ai < x. Prove that f(x)/x tends to 0 as x tends to infinity.  

Solution 
Suppose not. Then for some fixed k > 0, we can find arbitrarily large x such that f(x) > kx. So take a sequence x1 < 
x2 < x3 < ... such that (1) f(xi) > kxi, (2) kxi/2 gt; f(xi-1). Then by (1) at least kxi members of the sequence an are less 
than xi. By (2) at most kxi/2 are less than xi-1. So at least kxi/2 must lie between xi-1 and xi.  

So ∑ 1/an has at least kxi/2 terms between 1/xi and 1/xi-1. These terms sum to at least k/2. All terms are positive, so 
the series diverges. Contradiction.  

Problem B6 

M is a 3 x 2 matrix, N is a 2 x 3 matrix. MN = 




















542

452

228

 Show that NM = 








90

09
 

Solution 
The key observation is that (MN)2 = 9 MN. [Of course, we expect this to be true since NM = 9 I, and it is easy to 
verify.]  

It is also easy to check that MN has rank 2. The rank of NM must be at least as big as M(NM)N = 9 MN, so NM is 
non-singular. Now (NM)3 = N(MN)2M = N(9 MN)M = 9 (NM)2. Multiplying by the inverse of NM twice gives that 
NM = 9 I.  



31st Putnam 1970 

Problem A1 

ebx cos cx is expanded in a Taylor series ∑ an x
n. b and c are positive reals. Show that either all an are non-zero, or 

infinitely many an are zero.  

Solution 
ebx cos cx = Re e(b+ic)x, so n! an = Re( (b + ic)n ). Let b + ic = k eiθ, then n! an/k

n = cos nθ. So an = 0 iff nθ = 
(2m+1)π/2 for some integer m. So if there are any zeros then there are infinitely many.  

Problem A2 

p(x, y) = a x2 + b x y + c y2 is a homogeneous real polynomial of degree 2 such that b2 < 4ac, and q(x, y) is a 
homogeneous real polynomial of degree 3. Show that we can find k > 0 such that p(x, y) = q(x, y) has no roots in 
the disk x2 + y2 < k except (0, 0).  

Solution 
The disk is a strong hint that one should use polar coordinates, so put x = r cos θ, y = r sin θ. Then we get r = p(cos 
θ, sin θ)/q(cos θ, sin θ). Now |cos θ| and |sin θ| ≤ 1, so |q(cos θ, sin θ)| ≤ h, where h is the sum of the absolute values 
of the coefficients of q. So we are home if we can establish some inequality |p(cos θ, sin θ)| ≥ h', because we can 
then take k = h'/h.  

Without loss of generality a > 0 and hence also c > 0. Now p(cos θ, sin θ) = 1/2 (a + c)(cos2θ + sin2θ) + 1/2 (a - 
c)(cos2θ - sin2θ) + 1/2 b sin 2θ = 1/2 (a + c) + 1/2 (a - c) cos 2θ + 1/2 b sin 2θ. Put d = √(b2 + (a - c)2) and take φ so 
that cos φ = (a - c)/d, sin φ = b/d. Then 2p(cos θ, sin θ) = (a + c) + d (cos φ cos 2θ + sin φ sin 2θ) = (a + c) + d 
cos(φ - 2θ) >= (a + c) - d.  

But 4ac > b2, so (a + c)2 > (a - c)2 + b2, so (a + c) > d, and we are done.  

Problem A3 

A perfect square has length n if its last n digits (in base 10) are the same and non-zero. What is the longest possible 
length? What is the smallest square achieving this length?  

 Solution 
Answer: 3, 382 = 1444.  

All squares end in the digit 0, 1, 4, 9, 6, or 5. A square ending in 11, 99, 66, 55 would be congruent to 3, 3, 2, 3 
mod 4, but squares are congruent to 0 or 1 mod 4. So for length greater than 1 the square must end in 4. For 
example, 122 = 144.  
A square ending in 4444 would be congruent to 12 mod 16, but squares are congruent to 0, 1, 4 or 9 mod 16. So the 
maximum length is 2 or 3.  

If n2 ends in 4, then n must end in 2 or 8. (100a + 10b + 2)2 = 10000a2 + 1000 (2ab) + 100 (4a + b2) + 10 (4b) + 4. 
So if this ends in 44, then b = 1 or 6. If b = 1, then 4a + b2 is odd, so the square cannot end in 444. If b = 6, then the 
square is 1000k + (4a + 38) 100 + 44. This will end in 444 if we take a = 4 or 9. Thus the smallest numbers ending 
in 2 whose square ends in 444 are 462 (square 213444) and 962 (square 925444).  

(100a + 10b + 8)2 = 1000k + 100 (16a2 + b2) + 10 (16b + 6) + 4. So if this ends in 44, then b = 3 or 8. (100a + 38)2 
= 1000k + 100 (76a) + 1444, so this ends in 444 if a = 0. This must be the smallest solution.  

Problem A4 

The real sequence a1, a2, a3, ... has the property that limn→∞ (an+2 - an) = 0. Prove that limn→∞ (an+1 - an)/n = 0.  

Solution 
Suppose we have any series an satisfying the condition. Take a new series bn defined by b2n+1 = 0 and b2n = a2n. 
Then bn also satisfies the condition, but (b2n+1 - b2n)/n = - a2n/n, so we must have the apparently stronger result that 
a2n/(2n) tends to zero (and similarly that a2n+1/(2n+1) tends to zero).  

Thus we need to prove that if cn is any sequence such that cn+1 - cn tends to zero, then cn/n tends to zero.  



Given any positive k, we have |cn+1 - cn| < k for all n > some N. Now for any M > N, we have cM = cN + (cN+1 - cN) + 
... + (cM - cM-1). Hence |cM| ≤ |cN| + (M-N)k. If we take M sufficiently large that |bN|/M < k, then |cM|/M < 2k, which 
establishes that cn/n tends to zero.  

Problem A5 

Find the radius of the largest circle on an ellipsoid with semi-axes a > b > c.  

Solution 
Answer: b.  

A circle lies in a plane, so we consider planes cutting the ellipsoid. The intersection of any plane P with the 
ellipsoid is an ellipse (assuming it cuts the ellipsoid in more than one point). That is fairly obvious. Substitute the 
linear equation for the plane into the quadratic equation for the ellipsoid and we get a quadratic equation for the 
projection of the intersection onto one of the coordinate planes. This must be a conic and, since bounded, an ellipse. 
Projecting back onto P shows that the intersection is an ellipse.  

It is less obvious, but true, that parallel planes give similar ellipses. So to maximise the size we take the plane P 
through the centre of the ellipsoid. Suppose its intersection with the ellipsoid is a circle K. P cannot be normal to 
one of the semi-axes, because then its intersection is certainly an ellipse with unequal semi-axes. So P must meet 
the bc plane in a line. This line is a diameter of K. But it is also a diameter of an ellipse with semi-major axes b and 
c, so it has length at most 2b, so K has diameter is at most 2b. Similarly P meets the ab plane in a line, which has 
length at least 2b, so the diameter of K is at least 2b. So if K has radius b.  

It remains to show that some planes do intersect the ellipsoid in a circle. Consider a plane through the semi-major 
axis b of the ellipsoid. The intersection K clearly has one diameter 2b. Moreover, the ellipse K is symmetrical about 
this diameter, so it must be one of its two semi-major axes. If we start with the plane also containing the semi-
major axis c of the ellipsoid, then K has another diameter perpendicular to the first and length 2c. This must be the 
other semi-major axis of K. As we rotate the plane through a right-angle, the length of this diameter increases 
continuously to 2a. So at some angle it must be 2b. But an ellipse with equal semi-major axes is a circle.  

Problem A6 

x is chosen at random from the interval [0, a] (with the uniform distribution). y is chosen similarly from [0, b], and 
z from [0, c]. The three numbers are chosen independently, and a ≥ b ≥ c. Find the expected value of min(x, y, z).  

Solution 
Answer: c/2 - c2(1/(6a) + 1/(6b) ) + c3/(12ab).  

Let m(k) = prob(x ≥ k and y ≥ k and z ≥ k). We have that prob(x ≥ k) = 1 for k < 0, 1 - k/a for 0 ≤ k ≤ a, 0 for k > a. 
Similarly for y and z. So m(k) is 1 for k < 0, and (1 - k/a)(1 - k/b)(1 - k/c) for 0 ≤ k ≤ c, and 0 for k ≥ a.  

Now the probability that the minimum lies between k and k + δk is m(k) - m(k + δk), so the probability density for 
min(x, y, z) to equal k is -m'(k) which is: (1/a + 1/b + 1/c) -2k(1/(ab) + 1/(bc) + 1/(ca) ) + 3k2/(abc) for 0 ≤ k ≤ c. 
Thus the expected value is the integral from 0 to c of k(1/a + 1/b + 1/c) -2k2(1/(ab) + 1/(bc) + 1/(ca) ) + 3k3/(abc) 
which is c2(1/a + 1/b + 1/c)/2 -2c3(1/(ab) + 1/(bc) + 1/(ca) )/3 + 3c4/(4abc).  

Problem B1 

Let f(n) = (n2 + 1)(n2 + 4)(n2 + 9) ... (n2 + (2n)2). Find limn→∞ f(n)1/n/n4.  

Solution 
Rearranging slightly, we may take g(n) = (1 + (1/n)2)(1 + (2/n)2)(1 + (3/n)2) ... (1 + (2n/n)2). We have to find lim 
g(n)1/n.  

It is a mistake to approach this algebraically. It is not hard to show that the product of the pair of terms r and 2n+1-r 
is at least 4. There are n such pairs, so certainly g(n)1/n > 4, but it is hard to get any further.  

The key is to take logs. We then see immediately that g(n)1/n becomes a standard Riemann sum for ∫0
2 log(1 + x2) 

dx. So the limit is simply the integral.  



x log(1 + x2) differentiates to log(1 + x2) + 2x2/(1 + x2). A little reflection then suggests using 2 tan-1x, which 
differentiates to 2/(1 + x2). So the complete integral is x log(1 + x2) + 2 tan-1x - 2x. Evaluating between 0 and 2 
gives 2 log 5 + 2 tan-12 - 4 = k, say. Then the original limit in the question is ek. That is approximately 4.192.  

Problem B2 

A weather station measures the temperature T continuously. It is found that on any given day T = p(t), where p is a 
polynomial of degree ≤ 3, and t is the time. Show that we can find times t1 < t2, which are independent of p, such 
that the average temperature over the period 9am to 3pm is ( p(t1) + p(t2) / 2. Show that t1 = 10:16am, t2 = 1:44pm.  

Solution 
Let t be time after 9am and T be 6 hrs after 9am, so that t = 0 represents 9am and t = T represents 3pm. We may 
write the polynomial p(t) as at3 + bt2 + ct + d for some a, b, c, d. The average temperature is 1/T ∫0

T(at3 + bt2 + ct + 
d) dt = T3 a/4 + T2 b/3 + T c/2 + d. We wish to find t1, t2 so that this equals (t1

3 + t2
3) a/2 + (t1

2 + t2
2) b/2 + (t1 + t2) 

c/2 + d for all a, b, c, d.  

The terms in d match. The term in c matches provided we take t1 + t2 = T. The term in b matches provided we take 
t1

2 + t2
2 = 2T2/3. These two equations already determine t1 and t2. In fact, solving the quadratic, we get t1 = T(1 - 

1/√3)/2 and t2 = T(1 + 1/√3)/2.  

For the terms in a to match we need t1
3 + t2

3 = T3/2. But we can easily check that the values above satisfy this 
relation also.  

Finally note t1 = 6(1/2 - (√3)/6 ) hrs = 3 - √3 = 3 - 1.732 = 1.268 hrs = 1 hr 16 min (approx), so t1 represents about 
10:16am and t2 about 1 hr 16 min before 3pm or 1:44pm.  

Problem B3 

S is a closed subset of the real plane. Its projection onto the x-axis is bounded. Show that its projection onto the y-
axis is closed.  

Solution 
Let Y be the projection onto the y-axis and X the projection on the x-axis. Let { yn} be any Cauchy sequence in Y. 
Then { yn } must converge to some real y. We have to show that y is in Y. For each n take any xn such that (xn, yn) 
is in S. Then { xn } lies in X, which is bounded, so { xn } is bounded. But any bounded sequence has a convergent 
subsequence. So we can take a subsequence { un } of { xn } which is convergent and therefore Cauchy. Let { vn } 
be the corresponding subsequence of { y n }. Then { vn } is also Cauchy and hence the sequence of points Pn = (un, 
vn) in S is Cauchy. But S is closed so P converges to some (u, v) in S. Hence { vn } converges to v, which is in Y (it 
is the projection of (u, v) ). But since { yn } converges to y, its subsequence { vn } must also converge to y. Hence y 
= v and y is in Y.  

Problem B4 

A vehicle covers a mile (= 5280 ft) in less than a minute, starting and ending at rest and never exceeding 90 
miles/hour. Show that its acceleration or deceleration exceeded 6.6 ft/sec2.  

Solution 
Plot velocity (v in ft/sec ) against time ( t in sec ) .  

The graph never gets above the line v = 132 ( ft/sec =90 mph).  

If the vehicle's acceleration never exceeds 6.6 ft/sec2, then in particular, its acceleration in the first 20 seconds does 
not exceed 6.6 ft/sec and hence the velocity curve never gets above the line v = 6.6 t, which cuts the line v = 132 at 
t = 20.  

Similarly, if the vehicle's deceleration never exceeds 6.6 ft/sec2, then its deceleration in the last 20 seconds never 
exceeds 6.6 ft/sec, so the velocity curve it never gets above the line v = - 6.6 (t - 60), which represents constant 
deceleration at the maximum 6.6 ft/sec2 from t = 40 until the finish at t = 60 when it is stationary. In fact the curve 
must lie strictly under this line, since the vehicle finishes in less than a minute.  



Hence the area under the curve, which represents distance travelled, is less than the area of the quadrilateral 
bounded by t = 0, v = 6.6t, v = 132 and v = -6.6(t - 60), which is 1/2 20. 132 + 20.132 + 1/2 20.132 = 40.132 = 
5280 = 1 mile. But we know that the distance travelled was 1 mile. Hence either it accelerated at more than 6.6 
ft/sec2 at some point in the first 20 seconds, or it decelerated at more than 6.6 ft/sec2 at some point in the last 20 
seconds.  

Problem B5 

kn(x) = -n on (-∞, -n], x on [-n, n], and n on [n, ∞). Prove that the (real valued) function f(x) is continuous iff all kn( 
f(x) ) are continuous.  

Solution 
This is apparently almost trivial.  
The kn are continuous, so if f is continuous, then so are all knf.  

If f is not continuous, then there must be a point x0 and an infinite sequence of points xm in the interval (x0 - 1, x0 + 
1) but not equal to x0, such that xm tend to x0, but f(xm) do not tend to f(x0). Take n sufficiently large that (x0 - 1, x0 
+ 1) lies inside (-n, n). Then knf(xi) = f(xi), so knf is not continuous at x0.  

Problem B6 

The quadrilateral Q contains a circle which touches each side. It has side lengths a, b, c, d and area √(abcd). Prove 
it is cyclic.  

Solution 
It helps a lot to know the following result about the area of quadrilaterals: the area of a quadrilateral side a, b, c, d is 
maximised by making it cyclic, in which case its area is √( (s - a)(s - b)(s - c)(s - d) ) (*), where 2s = a + b + c + d.  

If we assume this result, then the problem is fairly easy. Assume that the sides are in the order a, b, c, d, so that the 
side length a is opposite that length c. If Q contains a circle C which touches each side, then a + c = b + d. [The 
distances from a vertex or the quadrilateral to the two points of contact of its two sides are equal. So for some w, x, 
y, z we have a = w + x, b = x + y, c = y + z, d = z + w and hence a + c = b + d.]  

But this means that s - a = (- a + c + b + d)/2 = (-a + c + a + c)/2 = c. Similarly, s - b = d, s - c = a and s - d = b, so 
the maximum possible area of the quadrilateral is √(abcd), with equality iff it is cyclic. But we are given that the 
area is √(abcd), so it must be cyclic.  

To establish the result about quadrilaterals, drop the assumption that a + c = b + d, and let the angle between a and 
b be θ and the opposite angle be φ. Let the area be A. Then 2A = ab sin θ + cd sin φ, so 16A2 = 4(a2b2 sin2θ + c2d2 
sin2φ ) + 8abcd sin θ sin φ (*).  

By the cosine rule we have a2 + b2 - 2ab cos θ = c2 + d2 - 2cd cos φ, so (a2 + b2 - c2 - d2)2 = 4(a2b2 cos2θ + c2d2 cos2φ 
) - 8abcd cos θ cos φ. Adding to (*) gives 16A2 = 4(a2b2 + c2d2) - (a2 + b2 - c2 - d2)2 - 8abcd cos(θ + φ) ≤ 4(a2b2 + 
c2d2) - (a2 + b2 - c2 - d2)2 + 8abcd   (**), with equality iff cos(θ + φ) = -1, in other words, iff the quadrilateral is 
cyclic.  

But we can easily check that (-a + b + c + d)(a - b + c + d)(a + b - c + d)(a + b + c - d) = 4(a2b2 + c2d2) - (a2 + b2 - c2 
- d2)2 + 8abcd.  



32nd Putnam 1971 

Problem A1 
Given any 9 lattice points in space, show that we can find two which have a lattice point on the interior of the 
segment joining them. 

Solution 
We can divide the points into 8 categories according to the parity of each coordinate. There must be at least 2 
points in the same category. The midpoint of the line joining them is then also a lattice point. 

Problem A2 
Find all possible polynomials f(x) such that f(0) = 0 and f(x2 + 1) = f(x)2 + 1. 

Solution 
Answer: f(x) = x. 
f(0) = 0. f(1) = f(0)2 + 1 = 1. f(12 + 1) = f(1)2 + 1 = 2. Similarly, by an easy induction we can get an arbitrarily large 
number of integers n for which f(n) = n. So if f has degree m, we can find at least m+1 integers on which it agrees 
with the polynomial p(x) = x. Hence it is identically equal to p. 

Problem A3 
The vertices of a triangle are lattice points in the plane. Show that the diameter of its circumcircle does not exceed 
the product of its side lengths. 

Solution 
Let the side lengths be a, b, c and the circumradius R. Let θ be the angle opposite side a. Then the area of the 
triangle A = 1/2 bc sin θ. The side a subtends an angle 2θ at the centre of the circumcircle, so a = 2R sin θ. Hence 
2A = abc/(2R). So we have to show that A ≥ 1/2. 

This follows at once from the well-known Pick's theorem: the area of any (non-self-intersecting) polygon whose 
vertices are lattice points is v/2 + i - 1, where v is the number of lattice points on the perimeter and i is the number 
of lattice points inside the polygon (so since for a triangle v ≥ 3, and i ≥ 0, we have area at least 3/2 - 1 = 1/2). 

Problem A4 
k lies in the open interval (1, 2). Show that the polynomial formed by expanding (x + y)n(x2 - k xy + y2) has 
positive coefficients for sufficiently large n. Find the smallest such n for k = 1.998. 

Solution 
Answer: 1999. 

The coefficient of xn-ryr+2 is ( nCr - k nCr+1 + nCr+2 ). We show that the worst case is r near n/2 and that even this 
is positive for sufficiently large n. 
( nCr - k nCr+1 + nCr+2 ) = n!/(r+2! n-r!) ( (r+1)(r+2) - k(r+2)(n-r) + (n-r-1)(n-r) ). Let f(r) = ( (r+1)(r+2) - 
k(r+2)(n-r) + (n-r-1)(n-r) ). Then f '(r) = 2r+3 - kn +2kr + 2k - 2n + 2r + 1. So f '(r) = 0 iff (2k+4)r = (k+2)n - 
(2k+4) or r = n/2 - 1. Also it is clear that f '(r) is negative for smaller values and positive for larger values, so this 
represents a minimum. So if n = 2m the minimum occurs at r = m - 1 and is 2mCm-1 - k 2mCm + 2mCm+1. Now 
2mCm-1 = 2mCm+1 = m/(m+1) 2mCm, so the minimum value is positive iff 2m/(m+1) > k which is certainly true 
for all sufficiently large m since k < 2. 

Similarly if n = 2m+1, then the minimum occurs at r = m-1 or m. In either case, the minimum value is 2m+1Cm-1 - 
k 2m+1Cm + 2m+1Cm+1. But 2m+1Cm = 2m+1Cm+1 and 2m+1Cm-1 = m/(m+2) 2m+1Cm, so the minimum 
value is (m/(m+2) - (k-1) ) 2m+1Cm, which is certainly positive for all sufficiently large m since k-1 < 1. 

We have 2m/(m+1) > 1.998 for m > 999, so the smallest even n with all coefficients positive is 2000. On the other 
hand, m/(m+2) > 0.998 for m > 998, so the smallest odd n with all coefficients positive is 1999. Thus the smallest n 
is 1999. 

  



Problem A5 
A player scores either A or B at each turn, where A and B are unequal positive integers. He notices that his 
cumulative score can take any positive integer value except for those in a finite set S, where |S| =35, and 58 ∈ S. 
Find A and B. 

Solution 
Answer: A, B = 8, 11. 

Let us call a number green if it can be expressed as a non-negative multiple of A plus a non-negative multiple of B. 
Assume A > B. A and B must be coprime. Otherwise there would be infinitely many non-green numbers. The set of 
integers 0, A, 2A, ... , (B-1)A are all incongruent mod B (since A and B are coprime), so they form a complete set 
of residues mod B. Hence any integer ≥ (B-1)A can be expressed as the sum of a multiple of B and one of the 
members of the set and is thus green. In fact, the none of the numbers (B-1)A - B + 1, (B-1)A - B + 2, ... , (B-A)A - 
1is a multiple of A and they are are incongruent to (B-1)A mod B, so they must equal one of the numbers 0, A, 2A, 
... , (B-2)A plus a multiple of B. Thus any integer greater than (B-1)A - B is green. On the other hand, (B-1)A - B 
itself cannot because it is (B-1)A mod B, so it is incongruent to kA mod B for k < (B-1) (and it cannot be (B-1)A 
plus a multiple of B because it is too small). 

So we need to look at the numbers ≤ AB - A - B. Exactly [A/B] of them are congruent to A mod B, but are not 
green. For if A = [A/B] B + r (with 0 < r < B), then they are r, r + B, r + 2B, ... , r + ([A/B] - 1)B. Similarly, [2A/B] 
are congruent to 2A mod B, but not green. So the total number of non-green numbers is: [A/B] + [2A/B] + ... + [(B-
1)A/B] (*). But kA/B cannot be integral for k = 0, 1, ... , (B-1) since A and B are coprime, so [A/B] + [(B-1)A/B] = 
A-1, [2A/B] + [(B-2)A/B] = A-1, ... . If B - 1 is even, then this establishes that (*) is 1/2 (A-1)(B-1). If B - 1 is odd, 
then the central term is [A/2]. B is even, so A must be odd, so [A/2] = 1/2 (A - 1). So in this case also (*) is 1/2 (A-
1)(B-1). 

So we have (A-1)(B-1) = 2·35 = 70 = 2·5·7. So A = 11, B = 8, or A = 15, B = 6, or A = 36, B = 3. But the last two 
cases are ruled out because they do not have A, B coprime. So we have A = 11, B = 8. We can easily check that 58 
is not green in this case. 

Problem A6 
α is a real number such that 1α, 2α, 3α, ... are all integers. Show that α ≥ 0 and that α is an integer. 

Solution 
Note first that α is obviously not negative, because then nα would be between -1 and 0 for sufficiently large n. 

It is also fairly obvious that α cannot be rational (and non-integral). For if 2m/n = A, then 2m = An, so A must be a 
power of 2, but then m is a multiple of n. However, that line of approach gets us nowhere with irrational values. 
The hint is to use some sort of mean value theorem. The idea is that this gives us another expression for the 
difference between the value of f(x) at two points. We might then hope to show that the expression was non-
integral, but the difference integral. 

In principle, we have two choices for f(x): xα or nx. The latter does not seem promising because the derivative is 
nx log n. If x is allowed to range over some interval (as in the MVT) then we cannot be sure whether it is integral or 
non-integral. It is certainly not small. 

On the other hand, the former is not immediately promising either. The derivative is α xα-1 (*). But suppose α < 1. 
Then α - 1 < 0, so for sufficiently large x the derivative will be less than 1. It will still be positive, so it will be 
between 0 and 1 and hence non-integral. The MVT tells us that f(n+1) - f(n) = f '(ξ) for some ξ between n and n+1, 
so if n is suffiently large f(n+1) - f(n) is an integer, but f '(ξ) is not. Contradiction. So we can rule out 0 < α < 1. 

In principle, we could get a contradiction for larger α if we could use a larger derivative. We have f(n)(x) = α(α-1) ... 
(α-k+1) xα-k, which will be between 0 and 1 provided that we choose k so that k-1 < α < k and take x sufficiently 
large. 

So we need a MVT which involves f(n)(ξ) plus terms which are all integral. The usual generalisation is the Taylor 
series with remainder. That does not help, because the other terms are mainly non-integral - they involve the lower 
derivatives which all have a factor α. 



However, there is another generalisation. Define Δf(x) = f(x+1) - f(x). We can iterate D, so that D2f(x) = Δf(x+1) - 
Δf(x) = f(x+2) - 2f(x+1) - f(x). We claim that Δ2f(x) = f(2)(ξ) for some ξ in [x, x+2]. The proof is almost immediate 
by applying the MVT to Δf(x). [Let g(x) = Δf(x). Then by the MVT Δg(x) = g'(ζ) for some ζ in [x, x+1]. But g'(ζ) = 
f '(ζ+1) - f '(ζ). By the MVT this is f ''(ξ) for some ξ in [ζ, ζ+1] and hence in [x, x+2]. ] By a simple induction, we 
can also show that Δnf(x) = f(n)(ξ) for some ξ in [x, x+n]. 

This is the generalisation we need because Δkf(n) is an integral combination of values of f at integer points and 
hence integral. Whereas for suitable n and k we showed above that f(k)(n) is non-integral. 

Problem B1 
S is a set with a binary operation * such that (1) a * a = a for all a ∈ S, and (2) (a * b) * c = (b * c) * a for all a, b, c 
∈ S. Show that * is associative and commutative. 

Solution 
b*a = (b*a)(b*a) using (1) 
= ( (b*a)*b )*a using (2) twice 
But (b*a)*b = (b*b)*a using (2) twice 
= b*a using (1) 
So b*a = (b*a)*a 
= (a*a)*b using (2) twice 
= a*b 
That shows that * is commutative. (2) now gives immediately that * is associative, because (a*b)*c = (b*c)*a = 
a*(b*c). 

Problem B2 
Let X be the set of all reals except 0 and 1. Find all real valued functions f(x) on X which satisfy f(x) + f(1 - 1/x) = 
1 + x for all x in X. 

Solution 
The trick is that x → 1 - 1/x → 1/(1-x) → x. Thus we have: 
  f(x) + f(1 - 1/x) = 1 + x   (1); 
  f(1 - 1/x) + f(1/(1-x) ) = 2 - 1/x   (2); 
  f(1/(1-x) ) + f(x) = 1 + 1/(1-x)   (3). 
Now (1) - (2) + (3) gives 2 f(x) = x + 1/x + 1/(1-x) or f(x) = (x3 - x2 - 1) / (2x2 - 2x). It is easily checked that this 
does indeed satisfy the relation in the question. 

Problem B3 
Car A starts at time t = 0 and, traveling at a constant speed, completes 1 lap every hour. Car B starts at time t = α > 
0 and also completes 1 lap every hour, traveling at a constant speed. Let a(t) be the number of laps completed by A 
at time t, so that a(t) = [t]. Similarly, let b(t) be the number of laps completed by B at time t. Let S = {t ≥ α : a(t) = 2 
b(t) }. Show that S is made up of intervals of total length 1. 

Solution 
Answer: S = [ [α]+α, 2[α]+1 ) ∪ [ 2α]+2, [α]+α+2 ). 

At all times in the interval [ [α]+α, 2[α]+1 ) car A has completed 2[α] laps and car B has completed [α] laps. At all 
times in the interval [ 2α]+2, [α]+α+2 ) car A has completed 2[α]+2 laps and car B has completed [α]+1 laps. The 
first interval has length 1-{α} and the second interval has length {α}, where {α} denotes the fractional part of α. 

During the interval [ 2[α]-1, 2[α] ) car A has completed 2[α]-1 laps and car B either [α]-2 or [α]-1 laps, so car A has 
completed more than twice as many laps as car B. Similarly, during the interval [ 2[α]-n, 2[α]-n+1) car A has 
completed 2[α]-n laps and car B [α]-n-1 or [α]-n laps, so at all times before 2[α] car A has completed more than 
twice as many laps as car B and these times do not form part of S. 

During [ 2α]+1, [α]+α+1 ) car A has completed 2[α]+1 laps and car B [α] laps, which is less than half the number. 
During [ [α]+α+1, 2[α]+2 ) car A has completed 2[α]+1 laps and car B [α]+1 laps, which is more than half the 
number. So no points in the gap between the two intervals of S belong in S. 



Finally, during [ [α]+α+2, 2[α]+3 ) car A has completed 2[α]+2 laps and car B [α]+2 laps, whilst during [ 2[α]+n, 
2[α]+n+1 ) car A has completed 2[α]+n laps and car B either [α]+n-1 or [α]+n laps. So at all times after [α]+α+2 
car A has completed less than twice the number of laps completed by car B and none of these times belong in S. 

Problem B4 
A and B are two points on a sphere. S(A, B, k) is defined to be the set {P : AP + BP = k}, where XY denotes the 
great-circle distance between points X and Y on the sphere. Determine all sets S(A, B, k) which are circles. 

Solution 
Answer: S(A, B, k) is a circle iff k = π and A and B are not antipodal, in which case S(A, B, k) is the great circle 
perpendicular to the great circle through A and B and so that A and B are on the same side of and equidistant from 
the plane containing it. 

Wlog we may take the sphere to have radius 1. Let the great-circle distance between A and B be d. So 0 ≤ d ≤ π. If 
d = 0, then clearly any k (in the range 0 < k < π) gives a circle. If d = π, then any point P on the sphere has PA + PB 
= π, so S is either empty or the whole sphere. So let us assume that 0 < d < π. 

Let C be the great circle through A and B. Let O be the centre. Let QR be the diameter with angle AOQ = angle 
BOR. Let B' be the reflection of B in QR. Then AB' is a diameter. Let C' be the great circle through Q and R 
perpendicular to C. For any point P on the sphere we have AP + PB' = π. If P lies on C', then by symmetry BP = 
B'P, so AP + PB = π. If P lies in the open hemisphere containing B, then BP < B'P, so AP + BP < π. Similarly, if P 
lies in the open hemisphere containing B', then BP > B'P, so AP + BP > π. Thus S(A, B, π) is the circle C'. 

Let us now assume 0 < k < π. If k < d, then S(A, B, k) is empty, since AP + BP cannot be less than AB. If k = d, 
then S(A, B, k) is the arc of C between A and B. So suppose d < k < π. Then there are two points on C' in S(A, B, 
k): Q' on the arc AQ and R' on the arc BR, with AQ' = BR'. Now S(A, B, k) must be symmetrical about the plane 
containing C', so if it is a circle C'', then it must be the circle diameter Q'R' and perpendicular to C'. It suffices to 
find a single point X on this circle with AX + BX > k. Let Y be the midpoint of the arc AB, and take X so that the 
great circle through X and Y is perpendicular to C'. Since we are assuming C'' is a circle we have YQ' = YX = YR'. 
Since the great circle through X and Y is perpendicular to C'', we must have AX > YX and BX > YX, so AX + BX 
> 2 YX = 2 YQ' = AQ' + BQ' = k, so Y is not in S(A, B, k) after all. 

Finally consider k > π. Let A' be the antipodal point to B. Now for any point P on the sphere, AP = π - B'P and BP 
= π - A'P, so S(A, B, k) = S(A', B', 2π-k). 

Problem B5 
A hypocycloid is the path traced out by a point on the circumference of a circle rolling around the inside 
circumference of a larger fixed circle. Show that the plots in the (x, y) plane of the solutions ( x(t), y(t) ) of the 
differential equations x'' + y' + 6x = 0, y'' - x' + 6y = 0 with initial conditions x'(0) = y'(0) = 0 are hypocycloids. 
Find the possible radii of the circles. 

Solution 
Answer: if we take the radius of the rolling circle to be R, then the radius of the fixed circle is 5/2 R or 5/3 R. 

Take x, y coordinates and let the fixed circle have centre at the origin O and radius cR (with c > 1). Take the rolling 
circle to have centre C, radius R and to be initially touching the fixed circle at x = cR, y = 0. Take this point to be 
the point P on the rolling circle whose motion we track. After time t, let OC make an angle θ with the x-axis. Then 
the rolling circle will have rolled through an angle cθ. We assume that the motion is uniform so that θ = bt. 

At time t, the coordinates of C will be x = aR cos bt, y = aR sin bt, where a = c - 1. CP makes an angle cθ - θ = aθ 
with the x-axis (in the opposite sense to θ), so P has coordinates: x = aR cos bt + R cos abt, y = aR sin bt - R sin abt 
(*). 
However, we could also take the y-axis in the opposite direction, in which case the equations would become: x = 
aR cos bt + R cos abt, y = -aR sin bt + R sin abt (**). 

Turning to the differential equations given, take the first + i times the second and put z = x + i y. Then we get: z'' - i 
z + 6z = 0. This has general solution z = A e3it + B e-2it, or x = A cos 3t + B cos 2t, y = A sin 3t - B sin 2t. But we 



are told that x'(0) = y'(0) = 0, so 3A = 2B. Hence x = 2/3 B cos 3t + B cos(2/3 3t), y = 2/3 B sin 3t - B sin(2/3 3t). 
Comparing with (*) we see that it represents a hypocycloid with c = 5/3. 

Alternatively, we can cast the solution into the form (**) by writing it as: x = 3/2 A cos 2t + A cos(3/2 2t), y = -3/2 
A sin 2t + A sin(3/2 2t). Comparing with (**) we see that this represents a hypocycloid with c = 3/2 + 1 = 5/2. 

Problem B6 
|f(1)/1 + f(2)/2 + ... + f(n)/n - 2n/3| < 1, where f(n) is the largest odd divisor of n. 

Solution 
If n is odd, then f(n)/n = 1. If n is even, then f(n) = f(n/2). If n = 2m, then f(1)/1 + f(3)/3 + ... + f(2m-1)/(2m-1) = m, 
and f(2)/2 + f(4)/4 + ... + f(2m)/(2m) = 1/2 ( f(1)/1 + f(2)/2 + ... + f(m)/m ). So if we put g(n) = f(1)/1 + f(2)/2 + ... + 
f(n)/n, then we have the relations: g(2n+1) = g(2n) + 1 (*), and g(2n) = n + g(n)/2 (**). That allows us to establish 
by induction that 2n/3 < g(n) < 2n/3 + 5/6 for n odd and 2n/3 < g(n) < 2n/3 + 1/2 for n even. 

For g(1) = 1 = 2/3 + 1/3, g(2) = 3/2 = 2/3 x 2 + 1/6, so the result is true for n = 1, 2. Suppose it is true for n < 2m. 
Then g(2m) = m + g(m)/2 > m + m/3 = 2/3 (2m), and g(2m) < m + m/3 + 1/2 (5/6) < 2/3 (2m) + 1/2. Also g(2m+1) 
= g(2m) + 1 > 2/3 (2m) + 2/3 = 2/3 (2m+1), and g(2m+1) < 2/3 (2m) + 1/2 + 1 = 2/3 (2m+1) + 5/6. 
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Problem A1 
Show that we cannot have 4 binomial coefficients nCm, nC(m+1), nC(m+2), nC(m+3) with n, m > 0 (and m + 3 ≤ 
n) in arithmetic progression. 

Solution 
Note that we can have three, for example: 7C1 = 7, 7C2 = 21, 7C3 = 35. 
a, b, c are in arithmetic progression iff 2b = a + c. We have nCm = (m+1)/(n - m) nC(m+1), so 2 nCm+1 = nCm + 
nC(m+2) iff 2 = (n - m - 1)/(m + 2) + (m + 1)/(n - m). Simplifying, this becomes: m2 - (n - 2)m + (n2 - 5n + 2)/4 = 
0. For any given n, this is a quadratic in m, so it has at most two solutions. If we have 4 consecutive coefficients in 
arithmetic progression, then the two solutions must differ by 1. If they are m1 and m2, then (m1 - m2) = 1 implies 
(m1 - m2)

2 = 1 and hence (m1 + m2)
2 - 4m1m2 = 1. So (n - 2)2 - (n2 - 5n + 2) = 1, and hence n = -1. Hence for n > 0 

we cannot have four coefficients in arithmetic progression. 

Alternatively, because nCm = nC(n-m), m and m+1 must be centrally placed (in other words n = 2m+1). Otherwise 
we would have four distinct solutions to the quadratic, which is impossible. But (2m+1)C(m-1), (2m+1)Cm, 
(2m+1)C(m+1), (2m+1)C(m+2) cannot be a solution because both (2m+1)C(m-1) and (2m+1)C(m+2) are less than 
(2m+1)Cm. 

Problem A2 
Let S be a set with a binary operation * such that (1) a * (a * b) = b for all a, b ∈ S, (2) (a * b) * b = a for all a, b ∈ 
S. Show that * is commutative. Give an example for which S is not associative. 

Solution 
Consider (a*b)*( (a*b)*b). One can view it as c * (c * b), so that it is b by (1). Or one can consider first (a*b)*b, 
which is a by (2), so that the expression is (a*b)*a. Hence b = (a*b)*a. Multiplying on the right by a, we get b*a = 
((a*b)*a)*a, which is (a*b) by (2). That proves * is commutative. 

Take S to have three elements a, b, c. Let a*a = a, b*b = b, c*c = c, a*b = c, b*c = a, c*a = b and assume * is 
commutative. Then we easily check that the required conditions are met. But c = a*b = (a*a)*b, whereas a*(a*b) = 
a*c = b. So * is not always associative. 

Problem A3 
A sequence { xi } is said to have a Cesaro limit iff limn→∞(x1 + x2 + ... + xn)/n exists. Find all (real-valued) functions 
f on the closed interval [0, 1] such that { f(xi) } has a Cesaro limit iff { xi } has a Cesaro limit. 

Solution 
Answer: the linear functions f(x) = Ax + B where A is non-zero. [We need A non-zero, because otherwise all { 
f(xi) } would have a Cesaro limit.] 

It is straightforward to show that these functions satisfy the condition. 
Suppose {xn} has a Cesaro limit. Then we can find a limit k so that for any ε > 0 we have |(x1 + ... + xn)/n - k| < ε/A 
for all sufficiently large n. Let h = f(k), we wish to show that |(f(x1) + ... + f(xn) )/n - h| < ε for all sufficiently large 
n. But |(f(x1) + ... + f(xn) )/n - h| = | A(x1 + ... + xn)/n - Ak | < . 

Similarly, suppose { f(xn) } has a Cesaro limit. Then we can find a limit h so that for any ε > 0 we have |(f(x1) + ... 
+ f(xn) )/n - h| < Aε for all sufficiently large n. Take k so that f(k) = h. We wish to show that |(x1 + ... + xn)/n - k| < ε 
for all sufficiently large n. But again this is obvious since we have |(f(x1) + ... + f(xn) )/n - h| = | A(x1 + ... + xn)/n - 
Ak |. 

It is harder to show the converse - that any function satisfying the condition must be linear. Note first that it is not 
true for ordinary limits. If { xn } → k, then f(xn) → f(k) for any continuous f (and it is not hard to show the 
converse). So the functions satisfying the corresponding condition for ordinary limits are just the homeomorphisms. 
The ordinary limit condition is stronger than Cesaro-summability - it is easy to show that if xn → k, then (x1 + x2 + 
... + xn)/n → k also. But it is easy to find sequences which do not tend to a limit but do have a Cesaro limit. For 
example, xn = (-1)n. So we need to use members of this wider class of sequences in order to prove the result. 



Given any k in the open interval (0, 1), take a sequence xn of 0s and 1s whose average sn = (x1 + ... + xn)/n tends to 
k. Then the average Fn = (f(x1) + ... + f(xn) )/n tends to (1 - k) f(0) + k f(1) = h, since a fraction (1 - k) of the n terms 
f(xi) are f(0) and a fraction k are f(1). 

Now define a new sequence yn as follows. Take enough terms from the first sequence to bring Gn = (g(y1) + ... + 
g(yn) )/n within 1/2 of h. Then take enough terms k to bring Gn within 1/4 of f(k). Then (starting where we left off 
before) take enough terms from the first sequence to bring Gn within 1/8 of h, then enough ks to bring it within 1/16 
of f(k) and so on. Thus we have a subsequence of the Gns which tends to h and another which tends to f(k). But the 
average (y1 + ... + yn)/n tends to k, so Gn must tend to a single limit. Hence f(k) = h, or f(k) = a + bk, where a = f(0), 
b = f(1) - f(0). 

Problem A4 
Show that a circle inscribed in a square has a larger perimeter than any other ellipse inscribed in the square. 

Solution 
The first step is to show that if an ellipse touches all four sides of a square then its axes must lie along the diagonals 
of the square (in other words, it is symmetrically placed). 

Let the ellipse have centre O, semi-major axis a and semi-minor axis b. Let the line A through O contain the 
ellipse's major axis and the line B through O contain its minor axis. Let S be the square in which the ellipse is 
inscribed. Let k be the similarity operation which leaves A invariant and expands by a factor a/b perpendicular to 
A. (So given a general point P, with X be the foot of the perpendicular from P to A, P goes to the point P' on the ray 
XP such that XP'/XP = a/b.) 

k takes the ellipse into the circle centre O, radius a. It also takes parallel lines to parallel lines and touching curves 
to touching curves, so it takes the square S to a parallelogram whose sides all touch the circle. But that means the 
parallelogram must be a rhombus (with equal sides). But a line segment making an angle θ to the line A is taken by 
k to a line segment whose length is longer by a factor √(1 + ( (a/b)2 - 1) sin2θ), which is a strictly monotonically 
increasing function of θ. Since the equal sides of the square are taken to the equal sides of the rhombus, they must 
make equal angles to the line A. Hence they must be at 45o to it and hence the line A must lie along a diagonal of 
the square. 

The second step is to show that the ellipse with the largest perimeter is the circle. Recall that the perimeter of an 
ellipse is not an elementary function (it is a complete elliptical integral of the second kind). So it is not clear how to 
attack the problem. An analytic approach could evidently get somewhat messy. 
But to pursue that a little, the tangent at the point (X, Y) of the ellipse has equation xX/a2 + yY/b2 = 1. If this is at 
45o (with X and Y both positive) then we have Xb2 = Ya2. The corresponding tangent at (X, -Y) is will evidently 
meet it on the x-axis at the point ( √(a2 + b2), 0), so the side of the square has length √(2a2 + 2b2). 

The perimeter is 4a ∫0
π/2 √( 1 - c cos2θ) dθ, where c = (1 - (b/a)2) (*). The easiest way to see this is to use the 

parametric equation of the ellipse x = a cos θ, y = b sin θ. Then if s represents arc length and ' differentiation wrt θ, 
we have s' = √( (x')2 + (y')2) and (*) follows almost immediately. 

Now a/√(a2 + b2) = 1/√(2 - c), so we have to maximise f(c) = 1/√(2 - c) ∫0
π/2 √( 1 - c cos2θ) dθ over the range [0, 1], 

with c = 0 corresponding to b = a or the circle. 
Putting the factor 1/√(2 - c) inside the integral, the integrand becomes I(c, θ) = √( (1 - c cos2θ) / (2 - c) ). We note 
that at θ = π/4 this is always √(1/2) irrespective of c. But for θ < π/4, the integrand is a decreasing function of c and 
for θ > π/4 it is an increasing function of c. So we cannot simply argue that the integrand is maximised by taking c 
= 0 and hence the integral also. 

However, a slight elaboration of that argument does work. We can split the integral at π/4. Then for the range π/4 to 
π/2 we can make the substituion φ = π/2 - θ to get back to an integral over 0 to π/4 with integrand J(c, φ) = √( (1 - c 
sin2φ) / (2 - c) ). So now we have to maximise the integral over 0 to π/4 of I(c, θ) + J(c, θ). But now it is true that c 
= 0 maximises the integrand at every point of the range. 

We just have to square twice. So I(c, θ) + J(c, θ) ≤ √2 is equivalent to (1 - c cos2θ) + (1 - c sin2θ) + 2 √( (1 - c 
cos2θ)(1 - c sin2θ) ) <= 2(2 - c), or √( (1 - c cos2θ)(1 - c sin2θ) ) <= 1 - c/2. Squaring again, that is equivalent to 1 - c 



+ c sin2θ cos2θ ≤ 1 - c + c2/4 or c2sin 2θ ≤ c2. But the last relation is certainly true with equality iff c = 0 or θ = π/4. 
Hence for the integral we have equality iff c = 0. 

Problem A5 
Show that n does not divide 2n - 1 for n > 1. 

Solution 
Suppose that n does divide 2n - 1. Then n must be odd. Let p be the smallest prime dividing n. Then 2p-1 = 1 (mod 
p). Let m be the smallest divisor of p - 1 such that 2m = 1 (mod p). Since m is smaller than p it must be coprime to 
n, so n = qm + r with 0 < r < m. Hence 2r = 1 (mod p). Contradiction. 

Problem A6 
f is an integrable real-valued function on the closed interval [0, 1] such that ∫0

1 xmf(x) dx = 0 for m = 0, 1, 2, ... , n - 
1, and 1 for m = n. Show that |f(x)| ≥ 2n(n + 1) on a set of positive measure. 

Solution 
The trick is to look at (x - 1/2)n f(x). Using the relations given in the question, we have immediately that ∫0

1 (x - 
1/2)n f(x) dx = 1. But we can also show that it must be small unless f(x) is large. For if |f(x)| < 2n(n + 1) except 
possibly on a set of zero measure, then | ∫ | < 2n(n + 1) ∫0

1 |x - 1/2|n dx = 2n+1(n + 1) ∫0
1/2 xn dx = 2n+1 xn+1|0

1/2 = 1. 
Contradiction. 

Problem B1 
Let ∑0

∞ xn(x - 1)2n / n! = ∑0
∞ an x

n. Show that no three consecutive an are zero. 

Solution 
Let p(x) = x(x - 1)2, and f(x) = ep(x). Then f(x) has the expansion given. Differentiating f ' = ep(x)p'(x) = f p' (*). Now 
since p is a polynomial of degree 3, we have p(n) = 0 for n > = 4. So differentiating (*) n times we get: f(n+1) = nC0 
f(n) p' + nC1 f(n-1) p'' + nC2 f(n-2) p'''. So if f(n)(0) = f(n-1)(0) = f(n-2)(0), then f(m)(0) = 0 for all m ≥ n - 2. In other words if 
three consecutive an are zero then all subsequent an are zero, and hence f(x) is a finite polynomial, which is 
impossible. 

Problem B2 
A particle moves in a straight line with monotonically decreasing acceleration. It starts from rest and has velocity v 
a distance d from the start. What is the maximum time it could have taken to travel the distance d? 

Solution 
Answer: 2d/v. 
Plot velocity u(t) against time. We have u(T) = v. The area under the curve between t = 0 and t = T is the distance 
d. But since the acceleration is monotonically decreasing, the curve is concave and hence the area under it is at least 
the area of the triangle formed by joining the origin to the point t = T, u = v (other vertices t = 0, u = 0 and t = T, u 
= 0). Hence d ≥ 1/2 vT, so T ≤ 2d/v. This is achieved by a particle moving with constant acceleration. 

Problem B3 
A group has elements g, h satisfying: ghg = hg2h, g3 = 1, hn = 1 for some odd n. Prove h = 1. 

Solution 
It is hard to get started on this. Or rather, it took me a long time to find the right way to get started. With hindsight, 
the correct approach is probably to work systematically through a set of increasingly complex expressions, trying to 
simplify them more than one way in order to get a new relation. It would not take long to reach hg2hg2h. 
gh2 = (ghg)g2h = (hg2h)g2h = (hg2)(hg2h) = hg2(ghg) = h2g. From this point it is easy. 

gh2g2 = h2. Hence gh2ng2 = h2n. Choose n so that h2n = h. Then ghg2 = h, or gh = hg. So the given relation implies h 
= h2. Hence h = 1. 

Problem B4 
Show that for n > 1 we can find a polynomial p(a, b, c) with integer coefficients such that p(xn, xn+1, x + xn+2) ≡ x. 

  



Solution 
By playing with small n, we soon find a general pattern: 
x = (x + xn+2)(1 - xn+1 + x2(n+1) - ... + (-1)n-2x(n-2)(n+1) ) + (-1)n+1(xn)n. 
The proof is immediate. 

Problem B5 
A, B, C and D are non-coplanar points. ∠ABC = ∠ADC and ∠BAD = ∠BCD. Show that AB = CD and BC = 
AD. 

Solution 
It is worth looking first at the coplanar case. If ABCD is convex, then opposite angles are equal, so it is a 
parallelogram and opposite sides are equal. In this case the result is true. But if ABDC is convex, then ∠ABC = ∠
ADC implies that A, B, D, C lie on a circle and hence that ∠BAD = ∠BCD. In this case it is certainly not true that 
AB = CD or that BC = AD. 

Applying the cosine formula to angles ABC and ADC gives: (AB2 + BC2 - AC2)/(2 AB BC) = (AD2 + CD2 - 
AC2)/(2 AD CD). Hence (AB·CD - AD·BC)(AB·AD - BC·CD) + AC2(AB.BC - AD.CD) = 0 (*). Similarly, 
applying it to the other two angles gives: (BC2 + CD2 - BD2)/(2 BC CD) = (AB2 + AD2 - BD2)/(2 AB·AD) and 
hence (AD·BC - AB·CD)(AB·BC - CD·AD) + BD2(BC·CD - AB·AD) = 0 (**). 

Put x = (AB·CD - AD·BC), y = (AB·AD - BC·CD), z = (AB·BC - AD·CD). Then (*) and (**) become xy + AC2z 
= 0, xz + BD2y = 0. So if either of y or z is 0, then the other is also. But if y and z are 0, then AB/CD = BC/AD = 
AD/BC, so BC = AD and hence also AB = CD. On the other hand, if neither y nor z is 0, then we can deduce that 
AC2BD2 = x2, and hence AC·BD = ±x = ±(AB·CD - AD·BC). Thus either AC·BD + AD·BC = AB·CD or AC·BD 
+ AB·CD = AD·BC. 

In either case we can use Ptolemy's theorem which tells us that A, B, C, D must be (1) coplanar, and (2) concyclic 
(or collinear). But we are told that they are not coplanar. Hence BC = AD and AB = CD as required. 

Problem B6 
The polynomial p(x) has all coefficients 0 or 1, and p(0) = 1. Show that if the complex number z is a root, then |z| ≥ 
(√5 - 1)/2. 

Solution 
Let h = (√5 - 1)/2. h is approx 0. 618, so certainly if |z| ≥ 1, then |z| > h. So it is sufficient to show that if z is a root 
with |z| < 1, then |z| ≥ h. 

For such values of z, 1 + z + z2 + ... converges, so we have 2 + z + z2 + z3 + ... - 2 p(z) = ± z ± z2 ± z3 ± ... . Now 
|rhs| ≤ |z| + |z2| + ... = |z|/(1 - |z| ). If z is a root, then p(z) = 0, so lhs = 2 + z + z2 + ... = 2 + z/(1 - z) . If we could 
show that |lhs| ≥ (2 + |z|)/(1 + |z|), then we would have |z|/(1 - |z|) ≥ (2 + |z|)/(1 + |z|) and hence |z|2 + |z| - 1 ≥ 0. But 
|z| ≥ 0, so |z| ≥ h. 

We require |2 - z| (1 + |z|) ≥ |1 - z| (2 + |z|). Squaring and using the polar form z = r eiθ, this is equivalent to (4 - 4r 
cos θ + r2)(1 + r)2 ≥ (1 - 2r cos θ + r2) (2 + r)2, or after some simplification, 2r (1 - r2)(1 + cos θ) ≥ 0, which is true. 
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Problem A1 
ABC is a triangle. P, Q, R are points on the sides BC, CA, AB. Show that one of the triangles AQR, BRP, CPQ has 
area no greater than PQR. If BP ≤ PC, CQ ≤ QA, AR ≤ RB, show that the area of PQR is at least 1/4 of the area of 
ABC. 

Solution 
It is convenient to do the second part first. Let L be the midpoint of BC, M of AC and N of AB. Then LN is parallel 
to AC, so the ray PR meets the ray CA. Hence M is at least as close to PR as Q. So area PQR ≥ area PMR. 
Similarly, the ray MP meets the ray AB, so N is at least as close to PM as R. Hence area PMR ≥ area PMN. Finally 
MN is parallel to BC, so area PMN = area LMN. But area LMN = 1/4 area ABC, so area PQR ≥ 1/4 area ABC. 

For the first part, there are two cases. Either each of AMN, BLN, CLM includes just one of P, Q, R, or one includes 
two of them. In the first case, we have the situation just considered (possibly with some relabeling of P, Q, R) , so 
area PQR ≥ 1/4 area ABC. If all three of AQR, BRP, CPQ had areas > area PQR, then in total their area plus that of 
PQR would exceed the area of ABC. Contradiction. Hence one of AQR, BRP, CPQ has area not greater than PQR. 

In the second case, suppose AR <= AN and AQ <= AM. Let AP cut RM at X. Then AX ≤ AP/2, since RM cuts AP 
closer to A than MN, which bisects it (or possibly at the same point if R=N, Q=M). Hence AX ≤ PX. But area 
AQR/ area PQR = AX/PX, so area AQR ≤ area PQR. 

Problem A2 
an = ±1/n and an+8 > 0 iff an > 0. Show that if four of a1, a2, ... , a8 are positive, then ∑ an converges. Is the converse 
true? 

Solution 
Answer: yes. 

Consider an + an+1 + ... + an+7. It is ( ±(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)(n+7) ±n(n+2)(n+3)(n+4)(n+5)(n+6)(n+7) ± 
... ± n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6) ) / ( n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)(n+7) ). If there are an equal number 
of plus and minus signs, then there is no n7 term in the numerator, so the expression is O(1/n2). On the other hand if 
there are an unequal number of plus and minus signs, then there is an n7 term in the numerator and the expression is 
O(1/n). But ∑ 1/n diverges, and ∑ 1/n2 converges. 

Let sn be the sum of the first n terms. We have shown that with an unequal number of positive and negative signs 
s8n diverges and hence sn does not converge. With an equal number of signs, s8n converges. But each term tends to 
zero, so |s8n+i - s8n| tends to zero for i = 1, ... 7. Hence sn converges. 

Problem A3 
n is a positive integer. Prove that [√(4n + 1) ] = [ min (k + n/k) ], where the minimum is taken over all positive 
integers k. 

Solution 
We evaluate each side. It is probably easiest to tackle [√(4n + 1) ] first. Let f(n) = [√(4n + 1) ]. If n ≤ m2 - 1, then 4n 
+ 1 ≤ 4m2 - 3 < (2m)2, so f(n) < 2m. If n ≥ m2, then 4n + 1 > 4m2, so f(n) ≥ 2m. If n < m(m+1), then 4n + 1 < 4m2 + 
4m + 1 = (2m+1)2, so f(n) < 2m+1. If n ≥ m(m+1), then 4n+1 ≥ (2m+1)2, so f(n) ≥ 2m+1. Hence for n = m2, m2 + 1, 
m2 + 2, ... , m2 + m - 1, we have f(n) = 2m. For n = m2 + m, m2 + m + 1, m2 + m + 2, ... , m2 + 2m we have f(n) = 
2m+1. 

Let g(n) be the minimum value of [k + n/k], where k is a positive integer. Consider h(x) = x + n/x, with x real and 
positive. h'(x) <0, =0, >0 according as x <√n, =√n, >√n. So for positve real x, the smallest value of x + n/x occurs at 
x = √n and the smallest value with x restricted to be an integer must occur at [√n] or [√n] + 1. 

For n = m2, m2 + 1, m2 + 2, ... , m2 + m - 1, we have [√n] = m. Also 0 < (m-1)/m < 1, so [m + n/m] = 2m. Now n > 
m2 - 1, so n/(m+1) > m - 1 and hence [(m+1) + n/(m+1)] ≥ [m+1 + m-1] = 2m. So for these values of n we have 
g(n) = 2m = f(n). 



Now consider n = m2 + m, m2 + m + 1, m2 + m + 2, ... , m2 + 2m. For these values of n also we have [√n] = m. For 
all except the last value of n, we have [m + n/m] = 2m+1. For the last we have [m + n/m] = 2m+2. But for all of 
them we have [(m+1) + n/(m+1)] = 2m+1. Hence for these values of n also g(n) = 2m+1 = f(n). 

Problem A4 
How many real roots does 2x = 1 + x2 have? 

Solution 
Answer: 3. x = 0, x = 1 and a value just over 4. 

Clearly there are no roots for negative x, since for such x, 2x < 1, whereas 1 + x2 > 1. There are certainly roots at x 
= 0 and 1. Also 24 < 42 + 1, whereas 25 > 52 + 1, so there is a root between 4 and 5. We have to show that there are 
no other roots. Put f(x) = 2x - x2 - 1. Then f ''(x) = (ln 2)2 2x - 2. This is strictly increasing with a single zero. f '(0) > 
0, so f '(x) starts positive, decreases through zero to a minimum, then increases through zero. So it has just two 
zeros. Hence f(x) has at most three zeros, which we have already found. 

Problem A5 
An object's equations of motion are: x' = yz, y' = zx, z' = xy. Its coordinates at time t = 0 are (x0, y0, z0). If two of 
these coordinates are zero, show that the object is stationary for all t. If (x0, y0, z0) = (1, 1, 0), show that at time t, (x, 
y, z) = (sec t, sec t, tan t). If (x0, y0, z0) = (1, 1, -1), show that at time t, (x, y, z) = (1/(1 + t), 1/(1 + t), -1/(1 + t) ). If 
two of the coordinates x0, y0, z0 are non-zero, show that the object's distance from the origin d → ∞ at some finite 
time in the past or future. 

Solution 
You are meant to assume the usual uniqueness theorems. So the only non-trivial part of the question is the last. For 
the first three parts, one just has to verify that the three solutions given satisfy the equations. 

We have xx' = yy' = zz' = xyz. So integrating y2 = x2 + A, z2 = x2 + B. We may assume that y0 and z0 are non-zero 
and that |x0| ≤ |y0| and |z0|. So A and B are positive and x' = ( (x2 + A) (x2 + B) )1/2. Suppose we take the positive 
square root so that x increases with time. Then t = ∫ ( (x2 + A) (x2 + B) )1/2 dx. But the integral converges as x tends 
to infinity, so x reaches infinity at a finite (future) time. If we had taken the negative root, then we conclude that x 
reaches infinity at a finite (past) time. 

Problem A6 
Show that there are no seven lines in the plane such that there are at least six points which lie on the intersection of 
just three lines and at least four points which lie on the intersection of just two lines. 

Solution 
From 7 lines we can choose just 21 pairs. An intersection of 3 lines accounts for 3 distinct pairs of lines, an 
intersection of 2 lines for 1 pair. Hence the configuration given would have at least 6 x 3 + 4 x 2 = 22 distinct pairs 
of lines. 

Problem B1 
S is a finite collection of integers, not necessarily distinct. If any element of S is removed, then the remaining 
integers can be divided into two collections with the same size and the same sum. Show that all elements of S are 
equal. 

Solution 
Note that we need the collections to be both the same size and the same sum. Otherwise we could take S = {1, 1, 1, 
1, 3}. If we remove a 1 we have: 3 = 1 + 1 + 1, and if we remove the 3 we have: 1 + 1 = 1 + 1. 

The key is to notice that if we transform each element x of S to ax + b, then the new elements still satisfy the 
property given. In particular, by taking b sufficiently large we may make each element of S positive. Let f(S) 
denote the sum of the elements of S. Let us say that a finite set has the property X if (1) all its elements are positive 
and integral, (2) it has the property given in the question, and (3) not all its elements are equal. So we have just 
established that if there is a set with the property given and not all elements equal, then there is a set with property 
X. We show that given such a set S we can find another such set T with f(T) < f(S). 



For each element x of S, f(S) - x is even, so all elements of S have the same parity. If they are all even, we may take 
T to be {x/2 for x in S}. If they are all odd, we may take T to be { (x + 1)/2 for x in S}. Either way, the transformed 
elements are all integral and positive and have the property given. Also unequal elements transform into unequal 
elements. So T has the property X. We always have x/2 < x, and we have (x+1)/2 < x unless x = 1, in which case 
(x+1)/2 = x. The elements cannot all be 1 (because we are assuming they are not all equal). So at least one must be 
reduced by the transformation, and hence the f(T) < f(S). 

But this process could now be repeated indefinitely. That gives a contradiction, since positive integers cannot be 
indefinitely reduced and remain positive. Hence our assumption that all members were unequal must be wrong. 

Problem B2 
The real and imaginary parts of z are rational, and z has unit modulus. Show that |z2n - 1| is rational for any integer 
n. 

Solution 
We may put z = cos θ + i sin θ. Then z2n - 1 = (cos 2nθ - 1) + i sin 2nθ, so |z2n - 1|2 = 2 - 2 cos 2nθ = 4 sin2nθ. Hence 
|z2n - 1| = 2 |sin nθ |. But sin nθ is the imaginary part of (cos θ + i sin θ)n. If we expand by the binomial theorem we 
get a series of terms cosrθ sinsθ with integer coefficients. Each term is rational since cos θ and sin θ are rational. 
Hence sin nθ is rational. 

Problem B3 
The prime p has the property that n2 - n + p is prime for all positive integers less than p. Show that there is exactly 
one integer triple (a, b, c) such that b2 - 4ac = 1 - 4p, 0 < a ≤ c, -a ≤ b < a. 

Solution 
Answer: (1, -1, p) is the only solution. 

b2 = 4ac + 1 - 4p, so b2 is odd and hence b is odd (but not necessarily positive). Put b = 2n - 1. Then 4n2 - 4n + 1 = 
4ac + 1 - 4p, so n2 - n + p = ac. That is promising, because if n was in the required range we could conclude that a 
or c = 1 and, since 0 < a ≤ c, that a = 1. 
We are given that n2 - n + p is prime for n = 1, 2, ... , p-1. But it is obviously also prime for n = 0 and for n = -1, -2, 
... , -(p-2) since (-m)2 - (-m) = m2 + m = (m+1)2 - (m+1) (so truth for m+1 implies truth for -m). So the required 
range is -(p-2) ≤ n ≤ (p-1) or (-2p+3) ≤ b ≤ (2p - 3). 

ac ≥ a2 ≥ b2, so b2 - 4ac ≤ -3b2. If |b| ≥ p, then -3b2 ≤ -3p2 < 1 - 4p (since (3p-1)(p-1) > 0). But we know that b2 - 4ac 
= 1 - 4p, so certainly |b| < p. But we know b is odd, so |b| <= p - 2. That is sufficient to guarantee that b is in the 
required range since (p - 2) < (2p - 3). 
So we can conclude that a = 1. But now b is odd and satisfies -1 ≤ b < 1, so b must be -1. Finally b2 - 4ac = 1 - 4p 
gives c = p. 

Problem B4 
f is defined on the closed interval [0, 1], f(0) = 0, and f has a continuous derivative with values in (0, 1]. By 
considering the inverse f -1 or otherwise, show that ( ∫0

1 f(x) dx )2 ≥ ∫0
1 f(x)3 dx. Give an example where we have 

equality. 

Solution 
We might suspect that there is nothing special about the upper limit 1. So put g(y) = ( ∫0

y f(x) dx )2 - ∫0
y f(x)3 dx. 

Then certainly g(0) = 0. So the obvious approach is to show that g'(y) ≥ 0. Differentiating, we get 2 f(y) ∫0
y f(x) dx - 

f(y)3. We know that f(y) ≥ 0 (because it is 0 at y = 0 and has non-negative derivative). So we need to show that 2 
∫0

y f(x) dx - f(y)2 ≥ 0. Certainly it is 0 at y = 0, so we try differentiating again, hoping that the derivative will be 
non-negative. Differentiating gives 2 f(y) - 2 f(y) f '(y). But that is non-negative, because f(y) ≥ 0 and f '(y) ≤ 1. 

It is easy to see that f(x) = x gives equality. [Careful, f(x) = 0 is not an acceptable solution because the derivative is 
not strictly positive.] 

[The suggestion about f-1 was probably intended as follows. Let if y = f(x), let x = g(y). Then ∫ f(x) dx = ∫ y dx/dy 
dy = ∫ y g'(y) dy. Now think of the square as a double integral and use g'(y) ≥ 1. But the straightforward solution 
above seems easier.] 



Problem B5 
If x is a solution of the quadratic ax2 + bx + c = 0, show that, for any n, we can find polynomials p and q with 
rational coefficients such that x = p(xn, a, b, c) / q(xn, a, b, c). Hence or otherwise find polynomials r, s with rational 
coefficients so that x = r (x3, x + 1/x) / s(x3, x + 1/x). 

Solution 
The first part of this is somewhat confusing. Clearly we can find particular values of a, b, c for which we do not 
have x = p(xn, a, b, c) / q(xn, a, b, c). For example, take a = 1, b = 0, c = -2. Then x is irrational, whereas any p and q 
would have rational values. 

One can carry out a careful analysis of what values of a, b, c are allowed, but that does not seem to be what the 
question is after. It seems to want something much simpler. 

An easy induction shows that xn = (x p1(a, b, c) + p2(a, b, c) )/ p3(a, b, c), where p1, p2 and p3 are polynomials with 
integer coefficients. Just start with x2 = (- bx - c)/a and at each stage multiply through by x and substitute. Now 
p1 cannot be identically zero because then both solutions to the original quadratic would have the same |x|, whereas 
it is easy to see that this is not true for most values of a, b, c. So we may divide by p1 to get the required relation 
with p(xn, a, b, c) = xn p3(a, b, c) - p2(a, b, c) and q(xn, a, ,b c) = p1(a, b, c). 

For the second part, it is simpler to start from scratch. (x + 1/x)2 = x2 + 1/x2 + 2. So x (x + 1/x)2 = x3 + 1/x + 2x. 
Hence x (x + 1/x)2 - x = x3 + (x + 1/x). That is essentially the relation we want: x = (x3 + y) / (y2 - 1), where y = x + 
1/x. 

Problem B6 
Show that sin2x sin 2x has two maxima in the interval [0, 2π], at π/3 and 4π/3. Let f(x) = the absolute value of sin2x 
sin34x sin38x ... sin32n-1x sin 2nx. Show that f(π/3) >= f(x). Let g(x) = sin2x sin24x sin28x ... sin22nx. Show that g(x) 
≤ 3n/4n. 

Solution 
Let h(x) = sin2x sin 2x. Then h(x) = 2 sin3x cos x, and h'(x) = 2 sin2x (3 - 4 sin2x). So h'(x) = 0 at x = 0, π/3, 2π/3, 
4π/3, 5π/3, 2π in the interval [0, 2π]. We easily see that h(x) has maxima at π/3 and 4π/3, minima at 2π/3 and 5π/3 
and inflexions at 0, 2π. At the inflexions h(x) = 0, at the other stationary values, |h(x)| = (3√3)/8. 

Notice that, for n > 1, 2nπ/3 = 2π/3 or 4π/3 (mod 2π). So at x = 2nπ/3, |h(x)| attains its maximum value. 

Let fn(x) = sin2x sin34x sin38x ... sin32n-1x sin 2nx. Then f2(x) = h(x) h(2x) and in general fn(x) = fn-1(x) h(2n-1x), so 
that fn(x) = h(x) h(2x) h(4x) ... h(2n-1x). At x = π/3 each of |h(2ix)| is maximised separately and hence |fn(x)| is 
maximised. 

We have in fact that |fn(x)| ≤ ( (√3)/2 )3n. Hence also |sin x| |fn(x)| |sin22nx| ≤ ( (√3)/2 )3n. But |sin x| |fn(x)| |sin22nx| = 
g(x)3/2, so |g(x)| ≤ ( (√3)/2 )2n = (3/4)n, and hence g(x) ≤ (3/4)n (g is certainly non-negative). 

  



35th Putnam 1974 

Problem A1 
S is a subset of {1, 2, 3, ... , 16} which does not contain three integers which are relatively prime in pairs. How 
many elements can S have? 

Solution 
Answer: 11 

{2, 4, 6, 8, 10, 12, 14, 16, 3, 9, 15} has 11 elements. Any three integers from it include two which are multiples of 
2 or two which are multiples of 3, so it does not contain three integers which are relatively prime in pairs. 
On the other hand, any subset of 12 elements must include at least 3 members of {1, 2, 3, 5, 7, 11, 13} and those 3 
will be relatively prime in pairs. 

Problem A2 
C is a vertical circle fixed to a horizontal line. P is a fixed point outside the circle and above the horizontal line. For 
a point Q on the circle, f(Q) ∈ (0, ∞] is the time taken for a particle to slide down the straight line from P to Q 
(under the influence of gravity). What point Q minimizes f(Q)? 

Solution 
Answer: Let X be the lowest point of C. Q is the (other) point at which PX intersects C. 

Let k be the angle which PQ makes to the horizontal. Then the acceleration of the particle along PQ is g sin k. 
Hence the time squared is proportional to PQ/sin k. So we minimise the time by minimising PQ/sin k. Let PQ meet 
the circle again at R and let PT be tangent to the circle. Then PQ·PR = PT2, a constant. So we minimise the time by 
maximising PR sin k. But PR sin k is just the vertical distance of R below P. That is clearly maximised by taking R 
= X. 

Problem A3 
Which odd primes p can be written in the form m2 + 16n2? In the form 4m2 + 4mn + 5n2 ,where m and n may be 
negative? [You may assume that p can be written in the form m2 + n2 iff p = 1 (mod 4).] 

Solution 
Answer: p = 1 (mod 8); p = 5 (mod 8). 

(A) m2 + 16n2. 
We show first that m2 + 16n2 = 1 (mod 8). Clearly m is odd, otherwise m2 + 16n2 would be even. But odd squares 
are = 1 (mod 8) (because (2N+1)2 = 4N(N+1) + 1 and N(N+1) is even). Hence m2 + 16n2 = 1 (mod 8). 

Conversely, suppose p = 1 (mod 8). Take, p = M2 + N2. Without loss of generality, M is odd and N even. Hence 
N2 = 0 (mod 8), so N is a multiple of 4. 

(B) 4m2 + 4mn + 5n2. 
n must be odd (otherwise p would be even). But 4m2 + 4mn + 5n2 = (2m + n)2 + (2n)2. The first term is congruent 
to 1 and the second to 4 mod 8. Hence p = 5 (mod 8). 

Conversely, if p = M2 + N2 = 5 (mod 8), then wlog M is odd and N even. Take N = 2n. Since M2 = 1 (mod 8), N2 = 
4 (mod 8) and hence n is odd. So M + n is even and we may set m = (M - n)/2. Now M = 2m + n, so M2 = 4m2 + 
4mn + n2 and p = 4m2 + 4mn + 5n2, as required. 

Problem A4 
Find 1/2n-1 ∑1

[n/2] (n - 2i) nCi, where nCi is the binomial coefficient. 

Solution 
Answer: n( (n-1)C[n/2] - 1)/2n-1 

It suffices to show that ∑0
[n/2] (n - 2i) nCi = n ( (n-1)C[n/2] ). 



We need two obvious facts: i nCi = n (n-1)C(i-1) (use factorials) and ∑0
[n/2] nCi = 2n-1 if n is odd, or 2n-1 + 1/2 

nC[n/2] if n is even (use nCr = nC(n-r) ). 

So consider first n odd. ∑0
[n/2] (n - 2i) nCi = n 2n-1 - 2 ∑0

[n/2] i nCi = n 2n-1 - 2n ∑1
[n/2] (n-1)C(i-1). Taking out the 

factor n we have 2n-1 - 2 ∑0
[n/2]-1 (n-1)Ci = 2n-1 - (2n-1 - (n-1)C[n/2] ) = (n-1)C[n/2], as required. 

Similarly for n even, we have ∑0
[n/2] (n - 2i) nCi = n (2n-1 + 1/2 nC[n/2] ) - 2n ∑0

[n/2]-1 (n-1)Ci = n/2 ( nC[n/2] ) = n! / 
( [n/2}! ([n/2]-1)! ) = n (n-1)C[n/2], as required. 

Problem A5 
The parabola y = x2 rolls around the fixed parabola y = -x2. Find the locus of its focus (initially at x = 0, y = 1/4). 

Solution 
Answer: horizontal line y = 1/4. 

The tangent to the fixed parabola at (t, -t2) has gradient -2t, so its equation is (y + t2) = -2t(x - t). We wish to find 
the reflection of the focus of the fixed parabola in this line, because that is the locus of the rolling parabola when 
they touch at (t, -t2). The line through the focus of the fixed parabola (0, -1/4) and its mirror image is perpendicular 
to the tangent and so has gradient 1/(2t). Hence its equation is (y + 1/4) = x/(2t). Hence it intersects the tangent at 
the point with y + t2 = -4t2(y + 1/4) + 2t2 or y(1 + 4t2) = 0, hence at the point (t/2, 0). So the mirror image is the 
point (t, 1/4). t can vary from -∞ to +∞, so the locus is the horizontal line through (0, 1/4). 

Problem A6 
Let f(n) be the degree of the lowest order polynomial p(x) with integer coefficients and leading coefficient 1, such 
that n divides p(m) for all integral m. Describe f(n). Evaluate f(1000000). 

Solution 
Answer: f(n) is smallest integer N such that n divides N! and f(1000000) = 25. 

Put pN(x) = x(x + 1)(x + 2) ... (x + N - 1). Note first that pN(m) / N! = (m + N - 1)! / ( (m - 1)! N! ) which is a 
binomial coefficient and hence integral, so pN(m) is certainly divisible by N! for all positive integers m. If m = 0, -
1, ... , -(N - 1), then pN(m) is zero, which can also be regarded as a multiple of N!. If m < -(N - 1), then we may put 
m = -m' - (N - 1) where m' is positive. Then pN(m) = (-1)N pN(m') which is divisible by N!. So certainly if we take N 
to be the smallest integer such that n divides N!, then we can find a polynomial with leading coefficient 1 (namely 
pN(x) ) such that n divides p(m) for all integral m. 

Now suppose p(x) is any polynomial with this property. We may write p(x) = pM(x) + a1pM-1(x) + ... + aM-1p1(x) + 
aM, where M is the degree of M and ai are integers (just choose successively, a1 to match the coefficient of xM-1, 
then a2 to match the coefficient of xM-2 and so on). 

Taking x = n, we conclude that n must divide aM, so there is another polynomial of the same degree, namely p(x) - 
aM with the same property. In other words, we may take aM = 0. Now take x = n - 1. Then p2(x), p3(x), ... are all 
divisible by n. So aM-1p1(n - 1) must also be divisible by n. But n and n - 1 are relatively prime, so aM-1 must be 
divisible by n. Hence the polynomial pM(x) + a1pM-1(x) + ... + aM-2p2(x) has the same property. 

This argument continues on until we conclude that pM(x) has the same property, but a little care is needed, because 
in general n and pi(n - i ) are not relatively prime. However, their greatest common divisor is also the gcd of n and 
i! (just multiply out pi(n - i) = (n - 1)(n - 2)...(n - i ) - all terms except the i! term have a factor n). But i! divides 
pi(m) for all m (proved above), so the fact than n divides aM-ipi(n - i ) allows us to conclude that n divides aM-ipi(m) 
for all m and hence that we can drop the term. 

So we have finally that pM(x) also has the property. In particular, n must divide pM(1) = M! so M must be at least as 
big as N, the smallest number with this property. That establishes that f(n) is just the smallest N such that n divides 
N!. 

Finally we want f(1000000) = f(2656). Evidently 25 is the smallest N such that 56 divides N! (25! includes 5 x 10 x 
15 x 20 x 25 which is just the 6 powers of 5 needed). Certainly at least 212 divides 25! (which includes 12 even 
numbers in the product: 2, 4, 6, ... , 24), so f(1000000) = 25. 



Problem B1 
P, Q, R, S, T are points on a circle radius 1. How should they be placed to maximise the sum of the perimeter and 
the five diagonals? 

Solution 
Answer: equally spaced (at the vertices of a regular pentagon). 

We consider separately the questions of maximising the perimeter and the sum of the diagonals. We show first that 
if X lies on the arc AB, then we maximise AX + BX by taking X as the midpoint of the arc. 

Let O be the centre of the circle and let the angle subtended at O by the arc by 2k. If the radius is R and angle AOX 
is x, then AX + BX = 2R sin(x/2) + 2R sin(k - x/2) = 2R ( (1 - cos k) sin(x/2) + sin k cos(x/2) ) = 2R( 2 sin2(k/2) 
sin(x/2) + 2 sin(k/2) cos(k/2) cos(x/2) ) = 4R sin(k/2) cos(k/2 - x/2), which is uniquely maximised by taking x = k. 

It follows immediately that equal spacing maximises the perimeter, for if the points are not equally spaced, then 
some side (say QR) is not equal to its counter-clockwise neighbouring side (say PQ). But then by moving Q to the 
midpoint of the arc PR we increase the perimeter, so the arrangement was not maximal. 

But a similar (albeit slightly more complicated) argument shows that equal spacing also maximises the sum of the 
diagonals. Notice first that the relation AX + BX = 4R sin(k/2) cos(k/2 - x/2) shows that the sum AX + BX is 
strictly decreasing as X moves away from the midpoint until it hits one of the points A, B. So if X is not at the 
midpoint then any non-zero move towards the midpoint increases the sum AX + BX. 

Label the points so that the diagonals are PQ, QR, RS, ST, TP (and the order of the points around the circle is P, R, 
T, Q, S, moving counter-clockwise, say). Then if PQ = QR and QR = RS and RS = ST and ST = TP and TP = PQ, 
it follows that all the diagonals are equal and the points equally spaced. So if the points are not equally spaced then, 
without loss of generality, PQ does not equal QR. Now if no two points are coincident, it follows immediately that 
the arrangement is not maximal, because we can move Q towards the midpoint (of the arc PR on which it lies) and 
increase the sum. 

However, if we allow coincident points, this argument fails, because if Q coincides with T (say) then it may be 
blocked by T from moving closer to the midpoint - if we move it beyond T, then QR ceases to be a diagonal and 
becomes a side. 

Let us examine this case more closely. Since Q is blocked by T, we have that arc RT > arc PQ. Let QQ' be a 
diameter. Then P cannot coincide with Q' (since arc RT would then not exceed arc PQ). So if we move P closer to 
Q' we will increase QP + PT (= 2QP). If we move counter-clockwise around the circle from T we must reach P 
after Q' (otherwise arc PQ > arc Q'Q > arc RT, contradiction). So we can move P closer to Q' (and hence establish 
that the configuration is not maximal) unless it is blocked by R. 

Now consider RS + ST. S is certainly not blocked from moving closer to the midpoint, because the two possible 
blocking points P and Q coincide with R and T. So if the configuration is to be maximal, then S must already be at 
the midpoint. Finally, consider QR + RS. The arc RT is greater than a semicircle so the midpoint must lie on it. P 
does not block because it lies on the other side. T does not block because it coincides with Q. So by moving R we 
can increase the sum, contradicting maximality. 
Thus equal spacing maximises the perimeter and diagonal sum separately. So, a fortiori, it maximises their sum. 

Problem B2 
f(x) is a real valued function on the reals, and has a continuous derivative. f '(x)2 + f(x)3 → 0 as x → ∞. Show that 
f(x) and f '(x) → 0 as x → ∞. 

Solution 
The key to getting started is to notice that if f ' = 0 for arbitrarily large values of x then the result is certainly true. 
Suppose f '(xn) = 0 and xn → ∞. Then since f '2 + f3 → 0, we have f(xn) → 0. But f is monotonic on the interval [xn, 
xn+1} since its derivative does not change sign, hence f → 0. Hence also f ' → 0. So we may assume that for 
sufficiently large x, f ' does not change sign. 



Now suppose f tends to a limit as x → ∞. Then f ' must also tend to a limit. If that limit is non-zero, then f increases 
or decreases faster than some non-constant linear function for sufficiently large x and so cannot tend to a limit. 
Hence f ' must tend to zero. Hence f also. 

So we may assume that either (1) for sufficiently large x, f is strictly monotonic increasing and tends to infinity, or 
(2) for sufficiently large x, f is strictly monotonic decreasing and tends to minus infinity. 

The first case is impossible, because then f3 and hence also f3 + f '2 would tend to infinity. 

Showing that the second case is impossible needs a little more work. Suppose that for x ≥ X, we have f(x) < -1 and 
1/4 > f(x)3 + f '(x)2 > -1/4. Then 1/2 f(x)3 < -1/2, so -1/2 f(x)3 > 1/2. Hence f '(x)2 + 1/2 f(x)3 > -1/4 - 1/2 f(x)3 > 1/4 
> 0. So f '(x)2 > -1/2 f(x)3. f '(x) is negative, so f '(x) < -1/2 |f(x)|3/2 (*). 

Now define g(x) to satisfy g(X) = -1, g' = -1/2 |g|3/2. Solving, we get g(x) = (1 - (x - X)/4 )-2 for x >= X. (*) shows 
that we must have f(x) < g(x) for x ≥ X. But g(x) → -∞ as x → 5X, so f must be discontinuous on the interval (X, 
6X). Contradiction. 

Problem B3 
Prove that (cos-1(1/3) )/π is irrational. 

Solution 
Let x = cos-1(1/3). If x = m/n π for some integers m, n, then cos nx = cos mπ = ±1. But we show that cos nx cannot 
be ±1. It follows that x/π must be irrational as required. 

As usual, we have cos nx = nC0 cn - nC2 cn-2s2 + nC4 cn-4s4 - ... , where c = cos x, s = sin x. We may put s2 = 1 - 
c2 to get cos nx = a polynomial of degree n in c with integer coefficients. The coefficient of cn = nC0 + nC2 + nC4 
+ ... = 2n-1. But c = 1/3, so cos nx = 2n-1/3n + k/3n-1 = (2n-1 + 3k)/3n for some integer k. This must be in its lowest 
terms since 2n-1 is not divisible by 3. In particular, it cannot be ±1. 

[A variant on this is to consider cos(2nx). By a simple induction using cos 2y = 2 cos2y - 1, we show that cos(2nx) = 
an/bn, where an is not a multiple of 3 and bnis 3 to the power of 2n. It follows that as n runs through the natural 
numbers, all the values cos(2nx) are distinct. But if x/π was rational, there would only be finitely many distinct 
values.] 

Problem B4 
R is the reals. f : R2→R is such that fx0 : R → R defined by fx0(x) = f(x0, x) is continuous for every x0 and gy0 : R → 
R defined by gy0(x) = f(x, y0) is continuous for every y0. Show that there is a sequence of continuous functions 
hn : R

2 → R which tend to f pointwise. 

Solution 
Let Mn be the set of vertical lines at 1/2n spacing, including the y-axis, ie all lines y = m/2n for integral m. Define 
hn to agree with f on Mn and to be horizontally interpolated elsewhere, so if x = m/2n + x' , where 0 ≤ x' < 1/2n, then 
hn(x, y) = hn(x, y) + (x'/2n)(hn(x + 1/2n, y) - hn(x, y) ). 

We show first that hn tends to f pointwise. Take any point P in R2. f is continuous along the horizontal line L 
through P, so given any ε > 0, we may take δ > 0 so that points on L within δ of P are taken by f to points within ε 
of f(P). Take n sufficiently large so that the there are adjacent lines of Mn flanking P and closer than δ to it. Let 
these lines cut L at Q and R. Then hn(P) lies between the values of f(Q) and f(R) and hence within ε of f(P). 

It remains to show that hn is continuous. This is slightly tricky to nail down rigorously.Take any point P = (x0, y0) 
and any ε > 0. We need to show that hn takes poins close to P to values close to hn(P). Let L be the horizontal line 
through P. Assume that P does not lie on a line of Mn, so take H to be the first line to the left of P, and K the first to 
the right of P. Let H meet L at Q, and K meet L at R. Note that the separation of Q and R is non-zero and fixed, so 
the values f(Q) and f(R) may differ by a large amount. But we may take δ > 0 so that points on H within δ of Q are 
taken by f to values within ε/2 of f(Q) and points on K within δ of R are taken by f to values within ε/2 of f(R). We 
want to show that for sufficiently small δ ' > 0, hn takes points inside the rectangle |x - x0| < δ ' , |y - y0| < δ to values 
within ε of hn(P). 



It is now easiest to think geometrically. Let us retain the x-axis to represent values of x, but now use the y-axis to 
represent possible values of hn. So at Q we have a vertical bar height ε centred on f(Q) and at R we have another 
vertical bar height ε centred on f(R). Joining the tops of these bars and joining the bottoms gives a parallelogram. A 
vertical line through this parallelogram at x gives the possible values of hn(x, y), where |y - y0| < δ (because to get 
that value we must interpolate linearly between some point on the left-hand edge of the parallelogram and some 
point on the right-hand edge). Now suppose the top and bottom edges of the parallelogram make an angle θ with 
the y-axis. Then a thin vertical slice of the parallelogram centred on y0 width δ ' will project onto a segment length 
ε + δ ' cot θ. By taking δ ' sufficiently small we can make this less than 2ε. In other words the spread of values of 
hn(x, y) for |x - x0| < δ ' and |y - y0| < δ is less than 2ε, which is the statement that hn is continuous. 

Finally, note that if P lies on a line of Mn, then we can deal separately with points to the left and right of P, using 
the same argument. 

Problem B5 
Let fn(x) = ∑0

n xi/i! . Show that fn(n) > en/2. [Assume ex - fn(x) = 1/n! ∫0
x (x - t)n et dt, and ∫0

∞ tn e-t dt = n! ] 

Solution 
Using the two relations in the square brackets, we find almost immediately that it suffices to show that ∫0

n tn e-t dt < 
∫n

∞ tn e-t dt. 

We notice that the integrand (which we will call g(t) ) is positive for all real t and has a maximum at t = n 
(differentiate). It would certainly be sufficient to show that g(n + x) > g(n - x) for x in the interval (0, n). This turns 
out to be true. Taking logs, we need to show that n ln(n + x) - x > n ln(n - x) + x. Putting h(x) = n ln(n + x) - n ln(n 
- x) - 2x, we need to show that h(x) > 0. Differentiating, h'(x) = 2x2 /(n2 - x2) > 0 for x in (0, n). But h(0) = 0, which 
gives the result. 

Problem B6 
Let S be a set with 1000 elements. Find a, b, c, the number of subsets R of S such that |R| = 0, 1, 2 (mod 3) 
respectively. Find a, b, c if |S| = 1001. 

Solution 
Answer: [21000/3], [21000/3], [21000/3] + 1; [21001/3] + 1, [21001/3], [21001/3] + 1. 

Let f0(n), f1(n), f2(n) be the number of subsets of a set with n elements whose size is = 0, 1, 2 (mod 3) respectively. 

Let S be a set with n elements and X another element not in S, so that S' = S ∪ {X} has n+1 elements. Then the 
subsets of S' are just the subsets of S and the subsets of S with X adjoined. So f0(n+1) = f0(n) + f2(n). Similarly, 
f1(n+1) = f1(n) + f0(n) and f2(n+1) = f2(n) + f1(n). 

These recurrence relations and the obvious initial values f0(1) = f1(1) = 1, f2(1) = 0 are sufficient to determine f0, 
f1 and f2. By looking at low values of n we quickly conjecture that fi(n) = [2n/3] for n = 2i+2, 2i+3, 2i+4 (mod 6) 
and [2n/3] + 1 for n = 2i-1, 2i, 2i+1 (mod 6). Proving that is an easy (but slightly monotonous) induction. The 
required answer then follows at once. 



36th Putnam 1975 

Problem A1 
A triangular number is a positive integer of the form n(n + 1)/2. Show that m is a sum of two triangular numbers iff 
4m + 1 is a sum of two squares. 

Solution 
4 ( a(a+1)/2 + b(b+1)/2 ) + 1 = 2a2 + 2a + 2b2 + 2b + 1 = (a - b)2 + (a + b + 1)2. 

If A2 + B2 = 1 (mod 4), then one of A, B must be odd and the other even. Hence (A + B - 1) and (A - B - 1) are both 
even. Put C = (A + B - 1)/2, D = (A - B - 1)/2. Then 1/2 C(C + 1) + 1/2 D(D + 1) = 1/8 ( (A + B - 1)(A + B + 1) + 
(A - B - 1)(A - B + 1) ) = 1/8 ( (A + B)2 - 1 + (A - B)2 - 1) = 1/4 ( A2 + B2 - 1). So if A2 + B2 = 4m + 1, then m = 1/2 
C(C + 1) + 1/2 D(D + 1). 

Problem A2 
For what region of the real (a, b) plane, do both (possibly complex) roots of the polynomial z2 + az + b = 0 satisfy 
|z| < 1? 

Solution 
Answer: the interior of the triangle with vertices (±2, 1), (0, -1). 

Clearly we require |a| ≤ 2, |b| ≤ 1. But that is not sufficient. For example, if b = 0, then we require |a| ≤ 1. 
We consider first the region where a ≥ 0. If b > a2/4, then the roots are z = a/2 ± i √(b - a2/4), so these satisfy |z| < 1 
iff (a/2)2 + (b - a2/4) < 1 or b < 1. This gives the quasi-triangular region bounded by the two lines a = 0 and b = 1 on 
two sides and the curve 4b = a2 on the third side. 

If b < a2/4, then the roots are z = a/2 ± √(a2/4 - b). These satisfy |z| < 1 iff a/2 + √(a2/4 - b) < 1 which gives a - b < 1. 
This gives the quasi-triangular region bounded by the lines a = 0 and a - b = 1 on two sides and the curve 4b = a2 on 
the third. But since the line a - b = 1 touches the curve b = a2/4 at a = 2, the two regions fit together to give the 
interior of triangle with vertices (a, b) = (0, 1), (0, -1) and (2, 1). 

The region for a ≤ 0 is evidently the mirror image in the b-axis, so we get in total the (interior of the) triangular 
region with vertices (2, 1), (-2, 1) and (0, -1). 

Problem A3 
Let 0 < α < β < γ ∈ R, the reals. Let K = { (x, y, z) : xβ + yβ + zβ = 1, and x, y, z ≥ 0} ∈ R3. Define f : K → R by 
f(x, y, z) = xα + yβ + zγ. At what points of K does f assume its maximum and minimum values? 

Solution 
Clearly for any (x, y, z) in K we have x, y, z ≤ 1. Hence xα ≥ xβ. In fact xα - xβ is zero at x = 0, increases to a 
maximum and then reduces to zero again at x = 1. Differentiating, we find the maximum is at x = (α/β)1/(β-α). 
Similarly zγ - zβ is non-negative, with a minimum at z = (β/γ)1/(γ-β). 

To achieve a maximum for f(x, y, z), any non-zero value of z is unhelpful, whilst y is neutral, so the maximum is 
achieved at x = (α/β)1/(β-α), y = (1 - (α/β)β/(β-α))1β, z = 0. [The value of y is chosen so that xβ + yβ = 1.] Similarly, to 
achieve a minimum, we must take x = 0, y = (1 - (β/g)β/(g-β))1/β, z = (β/γ)1/(γ-β). 

Problem A4 
m > 1 is odd. Let n = 2m and θ = e2πi/n. Find a finite set of integers {ai} such that ∑ ai θ

i = 1/(1 - θ). 

Solution 
We have θm = -1. Since m is odd we have 0 = (θm + 1) = (θ + 1)(θm-1 - θm-2 + ... - θ + 1). θ is not - 1, so m-1 - θm-2 + 
... - θ + 1 = 0 (*). 

Since m is odd, we may write (*) as: 1 - θ(1 - θ)(1 + θ2 + θ4 + ... + θm-3 = 0, or 1/(1 - θ) = θ + θ3 + θ5 + ... + θm-2. 



Problem A5 
Let I be an interval and f(x) a continuous real-valued function on I. Let y1 and y2 be linearly independent solutions 
of y'' = f(x) y, which take positive values on I. Show that from some positive constant k, k √(y1 y2) is a solution of 
y'' + 1/y3 = f(x) y. 

Solution 
Answer: k = √(2/d) where d is the Wronksian. 

The key is to show that y1y2' - y1'y2 is a constant. This expression is known as the Wronskian and it is well-known 
that it is non-zero iff y1 and y2 are linearly independent. 
The derivative is y1y2'' - y1y2'' = f y1y2 - f y1y2 = 0, which shows that the expression is constant. Let its value be d. 

Let us write z = k √(y1y2), where k is a constant to be determined later. It is also convenient to put c = k2/2, so that 
z2 = 2c y1y2. Differentiating we get: z z' = c(y1y2' + y1'y2) (*). Differentiating again: z z'' + (z')2 = c y1y2'' + c y1''y2 + 
2c y1'y2' = 2c f y1y2 + 2c y1'y2' = f z2 + 2c y1'y2'. 

Multiplying by z2: z3z'' + (z z')2 = f z4 + 2z2 c y1'y2' = f z4 + 4 c2 y1y2y1'y2'. Using (*), z3 z'' + c2(y1y2' + y1'y2)
2 = f 

z4 + 4c2 y1y2y1'y2'. Hence z3z'' + c2(y1y2' - y1'y2)
2 = f z4, or z3 z'' + c2d2 = f z4. So if we set c = 1/d, then z'' + 1/z3 = f 

z. 

Problem A6 
Given three points in space forming an acute-angled triangle, show that we can find two further points such that no 
three of the five points are collinear and the line through any two is normal to the plane through the other three. 

Solution 
Let the points be A, B, C. Let the two additional points be D, E. There are three cases to consider: 

(1) the plane ABC and the line DE; (2) the plane ADE and the line BC, and the two similar configurations; (3) the 
plane ABD and the line CE, and the five similar configurations. 
Clearly (1) works provided the line DE is normal to ABC. 

Now consider (2). Let the line DE intersect ABC at X. Let AX meet BC at Y. If BC is normal to ADE, then it is 
perpendicular to any line in ADE, so in particular it must be perpendicular to AY. In other words, AY must be an 
altitude of the triangle. But that is also sufficient. For we know that BC is perpendicular to DE (and if it is 
perpendicular to two non-parallel lines of the plane, then it must be normal to the plane). Similarly, X must lie on 
the other two altitudes. So this case works provided X is the orthocenter of ABC. 

Take X as the origin. Let the vectors XA, XB, XC, XD, XE be a, b, c, d, k d respectively. A necessary and 
sufficient condition for AE to be normal to the plane BCD is that AE be perpendicular to BC and BD. We already 
know that it is perpendicular to BC (we have just shown that BC is normal to the plane ADE which contains it). So 
a necessary and sufficient condition is that AE be perpendicular to BD, or in vector language, (k d - a).(b - d) = 0, 
or k d2 = - a.b. This fixes k. Note that k is positive (so that D and E are on the same side of ABD, since a.b is 
negative). Now since X is the orthocenter of ABC, we have a.b = b.c = c.a. So with this choice of k we also have 
k d2 = - b.c = - c.a. It is easily checked that this is sufficient for the other five configurations also. 

Finally, note that since ABC is acute, X lies strictly inside the triangle and hence a.b is non-zero, so k is non-zero 
and hence E is not collinear with any two of A, B, C. The only remaining point to check on non-collinearity is that 
D and E do not coincide. But then we would have AD perpendicular to BD, which is clearly false since AX is 
perpendicular to BX and D lies above X. 

Problem B1 
Let G be the group { (m, n) : m, n are integers } with the operation (a, b) + (c, d) = (a + c, b + d). Let H be the 
smallest subgroup containing (3, 8), (4, -1) and (5, 4). Let Hab be the smallest subgroup containing (0, a) and (1, b). 
Find a > 0 such that Hab = H. 

Solution 
Answer: 7. 



(3,8) = 3 (1,5) - (0,7), (4,-1) = 4 (1,5) - 3 (0,7), (5,4) = 5 (1,5) - 3 (0,7). 
(1,5) = (5,4) - (4,-1), (0,7) = - 4 (3,8) - 7 (4,-1) + 8 (5,4). 
This shows that { (3,8), (4,-1), (5,4) } and { (1,5), (0,7) } generate the same subgroups. 

Problem B2 
A slab is the set of points strictly between two parallel planes. Prove that a countable sequence of slabs, the sum of 
whose thicknesses converges, cannot fill space. 

Solution 
A slab thickness d intersects a sphere radius R in a volume less than πR2d. So the entire set of slabs fill less than 
πR2D of the sphere, where D is the sum of their thicknesses. If we take R > D this is less than the volume of the 
sphere, so the slabs cannot even fill the sphere. 

Problem B3 
Let n be a fixed positive integer. Let S be any finite collection of at least n positive reals (not necessarily all 
distinct). Let f(S) = (∑a∈S a)n, and let g(S) = the sum of all n-fold products of the elements of S (in other words, the 
nth symmetric function). Find supS g(S)/f(S). 

Solution 
Answer: 1/n! 

For any n elements a, b, ... , w of S, the coefficient of a1b1...w1 in the multinomial expansion of f(s) is just n!/(1! 1! 
... 1!) = n!. In other words, f(S) = n! g(S) + other terms. But the other terms are all positive, so f(S) > n! g(S). Hence 
g(S)/f(S) < 1/n! . This establishes that 1/n! is an upper bound. 

Take S to be m elements all 1. Then f(S) = mn and g(S) = mCn. Hence g(S)/f(S) = (m/m) ( (m-1)/m) ( (m-2)/m) ... ( 
(m-n)/m) 1/n! . As m tends to infinity, each of the n terms (m-r)/m tends to 1 and hence g(S)/f(S) tends to 1/n! . 
Hence 1/n! is the least upper bound. 

Problem B4 
Does a circle have a subset which is topologically closed and which contains just one of each pair of diametrically 
opposite points? 

Solution 
Answer: no. 

The map taking each point to the diametrically opposite point is a homeomorphism. [It is obviously (1,1) and its 
own inverse. So it is sufficient to prove it continuous. But that is almost obvious using an ε δ argument.] 
Homeomorphisms take closed sets to closed sets. So if the subset was closed, then its complement would also be 
closed. So the circle would be the disjoint union of two closed sets and hence not connected. But it is connected.  

Problem B5 
Define f0(x) = ex, fn+1(x) = x fn'(x). Show that ∑0

∞ fn(1)/n! = ee. 

Solution 
The trick is to use the power series for ex. Then we have immediately that fn(x) = ∑ rn xr/r! Hence, ∑ fn(x)/n! = 1 + 
x/1! (1 + 1/1! + 12/2! + ... ) + x2/2! (1 + 2/1! + 22/2! + ... ) + ... = 1 + xe/1! + (xe)2/2! + ... = eex. [We assume the 
usual theorems about rearranging terms in absolutely convergent series.] 

Problem B6 
Let hn = ∑1

n 1/r. Show that n - (n - 1) n-1/(n-1) > hn > n(n + 1)1/n - n for n > 2. 

Solution 
Consider the numbers: 1 + 1/1, 1 + 1/2, 1 + 1/3, ... , 1 + 1/n. Their arithmetic mean is (n + hn)/n. The geometric 
mean is (∏ (1 + 1/r) )1/n. But ∏ (1 + 1/r) = 2/1 3/2 4/3 ... (n+1)/n = n + 1. So the geometric mean is (n + 1)1/n. The 
numbers are not all equal, so the arithmetic mean is strictly greater than the geometric mean. That gives the right 
inequality. 



Similarly, consider the numbers: 1 - 1/2, 1 - 1/3, ... , 1 - 1/n. [One must be careful not to include 1 - 1/1, because 
that would make the geometric mean 0.] The arithmetic mean is 1 - (hn - 1)/(n-1). The geometric mean is n-1/(n-

1) (the terms telescope is a similar way). Rearranging gives the left inequality. 

37th Putnam 1976 

Problem A1 
Given two rays OA and OB and a point P between them. Which point X on the ray OA has the property that if XP 
is extended to meet the ray OB at Y, then XP·PY has the smallest possible value. 

Solution 
Answer: take OX = OY. 

Let M be the foot of the perpendicular from P to OA, and N be the foot of the perpendicular from P to OB. 
Obviously X must lie further from O than M - otherwise moving it closer to M would reduce both PX and PY. 
Similarly Y must lie further from O than N. Let φ be the angle MPX and let θ be the angle MON. Then the angle 
NPY is θ-φ. Hence PX·PY = PM·PN/(cos φ cos θ-φ). So we minimise PX.PY by maximising (cos φ cos θ-φ). But 
(cos φ cos θ-φ) = 1/2 (cos(φ+θ-φ) + cos(2φ-θ) ) = 1/2 cos θ + 1/2 cos(2φ-θ). This is obviously maximised by taking 
φ = θ-φ. But that corresponds to angle PXM = angle PYN and hence OX = OY. 

Alternatively, PX·PY may remind us of the elementary result that if XX'YY' is cyclic with diagonals XY, X'Y' 
meeting at P, then PX·PY = PX'·PY'. The problem is to find a suitable circle. With hindsight, it is fairly obvious. 
Take the circle which touches OA at X and OB at Y. Then any other line through P intersects the circle at X' and Y' 
before it intersects OA and OB (at X'' and Y'' say). Hence PX'' > PX', PY'' > PY' and PX'·PY' = PX·PY. However, I 
failed to find the right circle until after I had solved the problem trigonometrically. 

Problem A2 
Let a(x, y) be the polynomial x2y + xy2, and b(x, y) the polynomial x2 + xy + y2. Prove that we can find a 
polynomial pn(a, b) which is identically equal to (x + y)n + (-1)n (xn + yn). For example, p4(a, b) = 2b2. 

Solution 
Let us write E(n) = (x + y)n + (-1)n (xn + yn). We use induction on n. We have E(1) = 0, E(2) = 2b, E(3) = 3a. 
We find that (x + y)n+3 = b (x + y)n+1 + a (x + y)n and xn+3 + yn+3 = b (xn+1 + yn+1) - a (xn + yn). So it follows that 
E(n+3) = b E(n+1) + a E(n). That completes the induction. 

Problem A3 
Find all solutions to pn = qm ± 1, where p and q are primes and m, n ≥ 2. 

Solution 
Answer: 23 = 32 - 1. 

pn and qm have opposite parity, so one must be even. So without loss of generality we may take p = 2. Now qm ± 1 
factors as (q ± 1) and a sum of m powers of q, each of which is odd. If m is odd, then the sum is odd, but that is 
impossible, since 2n has no odd factors. So m is even. Take it to be 2M. 
Consider first the case 2n = q2M - 1 = (qM + 1)(qM - 1). But qM + 1 and qM - 1 are successive even numbers, so one of 
them has an odd factor (which is impossible) unless then are 4 and 2. Thus the only solution of this type is 23 = 32 - 
1. 
Finally consider 2n = q2M + 1. qM is odd, so put qM = 2N + 1, then q2M + 1 = 4N2 + 4N + 2, which is not divisible by 
4. So n = 1 and q = 1, which is not a solution, since 1 is not prime. 

Problem A4 
Let p(x) ≡ x3 + ax2 + bx - 1, and q(x) ≡ x3 + cx2 + dx + 1 be polynomials with integer coefficients. Let α be a root of 
p(x) = 0. p(x) is irreducible over the rationals. α + 1 is a root of q(x) = 0. Find an expression for another root of p(x) 
= 0 in terms of α, but not involving a, b, c, or d. 

Solution 
Answer: the other roots are -1/(α+1) and - (α+1)/α. 



Let the roots of p(x) be α, β, γ. The polynomial q(x+1) has α as one of its roots. Suppose it is different from p(x). 
Then by subtracting we get either a quadratic or a linear equation which also has α as a root. It cannot be a linear 
equation, because then α would be rational and hence p(x) would not be irreducible over the rationals. If it was 
quadratic, then by multiplying it by a suitable rational factor rx + s and subtracting from p(x) we would get a linear 
factor ux + v which also had α as a root. If this factor is zero, then we have reduced p(x) over the rationals (as (rx + 
s) times the quadratic). If not, then α is a root of ux + v and hence rational, so that p(x) is still reducible. So we 
must have that p(x) and q(x+1) are identical. So the three roots of q(x) must be α+1, β+1, γ+1. Hence we have the 
relations: 

αβγ = 1, (α+1)(β+1)(γ+1) = -1 (derived from the constant terms of p(x) and q(x) respectively). 

Hence α(β+γ)+(β+γ)+α+1+βγ+αβγ = -1, so (β+γ)(α+1) = - (3+α+1/α), or β+γ = - (3α+α2+1) / ( α(α+1) ). Hence (β-
γ)2 = (β+γ)2 - 4βγ = (α4+2α3+3α2+2α+1)/ ( α2(α+1)2 ). So β-γ = ± (α2+α+1)/ ( α(α+1) ) and hence β = -1/(α+1) or - 
(α+1)/α. 

Problem A5 
Let P be a convex polygon. Let Q be the interior of P and S = P ∪ Q. Let p be the perimeter of P and A its area. 
Given any point (x, y) let d(x, y) be the distance from (x, y) to the nearest point of S. Find constants α, β, γ such 
that ∫U e-d(x,y) dx dy = α + βp + γA, where U is the whole plane. 

Solution 
Answer: A + p + 2π. 

For any point in S we have d(x, y) = 0. Hence the integral over S is just A. The locus of points a distance z from S 
is a set of segments parallel to the sides of P and displaced a distance z outwards, together with a set of arcs joining 
them. Each arc is centered on a vertex of P and has radius z. Together the arcs can be translated to form a complete 
circle radius z. Thus the set of points a distance z to z + δz from S is a strip of area p δz + 2πz δz. Thus the integral 
outside S is just 
∫0

∞ exp( - z) (p + 2πz) dz. This evaluates easily to p + 2π. 

Problem A6 
Let R be the real line. f : R → [-1, 1] is twice differentiable and f(0)2 + f '(0)2 = 4. Show that f(x0) + f ''(x0) = 0 for 
some x0. 

Solution 
Let k(x) = f(x)2 + f '(x)2. By the mean value theorem for some a in the interval (0, 2) we have f '(a) = 1/2 (f(2) - f(0) 
). But |f(x)| ≤ 1 for all x, so |f '(a)| ≤ 1. Hence k(a) ≤ 1 + 1 = 2. Similarly, we can find b in the interval (-2, 0) with 
k(b) ≤ 2. We are given that k(0) = 4. Hence k(x) has a maximum at some interior point of (-2, 2). Let this point be 
c. Then certainly k(c) ≥ k(0) = 4, f(c)2 ≤ 1, so |f '(c)| > 0. We have k '(c) = 0. But k '(c) = 2 f '(c) ( f(c) + f ''(c) ). We 
have just shown that f '(c) is non-zero, so f(c) + f ''(c) = 0. 

Problem B1 
Show that limn→∞ 1/n ∑1

n ( [2n/i] - 2[n/i] ) = ln a - b for some positive integers a and b. 

Solution 
Answer: ln 4 - 1. 

The expression inside the limit is a partial sum for ∫0
1 [2/x] - [1/x] dx (taking the points x = 1/n, 2/n, ... , 1). So the 

limit is ∫0
1 [2/x] - [1/x] dx. 

Evidently the integrand is non-zero on the intervals (1/(n+1), 1/(n + 1/2) ], for if x belongs to such an interval then 
n + 1/2 <= x < n + 1, so [1/x] = n, whilst 2n + 1 ≤ x ≤ 2n + 2, so [2/x] = 2n+1. A similar argument shows it is zero 
on the complementary intervals (1/(n + 1/2), 1/n]. Thus the integral evaluates to (1/(1 + 1/2) - 1/2) + (1/(2 + 1/2) - 
1/2 + ... = 2(1/3 - 1/4 + 1/5 - ... ) = 2(1 - 1/2 + 1/3 - 1/4 + ... ) - 1 = 2 ln 2 - 1 = ln 4 - 1. 

Problem B2 
G is a group generated by the two elements g, h, which satisfy g4 = 1, g2 ≠ 1, h7 = 1, h ≠ 1, ghg-1h = 1. The only 
subgroup containing g and h is G itself. Write down all elements of G which are squares. 



Solution 
Answer: 1, g2, h, h2, h3, h4, h5, h6. 

Obviously g-1 = g3, h-1 = h6. So we have gh = h6g (*). This allows us to write any element generated by g and h in 
the form hngm (with n = 0, 1, 2, ... , 6; m = 0, 1, 2, 3). Applying (*) we find that (hng)2 = g2, (hng2)2 = h2n, (hng3)2 = 
g2. Thus the only possible squares are 1, g2, h1 [for example it is the square of h4 ], h2, ... , h6. Moreover, these are 
all distinct. For if two powers of h were equal then we could deduce h = 1 (a contradiction). We are given that g2 is 
not 1. If g2 equalled a power of h, then the square of that power would be 1 and hence h would be 1 (a 
contradiction). 

Problem B3 
Let 0 < α < 1/4. Define the sequence pn by p0 = 1, p1 = 1 - α, pn+1 = pn - α pn-1. Show that if each of the events A1, 
A2, ... , An has probability at least 1 - α, and Ai and Aj are independent for | i - j | > 1, then the probability of all 
Ai occurring is at least pn. You may assume all pn are positive. 

Solution 
This was a rare Putnam disaster - the question is wrong. Let qn be the probability that all of A1, ... , An occur. The 
idea was that one can more or less write down that qn+1 ≥ qn - α qn-1 (*). The problem is then to show that it follows 
that qn ≥ pn (despite the awkward minus sign in (*) ). Unfortunately, (*) requires that An+1 is independent of the 
event (all of A1, ... , An-1 occur) and that does not follow from the fact that An+1 is independent of each of A1, ... , 
An-1. 

Let us assume first that the question was correctly worded. Let En be the event that all of A1, A2, ... , An occur. We 
write p(E) as the probability that event E occurs. We write ~E as the event (not E). We assume that En-1 and 
An+1 are independent. We may partition the event En into the disjoint events En+1 and (En & ~An+1). So qn = qn+1 + 
p(En & ~An+1). But En-1 implies En, so p(En-1 & ~An+1) ≥ p(En & ~An+1). But En-1 and An+1 are assumed to be 
independent, so p(En-1 & ~An+1) = qn-1 p(~An+1) ≤ α qn-1. Hence p(En & ~An+1) ≤ α qn-1. Hence qn+1 ≥ qn - α qn-1. I 
have spelt that out at somewhat tedious length, but one should in fact be able to write the conclusion straight down. 

Now let us assume that qn+1 = qn - α qn-1 + βn+1, where βn+1 ≥ 0. A simple induction establishes that qn = pn + pn-2β1 + 
pn-3β2 + ... + p0βn-1 + βn, so qn ≥ pn as required. 

Finally, we need to show that the conclusion can be false if we assume no more than stated in the question. Take: 
p(A1 & A2 & A3 & A4 & A5) = p(~A1 & A2 & A3 & A4 & A5) = p(A1 & ~A2 & A3 & A4 & A5) = p(A1 & A2 & 
~A3 & A4 & A5) = p(A1 & A2 & A3 & ~A4 & A5) = p(A1 & A2 & A3 & A4 & ~A5) = 4/25, p(~A1 & ~A2 & ~A3 & 
~A4 & ~A5) = 1/25. 

We can easily check that p(A1) = p(A2) = p(A3) = p(A4) = 20/25, so we may take α = 1/5. We can also check that 
the prob of any pair, such as p(A1 & A2) = 16/25, so an independence assumption stronger than that in the question 
is satisfied. But p(A1 & A2 & A3 & A4) = 4/25 ≤ p5 (= 6/25 - 1/125). 

Problem B4 
Let an ellipse have center O and foci A and B. For a point P on the ellipse let d be the distance from O to the 
tangent at P. Show that PA·PB·d2 is independent of the position of P. 

Solution 
Answer: a2b2. 

Let the ellipse be x2/a2 + y2b2 = 1. Then the foci are at (± ae, 0) where the eccentricity e is given by b2 = a2(1 - e2). It 
is also a well-known property that PA + PB = 2a. Thus we may express the product 2 PA·PB as (PA + PB)2 - PA2 - 
PB2 = 4a2 - (x + ae)2 - y2 - (x - ae)2 - y2 = 4a2 - 2x2 - 2y2 - 2a2e2 = 2a2 + 2b2 - 2x2 - 2y2. 

The tangent at (x, y) is x/b2 Y + x/a2 X = 1, so it meets the axes at (a2/x, 0), (0, b2/y). These two points and the 
origin form a right-angled triangle with the origin a height d from the hypoteneuse. So we may calculate its area as 
1/2 a2b2/(xy) or as 1/2 d times hypoteneuse. Hence d2 = a4b4/( (xy)2 (a4x2 + b4/y2) = a4b4/(a4y2 + b4x2). Using the fact 
that (x, y) lies on the ellipse, we have a4y2 = a4b2 - a2b2x2, and b4x2 = a2b4 - a2b2y2, so a4y2 + b4x2 = a2b2 (a2 + b2 - x2 - 
y2) = a2b2PA·PB. Hence d2 = a2b2/( PA·PB ). 



Problem B5 
Find ∑0

n (-1)i nCi ( x - i )n, where nCi is the binomial coefficient. 

Solution 
Answer: n! 

Given a polynomial p(x), define Δp(x) = p(x) - p(x-1). If p(x) is of order n with leading coefficient a xn, then Δp(x) 
is of order n-1 with leading coefficient a n xn-1. [Proof: let p(x) = a xn + b xn-1 + terms in xn-2 and below. Then Δp(x) 
= a(xn - (x-1)n) + b(xn-1 - (x-1)n-1) + terms in xn-2 and below = a(xn - xn + n xn-1) + b(xn-1 - xn-1) + terms in xn-2 and 
below = a n xn-1 + lower terms.] 
Hence Δn p(x) = a n! But the expression given is simply Δnp(x) with p(x) = xn, so it evaluates to n! 

That is the slick solution. The more plodding solution is to observe that the coefficient of xn-m is (-1)m nCm ( - nC1 
1m + nC2 2m - nC3 3m + ... ). But the expression in parentheses is just the value at x = 1 of (x d/dx)m (1 - x)n (*). For 
m < n, all terms in (*) will have a non-zero power of (1 - x) and hence will evaluate to zero. For m = n, the only 
term not evaluating to zero will be xn n! (-1)n which gives n! (-1)n. Hence the expression in the question has the 
coefficient of xr zero, except for the constant term, which is (-1)n nCn n! (-1)n = n! . 

Problem B6 
Let σ(n) be the sum of all positive divisors of n, including 1 and n. Show that if σ(n) = 2n + 1, then n is the square 
of an odd integer. 

Solution 
If n is odd and non-square, then the divisors can be arranged in pairs d, n/d. The components of each pair are odd, 
so their sum is even and hence σ(n) is even and cannot equal 2n+1. It is more difficult to show that n cannot be 
even. 

We have σ(n) = ∏(1 + p + p2 + ... + pk), where the product is taken over all primes p dividing n and k is the highest 
power of p dividing n. If p and k are odd, then the factor (1 + p + ... + pk) is even, and hence σ(n) is even. So if σ(n) 
= 2n+1, all k corresponding to odd primes must be even. In other words, we have n = 2aN2, for some odd integer N. 
Hence σ(n) = (2a+1-1)σ(N2) = 2a+1N2 + 1. So N2 = (2a+1-1)(σ(N2) - N2) - 1. Hence if q is any odd prime dividing 2a+1-
1, then N2 = - 1 (mod q). But -1 is a quadratic non-residue of primes of the form 4r+3. So every prime factor of 
2a+1 - 1 must be of the form 4r+1. But that is not possible if a ≥ 1 (a product of numbers congruent to 1 mod 4 is 
congruent to 1, not -1). Hence a = 0 and n is an odd square. 



38th Putnam 1977 

Problem A1 
Show that if four distinct points of the curve y = 2x4 + 7x3 + 3x - 5 are collinear, then their average x-coordinate is 
some constant k. Find k. 

Solution 
Answer: - 7/8 

Suppose the common line is y = ax + b, the the x-coordinates satisfy 2x4 + 7x3 + (3 - a)x - (5 + b) = 0. This has at 
most 4 distinct roots. The arithmetic mean of the roots is 1/4 (-7/2) = -7/8. 
The only other possibility is that the line is x = a, but that only meets the curve in one point. 

Problem A2 
Find all real solutions (a, b, c, d) to the equations a + b + c = d, 1/a + 1/b + 1/c = 1/d. 

Solution 
Answer: a, b arbitary; c = - a, d = b. 

Take a, b arbitary. We then have: -c + d = a + b; cd = -ab. So -c and d are the roots of the quadratic x2 - (a + b)x + 
ab = 0. Solving, the roots are a, b. So either c = -a, d = b, or c = -b, d = a. 

Problem A3 
R is the reals. f, g, h are functions R → R. f(x) = (h(x + 1) + h(x - 1) )/2, g(x) = (h(x + 4) + h(x - 4) )/2. Express 
h(x) in terms of f and g. 

Solution 
h(x) = g(x) - f(x - 3) + f(x - 1) + f(x + 1) - f(x + 3). 

Problem A4 
Find polynomials p(x) and q(x) with integer coefficients such that p(x)/q(x) = ∑0

∞ x2n/(1 - x2n+1) for x ∈ (0, 1). 

Solution 
It is an easy induction that the sum of the first n terms is: 
(x + x2 + ... + x2n-1)/(1 - x2n). 

But that may be written as [ (1 - x2n)/(1 - x) - 1 ] /(1 - x2n) = 1/(1 - x) - 1/(1 - x2n). Since x ∈ (0, 1), the second term 
tends to 1 as n → ∞. So the result is 1/(1 - x) - 1 = x/(1 - x). 

Problem A5 
p is a prime and m ≥ n are non-negative integers. Show that (pm)C(pn) = mCn (mod p), where mCn is the binomial 
coefficient. 

Solution 
Let f(n) be the highest power of p dividing n. The multiples of p in (mp)! are mp, (m-1)p, ... , 2p, p. Hence f( (mp)! 
) = pm f(m!). Similarly, f( (np)! ) = pn f(n!) and f( ((m-n)p)! ) = pm-n f( (m-n)! ). Hence f( mCn ) = f( (mp)C(np) ). 

Problem A6 
R is the reals. X is the square [0, 1] x [0, 1]. f : X → R is continuous. If ∫Y f(x, y) dx dy = 0 for all squares Y such 
that (1) Y ⊆ X, (2) Y has sides parallel to those of X, (3) at least one of Y's sides is contained in the boundary of 
X, is it true that f(x, y) = 0 for all x, y? 

Solution 
Answer: yes. 

Given any square Z inside X with sides parallel to X, we can find squares Y1, Y2 satisfying the conditions in the 
question such that Z = Y1 ∩ Y2. Hence ∫Z f(x, y) dx dy = 0 for all Z. 



If f(x, y) > 0 for any interior point (x, y) of X, then by continuity we can find a square Z such that f(x, y) > 0 on Z. 
Contradiction. Similarly for f(x, y) < 0 for an interior point of X. Hence f(x, y) = 0 on the interior of X and hence 
(by continuity) on the whole of X. 

Problem B1 
Find ∏2

∞ (n3 - 1)/(n3 + 1). 

Solution 
Answer: 2/3. 

If we factor: n3 - 1 = (n - 1)(n2 + n + 1), n3 + 1 = (n + 1)(n2 - n + 1), then most of the terms cancel. Take the product 
up to n = N. Then the numerator is 1·2·3 ... (N - 1)·7·13·21·31 ... (N2 + N + 1) and the denominator is 3·4·5 ... (N + 
1)·3·7·13·21·31 ... (N2 - N + 1). Hence the product up to n = N is 2/(N(N + 1)) (N2 + N + 1)/3 = 2/3 (N2 + N + 
1)/(N(N + 1)), which tends to 2/3 as N tends to infinity. 

Problem B2 
P is a plane containing a convex quadrilateral ABCD. X is a point not in P. Find points A', B', C', D' on the lines 
XA, XB, XC, XD respectively so that A'B'C'D' is a parallelogram. 

Solution 
Let X' be the intersection of AC and BD. Take A', C' so that XA'X'C' is a parallelogram. Similarly take B', D' so 
that XB'X'D' is a parallelogram. Then both A'C' and B'D' have their midpoint at the midpoint of XX'. Hence 
A'B'C'D' is a parallelogram. 

Problem B3 
Let S be the set of all collections of 3 (not necessarily distinct) positive irrational numbers with sum 1. If A = {x, y, 
z} ∈ S and x > 1/2, define A' = {2x - 1, 2y, 2z}. Does repeated application of this operation necessarily give a 
collection with all elements < 1/2? 

Solution 
Answer: no. 

Write the three numbers in binary: x = 0.x1x2x3 ... , y = 0.y1y2y3 ... , z = 0.z1z2z3 ... , where every xi, yi, zi is 0 or 1. 
Then after n operations (assuming a number > 1/2 at all stages) the three numbers are simply x = 0.xn+1xn+2xn+3 ... , 
y = 0.yn+1yn+2yn+3 ... , z = 0.zn+1zn+2zn+3 ... . So we have to choose the xi, yi, zi so that (1) for each i, exactly one of xi, 
yi, zi is 1, (2) x, y, z are irrational. To achieve (2) we just have to ensure that there is no periodicity. So, for 
example, we could take: xi = 1 for i = 1, 4, 9, 16, ... ; yi = 1 for i = 2, 5, 10, 17, ...; zi = 1 if i is not a square or a 
square plus 1. 
[If the triples are not required to be irrational, we have the even simpler solution: 1/7, 2/7, 4/7.] 

Problem B4 
Let P be a point inside a continuous closed curve in the plane which does not intersect itself. Show that we can find 
two points on the curve whose midpoint is P. 

Solution 

Take an arbitrary chord AB through P. If P is the midpoint then we are 
done. So assume it is not. Let A' complete a circuit of the curve starting at 
A and returning to it. Let the chord through A' and P be A'B'. Let f(A') = 
A'P/B'P. Then f is a continuous function and f(Astart) = 1/f(Afinish). So for 
some point C on the curve f must assume the intermediate value 1, which 
means that P is the midpoint of this chord. 

Let C be the curve and C' the curve obtained by rotating C through 
180o about P. Let m be a point on C closest to P, and M a point on C 
furthest from P. Then m must lie inside or on C', and M must lie outside or 
on C'. Hence C and C' must intersect. Take Q to be any common point. 
Then the point Q' obtained by rotating Q through 180o must also lie on C 



and C'. Now P is the midpoint of QQ'. 

 

Problem B5 
a1, a2, ... , an are real and b < (∑ ai)

2/(n - 1) - ∑ ai
2. Show that b < 2aiaj for all distinct i, j. 

Solution 
It is sufficient to show that (∑ ai)

2/(n - 1) - ∑ ai
2 ≤ 2a1a2. But this follows immediately from the Cauchy inequality 

for the two n-1 tuples: 
a1 + a2, a3, a4, ... , an; and 1, 1, ... , 1: 

(∑ ai)
2 <= (n - 1)( (a1 + a2)

2 + a3
2 + ... + an

2) = (n - 1) ∑ ai
2 + (n - 1) 2a1a2. 

Problem B6 
G is a group. H is a finite subgroup with n elements. For some element g ∈ G, (gh)3 = 1 for all elements h ∈ H. 
Show that there are at most 3n2 distinct elements which can be written as a product of a finite number of elements 
of the coset Hg. 

Solution 
It is essential to notice first that g3 = 1 (since 1 ∈ H). 

A little messing around should now convince us that we can simplify finite products of elements of the form hg. In 
fact, we show that they can always be written as (1) h1gh2, (2) h1g

2h2, or (3) h1g
2h2g. 

Clearly hg is of the form (1), so it is sufficient to show that given an element k of form (1), (2) or (3), then k (hg) is 
also of one of these forms. 

It is convenient to note that: ghg = h-1g2h-1 (*) (post-multiply ghghgh = 1 successively by h-1, g2, h-1); and g2hg2 = h-

1gh-1 (**) (pre-multiply gh-1gh-1gh-1 = 1 successively by g2, h, g2). 

So dealing with the three cases in turn: (h1gh2) h3g = h1h3
-1h2

-1g2h3
-1h2

-1g, which is of form (2). 

(h1g
2h2) h3g is obviously of form (3). 

(h1g
2h2g) h3g = h1g

2h2h3
-1g2h3

-1 = h1h3h2
-1gh3h2

-1h3
-1, which is of form (1). 



39th Putnam 1978 

Problem A1 
Let S = {1, 4, 7, 10, 13, 16, ... , 100}. Let T be a subset of 20 elements of S. Show that we can find two distinct 
elements of T with sum 104. 

Solution 
Not best possible: we can make do with 19 elements. Note that the numbers have the form 3n + 1 for n = 0, 1, ... , 
33. We seek 3n + 1, 3m + 1 so that n + m = 34. Evidently n = 0 and n = 17 do not help. The other 32 numbers form 
16 pairs with the required sum. So if we take 19 numbers then we are sure to get two from the same pair. 

Problem A2 
Let A be the real n x n matrix (aij) where aij = a for i < j, b (≠ a) for i > j, and ci for i = j. Show that det A = (b p(a) - 
a p(b) )/(b - a), where p(x) = ∏ (ci - x). 

Solution 
|c1 a  a  ... a | = |a  a  a  ... a | + |c1-a 0  0  ... 0 | 

|b  c2 a  ... a |   |b  c2 a  ... a |   |b    c2 a  ... a | 

|b  b  c3 ... a |   |b  b  c3 ... a |   |b    b  c3 ... a | 

| ...           |   | ...          |    | ...            | 

|b  b  b  ... cn|   |b  b  b  ... cn|   |b    b  b  ... cn| 

To evaluate the first determinant on the right, we subtract the first column from each of the others. Then expanding 
by the top row we get a D, where D has zeros below the main diagonal and hence is just the product of the elements 
on its diagonal. In other words, the first determinant is just a ∏2

n (ci - b). 

If we expand the second determinant by the top row we get (c1 - a) det A', where A' is the (n-1) x (n-1) matrix 
formed by deleting the first row and column of A. So we can use induction. The result is trivial for n = 1. So 
assume it is true for n - 1. Then for n we have a ∏2

n (ci - b) + b/(b - a) ∏1
n (ci - a) - a/(b - a) (c1 - a) ∏2

n (ci - b). 
Adding the first and third terms we get: a (1 - (c1 - a)/(b - a) ) ∏2

n (ci - b) = - a/(b - a) ∏1
n (ci - b). So the result is 

true for n. 

Problem A3 
Let p(x) = 2(x6 + 1) + 4(x5 + x) + 3(x4 + x2) + 5x3. Let a = ∫0

∞ x/p(x) dx, b = ∫0
∞ x2/p(x) dx, c = ∫0

∞ x3/p(x) dx, d = 
∫0

∞ x4/p(x) dx. Which of a, b, c, d is the smallest? 

Solution 
Answer: b. 

Let a1 = ∫0
1 x/p(x) dx, a2 = ∫1

∞ x/p(x) dx. Similarly, b1, b2, c1, c2, d1, d2. Also define e1 = ∫0
1 1/p(x) dx. Using the 

subtitution y = 1/x we find that a1 = c2, a2 = c1, b1 = b2, and e1 = d2. Hence, in particular, a = a1 + a2 = c2 + c1 = c. 

But x - 2x2 + x3 = x(x - 1)2 > 0 on (0, 1), so a1 - 2b1 + c1 > 0. Hence a = a1 + a2 > b1 + b2 = b. Hence also c > b. 

Similarly, 1 - 2x2 + x4 = (x2 - 1)2 > 0 on (0, 1). So e1 - 2b1 + d1 > 0. Hence d = d1 + d2 > b1 + b2 = b. So b is the 
smallest. 

Problem A4 
A binary operation (represented by multiplication) on S has the property that (ab)(cd) = ad for all a, b, c, d. Show 
that: (1) if ab = c, then cc = c; (2) if ab = c, then ad = cd for all d. Find a set S, and such a binary operation, which 
also satisfies: (A) a a = a for all a; (B) ab = a ≠ b for some a, b; (C) ab ≠ a for some a, b. 

Solution 
(1): (ab)(ab) = ab, so cc = c. (2): (ab)d = ( (ab)(ab) ) (dd) = (ab)(dd) = ad. Note that an exactly similar argument 
gives a(bc) = ac. So the operation is in fact associative and a1a2... an = a1an. 

In passing we note various possible special cases: (A) ab = k for all a, b (where k is fixed); (B) ab = a for all a, b; 
(C) ab = b for all a, b. The extra conditions are presumably designed to rule out these special cases. 



So we need some operation which preserves something of the first element and something of the second. The 
easiest is to take S to consist of pairs (r, s) and to define the operation as: (r, s) (u, v) = (r, v). The simplest such 
example is S = { (0, 0), (0, 1), (1, 0), (1, 1) }. This obviously satisfies all the required conditions. Writing a = (0, 0), 
b = (0, 1), c = (1, 0), d = (1, 1), we have: 

   a  b  c  d 

a  a  b  a  b 

b  a  b  a  b 

c  c  d  c  d 

d  c  d  c  d 

 

Problem A5 
Let a1, a2, ... , an be reals in the interval (0, π) with arithmetic mean μ. Show that ∏ (sin ai)/ai ≤ ( (sin μ)/μ )n. 

Solution 
Products are intractable, whereas sums are easy, so we take logs. Let f(x) = ln ( (sin x)/x) = ln sin x - ln x. The 
required relation is now that 1/n ∑ f(ai) ≤ f(μ). This is true if the curve is concave, in other words if f ''(x) ≤ 0. 

Differentiating, we have: f '(x) = cot x - 1/x, f ''(x) = - cosec2x + 1/x2. But sin x ≤ x on [0, π], so f ''(x) ≤ 0 on [0, π]. 

Problem A6 
Given n points in the plane, prove that less than 2n3/2 pairs of points are a distance 1 apart. 

Solution 
Label the points 1, 2, ... , n. Let ni be the number of points a distance 1 from point i. We wish to show that ∑ ni < 4 
n3/2. We can assume that all ni ≥ 2. [Keep removing points until those that are left have ni ≥ 2. If we exhaust the 
points before this happens then the number of pairs ≤ n < 2n3/2. Otherwise, suppose we remove k points. Then the 
result follows from the result for n - k points since k + 2(n - k)3/2 < 2n3/2. 

The points a distance 1 from point i must all lie on Ci the circle radius 1, center point i. Each pair of circles meets in 
0, 1 or 2 points. So the total number of points of intersection of two circles is at most n(n - 1) (where a point of 
intersection arises in more than one way we count one for each way it arises). Some of these points of intersection 
will be members of the original set of n points. Point i has ni circles through it, so it arises as a point of intersection 
in 1/2 ni(ni - 1) ways. Thus all the points together give rise to ∑ 1/2 ni(ni - 1) points of intersection. Hence ∑ ni(ni - 
1) ≤ 2n(n - 1). Since ni ≥ 2, ni ≤ 2(ni - 1), so we have that ∑ ni

2 ≤ 2 ∑ ni(ni - 1) ≤ 4n(n - 1) < 4n2. Now Cauchy's 
inequality gives that n ∑ ni

2 ≥ (∑ ni)
2. So ∑ ni < 2 n3/2. 

Problem B1 
A convex octagon inscribed in a circle has 4 consecutive sides length 3 and the remaining sides length 2. Find its 
area. 

Solution 
Let the radius be R. The area is made up of four triangles sides 3, R, R and four triangles sides 2, R, R. The area is 
unchanged if we rearrange these triangles to form an octagon with sides alternately 2 and 3. But the new octagon is 
a square side 3 + 2√2 with four corners lopped off, each sides 2, √2, √2. Hence its area is (17 + 12√2) - 4 = 13 + 
12√2. 

Problem B2 
Find ∑1

∞∑1
∞ 1/(i2j + 2ij + ij2). 

Solution 
Answer: 7/4. 

Let us fix i and sum over j. The term is 1/(i(i + 2)) (1/j - 1/(j + i + 2) ). So, summing over j, all the terms cancel 
except for the first i + 2, giving: 1/(i(i + 2)) (1/1 + 1/2 + ... + 1/(i + 2) ). Also 1/(i(i + 2)) = 1/2 (1/i - 1/(i + 2) ). 

So summing over i (and multiplying by 2) we get: 
(1/1 - 1/3) (1 + 1/2 + 1/3) + 



(1/2 - 1/4) (1 + 1/2 + 1/3 + 1/4) + 
(1/3 - 1/5) (1 + 1/2 + 1/3 + 1/4 + 1/5) + 
(1/4 - 1/6) (1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6) + ... 

Each of the minus terms partially cancels with the corresponding plus term two lines lower, so we get: 
1/1(1 + 1/2 + 1/3) + 1/2(1 + 1/2 + 1/3 + 1/4) + 1/3(1/4 + 1/5) + 1/4(1/5 + 1/6) + ... 
= 1 + 1/4 + 1/2 + (1/1 1/2 + 1/2 1/3 + 1/3 1/4 + ... ) + (1/1 1/3 + 1/2 1/4 + 1/3 1/5 + ... ) 
= 7/4 + ( (1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4 ) + ... ) + 1/2 ( (1 - 1/3) + (1/2 - 1/4) + (1/3 - 1/5) + ... ) 
= 7/4 + 1 + 1/2 (1 + 1/2) = 7/2. 
Hence the answer is 7/4. 

Problem B3 
The polynomials pn(x) are defined by p1(x) = 1 + x, p2(x) = 1 + 2x, p2n+1(x) = p2n(x) + (n + 1) x p2n-1(x), p2n+2(x) = 
p2n+1(x) + (n + 1) x p2n(x). Let an be the largest real root of pn(x). Prove that an is monotonic increasing and tends to 
zero. 

Solution 
It is fairly obvious that an < 0 and that the sequence is strictly monotonic increasing. The problem is proving it 
tends to zero. 

Trivial inductions show that pn(0) = 1 and pn(x) > 0 for x > 0, so an < 0. Also we note that a1 = -1, a2 = -1/2. If x > 
an, then pn(x) > 0 (otherwise there would be a root greater than an). 

p2n+1(a2n) = (n + 1) a2n p2n-1(a2n). By induction p2n-1(a2n) > 0, so p2n+1(a2n) < 0 and hence a2n+1 > a2n. Similarly a2n+2 > 
a2n+1. So, as claimed, an is strictly monotonic increasing. 

To show it tends to zero, it suffices to prove that: a2n-1 > -1/(n-1) and a2n > -1/n. This is true for n = 1. Suppose it is 
true for n. We have already established monotonicity, so a2n+1 > -1/n. Also p2n-1(-1/(n+1)) > 0. But p2n+2(-1/(n+1)) = 
p2n+1(-1/(n+1)) - p2n(-1/(n+1)) = - p2n-1(-1/(n+1)) < 0, so a2n+2 > -1/(n+1) and we have established the inductive 
hypothesis for n+1. 

Problem B4 
Show that we can find integers a, b, c, d such that a2 + b2 + c2 + d2 = abc + abd + acd + bcd, and the smallest of a, b, 
c, d is arbitarily large. 

Solution 
If b, c, d are fixed, then the relation gives a quadratic in a whose two roots have sum bc + bd + cd. So if we have a 
solution a, b, c, d, then we can derive another solution a', b, c, d with a' = (bc + bc + cd) - a (*). If we take a < b < c 
< d, and all of a, b, c, d positive, then clearly a' > d. 

So starting with any positive solution we may derive solutions with successively larger smallest members. In fact, 
starting with (1, 1, 1, 1), we get successively (1, 1, 1, 2), (1, 1, 2, 4), (1, 2, 4, 13), (2, 4, 13, 85). From this point on, 
the smallest member is increased each time. 

Problem B5 
Find the real polynomial p(x) of degree 4 with largest possible coefficient of x4 such that p( [-1, 1] ) ∈ [0, 1]. 

Solution 
Let p(x) = a4x

4 + a3x
3 + a2x

2 + a1x + a0. Then a4x
4 - a3x

3 + a2x
2 - a1x + a0 also satisfies the conditions and hence also 

a4x
4 + a2x

2 + a0. So we may take a3 = a1 = 0. 

Now p(0), p(1/2), p(1) belong to [0, 1], so 0 ≤ a0 ≤ 1, 0 ≤ a4/4 + a2/2 + a0 ≤ 1, 0 ≤ a4 + a2 + a0 ≤ 1. Hence: -2 ≤ -2a0 ≤ 
0, 0 ≤ a4 + 2a2 + 4a0 ≤ 4, -2 ≤ -2a4 - 2a2 - 2a0 ≤ 0. Adding: -4 ≤ -a4 < 4. So the maximum value of a4 is at most 4. 

This can be achieved by 4(x2 - 1/2)2 = 4x4 - 4x2 + 1. 

Problem B6 
aij are reals in [0, 1]. Show that ( ∑i=1

n ∑j=1
mi aij/i )

2 ≤ 2m ∑i=1
n ∑j=1

mi aij. 



Solution 
The question looks incredibly complicated, but is actually easy. We just use induction and the fact that each aij ≤ 1. 

Put bi = ∑1
mi aij. Notice that since each aij ≤ 1, we have bi ≤ mi. We use induction on n. For n = 1, the required result 

is: b1
2 ≤ 2mb1. But b1 ≤ m and b1 ≥ 0, so this is certainly true. 

Now assume the result is true for n. 
For n + 1, the lhs is (b1/1 + b2/2 + ... + bn/n)2 + 2(b1/1 + ... + bn/n) bn+1/(n+1) + bn+1

2/(n+1)2, and the rhs is 2m(b1 + ... 
+ bn) + 2mbn+1. Given the result for n, it is sufficient to show that: 2(b1/1 + ... + bn/n) bn+1/(n+1) + bn+1

2/(n+1)2 ≤ 
2mbn+1. Divding by bn+1 and using bi/i le; m, we need: 2nm/(n+1) + m/(n+1) ≤ 2m, which is clearly true. 



40th Putnam 1979 

Problem A1 

Find the set of positive integers with sum 1979 and maximum possible product. 

Solution 
For n > 4, 2(n - 2) > n, so the maximum product cannot include any integer greater than 4. Also, 23 < 32, so it 
cannot include more than two 2s. Since 4 = 2·2, it cannot include both a 2 and a 4. It obviously does not include a 
1, since n + 1 > n x 1. So the maximum product must be made up mainly of 3s, with either no, one or two 2s (or 
equivalently one 4). Hence for 1979 = 2 + 659·3, the maximum product is 36592. 

Problem A2 
R is the reals. For what real k can we find a continuous function f : R → R such that f(f(x)) = k x9 for all x. 

Solution 
Evidently k1/4 x3 works for any k ≥ 0. 

For k ≠ 0, f must be (1, 1) [otherwise we would get x9 = y9 for x ≠ y, contradiction.] But f is continuous, so it is 
strictly monotonic. If it is strictly monotonic increasing, then so is f(f(x)). But if it is strictly monotonic decreasing, 
then f(f(x)) is strictly monotonic increasing. So, either way, f(f(x)) is strictly monotonic increasing. If k < 0, then k 
x9 is strictly monotonic decreasing, so we cannot have k < 0. 

Problem A3 
an are defined by a1 = α, a2 = β, an+2 = anan+1/(2an - an+1). α, β are chosen so that an+1 ≠ 2an. For what α, β are 
infinitely many an integral? 

Solution 
A trivial induction shows that an+2 = αb/((n + 1)α - nβ) = αβ/(n(α - β) + α). 

So we must have α = β, otherwise the denominator grows without limit. But if α = β, then all an = α. So infinitely 
many an are integral iff α = β = integer. 

Problem A4 
A and B are disjoint sets of n points in the plane. No three points of A ∪ B are collinear. Can we always label the 
points of A as A1, A2, ... , An, and the points of B as B1, B2, ... , Bn so that no two of the n segments AiBi intersect? 

Solution 
Answer: yes. 

It is easy to waste a lot of time failing to find inductive arguments (can we find a line with the same number of A-
points and B-points on one side of it etc). 

The trick is to find another property which cannot be satisfied if two segments intersect. Take the labeling which 
minimises the total length of the segments (obviously exists, since there are only finitely many labelings). If 
AiBi intersects AjBj at X. Then AiBj < AiX + XBj, AjBi < AjX + XBi. So AiBj + AjBi < AiBi + AjBj. So the labeling 
was not minimal. Contradiction. Hence no pair of segments can intersect. 

Problem A5 
Show that we can find two distinct real roots α, b of x3 - 10x2 + 29x - 25 such that we can find infinitely many 
positive integers n which can be written as n = [rα] = [sβ] for some integers r, s. 

Solution 
The polynomial has value -25, -5, 1, -1, -5, -5, 5 at x = 0, 1, 2, 3, 4, 5, 6. So one root lies between 1 and 2, another 
between 2 and 3, and another between 5 and 6. In particular, all the roots are greater than 1, so if α is a root then all 
the values [α], [2α], [3α], [4α] ... are different. Hence just [n/α] of them lie in the range 1 to n. Similarly, if the other 
roots are β, γ, then [n/β] values [mβ] lie in the range 1 to n, and [n/γ] values [mγ]. So at least [n/α] + [n/β] + [n/γ] - 
n integers in the range 1 to n must have at least two of the representations [mα], [m'β], [m''γ]. But 1/α + 1/β + 1/γ > 



1/2 + 1/3 + 1/6 = 1. So as n tends to infinity, the number of integers <= n with at least two representations tends to 
infinity. In other words, infinitely many positive integers have at least two representations. But there are only 
finitely many possibilities, so we must be able to find two roots α, β such that infinitely many integers have the 
representations [mα] and [m'β]. 
Interestingly, this argument does not tell us which two roots! 

Problem A6 
Given n reals αi ∈ [0, 1] show that we can find β ∈ [0, 1] such that ∑ 1/|β - αi| ≤ 8n ∑1

n 1/(2i - 1). 

Solution 
The trick is to pick several candidates βj and then to take ∑j1/|βj - αi|. 

Divide [0, 1] into 2n equal intervals, each width 1/2n. Then at least n of them do not contain any αi. Take the βj to 
be the midpoints of n empty subintervals. Then certainly |βj - αi| ≥ 1/4n. If we fix j, then we cannot say more than 
that, so we get ∑i 1/|βj - αi| ≤ n 4n, which is not good enough. 

But if we fix i, then we can say more: at most two βj can be at the minimum distance 1/4n, at most two more at 
3/4n, at most two more at 5/4n and so on. We now sum over j. We do not know whether there are one or two βj at 
each stage (because if αi is off-center, then fairly soon we run into the endpoint going one way, and so start getting 
just one βj). But it is certainly conservative to assume that we have two at each stage and go on for n pairs. So 
summing over j gives: ∑j 1/|βj - αi| < 8n ∑ 1/(2i - 1). Now summing over all ai multiplies the result by n. At least 
one bj must give a result that is not above average, so we can find β with the sum at most 8n ∑ 1/(2i - 1). 

Problem B1 
Can we find a line normal to the curves y = cosh x and y = sinh x? 

Solution 
Answer: no. 

The gradient of y = cosh x at x = a is sinh a, so the equation of the normal is sinh a (y - cosh a) + (x - a) = 0. 
Similarly, the normal to y = sinh x at x = b is cosh b (y - sinh b) + (x - b) = 0. For these two equations to be the 
same (so that the normals coincide) we require: sinh a = cosh b and a + sinh a cosh a = b + sinh b cosh b, or b - a = 
sinh a cosh a - sinh b cosh b = cosh a cosh b - sinh a sinh b = cosh (b - a). But that is impossible since cosh x > x 
for all x. 

Problem B2 
Given 0 < α < β, find limλ→0 ( ∫0

1 (βx + α(1 - x) )λ dx )1/λ. 

Solution 
Answer: ββ/(β - α)/( e αα/(β - α)) 

Let t = βx + α(1 - x). Then the integral becomes ∫α
β tλ dt/(β - α) = 1/(1 + λ) (βλ+1 - aλ+1)/(β - α). We evaluate the 

limits of 1/(1 + λ)λ and (βλ+1 - aλ+1)λ/(β - α)λ separately. Put k = 1/λ. The first limit is lim 1/(1 + 1/k)k = 1/e. To 
evaluate the second, note that βx = ex ln β = (1 + x ln β + O(x2) ), so the expression is (1 + 1/k (β ln β - α ln α)/(β - α) 
+ O(1/k2) )k, which tends to the limit exp( (β ln β - α ln α)/(β - α) ) as k tends to infinity, in other words, ββ/(β - α)/ αα/(β 

- α). 

Problem B3 
F is a finite field with n elements. n is odd. x2 + bx + c is an irreducible polynomial over F. For how many elements 
d ∈ F is x2 + bx + c + d irreducible? 

Solution 
Since n is odd, h ≠ -h for any h ∈ F. So there are exactly (n + 1)/2 quadratic residues. Since n is odd, we may write 
b as 2k, and so we are interested in d for which (x + k)2 = k2 - c - d is irreducible. In other words, d for which k2 - c 
- d is a quadratic non-residue. But k2 - c - d runs through all the elements of F, so there are just (n - 1)/2 values of d 
which give a quadratic non-residue. 

  



Problem B4 
Find a non-trivial solution of the differential equation F(y) ≡ (3x2 + x - 1)y'' - (9x2 + 9x - 2)y' + (18x + 3)y = 0. 
y = f(x) is the solution of F(y) = 6(6x + 1) such that f(0) = 1, and ( f(-1) - 2)( f(1) - 6) = 1. Find a relation of the 
form ( f(-2) - a)( f(2) - b) = c. 

Solution 
Answer: a = 6, b = 14, c = 1. 

The differential equation looks fairly horrible; there is no obvious systematic way of solving it. So we try various 
types of solutions. Trying simple polynomials leads to x2 + x. Trying exponentials leads to e3x. Obviously, a 
particular solution to F(y) = 36x + 6 is y = 2, so the general solution is y = 2 + Ae3x + Bx + Bx2. f(0) = 1 implies A 
= -1. ( f(-1) - 2)( f(1) - 6) = (- e-3 )( -4 - e3 + 2B) = 1, so B = 2. 

f(-2) = 2 - e-6 + 4, f(2) = 2 - e6 + 12, so we need a = 6, b = 14, c = 1 (and then the relation reduces to ( - e-6 )( - e 6) = 
1, as required). 

Problem B5 

A convex set S in the plane contains (0, 0) but no other lattice points. The intersections of S with each of the four 
quadrants have the same area. Show that the area of S is at most 4. 

Solution 
Let A, B, C, D be the points (1, 0), (0, 1), (-1, 0), (0, -1). These all lie outside S, so we may take support lines SA, 
SB, SC, SD through each of them. If SA meets the x-axis in the interval [-1, 1], then we are home, because the part of 
S in the first quadrant lies inside a triangle area < 1. So assume each support line is either parallel to the other axis 
or meets it a distance more than 1 from the origin. Hence SA and SB meet at W in the first quadrant, SB and SC meet 
at X in the second quadrant, SC and SD meet at Y in the third quadrant, and SD and SA meet at Z in the fourth 
quadrant. S lies entirely inside WXYZ. At least one of the angles of this quadrilateral must be ≤ 90o. Suppose it is 
W. 

Now we show that the area of the quadrilateral OAWB (where O is the origin) is at most 1. The required result then 
follows immediately. Area OAWB = area OAB + area WAB, and area OAB = 1/2. So we need to show that area 
WAB <= 1/2. But that is almost immediate. The locus of W given angle W is an arc through A, W, B. We 
maximise the area of the triangle by taking W the midpoint of the arc. But this triangle lies entirely inside the 
triangle AW'B with AW' = W'B and angle AW'B = 90o, which has area 1/2. 

Problem B6 
zi are complex numbers. Show that |Re[ (z1

2 + z2
2 + ... + zn

2)1/2 ]| ≤ |Re z1| + |Re z2| + ... + |Re zn|. 

Solution 
Let zk = xk + i yk, and let (z1

2 + z2
2 + ... + zn

2)1/2 = a + ib. 

Then, squaring, a2 - b2 = ∑ xk
2 - ∑ yk

2 (1), ab = ∑ xkyk (2). The Cauchy inequality gives that |∑ xkyk| ≤ ( ∑ xk
2 )1/2 ( 

∑ yk
2 )1/2, so from (1) we have |ab| ≤ ( ∑ xk

2 )1/2 ( ∑ yk
2 )1/2 (3). If |a| > ( ∑ xk

2 )1/2, then from (3) |b| < ( ∑ yk
2 )1/2. But 

then a2 - b2 > ∑ xk
2 - ∑ yk

2, contradicting (1). So we must have that |a| ≤ ( ∑ xk
2 )1/2. The required result follows 

immediately since obviously ( ∑ |xk| )
2 ≥ ∑ xk

2. 
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Problem A1 
Let f(x) = x2 + bx + c. Let C be the curve y = f(x) and let Pi be the point (i, f(i) ) on C. Let Ai be the point of 
intersection of the tangents at Pi and Pi+1. Find the polynomial of smallest degree passing through A1, A2, ... , A9. 

Solution 
y = f(x) - 1/4. 

The answer suggests there ought to be a one-line solution, but I cannot see it. 
The equation of the tangent at x = i is y - (i2 + ib + c) = (2i + b)(x - i), or y - (2i + b)x = c - i2. Solving, we find that 
Ai is (i + 1/2, i2 + i + bi + b/2 + c). Clearly these do not lie on a straight line, so the degree is at least 2. But we see 
at once that any Ai lies on the second degree y = x2 + bx + c - 1/4. 

Problem A2 
Find f(m, n), the number of 4-tuples (a, b, c, d) of positive integers such that the lowest common multiple of any 
three integers in the 4-tuple is 3m7n. 

Solution 
Answer: (6m2 + 3m + 1)(6n2 + 3n + 1). 

Each of a, b, c, d must be of the form 3h7k with h ≤ m, k ≤ n. We can consider h and k separately. At least two of a, 
b, c, d must have h = m. So there are three cases: (1) all of a, b, c, d have h = m (1 possibility); (2) three of a, b, c, d 
have h = m and the other has 0 ≤ h < m (3m possibilities); (3) two of a, b, c, d have h = m and the other two have 0 
≤ h < m (6m2 possibilities). So, in all, there are 6m2 + 3m + 1 possibilities for h. Similarly, there are 6n2 + 3n + 1 
possibilities for k. Each of the possibilities for h can be combined with each of the possibilities for k, so in all there 
are (6m2 + 3m + 1)(6n2 + 3n + 1) possible 4-tuples. 

Problem A3 
Find ∫0

π/2 f(x) dx, where f(x) = 1/(1 + tan√2x). 

Solution 
Answer: π/4. 

This involves a trick. f(π/2 - x) = 1/(1 + cot√2x) = tan√2x/(1 + tan√2x) = 1 - f(x). Hence ∫0
π/2 f(x) dx = ∫0

π/4 f(x) dx + 
∫π/4

π/2 f(x) dx = ∫0
π/4 f(x) dx + ∫0

π/4 f(π/2 - x) dx = ∫0
π/4 f(x) dx + ∫0

π/4 (1 - f(x) ) dx = ∫0
π/4 dx = π/4. 

Note that the √2 is irrelevant - the argument works for any exponent. 

Problem A4 
Show that for any integers a, b, c, not all zero, and such that |a|, |b|, |c| < 106, we have |a + b √2 + c √3| > 10-21. But 
show that we can find such a, b, c with |a + b √2 + c √3| < 10-11. 

Solution 
This needs a trick: (a + b √2 + c √3)(a + b √2 - c √3)(a - b √2 + c √3)(a - b √2 - c √3) = a4 + 4b4 + 9c4 - 4a2b2 - 
6c2a2 - 12b2c2 which is an integer. Moreover, it is non-zero by a slight extension of the argument used to prove the 
irrationality of √2. 

For suppose a + b √2 = c √3 (*). Squaring: 2ab √2 = 3c2 - a2 - 2b2. But √2 is irrational, so a or b is zero. But b 
cannot be zero since √3 is irrational, so a must be zero. Take b and c relatively prime (by dividing out any common 
factor if necessary). We have 2b2 = 3c2. By the usual argument 2 divides both b and c. Contradiction. Hence (*) is 
impossible. 

So the identity (a + b √2 + c √3)(a + b √2 - c √3)(a - b √2 + c √3)(a - b √2 - c √3) = a4 + 4b4 + 9c4 - 4a2b2 - 6c2a2 - 
12b2c2 gives that |a + b √2 + c √3| ≥ 1/|(a + b √2 - c √3)(a - b √2 + c √3)(a - b √2 - c √3)|. But each of the three 
numbers in this product is at most 107, so |a + b √2 + c √3| ≥ 10-21. 



For the other inequality we use a pigeon-hole argument. Take the 1018 numbers a + b √2 + c √3 with 0 ≤ a, b, c < 
106. They all lie in the interval [0, 5 x 106], so if we divide this interval into 6 x 1017 equal parts, then at least two 
numbers must lie in the same part. Subtracting them gives a number with absolute value at most 5/6 10-11. 

Problem A5 
Let p(x) be a polynomial with real coefficients of degree 1 or more. Show that there are only finitely many values α 
such that ∫0

α p(x) sin x dx = 0 and ∫0
α p(x) cos x dx = 0. 

Solution 
Note that either equation alone has infinitely many zeros. 

Let d(x) = p(x) - p''(x) + p(4)(x) - ... . Then we can easily check that ∫ p(x) sin x dx = -d(x) cos x + d'(x) sin x, so the 
definite integral is -d(α) cos α + d'(α) + d(0). Similarly, the second definite integral is d(α) sin α + d'(α) cos α - 
d'(0). So any roots α of both equations also satisfy d(α) = d(0) cos α + d'(0) sin α (*). Let k = |d(0)| + |d'(0)|, then 
|rhs (*)| ≤ k. But d(x) has the same degree as p(x), so |d(x)| > k for all x > some k'. In other words all the roots of (*) 
must satisfy |α| ≤ k'. By Rolle's theorem, if f(x) has only finitely many zeros, then so does ∫0

x f(t) dt. Both p(x) and 
sin x have only finitely many zeros in any finite range |x| ≤ k', so ∫0

α p(x) sin x dx has only finitely many zeros in 
the range |α| ≤ k'. Hence result. 

Problem A6 
Let R be the reals and C the set of all functions f : [0, 1] → R with a continuous derivative and satisfying f(0) = 0, 
f(1) = 1. Find infC ∫0

1 | f '(x) - f(x) | dx. 

Solution 
If it were not for the condition f(0) = 0, we could arrange for the infimum to be zero (which is obviously the lowest 
possible value), by taking f(x) = ex-1. It is tempting to think that we can adjust this solution (and keep zero inf) by 
taking f(x) = ex-1 for [ε, 1] and kx for [0, ε]. However, this does not work because ∫0

ε f '(x) dx = f(ε) = 1/e. 

We need the following (familiar) trick: (f(x) e-x)' = (f '(x) - f(x) ) e-x. So ∫0
1 | f '(x) - f(x) | dx = ∫0

1 | ex (f(x) e-x)' | dx ≥ 
∫0

1 | (f(x) e-x)' | dx ≥ ∫0
1 (f(x) e-x)' dx = f(1) e-1 - f(0) e0 = 1/e. 

Finally, we just need to improve slightly our opening example. The integral of f(x) over [0, ε] will be arbitrarily 
small for small ε. But derivative is discontinuous at ε. However, we can fix that by taking f(x) to be an arbitrary 
monotonic increasing function with the required values at 0 and ε and with the required derivative at ε. 

Problem B1 
For which real k do we have cosh x ≤ exp(k x2) for all real x? 

Solution 
Answer: k ≥ 1/2. 

cosh x = 1 + x2/2! + x4/4! + ... + x2n/(2n)! + ... and exp(x2/2) = 1 + x2/2 + x4/8 + ... + x2n/(2nn!). But 2nn! = 2n.(2n - 
2).(2n - 4) ... 2 < (2n)! for n > 1, so cosh x < ex2/2 for all x. Hence the inequality holds for k ≥ 1/2. 

cosh x = 1 + x2/2 + o(x), exp(k x2) = 1 + kx2 + o(x). So if k < 1/2, then cosh x > exp(k x2) for sufficiently small x. 
Thus the inequality does not hold for k < 1/2. 

Problem B2 
S is the region of space defined by x, y, z ≥ 0, x + y + z ≤ 11, 2x + 4y + 3z ≤ 36, 2x + 3z ≤ 24. Find the number of 
vertices and edges of S. For which a, b is ax + by + z ≤ 2a + 5b + 4 for all points of S? 

Solution 
Answer: 7 vertices, 11 edges. Condn on a, b is 2/3 ≤ a ≤ 1 and b = 2 - a. 

The face of S in the xy plane has vertices (0,0,0), (11,0,0), (4,7,0) and (0,9,0). The face of S in the yz plane has 
vertices (0,0,0), (0,9,0), (0,3,8) and (0,0,8). The face of S in the zx plane has vertices (0,0,0), (11,0,0), (0,0,8) and 
(9,0,2). There are no other vertices. So 7 vertices in total. Note that (11,0,0), (4,7,0), (0,3,8) and (9,0,2) lie on x + y 
+ z = 11; (0,3,8), (0,9,0) and (4,7,0) lie on 2x + 4y + 3z = 36; and (0,0,8), (0,3,8) and (9,0,2) lie on 2x + 3z = 24. 



There are 6 faces (the six planes x=0, y=0, z=0, x + y + z = 11, 2x + 4y + 3z = 36 and 2x + 3z = 24). Hence the 
number of edges is 6 + 7 - 2 = 11. [Explicitly: (0,0,0) to (11,0,0), (0,9,0) and (0,0,8); (0,3,8) to (0,0,8), (0,9,0), 
(4,7,0) and (9,0,2); (0,9,0) to (4,7,0) to (11,0,0) to (9,0,2) to (0,0,8).] 

The point (2,5,4) is the midpoint of the edge (0,3,8) to (4,7,0). If we fix a, b then 2a + 4b + 5 has some value k. The 
condition ax + by + z ≤ k is then the condition that (x,y,z) lies on or to one side of the plane ax + by + z = k. But the 
point (2, 5, 4) lies on the plane, so we require that the plane is a support plane of S. Since (2, 5, 4) lies on an edge of 
S, that edge must lie in the plane. The two extreme positions are evidently x + y + z = 11 and 2x + 4y + 3z = 36, or 
equivalently 2/3 x + 4/3 y + z = 12, each of which contain a face of S including the edge. 

So the acceptable a, b are 2/3 ≤ a < 1, and b = 2 - a. [Check: this gives the condition ax + (2 - a)y + z ≤ (14 - 3a). 
For the vertex (0,9,0) we have 18 - 9a < 14 - 3a, which is equivalent to a ≥ 2/3. For the vertex (11,0,0) we have 11a 
< 14 - 3a, which is equivalent to a ≤ 1.] 

Problem B3 
Define an by a0 = α, an+1 = 2an - n

2. For which α are all an positive? 

Solution 
Answer: α ≥ 3. 

The trick is that we can solve the recurrence relation. A particular solution is obviously a polynomial with leading 
term n2, so we soon find an = n2 + 2n + 3. The general solution is then an = n2 + 2n + 3 + k2n. The initial condition 
a0 = α gives that k = α - 3. A necessary and sufficient condition for all an to be positive is evidently k ≥ 0, or α ≥ 3. 

Problem B4 
S is a finite set with subsets S1, S2, ... , S1066 each containing more than half the elements of S. Show that we can 
find T ⊆ S with |T| ≤ 10, such that all T ∩ Si are non-empty. 

Solution 
Let |S| = n. Consider the number of pairs (x, X) with x ∈ S and X one of the 1066 subsets. There are > n/2 pairs (x, 
X0) for a given X0, and hence more than 533n in total. Hence there is an x1 which is in at least 534 subsets. That 
leaves ≤ 532 subsets. Each of these contains > n/2 elements of S - {x1}, so by the same argument we can find x2 so 
that the number of subsets not containing either x1 or x2 is at most 265. Similarly, we can find x3, so that at most 
132 subsets do not intersect {x1, x2, x3}. Continuing, the sequence goes 65, 32, 15, 7, 3, 1, 0 for ten elements. 

Problem B5 
R0+ is the non-negative reals. For α ≥ 0, Cα is the set of continuous functions f : [0, 1] → R0+ such that: (1) f is 
convex [ f(λx + μy) ≤ λf(x) + μf(y) for λ, μ ≥ 0 with λ + μ = 1]; (2) f is increasing; (3) f(1) - 2 f(2/3) + f(1/3) ≥ α ( 
f(2/3) - 2 f(1/3) + f(0) ). For which α is Cα is closed under pointwise multiplication? 

Solution 
Answer: α ≤ 1. 

The function f(x) = x always belongs to Cα because it has f(1) - 2f(2/3) + f(1/3) = f(2/3) - 2f(1/3) + f(0) = 0. So if 
Cα is closed under pointwise multiplication, then f(x) = x2 is also a member. But this requires 1 - 8/9 + 1/9 ≥ α (4/9 
- 2/9 + 0) and hence α ≤ 1. 

Now if f and g are convex and increasing, then the pointwise product f*g is also convex. For if x ≤ y, we have (f(y) 
- f(x))(g(y) - g(x)) ≥ 0 and hence λμ(f(x)g(y) + f(y)g(x)) ≤ λμ(f(x)g(x) + f(y)g(y)) (*). 

But f*g(λx + μy) = f(λx + μy)g(λx + μy) ≤ (λf(x) + μf(y) )(λg(x) + μg(y) ) = λ2f(x)g(x) + λμ(f(x)g(y) + f(y)g(x) ) + 
μ2f(y)g(y). So, using (*), we get f*g(λx + μy) ≤ (λ2 + λμ)f(x)g(x) + (λμ + μ2)f(y)g(y) = λ f*g(x) + μ f*g(y). 

So it remains to show that if α ≤ 1 and f, g are in Cα, then f*g satisfies condition (3). This is not easy - one has to 
find the right collection of inequalities using the fact that f, g are increasing, convex and satisfy (3). 

Since f(2/3) > f(1/3) and g(1) - 2g(2/3) + g(1/3) ≥ α (g(2/3) - 2g(1/3) + g(0) ), we have: 



f(2/3) (g(1) - 2g(2/3) + g(1/3) ) ≥ α f(1/3) (g(2/3) - 2g(1/3) + g(0) ) (1) 

Similarly, we have: 

(f(1) - 2f(2/3) + f(1/3) ) g(2/3) ≥ α (f(2/3) - 2f(1/3) + f(0) ) g(1/3) (2) 

Since f and g are convex, we have ( f(1) - f(2/3) ) ≥ ( f(2/3) - f(1/3) ) and ( g(1) - g(2/3) ) ≥ ( g(2/3) - g(1/3) ). So ( 
f(1) - f(2/3) ) ( g(1) - g(2/3) ≥ ( f(2/3) - f(1/3) ) ( g(2/3) - g(1/3) ). The rhs is non-negative and α ≤ 1, so ( f(2/3) - 
f(1/3) ) ( g(2/3) - g(1/3) ) ≥ α ( f(2/3) - f(1/3) ) ( g(2/3) - g(1/3) ). Hence: 

( f(1) - f(2/3) ) ( g(1) - g(2/3) ≥ α ( f(2/3) - f(1/3) ) ( g(2/3) - g(1/3) ) (3) 

Similarly: 

( f(2/3) - f(1/3) ) ( g(2/3) - g(1/3) ) ≥ α ( f(1/3) - f(0) ) ( g(1/3) - g(0) ) (4) 

Adding (1), (2), (3) and (4) gives the required result: 

f(1)g(1) - 2f(2/3)g(2/3) + f(0)g(0) ≥ α ( f(2/3)g(2/3) - 2f(1/3)g(1/3) + f(0)g(0) ). 

Problem B6 
An array of rationals f(n, i) where n and i are positive integers with i > n is defined by f(1, i) = 1/i, f(n+1, i) = 
(n+1)/i ( f(n, n) + f(n, n+1) + ... + f(n, i - 1) ). If p is prime, show that f(n, p) has denominator (when in lowest 
terms) not a multiple of p (for n > 1). 

Solution 

Generating functions are always a technique to bear in mind for sequences. They are strongly suggested here by the 
form of the recurrence relation. So let us put fn(x) = f(n, n) xn + f(n, n+1) xn+1 + f(n, n+2) xn+2 + ... . We can get the 
sum f(n, n) + f(n, n+1) + ... + f(n, i - 1) by multiplying by (1 + x + x2 + x3 + ... ). For then the coefficient of xi-1 is 
f(n, n) + f(n, n+1) + ... + f(n, i-1). We can easily get the factor (n+1) by multiplying by it. This gives us a series 
where the coefficient of xi-1 is i f(n+1, i). In other words, it gives us f'n+1(x). So f'n+1(x) = (n+1) fn(x) (1 + x + x2 + ... 
). 

Let us examine the special case n = 1: f'2(x) = 2 (x + x2/2 + x3/3 + ... )(1 + x + x2 + ... ). At this point we need to 
spot that (1 + x + x2 + ... ) is in fact the derivative of (x + x2/2 + x3/3 + ... ). So integration gives simply (x + x2/2 + 
x3/3 + ... )2. In fact it is now obvious that we can carry out a simple induction to get fn(x) = (x + x2/2 + x3/3 + ... )n. 

This is all that we need. For the coefficient of xp is a sum of terms a/b, where a is an integer and b is a product of n 
integers taken from {1, 2, ..., p-n+1}. Hence we may add these terms to get a fraction with denominator ( (p-n+1)! 
)n. This has no factor p. A fortiori, when reduced to lowest terms. 
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