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PREFACE

Astronomy is a fortunate science; it needs no embellishments, said
the French savant Arago. So fascinating are its achievements that no
special effort is needed to attract attention. Nonetheless, the science of
the heavens is not only a collection of astonishing revelations and dar-
ing theories. Ordinary facts, things that happen day by day, are its sub-
stance. Most laymen have, generally speaking, a rather hazy notion of
this prosaic aspect of astronomy. They find it of little interest, for it is
indeed hard to concentrate on what is always before the eye,

It is this daily aspect of the science of the skies, its beginnings, not
later findings, that mainly—but not exclusively—form the contents of
Astronomy for Entertainment. The purpose of the book is to initiate
the reader into the basic facts of astronomy. But do not take it as a
primer, since our presentation differs essentially from any text-book.
Ordinary facts with which you may be acquainted are couched here in
unexpected paradoxes, or slanted from an odd and unexpected angle,
solely with a view to excite imagination and quicken interest. We have
tried to free the theme as far as possible from the professional “ter-
minology” and technical paraphernalia that so often make the reader
shy of books on astronomy.

Books on popular science are often rebuked for not being suffi-
ciently serious. In a way the rebuke is just, and support for it can be
found (if one has in mind the exact natural sciences) in the tendency
to avoid calculations in any shape or form. And yet the reader can
really master his subject only by learning how to reckon, even though
in a rudimentary fashion. Hence, both in Asfronomy for Entertainment
and in other books of this series, the author has not attempted to avoid
the simplest of calculations. True, he has taken care to present them
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in an easy form, well within the reach of all who have studied mathe-
matics at school. It is his conviction that these exercises help not only
retain the knowledge acquired; they are also a useful introduction to
more serious reading,

The book contains chapters relating to the Earth, the Moon, planets,
stars and gravitation. The author has concentrated in the main on
materials not usually discussed in works of this nature, Subjects omit-
ted in the present book, will, he hopes, be treated in a second volume.
The book, it should be said, makes no attempt to analyze in detail the
rich content of modern astronomy.

Y. P.



CHAPTER [

THE EARTH, ITS SHAPE AND MOTIONS
The Shortest Way: on Earth and Map

The teacher has chalked two dots on the blackboard. She asks the
little boy before her to find the shortest distance |between the two
points.

A moment’s hesitation, and the schoolboy carefully draws a curvy
line.

“Is that the shortest way,” the teacher asks in surprise. “Who taught
you that?”

“My Daddy. He’s a taxi-driver.” ‘

The naive schoolboy’s drawing is, of course, a joke. But I suppose
you, too, would grin incredulously, were you told that the broken,
arched line on Fig. 1 was the shortest way from the Cape of Good
Hope to the southern tip of Australia! You would be still more amazed
to learn that the roundabout way from Japan to the Panama Canal,
depicted on Fig. 2, is shorter than the straight line between these two
places on the same map!

A joke, you might say, but the plain truth, nevertheless, a fact that
all cartographers will vouch for.

To make matters clear we ought to say a few words about maps in
genenal and nautical charts in partlcular It is no easy matter to draw
a part of the Earth’s surface, because it is shaped like a ball. Everyone
knows that when a sphere is flattened out there are bound to be creases



and rents. Whether we like it or not we have to put up with the in-
evitable cartographical distortions. Many ways of drawing maps have
been devised, but they all have defects of one kind or another.
Seamen use maps charted in the manner of Mercator, the XVI cen-
tury Flemish cartographer and mathematician. This method is called

(] 'y
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Fig. 1. Nautical charts designate the shortest way from the Cape of Good
Hope to the southern tip of Australia not by a straight line (“loxodrome”)
but by a curve (“orthodrome”).

“Mercator’s Projection.” The navigator’s chart is easily recognized by
its network of criss-crossing lines; both the meridians and the latitudes
are indicated by parallel straight lines, at right angles (see Fig. 5).
Imagine now that your aim is to find the shortest route from one
seaport to another, both being on one and the same parallel. At sea
you can sail in any direction, and, if you know how, you will always
be able to find the shortest way. You would naturally think it shortest
to travel along the parallel of the two ports—a straight line on our
map. After all, what could be shorter than a straight line! But you
would be mistaken; the route along the parallel is not the shortest one.
Indeed, on the surface of a ball, the shortest way between two
points is the joining arc of the great circle.* The latitude is a small

* The great circle on the surface of a sphere is any circle, the centre of which
coincides with the centre of the given sphere. All other circles are called small
circles.
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circle, however. The arc of the great circle is less curved than its coun-
terpart on any small circle passing through these two points; the long-
er radius gives the lesser curve. Take a piece of thread and stretch it
across the globe between the two points we have chosen (see Fig. 3):
you will find it does not follow the parallel of latitude at all. Our piece
of thread unquestionably points to the shortest route, but, if on the

~
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Fig. 2. 1t seems incredible that the curve linking Yokohama with the Pana-
ma Canal is shorter on the nautical chart than the straight line between
these two points.

globe it does not coincide with the parallel of latitude, then on the naut-
ical charts too, where the parallels of latitude are indicated by straight
lines, the shortest route will not be a straight line, and thus any line
that does not coincide with these straight lines can be only a curved one.

This makes it clear why, on the navigator’s chart, the shortest route
is not a straight, but curved line.

In choosing a route for the Petersburg-Moscow Railway, the story
goes, the engineers could not agree on the site. Tsar Nicholas I got over
the difficulty in a “straight line”—he asked for a ruler and drew a
straight line between Petersburg and Moscow. Had Mercator’s Chart
been at hand, the predicament would have been somewhat embarrass-
ing—the railway would have been curved, not straight.
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By means of a simple reckoning anyone undeterred by calculations
will see for himself that the curved route on the chart is actually shorter
than the one we take to be straight. Imagine that our hypothetical

e ?V?.@%‘&
) }# N

( Fig. 3. A simple way of finding the really shortest way
between two points is to stretch a piece of thread between
the given points on a globe.

seaports are on the same latitude as Leningrad, i.e., the 60th parallel,
and that they are 60°apart.

On Fig. 4 the dot O designates the centre of the globe, and AB the
60° arc of the latitudinal circle where ports A and B lie. The dot C
designates the centre of the latitudinal circle. On drawing through the
two ports an imaginary great circle arc with its centre at O—the centre
of the globe—its radius thus being OB=0A=R, we shall find it ap-
proximating, but not coinciding, with arc AB.
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We now reckon the length of each arc. As points A and B are on the
60° latitude, the radii OA and OB form a 30° angle with OC the latter
being the imaginary global axis. In the right-angled triangle ACO, the
side AC (=r), adjacent to the right angle and opposite the 30° angle,
equals half the hypotenuse AO:

hence r= § . As the length of

‘the arc AB is one-sixth the length
of the latitudinal circle, which in
turn is half as long again as the
great circle (the radius being ac-
cordingly half less) the length of
the small circle arc AB is as fol-
lows:

AB = —5-x 22303 333 km.

To determine the length of the
great circle arc between them, we
must find thevalue of angle AOB.
As the chord AB, joining the ends Fig. 4. How to calculate the distances be-
of the 60° small circle arc, is the tween the points A and B on a sphere
side of an equilateral hectangle along  the arcsrg;t t}gﬁc?: rallel and the
inscribed in the same small £ )

circle, AB=r= _1;_. If we draw a straight line OD, joining the point

0, the centre of the globe, with the point D halfway along the chord
AB, we obtain the right-angled triangle ODA, with the angle D the
right angle.

If DA is — AB and OA Is R, hence the sinus AOD=AD; A0=X_,

R=0.25. We find (from the appropriate tables) that L AOD=14°" 28’30
and hence, /AOB=28°57".

It will now be easy to find the shortest way, taking the length of one
minute of the globe’s great circle to be one nautical mile, or about 1.85
km. Hence, 28°57'=1737'~=3,213 km.

Thus, we have found that the route along the latitudinal circle, indi-
cated on nautical charts by a straight line, is 3,333 km., whereas the
g}rleat circle route, a curved line on the chart, is 3,213 km., or 120 km.
shorter,
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Equipped with a piece of thread and a school globe, you will easily
find our drawings correct and see for yourself that the great circle arcs
are actually as shown there. The seemingly “straight” sea-route from
Africa to Australia, traced on Fig. 1, is 6,020 miles, whereas the
“curved” route is only 5,450, or 570 miles (1,050 km.) less.

On the navigator’s chart the “straight” air line linking London and
Shanghai would cut across the Caspian Sea, whereas the shortest way
is north of Leningrad. One can well imagine how important this is from
the standpoint of saving time and fuel.

Whereas in the era of the sailing vessel time was not always an item
of value—man did not then regard “time” as “money”’—with the
advent of the steamship, every extra ton of coal used meant money.
That explains why ships take the shortest course, relying chiefly
on charts not of Mercator’s Projection, but on what is called the
“Central” projection—charts indicating the great circle arcs by
straight lines.

Why, then, did the seafarers of olden times use such deceptive charts
and pick on disadvantageous routes? You would be wrong if you
thought that the seamen of old knew nothing of the specific qualities
of the navigator’s chart we have just mentioned. Naturally, that is not
the real reason. The point is that, along with their inconveniences, the
charts of Mercator’s Projection possess a number of valuable points
for mariners. Firstly, they retain the outline, without distortion, of sep-
arate small parts of the globe. This is not altered by the fact that the
greater the distance from the equator the more elongated are the con-
tours. In high latitudes the distortion is so great that anyone igno-
rant of the peculiar features of the navigator’s chart would take Green-
land to be as large as Africa, or Alaska bigger than Australia, though,
actually, Greenland is 15 times smaller than Africa, while Alaska,
even together with Greenland, would not be more than half the size of
Australia, He would have an absolutely wrong conception of the size
of the different continents. But the mariner acquainted with these pe-
culiarities would not be at a disadvantage, because within the small
map-sections the navigator’s chart provides an accurate picture
(Fig. 5).

The nautical chart is, moreover, an asset in solving the practical
tasks of navigation. It is, in its way, the only chart on which the true
straight course of a vessel is indicated by a straight line. To steer a
steady course means keeping on in one and the same direction, along
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one and the same rhumb, or, in other words, crossing all the merid-
ians at the same angle. This course, known as the loxodrome, can,
however, be indicated as a straight line only on a chart where the
meridians are straight parallel lines.* Since the meridians on the
globe are intersected by the latitudes at right angles, this chart should
depict the latitudes also as straight lines, perpendicular to the merid-
ians. To put it briefly, we achieve the lattice of co-ordinating lines
that distinguishes the nautical chart.

You will now appreciate why seamen are so attracted to Mercator’s
Projection, To set the course for the port of destination, the navigator
joins the points of departure and destination by ruler, and finds the
angle between the given line and the meridian. By keeping to this
course while at sea, the navigator steers his ship unerringly to his
goal, It will be seen, therefore, that while the “loxodrome” is not the
shortest or the most economical way, it is, to a degree, a highly con-
venient course for the seafarer. To reach, say, the southern tip of
Australia from the Cape of Good Hope (see Fig. 1), the course
S 87°50" must be followed undeviatingly. But if we want to get there
by the shortest way, along what is known as the orthodrome, we would
be forced, as you can see from the picture, to change the course con-
tinually, beginning with S 42°50" and ending with N 53°50" (this would
be attempting the impossible because our shortest way would take us
into the ice-wall of the Antarctic).

The two courses—the “loxodrome” and “orthodrome”—coincide in
great circle steering only along the equator or any of the meridians,
which are indicated on the nautical chart by a straight line. In all
other cases they diverge.

Degree of Longitude and Degree of Latitude

Question

I take it that readers are undoubtedly acquainted with geographical
longitude and latitude. But I fear that not all will be able to give the
correct answer fo the following question:

Is it always that a degree of latitude is longer than a degree of
longitude?

* Aclually, the loxodrome is a spiral, hugging the globe obliquely.
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Answer

Most are convinced that each parallel is shorter than the meridian.
And since degrees of longitude are measured off the parallels, and
those of latitude, off the meridians, the inference is that in no circum-
stance can the former be longer than the latter, But here they forget
that the Earth is not a perfectly round sphere, but an ellipsoid, bulg-
ing out slightly at.its equator. On this ellipsoid, not only the equator,
but even its immediately adjacent parallels are longer than the me-
ridians. According to calculations, roughly up to 5° of latitude, the de-
grees of the parallels, viz., longitude, are, longer than the degrees of
the meridian, viz., latitude.

In What Direction Did Amundsen Fly?
Question

Which direction did Amundsen take when returning from the North
Pole, and which on the way back from the South Pole?

Give the answer without peeping into the diary of this great ex-
plorer.

Answer

The North Pole is the northernmost point of the globe. Whichever
way we go from it, we shall always be moving south. In returning
from the North Pole, Amundsen could go only south, there being no
other direction. Here is an entry from the diary of his North Pole flight
aboard the Norge:

“The Norge circled in the neighbourhood of the North Pole, Then we
continued on our flight.... We took a southerly course for the first
time since our dirigible had left Rome.”

By the same token Amundsen could go only north when returning
from the South Pole. There is a rather hoary anecdote about the Turk
who found himself in the “easternmost” country. “East in front, east
to the right, east to the left. And what of the west? Perchance, you think
it can be spied as a barely visible moving speck in the distance?...
You're wrong! East at the back, too. In short, everywhere and all
around, nothing but an endless east.”

2—1271 17



A country facing east on all sides is an impossibility for our Earth.
But there is a point with the south all around, just as there is a point
hemmed in everywhere by an “endless” north. At the North Pole it is
possible to build a house with all four walls facing south. This is, in-
deed, a task the Soviet explorers at the North Pole could have actually
performed.

Five Ways of Reckoning Time .

We are so used to clocks and watches that we fail even to realize
the import of their indications. I think I am right in saying that not
many readers will know how to explain what they mean when they say:

“It’s now 7 p.m.”

Is it only that the small hand points fo the figure seven? And what
does this figure mean? It shows that after midday, so much of the day
has passed. But after what midday and, first of all, so much of what
day? What is a day? The day, of which the saying “morning, noon
and night, a day has taken flight” speaks, is the duration of a complete
rotation of our sphere with respect to the Sun. For practical purposes
it is measured as follows: two successive passages of the Sun (to be
more exact, of its centre) through an imaginary line in the sky con-
necting the point directly overhead, the “zenith,” with the south point
of the horizon. The duration varies, with the Sun crossing this line a
little earlier or later, It is impossible to set a watch by this “true
noon.” Even the most skilled craftsman cannot make a watch that
will keep time with the Sun; it is too inaccurate. “The Sun shows the
wrong time” was the motto of the watchmakers of Paris a century ago.

Our watches are set not to the real Sun but to a fictitious Sun,
which neither shines nor warms, but which has been devised for the
sole purpose of correctly assessing the time. Imagine a heavenly body
whose motion throughout the year is constant, taking exactly the same
period of time to go around the Earth as the real Sun seemingly does.
In astronomy this fictitious body is known as the “mean sun.” The
moment of its crossing the zenith-south line is called “mean noon,”
the interval between two mean noons is known as the “mean solar
day,” and time thus measured as “mean solar time.” Our watches
and clocks are set according to this mean solar time, The sundial,
however, shows the true solar time for the given location by the Sun’s
shadow.

18



The reader might think from what has been said that the globe ro-
tates unevenly on its axis, and that this is the reason for the variation
in the length of the true solar day. He would be wrong, however, for
this variation is due to the unevenness of another of the Earth’s: mo-
tions in its passage round the Sun. Bear a little and you will see why
this affects the length of the day. Turn to Fig. 6. Here you see two suc-

‘Fig. 6. Why are solar days longer than sidereal days? (see text for details).

cessive positions of the globe. First the left position. The bottom right
arrow shows the direction of the Earth’s rotation, viz., counter-clock-
wise, if viewed from the North Pole. At point A it is now noon; this
point is directly opposite the Sun. Now imagine that the Earth has
made one complete rotation; in this time it has shifted right and taken
up a second position. The Earth’s radius with respect to point A is
the same as a day back, but, on the other hand, point A is no longer
directly opposite the Sun. It is not noon for anyone at point A; since
the Sun is left of the line, the Earth will have to rotate a few minutes
more for noon to reach point A.

What, then, does this imply? That the interval between two true
solar noons is longer than the time needed for the Earth to make a
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complete rotation. Were the Earth to travel evenly around the Sunm
along a circular orbit, with the Sun at the centre, the difference be-
tween the real period of rotation and the one we presume with respect
to the Sun would be constant day in, day out. This is easily estab-
lished, especially if we take into consideration the fact that these tiny
fractions add up in the course of one year to make one whole day (in
its orbital motion the Earth makes one extra rotation a year); conse-
quently the actual duration of each rotation equals

365 %days: 366 -1—=23 hrs. 56 min. 4 sec.

We might note, incidentally, that the “actual” length of a day is
simply the period of the Earth’s rotation vis-a-vis any star: hence the
term “sidereal” day.

Thus the sidereal day is, on the average, 3 min. 56 sec., or, in round

figures, four minutes less than the solar day. The difference is not
uniform, firstly, because the Earth’s orbit around the Sun is elliptic,
not circular, with the Earth moving faster and slower as parts of it
are nearer and farther from the Sun, and, secondly, because the axis of
the Earth’s rotation is inclined towards the elliptic. These are the two
reasons why on different dates the true and mean solar times vary in
terms of minutes, reaching as much as 16 on some days. The two
times will coincide only four times a year, viz., April 15, June 14, Sep-
tember 1 and December 24. And conversely, on February 11 and No-
vember 2 the difference is greatest—about a quarter of an hour, The
curve on Fig. 7 shows the degree of discrepancy at different times of
the year.
. Before 1919, people in the U.S.S.R. set their clocks and watches by
local solar time., At each meridian mean noon comes at a different
time (the “local” noon), hence each town had its own local time: only
train timetables were compiled on the basis of Petrograd time as com-
mon for the country. Urban residents recognized two different, “town”
and “railway,” times, the former of these being the local mean solar
time, shown by the town clock, and the latter the Petrograd mean
solar time, shown by the station clock. Nowadays railway timetables
in the U.S.S.R. are reckoned according to Moscow time.

Since 1919 the counting of time in the U.S.S.R. has been based not
on local, but what is called zonal time. The meridians divide the globe
Into 24 equal ‘“zones,” with every place within the zone having one
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and the same time, namely, mean solar time, which corresponds to the
time of the mean meridian of the particular zone. So nowadays the
globe has simultaneously only 24 different times, not the legion that
existed before zonal time reckoning was introduced.

To these three ways of reckoning time, viz., 1) true solar time, 2)
local mean solar time, and 3) zonal time, we should add a fourth,

‘ mins., =N 12hrs.15mins
[Omins. / AN 12hrs.[0mins,
Smins. 7 A\ 12hrs. Smins.
Onuns. Jﬁ—m ] UK/W X X0 ﬂlZ’ll‘& Omins.
Smins. 11 hrs 55 mins
{0mins. \ ] I1hrs. 50mins,
13 mins ' 7/ litrs. 45mins
20mins 11 hrs. 40mins.

Fig. 7. This chart, called a “time equation chart,” shows how great is the discrep-

ancy on any particular day between true and mean solar noon. For instance, on

April 1| an accurate clock should show :12:05 at true noon; in other words, the’
curve gives the mean time at true noon.

used only by astronemers, to wit, “sidereal” time, measured on the
basis of the above-mentioned sidereal day, which, as we already know, is
roughly four minutes less than the mean solar day. On September 22,
sidereal and solar time coincide. Thereafter the first jumps four min-
utes ahead each day.

Finally, there is a fifth way of reckoning time, namely, summer
time, observed in the U.S.S.R. all year round, and in most European
countries in summer,

Summer time is exactly one hour ahead of zonal time. This is done
to save fuel for artificial lighting by starting and ending the workday
sooner in the brighter time of year, between spring and autumn. It is
achieved by officially setting the hour hand forward. In the West, this
is done every spring—at one a. m. the hand is moved to-two—while
in autumn the hand is reversed.
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In the U.S.S.R., clocks have been advanced for the yearly cycle—
summer and winter. Although this does not save any more electricity,
it ensures more rhythmic working of power plants.

Summer time was first introduced in the Soviet Union in 1917;*
for a while clocks were advanced two and even three hours. After a
breakof several years summer time was again decreed inthe U.S.S.R. as
from the spring of 1930 and is exactly one hour ahead of zonal time.

Duration of Daylight

For an exact reckoning of daylight duration in any part of the
world and on any day of the year, one should refer to the appropriate
tables in an astronomical almanac. But the reader will hardly need
this pinpoint accuracy; for a comparatively rough-and-ready reckon-
ing the appended drawing will suffice (Fig. 8). Its left-hand side in-
dicates the daylight in hours. The lower border gives the Sun’s an-
gular distance from the celestial equator, known as the Sun’s “decli-
nation”; this is measured in degrees. Lastly, the slanting lines corre-
spond to the various latitudes of observation.

To use the drawing we must know the Sun’s angular distance (“dec-
lination”) from the equator to either side for the different days of the
year. These figures are tabulated below.

Sun’s ’
Day of year Dedlination Day of year Decsililr?atsion
21 Jan. —20° 24 July +20°
8 Feb. —15 12 Aug. 415
23 Feb, —10 28 Aug. +10
8 March —5 10 Sept. +5
21 March 0 23 Sept. 0
4 April +5 6 Oct. —5
16 April +10 20 Oct. —10
1 May +15 3 Nov. —15
21 May 20 22 Nov. —20
22 June 4231, 22 Dec. —231,

E:'dOn the initiative of the author of this book who drafted the appropriate bill.
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A few examples of usage.
1) Find the daylight duration for mid-April, in Lemngrad (Lat. 60°).
The table gives us the Sun’s declination for mid-April as - 10°, viz.,
its angular distance from the celestial equator at this particular time.
We now find the corresponding figure of 10° on the lower border of our
drawing and draw a perpendicu- 80° 70°
lar line upwards to intersect the Pole :
slanting line corresponding to the 324 T OPCT

The Sun’s declination on Nov.
10is —17° (it is now in the South-
ern Hemisphere). Applying the
above method we find a duration
of 141/, hours. However, since the
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60th parallel. Here we turn left 22 7
to find that the point of intersec- L — — — -
tion corresponds to the figure 20 Jl —f 7L /J 7
141/, which means that the day- 19 I T17 1/ 60°
light duration we need is roughly HiNEYS
14 hrs. 30 min. We say “roughly,” 78 [T A/
since the drawing does not take [ 1] AWV
into account the effect of whatis 5§ ,7 [N/ A
k.nm?’m as “atmospheric refrac- £ IRV AV
tion” (see Fig. 15). £ L[ / / / P
2) Find the daylight duration § 76 1IN X7
for November 10 in Astrakhan 3 lava
(46°N.L.). e I/ A a0
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declination is now—, the figure 73 7 .
thus obtained implies the dura- /A/ //—-‘ 10
tion, not of daylight, but of night P 1+
darkness. So we subtract 141/ L Equato
from 24 and get 91/ hours, the 9 nﬁg 7 ’5winfe|£3
required daylight duration. Autumn Summer

We can also reckon the time of  fig, g A daylight duration chart (see text
sunrise. By -halving 91/; we ob- for details).

tain 4 hrs. 45 min. From Fig. 7

we know that at true noon on November 10, the clock will show 11 hrs.
43 min. To find the sunrise we subtract 4 hrs. 45 min, and ascertain
that the sun will rise at 6 hrs. 58 min. Sunset, on the other hand, will
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be at 11

hrs. 43 min.+4 hrs. 45 min. = 16 hrs. 28 min., that is, 4 hrs.

28 min. p.m. Thus both drawings (Figs. 7 and 8) will, 1f properly used,
substitute for the appropriate tables of an ephemeris.

By using the method just described, you can compile a chart of the
rising and setting of the Sun for a whole year for your particular lati-
tude. An example for the 50th parallel, giving also daylight duration,
is provided in Fig. 9, (compiled, though, on the basis of local, not sum-

Months |January February March April May June July August September Oclober November Decemhél'-
bays (/59 RHB1RABIB T LB2B6NBTNAEERSN I 17
24 T
IRRAA!
2,4 Sunset
A ~
18 A s
. 42
g
312
=
0.
[~
ST Zgaum
v, Sunrise
111
L1t

Fig. 9. An annual chart for sunrise and sunset on the 50th parallel.

mer, time). Careful scrutiny will help you draw a similar chart for
your own use. Having done so, you will be able, by a cursory glance
at your chart, to tell at once the approximate time of sunrise or sunset
on any given day.

Extraordinary Shadows

Fig. 10 on the next page may strike you as being rather queer. The
sailor standing under the full glare of the Sun is practically shadow-

less.

Nevertheless, this is a true picture, made not in our latitudes, but at
the equator, when the Sun was almost directly overhead, at what is
called “zenith.”.
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In our latitudes the Sun is never at zenith, so that a picture such
as that described above is out of the question. In our latitudes, when
the noonday Sun reaches peak on June 22, it is at zenith everywhere

on the northern boundary of the
torrid zone (the Tropic of Cancer,
i.e., the parallel 231/,° N. L.). Six
months later, on December 22, it
is at zenith everywhere on the
parallel 231/2° S. L. (the Tropic of
Capricorn). Between these bound-
aries, viz.,, in the tropics, the
noonday Sun is at zenith twice a
year, shining in a way that pre-
cludes a shadow, or to be more
exact, so that the shadow is di-
rectly underfoot or underneath.

Fig. 11 relates to the Poles.
Although, on the contrary, fantas-
tic, it is nonetheless instructive.
A man cannot, of course, have
shadows in six different places at
once. The artist merely wished to
convey in a striking fashion the
peculiarity of the Polar Sun,
which is that the shadow is of one
and the same length right around
the clock. The reason for this is
that at the Poles the Sun does not
incline to the horizon through-

ey ‘
T T

Fig. 10. Almost without a shadow.
The drawing reproduces a photo
taken near the equator.

out the day as it does in our latitudes, but takes a course almost
parallel to the horizon. The artist, however, erred in showing too
short a shadow compared with the man’s height. Were this really so,
the Sun would be 40° high, which is impossible for the Poles, where
the Sun never rises above 231%°. It can be easily established-—the
reader with a fair knowledge of trigonometry can make the calcula-
tions—that the shortest shadow at the Poles is at least 2.3 times the
height of the object casting the shadow.



U

W!]]l"‘

=

-
-
-

3pm,
% "w
=

Fig. 11. At the Pole shadows are of the same length round the clock.

The Problem of the Two Trains

Question

Two absolutely identical trains travelling at the same speed pass
each other from opposite directions, one going west, the other east.
Which of the two is heavier?

Answer

The heavier of the two—the one pressing more against the track—
is the train moving contrary to the direction of the Earth’s rotation,
that is, the westbound train. Moving slower round the Earth’s axis, it

loses, due to centrifugal effect, less of its weight than the eastbound
express.
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How great is the difference? Let us take two trains moving along
the 60th parallel at 72 km. p. h. or 20 m. per sec. At this parallel the
Earth moves around its axis at a speed of 230 m. per sec. Hence the
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Fig. 12. The problem of the two trains.

eastbound express has a total circumferential speed of 230 - 20, that
is 250 m. per sec., and the westbound, a speed of 210 m. per sec. The
centrifugal acceleration for the first train will be

Ve, 95,0000 .
\ R = ~320,000,000 Crm/sec

since the radius of the 60th parallel circumference is 3,200 km.
For the second train the centrifugal acceleration is

vs, 21,0000 .
R = 730,000,000 CT/sec.

The difference in centrifugal acceleration value between the two
trains is -
V,2—V,2 _ 25,0008—21,0002 s
R = @000~ 0-6 cm/sec.

Since the direction of centrifugal acceleration lies at an angle of 60°
to the direction of gravity, we take into consideration only the ap-
propriate fraction of centrifugal acceleralion, viz., 0.6 cm/sec.2 times
cos 60° which equals 0.3 cm/sec.2
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This gives a ratio to gravity acceleration of <o or roughly 0.0003.

Consequently the eastbound train is lighter than the westbound by
the 0.0003 fraction of its weight. Suppose it consists, say, of 45 loaded
boxcars, viz., 3,500 metric tons; the difference in weight would be
3,500<0.0003=1,050 kg.

For a ship of 20,000 tons with a speed of 34 km. p. h. (20 knots), the
difference would be 3 tons, The decrease in weight in the vessel’s east-
bound voyage would also be reflected by the barometer; in the above
case the mercury would be 0.00015X760, or 0.1 mm. lower on the
eastbound ship. A Leningrad citizen walking in an easterly directiom
at a speed of 5 km. p. h. becomes roughly 1Y/ gr. lighter than if he
were going in the opposite direction.

The Pocket-Watch as Compass

Most people know how to find their bearings on a sunny day by
using a watch, You place the dial so that the hour hand points to the
Sun. Then halve the angle
formed by this hand and the
6-12 line. The bisector indicates
south. It is not difficult to un-
derstand why. Whereas the
Sun takes 24 hours to traverse
its complete path in the heav-
ens, the hour hand moves
round the watch face in half
the time, in 12 hours, or dou-
bles the arc in the same time.
Hence, if at noon the hour
hand indicated the Sun, later it
will have outstripped it and
doubled the arc. Thus, we have

Fig. 13. A simple but inaccurate way of . .
finding the points of the compass with the only fo bisect this arc to find
help of a pocket-watch. where the Sun stood at noon,

~ or, in other words, the direc-

) tion south (Fig. 13). .
Verification will show this method to be exceedingly crude, being
as much as a dozen degrees out at times. To understand why, let us

2



examine the suggested method. The chief reason for the inaccuracy
is that the watch, its face upwards, is held parallel to the horizontal
plane, whereas the Sun on its daily passage strikes this planeonly at the
Poles. Elsewhere its path lies at an angle to this plane, up to as much
as 90° at the equator. Hence, the watch will give exact bearings only at
the Poles; in all other places, greater or lesser deviation is inevitable.

Fig. 14, a and b. Why the watch shows wrong as a compass.

Look at the drawing (Fig. 14, a). Suppose our observer is standing
at M. The point N indicates the Pole, while the circle HASNRBQ—the
celestia] meridian—passes through the observer’s zenith and the Pole.
The observer’s parallel can be easily ascertained: a protractor meas-
urement of the Pole’s altitude above the horizon NR will show it equal
to the location’s latitude. With his eyes turned H-wards, the observer
at M will be facing south. The drawing gives the Sun’s daily passage
as a straight line—the part above the horizon being day, while the
other, below, is night. The straight line AQ indicates the Sun’s pas-
sage at the equinoxes—when day and night passages are equal. SB,
the Sun’s passage in summer, is parallel to AQ, but its greater pro-
portion lies above the horizon, and only an insignificant part (recall

the short nights of summer) below. The Sun traverses 2% th of the cir-

. 360°
cumference of these circles every hour, or % =15°. Nonetheless at
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three in the afternoon, the Sun will not be exactly SW, as we anticipate
(15°X3=45°), the reason for the divergence being that equal arcs of
the Sun’s passage are not equal in projection on the horizontal plane.

For elucidation turn to Fig. 14, b. Here SWNE is the horizontal circle
asseen from the zenith, and the straight line SN the heavenly meridian.
M is the location of our observer, and L’ the centre of the circle de-
scribed by the Sun in its daily passage, as projected on to the horizontal
plane. The actual circle of the Sun’s path is projected in the form of
the ellipse S'B’.

Now project hourly divisions of SB, the Sun’s route, onto the hori-
zontal plane. To do so, turn the circle SB parallel to the horizon, to
the position S”B”, as depicted on Fig. 14, a. Then divide this circle
into 24 equidistant parts and project the points onto the horizontal
plane. Now draw from these points of division lines parallel to SN to
intersect the ellipse S’B’, which, if you remember, was the circle of
the Sun’s passage as projected on the horizontal plane. We clearly
perceive the arcs thus obtained to be unequal. To our observer the in-
equality will seem still greater, located as he is not at point L’, the
centre of the ellipse, but at point M, away from it.

Let us now, for our chosen latitude (53°), estimate the degree of
inaccuracy in ascertaining the points of the compass by using a watch
on a summer day. At this time of the year, the Sun rises between 3 a. m.
and 4 a. m. (the boundary of the shaded segment indicating night).
The Sun reaches point E, east (90°), not at 6 a. m. as our watch shows,
but at 7:30 a. m. Furthermore, it will reach 60° off S, not at 8 a. m. but
at 9:30 a. m., and the point 30° off S, not at 10 a. m. but at 11 a. m. The
Sun will be SW (45° to the other side of S) not at 3 p. m. but at 1:40
p. m., and will be W not at 6 p. m. but at 4:30 p. m.

Moreover, if we recall that our watch shows Summer Time, which
does not coincide with the local true solar time, the inaccuracy will be
still greater.

Hence, though the watch can be employed as a compass, it is most
unreliable. This make-shift compass will err least at the equinoxes (for
thus our observer’s location will not be eccentric) and in winter.

“White” Nights and “Black” Days

From mid-April, Leningrad enters a time of “white” nights, the
“transparent twilight” and “moonless brilliance,” whose fantastic light
has engendered so many flights of poetic fancy. Leningrad’s “white”
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nights dre so closely associated with literature, that many are prone
to think this particular season is the exclusive prerogative of this city.
Actually, as an astronomical phenomenon, the “white” nights are true
of every point above a definite latitude.

Abstracting ourselves from poetry to astronomic prose, we shall
learn that the “white” night is but the mingling of dusk and dawn.
Pushkin correctly defined this phenomenon as the meeting of two
twilights—morning and evening.

As tho’ to bar the night’s intrusion
And keep it out the golden heavens,
Doth twilight hasten to its fusion
With its fellow. ...

In latitudes where the Sun on its path across the heavens drops a
mere 171/2° below the horizon, the sunset is followed.almost immedi-
ately by dawn, giving the night a bare half hour, even less.

Naturally neither Leningrad nor any other point has a monopoly of
this phenomenon. An astronomical survey of the boundary of the
“white” nights zone would show it far to the south of Leningrad.

Muscovites, too, can admire their “white” nights—roughly from mid-
May till late July. Although not so light as in Leningrad, the “white”
night that occurs in Leningrad in May can be observed in Moscow
throughout June and in early July.

The southern boundary of the “white” night zone in the U.S.S.R.
passes through Poltava, at 49° N. L. (6614-171%°), where there is one
“white” night a year, namely, on June 22. North of this parallel, the
“white” nights are lighter and there are more of them; “white” nights
can be observed at Kuibyshev, Kazan, Pskov, Kirov and Yeniseisk. But
as all these towns are south of Leningrad, the “white” nights are less
(on either side of June 22) and are not so light. On the other hand, at
Pudozh, they are lighter than in Leningrad, while in Arkhangelsk,
which is close to the land of the unsetting Sun, they are very bright.
Stockholm’s “white” nights are analogous to those of Leningrad.

When the Sun in its nadir does not dip below the horizon, but just
skims it, we have not simply the fusion of sunrise and sunset, but con-
tinuous daylight. This is observed north of 65°42’, where the domain of
the midnight Sun begins. Still farther north, from 67°24’, we can also
witness continuous night, when dawn and dusk merge at noon, not
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midnight. This is the “black” day, the “white” night’s opposite number,
though their brightness is the same. The land of “noonday darkness”
is also the land of the midnight Sun, only at a different time of the
year. Whereas in June the Sun never sets,* in December when the Sun
never rises darkness prevails for days on end.

Daylight and Darkness

The “white” night is clear proof that our childhood notion of equal
alternation of night and day on this world of ours is an over-simplifi-
cation. Actually, the alternation of daylight and darkness is far more
variegated and does not fit into the customary pattern of day and
night. In this respect the world we live in can be divided into five
zones, each with its own alternation of daylight and darkness.

The first zone, outward from the equator in either direction, extends
to the 49th parallel. Here, and here alone, is there a full day and a full
night in every 24 hours.

The second zone, between 49° and 65/¢°, embracing the whole of the
U.S.S.R. north of Poltava, has continuous twilight around the sum-
mer solstice, this being the zone of “white” nights.

Within the third narrow band between 65!/2° and 67'/2° the Sun does
not set for several days around June 22. This is the land of the mid-
night Sun.

Characteristic of the fourth zone, between 67Y/2° and 83!/2°, apart
from the continuous day in June, is the long December night, when
there are days of no sunrise, and the morning and evening twilight
lasts all day. This is the zone of “black” days.

The fifth and last zone, north of 83/2°, has a remarkable alternation
of daylight and darkness. Here, the break made in the sequence of days
and nights by the Leningrad “white” nights, completely upsets the
usual order. The six months between the summer and winter solstices,
from June 22 to December 22, can, for convenience’s sake, be divided
into five periods or seasons. First, continuous day; second, alternation
of day with midnight twilight, but without proper nights (Leningrad’s
“white” nights of summer are a feeble imitation of this); third, contin-
uous twilight, with no proper nights or days at all; fourth, continuous

* Above Ambarchik Bay, the Sun does not set from May 19 to July 26, and in
the vicinity of Tixi Bay from May 12 to August 1.
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twilight alternating with night proper around midnight; and fifth and
last, complete darkness all the time, In the next six months, from De-
cember to June, these periods follow in reverse order.

On the other side of the equator, in the Southern Hemisphere, the
same phenomena are observed, of course, in the corresponding geo-
graphical latitudes. :

If we have never heard of “white” nights of the “Far South,” this
is only because the ocean rolls there.

The parallel in the Southern Hemisphere corresponding to Lenin-
grad’s latitude does not cross any land at all; there is water every-
where; hence only Polar navigators have had the opportunity of admir-
ing the “white” nights in the south,

The Riddle of the Polar Sun

Question

Polar explorers note a curious feature of the Sun’s rays in summer
in high latitudes. Although they but feebly heat the Earth’s surface
there, their effect on all vertical objects, surprisingly enough, is most
pronounced.

Steep cliffs and house walls become quite hot, ice-hummocks and the

pitch on wooden ships rapidly melt, faces suffer from sunburn, and
SO on.

What is the explanation?

Answer

This can be explained by a law of physics, according to which the
less slanting the rays, the stronger is the effect. Even in summer
the Sun in Polar latitudes does not climb very high above the hori-
zon. Beyond the Polar Circle, its altitude cannot exceed half a right
angle—in high latitudes it is considerably less.

Taking this as our starting point, we will have no difficulty in es-
tablishing that with an upright object the Sun’s rays form an angle
greater than half a right angle, in other words, they fall steeply on a
vertical surface.

This makes it clear why the rays of the Polar Sun, while but feebly
heating the surface, intensely heat all upright objects.
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When Do the Seasons Begin?

Whether snow is falling, the mercury below zero, or whether the
weather is mild, people in the Northern Hemisphere regard March 21
as the end of winter and beginning of spring, that is astronomically.
Many really cannot understand why this particular date has been cho-
sen as the dividing line between winter and spring, though, as we
have said, a cruel frost may be biting or the weather may be warm
and balmy.

The point is that the beginning of the astronomical spring has noth-
ing at all to do with the weather’s caprices and vicissitudes. The
fact that the beginning of spring is the same for each place in this
hemisphere suffices to show that the changes in the weather are of
no essential import here. Indeed, the weather cannot be one and the
same all over half the world!

In point of fact in fixing the arrival of the seasons astronomers
took not meteorological but astronomical phenomena as their guide,
viz., the altitude of the noonday Sun and the ensuing duration of
dayllght The weather, then, is but an attending circumstance.

March 21 differs from the other days of the year in that on this
date the boundary between light and darkness intersects the two geo-
graphical poles. If you hold a globe up to a lamp, you will see that
the boundary of the illuminated area follows the meridian, crossing
the equator and all the parallels at right angles. Holding the globe
thus, turn it on its axis: every point on its surface will describe a
circle, with exactly half in the shade, and the other half in the light.
This means that at this particular time of the year, day equals night.
This equality is observed all over the world from the North to South
Pole. Since the day at this time is 12 hours long, sunrise everywhere
is at 6 a.m. and sunset at 6 p.m., naturally, local time.

Thus, the distinguishing feature of March 21 is that all over the
world day and night are of equal length on this date. This remarkable
phenomenon is known as the “vernal equinox”—vernal because it is
not the only equinox. Six months later, September 23 again brings an
equal day and night, the “autumnal equinox,” ending summer and
ushering in autumn. When the Northern Hemisphere has its vernal,
the Southern has its autumnal equinox, and vice versa. On one side
of the equator winter gives way to spring, on the other, summer yields
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to autumn. The seasons in the Northern Hemisphere do not tally with
those in the Southern Hemisphere.

Let us see how the comparative length of day and night changes
throughout the year. Beginning with the autumnal equinox, i.e., Sep-
tember 23, day in the Northern Hemisphere becomes. shorter than night.
This lasts a full six months, with day at first becoming shorter and
shorter until December 22, when it begins to lengthen, and on March
21 it catches up with night. From then on, throughout the other half of
the year, day in the Northern Hemisphere is longer than night, length-
ening until June 22, and then contracting, but remaining longer than
night, until equal length is reached at the autumnal equinox, Sep-
tember 23. ,

These four dates mark the beginning and the end of the astronomical
seasons. For the Northern Hemisphere they are as follows:

March 21—day equals night—spring begins
June 22—longest day—summer begins
Sept. 23—day equals night—autumn begins
Dec. 22—shortest day—winter begins

Below the equator, in the Southern Hemisphere, spring coincides
with our autumn, winter with our summer, and so on.

For the benefit of the reader we suggest at this stage a few questions
which, if thought over, will help in assmllatmg and memorizing what
has been said.

1. Where on our planet does day equal night all the year round?

2. At what hour, local time, will the Sun rise in Tashkent on March
21, in Tokyo on the same date, and in Buenos Aires?

3. At what hour, local time, will the Sun set in Novosibirsk on Sep-
tember 23, in New York, and at the Cape of Good Hope? ‘

4. At what hour will the Sun rise at points on the equator on
August 2 and February 27?

5. Is it possible to have frost in July and a heat-wave in January’*

* Answers: 1) Day and night are always of equal length at the equator, as the
boundary between light and darkness also divides the equator into equal halves,
irrespective of the Earth’s position. 2 and 3) At the equinoxes the Sun rises anq
sets all over the world at the same hours, 6 a, m. and 6 p. m. local time. 4) Sun:
rise at the equator is at 6 a. m.-every day td]roughout the year, 5) July frosts
and January heat-waves are common occurrences in southern latitudes. ; i1 ix
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Three “If’'s”

Sometimes it ismuchharder tounderstand the usual than the unusual.
We comprehend the fine points of decimal numeration, which we learn
at school, only when we try to use some other system, say of sevens
or twelves. Euclid reads like a book only when we probe into non-
Euclidean geometry. To really appreciate the role gravity plays in our
life, imagine it but a fraction, or on the contrary, a multiple of what
it really is, an artifice we shall resort to later. Meanwhile let us fall
back on “if,” in order to better grasp the conditions of the Earth’s
motion around the Sun.

Let us begin with the axiom, drummed into us during our school-
days, which states that the Earth’s axis forms an angle of 661%°, or

about —%— of a right angle, to the Earth’s orbital plane. You will ap-

preciate what this means only by imagining this angle to be not
three-fourths, but, say, a full right-angle. In other words, suppose the
Earth’s axis of rotation were perpendicular to its orbital plane, as the
‘Cannon Club in Jules Verne’s Upside Down dreamed of making
it. What changes would this introduce into the tenor of Nature’s
ways?

If the Earth’s Axis Were Perpendicular
to the Orbital Plane

~ Well, suppose that Jules Verne’s cannoneers had accomplished their
project of “straightening the Earth’s axis,” and making it form a right
angle to the plane of our planet’s orbital flight around the Sun. What
changes would we observe in Nature?

First of all, the Pole Star—a Ursae Minoris Polaris—would cease
to be polar, as the continuation of the Earth’s axis would not pass
near it, but at some other point around which the celestial dome would
revolve,

Further, the alternation of the seasons would be absolutely differ-
ent, or rather there would not be any alternation. What causes the sea-
sons? Why is summer warmer than winter? Let us not evade this com-
monplace question. At school we obtained but a hazy notion of it, and
after school most of us were too busy with other things to bother
about it. - :
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Summer in the Northern Hemisphere is warm, firstly, because the
tilt of the Earth’s axis, the northern end of which is now turned more
to the Sun, makes the days longer and the nights shorter. The Sun
heats the ground for a longer time and there is no pronounced cooling
during the shorter hours of darkness—the flow of heat increases,
the ebb decreases. Secondly, owing again to the inclination of the
Earth’s axis towards the Sun, the daytime altitude of the latter is
high and the rays fall more directly on the Earth. Hence, in sum-
mer the Sun sheds more and stronger heaf, while the night-time
loss is slight. In winter, the reverse is the case, the duration of the
heat is shorter and, moreover, is weaker, while night cooling is pro-
nounced.

In the Southern Hemisphere this process takes place six months
later, or earlier, if you wish. In spring and autumn the two poles are
equidistant with respect to the Sun’s rays; the circle of light almost
coincides with the meridians; day practically equals night; and the
climate is midway between winter and summer.

What if the Earth’s axis were perpendicular to the orbital plane?
Would we have this alternation? No, because the globe would always
face the Sun’s rays from the same angle, and we would have one and
the same season at all times of the year. What would this season be?
We could call it spring for the temperate and polar zones, though it
could, with equal right, be called antumn.

qurywhere and always day would equal night, as is now the case
only in the third week of March and September. (This is roughly the
case of Jupiter; its axis of rotation is nearly perpendicular to the
plane of its passage around the Sun.)

That would be the case for the temperate zone. In the torrid zone
the change in climate would not be so noticeable; for the Poles the
contrary would hold. Here due to atmospheric refraction, slightly ele-
vating the Sun above the horizon (Fig. 15), instead of setting, it would
skim along the horizon. Day, or, to be more exact, early morning,
would be perpetual. Although the heat emitted by this low Sun would
be slight, it would, since it would shine the year round, make
the bleak polar climate appreciably milder. But that would be poor
compensation for the damage to the hlghly developed areas of the
globe. | - ‘
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Fig. 15. Atmospheric refraction. The ray from the luminary S, is refracted

and curved when passing through the layers of the Earth’s atmosphere

with the result that the observer thinks it is emitted from the point S,

higher. Although the luminary, S, has already sunk below the horizon, the
obseryer still sees it, due to refraction.

If the Earth’s Axis Were Tilted 45°
to the Orbital Plane

Let us now imagine a 45° tilt of the Earth’s axis to the orbital plane.
During the equinoxes (around March 21 and September 23) day would
alternate with night as now. In June, however, the Sun would reach
zenith at the 45th parallel and not at 2314°%; thls latitude would be-
come tropical. At the Leningrad latitude (60°) the Sun would be a
mere 15° short of zenith, a truly tropical solar altitude! The torrid zone
would directly border-on the frigid zone, with the'temperate zone ab-
sent. In Moscow and Kharkov the month of June would be one long,
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continuous day. In winter, on the contrary, unbroken polar darkness
would prevail for weeks in Moscow, Kiev, Kharkov and Poltava. And
the torrid zone in this season would give way to temperate because
the noon Sun would not rise higher than 45°.

Naturally, both torrid and temperate zones would lose much by this
change. The Polar regions, however, would gain somewhat. Here, after
an extremely severe winter, worse than now, there would be a moder-
ately warm summer, when even at the Pole the noonday Sun would
be at 45° in the heavens and shine for more than half a year. The
Arctic’s eternal ice would appreciably retreat under the beneficent
action of the sun’s rays.

If the Earth’s Axis Lay in the Orbital Plane

Our third imaginary experiment is to set the Earth’s axis in its orbit-
al plane (Fig. 16). The Earth then would revolve around the Sun “in
a prone position,” rotating on its axis in much the same way as that
remote member of our plan-
etary family, Uranus. What
would happen in this case?

In the vicinity of the Poles
there would be a six-month
day, during which the Sun
would rise spirally from the
horizon to zenith, and then
descend in the same spiral
towards the horizon. This
would then give way to a
six-month night. The two
would be divided by a con-
tinuous twilight of many-
day duration. Before disap-
pearing below the horizon,
the Sun would traverse the
heavens for several days,
skimming the horizon. A
summer 111.(e this  would Fig. 16. This is how the Earth would move about
melt all the ice accumulated tne”syp if the axis of its rotation were in its
during the winter. ’ orbital plane.
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In middle latitudes the days would quickly become longer with the
onset of spring; then, for a period, there would be daylight lasting
many days. This long day would set in in roughly the number of days
coinciding with the number of degrees distant from the Pole, and would
last roughly the number of days equal to the degrees of the doubled
latitude.

In Leningrad, for instance, this continuous daylight would begin 30
days after March 21, and last 120 days. Nights would reappear 30 days
before September 23. In winter the reverse would be the case; contin-
uous daylight would be replaced by continuous darkness of roughly
the same duration. Only at the equator would day always equal night.

Uranus’ axis is inclined to its orbital plane roughly as described
above; its tilt towards the plane of its passage round the Sun is
only 8°. One might say of Uranus that it revolves around the Sun
“lying on its side.”

These three “if’s” will, in all probability, give the reader a better
idea of the relationbetween climate and the tilt of the Earth’s axis. It is
not accidental that in Greek the word ‘“‘climate” means “inclination.”

One More “If”

Let us now turn to another aspect of our planet’s motions, viz., the
form of its orbit. Like every planet, the Earth abides by Kepler’s first
law, which is that each planet follows an elliptical path of which the
Sun is one of the foci.

What is the ellipse of the Earth’s path like? Does it differ greatly
from a circle?

Text-books and tracts onelementary astronomy oftenndepict the globe’s
orbit as a rather strongly extended ellipse. This picture, wrongly
understood, is fixed in many minds for life; many people remain con-
vinced that the Earth’s orbit is an appreciably elongated ellipse. How-
ever, this is not at all so; the difference between the Earth’s orbit and
a circle is so negligible that it cannot be drawn otherwise than as a
circle. Suppose in our drawing the orbit’s diameter is one
metre. The difference between it and a circle would be less than the
thickness of the line drawn to depict it. Even the painter’s fastidious eye
would fail to distinguish between this ellipse and a circle.

Let us dwell for a moment on elliptical geometry. In the ellipse on
Fig. 17, AB is its “major axis,” and CD, its “minor axis.” Apart from
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the “centre,” O, each ellipse has still another two remarkable points,
the “foci,” set symmetrically on the major axis on either side of the
centre. The foci are found in the following manner (Fig. 18). A pair of
compass legs are stretched to

cover a distance equal to the C

major semi-axis OB. With one

leg at C, the end of the mi-

nor axis, we describe with the b

other an arc intersecting the

major axis. The points of in- A4 0
tersection, F and F,, are the
foci of the ellipse. The equal * b
distances OF and OF, will r
now be designated ¢, and the
axes, both major and minor,
2a and 2b. The length ¢, meas- - | D

ured off the length i of the ig. 17. An ellipse and its axes, major
major semi-axis, i.e., the frac- (4B) and “};g‘;’e’s i(tfﬁl,'nt‘,’;’ it O desig:
tion c¢/a, is the measure of the '
elongation of the ellipse and

is called the “eccentricity.” The
greater the difference between
ellipse and circle, the greater
the eccentricity.

We shall have an exact idea
of the form of the globe’s orbit
when we learn the value of its
eccentricity. This can be ascer-
tained even without measuring
the value of the orbit. The Sun,
set at one of the orbit’s foci,
seems to us on Earth fo be of a
different size owing to the differ-
Fig. 18. How the foci of an ellipse are ent distances of the points of the

found. orbit from this focus. At times
the visible dimensions of the Sun increase, at times diminish, their
ratio exactly conforming to the ratio of the distances between Earth
and Sun at the moments of observation. Assume the Sun to be at focus
F, of our ellipse (Fig. 18). The Earth will be at point A of the orbit
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about July 1, when we shall see the Sun’s smallest disc, its angular
value being 31'28”. The Earth reaches point B about January 1, when
seemingly, the Sun’s disc is at its greatest angle—32'32”. We now set
the following ratio:

3198 BF, _a—c
32/321/
from which get the so-called derivative ratio:

a—c—(atc) __ 31'28"—32'32"
atct(a—c) 3230 131'28"

64" c

or: o _°

r 64’ a
This means: %=Fl- =0.017,

i.e., the eccentricity of the Earth’s orbit is 0.017. All that is needed,
therefore, is to take a careful measurement of the Sun’s visible disc to
determine the form of the Earth’s orbit.

Now let us prove that the Earth’s orbit differs very little from a cir-
cle. Imagine an enormous drawing with the orbit’s major semi-axis
equal to one metre, What will be the length of the other, minor axis of
the ellipse? From the right angled triangle OCF; (Fig. 18) we find

but - is the eccentricity of the Earth’s orbit, ie. We replace the

" 60
algebraical expression az—b2 by (a—b) (a-+b), and (a+b) by 2a,
since b differs but slightly from a.

Thus we obtain

1 2a(a—b) __ 2(a—b)

02 a? a
a 1000 1
and hence @ — b = — o = 7555 » L€, less than — mm.

We have found that even on this blg scale the difference between the
length of the major and minor semi-axes of the Earth’s orbit is not
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more than % mm.—thinner than a slender pencilled line. So we

shall not be far wrong if we draw the Earth’s orbit as a circle.

But where would the Sun fit in our scheme? In order to place it at
the orbit’s focus, how far should it be from the centre? In other words,
what is the length of OF or OF, on our imaginary drawing? The reck-
oning is rather simple:

el e 10 _47em
a 60 ’ 60 60 - :
On our drawing the Sun’s centre should be 1.7 cm. away from the cen-
tre of the orbit. But as the Sun itself should be depicted by a circle
1 ¢cm. in diameter, only the practised eye of the painter would discern
that.it is not in the centre of the circle.

The practical conclusion is that we can depict the Earth’s orbit as a
circle, placing the Sun slightly to the side of the centre.

Can this negligible assymetrical position of the Sun influence the
Earth’s climate? To discover the likely effect, let us conduct another
imaginary experiment, again playing at “if.” Suppose the eccentricity
of the Earth’s orbit were bigger, say, 0.5. Here the focus of the ellipse
would divide its semi-axis in half; this ellipse would look
roughly like an egg. None of the orbits of the major planets in
the solar system have this eccentricity; Pluto’s orbit, the most extend-
ed, has an eccentricity of 0.25. (Asteroids and comets, however, move
along more extended ellipses.)

If the Earth’s Path Were More Extended

Imagine the Earth’s orbit noticeably elongated, with the focus divid-
ing its major semi-axis into half. Fig. 19 depicts this orbit. The Earth,
as hitherto, would be at point A, nearest to the Sun, on January 1, and
at point B, farthest away, on July 1. Since FB is thrice FA, the Sun
would be three times nearer to us in January than in July. Its January
diameter would be triple the July diameter, and the amount of heat
emitted would be nine times greater than in July (the reverse ratio
of the squared length). What, then, would be left of our northern
winter? Only that the Sun would be low in the heavens, the days
would be shorter and the nights longer. But, there would be no cold
Eveather—the Sun’s proximity would compensate for the dayllght

eficit
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To this we must add another
circumstance, stemming from
Kepler’s second law, which is
that the radius-vector sweeps
over equal areas in equal
fimes.

Fig. 19. This is the shape the Earth’s orbit
would have, if its eccentricity were 0.5. The

Sun is at the focus F.

The “radius-vector” of an
orbit is the straight line join-
ing the Sun with the planet,
the Earth in our case. The
Earth moves along its orbit
together with its radius-vector,
with the latter sweeping over
a certain area; we know from
Kepler’s law that the sections
of the area of an ellipse swept

over in equal times are equal. At points nearer to the Sun the Earth
should move faster along its orbit than at points farther away, other-
wise the area swept over by a shorter radius-vector would not equal the
area covered by a longer one (Fig. 20).

Applying this to our imaginary orbit we deduce that between De-
cember and February, when the Earth is much nearer to the Sun, it
moves faster along its orbit than between June and August. In other
words, the northern winter is of short duration, whereas summer, on

the contrary, is long, as if com-
pensating for the niggardly
warmth exuded by the Sun.

Fig. 21 furnishes a more exact
idea of the duration of the sea-
sons under our imagined condi-
tions. The ellipse depicts the form
of the Earth’s new orbit, with an
eccentricity 0.5. The figures 1-12
divide the Earth’s path into the
sections which it traverses at
equal intervals; according to
Kepler’s law the sections of the
ellipse divided by the radius-vec-
tors are equal in area. The Earth

Fig. 20, An. illustration to Kepler’s second

law: if the planet travels along the arcs

AB, CD and EF in equal times, the shaded
segments must be equal in area.
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will reach point / on January 1, point 2 on February 1, point 8 on
March 1, and so on. The drawing shows that on this orbit the vernal
equinox (A) should set in at the beginning of February, the autumnal
(B) at the end of November, Thus for the Northern Hemisphere winter
would be little more than two

months, from the end of Novem-

ber to the beginning of February.

On the other hand the season of

long days and a high noonday .
Sun, lasting from the vernal to!

the autumnal equinox, would be’

more than 914 months,

The reverse would be true of
the Southern Hemisphere. The
Sun would hang low and short
days occur, when the Earth would
be farther away from the diur-
nal Sun and the latter’s heat

would dwindle to a %th; con-

versely, high solar altitude and
long days would coincide with
a 9-fold increase in the Sun’s

Fig. 21. This is how the Earth would
revolve around the Sun, if its orbit
were a strongly extended ellipse. (The
planet covers the distance between
each figure-designated point in equal
times—one month.)

warmth, Winter would be much
more rigorous and far longer
than in the North. On the other hand, summer, though short, would
be unbearably hot. ‘

Another consequence of our “if.” In January the Earth’s rapid orbit-
al motion would make the moments of mean and true noon diverge
considerably—a difference of several hours. This would make it very
inconvenient to follow the mean solar time we now observe.

We now have an idea of the effects of the Sun’s eccentric position
in the Earth’s orbit. First, winter in the Northern Hemisphere
should be shorter and milder, and summer Ilonger than in
the Southern Hemisphere. Is this really so? Unquestionably,
yes. In January the Earth is niearer to the Sun than it is in July

by 2 X—g(-)—, ie., byTl(r. Hence, the amount of heat received increases

(—gé—)z times, i.e., 6 per cent. This somewhat alleviates the severity of
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the northern winter. Furthermore, the northern autumn and winter to-
gether are roughly eight days shorter than the southern seasons; while
summer and spring in the Northern Hemisphere are eight days longer
than in the Southern Hemisphere. This, possibly, may be the reason for
the thicker ice at the South Pole. Below is a table showing the exact
length of the seasons in the Northern and Southern Hemispheres:

Northern Southern
Hemisphere Length Hemisphere
Spring 92 days 19 hrs Autumn
Summer 93 ~» 5 » Winter
Autumn 8 » 19 » Spring
Winter 8% » 0 » Summer

As you see, the northern summer is 4.6 days longer than winter, the
spring 3.0 days longer than autumn.

The Northern Hemisphere will not retain this advantage eternally.
The major axis of the Earth’s orbit is gradually shifting in space, with
the result that the points along the orbit nearest and farthest from the
Sun are transferred elsewhere, These motions make one full ¢ycle in
21,000 years. It has been calculated that around 10700 A.D. the South-
ern Hemisphere will enjoy the above-mentioned advantages of the
Northern Hemisphere.

Nor is the eccentricity of the Earth’s orbit rigidly fixed; it slowly
vacillates throughout the ages between almost zero (0.003), when the
orbit is almost a circle, and 0.077, when the orbit is most elongated,
resembling that of Mars. Currently its eccentricity is on the wane; it
will diminish for another 24 millenniums to 0.003, and will then reverse
the process for 40 millenniums. These changes are so slow that their
importance is purely theoretical.

When Are We Nearer to the Sun, Noon or Evening?

Were the Earth to follow a strictly circular orbit with the Sun at its
central point, the answer would be very simple. We would be nearer to
the Sun at noon, when the corresponding pomts on the surface of the
globe, owing to the Earth’s axial rotation, are in conjunction with the
Sun. The greatest length of this proximity to the Sun would be, for
points on the equator, 6,400 km., the length of the Earth’s radius.
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But the Earth’s orbit is an ellipse with the Sun at its focus (Fig. 22).
Consequently, at times the Earth is nearer to the Sun and at times far-
ther away. For the six months between January 1 and July 1, the Earth
moves away from the Sun, dur-
ing the other six it approaches
the Sun. The difference between
the greatest and the least

distance is 2} % % 150,000,000,

i.e., 5,000,000 kilometres.

This variation in distance
averages some 28,000 km. a day.
Consequently, between noon and
sunset (a fourth of a day) the
distance from the diurnal Sun
changes on the average by 7,500
km., that is, more than from the
Earth’s axial rotation. Fig. 22. A diagram of the Earth’s pas-

- Hence, the answer: between sage round the Sun.

January and July we are nearer

to the Sun at noon, and between July and January we are nearer in the
evening.-

Aphelion

Summer solstice

Point of A
dvernal equinox ¢

Add a Metre
Question

The Earth revolves around the Sun at a distance of 150,000,000 km.
Suppose we add one metre to this distance. How much longer would
be the Earth’s path around the Sun and how much longer the year,
provided the velocity of the Earth’s orbital motion remained the same
(see Fig. 23)?

Answer

Now one metre is not much of a distance, but, bearing in mind the
enormous length of the Earth’s orbit, one might think that the addition
of this insignificant distance would noticeably increase the orbital
length and hence the duration of the year.

However, the result, after totting up, is so infinitesimal that we are
inclined to doubt our calculations. But there is no need to be surprised;
the difference is really very small. The difference in the length of two
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concentric circumferencesdepends not on the value of their radii, but on
the difference between them. For two circumferences described on a
floor the result would be exactly the same as for two cosmic circumfer-
ences, provided the difference in radii was one metre in both cases, A
calculation will show this to be so. If the radius of the Earth’s orbit

Fig. 23. How much longer would the Earth’s orbit be, if our planet were 1 m.
further from the Sun? (see text for answer).

(accepted as a circle) is R m,, its length will be 2zR. If we make
the radius 1 metre longer, the length of the new orbit will be
2n (R4-1) = 2=R 4 2r.
The addition to the orbit is, therefore, only 2=, viz., 6.28 metres,
and does not depend on the length of the radius.
Hence the Earth’s passage around the Sun, were it set 1 meire more

away, would be only 6 -i— metres longer. The practical effect of this

on the length of the year would be nil, as the Earth’s orbital velocity
is 30,000 m. per sec. The year would be only 1/5000th of a second long-
er, which we, of course, would never notice.

From Different Points of View

Whenever you drop something, you observe that it falls vertically.
You would think it queer if someone else observed it falling not in a
straight line. And yet this would be true of any observer not involved
together with us in the Earth’s motions.
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Fig. 24. Anyone on our planet would see a freely falling body
drop along a straight line.

Imagine ourselves watching a falling body through the eyes of this
observer. Fig. 24 shows a heavy ball freely dropping from a height of
500 metres. As it falls, it naturally participates simultaneously in all
terrestrial motions. The only reason why we fail to notice these supple-



mentary and far more rapid motions of the falling body is because
we ourselves are involved in them. If we could abstract ourselves from
participation in but one of the motions of our planet, we would see the
same body falling not vertically but along another path altogether.
Suppose we are watching the falling body from the surface not of
the Earth but of the Moon. Although the Moon accompanies the Earth
in the latter’s revolution around the Sun, it is not

y: | involved in its axial rotation. So from the Moon
we would see the body make two motions, oneé
vertically downwards, the other, which we had not
observed before, at an eastward tangent towards
the Earth’s surface. The two simultaneous mo-
tions add up, of course, in accordance with the

Fig. 26. A body falling freely onto our

Fig. 25. The man in the Moon  Earth simultaneously moves at a tangent to

would see the same flight as a  the circular route, described by the points of
curve. Earth's surface due to rotation.

rules of mechanics, and, as one is uneven and the other even, the result-
ing motion will occur along a curve. Fig. 25 shows this curve, or how
a sharp-eyed man in the Moon would see a body falling on the
Earth.

Let us go one step further and imagine ourselves on the Sun observ-
ing through an extra-powerful telescope the earthward flight of this
heavy ball. On the Sun we shall be outside both the Earth’s axial ro-
tation and its orbital revolution. Hence, we shall see simultaneously
three motions of the falling body (Fig. 26): 1) a vertical drop onto
the Earth’s surface, 2) a motion eastward along a tangent towards
the Earth’s suriace. and 3) a motion round the Sun.
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Motion No. 1 covers 0.5 km. Motion No. 2, in the 10 seconds of the
body’s downward flight, would, at Moscow’s latitude, be 0.3)X10=3 km,
The third, and fastest, motion is 30 km. per sec., so that in the 10
seconds of its downward fall it would travel 300 km. along the Earth’s
orbit. Compared with this
pronounced shift, the others,
the 0.5 km. down and the
3 km. along the tangent,
would hardly be distin-
guished; from our vantage
point on the Sun the eye
would be caught only by the
main flight. What do we
get? Roughly what we see Fig. 27, What anyome observing the falling
(the appropriate scale is not body shown on Fig. 24 would see from a van-
observed here) in Fig. 27. tage point on the Sun (scale has been disre.
The Earth shifts leftwards, garded).
while the falling body drops
from a point above the Earth in the right position, to a corresponding
point (just slightly lower) on the Earth in the left position. As I said
above the correct scale is not observed here—in the 10 seconds the
centre of the Earth would shift not 14,000 km., as our artist has made
it do for the sake of clarity, but only 300 km. '

Let us make yet another step and imagire ourselves on a star, i.e.,
on a remote Sun, beyond the motions even of our own Sun. From
there we would observe, apart from the three motions examined, a
fourth motion of the falling body with respect to the star on which we
are now standing. The value and direction of the fourth motion de-
pend upon the star we have chosen, i.e., on the motion made by the
enlire solar system with respect to this star.

Fig. 28 is a likely case when the solar system moves with respect
to the chosen star at an acute angle to the ecliptic, at a velocity of
100 km. per sec. (Stars have velocities of this order.) In 10 seconds
this motion would shift the falling body 1,000 km. and, naturally, com-
plicate its flight. Observation from another star would give this path
another value and another direction.

We could go farther still and imagine what the earthwise flight of a
falling body would look like to an observer beyond the Milky Way,
who would not be involved in the rapid motion of our stellar system
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Fig. 28, How an observer on a distant star would see a body falling
onto the Earth.

with respect to other islands of the universe, But there is no point in
doing s0. Readers will know by now that, observed from different
vantage points, the flight of one and the same falling body will be seen
differently.

Unearthly Time

You have worked one hour and then rested for an hour. Are these
two times equal? Unquestionably yes, if reckoned by a good timepiece,
most people would say. But what timepiece should we use? Naturally,
that checked by astronomical observation, or in other words, the one
that chimes with the motion of a globe rotating with ideal evenness,
turning at equal angles in absolutely equal times.

But how, you may ask, do we know that the Earth’s rotation is even?
Why are we certain that the two consecutive axial rotations of our
planet take equal times? We cannot verify this while the Earth’s rota-
tion is itself a gauge of time.

. Lately astronomers have found it useful in some cases provisionally
to replace this long established model of even motion by another. Here
are the reasons and the consequences of this step.

Careful study revealed that in their motions some of the heavenly
bodies did not conform to theoretical suppositions, and that the diver-
gence could not be explained by the laws of celestial mechanics. It
was found that the Moon, Jupiter’s satellites I and 11, Mercury, and
even the visual annual motions of the Sun, i.e., the motion of our own
planet along its own orbit, had variations, for which there was no ap-
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parent reason. The Moon, for example, swerves from its theoretical
path to as much as —é—th of a minute of an arc in some epochs, and

the Sun to as much as a second of an arc. An analysis of these incon-
gruities disclosed a feature common to all: at one period these motions
gather speed and, subsequently, slow down. Naturally it was in-
ferred that these deviations had one common cause,

Was not this due to the “inaccuracy” of our natural clock, to the
unlucky choice of the Earth’s rotation as a model of even motion?

The question of replacing the “Earthly clock” was raised; it was
provisionally discarded, and the investigated motion measured by an-
other natural timepiece based on the motions either of one or other of
Jupiter’s satellites, the Moon, or Mercury. This action immediately in-
troduced satisfactory order into the motion of the above-mentioned
celestial bodies. On the other hand, the Earth’s rotation as measured
by this new timepiece was found to be uneven—slowing down for a
few dozen years, gathering speed in the next few dozen, and then
slowing down once more,

1680 1720 1760 1800 1840 1880  1920Year :.
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Fig. 29. The curved line shows how far the Earth swerved from even motion be-
tween 1680 and 1920. If the Earth rotated evenly this motion would be sketched
on the chart as a horizontal line. The ups show a longer day when the Earth's
rotation slowed down, and the downs a shorter day when rotalion began to gather

speed. 4
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.+ In 1897 the day was 0.0035 seconds longer thari in. earlier years
and in 1918 the same amount less than between 1897 and 1918. The
day how is roughly 0.002 seconds longer than it was a hundred
years ago.
- In this sense we can say that our planet rotates unevenly with re-
spect to other of its motions and also with respect to the motions in our
planetary system conventionally accepted as even motions. The value
of the Earth’s deviations from a strictly even motion (in the sense
indicated) is exceedingly negligible: during the hundred years be-
tween 1680 and 1780 the Earth rotated slower, the days were longer
and our planet accumulated some 30 seconds difference between its
*own” and “other” time; then, up to the middle of the 19th century
the days shortened and about 10 seconds were sliced off; by the begin-
mng of the present century another 20 seconds had been lost; however,
in the first quarter of the 20th century the Earth’s motion again
slowed down, the days lengthened and a difference of nearly half a
minute again accumulated (Flg 29).

Various reasons have been adduced for the changes; for mstance,
lunar tides, the changes in the Earth’s diameter* and so omn.

“It is quite possnble that all-round study of thls phenomenon will yleld
_Almportant discoveries.

+ . Where Do the Months and Years Begin?,

Midtﬁight@ has struck in Moscow, ushering in the New Year. West of
Moscow it is still December 31, while eastwards it is already January
1. However, on our spherical Earth, East and West must inevitably
meet, Thls means that there must be a boundary line somewhere divid-
1;1lg the st from 31st, January from December and the New Year from
the old.

This:is called the International Date Line. It passes through the Ber-
ing Straits, through the Pacific Ocean, roughly along the meridian 180°.
It has been' exactly defined by international agreement.

It isjalong this imaginary line, intersecting the wastes of the Pacif-
ic, that the days, the months and the years change for the first time

'

t * The change in the length of the Earth’s diameter may escape direct measure-
ment as its accuracy is known only to 100 metres. It would be enough for the
Earth’s diameter to become a few metres longer or shorter to cause the above-
mentioned changes in the day’s duration.
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on the gfobe. Here lies what may be called the threshold.of our calen-
dar; it is from this point that every day of the month starts in. This is,
the cradle of the New Year. Each day of the month appears earlier here
than anywhere else; from here it spreads west, c1rcumnav1gates the
globe and again returns to its birth-place to vanish.

The U.S.S.R. leads the world as host to the new day of the month.
At Cape Dezhnev the day newly born in the waters in the Bering
Straits, is welcomed into the world and begins its march across every
part of the globe. And it is here, at the eastern tip of Soviet Asia, that
day ends, after doing service for 24 hours.

Thus, the days change on the International Date Line. The mariners
who first circumnavigated the world (before this line was established)
miscalculated the days. Here is a true story told by Antonio Pigafetta,
who accompanied Magellan on his voyage around the world.

“On July 19, Wednesday, we sighted the Cape Verde Islands and
dropped anchor.... Anxious to know whether our log books were
correct we inqulred the day of the week. We were told it was
Thursday. This surprised us, because our log indicated Wednesday. It
seemed unlikely that all of us had made the same mlstake of one
day..

“We learned later that we had made no m}sbake at all in our reckon-
ing. Sailing continuously westwards, we had followed the Sun in its
path and upon returning to our point of departure should have gained
24 hours upon those left behind. One need only think over this to
agree.”

What does the seafarer do now when he crosses the date line? To
avoid error, he “loses” a day when sailing from east to west, and “adds”
a day, when returning. Therefore the story told by Jules Verne in his
Around the World.in Eighty Days about the voyager, who having
sailed round the world “returned” on Sunday when it was still Satur-
day, could not have happened. This could have occurred only in Ma-
gellan’s times when there was no date line agreement. Equally unthink-
able in our time is the adventure described by Edgar Allan Poe in his
Three Sundays in a Week, about the sailor who after going round the
world irom east to west met, upon returning home, another who had
done the journey in the reverse direction. One claimed that the day be-
fore had been Sunday, the other was convinced that the morrow would
be Sunday, while their land-lubber friend insisted that today was
Sunday.
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-~Sao as not to fall out with the calendar in a round-the-world trip one
should, when travelling east, tarry a little in reckoning the days, let-
ting the Sun catch up, or in other words, count one and the same day
twice; on the other hand, when travelling west, he should, on the con-
trary, lose a day, so as not to lag behind the Sun.

Although this is commonplace, even in our days, four centuries after
Magellan s voyage, not everybody is aware of it.

How Many Fridays Are There in February?

Question

What is the greatest and least number of Fridays in February?

~Answer

The usual answer is that the greatest number is five—the least, four.

Without question, it is true that if in a leap year February | falls on a
Friday, the 29th will also be Friday, giving five Fridays altogether,
.. However, it is possible to reckon double the number of Fridays in the
month of February alone. Imagine a ship plying between Siberia and
Alaska and leaving the Asiatic shore regularly every Friday. How
many Fridays will its skipper count in a leap-year February of
which the Ist is a Friday? Since he crosses the date line from west to
east and does so on a Friday, he will reckon two Fridays every week;
thus adding up to 10 Fridays in all. On the contrary, the skipper of a
ship leaving Alaska every Thursday and heading for Siberia will *‘lose”
Friday in his day reckoning, with the result that he won’t have a single
Friday in the whole month.

So the correct answer is that the greatest number of possible Frl-
days in February is 10, and the least—nil.




' CHAPTER 11
THE MOON AND ITS MOT!ONS

New Moon or Old?

Not every admirer of a crescent moon will unerringly say whether it
is new or, on the contrary, on the wane. The difference between the
two is that the crescents bulge in opposite directions. In the Northern
Hemisphere the new crescent moon always has its convex side to the
right, and the old moon to the left. How, then, are we to remember for
sure which side either crescent faces?

Join the horns of the crescent by an
imaginary straight line. The result will
either be the Latin lefters “d” or *“p”.

The “d” is the first letter in the word

“dernier” (last), thus indicating the last ﬂ) (premier) M

quarter, or the old moon, The “p” is the

first Jetter in premler" (first) which

shows the thoon in its first quarter, a

new moon (Fig. 30). The Germans also i

have a rule linking the shape of the

moon with definite letters. Fig. 30. A simple way to dis-
But these ruleshold only in the North-  tinguish between the new

ern Hemisphere, since in Australia or  (growing) moon and the old *

the Transvaal, the reverse is the case. But moo1. -

(dermer)
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even in the Northern Hemisphere they could be unsuitable, say, in
southern latitudes. In the Crimea and Transcaucasia the crescent and
half moon are strongly tilted, lying altogether on the side still further
south. Near the equator the crescent is seen above the horizon either
like a gondola floating on the waves (the “moonboat” of Arabian
tales) or as a bright arch. Here the French device will not do since the
letters “p”” and “d” cannot be formed from the reclining crescent. Small
wonder the ancient Romans dubbed the tilted moon “fallacious” (Luna
fallax). To avoid mistaking the moon’s phases then, we should turn
to astronomical signs: the new moon is seen after dark in the western
part of the sky, while the old is seen towards morning in the east.

The Moon on Flags
Q"u estion

Fig. 31 shows the old Turkish flag with crescent moon and star.
This prompts the following questions: -

1) Which crescent moon does
the flag show, new or old?

2) -Can one see crescent and
star in the heavens in the position
given on the flag?

Answer

1) Recalling the devices sug-
gested above and that the flag
belongs to a country situated in

Fig. 31. The old Turkish flag. the Northern Hemisphere, we can
conclude that the Moon on the
flag is the old one.

2) The star cannot be seen inside the Moon’s full disc (Fig. 32, a).
All heavenly bodies are much farther away than the Moon and hence
can be eclipsed by it. They can be seen only outside the rim of its
darkened part, as depicted on Fig. 32, b.

Curiously enough, the present Turkish flag, which also depicts cres-
cent and star, sets the latter away from the crescent exactly as on
Fig. 32, b.
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'~ 7 - The Riddle of the Lunar Phases .

. The Moon receives its light from the Sun and therefore the convex
of the lunar crescent should, naturally, face the Sun. Artists, however,
often forget this. At exhibitions one sometimes sees landscapes depict-
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Fig. 33. There'is an astronomical
Fig. 32, a and b. Why stars cannot be error in this picture. What is it?
seen between the Moon's horns. (See text for answer.)

ing a half moon with its right face towards the Sun. Sometimes one
even sees a crescent Moon with horns facing the Sun. (Fig. 33).

We should say, incidentally, that to draw the new Moon correctly is
not as simple as it seems. Even experienced masters of the brush paint
the outer and inner arcs of the crescent in the form of semicircles
(Fig. 34, b). Yet, only the outer arc is a semicircle, the inner one is
half. ellipse, or a semicircle (the terminator) seen in the perspective
(Fig. 34, a).
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Nor is it easy to set the crescent moon in its right position in the
heavens. The half moon and the crescent often take rather perplexing

positions with respect to the Sun.

Fig. 34. How should one draw (a) and
not draw (b) a crescent moon.

It would seem that since the Moon
is illuminated by the Sun, a:
straight line joining the Moon’s
cusps should be at right angles to
the Sun’s bisecting ray (Fig. 35).
In other words, the centre of the Sun
should be at the end of a perpendic-
ular drawn from the centre of the
straight line joining the Moon’s
horns. This rule, .however, holds
only for the narrow crescent moon.
Fig. 36 shows the Moon’s position at
different phases with respect to sun-
rays. The impression ‘is that the
rays seem to bend before they reach
the Moon.

cememmedcccwa-

Fig. 35. The crescent moon with respect to the Sun.

The answer to the riddle is this:

the day coming from "the Sun to-
wards the Moon is actually perpen-
dicular to the. line joining the
Moon’s horns and draws a siraight
line in space. However, our eye sees
in the sky not this straight line but
its projection-on the caved-in bowl
of the heavens, viz., a curved line.
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That is why the Moon seems to be “hanging the wrong way” in the
sky. The artist should study these peculiarities and know how to depict
them.

The Double Planet

* 'The Earth and the Moon form the double planet. They are entitled
to this name as our satellite is prominent among other counterparts for
its proportionately large size and mass compared with its primary.
The solar system actually has larger and heavier satellites. But com-
pared to their primaries they are relatively: much smaller than the
Moon with respect to the Earth. Indeed, the Moon’s diameter is more
than a quarter of the Earth’s. The diameter of the biggest satellite,
Neptune’s Triton, is but a tenth of its primary’s diameter. Furthermore,

the Moon’s mass Is-sll— of the Earth’s mass, while the solar system’s

heaviest satellite, Jupiter’s III, is less than 1/10,000 of the mass of its
primary.

The table below shows the fraction of the masses of the primaries
possessed by the masses of the biggest satellites.

Mass (fraction
Primary Satellite of primary

mass)
Earth Moon 0.0123
Jupiter Ganymede 0.00008
Saturn Titan 0.00021
Uranus Titania 0,00003
Neptune Triton 0.00129

The Moon leads the table for size of the fraction of the primary's
mass.

The third circumstance entitling the Earth-Moon system to the name
of “double planet” is their close proximity. Many planetary satel-
lites rotate at distances much further away; some Jovian satellites
(i.e., IX, Fig. 37) are 65 times farther away.

Here we encounter the interesting fact that the Moon’s path around
the Sun differs but slightly from that of the Earth. This seems incred-
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ible when one considers that the Moon is nearly:'400,000' km. away
from the Earth. But we should not forget that in one revolution of .the
Moon around the Earth, the Earth itself covers, together with the Moon,

Jupiter

@ T- - e,
Earth IX sqtelme

o+ Moon

Fig. 87. The Earth-Moon system compared with the Jovian family. (Scale has been
disregarded in depicting the actual dimensions of the celestial objects.)

roughly% th of its yearly journey, viz., 70,000,000 km. Suppose the

Moon’s circular orbit of 2,500,000 km. elongated thirtyfold. What would
remain of its round form? Nothing at all. That is why the Moon’s
path around the Sun almost merges with the Earth’s orbit, diverging
only in 13 hardly noticeable bulges. By a simple calculatlon that we
shall not bother you with, we could prove that the Moon’s path is al-
ways coricave towards the Sun, roughly resembling a ﬁgure with 13

sides and 13 rounded angles,
Fig. 38 gives you an exact picture of the paths of the Earth and

the Moon for one month. The broken line shows the Earlh’s path, the

r’rﬂ ™ TTIII’TJ

22 D 2; - 19 18 17 16 @

i O
15

Vo

Fig. 38. The monthly passages of the Moon (solid line) and the Earth (broken line)
about the Sun.

solid line that of the Moon. Being so close, a drawing of a very large
scale was needed to show them apart. On this drawing the diameter
of the Earth’s orbit is half a metre. If, however, it had been shown as
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10 cm., the greatest divergence between the two paths would have been
less than the thickness of the lines depicting them.

An examination of this drawing shows that the Earth and the Moon
revolve around the Sun in nearly one and the same orbit, and that as-
tronomers have quite justly named this system the “double planet.”*

Thus a solar observer would see the Moon’s path as a slightly curved
line, almost dovetailing with the Earth’s orbit. This in no way contra-
dicts the slightly elliptical path of the Moon’s motion with respect to
the Earth,

The reason is, of course, that in observing from the Earth we do not
see the Moon shift together with the Earth along the Earth’s orbit, as
we ourselves participate in this motion.

Why Doesn’t the Moon Fall onto the Sun?

This looks like a naive question. Why should the Moon fall onto the
Sun? The Earth, seemingly, exerts greater attraction than the distant
Sun, and, therefore, compels the Moon to revolve around itself.

The reader who thinks in this way will be astounded to learn that
aclually the reverse is the case; the Sun, not the Earth, exerts greater
attraclion for the Moon!

Calculations will prove the point. Let us compare the forces attract-
ing the Moon—Sun and Earth. Both forces depend on two factors, the
size of lhe allracling mass and its distance from the Moon. The Sun’s
mass is 330,000 times bigger than the Earth’s; that is exactly the num-
ber of times greater the Sun’s attraclion would be for the Moon were
the distances from the Moon the same. However, the Sun is roughly
400 times farther away than the Earth. The force of gravitation dimin-
ishes in proportion to the squared dislance, hence the Sun’s gravita-

tional force should be 4002, i.e., 160,000 times less. Consequently the

Sun’s gravitational force is greater than that of the Earth by gl%%%

i.e., more than double.

* Close scruliny of the drawing shows that the Moon’s motion is not depicted
as strictly even. This is really so. The Moon revolves around the Earth along an
elliptical path, having the Earth as its focus. Therejore, according to Kepler's sec-
ond law, it moves faster when closer to the Earth than when farther away. The
eccentricity of the lunar orbit—being 0.055—is rather great.
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. Hence, the Sun attracts the Moon with twice the force of the Earth.
Why, then, doesn't the Moon fall onto the Sun? Why does the Earth,
nevertheless, compel the Moon to revolve round it, while the Sun fails
fo get the upper hand?

The Moon does not fall onto the Sun for the same reason the Earth
does not do so; it revolves around the Sun together with the Earth
and the Sun’s gravitational pull is fully expended in keeping thes-q two
bodies from a straight path, in making them take a curved orbit, i.e., in
converting straight-line motion into curved line motlon A glance at
Fig. 38 shows that this is so.-

Perhaps some readers still have their doubts. How does all this come
about? The Earth attracts the Moon to itself; but the Sun attracts the
Moon with greater force; nevertheless, instead of falling onto the Sun,
the Moon revolves round the Earth? This would indeed be strange if
the Sun aftracted the Moon alone. The point is that it attracts Moon
and Earth, the whole of this “double planet,” without interfering, one
might say, in the domestic relations of the couple. Strictly speaking,
the Sun attracts the common centre of gravity of the Earth-Moon sys-
tem; it is this centre that revolves around the Sun under the influence

of solar attraction. It is located at a dlstance of 5 the Earth’s radius

from the centre of the Earth towards ‘the Moon. The Moon and the
Earth’s centre revolve around the common centre of gravity, making
one complete revolution in one month.

The Moon’s Visible and Invisible Faces

' Among stereoscopic effects none is so startling as the appearance of
the Moon. One sees that the Moon is really ball-shaped, whereas in the
heavens it gives the impression of being flat like a tea-tray.

Few, however, have even the slightest idea of how difficult it is to
get a stereographlc photograph of our satellite. To do so one must be
well acquainted with the caprices of its motions.

The Moon revolves about the Earth with one and the same face pre-
sented to it all the time. In doing so, it rotates on its axis, the two
motions coinciding in time.

. Fig. 39 shcws an ellipse deplctmg ‘the Moon’s orbit. The drawing
deliberately exaggerates the elongated character of the lunar ellipse;

actually the eccentricity of the lunar orbit is 0.055 or —th An exact
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reproduction of the Moon’s orbit in a small drawing, which would
enable the eye to distinguish it from a circle, is unthinkable, for if the
major semi-axis were one metre long, the minor semi-axis would be
only 1.5 mm. shorter; the Earth would be but a mere 5.5 cm. from the
centre. Hence, for explanatory purposes the drawing shows an elon-
gated ellipse.

Imagine, then, the ellipse on
Fig. 39 as the Moon’s orbit around
the Earth. The Earth is located at
point O, one of the foci of the ellipse.
Kepler’'s laws apply not only to
planetary motions about the Sun but
also to motions of satellites around
their primaries, and in particular to
lunar revolutions. According to Kep-
ler’s second law, in a quarter of a
month the Moon traverses the dis-
tance AE, where OABCDE is one-
fourth the area of the ellipse, viz., _. . | tollows its
the area MABCD (the equality of [ 5% How the Moon lfofiows o
the areas OAE and MAD on our orbit round thﬁetfﬁ?f (sce text for
drawing is confirmed by the approx- D
imate equality of the areas MOQ and EQD). Thus, in one quarter of
a month the Moon journeys from A to E, However, in contrast to rev-
olution about the Sun, the rotation of the Moon, like planetary rota-
tion in general, is even; in one quarter of a month it turns exactly 90°.
Therefore, when it reaches E, its radius towards the Earth at point A
will sweep a 90° arc and be directed not at point M but at some other
point left of M, near its orbit’s second focus, P. As the Moon slightly
turns its face away from the terrestrial observer, he will see, on the
right side, a narrow strip of its hitherto unseen hemisphere. At point F
the Moon shows the earthly observer a still narrower band of its usu-
ally invisible side, as the angle OFP is less than the angle OEP. At
point G, the orbit’s “apogee,” the Moon takes up the same position
with respect to the Earth as at A, the “perigee.” In its further course
the Moon turns away from the Earth, this time in the opposite direc-
tion, presenting another strip of its invisible side to our planet. This
strip at first widens, then narrows, and at last, at point A, the Moon
resumes its old position. S -

5—1271 65




We have seen that, due to the elliptical form of the Moon’s course;
our satellite does not strictly present one and the same face to the
Earth. It invariably turns one and the same face not towards the Earthi
but towards the other focus of its orbit. To us it seems to sway around:
its central position like a pair of scales; hence the astronomical term
“libration,” from the Latin word “libra” meaning “balance.” The ex-
tent of libration at each point is measured by the corresponding angle;
for example, at point E, libration is equal to angle OEP. The
greatest libration is 7°53" or almost 8°.

It is inleresting to follow the growth and diminution of the angle
of libration, as the Moon moves along its orbit. Prick point D with the
needle-leg of a pair of compasses and describe an arc, passing through
the foci O and P. This arc will infersect the orbit at points B and F.
The angles OBP and OFP, being inscribed angles, are equivalent to
half the central angle ODP. Hence we find that in the Moon’s passage
from A to D, libration speedily reaches half its maximum at point B
and then gradually increases; between D and F libration diminishes
slowly at first and then more rapidly. In the second half of the ellipse
the libration varies similarly, but contrariwise. (The degree of libra-
tion at each point of the orbit is roughly proportiona] to the Moon’s.
distance away from the ellipse’s major axis.)

This lunar swaying is called longitudinal libralion. Our satellite is
subject to yet another kind of libration, knewn as latitudinal libration.
The plane of the lunar orbit is inclined 61/2° towards the plane of the
lunar equator. That is why in one case we see the Moon slightly fromr
the south, and in the other, slightly from the north, getting a peep,
over its poles, at its “invisible” hemisphere. This latitudinal libration
reaches as much as 61/2°.

I shall now try to explain how the astronomer avails himself of the
slight swaying of the Moon about its centre to obtain a stereoscopic
photograph. The reader has probably already guessed that to do this.
one must catch two positions of the Moon having a big enough angle
between them.* At points A and B, B and C, C and D, etc., the Moon’s
position with respect to the Earth varies to the degree where stereoscop-
ic photographs are possible. Here, however, we are faced with another
difficulty; in these positions the difference in the age of the Moon,

* A 1° angular turn of the Moon suffices to obtain a stereoscopic photograph.-
(For greater detail see my Physics for Entertainment.)
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soime 36 to 48 hours, is so great that its surface strip near the termi-
nator on the first photograph has already emerged from darkness. This
will not do for stereoscopic pictures since the strip will have a silver
shine. This confronts us with the knotty task of catching identical
Moon phases differing in degree of longitudinal libration so that the
illuminated circle cover one and the same lunar surface. But even
this is not enough; the two positions must have, in addition, an iden-
tical latitudinal libration.

You will now be aware how hard it is to obtain good stereophoto-
graphs of the Moon. And you will not be surprised to find that it often
takes years to make the second picture of the stereoscopic pair.

But the reader will hardly indulge in lunar stereophotography. Our
explanation is designed not for practical purposes but to point to the
specific features of lunar motion which enable astronomers to see a
small strip on the side of our satellite usually inaccessible to observa-
tion. The lunar librations enable us to see not half, but 59 per cent of
the entire lunar surface. The remainder is absolutely beyond our vi-
sion, and no one knows what it looks like; we can but presume that it
does not differ in essentials from the visible part. Clever attempts have
been made, by continuing some of the lunar ranges and the bright
belts, to trace, tentatively, some of the details of the-inaccessible hemi-
sphere. But so far we are in the realm of guesswork. We say “so far”
because we have well advanced towards flying around the Moon on
a machine capable of overcoming the Earth’s gravitation and jour-
neying into outer space. The day when this daring enterprise will be
accomplished is not so very far away. One thing we do know: the
frequently voiced thesis of the Moon’s invisible hemisphere having an
atmosphere is absolutely untenable; it is in crying contradiction to the
laws of physics. If one side of the Moon has no atmosphere, how can
the other have any? (We shall revert to this question later.)

A Second Moon and the Moon’s Moon

Newspapers have reported from time to time that one or another ob-
server has established the existence of a second satellite of the Earth,
a second Moon. Although these claims have never been confirmed, the
subject is not without interest.

The question of the Earth having another satellite‘is not a new one
—it has a long history. Those who have read Jules Verne’s De la terre
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a la lune will recall that the author mentions a second Moon which
was so small and fast, that it could not be seen from the Earth. The
astronomer Petit, says Jules Verne, suspected its existence and defined
its revolution around the Earth as being 3 hrs. 20 min. It was supposed
to be 8,140 km, distant from the Earth. Curicusly enough, in an article
discussing the astronomy in Jules Verne’s books, the English maga-
zine Science expressed the view that the reference to Petit and Petit
himself were pure invention. Certainly no encyclopaedia has ever men-
tioned an astronomer of this name. Nevertheless, the novelist was not
guilty of invention. In the fifties of the last century Toulouse Observ-
atory director Petit actually mentioned the existence of a second
moon, a meteorite having a 3 hrs. 20 min. period of revolution, and lo-
cated not 8,000 but 5,000 km. from the Earth. Only a few astronomers
shared this view at the time. Subsequently it was consigned to obliv-
fon.

Theoretically, there is nothmg unscientific in presuming that the
Earth has another, tiny satellite. But any celestial body of this order
should be seen not only on the rare occasions of its seeming transits
across the disc of the. Moon or the Sun. Even if it rotated so close to
the Earth that at each revolution it plunged into the Earth’s shadow,
it would still be seen in the morning and evening as a bright star
shining in the Sun’s rays. Because of its rapid motion and frequent
recurrences, this star would certainly have attracted the attention of a
host of observers. Nor would a second moon elude the astronomers
eye during a total solar eclipse.

In short, if the Earth did have another satellite 1t would be seen

fairly often. But it ls incontestable that no such sight has ever been
observed.
* Another suggestion is that the Moon may have its own little satel-
lite, the Moon’s. moon. It would, however, he extremely difficult to
vouch directly for the existence of a lunar satellite of this kind. Here
is what astronomer Moulton has to say on tlig subject:

“In full Moonshine, the light of the Moon or the Sun prevents detec-
tion of a tiny body in its vicinity. Only in lunar eclipses would the
Moon’s satellite be lit by the Sun and the neighbouring heavens be
free of the Moon’s' dispersed light. Thus, only in lunar eclipses' could
we expect to discover a small body circulating around the Moon. In-
vestigations have beel’l conducted to this end but have s0 far ylelded
no tangible results.” .
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Why Is There No Au' on_the: Moon?f

Thrs questlon falls mto the category of those whrch become clear
when, so to speak, we turn them upside down, .- .

Before trying to find out why the Moon has no air, let us see why
our own planet is enveloped by an atmosphere. Remember that air, like
any gas, is a chaos of molecules dashing about in all directions. Their
average velocity at 0°C. is about 0.5 km./sec., that of a rifle bullet.
Why, then, do they not escape jnto space? For the same reason that
the bullet does not escape into space. Having expended the energy of
their motion in overcoming gravitation, the molecules again fall out
onto the Earth. Imagine in the vicinity of the Earth’s surface a mole-
cule flying straight upwards 'at 0.5 km./sec. What altitude would it
reach? This is easy to compute, as velocity v, altitude A, and accelera-
tion of gravity g are interlinked in the formula:

v2=2 gh

Let US replace v by its value, 500 m./sec. and g by 10 m/sec 2. the
result will be '
' 250,000 QQh, whenoe |

A=12,500 m. or 12—;-km.\

But, if air molecules cannot get higher than 12—l—km the question

arises: whence the air molecules above this boundary? The oxygen of
our atmosphere is formed near the Earth’s surface (from carbon dioxide
through plants). What force, then, raises and keeps them at a height
of 500 and more kilometres, where traces of air have been definitely
established. Physics- supplies the identical answer .that we would get
from. any statistician were we to ask: “If the average expectation of
human life is 40 years, where do 80-year-olds come from?” The point
is that our calculation is good for the mean molecule, not the real one.
The mean molecule has a per second- velocity of half a kilometre, but
as for real molecules, some move slower, and some faster than aver-
age velocity. True, the proportion of molecules whose velocities appre-
ciably diverge from the mean is not great and rapidly declines with
the increase in the divergence. Of the total number of molecules in a
definite volume of oxygen at 0°C. only 20 per cent possess a velocity
of between 400 to 500 m./sec., roughly ,t,h-eAsam)e ,numbker‘)have, a speed
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ranging from 300 to 400 m./sec., 17 per cent between 200 and 300
m./sec., 9 per cent between 600 and 700 m./sec., 8 per cent between
700 and 800 m./sec., and 1 per cent between 1,300 and 1,400 m./sec.
A very minute portion (less than 1/1,000,000th) of the molecules have
a velocity of 3,500 m./sec., enough for them to soar as high as 600 km.
For, 3,5002=20h, from whence £=12,250,000 : 20, i.e., over 600 km.

Now we know why there are oxygen particles at an altitude of hun-
dreds of kilometres above the surface of the globe; this stems from the
physical properties of gases. However, molecules of oxygen, nitrogen,
vapour and carbon dioxide do not have a velocity strong enough to
escape from the Earth altogether. This would necessitate a velocity
of no less than 11 km./sec. Only isolated molecules of the above-men-
tioned gases possess these velocities at low temperatures. That is why
the Earth holds its blanket of air so tightly. It has been computed that
it would take years of an order of 25 figures for even half the store of
hydrogen, the lightest gas in the terrestrial atmosphere, to escape. Mil-
lions of years would not make any change whatever in the composi-
tion and mass of air around us.

Aiter this little need be said in order to explain why the Moon can-

not retain a similar atmosphere. The Moon’s gravity is 5 of the

Earth’s. Accordingly, the velocity needed to overcome its gravitation is
also less being only 2,360 m./sec. As the velocity of oxygen and ni-
trogen molecules at moderate temperature may be more, it follows that
the Moon would continually lose its atmosphere, were it to form there.
With the escape of the fastest molecules, other molecules would ac-
quire the critical velocity (a consequence of the law of distribution
of velocity among gas particles), and increasing numbers of parti-
cles of the enveloping air would fall out irrevocably into space. With
the lapse of a sufficiently long interval, negligible in terms of the
universe, all the air would escape from the surface of a celestial body
with such weak attraction.

It can be proved mathematically that if the average velocity of the
molecules in a planet’s atmosphere were but a third of the limit (i.e.,
2,360:3=790 m./sec. for the Moon), an atmosphere of this kind would
dwindle to half in the space of a few weeks. (An atmosphere will
firmly cling to a celestial body only if the mean velocity of its mole-
cules is a fifth of the peak.)

The idea, or rather the dream, has been suggested that one day
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when man reaches the Moon he will surround it with an artificial at-
mosphere and make it fit for human habitation. But after what has
been said, readers will realize that an enterprise of this nature is out of
the question. The fact that our satellite lacks an atmosphere is not for-
tuitous, not a caprice of nature, it is the logical result of physical laws.

We can see that the reasons explaining the absence of atmosphere
on the Moon also explain its absence on all celestial bodies with a
weak gravitational force, for example, the asteroids and most plane-
{ary satellites.*

Lunar Dimensions

Figures, of course, tell us a great deal about these, say, about the
Moon’s diameter (3,500 kilometres), its surface and volume. But fig-
ures, while indispensable for calculations, cannot transmit a picture of
the dimensions that we should like to see with the mind’s eye. Here
concrete parallels would be much better.

Let us compare the lunar continent—the Moon is all one continent—
with the continents of the Earth (Fig. 40). This will tell us more than
the abstract notion of the Moon’s entire surface being a fourteenth of
the Earth’s. In square kilometres the surface of our satellite is but
slightly less than the area of the two Americas, while the lunar face
presented to the Earth and accessible to observation is almost the
exact area of South America.

To illustrate the dimensions of the lunar “seas” compared with ter-
restrial bodies of water, Fig. 41 has superimposed upon a map of the
Moon the outlines of the Black and Caspian seas, on the same scale.
We can see at a glance that the lunar ‘“seas” are not very large,

though they account for a sizable portion of the Moon’s disc. The lunar
Mare Serenitatis, for instance, is 170,000 km? in area—roughly _52_

«of the Caspian.

On the other hand the lunar craters are vaster by far than anything
the Earth can show in this respect. The Grimaldi Crater, for instance,
«overs an area larger than Lake Baikal and could encompass a small
«country, say, Belgium or Switzerland.

* In 1948 the Moscow astronomer Y. N. Lipsky apparently found traces of an
atmosphere on the Moon. But the general mass of the Moon’s atmosphere cannot
de more than 1/100,000th that of the Earth.—Ed
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Fzg 40. The Moon compared with the cortinent of Europe. (Beware of
thinking, however, that its surface is less than that of Europe.)

Lunar Landscapes

So many photographs of the Moon’s surface have been reproduced
in books that I suppose all my readers to have an idea of the typical
features of lunar relief, such as the craters (Fig. 42), the “cirques.”
Some, probably, will have seen lunar mountains through a small tele-
scope—an eyeglass with a 3 cm. lens is enough.

However, neither photographs nor telescopic observations furnish
any idea of what the lunar surface would look like to an observer on
the Moon itself. From his vantage point near the lunar mountains the
observer would see them from quite a different angle. It is one thing
to look at an object from a high elevation, and, quite another, from

72 .



X

v
AN
"

PR

{ .
.
o

e
\

\ //Z /
////////W/M///// .

d Caspian

Fig. 41. Terrestrial seas compared with lunar seas. If the Black an
seas were transferred to the Moon they would take precedence over all

the lunar maria. (J—Mare Nubium, 2—Mare Numorum, 3—Mare Vaporum

4—Mare Serenitatis,)



nearby. A few examples will illustrate the point. To the terrestrial ob-
server the Eratosthenes Mountain has the appearance of a “cirque”
with the peak inside. Seen through the telescope it is precipitous and

Fig. 42. Typical lunar craters.

thrown into relief by the clearly defined, marked shadows. Glance,
however, at its profile (Fig. 43). You will see that, compared with
the vast 60 km. diameter of the cirque, the wall and inner cone are
very low, with the slopes attenuating their height. Now imagine
yourself roaming around inside this crater. Don't forget that in

0 20 %0 60 km

000/

Fig. 43. A large crater in profile.

W
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diameter it is equivalent to the distance between Lake Ladoga and
the Gulf of Finland. You would scarcely notice the circular form of the
walls, while the concavity of the ground would obscure its base, as

Fig. 44. What anyone would see from the centre of a large lunar crater.

the lunar horizon is twice narrower than the Earth’s (since the
Moon’s diameter is one-fourth of the Earth’s). On the Earth a man
of average height, standing in the centre of a level plain has a vision
of 5 km. This derives from the formula D=V 2Rh for the distance of
horizon* where D is the distance in kilometres, & eye’s height in kilo-
metres and R planet’s radius in kilomefres.

Replacing the letters in this formula with the respective figures for
the Earth and the Moon we find that for a man of average height the
horizon distance is 4.8 km. on the Earth and 2.5 km on the Moon.

Fig. 44 shows what an observer would see inside the Moon’s Metro-
politan crater. (The landscape shown is for another of its major cra-

* For computation of the distance of horizon see my Geometry for Entertain-
ment—the chapter headed “Where Heaven and Earth Meet.”
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ters—the: Archimedes.) Does -not this vast: plam with a ‘chain of hills
away to the horizon differ greatly from one’s mental plcture of a“lu-
nar crater?”

After c‘hmbmg the wall to the other side of the crater the observer
would again see not what he had anticipated. The outer slope of the
crater (see Fig. 43) is so “‘unprecipitous” that the observer would not
take it for a mountain at all. And the chief thing is that he would nev-
er take the range to be circular and with a round crater. To get the
needed picture he would have to cross the crest, and even then, as
I have already said, he would not be rewarded with anything remark-
able.

In addition to its immense craters the Moon has a multitude of
smaller cirques easily discernible even when the observer is nearby.
Their height, however, is negligible, and again he would hardly see
anything out of the ordinary. On the other hand the lunar ranges,
named like those on the Earth—the Alps, the Caucasus, the Appe-
nines, and so on, vie with their terrestrial counterparts, being some 7
and 8 km. high. On the comparatively small Moon they are a rather
impressive sight.

The Moon’s lack of an atmosphere and the related sharp contrast
between light and shadow produce, in telescopic observation, an in-
teresting illusion: the slightest unevenness is accentuated -and thrown
info bold relief. Place a split pea round side up on a piece of paper. It
seems small, doesn’t it? But look at the long shadow it casts (Fig. 45).

Due to side-lighting a shadow on
___ the Moon may.be 20 times longer
than the height of the object casting
"it. This is a boon to astronomers
because the long shadows have fa-
cilitated telescopic observation of lu-
nar objects as low as 30 m. in height. But the same factor makes us
exaggerate the uneven nature of lunar terrain. For instance Mt, Pico,
seen through the telescope, stands out in such sharp relief that one
involuntarily takes it to be a steep, jagged peak (Fig. 46). And as a
matter of fact that was how it had been depicted in the past. But, ob-
serving it from the Moon's surface we would get quite another pic-
ture, the one shown on Fig. 47.

On the other hand, we underrate other features of the Moon’s sur-

face. The telescope shows us slight, barely noticeable crevices which,
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a long shadow.



Fig. 46. In the telescope Mt. Pico has the appearance of a steep, pointed cliff.

seemingly, are minor features of the lunar landscape. But by transport-
ing ourselves to the surface of our satellite we would see at our feet
a deep, dark abyss stretching far to the horizon. Here is another ex-
ample. The Moon has what is known as the “Straight Wall,” a steep
shelf intersecting one of its plains. When we see this wall on a chart

3

Fig. 47. The Moonman sees Mt. Pico.as a .slepe. [ " . .
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‘(Fig. 48), we forget it is 300 m. high; but were we at its base
we would be overwhelmed by its grandeur, On Fig. 49 the artist has
endeavoured to depict this wall as seen from below; its end disappears
into the horizon, for it is about 100 km. long! And in exactly the same
way the barely discernible clefts seen
on the Moon’s surface through a pow-
erful telescope must be, in the nature
of things, huge abysses (Fig. 50).

Lunar Heavens
Canopy of Black

If a man from the Earth were to find
himself on the Moon, his atten-
tion would be drawn right away by
three unusual things.

The strange colour of the lunar heav-
ens by day would strike the eye im-
mediately, as instead of the usual blue
“Fig. 48. The Moon’s so-called the canopy overhead would be abso-

“Straight Wall” (as seen through  [ytely black, despite the bright sun-

the telescope). shine. It would show myriads of stars,
all plainly seen, but not one of them
twinkling. The reason—absence of atmosphere.

“The blue canopy of a clear and pure sky,” says Flammarion in his
picturesque language, “the tender flush of dawn and the majestic flame
of evening sunset, the entrancing beauty of deserts, the mist-shroud-
ed far-stretching fields and meadows, and you, the mirrorlike lakes
which reflect the distant azure heavens, with waters as deep as infin-
ity—your very existence and all your beauty depend solely on the
flimsy casing enveloping the Earthly globe. Without it, not one of these
pictures, not one of these luxuriant colours would exist. Instead of
azure blue heavens you would be surrounded by the black of an end-
less void; instead of majestic risings and settings of the sun, the days
would abruptly change with no gradual transition to nights, and vice
versa. Instead of the tender half-light which prevails wherever the
blinding rays of the sun do not fall directly, there would be light only
in those places directly illuminated by our diurnal luminary; deep
shadow would prevail in all other places.”
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Fig. 49. This is how anyone standing at the foot of the “Straight Wall”
would see it.

Fig. 50. At the edge of a lunar “crack.”



~ The atmosphere need be rarified only slightly for the blue of the
sky to become darker. The crew of the Soviet “Osoaviakhim” strato-
sphere balloon which met such a tragic fate saw at an altitude of 21
km. an almost black sky. The description of nature’s lighting in the
excerpt above is completely true of the Moon, with its black heavens,
absence of morning and evening twilights, glaringly illuminated
places, and places wrapped in darkness, devoid of any half-tones.

The Earth as Seen in Lunar Skies

~ The second remarkable lunar spectacle would be the Earth’s huge
disc suspended in the sky. We would find it queer for the Earth, which
when we took off for our ascent to the Moon seemed to be beneath us,
suddenly to show itself above our heads.

The universe, naturally has no common below and above for all the
worlds. So there is no reason to be surprised when we find the Earth
that we left below appears overhead when we reach the Moon.

The Earth’s disc hanging in the lunar heavens is of enormous di-
mensions; its diameter is roughly four times larger than the familiar
disc of the Moon seen from the Earth. This is the third amazing fact
that awaits the lunar traveller. If on moonlit nights our landscape is
rather well illuminated, then night on the Moon in the full rays of
light from the Earth with its disc 14 times larger than the Moon,
should be exceedingly bright. The brightness of a luminary depends
not only upon its diameter but also on the reflecting capacity of its
surface, In this respect the Earth’s surface is six times better off than
that of the Moon*; hence, full “Earthshine” should light up the Moon
at least 90 times more powerfully than the full Moon lights up the
Earth. In full “Earthshine” the man in the Moon could read even
small print. The Earth illuminates the Moon’s surface so brightly that
we, 400,000 km. away, can see the Moon’s nightbound parts as a hazy
twinkling inside a narrow crescent; this is known as the Moon’s “ash-

* The ground on the Moon, therefore, is not white as commonly believed; it
would be more correct to say that it is dark. This does not contradict the fact that
it shines with a white light. “Sunshine, even when reflected back from a black
object, remains white. Even if the Moon were draped in the blackest of velvet, it
would still be seen as a silvery disc,” says Tyndall in his book on light. The ca-
pacity of the lunar ground to disperse the solar rays is on the average the equiv-
alent of the dispersion capacity of dark volcanic rock.

Y



light.” Imagine 90 full Moons shining down and add to.this our $at-
ellite’s lack of an atmosphere to engulf part of the light, and you will
get an idea of the enchanting, falryllke spectacle of nocturnal lunar
landscapes basking in full “Earthshine.”

Would the lunar observer distinguish on the Earth’s disc the outlm«.s
of continents and oceans? There is a widely held mistaken view that
1o the man in the Moon the Earth resembles a school globe. That, at
any rate, is how it is drawn by artists when they want to show it in
space, covered with the contours of continents, polar ice-caps and
other details. This is pure imagination. The observer would not see
anything of the sort. To say nothing of the clouds which usually ob-
scure half the Earth's surface, our atmosphere itself vigorously dis-
perses the sunrays; hence the Earth should seem just as bright and im-
penetrable to observation as Venus. G. A. Tikhov, a Pulkovo astrono-
mer, who investigated this matter, says: “Looking at the Earth from
space we would see a disc coloured like a rather whitish sky and would
hardly detect any details of the actual surface. Most of the sunshine
falling on Earth is dispersed in the atmosphere with all its admix-
tures before it reaches the Earth’s surface. And that part of it reflected
from the surface is also greatly weakened by further atmospheric dis-
persion.”

Thus, while the Moon distinctly reveals 1ts surface details, the
Earth, on the contrary, hides its face from the Moon, and the entire
universe for that matter, under a shininig veil .of atmosphere. = *
- That, however, is not the only difference between the Moon and the
Earth. In our sky the Moon rises ard sets, travellinig together with
the canopy of stars. But the Earth does not follow-suit in lunar skies:
It neither rises nor sets there, and does not take any part whatever
in the exceedmgly slow parade of the stars. It hangs almost .immobile
in the sky, in a fixed position for every part of the Moon, while the
stars slowly glide on behind it. This is due to the peculiar feature of
lunar motion already examined, the gist of which is that the. Moon al-
ways presents one and the same face to the Earth. To the lunar observ-
er the Earth would seem to be almost fixed in the sky. For instance,
should the Earth be at zenith of a lunar crater it will never leave if.
If seen on the horizon it will remain there perpetually. Only the lunar
librations mentioned above somewhat disturb this -imimobility. The
starry heavens accomplish, behind the Earth’s disc, a slow revolution
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of 27—:1;-d>ays, the Sun rides the sky in 29% days, the planets make

similar motions, and only the Earth hangs almost immobile in a
black sky.

But, while fixed in one place, the Earth quickly makes 24-hour axial
rotations, and if our atmosphere were transparent the Earth would be
a most convenient timepiece for the passengers of future space-ships.

Fig. 51. A *new Earth” on the Moon. The Earth’s black disc is hemmed by
the bright rim of its shining atmosphere.

Furthermore the Earth has the same phases as those shown by the
Moon in our sky. Hence, the Earth does not always shine in lunar
skies as a full disc: sometimes it appears as a half-circle, sometimes
as a wider or narrower crescent and sometimes as an incomplete cir-
cle, depending on the part of its sunlit hemisphere presented to the
Moon, By charting the related positions of the Sun, the Earth and the
Moon, you will easily perceive that the Earth and the Moon present
opposite phases to one another.

When we see the new Moon, the man in the Moon sees the Earth’s
full disc, a “full Earth” and, conversely, when we see the full Moon,
the latter sees a “new Earth” (Fig. 51). When we see the narrow cres-
cent of the new Moon, the man in the Moon sees the Earth on the
wane, with exactly the same crescent, as the Moon presents to us at the
moment, missing. Incidentally, the Earth’s phases do not interchange
so abruptly. as those of the Moon; the Earth’s atmosphere erases the
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terminator and creates that gradual transition from day to night and
vice versa, which we on Earth see as twilight.

There is one more difference between the phases of the Earth’ and
the Moon. On Earth we never see the Moon at new Moon proper. Al-
though in this case it is usually above or below the Sun (sometimes as
much as 5°, i.e.,, 10 times its diameter), in a position allowing the
Moon’s sunlit limb to be seen, it is inaccessible to vision because the
Sun’s brilliance absorbs the modest shine of the silvery thread of the
new Moon. As a rule we see the new
Moon when it is around two days old,
that is, when it is far enough away from
the Sun. Only in rare cases, in spring,
do we see it when it is a day old. This
would not be the case if we were observ-
ing the “new Earth” from the Moon,
where there is no air to disperse the
Sun’s rays and create the customary
halo around our diurnal luminary.
There, the stars and planets are not lost
in the Sun’s rays, they stand out plainly
in the sky, in the Sun’s immediate vicin- ,
ity. Thus, when the Earth is not directly Fig. 52. The “new” Earth in

in front of the sun (i.e., not in eclipse, but lunar skies. The white disc be-
somewhere above or below), it will al- low the crescent Earth is the
ways be seen against our satellite’s black, Sun.

star-spangled sky in the form of a narrow

crescent with the cusps turned away from

the Sun (Fig. 52). According as the Earth moves leftwards from the
Sun, the crescent seems to follow suit.

A phenomenon similar to that just described will be seen when ob-
serving the Moon through a small telescope; at full Moon we do not
see our nocturnal luminary as a full disc; as the centres of Moon and
Sun are not on a straight line with the observer’s eye, the Moon'’s disc
lacks the narrow crescent which, as a dark strip, skims leftwards along
the edge of the illuminated disc according as the Moon moves right.
However the Earth and the Moon always present each other with op-
posite phases; at this moment the lunar observer would see the slender
crescent of the “new Earth.”

We have noted in passing that an effect of the Moon’s librations. is
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that the Earth i$ not dbsolutely stationary in the Moon’s sky; it sways
14° in the vicinity of the.mean position in a north-south direction, and
16° in a west-east direction. Wherever on the Moon our Earth is seen
-above the horizon, it should seem to set and then again rise, describ-

Fig. 53. The Earth’s slow motions near the lunar skyline. The broken lines
are the paths of the centre of the Earth’s disc.

ing queer curves (Fig. 53). This peculiar rising or setting of the Earth
4t'a definite point on the horizon, without travelling across the heav-
ens, may persist, for many Earth days. -
Lunar Eclipses

« " I'shallinowadd to.ous sketch of .the lunar heavens a description of
the celestial phenomenon known as an eclipse, There are two kinds- of
eclipses on the Moo, solar. arid “terrestrial.”- Although unlike the fa-
‘miliar solar eclipse, the first is striking in its own way. It takes place
'on the Moon when wé see the lunar eclipse on Earth; the: Earth is
‘then set: on - the straight line joining the centres of the,Sun and the
‘Moon. When this happens, our sateilite is submerged in the,'sh.ad,ow
cast by the Earth. Whoever has watched the Moon at this particular
-moment will remember that it is not totally devoid of light, nor does
it vanish from vision;. it is usually seen in the cherry-red rays which
penetrate into the cone of the Earth’s shadow. Were we-to, travel to-the
Moon at this .moment and look :earthwards we would. easily’ under-

o "
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stand the reason. for this red light; in the Moon’s skies, the Earth, set
as it is in front of a bright but much smaller Sun, would appear as a
black disc fringed. with a crimson atmosphere. It is this fringe that
sheds the reddish light on the shadow-darkened Moon (Fig. 54).

On the Moon solar eclipses last not the few minutes they do on the
Earth, but four hours and more, or just as lofig as our-lunar eclipses,
because in substance these are lunar eclipses, only they are observed
not from the Earth but from the Moon.

Fig. 54, A solar eclipse as seen from the Moon. The Sun S gradually .,
creeps onto the Earth’s disc E, rigidly suspended in the Moon's sky.

As for “Earthly” eclipses, they are so paltry that they hardly merit
the name of eclipse. They occur when the solar eclipse is seen om
Earth. The man in the Moon would then see against the huge disc of
the Earth a tiny black circle, flitting across the lucky places on the
Earth where the solar ecllpse can be observed.

We should note in passing that eclipses like those of the Sun cannot
be observed anywhere else in the planetary system. For this exclusive
spectdcle we are indebted to a chance factor. The Moon which comes
between us and the Sun is nearer to us than thé Sun’ exactly the num-
ber of times that the Moon’s diameter is less than that of the Sun, a
coincidence unparalleled for any other planet.

Why Do Astronomers Observe Eclipses?

Due to the chance factor just mentioned, the long cone of the shad-
ow which always accompanies our satellite touches the surface of the
Earth (Fig. 55). Actually the mean length of the cone of the lunar
shadow is less than the mean distance between the Moon and the
Earth, and were we dealing solely in mean values we would never
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have atotal solar eclipse. They occur only because the Moon revolves
about the Earth along an elliptical path which at some points is
42,200 km. nearer to the Earth than elsewhere. The Moon may be any-
thing from 356,900 to 399,100 km. distant.

- Flitting across the surface of the Earth, the tail-end of the Moon’s
shadow pencils the “strip of the visible solar eclipse.” This is never
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Fig.' 55. The tail-end of the Moon’s umbra traces the shadow-path across the
surface of the Earth. It is here that solar eclipses are observed.

wider than 300 km. so that the places lucky enough to see a solar ec-
lipse are somewhat limited. Add the duration of the total solar eclipse
(a matter of minutes and never more than eight) and you will realize
that a total solar eclipse is an exceedingly rare phenomenon, occur-
ring only once every 200-300 years for any point on the globe.

 For this reason astronomers literally ferret out solar eclipses, send-
ing special expeditions to the places where it can be observed, no mat-
ter how distant they may be. The 1936 solar eclipse (on June 19)
could be observed as a total eclipse only within the boundaries of the
Soviet Union. For a two-minute observation; 70 scientists from 10
countries thought it worthwhile to visit our country; the labours of four
of these expeditions were lost due to cloudy weather, The scale of the
observations carried out by Soviet astronomers was exceedingly great
—some 30 expeditions set out for the area of the total eclipse.

© In 1941, despite the war, the Soviet Government sponsored a num-
ber of expedltlons which stationed themselves all along the-boundaries
6f the total eclipse band, from Lake Ladoga to Alma-Ata. In 1947 a
Soviet expedition went to Brazil to observe the total eclipse there of
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May 20. Observation of total solar eclipses of February 25,.1952, -and
June 30, 1954, assumed partlcularly big proportions in the U.S.S.R.

AIthouUh there are but two lunar eclipses for every three solar
eclipses, they are observed far more often. There is a simple explana-
tion for this apparent astronomical paradox.

A solar eclipse can be seen on our planet only in a limited zone
where the Sun is eclipsed by the Moon; within the boundaries of this nar-
row band the eclipse is total for some locations and partial (that is,
the Sun is only partially eclipsed) for others. The timing of the solar
eclipse is not the same for different places within the shadow path, not
because of the difference in time reckoning, but because in crossing
the Earth’s surface the Moon’s umbra covers different locations at d1f-
ferent times.

A lunar eclipse is a different matter altogether It can be observed
simultaneously over the entire hemlspherq where the Moon is visible at
the given moment, that is, where it is above the horizon. The consec-
utive phases of the lunar eclipse set in at once all over the Earth; the
only difference is in the time reckoning.

That is why the astronomer has no need to “hunt” for lunar eclipses
—they come of their own accord. However, in order to “net” the solar
eclipse, distant journeys are sometimes undertaken. Are these ex-
pensive expeditions for such fleeting observations worthwhile? Could
we not conduct the same observations without waiting for a chance
eclipse of the Sun by the Moon? Why shouldn’t the astronomers arti-
ficially produce a solar eclipse by placing an opaque disc between the
Sun and the telescope? We could then, without going to any great
‘pains, observe the outlying parts of the Sun which so deeply interest
astronomers during an eclipse,

However, our man-made solar eclipse would not produce the effects
seen when the Moon eclipses the Sun. The point is that, before coming
within range of vision the Sun’s rays pass through the Earth’s atmos-
phere where they are dispersed by particles of air. That is why we, see
the daytime sky as a pale blue vault, not the black star-spangled can-
~opy we would see even in daytime were there no atmosphere. Having
obscured the Sun, we remain, nevertheless, at the bottom of an ocean
of air. And whll.e we can shleld the eye from the direct rays of our
diurnal luminary, the atmosphere. overhead is still full of sunshine
and continues to disperse its rays, thus blanketing out the stars. This
would not be the case, were the screen located outside the atmosphere.
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The Moon is, in a sense, a screen of this kind, a thousand times far-
ther from the Earth than the upper boun'dary of the atmosphere. It
acts as a barrier to the Sun’s rays before they penetrate into the
Earth’s atmosphere. Consequently there is no dispersion of light in the
umbra-covered path, Not completely, it is true, because some. rays,
dispersed by the surrounding illuminated areas, manage to penetrate
into the shadow area and, for this reason, the sky during a total solar
eclipse is never as dark as it is at midnight; only the brightest stars
-can be seen.
* What do astronomers try to achieve when observing a total solar
vechpseQ
.. They first try 1o catch the so-called “shift” of the spectral lines in
thle Sun’s outer layer. The lines of the solar spectrum, usually dark
agamst the brlght ‘bandl of - the spectrum, flash for a few seconds
against’ a- darkeried background after-the Moon’s disc ‘has totally
-eclipsed the Sun; the spectrum of absorption becomes one of emission—
‘the “flash spectrum.” Although this phenomenon, which yields a wealth
A “of valuable data on the nature of
the Sun’s outer layer, can, in spe-
- cific conditions, be observed not
only during an eclipse, it is so
distinct during eclipses, that as-
“tronomers are eager not to let
such a fortunate occasion slip.
Study of the solar corona, the
most remarkable of all the phe-
nomena witnessed during a total
solar eclipse, is the second aim.
This bright' aureole, varying in
size and form during eclipses
T o ) (Fig. 56), surrounds the abso-
Fig. 56. As the total eclipse takes lutely black disc of the Moon with
. place, the “solar corona” flashes from N .
behind the Moon’s dark disc. flaming BTOtUb‘erances or promi-
nences. Its streamers are often
'several times longer than the Sun’s diameter and emit a brilliance
usually half that of a full Moon.

The 1936 eclipse produced a solar corona of exceptional brilliance,
even brighter than the full Moon, which was a somewhat rare occur-
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rence. The streamers, somewhat blurred, were three times and more
the Sun’s diameter; the full corona re,sembled a five- pomted star w1th
the Moon’s dark dlsc in the centre,

The nature of the solar corona has still not been completely ex-
plained. During eclipses astronomers photograph the corona, measure
its brilliance and investigate its spectrum. This aids the study of 1ts
physical structure.

T D F oo B

‘Fig. 57. A consequence of the general theory of relatlv1ty—the deflection’ of lught

by the Sun’s force .of gravity. According to the theory of relativity, the Earthly

observer at' point T sees the star E! along the direction of the straight line TDFE!,

whereas the star is actually situated at point £ and sends its rays along the curved

line EBFDT. Ii there were no Sun the ray coming from the star E towards the
Earth T would ‘travel along the straight line ET.

The third aim, advanced only in recent few deoades is to venfy one
of the consequences of the general theory of- pelat1v1ty According to
this theory, the rays of the stars passing the Sun are deflected by its
powerful attraction, which should be revealed in a seeming stellar shift
in the vicinity of- thle Sun’s disc (Fig. 57). The checking can be done
only during a total solar eclipse.

Measurements taken during the 1919, 1922, 1926 and 1936 eclipses
did not yield, strictly speakmg, any pronounced results, Experimental
corroboration of the said consequenoe of the theory of relativity is still
awaited.*

These, then, are the main reasons why astronomers quit their ob-
servatories and set out for remote and sometimes exceedingly inhos-
pitable climes to observe the solar eclipse.

As for the actual spectacle of the total solar eclipse, there is an ex-
cellent description of it in Korolenko’s Eclipse—a narrative of the
eclipse which took place on August 18, 1899, and which was observed

.#* The fact of deﬂectlon has been confirmed, but full quantitative agreement
Wlth the theory 'has not been established. Prof. A. A. Mikhailov’s observations" ne-
ce551tated re-examination of sorne aspects of the theory.
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in the Volga town of Yuryevets. Here are excerpts from Korolenko’s
stor

“]}‘Ihe Sun sinks for a moment into a flowing curtain of haze and
re-emerges from the clouds already noticeably on the wane. .

“It is now visible to the naked eye, thanks to the slight vapour still
eddying in the air and attenuating the blinding glare.

“Silence. Only quick and heavy breathing is heard here and there...

“Half an hour passes. The day is almost as bright as usual; clouds
obscure and reveal the Sun, now swimming, crescent-like, in the
heavens.

“The young people are, most excited and curious.

“Greybeards heave a sigh, old women sob hysterically, some of them
even scream and groan, as if they had a toothache.

“The daylight wanes noticeably. Faces take on a frightened aspect
Human shadows lie faint and vague on the ground. A steamer going
downstream slips past phantom-like. It seems, somehow, to be lighter,
its colours blurred. The light, apparently, is ebbing, but without the
deep shadow of evening and the play of reflected light on the lower
layers of the atmosphere, this twilight seems strange and eerie. The
landscape, seemingly, has dissolved into something; the grass has shed
its green and the hills seem to have lost their heavy density.

“But, as long as the slender crescent rim of the Sun remains, the
impression of an exceedingly dull day also remains and it seems to me
that the stories about the darkness during an eclipse are exaggerations.
‘Can this still remaining minute spark of the sun, burning in the vast
universe, like a forgotten last candle, I reflected, ‘really mean so
Enuch?. .. Can it be that when it goes out night.is bound to fall sud-

enly?’

“But now the last spark has vanished. It flared up all of a sudden,
as if forcibly bursting out of durance, scattered a shower of golden
rain and was gone on the instant. Darkness swallowed the earth. I
caught the fleeting moment between twilight and the fast descending
darkness. It appeared in the south and, like some gigantic pall rapidly
enveloped hill, river and field and, enclosing the expanses of the heav-
ens, tucked us in and in a moment was at one with the north. From
the low bank where I stood, I glanced at the crowd. The silence of the
grave reigned... Human figures had merged into one dark mass.

“But this was not the ordinary night. It was so light that the eye
willy-nilly, sought the silvery moonshine penetrating the opaque blue
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of the ordinary night. But neither shine nor opaque blue was to be
seen. It seemed as if a fine, imperceptible ash had been scattered from
above upon the Earth, or if the slenderest tracery of innumerable lines
hung suspended in the air. While away to the side, in the upper layers,
one had the feeling of a radiant expanse of air, currents of which, flow-
ing into our opaque darkness, merged the shadows and deprived the
gloom of its shape and den51ty And overhead, above ‘all the confusion
of nature, clouds raced by in a wonderful panorama, an entrancing
duel being fought in their midst... A round, dark, hostile body had
clawed, spiderlike, into the bright sun, and the two soared upwards,
far beyond the clouds. A shaft of rippling light, emerging from behind
the dark shield, lent life and motion to the spectacle, while the, clouds,
in restless and noiseless flight, enhanced the illusion.”

For the modern astronomer, the /unar eclipse lacks the exceptional

interest of the solar eclipse. In the lunar ecllpse our forefathers found
convenient proof of the

Earth’s spherical shape. It ——--=seeremeie. e
is worthwhile recalling the (... \ /N &
role played by this notion in @ N A “{)

Magellan’s voyage round .
the world. When, after their < =+ - oo .

long and weary passage ’O
through the wastes of the
Pacific, the crew, convinced Cemmmrme T

that they had irrevocably

parted with land, fell into ‘:>
despair, Magellan alone did .. .S
not lose heart. “Although - T

the Church, on the-basis of Fig. 58 An ancient drawing made to explain
the Holy Scriptures, had al- how the Earth’s shape can be gauged from
ways affirmed that the the shadow it casts at the Moon,

Earth was a vast plain sur:

rounded by water,” the famous navigator’s companion wrote, “Magel-
lan reasoned thus; ‘during the lunar eclipse the shadow cast by the
Earth is a round’ shadow, hence, if the shadow is round the object
which casts it must, likewise, be round.”” In old astronomical treatises
we can even find drawings explammg the deperidence of the shape of
the lunar shadow on the shape of the Earth (Fig. 58). '
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Nowadays such proof-is not needed. On the other hand, the lunar
eclipse enables us to gauge the structure of the upper layers of the
Earth’s atmosphere by the brilliance and colouring of the Moon. As
you know the Moon does not vanish without trace into the Earth’s
shadow, it remains visible in the sunrays that curve into the umbra.
The strength of moonlight at these particular moments and the Moon’s
shades of c.our are of great interest to astronomy, and, it has
been establishi*d that they are related to the number of sunspots.
Furthermore, in recent times lunar eclipse phenomena have been
used to measure the rapidity of cooling of the Moon’s surface when
deprived of the Sun’s warmth. (We shall return to this question
later.)

Why Do Eclipses Recur Every Eighteen Years

Long before our era, Babylonian star-gazers noted that eclipses,
both solar and lunar, recurred every 18 years and 10 days. The an-
cients named this period the Saros and by means of it were able to
predict eclipses. They did not know, however, the reason for this reg-
ular pattern of periodicity or for its specific length. This was discov-
ered much later after careful study of the Moon’s motions. ‘

What is the time equlvalent of the Moon’s revolution? The answer
varies, depending on what is taken as the complétion of the Moon’s
revolution aboui the Earth. Astronomers distinguish five kinds of
months, of which only two interest us at the moment.

First, the “synodic” month—the time needed for the Moon to make
one complete circuit, provided the motion is observed from the Sun.
This is the. period between two equal phases, for instance, from new
Moon to new Moon, and equals 29.5306 days, :

Second, the “dracortic” month—the time needed for the Moon to
return to the same node of its orbit, the node being the point where
the lunar orbit intersects the ecliptic. This takes 27.2122 days.
~ The eclipse, as we can easily comprehend, occurs only when the full
or new Moon reaches one of its nodes. Its centre will then be on the
straight line between the centres of the Earth and the Sun. Clearly,
if an eclipse were to take place today, it would recur within an inter-
val containing a whole number of synodic and draconic months, as the
conditions for the eclipse would recur.

How do we arrive at these intervals of time? To work them out we

92



must solve the equation 29.5306x=27.2122y where x and y represent
whole numbers. If we turn it into the ratio

X 272122

"y T 295306 °
we shall see that the minimum exact. solution of this equation is
x=272122 and y=295306. Thus we obtain an enormous period of time
of the order of tens of millenniums, which is useless from the practical
point .of view. Ancient astronomers. were' content with an approxi-

mate solution. The continued fraction provides the most convenient
295306

means for approximation. Transform the fraction 575135 into a con-
tinued fraction as follows. But excluding the whole number we get
295303 23184
272122 = ! 272123 -
" In this last fraction we divide the numerator and the denominator by
the numerator,” thus:

295303 1
972132 = | + 7008
23182

Then we divide the numerator and denominator of the fraction :Z?:f
by the numerator, then again perform.a 51m1har operation and so on.
Finally we obtain
295306 1
272122 = 1 T T ¢ 1
, T+1
91

Of this fraction. taking 1ts first sections and discarding the rest, we
obtain the following consecutlve approx1mat10ns

12 13 38 51 242 1019
T’ 12 35 47 223 939 ) _
The fifth fraction in this progression already yields sufficient accuracy,

etc.
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and if we are to.make do with it, that is, accept x as 223 and y as 242,
we shall find the periodicity of eclipse recurrence to be 223 synodic

months or 242 draconic months, which add up to 6,585% days, i.e.,

18 years, 11.3 (or 10. 3*) days. :

Such is the origin of the Saros. And knowmg its origin, we kniow.
how exactly we can forecast eclipses. Note that in counting the Saros
as equal to 18 years and 10 days, we discard the odd 0.3 days. This
subtraction will be felt in the forecast for an eclipse due at an hour
of the day different from the pervious eclipse (roughly eight hours
later). Only if we take a period thrice the exact Saros will the eclipse
recur almost at one and the same time of the day. Moreover, the Saros
disregards the changes in distance between the Moon and the Earth
and the Earth and the Sun,.changes which also have their periodicity,
and which determine whether the solar eclipse will be total or not.
Thus the Saros enables us to predict merely that there will be eclipse
on a certain day. We cannot state definitely whether it will be full,
partial, or annular, or wheth’er it can be observed at the same place as
its predecessor.

Finally, it happens sometlmes that an insignificant partial solar ec-
‘lipse taking place within 18 years diminishes its phase to nought, mak-
ing it absolutely unobservable. Conversely, sometimes a hitherto in-
visible partial solar eclipse becomes observable.

In our times astronomers do not use the Saros. The fickle motions
of the Earth’s satellite have been studied so thoroughly that eclipses
can be forecast to the exact second. Should a predicted eclipse fail to
occur, contemporary scholars would be ready to swear the reason was
anything you please save an error in calculations. This was very aptly
noted by Jules Verne in his Le pays des fourrures where he tells the
story of an astronomer who set out on a Polar voyage to observe a
solar eclipse which, contrary to predictions, did not take place. What
conclusion did our astronomer draw? He informed his companions that
the particular ice-field on which they were located was not mainland
but floating ice which the drifts had carried out of the shadow path of
the eclipse. This claim was soon proved. A fine example of faith in the
might of science!

* This depends whether the period includes four or five leap years.
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Can 1t Happen?

Eye-witnesses say that during lunar eclipses they have seen the
Sun’s disc on the horizon on one side and simultaneously the dark-
ened disc of the Moon on the other.

This was also seen during the partial lunar eclipse on July 4, 1936.

“The Moon rose at 8.31 p.m.on July 4 and the Sun set at 8.46 p.m. The
eclipse took place while the Moon was rising, though both the Moon
and the Sun were visible at one and the same time above the horizon.
I was greatly surprised at this,” a reader of this book wrote to me,
“since light rays extend in a straight line.”
+ This, certainly, is a riddle. Although you cannot see through smoke-
dimmed glass “the line joining the centre of the Sun and the Moon™ it
is possible, of course, to imagine it by-passing the Earth in that way.
Can an eclipse take place without the Earth obscuring the Moon from
the Sun? Can one credit such an eye-witness?

In reality there is nothing incredible about the matter. The Sun and
the darkened Moon can be seen in the sky at the same time due to de-
flection of light as it passes through the Earth’s atmosphere.
Due to this aberration, known as ‘“atmospheric refraction,” we see
every celestial object above its true position (Fig. 15). When we see
the Sun or the Moon on the horizon they are, geometrically, actually
below it. So, there is nothing incredible about seeing the Sun
and the darkened Moon both on the horizon at one and the
same time.

“People usually note,” says Flammarion on this score, “the eclipses
of 1666, 1668 and 1750 when this peculiar feature was thrown into
sharpest relief. But there is no need to go back so far. On February 15,
1877, the Moon rose in Paris at 5:29, and the Sun set at 5:39,
although, incidentally, a total eclipse had already begun. December 4,
1880 saw a total lunar eclipse in Paris. On that day the Moon rose at
4:00, and the Sun set at 4:02, almost in the middle of the eclipse,
which lasted from 3:03 to 4:33. The reason why this is not seen more
often is because few observe it. In order to see a totally eclipsed Moon
before the setting or after the rising of the Sun, we should choose a
point on the globe where the Moon would be on the horizon about the
middle of the eclipse.”
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What Not All Know About Eclipses
Questions

1. How long can a solar eclipse and a lunar eclipse last?

2. How many eclipses are possible in one year?

3. Are there -years w1thout a solar ecllpsep Or w1thout a lunar
eclipse?

4, "‘When' will the next total solar echpse observable in- the u. S S R
take place?

5. Does the dark disc ‘of ’the Moon creep across the Sun from nght
or left dufing an ezcllpsep Ce e e G T

6. Does the lunar ecllpse begin on frght or left? RS

7. Why dothe splashes of lightin-the shade of: leaves’ take ’che fornl
of crescents durmg a solar ecllpsep (Flg 59) CE

Fig. 59. During a partial eclipse phase, the splashes of light in the shade
of leaves take the form of a crescent.
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8. In what way does the shape of the solar crescent during an
eclipse differ from the usual lunar crescent?

9. Why do we need smoke-dimmed classes to observe a solar
eclipse?

Answers

1. The longest full phase of a solar eclipse is 71/2 minutes (i.e., on
the equator, being less in higher latitudes). All the phases of the
eclipse may last as long as 4!/2 hours (on the equator).

The phases of the lunar eclipse last up to four hours. The total lunar
eclipse never lasts more than 1 hr. 50 min.

2. The greatest number is 7, the least 2, both solar and lunar, in one
year. (1935 had seven eclipses—b5 solar and two lunar.)

3. Not a year passes withoul at least two solar eclipses. A year often
passes without a /unar eclipse; this happens roughly every 5 years.

4. The next total solar eclipse, observable in the U.S.S.R., will take
place on February 15, 1961. The shadow path will cover the Crimea,
Stalingrad and Western Siberia.

5. In the Northern Hemisphere the disc of the Moon moves across
the Sun from right to left. Its first contact with the Sun should always
be anticipated from the right. In the Southern Hemisphere the motion
is vice versa (Fig. 60).

6. In the Northern Hemlsphere the Moon enters the Earth’s shadow
from the left, in the Southern vice versa.

7. The splashes of light in the shade of leaves simply depict the
Sun. During the eclipse the sun is crescent shaped, hence, its image
in the shade of the leaves is similarly shaped (Fig. 59). :

8. The lunar crescent has a semi-circle as its outer rim and a semi-
ellipse as its inner rim. The solar crescent lies between two arcs of a
circle with one and the same radius. (See page 59 “The Riddle of the Lu-
nar Phases.”)

9. We cannot look with the naked eye at the Sun even though par-
tially hidden by the Moon. Its rays burn the most sensitive part of the
retina, noticeably depreciating sharpness of vision for a period and,
sometimes, for life.

Way back in the early 13th century, a Novgorod chronicler noted:
“Many in Great Novgorod lost sight from this celestial portent.” We
can easily avoid this misfortune by having a well-dimmed glass
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handy. It should be heavily blurred by candle smoke so that the Sun
is seen as a distinct disc, devoid of rays or halo; for convenience’s
sake the smoke-dimmed side can be covered with a clean glass and
the edges glued with paper. As we do not know beforehand what the

Sotar ectipse in Northern hamisphere
End: Migale Beginning
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Solar eclipse in Southern hamisphere
Beginning  Middle End

7
t
%
toon moving from leﬁ o righ
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Fig. 60. Why during an eclipse does the observer in the Northern Hemisphere
see the Moon’s disc creep into the Sun from the right, and the observer in
the Southern Hemisphere the reverse? .

conditions for observing the solar eclipse will be, it will not be amiss
to have several glasses of varying dimness ready.

Coloured glasses can be used so long as we put together two
glasses of different colours (preferably “complementary”). The usual’
dark eye-glasses are inadequate. Finally, negative photoplates with -
appropriately dark enough sections may also be used.

What Is Lunar Weather Like?

Actually the Moon has no weather at all, that is, in our understand-
ing of weather. Indeed, what weather can there be where there is
neither air, clouds, vapour, rain nor wind. All we can talk about is
surface temperature,



That being so how warm is the surface? .Astronomers now have
instruments which can measure the temperature not only ‘of remote
celestial objects but also of parts of them. These instruments are de-
signed on the principle of thermo-electricity. In a.soldered conductor
of two heterogeneous metals an electric current is produced when one
of the soldered parts is warmer than the other; the power obtained
depends on difference in temperature and enables- us to gauge the
quantity of absorbed warmth.

The instrument’s sensitivity is astoundrng Desp1te its microscopic
dimensions (the key part being no bigger than.0.2 mm. and weighing
no more than 0.1 mgr. ), it reacts even. to the warmth of a 13th- -mag-
nitude star, which raises the temperature by but the 10,000,000th frac-
tion of a degree These stars cannot be seen without a telescope and
their brilliance is but 1/600th of the stats on the borderline of naked-
eye observation. The effect of this negligible quantity. of warmth would
be about the same as the heat emrtted by a- candle several kllometres
away.

With this almost miraculous measurrng dev1ce at hand astronomers
applied it to different parts of the Moon’s telescopic image, measured
the absorbed warmth and so estimated the temperatures of the differ-
ent parts ‘with an accuracy of up to 10°. Here are the results (Fig. 61):
in the centre of the disc of the full Moon, the temperature is more than
100° C.; water spilled here would boil even under normal pressure. As
one astronomer put it, “we would not need a range to,cqok dinner
on the moon, any nearby rock would easily' suit the purpose.” From
the centre of the disc the temperature drops evenly in all directions,
but even 2,700 km, distant from the centre it i5 not less than 801C.
It then drops. rapidly to 50° C. below zeronear -the rim of the illumis
nated hemisphere. It is colder still on the dark face the Moon. turng
away from the Sun. Here it is as much as 160°C. below zero. ' .

I noted earlier that during eclipses, when the Moon is submerged
in the Earth’s umbra, its surface, deprived of sunshine, rapidly cools.
The cooling was measured and revealed in one case a drop in temper-
ature during the eclipse from 70° C. above zero to 117° C. below, or by
nearly 200°C. in 1%/z or 2 hours. Meanwhile similar conditions on
Earth, i.e,, a solar eclipse, produce a temperature drop of only 2°C. or,
at the most, 3°C. This difference is attributed to the Earth’s aimos-
phere which, while comparatively transparent for visible sunshine, re-
tards the invisible “heat” rays of the heated surface.
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Fig. 61. The temperature in the centre of the Moon's visible
hemisphere reaches +-110°C., and towards the outer rim falls
rapidly to as low as —50°C. and more.

The fact that the Moon's surface loses its accumulated heat so
quickly simultaneously indicates its poor heat absorption and conduc-
tion capacity, due to which only a small quantity of heat is accumu-
lated.




CHAPTER 111
THE PLANETS

The Planets in Daylight

Can the planets be seen in daytime during bright sunshine? In the
telescope, yes. Astronomers often observe planets in the daytime, even
through medium-powered telescopes, true not so clearly as at night.
With a 10 cm. telescope it is possible not only to see Jupiter in the
daytime, but even to distinguish its characteristic bands. As for Mer-
cury, it might even be more convenient to observe it in daytime when
it is high above the horizon. After sunset Mercury is so low in the
sky that the Earth’s atmosphere appreciably distorts its telescopic
image.

Given favourable conditions some planets can be seen in daytime
even by the naked eye.

The brightest of them, Venus, is seen most frequently in daylight,
naturally, when it is most brilliant. There is the well-known story by
Arago about Napoleon who, triumphantly parading through Paris, took
affront when the crowd, dumbfounded by Venus’ appearance at noon,
forsook his exalted person for the star.

The daytime Venus is seen better in the streets of cities than in
open places, because the tall buildings obscure the Sun, thus protect-
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ing the eye from the dazzling effect of its direct rays. Russian chron-
iclers have also noted cases of a daytime Venus. Novgorod chronicles
say that in 1331, in the daytime “the portent of a bright star did ap-
pear in the heavens above the church.” The star (as D. O. Sviatsky and
M. A. Viliev found later) was Venus.

The most opportune moments for observing the daytime Venus re-
cur every eight years. Attentive star-gazers may have been lucky
enough to see with the naked eye in daytime not only Venus but also
Jupiter and even Mercury.

This will be the appropriate place to speak about the comparative
brilliance of the planets. Laymen sometimes query: Which is more
brilliant: Venus, Jupiter, or Mars? Of course, if they shone simulta-
neously or were placed next to each other, this question would not
arise. But as they appear at different times and in different places it is
quite a teaser to say which is brighter, The order of brilliance is this:
Venus, Mars, and Jupiter are several times brighter than Sirius, while
Mercury and Saturn, though weaker than Sirius, are brighter than
stars of the first magnitude. - .

We shall return to this point in the next chapter.

The Planetary Alphabet

In designating the Sun, Moon and the planets, contemporary astron-
omers employ symbols of a very ancient origin (Fig. 62.) These
symbols need explanation, apart, of course, from that of the Moon
which is self-explanatory. The sign for Mercury is a simplified picture
of the wand of the legendary god Mercury, the patron of this partic-
ular planet. For Venus we have a sign depicting a hand-mirror, the
emblem of the femininity and beauty of this goddess. Mars’ symbol,
as the ward of the god of war, is a spear behind a shield, the
arms of the warrior: For .Jupiter the sign is simply the first letter
of the Greek name for Jupiter, viz., Zeus (the Z is in longhand).
According to Flammarion the sign for Saturn is the distorted picture
of the “scythes of time,” the traditional appurtenance of the god of
fate. LT

The signs listed above have been used from the 9th century onwards.
Uranus’ symbol is, naturally, of later origin, since it was discovered
only towards the end of the' 18th century. Its sign, a circle with the
letter H above it, is to remind us of Herschel, who ‘discovered it. The
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symbol of Neptune, discovered in 1846, pays homage to mythology by
depicting the trident of the god of ocean depths, The sign of the last

planet, Pluto, is obvious.

To this planetary alphabet we should add the symbol designating
the planet on which we live, and the sign for the central body in our
system, the Sun, This last symbol holds the palm for antiquity, the

Egyptians using it thousands of years ago.

Many will probably think it strange that Western as-
tronomers employ the same symbols of the planetary
alphabet to designate the days of the week, namely:
the Sun for Sunday, the Moon for Monday, Mars for
Tuesday, Mercury for Wednesday, Jupiter for Thursday,
Venus for Friday, and Saturn for Saturday.

This association is quite natural if we compare the
planetary symbols not with the Russian, but the Latin
or French names for the days of the week, names which
have preserved their bond with the name of the plan-
ets (in French Monday is lundi, the day of the Moon,
Tuesday is mardi, the day of Mars, etc.) But we shall
not elaborate on this curious analogy, as it relates
more to philology and the history of culture than to
astronomy.

Alchemists of yore employed the planetary alphabet
to designate metals, using the sign of the Sun for gold,
the Moon’s for silver, Mercury’s for mercury, Venus’
for copper, Mars’ for iron, Jupiter’s for tin, and Sa-
turn’s for lead.

This is explained by the mode of thinking of the al-
chemists who dedicated each metal to one of the an-
cient mythological divinities.

Finally, we find traces of mediaeval reverence for the'
planetary symbols in the use of the signs of Mars and
Venus by modern botanists and zoologists to designate”’
male and female. Botanists also use the Sun’s astro-
nomical symbols to designate annual plants. They
employ the same sign in a somewhat modified form
(with two dots inside the circle) to designate biennial
plants. The Jupiter sign designates perennial grasses,
that of Saturn, bushes and trees.
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Something We Cannot Draw

An exact plan of our solar system is something that just cannot be
put down on paper. What books on astronomy give as a plan of the
solar system is actually a drawing of planetary orbits; it is not at ali
the solar system; these drawings cannot depict the planets without
grossly violating scale. Contrasted with the distance at which they are
set apart, the planets are so negligible that it is even hard to have any-
thing like a correct notion of the proportion. We shall find it easier to
imagine what it is like if we turn to a diminished likeness of the plan-
etary system. It will then become clear why we cannot pencil the solar
system on paper. All we can do is to show the comparative proportions
of the planets and the Sun (Fig. 63).

To depict the Earth we shall choose a most modest value, say, a pin-
head. Suppose the Earth is a ball about 1 mm. in diameter. Thus we
shall be using a scale of roughly 15000 km. for 1 mm. or
1:15,000,000,000. The Moon, a tiny speck /4 mm. in diameter, should
be placed 3 cm. from the pinhead. The Sun, a ball 10 cm. in diameter,

should be placed 10 m. from the

cage o SunS g Earth. Thus, a ball in one corner of
/—_\ a spacious room and a pinhead in
_ the other give us an idea of how

2 (O O Sun and Earth are set in relation to

=
(S A
Neptune Uranus  each other in space. You can see

Juptter Satun that here we indeed have far more
Earn verius Mars  Mercury space than matter. True, there are
Eaffh B0 Foon  °Pluto two planets between the Sun and

= the Earth—Mercury and Venus—but

, they do very little to fill the empty

Fig. 63. A comparison of solar and space: all thev could add to our

planetary dimensions. On this pace; y .
scale the Sun’s diameter is 19 cm.  room would be two tiny dots, one
t/s mm. in diameter representing
Mercury and placed 4 m. from our ball-Sun, the other for Venus, 7 m.
from the ball.

There will also be grains of matter on the other side of the Earth.
Mars, /2 mm. in diameter, revolves 16 m. from the ball-Sun. Every 15
years the two grains representing Earth and Mars reach their closest
conjunction of 4 m. apart: this is the shortest distance between these
two worlds. Mars has two satellites but we cannot depict them on our
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model becausg in the scale we have chosen they would be about the
size of a germ, The asteroids or minor planets of which some 1,500
rotate in the space between Mars and Jupiter, would have practically
the same infinitesimal dimensions. Their mean distance from the Sun
would be 28 m. on our scale. The largest of the asteroids would have

the thickness of a hair (2% mm.) on our model, the tiniest, the size of

a germ,

We should have to designate the giant Jupiter by a sphere the size
of a nut (1 cm.), placed 52 m. from the ball-Sun. The biggest of its
12 satellites would circle in its vicinity respectively 3, 4, 7 and 12 cm.
away. The diameter of Jupiter’s biggest moons would be some /2 mm.,
the remainder again being germ-size, Its most distant satellite, IX,
would be 2 m. from the nut representing Jupiter. Hence, the entire
Jovian system would be 4 m, in diameter on our model, This is quite
a size, compared to the Earth-Moon system with its 6 cm. diameter,
but rather modest in contrast to the 104 m. diameter of Jupiter’s orbit.

We can see now how hopeless it is to try to depict the solar system
on one drawing, The farther we go, the more striking this becomes.
We should have to place Saturn 100 m, from the ball-Sun, and use a
nut, 8 mm. in diameter. The famous Saturnian rings, 4 mm. wide and

5;—0- mm. thick, would be | mm. away from the surface of this nut.
The nine satellites would be scattered about the planet at a distance

of half a metre, in the shape of grains with a diameter of Tl(-)-mm, and

less.

The empty space between the planets increases in progression the
nearer we get to the fringe of the system. Uranus on our model would
be 196 m. away from the Sun and, in itself, be a tiny pea 3 mm. in
diameter, with five specks for satellites distributed at a distance up to
4 cm. from the primary,

The planet, believed until recently the last in our system, namely,
Neptune, would be represented by a tiny pea, with two satellites, Tri-
ton and Nereide, placed respectively 3 and 70 c¢m. from it, and would
slowly revolve 300 m. away from the central ball.

Still farther away, 400 m. on our model, is the small planet of Pluto,
with a diameter about half that of the Earth.

Nor can we reckon the orbit of this last planet to be the boundary of
our Solar system, because in addition to planets, it has comets, many
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of which move in locked paths around the Sun. Among these “long-
haired stars” (the true meaning of the word “comet”) there are some
with a period about 800 years. These are the comets of 372 B. C., 1106,
1668, 1680, 1843, 1880, 1882 (2 comets) and 1887 A. D. On our model
the path of each would be an extended ellipse, one end of which, the
nearest (the perihelion) would be only 12 mm, from the Sun, while
the furthermost point (the aphelion) would be 1,700 m. away, four
times the distance of Pluto, Were we to calculate the dimensions of the
solar system on the basis of these comets, our model would extend to
32 km. in diameter and occupy an area of 9 sq. km. with, mind you,
the Earth no larger than a pinhead! On these 9 sq. km. we would have
the following: one ball, two nuts, two peas, two pinheads, and three
smaller specks.

We dismiss the comets, despite their number. Their mass is so small,
that they are quite justly called the “visible nothing.”
- We see, therefore, that our planetary system cannot be drawn on a
correct scale.

Why Is There No Atmosphere on Mercury?

What is the connection between the presence of an atmosphere on a
planet and the duration of its axial rotation? It would seem there is
none at all, Nevertheless, we see from the example of the Sun’s nearest
planet, Mercury, that there is a connection in some cases.

Mercury’s surface gravitation is strong enough to retain an atmos-
phere akin to that of the Earth, though perhaps not so dense.

The velocity needed completely to overcome Mercury’s surface grav-
itation is 4,900 m. per sec., a speed which even the fastest of mole-
cules in our atmosphere cannot attain at low temperatures.* Yet Mercury
has no atmosphere, The reason is that it moves about the Sun in the
same way as the Moon travels about the Earth. In other words, it al-
ways presents one and the same face to the primary. The time of its
orbital passage (88 days) is equal to its axial rotation. Hence on one
side of Mercury, that constantly turned to the Sun, there is continuous
day and perpetual summer; on the other, that turned away from the
Sun, there is continuous night and perpetual winter. One can easily
imagine how hot it is on the planet’s “daylight” face. Here the Sun is
two and a half times nearer than it is to the Earth; consequently the

* See Chapter 2, p. 69 “Why Is There No Air on the Moon?”
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heat effect of its rfays should be 21/2X2Y/, i.e., 61/s times greater. Con-
versely, the nightbound side, untouched by the Sun’s rays for millions of
years, must be a frigid zone, with a temperature approximating to the
cold of space* (around —264° C.), since the heat on the “daylight” side
cannot penetrate through the planet. On the terminator there is a strip
23° wide, into which, due to libration,** the Sun peeps only for a time.

What happens to a planet’s atmosphere in such an unusual climate?
Evidently due to the severe cold, the atmosphere on the night-bound
hemisphere condenses and freezes, The drastic drop in atmospheric
pressure will cause the gas enveloping the *“daylight” face to rush to
the other hemisphere where it freezes. As a result, the entire atmos-
phere should, in solid form, gather in the night-bound part, or, to be
more exact, in the section untouched by the Sun. Thus, Mercury’s lack
of an atmosphere is the inevitable outcome of physical laws.

For the same reason we must also reject the frequently voiced sur-
mise about the Moon having an atmosphere on its invisible side. We
can state quite definitely that if there is no atmosphere on one side,
there cannot be any on the other.*** Here H. G. Wells’.fantastic The First
Men in the Moon is in error. According to the novelist, the Moon is
supposed to have air, which throughout one night of two weeks’ dura-
tion condenses and freezes, but with the return of day resumes its
gaseous state and becomes atmosphere, Actually nothing of the sort
takes place. “If,” Professor O. D. Khvolson writes in this connection, “the
air on the Moon’s unlit side solidifies, then nearly all the air should
flow from the lit to the dark side and freeze. The Sun’s rays would
turn the solid air into gas. This gas, in its turn, would immediately
flow to the unlit side and solidify there. ... There would be continuous.
distillation of air, which could never reach any noticeable elasticity.”

While we can affirm that neither Mercury nor the Moon has atmos-
phere, the contrary is true for Venus, the second planet in distance
from the Sun.

* By “space temperature” physicists mean that indicated in space-by a black-
shaded thermometer, screened from the Sun’s rays. It is somewhat higher than
absolute zero, —273° C., owing to the heating effect of stellar radiation. See Y. Pe-
relman’s Do You Know Your Physics? '

** See “The Moon’'s Visible and Invisible Faces” (Chapter 2, p. 64). The ap-
proximate rule obeyed by the Moon holds good for Mercury’s longitudinal libra-
tions; Mercury has one hemisphere constantly facing not the Sun but the other
focus of its rather extended orbit.

**%* See footnote on p. 71.
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It has also been found that Venus' atmosphere, or to be exact, strato-
sphere, is rich in carbon dioxide, tens of thousands of times more than
in the Earth’s atmosphere.

The Phases of Venus

The renowned mathematician Gauss relates that he once asked his
mother to look at Venus, then shining brightly in the evening heavens,
through the telescope. He wanted to surprise his mother, since in the
telescope Venus appears as a crescent. But it was Gauss who was
startled, for his mother, not the least bit astonished, merely asked why

the crescent was turned the other way.... Gauss had no idea at the
time that his mother could distinguish the phases of Venus with the
naked eye. Such acuteness of vi-

% % @ sion is rare; and before the spy-
v - ing glass was invented nobody

} dreamed that Venus had phases

akin to those of the Moon.

The peculiar feature of the Ve-
nus phases is that at different
phases its diameter varies: the
narrow crescent diameter is far
longer than that of the full disc
(Fig. 64). The reason for this is
the planet’s varying distances
from us during ils different phases.
Venus’ mean distance from
Fig. 64. The phases of Venus as seen the Sun is 108,000,000 km., that
through the telescope. Venus’' apparent of the Earth—150,000,000 km. A
diameter varies at.diﬂ’erent phases owing  simple reckoning shows that the
to the changing distance from the Earth. nearest distance between the two

planets is equal to the difference
between 150 and 108, i.e., 42,000,000 km., and the farthest distance
the sum of 150 and 108, i.e., 258,000,000 km. Hence, Venus’ distance
from us varies within these limits. When nearest to the Earth, Venus
presents its unlit face to us, hence its largest phase is absolutely unob-
servable, As it moves away from the position of the “new Venus,” the
planet assumes the form of a crescent, the dianieter of which decreases,
the fuller the crescent.
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Venus is most brilliant not when seen as a full disc, nor when its
diameter is longest, but at a certain intermediary phase; the full disc
is seen at a 10” angle of vision, its biggest crescent at a 64” angle. On
the other hand, the planet is most brilliant 30 days after the “new Ve-
nus,” when its angular diameter is 40” and angular width of crescent
10”. It then shines with a brilliancy 13 times that of Sirius, the bright-
est star in the heavens.

The Most Favourable Opposition

Many know that the times of Mars’ greatest brilliancy and closest
vicinity to the Earth recur roughly every 15 years. The astronomical
name, for this, the Most Favourable Opposition of Mars, is exceedingly
popular. Red-letter years of recent “oppositions” of this planet are
924, 1939 (Fig. 65) and 1956. But few know why this recurs every
15 years. Incidentally, the related “mathematics” are very simple.

The Earth travels one full orbital passage in 365Y4 days, Mars in
687 days. If, say, the two planets once came into conjunction when
nearest fo one another, they should do so again after an interval con-
sisting of a whole number of both terrestrial and Martian years.

In other words we must solve in whole numbers the equation

365 x =687y

or
x=188y
from whence
X 47

Converting the last named fraction into a continued one (see
page 93) we obtain:

47 1
w=l+rrr—

7+1
: 3
The first three sections give us the approximation
14 11 15
+1 _ 22
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and thus we have 15 Earth years equal to 8 Martian years; hence,
Mars should be in closest opposition every 15 years. (We have some-
what simplified the problem by accepting 1.88 instead of the more
exact 1.8809).

1901 1903 1905 1907 1909 1911 1944 1916

1918 1920 1922 1924 1926 1928 . 1931 1933

1935 1937 1939 1941 1943 1946 1948 1950

Fig. 65. How Mars' apparent diameter changed during 20th century opposi-
tions. There were most favourable oppositions in 1909, 1924, and 1939.

The same method can be used to find the recurrence also of Jupiter’s
closest oppositions. A Jovian year is equal to 11.86 (11.8622) terres-
trial years. Converting this fraction into a continued one we get:

1186_1150 —11+1Jrl

6+ 1
7

The first three sections give us the approximation %3:. Consequently,
Jupiter’s closest oppositions. recur every 83 Earth years, or every sev-
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en Jovian years. These are the years when Jupiter, visually, is most
brilliant. Its last closest opposition occurred in 1927, The next will
come in 2010. Jupiter will then be 587,000,000 km. distant from the
Earth—the nearest the solar system’s biggest planet ever gets to the
Earth.

A Planet or Minor Sun?

That is the question we can ask about Jupiter, largest of planets.
The gravitational pull of this giant, which is big enough to make 1,300
Earths, compels a whole swarm of satellites to revolve around it. As-
tronomers have found that Jupiter has twelve moons, the biggest be-
ing the four discovered by Galileo three centuries ago, and designated
by the Roman numerals I, 11, III IV. Satellites 11T and IV are every
bit as big as Mercury.

The table below compares the diameters of the satellites with those
of Mercury and Mars, and also indicates the diameters of Jupiter’s
first two satellites and our Moon:

Name Diameter
Mars . .. . ... . .. .. 6,600km.
Jupiter’s IV satellite. . . . . . 5,150 »

" I w 5150 »
Mercury ... . v. e . 4,700 »
Jupiter’s I satellite . . . . . 3,700 »
Moon. . ... .. . ... .. 3,480 »
Jupiter's 11 satellite . . . . . . 3,200 »

Fig. 66 illustrates this table. The large circle is Jupiter, each of the
spheres arranged along its diameter represents the Earth, on the right
are the Moon, Mars and Mercury, and on the left, Jupiter’s four biggest
satellites. Bear in mind that this is not a diagram but a drawing. The
correlation of the areas of these spheres will not furnish the correct
correlation for their volumes, which are proportionate to the cubes of
their diameters.

Since Jupiter’s diameter is 11 times bigger than the Earth’s, its vol-
ume should be 113, i.e, 1,300 times more. Correct, accordingly, lyour
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visual impression of Fig. 66 and you will have a proper notion of Ju-
piter’s immepnsity.
As for Jupiter’s gravitational pull it is truly impressive, especially

Fig. 66. Jupiter and its satellites (left), compared with the
Earth (along the diameter), and the Moon, Mars and Mercury

(right).

when you think of the distances at which this giant planet compels its
moons to revolve around it. Here is a table of the distances.

‘ Distance In km. ‘ N-fold

| Of Moon from Earth . . .. . ... .. 380,000 I 1



You will gather from this that the Jovian system is 63 times bigger
than the Earth-Moon system; no other planet has such a w1dely scat-
tered famlly of statellites.

So it is not without reason that Jupiter is likened to a small sun, Its
mass is three times the aggregate mass of all the other planets, and if
the Sun were suddenly to vanish its place could well be filled by Jupi-
ter which would compel all the planets to revolve around it, slowly
it is true, as the primary.

Jupiter and the Sun have similarities also in physical structure.
Jupiter’s mean density—1.35 of water—is close to that of the Sun
(1.4). However, Jupiter’s rather oblate shape gives the impression of
dense core enveloped in a thick layer of ice and a vast atmosphere.

Until quite recently the likening of Jupiter to the Sun was carried
farther; it was supposed that it had no solid crust and that it had
barely emerged from the phase of a luminary. This view has now been
discarded—a direct measurement of Jupiter’s temperature showed it to
be extremely low, as much as 140° C. below zero. True, this refers to
the temperature of the clouds floating in its atmosphere.

Jupiter’s low temperature greatly complicates the task of explaining
its physical peculiarities: its atmospheric storms, bands, spots and so
on. Here astronomy is faced with a whole spool of riddles.

Jupiter’s atmosphere (and of its neighbour Saturn) was recently

found to quite definitely have large quantities of ammonia. and meth-
ane.*

Saturn’s Rings Disappear

One day in 1921 the world was startled by a sensational report:
Saturn had been dispossessed of its rings! Splinters of the rings, we
read, were hurtling through space towards the Sun and would bombard
the Earth on their way. Even the date of this catastrophic collision
was given....

This story shows how rumours are born. The source of the sensation
was simply that in that particular year Saturn’s rings had ceased to
be visible for a short while, or, as the astronomical ephemeris then

* The methane content is still greater in the atmospheres of the more remote
planets of Uranus and, especially, Neptune. In 1944 Saturn’s largest satelllte,
Titan, was found to have a methane atmosphere.—Ed.
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said, had “vanished.” Hearsay conceived this literally as the physical
disappearance, that is, the destruction of the rings, and embellished
the event with all the details of a world disaster: hence the fall-out of
ring fragments on the Sun and the inevitable collision with the Earth.

The clamour that was raised by this innocent communication of the
astronomical almanac concerning the optical disappearance of Sat-
urn’s rings! What causes them to disappear? Bear in mind that they
are thin, being some thirty kilometres thick, which, compared to their

Fig. 67. The positions taken up by Saturn’s rings with respect to the Sun
within the 29 years of the planet’s period of revolution.

width, is the thickness of a sheet of paper. Therefore when they edge
on to the Sun, their upper and lower surfaces are not illuminated and
they become invisible. They are invisible again when their rim faces
a terrestrial observer,

. The rings are inclined at an angle of 27° to the ecliptic, but during
the 29 years of the planet’s complete orbit they face the Sun and the
terrestrial observer edgewise in two opposite points (Fig. 67). At two
other points, 90° away from the first two, the rings, on the contrary,
present to both the Sun and the Earth their widest surface or, as as-
tronomers say, they “open up.”

Astronomical Anagrams

The disappearance of Saturn’s rings strongly perplexed Galileo in
his day. He came near to fathoming this remarkable feature but was
baffled by the incomprehensible disappearance. The story is a some-
what curious one. In Galileo’s day it was customary to confirm priority
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of the discovery in a rather unusual manner. Upon discovering anything
requiring further proof, the scientist or scholar weuld resort to anagrams
(transpositions of letters), jealous lest someone should steal a march
on him: he would laconically announce the gist of his discovery in
the form of an anagram of which he alone knew the irue meaning.
This gave the scientist time to verify his discovery without undue
haste and to claim priority should any pretender appear. The moment
he was convinced that his original surmise was right, the scientist
would decode his anagram. Upon noting through his imperfect tfele-
scope that Saturn had some kind of side appendages, Galileo hastened
to announce his discovery and published the following jumble of let-
ters:
Smaismrmielmepoetaleumibuvnenugttaviras.

No one could guess the meaning of the code. One could, of course,
iry out all transpositions of the 39 letters and thus unravel Galileo’s
hidden phrase. But, what a job! Anyone familiar with the theory of
combinations will be able to express the total of possible transp051t10ns
(with repetitions). Here it is:

391
3l 51 4! 4! 21 21 51 31 31 21 21

This figure consists roughly of 35 numerals. Bear in mind that the
number of seconds in a year amounts “only” to 8 numerals! Now you
will appreciate how closely Galileo guarded the secret of his claim,

With the patience for which he was renowned, Kepler, a contempo-
rary of the Italian scientist, laboured hard to probe into the hidden
sanctuary of Galileo’s claim, He believed he had accomplished this
task when from the published letters (with two omitted) he formed
the following Latin phrase:

Salve, umbistineum geminatum Martia proles
(I salute you, twins born of Mars.)

Kepler was convinced that Galileo had discovered Mars’ two satel-
lites whose existence he himself had suspected.* (They were actually

# Apparently in this instance Kepler was guided by a surmised progression in
the number of planetary satellites. Knowing that the Earth had one satellite and
Jupiter four, he believed it quite natural for Mars as the intermediary planet to
have two satellites. This line of reasoning led others to think that Mars had two
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identified 250 years later). However, this time, Kepler's guesswork
misfired. When Galileo finally disclosed his secret, the phrase proved
to be (with two letters omitted); :

Altissimum planetam tergeminum observavi
(I observed a very high and triple planet.)

Since his telescope was so weak, Galileo could not realize what this
“triple” image of Saturn really implied. A few years later when the
planet’s side appendages disappeared altogether, Galileo decided that
he had erred and that Saturn had no appendages at all.

Then, after half a century had passed, Huygens was fortunate
enough to discover Saturn’s rings. Like Galileo, he did not make- his
discovery known at once, but coded his surmise in the cryptogram:

ooooppgrrstititununu

~ Three years later, convinced that he was right, Huygens published
his secret:

Annulo cingitur, tenui, plano, nusquam cohaerente,
ad eclipticam inclinato

(Hemmed by circle, thin, flat, nowhere cohering and inclined
' to ecliptic.).

Trans-Neptunian Planet

- In 1929 when this book first appeared I wrote that Neptune was the
most distant of the known planets of the solar system—30 times far-
ther away from the Sun than the Earth. Now I can no longer say so,
because 1930 added to the solar system a new member, a ninth major
planet, revolving about the Sun still farther away than Neptune.

This discovery did not come as a bolt from the blue. Astronomers
had long toyed with the idea of an unknown trans-Neptunian planet.

satellites. In Voltaire’s astronomical fantasy Micromegas (1750) we read of the
voyager who upon approaching Mars saw “two moons which served this planet
and which had hitherto been hidden from the eye of our astronomers.” Swift’s
Gulliver’s Travels, written still earlier, in 1726, contains a similar remark, accord-
ing to which Laputian astronomers had “discovered two lesser stars, or satellites,
which revelve -about Mars.” These curious surmises were fully corroborated in
1877 when Hall: discovered Mars’ two satellites.
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Just slightly over a century ago they: believed Uradnus to be the solar
system’s extreme planet. But certain irregularities in its motions led:
them to suspect the existence of a planet still farther away whose grav-
itation upset the even tenor of Uranus’ way. Mathematical investiga-
tion of the question by the British mathematician Adams and the
French astronomer Leverier culminated in a brilliant discovery; the
suspected planet was seen in the telescope. The human eye spied a
world the existence of which had been established by “pen-nib” calcu-
lations.

Such is the story of Neptune’s discovery. It was subsequently found
that its influence did not explain everything about the irregularity of
Uranus’ motions. It was conjectured that there was, possibly, another
planet still farther away than Neptune, So the mathematicians began
to rack their brains. Various solutions were proposed; the supposed
9th planet was placed at varying distances from the Sun and invested
with different masses. '

In 1930, or to be exact at the end of 1929, the telescope finally ex-
tracted from the gloomy murkiness on the fringes of the solar system
another member of our planetary family. The new planet, named Pluto,
was discovered by the young astronomer Tombaugh.

- Pluto rotates about a path very close to one previously computed.
But this, according to the experts, cannot be hailed as a mathematical
success; the coincidence is merely a curious accident. ' f

What do we know about this newly discovered world? So far very
little; it is so far away and so meagerly lit by the Sun that even most
powerful instruments proved hardly able to measure its diameter,
which was found to be 5,900 km. or 0.47 of the Earth’s diameter.

Pluto revolves around the Sun along a rather extended orbit with an
eccentricity of 0.25. It is noticeably tilted at 17° to the ecliptic and is
40 times farther from the Sun than the Earth. It takes the planet 250
years to complete this huge revolition.

In Pluto’s heavens the Sun shines with a brilliance 1,600 times
fainter than with us and is seen as a tiny disc of 45 angular seconds,
i.e., approximately the same as we see Jupiter. It would be interesting
to establish, though, which is the more brilliant, the Sun for Pluto or
the full Moon for the Earth.

It seems that faraway Pluto is by no means so badly off for sunshine
as one would think. The light we get from the full Moon is 440,000
times weaker than that from the Sun. In Pluto’s sky our diurnal lu-
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minary emits a light 1,600 times weaker than it does for us. Hence, the

brilliance of Pluto’s sunshine is 4‘:0(;380 or 275 times stronger than

full moonlight on Earth. If Pluto’s skies are as clear as the Earth’s,
which seems to be the case, since Pluto apparently has no atmosphere,
daylight there would be the same as the light of 275 full moons shin-
ing at once, or about 30 times brighter than the whitest of white nights
in Leningrad. It would be wrong, therefore, to describe Pluto as the
kingdom of eternal night.

Pigmy Planets

The nine major planets mentioned so far do not exhaust the plane-
tary population of the solar system. They just happen to be the biggest.
In addition, circling about the Sun at varying distances are a legion
of tiny planets. These pigmies in the world of planets are known as
asteroids (meaning “star-like”), or simply “minor planets.” The big-
gest, Ceres, is 770 km. in diameter; it is much smaller than the Moon—
about the same number of times that the Moon is smaller than the
Earth.

. Ceres, first of minor planets, was discovered on January 1, 1801.
More than 400 of the pigmies had been spotted during the XIX
century. Until recently it was believed that the asteroids were
banded together in the wide gap between the orbits of Mars and
Jupiter. . :

The 20th century, recent years, especially, has extended the bound-
aries of the asteroid belt in both directions. Eros, discovered towards
the end of the last century—1898—already broke these boundaries, as
most of its path lay within Mars’ orbit. In 1920 astronomers espied
the asteroid Hidalgo, whose path intersects Jupiter’s orbit and is close
to Saturn’s. Hidalgo is also remarkable for having the most elongated
orbit (eccentricity 0.66) of :all known planets and, moreover, is the
most strongly tilted to the ecliptic (at 43°).

We might note in passing that this asteroid takes its name from
Hidalgo y Costilla, hero of Mexico’s independence movement, who was
shot in 1811,

In 1936, when an asteroid with an eccentricity of 0.78 was observed,
the zone of pigmy planets was found to be still wider. This new mem-
ber of our solar system was named Adonis and is remarkable for the
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fact that at its perihelion it is almost as far away from the Sun.as
Jupiter, while at aphelion it is in the vicinity of Mercury’s orbit.

Finally the minor planet Icarus, discovered in 1949, has an excep-

tional path with an eccentricity of 0.83, a perihelion point twice the
radius of the Earth's orbit, and aphelion at about a fifth of the dis:
tance between the Sun and Earth. None of the known planets gets as
close to the Sun as Icarus.
- The system of recording newly discovered asteroids is not without
interest—it can be successfully applied for purposes other than astro-
nomical. First, the year of discovery is registered, and then the letter
designating the half-months at the time of discovery (the year is divid-
ed in 24 half-months, successively designated by letters of the alpha-
bet).

Since several minor planets are often discovered in one half-month,
they are designated by one more letter in alphabetical order. Should
the 24 letters not suffice, they are repeated but this time with tiny nu-
merals attached. Thus, for instance, 1932 EA, signifies an asteroid dis-
covered in the first half of March 1932, the twenty-fifth in that period.
When the orbit of the newly discovered planet has been computed, it
is given an ordinal numeral and a name.

Of the multitudinous minor planets probably only a small number
are as yet accessible to astronomical instruments. According to calcu-
lations there must be from 40 to 50 thousand asteroids in the solar
system.

The number of pigmy planets recorded to date exceeds 1,500. Over a
hundred of these were found by astronomers of the Simeiz Observa-
tory in the Crimea, chiefly due to the diligence of G. N.'Neuymin, an
assiduous asteroid hunter. The reader will not be surprised to find in
the list of minor planets names like “Vladilen” (in honour of Vladi-
mir Ilyich Lenin), “Morozovia” and “Figneria” (in honour of two
Russian revolutionary heroes), “Simeiza” and others. For the number
of discovered asteroids Simeiz occupies a leading place among world
observatories; and in the elaboration of theoretical questions pertain-
ing to asteroids Soviet astronomers are also prominent. The Institute
of Theoretical Astronomy in Leningrad has devoted years of study to
pre-charting the positions of a large number of minor planets and
elaborating the theory of their motions. Every year it publishes the pre-
plotted positions of the minor planets (the so-called ephemeris) for
observatories all over the world.
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The minor planets are exceedingly varied in size. Only a few are as
big as Ceres or Pallas (diameter=490 km.). About seventy have diam-
eters of more than 100 km. Most of them have diameters ranging
between 20 to 40 km. Then there are the numerous quite “tiny” aste-
roids with diameters barely 2 or 3 km. (we have put “tiny” in quota-
tion marks, for coming from an astronomer’s lips it must be under-
stood relatively). Although far from all the members of the asteroid
belt have been charted we may presume the aggregate mass of aster-
oids (discovered and undiscovered) to be about a thousandth of the
Earth’s. So far only an estimated five per cent of the asteroids acces-
sible to modern telescopes have been discovered.

“One might think that the physical properties of the asteroids would
be roughly the same,” G. N. Neuymin, our leading minor-planet expert,
wrote, “Actually we encounter a variety that is staggering. For exam-
ple, determination of the reflection properties of the first four asteroids
showed that Ceres and Pallas reflect light in the same way as the
Earth’s dark rocks, that Juno does so like light rock, and Vesta like
white clouds. This is all the more puzzling because, being small, they
cannot retain an atmosphere. That has been definitely established, and
so we are forced to ascribe the different reflection properties to their
surface materials.”

Some of the minor planets display a fluctuating brilliance, testifying
to axial rotation and irregular shape.

Our Nearest Neighbours

Adonis, the asteroid mentioned above, stands out not only for its
exceedingly elongated comet-like orbit; another feature is that it comes
fairly close to the Earth:. The year of its discovery found Adonis just
1,500,000 km. away. True, the Moon is nearer, but, while much bigger
than the asteroids, it is, nevertheless, of inferior rank, being a satellite,
not an independent planet. Apollo is another asteroid that can claim to
be one of the Earth’s nearest neighbours. The year it was discovered
Apollo was a mere 3,000,000 km. away from our Earth. In planetar
terms this is no great distance, since Mars, at its nearest, is 55,000,000
km. away, while Venus is never less than 40,000,000 km. Curiously,
this same asteroid travels still closer to Venus, to within 200,000 km.,
half the distance between the Moon and the Earthl So far this is the
closest interplanetary relationship known in the solar system.

120



This planetary neighbour of eurs is also remarkable for being one
of the smallest ever recorded. Its diameter is certainly not more than
2 km. and may be even less. The year 1937 brought the discovery
of Hermes, an asteroid which at times approaches the Earth
at the Moon’s distance (500,000 km.); its diameter is not more than
I km.

With the foregoing as an example let us look closer at the astronom-
ical meanmg of the word “tiny.” This tiny asteroid, a mere 0.52 km.? in
volume, i.e., 520,000,000 cu. m., would weigh about 1,500,000,000 tons
were it composed of granite. Wlth such a quantity of granite it would
be possible to build 300 pyramids like that of Cheops.

That gives you an idea of the word “tiny” when used by the as-
tronomer.

Jupiter’s Fellow-Travellers

Among the 1,600 known asteroids, fifteen, named after the Trojan
heroes, Achilles, Patroclus, Hector, Nestor, Priamus, Agamemnon, etc.,
stand out for their remarkable motions. Each of the “Trojans” rotates
near the Sun so that in any position the three—asteroid, Jupiter and
Sun,—form the apexes of an equilateral triangle. The “Trojans” can be
regarded Jupiter’s fellow-travellers, accompanying him at a consider-
able distance—some up to 60° in front of Juplter others just as far
b;.hmd—but all revolving around the Sun in one and the same period
of time

The balance of the planetary trlangle is stable; should the asteroid
quit its position, gravitation would bring it back.

Long before the “Trojans” were discovered, a similar mobile balance
of three attracting bodies was predicted in the purely theoretical in-
vestigation carried out by the French mathematician Lagrange. Lag-
range examined this case as a curious mathematical problem and
scouted the idea of a relationship of this kind being found anywhere
in the universe. However, the assiduous quest for asteroids resulted in
a tangible illustration of Lagrange’s hypothesis being within the con-
fines of our own planetary system. This is striking proof of the impor-
tance of meticulous study of the host of celestial bodies, known as the
minor planets.
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Alien Skies

We have already made an imaginary flight to the Moon to see what
the Earth and other celestial bodies look like from there.

Let us now pay a visit to the planets of the solar system to see what
picture of the heavens we obtain from each.

ZE om Jupiter

From Mercury =77 —g z

=
4

T —rom uranus
R B  From Neptune

Fro Dluo ‘

From Mars ‘

“From Earth

Fig. 68. The apparent dimensions of the Sun seen from the Earth and the
other planets.

We shall begin with Venus. If the atmosphere there were sufficiently
transparent, we would see a Sun twice the size of the one shining in
our sky (Fig. 68). This Sun, then, gives Venus double the Earth’s
warmth and light. In the nocturnal heavens of Venus we would see a
star of unusual brilliance. This would be our Earth, shining far bright-
er than Venus does in our heavens, though in size the two planets are
almost identical. The reason is simple. Venus is nearer to the Sun than
the Earth. Therefore when it is nearer to the Earth we do not see it at
all because its unlit face is presented to us. To be visible it would have
to slip aside somewhat, Light would then be emitted by a narrow cres-
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cent, comprising but a small part of Venus’ disc. On the other hand,
the Earth, when nearest to Venus, shines in its heavens as a full disc,
as Mars does in our heavens when in opposition. As a result, the Earth
in its full phase in Venus’ heavens would be six times brighter than
Venus is in our sky during its greatest brilliancy. This should be so, of
course, if our neighbour’s sky were clear enough. We would err, how-
ever, if we imagined that abundant “Earthshine” on a Venus night
produced its silvery ash-grey light; the illumination of Venus by the
Earth is about the same as that shed by an ordinary candle 35 m.
away. That, of course, is not enough to produce Venus’ silvery colour.

The “Earthshine” in Venus’ heavens is often complemented by the
fight of the Moon which here is four times brighter than Sirius. It is
doubtful if we would find in the entire solar system an object as bril-
liant as the double Earth-Moon luminary adorning the heavens of
Venus. Most of the time the observer on Venus would see the Earth
and the Moon separately, and he would be able to distinguish detalls
of lunar surface through the telescope.

Mercury is another brilliant planet in Venus’ sky—its morning and
evening star. Mercury, incidentally, is also seen from the Earth as a
bright star, even outshining Sirius. In Venus’ sky it shines with nearly
thrice the brightness of that in the Earth’s heavens. On the other hand,
Mars gives but a fifth of its light, somewhat dimmer than Jupiter in
our skies.

As for the fixed stars, the outlines of the constellations are absolutelv
the same for the skies of all the planets of the solar. system. Whether
we were on Mercury, Jupiter, Saturn, Neptune, or Pluto we would see
one and the same stellar tracery. This shows how far away the stars
are compared with interplanetary distances.

& ® &

Let us leave Venus for tiny Mercury, for a strange world devoid of
atmosphere and knowing no alternation of night and day. Here the
Sun hangs immobile in the sky, a huge ball six times bigger (in area)
than when seen from the Earth (Fig. 68). From Mercury our planet is
seen as a star shining with twice the brilliance of Venus in our sky;
Venus, too, is unusually brilliant here. In fact nowhere else in our sys-
tem does star or planet shine with the dazzling brightness of Venus
against the black and cloudless sky of Mercury.

* * *
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. Our next stop is Mars. Here the Sun is seen as a ball two-thirds less
in area (Fig. 68). In Mars’ heaveéns our own globe shines as morning
and evening star, the proxy for Venus in our sky, but fainter, much as
we see Jupiter, Here the Earth is never seen in its full phase; at any

one time the Martian would never see more than % of its disc. He

would see the Moon as a naked-eye star about as bright as Sirius. In
the felescope both the Earth and its attendant Moon would show their
phdses.

Here attention would be focused on Mars’ nearest satellite, Phobos.
So near is it to Mars that, despite its insignificant size (16 km. in diam-
eter), the “full Phobos” shines with 25 times the brightness of Venus
in our sky. Deimos, the second satellite, while much less brilliant, also
outshines the Earth in Mars’ heavens, Despite its smallness Phobos
is so close to Mars that its phases are clearly seen. Anyone with good
eyesight would probably observe even its phases (Deimos is seen from
Mars at an angle of 1/, Phobos at an angle of nearly 6).

Before going farther let us halt for a moment on the surface of
Mars’ nearest satellite. From this vantage post we would see the
unique spectacle of a giant disc, rapidly changing its phases, several
thousand times brighter than our Moon, This is Mars. Its disc takes
up 41° of the skies—80 times more than the Moon in our heavens. Only
on Jupiter’s nearest satellite it is possible to observe a similar unusual
but remarkable phenomenon.

® % %

Our next stop is the giant planet we have just mentioned. If Jupi-
ter’s skies were clear the Sun would be seen as a sphere 25 times less
in area than in our heavens (Fig. 68); it would be the same number
of times fainter. The brief five-hour day here quickly gives way to
night, so let us seek the familiar planets in the starry sky. We shall
find them no doubt, but how changed! Mercury is absolutely lost in the
Sun’s rays, while Venus and the Earth can be seen telescopically only
at twilight—they set together with the Sun.* Mars is hardly noticeable.
On the other hand Saturn successfully rivals Sirius in brilliance.

In Jupiter’s heavens prominence is taken by its moons. Satellites I
and II are about as bright as the Earth in the skies of Venus, III is
three times brighter, while IV and V are several times brighter than
Sirius. As for their dimenisons, the visual diameters of the first four

* In Jupiter’s heavens the Earth is seen as a star of the 8th magnitude.
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satellites are larger than the visual diameter of the Sun. At each revo-
lution the first three satellites are plunged in Jupiter’s shadow, so that
they are never seen in full phase, Total solar eclipses are also seen,
but can be observed only in a narrow strip across Jupiter’s surface.

Incidentally, Jupiter’s atmosphere could scarcely be so transparent
as that of the Earth; it is too high and dense. The considerable density
would tend to engender very peculiar optical illusions connected with
light refraction. Atmospheric’ refraction of
light on the Earth is insignificant and mere-
ly engenders elevation (optically) of the
heavenly bodies (see page 38). On the other
hand, Jupiter’s high and dense atmosphere
is conducive to far more noticeable optical
illusions. Rays emanating obliquely from a
point on the surface (Fig. 69) do not leave
the atmosphere at all, they curve towards
the planet’s surface, like the radio waves in  ° .
the Earth’s atmosphere. The observer at this .. ol
point would see something utterly unusual. Tt -7
He would imagine himself at the bottom of Fig, 69. How light probably
a huge bowl. Practically the entire surface of curves in Jupiter’s atmos-
the vast planet would be inside, with the Phere (see text for the conse-
outlines near the rim strongly compressed. duences of this phenomenon).
Overhead—the sky, not just half of it as is
the case with us, but nearly all of it, and ending in a hazy and misty
fringe only at the edge of the bowl. Our diurnal luminary would never
depart from this strange sky, with the result that the midnight Sun
would be visible at all points on the planet. We cannot, of course, defi-
nitely say whether Jupiter really has these extraordinary features.

A close-up of Jupiter from its nearest satellite (Fig. 70) would pre-
sent an astonishing sight. Seen from the fifth and nearest satellite its
huge disc would have a diameter nearly 90 times bigger than the
Moon* and would shine with a brightness only six or seven times less
than the Sun. When its lower limb touches the horizon, its upper limb
is in the centre of the heavens, and when it dips below the horizon it
takes up an 8th of the sky-line. From time to time dark circles, the
shadows thrown by Jupiter’s moons, which are powerless, of course, to

* Seen from the satellite, Jupiter's angular diameter is more than 44°.
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Fig. 70. Jupiter. as seen from his 111 satellite.

“eclipse” this huge planet to any noticeable degree, glide across the
rapidly revolving disc.
® * ®

Now for a visit to Saturn merely to see how its famous rings appear
to the observer. We discover firstly that not everywhere on Saturn are
the rings visible. For instance, they would not be seen at all between
the Poles and the 64th parallel. On the boundary of this area we would
see only the external rim of the outer ring (Fig. 71). The view between
the. 64th and the 50th paraliel is better, and on the 50th parallel the
observer can admire the entire range of the rings, seen here at their
greatest angle of 12°, Nearer to the equator they narrow, though rising
higher above the horizon. At the equator itself the rings are seen only
as a narrow strip cutting across the zenith from west to east.

But that is not the whole picture. Bear in mind that only one side
of the rings is lit, the other being in shadow. The illuminated side is
seen only from that half of Saturn which it faces. For half the long
Saturnian year we see the rings only from one half of the planet (they
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are seen from the other half the rest of the time), and even then pri-
marily in the daytime. During the brief hours when the rings are seen
at night, they are often eclipsed by the planet’s shadow. Lastly, one
more curious detail: the equatorial regions are eclipsed by the rings for
a number of terrestrial years.

Fig. 71. How we find the degree of visibility of the Saturn-
ian rings for various places on thal planet. Between the Pole
and the 64th parallel the rings are not seen at all.

Of all celestial pictures the most spectacular by far is the sight the
observer would obtain from one of Saturn’s nearest satellites. Seen
especially during an incomplete phase, when it has the shape of a
crescent, Saturn with its rings is a sight which cannot be seen any-
where else in the planetary system. We would see in the sky an enor-
mous crescent intersected by a narrow band of rings, seen rimwise, and
around them a group of Saturnian satellites, also in crescent shape,
only much smaller.

® * *

~ The following table shows us, in diminishing order, the comparative
brilliancy of the different bodies in the skies of other planets.

1. Venus from Mercury 8. Mercury from Venus
2. The Earth from Venus 9. The Earth from Mars
3. The Earth from Mecrcury 10. Jupiter [rom the Eurth
4. Venus from the Eurth 11. Jupiter from Venus

5. Venus from Mars 12. Jupiter from Mercury
6. Jupiter from Mars 13. Saturn from Jupiter
7. Mars from the Earth
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Fig. 72. The Moon and the:plane%ts seenin’a telescopé with a magnifying
power of 100. The drawing should be held 25 cm. away from the
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We single out Nos. 4, 7 and 10, or how the planets are seen from our
Earth, because being familiar with their brilliance we can use them as
a guide in assessing the visibility of luminaries from other planets.
Here we:can see particularly clearly that for brilliance our own planet
occupies a leading place among those nearest to the Sun: even in
Mercury’s sky it is brighter than Venus and Jupiter are in our sky.

In the section headed “Stellar Magnitude of Planets” (Chapter
IV) we shall return to a more exact evaluation of the quantitative
brilliance of the Earth and the other planets.

Lastly, a few figures about the solar system, which might come in
handy for reference.

The Sun: 1,390,600 km. in diameter, 1,301,200 times the Earth in vol-
ume, 333,434 times the Earth in mass and 1.41 times in water density.

The Moon: 3,473 km. in diameter, 0.0203 times the Earth in volume,
0.0123 times the Earth’s mass, and 3.34 times in water density. Mean
distance!from the Earth—384,400 km.

The tables on pp. 128-129 give the figures for the planets of the solar
system.

Fig. 72 is a graphic illustration of what the planets would look like
through a small telescope, magnified 100 times, On the left is the Moon
magnified to the same degree and included for the sake of comparison,
(The drawing must be held at a distance of clear vision, i.e., 25 cm.
from the eye.) Mercury is shown in the upper right corner, in the given
magnification, at its nearest and most distant points from us. Venus,
Mars, the Jovian family, and Saturn with its biggest satellites follow
in that order. (For greater detail about visual planetary dimensions
see my Physics for Entertainment, Part 2, Chapt. 1X.)
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CHAPTER IV
THE STARS

Why Do Stars Look Like Stars?

When we look at the stars with the naked eye we see them emit a
star-shaped glitter.

The reason for this is to be found in our own eye or rather in the
inadequate transparency of the crystalline lens, which, unlike a good
glass lens, is fibrous in structure, not homogeneous. Here is what
Helmholtz (in his Achievements of the Theory of Vision) has to say
about the matter: .

“Points of light produce in the eye an incorrect star-like image. This.
is due to the crystalline lens, the fibres of which stretch out tentacle-
like in six directions. The rays which we take to be coming from points‘
of light, say, the stars or remote lights, are simply the reflection of the
radial structure of the crystalline lens. The universality of this short-
coming of the eye is evident from the fact that any ray-like figure is
usually’said to be star-shaped.”

We can, if we wish, remedy this failing of our crystalline lens and
see the stars without their radial glitter and, moreover; without using
the telescope. Leonardo da Vinci told us how to do this 400 years ago!

“Behold the stars without rays,” he wrote. “We can 'do so by looking
at them through a tiny aperture, pricked by a fine needle, and -brought

close to the eye. The stars will appear so tiny that it would seem noth-
ing could be smaller.” :
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This in no way contradicts Helmholz’ ideas about the origin of the
stellar rays. On the contrary, the experiment described confirms his
theory; looking through a tiny aperture the eye takes in only a slender
beam of light, which, passing through the central part of the crystal-
line lens, is not therefore afiected by its radial structure.*

Thus, if our eyes had more perfect structural qualities we would see
in the sky not “stars,” but points of light.

Why Do Stars Twinkle While Planets Shine Steadily?

We easily distinguish with the naked eye between a fixed and “wan-
dering” star, or planet,** even without any knowledge of the celestial
atlas. The planets emit a motionless shine, while the stars fwinkle con-
tinuously—they seem to flash, tremble and change in brilliance, while
the radiant stars, low on the horizon, scintillate endlessly. “This light,”
says Flammarion, “now bright, now faint, twinkling now white, now
green, now red, and sparkling like the purest of diamonds, enlivens
the stellar expanses, so that we take the stars for eyes gazing at our
Earth.” The stars twinkle with particular force and beauty on frosty
nights, in windy weather and also after hzavy rain when the skies are
rapidly cleared of clouds.***

The stars on the skyline twinkle much more than those shining high
in the sky, with the whitish stars taking priority over those yellow or
reddish in hue.

_The twinkle, like the star-shaped radiance, is not an intrinsic quality
of the stars; it is imparted to them by the Earth’s atmosphere through
which the rays pass before reaching the eye. If we could raise ourselves
above the restless gaseous mass surrounding us, through which we
view the unjverse, we would see that the stars do not twinkle, that they
shine with a calm and constant light.

The stars twinkle for the same reason that distant objects tremble

. % Speaking of “stellar rays” we have in mind not the ray which seems to
come from the stars when we screw up our eyes to look at them; this is caused by
diffiraction of light on the eyelids.

##% The original meaning of the Greek word “planet” is “wandering star.”
**% Strong summer twinkling is a sign of rain, indicating the approach of a
cyclone. Before rain the stars emit primarily a blue light; they shed a green light
before drought.
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during a heat-wave when the ground becomes heated owing to' the
action of the Sun.

The star-light, then, has to penetrate not a homogeneous medium,
but gas layers of diverse temperature and density and, hence, of di-
verse refractivity. This kind of atmosphere seems to consist of a host
of optical prisms, of concave and convex lens, all in constant move-
ment, In passing through them light diverges again and again from
a straight course, converges and then disperses again. This is the rea-
son for the frequent change in the brilliancy of stars. And since dis-
sipation of colour accompanies the refraction, the result is, in addition
to variations in brillianice, a change in hue.

The Pulkovo astronomer G. A. Tikhov, who has studied star twin-
kling, says: “There are ways and means of reckoning the number of
times a twinkling star changes colour in a definite period. The changes
are effected with the utmost rapidity and vary in number from a
few dozen to a hundred and more per second. We can see this is so by
resorting to the following simple method. Take a pair of binoculars
and look at a bright star, revolving the lens quickly. Instead of the
star you will see a ring of numerous multi-coloured stars. When twin-
kling is slow, or when the lens is turned quickly, the ring disintegrates
not into stars but into multi-coloured arcs of greater or lesser length.”.

I shall now explain why the planets, in contrast to the stars, do not
twinkle but shine evenly and steadily.

The planets are much nearer to us than the stars; hence we see them
not as points but as circles or discs of light, and their tiny angular
dimensions, thanks to their radiant brilliance, are scarcely noticeable.

Every point in this circle of light twinkles, but since the radiance
and hue of each change independently and at different times, they com-
plement one another; the fading brilliancy of one point dovetails with the
growing brilliancy of another so that the total light shed by the planet
remains constant. Hence, the even, unbroken brilliancy of the planets.

So the planets appear to us as non-twinklers because while they
twinkle simultaneously at many points, they do so at different times.

Can Stars Be Seen in Daylight?

The constellations that we saw at night half a year ago are now
overhead in the daytime., Six months later they will again adorn the
night sky. The sunlit atmosphere of the Earth screens them from the
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eye because the air particles. disperse the sunrays more than the rays
emitted by the stars.* )

7 The following simple experiment will help explain why the stars
disappear in daylight. Punch a few holes in one of the sides of a card-
board box, taking care, however, to make them resemble a familiar
constellation. Having done so, glue a sheet of white paper on the out-
side. Place a light inside the box and take it into a dark room lit
from the inside; the holes, representing stars in the night sky, are
clearly seeri. But, switch on a light in the room without extinguishing
the light in the box and, lo, the artificial stars on our sheet of paper
vanish without trace: “daylight” has extinguished them.

One often reads of stars being seen even in daylight from the bottom
of- deep mines and wells, of tall chimney-stacks and so on. Recently,
however, this viewpoint, which had the backing of eminent names,
was put to test and found wanting.

As a matter of fact, none of the men who wrote on this subject,
whether the Aristotle of antiquity or 19th-century Herschel, had ever
bothered to observe the stars in these conditions. They quoted the tes-
timony of a third person. But the unwisdom 6f relying on the testimony
of “eye-witnesses,” say in this particular field, is emphasized by the
following example. An article in an American magazine described day-
light visibility of stars from the bottom of a well as a fable. This was
hotly contested by a farmer who claimed that he had seen Capella
and Algol in daytime from the floor of a 20-metre high silo. But when
his claim was checked it was found that on the latitude of his farm
neither of the stars was at zenith at the given date and, consequently,
could not have been seen from the bottom of the silo.

Theoretically, there is'no reason why a mine or a well should help
in daylight observation of stars. We have already mentioned that the
stars are not seen in daytime because sunlight extinguishes them. This
holds also for the eye of the observer at the bottom of a mine. All that
is subtracted in this case is the light from the sides. All the parti-
cles in the layer of air above the surface of the mine continue to give off
light and, consequently, bar the stars to vision.

* The observer located on the top of a high mountain, with the densest and
dustiest layers of. the atmosphere below, would see the brighter stars even in day-
time. For instance, from the top of Mt. Ararat (5 km. high), first-magnitude stars

are clearly distinguished at 2 o'clock in the afternoon; the sky is seen as having
a .dark blue colour..
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-~ What is of importance here is that the walls of the well protect the:
eye from the bright sunlight; this, however, merely facilitates obser--
vation of the bright planets, but not the stars.

The reason why stars are seen through the telescope in daylight is:
not because they are seen from “the bottom of a tube,” as many think,
but because the refraction of light. by the lens or its reflection in the
mirrors detracts from the brilliancy of the part of the sky under obser-
vation, and at the same time enhances the brilliancy of the stars (seen
as points of light). We can see first-magnitude and even second-mag-
nitudé stars in daytime through a 7 cm. telescope. What has
been said, however, does not hold true for either wells, mines, or
chimneys. ,

The bright planets, say, Venus, Jupiter or Mars, in opposition, pre-
sent a totally different picture. They shine far more brilliantly than the
stars, and for this reason, given favourable conditions, can be seen in
daylight (q.v. “The Planets in Daylight,” p. 101).

What Is Stellar Magnitude?

Even the layman with ‘a hazy idea of astronomy knows that there
are stars of the first magnitude and stars that are not of the first mag-
nitude. These expressions are -in’ general use. But he has scarcely
heard of stars that are brighter than first-magnitude stars or what are
known as zero or even minus magnitude stars, For him it would be
out of all proportion to classily the brightest luminaries as minus
magnitude stars, with the Sun a “minus 27th-magnitude star.” Some
even see in this a distortion of the negative number concept. And yet
what we really have here is a striking illustration of the consistency
of the theory of negative numbers.

First a few details about stellar classification by magnitude. I hardly
need remind you that here the word “magnitude” means not the geo-
metrical dimensions of the stars but their visual brilliancy. The an-
cients classified the brighiest stars, those first seen in the evening sky,
as stars of first magnitude. Then came stars of the second, third,
fourth, fifth and, finally, sixth magnitude, which are roughly on the
boundary line of unaided vision. This subjective classification of the
stars by brilliancy did not satisfy the astronomers of later times. A
more rigid basis for brilliancy classification was worked out. It was
found that on the average the brightest stars (they are not all of equal

187



brilliancy) are exactly 100 times brighter than the faintest stars on the

borderline of unaided vision.
A scale of stellar brilliancy was established so that the ratio of

brilliancy of stars of two neighbouring magnitudes remains constant.
Designating this “light intensity ratio” by n, we get:
2nd-mag. stars are fainter than 1st-magnitude stars by n times

3rd » ” ” ” »  Ind- ” » » n ”
4th ” ” » ” [n 3rd_ L » » n ” etc_

Comparing the brilliancy of stars of all other magnitudes with that
of Ist-magnitude stars we get:

3rd-mag. stars are fainter than lst-magnitude stars by n2 times

4th » ” ” ” ] 1st- ” ] » nd ”
5{ h » » ” ”» ” 1 St- » ” » pné ”
6t h ” ”» ”» » » 1 St - ” ”» ”» n5 »

Observation established that n5=100, It is now easy (with the help of
logarythms) to find ihe value of the light intensity ratio n:

n="4/100=2.5*

Thus, the stars of each successive magnitude are 2.5 times fainter
than those of the foregoing magnitude.

Stellar Algebra

A few additional details about the group of brightest stars. We
noted above that they are not of equal brilliancy; some are several
times brighter than the average, others are fainter (their average bril-
liancy is a hundred times greater than that of stars on the borderline
of unaided vision).

Let us now designate the brilliancy of stars 2.5 times brighter than
the average first-magnitude star. What number precedes 1? Zero. Con-
sequently, these stars are classified as “zero”-magnitude stars. But
where should we place stars not 2.5 times, but only 1.5 times or twice
brighter than those of first magnitude? They come between 1 and 0,
so their stellar magnitude is expressed by a positive decimal fraction,

* More accurately, 2.512.
138



say, a star of “0.9 magnitude” or “0.6 magnitude,” and so on. These
stars are brighter than those of the first magnitude.

You will now realize why negative numbers had to be introduced in
designating stellar brilliancy. Since there are stars of a light intensity
surpassing the zero magnitude, their brilliancy, obviously, must be
expressed in numbers on the other side of zero, i.e., by negative num-
bers. Hence such definitions of brilliancy as —1, —2, —1.6, —0.9, etc.

In astronomical practice “stellar magnitude” is ascertained by a
device known as a photometer; the brilliancy of a luminary is com-
pared with the brilliance of a definite star of known light intensity, or
with an “artificial star” in the device itself,

The brightest star in the sky, Sirius, has a stellar magnitude of
— 1.6. Canopus (seen only in southern latitudes) has a stellar magni-
tude of —0.9. The brightest stars in the Northern Hemisphere are Vega
(0.1), Capella and Arcturus (0.2), Rigel (0.3), Procyon (0.5) and Al-
tair (0.9). (Remember that 0.5-magnitude stars are brighter than 0.9-
magnitude stars, and so on.) Here is a list of the brightest stars and.
their stellar magnitude (the name of the constellation is given in
brackets):

Sirius (« Canis Majoris) . . . . —1.6 Betelgeuse (¢ Orionis) . . . . . 0.9
Canopus (a Carinae) . . . . . . —0.9 Altair (a Aquilae) . . . . . . . 0.9
a Centauri . . ... ..... 0.1 aCrucis. . « v o ¢ o o v o o 1.1
Vega (x« Lyrae) . . ... ... . 0.1 Aldebaran (« Tauri) . . . ... 11
Capella (= Aurigae) . . . . . . 0.2 Pollux (3 Geminorum) . . . . . 1.2
Arcturus (2 Bootis) . . . . .. 0.2 Spica (a Virginis) . . . . . . . 1.2
Rigel (3 Orionis) . . ... .. 0.3 Antares (a Scorpii) . . . . .. 1.2
Procyon (a Cawis Minoris). . . 0.5 Fomulhaut (« Piscis Australis) . 1.3
Achernar (a Eridani). . . . .. 0.6 Deneb (« Cygni) . « + « « «. 13
pCentauri . . ... ..... 0.9 Regulus (2 Leonis) . . . . .. 1.3

Glancing at this list we see that there are no stars at all exactly of
first magnitude; from stars of 0.9-magnitude the list takes us to 1.1-,
1.2-magnitudes, etc., skipping the first magnitude. It follows, therefore,
that the first-magnitude star does not exist, it is simply a conventional
standard of brilliancy.

One should not take stellar magnitude classification as being deter-
mined by the physical properties of the stars. It derives from our eye-
sight and is the working out of the Weber-Fechner psychophysiological
law which is common to all the senses. Applied to vision this law
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reads: when luminosity changes in geometrical progression, light in-
tensity sensation changes in arithmetical progression. (Curiously
enough, in measuring sound and noise intensity physicists rely on the
principle applied in establishing stellar brilliancy; the reader will find
this described in detail in my Physics for Entertainment and Algebra
for Entertainment.)

Now that we have made the acquaintance of the astronomical scale
of brilliancy, let us turn to some instructive calculations, Say we reck-
on how many third-magnitude stars taken together would shine with
the brilliance of one first-magnitude star. We know that third-
magnitude stars are fainter than first-magnitude stars 2.52 or
6.3 times; hence, to substitute for one first-magnitude star we would
need 6.3 third-magnitude stars. Accordingly, we would need 15.8 fourth-
magnitude stars and so on. The results of the calculations are given
in the following table.* ‘
- To replace one first-magnitude star we need the following number
of stars of other magnitudes:

2nd 2.5 7th 250
3rd 6.3 10th) 4,000
4th 16 11th 10,000
5th = 40 16th 1,000,000
6th 100

At the 7th magnitude we are already over the borderline, in the
world of stars inaccessible to the naked eye. Sixteenth-magnitude stars
can be seen only through very powerful telescopes; lo catch them
with unaided vision, sensitivity of natural eyesight would have to be
10,000 times stronger. We would then see them as we now see the 6th-
magnitude stars.

The above table could not, of course, provide for stars of the “pre-
first” magnitude. Here are the calculations for some of them; 0.5-mag-
nitude stars (Procyon) are 2.5%5, or 1.5 times brighter than Ist-mag-
nitude stars, — 0.9-magnitude stars (Canopus) are 2.519, or 5.8 times
brighter, while — 1.6-magnitude stars (Sirius) are 2.526, or 11 times
brighter. .

Lastly, here is another interesting calculation: how many first-mag-

* The calculations are facilitated by the fact that the light intensity ratio
logarythm is very simple, 0.4.
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nitiide stars would be needed to replace the llght shed by. all the stars
seen’ with the naked eye? .

We take it for granted that there are 10 first-magnitude stars in one
hemisphere. It has been observed that the number of stars in the cate-
gory next in succession is'roughly thrice the number of the previous
category. In brilliancy they are 2.5 times fainter, Therefore the number
we need would be equal-to the sum of the members in the progression:

10+ ( 1o><3><%—) + (1o><3 xﬁ>+‘...+ (1,°X3 X 2_5,)

3 [
10x (-é—b—) —10 o
. 3— . f .
%5 — 1

Hence, the sum of the brilliance of all naked-eye stars in one hemi-
sphere is roughly that of 100 ﬁrst-magnitude stars or of one —4-magni-
tude star.

If we repeat the calculatlon so that it ‘takes in not only the naked-
eye stars, but also those accessible to modern telescopes, we shall find
total brilliance to be equivalent to that of 1,100 first-magnitude stars
or of one — 6.6-magnitude star,

The Eye and the Telescope

Let us compare telescopic observation of stars with naked-eye ob-

servation.
We shall take the diameter of the human pupil in night observations

to average 7 mm. A 5 cm. telescope gates(ig)2 or roughly 50 timeé

more light, and a 50 cm. one 5,000 times more than the human pupil.
Such is the number of times that the telescope magnifies the brilliancy
of the starsl (This applies solely to sfars, not to planets, the discs of
which can be seen. In calculating the brilliancy of the planetary image
it is necessary to take into account the telescopes optical magnifying
power.)

Knowing this, you will be able to reckon the diameter of the tele-
scope lens needed to see stars of one or another magnitude; in addition,
we must know what magnitude can be seen through a telescope with
a definite lens. Suppose you know that a 64 cm. telescope can take in
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stars up to the 15th magnitude inclusive. What lens diameter would

be needed to see stars of the next 16th, magnitude? In the ratio
—6—@— == 2.5,

x is the unknown lens diameter. We find

" %=64V2.5 ~ 100 cm.

Hence, we need a telescope with a lens diameter of one metre. Gener-
ally speakmg, to increase the telescope’s magnifying power to take in
the next stellar magnitude, the lens diameter should be increased by
v'2.5 or 1.6 times.

Stellar Magnitude of Sun and Moon

Let us continue our algebralc excursion to take in celestial objects.
Using the scale applied in estxmatmg stellar brilliancy, we can, in
addition to the fixed stars, find a place for the other luminaries—ihe
planets, the Sun and the Moon. I shall dwell specially on planetary
brilliancy later; meanwhile, let us talk about the stellar magnitude of
the Sun and the Moon. The stellar magnitude of the Sun is expressed
by the number — 26.8, that of the full* Moon by — 12.6. | take it that
readers will have deduced from the foregoing pages why the two numbers
are negative, What might be perplexing, however, is the seemingly
madequate difference between the stellar magnitude of the Sun and
the Moon. You might say: the former “is only twice the latter.”

Do not forget, however, that stellar magnitude is actually a kind of
logarythm with a base of 2.5. And since it is impossible, when compar-
ing numbers, to. divide the logarythm of one by the other, similarly
when comparing stellar magnitudes one cannot be divided by the other.
The following calculation will show the result of correct comparison.

The Sun, with a stellar magnitude of — 26.8, is 2.5%8 times brighter
than a first-magnitude star, while the Moon is but 2.5:3.6 times

briorhter
527 .8

Hence, the Sun’s brilliancy is Z =155 ~2.5!42 times that of the full

moon. Computing this with the aid of a logarythm table we obtain

* In the first and last quarters the Moon’s stellar maénitude is —9.
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the number 447,000. Consequently, the correct brilliancy ratio of the
Sun and the Moon can be stated thus: in clear weather our diurnal
luminary shines on the Earth with the power of 447,000 full Moons on
a cloudless night.

If we take the quantity of #eaf reflected by the Moon to be propor-
tional to the quantity of its light—and this probably approximates to
truth—it can be presumed that it gives us 447,000 times less heat than
the Sun. Astronomers know that each square centimetre on the border:
line of the Earth’s atmosphere receives from the Sun about two small
calories of heat per minute. Consequently, the Moon supplies each
square centimetre of the Earth with not more than the 225,000-th frac-
tion of a calory per minute. In other words, it would heat one gramme
of water in one minute to the 225,000-th fraction of a degree. We see,
therefore, how groundless are the attempts to ascribe to moonlight
any influence on the Earth’s weather.*

The belief is widely current that clouds often melt under the rays of
the full Moon. This is a crass delusion, the explanation being that
nocturnal disappearance of clouds (for which there are other reasons)
is noticed only in moonlight.

We shall now take leave of the Moon and calculate the number of
times the Sun is brighter than Sirius, the brightest star in the sky.
Proceeding in the same way as previously, we shall find the ratio of
brilliancy to be:

2'527.8
9,526

i.e,, the Sun is 10,000 million times brighter than Sirius.

Now for another interesting calculation. How many times brighter
is the light shed by the full Moon.than the combined light of all the
stars in the firmament, i.e., all the naked-eye stars in one celestial hem-
isphere? We have already calculated that all the stars, from first to
6th magnitude inclusive, give as much light as 100 first-magnitude
stars. Consequently, our task boils down to finding out the number of
times the Moon is brighter than 100 first-magnitude stars. This is
equal to ‘

=2.5%-2=10,000,000,000,

2.513.6
100

* The Moon’s gravitational influence on weather will be discussed at the end
of the book. (See “The Moon and Weather.”)

= 2,700.
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Hence, on a clear, moonless night the stars yield only 1/2700th of
the light shed by the full Moon, or 2,700X447,000, i.e., 1,200,000,000
times less than the Sun on a cloudless day. -

We might add that the star magnitude of a normal international
“candle” one metre away is — 14.2, signifying that at this distance it
emits a light 2.514-2-126, or four times brighter than a full Moon.

It will not be devoid of interest to note, moreover, that an aircraft
beacon of 2,000 million candle-power would be seen, if placed at the
Moon’s distance from Earth, as a 4.5 magnitude star or, in other
words, could be seen with the naked eye. :

True Brilliance of Stars and Sun

All our evaluations of brilliance so far have pertained solely to vis-
ual brilliance. The figures given express the brilliance of luminaries
for their real distances. But we are well aware that the stars are not
all the same distance away. Hence, their visual brilliance tells us both
true brilliance and the distance from us, or, to be more exact, of nei-
ther, until we separate the two. Meanwhile it is important to know
-what would be the comparative brilliance, or “luminosity,” as they
say, of the different stars were they all the same distance away.

Raising the question in this way astronomers introduce the concept
of “absolute” stellar magnitude, that is, the maomtude of a star sep-
arated from us by a distance of 10 “parsecs.” The parsec is a unit of
length used to express the distances of stars; we shall speak of its
origin later. For the time being we merely note that one parsec is equal
to about 30,800,000,000,000 km, We can easily calculate absolute stel-
lar magnitude if we know the distance to the star and take inio ac-
count that brilliancy is in inverse proportion to the squared distance.*

* The following formula (the origin of which will be appreciated a little later
when the reader becomes closer acquainted with the “parsec” and “parallax”) can

2
be used for the calculation: 2.5%=2.5m (On]) where M is the star’s absolute

magnitude, m its visual magnitude, and = the star’s parallax in seconds. The
sequence of operations in the calculation is as follows:

2.5 = 2,56m x 100 n2,
Mlg2.5=mlg2.542421gm,
0.4M=0.4m42421gm,

whence . .. M=m+45+45lgn-
For Sirius, for’ mstance m='— 16 and ==0/,38. Thus its absolute magnitude will
be M=—16+5+5 lg 038 = 1.3
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We shall acquaint the reader with the results of but two calculations,
performed for Sirius and for the Sun. The absolute magnitude of Si-
rius is 1.3, that of the Sun +4.8. This means that at a distance of
308,000,000,000,000 km., Sirius would be seen as a 1.3-magnitude star
and the Sun as a 4.8-magnitude star, being

2'53.8 .
508 2.53:5 =25 times

fainter than Sirius, though the Sun’s visual brilliance is 10,000,000,000
times greater than that of Sirius.

We see, therefore, that the Sun is far from being the brightest star
in the sky. But, let us beware of counting our Sun a pygmy among its
fellow stars; for its luminosity is above the average. According to stel-
lar statistics, average luminosity stars around the Sun, up to the dis-
tance of 10 parsecs away, are stars of the 9th absolute magnitude.
Since the Sun’s absolute magnitude is 4.8, this means that it is

2.b8
2.538 = 2,542 =50

times brighter than the average “neighbouring” star.
Although 25 times fainter than Sirius in absolute values, the Sun,
nevertheless, is 50 times brighter than the average stars around it.

Brightest of Known Stars

Greatest luminorsity belongs to an 8th-magnitude star, invisible to
the naked eye, in the Dorado constellation, designated by the Latin
letter S. This constellation is in the Southern Hemisphere and cannot
be seen in the temperate zone of the Northern Hemisphere. The star in
question is a member of the neighbouring stellar system of the Small-
er Magellanic Cloud, which is roughly 12,000 times farther from us
than Sirius, In view of the enormous distance it must have exception-
al luminosity to be seen even as one of the 8th magnitude. If Sirius
were cast so far away in space it would be seen as a 17th-magnitude
star, or hardly seen at all even in the most powerful telescope.

What, then, is the luminosity of this remarkable star? Calculations
give us this result: —9th magnitude. This means that in absolute
terms it is roughly 400,000 times brighter than the Sun! If this most
luminous of stars were at the same distance from us as Sirius it would
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be 9 magnitudes brighter, or about as brilliant as the Moon in its
quarter phase! Certainly a star, which at Sirius’ distance would shed
such a volume of light on the Earth is entitled to be called the bright-
est of known stars.

Stellar Magnitude of Planets as Seen in Our
Sky and in Alien Skies

Let us repeat the imaginary tour of the other planets that we made
earlier in “Alien Skies” with a view to obtaining a more precise eval-
uation of the brilliance of the luminaries shining there. First, we shall
indicate the planets’ stellar magnitude at full brilliance in the Earth’s
sky. Here is the corresponding table:

In the Earth’s Sky:

Venus . . ... ... —4.3 Saturn . . . ... .. —0.4
Mars . . . ... ... —2.8 Uranus . . . . « . . . +5.7
Jupiter . . . . . ... —2.5 Neptune . . . . . ... +7.6
Mercury . ... ... —1.2

This table shows us that Venus is nearly two stellar magnitudes, i.e.,
2.52 or 6.25 times brighter than Jupiter, and 2.5-27 or 13 times bright-
er than Sirius (Sirius’ brilliance is of the — 1.6 magnitude). It shows
us also that the faint planet of Saturn is, nevertheless, brighter than
all the fixed stars, save Sirius and Canopus. Here we find a pointer
explaining why the planets Venus and Jupiter are sometimes acces-
sible to unaided vision in daytime, while the stars are invisible to the
naked eye in daylight.

Now for tables showing the brilliance of luminaries as seen in the
skies of Venus, Mars and Jupiter, without additional explanations,
since they would merely express in quantity what has already been
said in “Alien Skies”:

In Mars’ Sky In Venus’ Sky

The Sun . ... ... —26 The Sun . . . .. .. —27.5
Phobos . . . ... .. — 8 The Earth . . . . . . — 6.6
Deimos . . . .. ... — 37 Mercury . . . . . . . — 27
Venus. . . . ... .. — 3.2 Jupiter . . . . .. .. — 24
Jupiter . . . . .. .. — 28 The Moon . . . . . . — 2.4
The Earth. . . . . .. — 26 Saturn . . . . .. .. — 0.3
Mercury . ... ... — 0.8

Saturn . . ... ... — 0.6
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In Jupiter's Sky

The Sun . . . . ... —23 IV Satellite. . . . . . —3.3
I Satellite. . . . . . —7.7 \Y e e e e e s —2.8
II w e e e e e —6.4 Saturn . . . .. ... —2

111 e e e e e . —5.6 Venus . . . . . . .. —0.3

In evaluating the brilliance of the planets in the skies of their own
satellites, pride of place should be assigned to the “full” Mars in the
sky of Phobos (—22.5), then the “full” Jupiter in the sky of the V Sat-
ellite (—21) and the “full” Saturn in the sky of its satellite Mimas
(—20); here Saturn is but five times fainter than the Sun!

Finally, another instructive table showing the brilliance of the
planets as seen from one another. They are given here in the order of
diminishing brilliancy.

Stellar Magnitude Stellar Magnitude

Venus from Mercury. . . . . —-7.7 Mercury from Venus. . . . . —2.7
The Earth from Venus. . . . —6.6 The Earth from Mars . . .. —2.6
The Earth from Mercury . . . —5 Jupiter from the Earth. . . . —2.5
Venus from the Earth . . . . —4.3 Jupiter from Venus . . . . . —2.4
Venus from Mars . . . . . . —3.2 Jupiter from Mercury . ... —2.2
Jupiter from Mars. . . , . . —2.8 Saturn from Jupiter . . . . . —2
Mars from the Earth . ... —2.8

The table shows that the brightest luminaries in the skies of the chief
planets are Venus seen from Mercury, the Earth seen from Venus, and
the Earth seen from Mercury.

Why Are the Stars Not Magnified in the Telescope?

People looking at the stars through a glass for the first time are
surprised when the glass, which so noticeably magnifies the Moon and
the planets, far from magnifying the stars, actually reduces them, turn-
ing them into bright points without a disc. This was noted in his day
by Galileo, the first man to look at the sky with aided vision. Describing
his early observations with the spy-glass which he had devised, he
says:

“The difference in the shape of the planets and of the fixed stars
when observed through a spy-glass is worthy of note. Whereas the
planets are seen as small circles distinctly pencilled, like minute coins,
the fixed stars have no distinguishable outline.... The glass merely
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magnifies their brilliance, imparting to 5th- and 6th-magnitude stars
the radiance of Sirius, the brightest of fixed stars.”

To explain this powerlessness of the telescope to magmfy the stars,
we must remind you of a few facts concerning the physiology and
physics of eyesight. When your eyes follow a man walking away from
you, his image on your retina becomes smaller and smaller. At a cer-
tain distance his head and feet are so close on the retina, that they
no longer catch different elements (nerve ends) but one and the same
element, The human figure is seen then as a dot, devoid of outline.
This happens with most people when the angle of vision diminishes to
1. The purpose of the telescope is to increase the angle of vision, or, in
other words, to elongate the image of each part of the observed object
to embrace several associated elements of the retina. We say of a
telescope that it “magnifies 100 times,” when the angle of its vision is
100 times greater than the angle of unaided vision for the same dis-
tance. But when, even with this magnification, an ob]ect is seen at an
angle of less than 1’, this tells us that the telescope is not powerful
enough to take in the object.
¢« We can easily calculate that even the smallest detail seen on the
Moon through a telescope of 1000 x magnification would have a diam-
eter of 110 metres. For the Sun this would be 40 km. But for the
nearest star we would obtain the huge diameter of 12,000,000 km.

i The Sun’s diameter is 8.5 times less. Thus, if transferred to the dis-
tance of the nearest star, the Sun would appear as a mere dot even in
a 1000 x telescope. The nearest star must be about 600 times larger
than the Sun to enable a powerful telescope to reveal its disc. At Sirius’
distance, the star would be 5,000 times larger than the Sun. And since
most stars. are much farther away, and their average size not much
greater than the Sun, they are seen as dots even through the most
powerful telescopes.

“No star in the sky,” Jeans says, “has a greater angular dimension
than that of a pinhead 10 kilometres away and there is still no tele-
scope which would show so small an object as a disc.” On the con-
trary, the large celestial objects in our solar system, seen through the
telescope, reveal a larger disc the greater the magnification. But, here,
as we have already noted, the astronomer encounters another incon-
venience; while the image increases, its brilliance diminishes (due to
the scattering of the light beam over a greater surface), and the fainter
b\fllllancy hinders detection of details. That is why when observing

148



planets and comets particularly, the astronemer uses a telescope ‘of
moderate magnifying power.

The reader may ask: Well, if the telescope does not enlarge the stars
why use it at all?

After what has been said above there is hardly any need to dwell at
length on this point. The telescope is powerless to magnify the appar-

Fig. 78. The star ¢ Lyrae (near Vega) as seen (/) with the naked eye,
(2) through a pair of binoculars, and (3) through a telescope.

ent dimensions of the stars; but it intensifies their brilliance and, con-
sequently, multiplies the number of stars accessible to vision.

Another achievément of the telescope is that it separafes the stars
which appear as one to.the naked eye. Although it cannot 'erilarge the
apparent diaméter of the star, it enlarges the apparent distance be-
tween them. Thus, it reveals to us double, triple and still more complex
stars in places where the riaked eye sees but one (Flg 73). Stellar clus-
ters which due to:distance appear to the naked eye as hazy specks, er
are not seen at all, break up 'into thousands of separate stars in the
telescopic field of vision. . /

A third service rendered by the telescope in stellar study is that jt
enables astronomers to measure angles with amazing accuracy; on
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-photographs obtained with the help of big modern telescopes astronom-
ers measure angles of 0.”701. At this angle we can see a farthing 300
km, away, or a human hair 100 metres away!

How Were Stellar Diameters Measured?

As we have just explained the diameters of the fixed stars cannot be
seen even with the most powerful telescope. Until recently conjectures
about stellar dimensions were simply guesswork. It was presumed that
each star approximated to our Sun in size, but corroboration was lack-
ing. And since telescopes more powerful than those in use were needed
to measure the stellar diameters, it seemed that the problem of ascer-
taining the true diameters of the stars was insoluble.

That was how matters stood until 1920 when new methods and in-
vestigation instruments enabled astronomers to tackle the job.

. For this latest achievement astronomy is indebted to its loyal ally,
physics, which has rendered it more than one inestimable service.

P We shall now describe the gist
of the method based on light in-
terference.

To elucidate the principle on
‘which this method of measure-
ment is based we shall conduct
an experiment calling for a few
simple tools, including a small
30 x telescope and a bright light
source located 10 or 15 metres
away and fenced off by a screen
with the narrowest of vertical
slits—a few tenths of a milli-
Fig. 74. A drawing explaining the work- metre. We now cover the lens

ing of the “interferometer,” a device for . . ey s .
measuring the angular diameters of stars Wil an opaque lid in which there
(see text for details). are two round apertures about 3

mm. in diameter and 15 mm.
apart horizontally symmetrical to the centre of the lens (Fig. 74). When
the 1id is removed, the slit is seen in the telescope as a narrow band
with far fainter side strips. But when we look at the slit with the lid
on, we see vertical dark gaps on the central bright band—the conse-
quence of the interaction (interference) of the two beams of light pass-
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ing through the two apertures in the lid; they vanish when we cover
one of the apertures.

If the apertures are so placed that the distance between them can
be changed, we find that the farther apart they are the fainter the dark
gaps become, until at last they vanish altogether. Knowing the dis-
tance separating the apertures, we can ascertain the angular width
of the slit, or in other words, the angle at which this width is seen by
the observer. And if, in addition, we know the distance to the slit itself,
we shall be able to calculate its real width. But if instead of a slit we
have a tiny round hole, even then the method of ascertaining the width
of the “circular slit” (i.e., the diameter of the circle) remains the same,
all that is needed is to multiply the angle obtained by 1.22.

The same method is used in measuring the diameter of stars, but
since the angular diameter of the latter is so tiny, a very powerful tel-
escope is needed.

In addition to this instrument, which is known as the “interferometer,”
‘there is another more roundabout way of ascertaining the true diame-
ter of the stars, based on investigation of stellar spectra.

The astronomer deduces from the star’s spectrum its temperature
and hence is able to calculate the quantity of radiance emanating
from 1 sq. cm. of its surface. Moreover, if he knows the distance to the
star and its visual brilliance, he can ascertain the quantity radiated
by the entire surface. The ratio of this second quantity to the first gives
us the area of the star’s surface and, hence, its diameter. It has been
established, for example, that the diameter of Capella is 16 times the
Sun’s diameter; Betelgeuse’s diameter is 350 times bigger; Sirius’s
diameter and Vega’s diameter are two -and a half times bigger while
the diameter of Sirius’ satellite is 0.02 times the Sun’s diameter. :

Giants of the Stellar World

The results obtained when stellar diameters were measured were
truly startling. Astronomers had no idea that the universe contained
such huge stars. The first star to have its true dimensions successfully
recorded (1920) was the brighi @ Orionis, bearing the Arabic name
Betelgeuse. Its diameter proved to be greater than the diameter of
Mars’ orbit! Another of the giants is Antares, the brightest star in
the Scorpius constellation; its diameter is about 1.5 times that of the
Earth’s orbit (Fig. 75). Among the stellar giants discovered so far
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mention should be made of the so-called “Wonderful” (Mira) in the
Cetus constellation, whose diameter is 400 times greater than that of
the Sun (see the drawing on page 133).

A few words about the physical

structure of these giants. Calcu-

“\\\\nmlﬂ‘lm”,,,,%i lations show that these stars,

%; monster dimensions notwith-

Antares % standing, have disproportionately
§450000000km1n diqmeter “"  small amounts of matter. They
T s 2_ areonly a few times heavier than
¥ the Sun, and since Betelgeuse,

= *s“"/ & for instance, is 40,000,000 times
—% :,Earth ”_, £ larger than the Sun, its density,
é """""" h's orbit & consequently, must be negligible.
%, 300000 OOOKmlndiameter § And if the Sun’s matter averages
%‘% &&*‘ the density of water, then, the

D

matter of the giant stars must be
”W’"Wq’ﬂnmuw“‘ Q in the nature of rarified air. As

one astronomer put i, these stars
Fig. 75. The giant star Antares (a

7 “resemble huge balloons with
Scorpii) cot}ld encompass our St.m together meagre densities, much smaller
with the Earth’s orbit. .
than that of air.

An Unexpected Result

" In connection with the foregoing it would be interesting to know
how much space all the stars would fill in the sky if their visual
images were juxtaposed.

We know that the aggregate brilliance of all the stars accessible to
telescopic observation is equal to that of a —6.6-magnitude star (see
above). The luminosity of such a star is 20 stellar magnitudes fainter
than that of the Sun, in other words it gives off 100 million times less
light. Assuming the Sun, in surface temperature, to be an average
star we can take the apparent surface of our imaginary star to be the
indicated number of times less than the apparent surface of the Sun.
Since diameters of circles are proportional to the square roots of their
areas, the apparent diameter of our star would be 10,000 times less
fhan the lapparent diameter of the Sun, i.e., 30":10,000~0".2.

The result is astounding: the total appai:ent area of all the stars
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fills as much space as a disc with a 0”.2 angular diameter. The sky
contains 41,253 sq. degrees; from this we easily deduce that the stars
accessible to the telescope cover but 1/20,000 millionth of the
entire skyl

The Heaviest Substance

Among the wonders concealed in the bosom of the universe a prom-
inent place is likely to be held for all time by the miniature star lo-
cated near Sirius. This star consists of a substance 60,000 times heav-
ier than water] When you take a glass of mercury in your hand you
are surprised by its weight—some 3 kg. But I wonder what you would
say about a glassful of a substance weighing 12 tons and needing a
railway car to carry it? It sounds absurd, doesn’t it?
Yet this is one of astronomy’s latest discoveries.

The discovery, incidentally, has a long and very
instructive history. It was observed long ago that
the brilliant Sirius moved among its fellows not
along the straight line that most stars follow, but
along a strange, tortuous path (Fig. 76). To explain
this feature of its motion, the famous astronomer
Bessel conjectured that Sirius had an attendant satel-
lite whose gravitation “perturbed” its motion. That
was in 1844, two years before the “pen-nib” discov-
ery of Neptune. In 1862, when Bessel was no longer
living, his surmise was fully corroborated, when Si-
rius’ suspected satellite was spotted in the telescope.

This satellite, the so-called “Sirius B,” revolves
around its primary in a period of 49 years at a dis-
tance 20 times farther than the Earth from the Sun
(roughly the distance of Uranus from the Sun)
(Fig. 77). Although this is a faint 8th- or 9th-mag-
nitude star, it has an impressive mass—almost 0.8 :’Zﬁsgga Ihe S?r?:[:l;
the mass of the Sun. If the Sun was as distant as ,pong ch stars
Sirius is, its luminosity would be that of a 1.8-mag- between 1793 and
nitude star. Consequently, if the area of Sirius’ sat- 1833. ‘
ellite were proportionately the same number of times
less the area of the Sun as its mass is, it would, given the same tem-
perature, have the luminosity of roughly a second-magnitude star, not
of .an 8th- or 9th-magnitude star. Astronomers first attempted to ex-
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plain the faint brilliance by presuming a low surface temperature; it
was thought to be a cold sun covered with a hard crust.

This conjecture, however, proved wrong. Thirty years ago it was

found that Sirius’ unassuming satellite was by no means a fading

star, but, on the contrary, be-

longed to the category with a

high surface temperature, far

higher than our Sun. This

changed the picture altogether,

and gave grounds for ascrib-

ing the faintness solely to

Fig. 77. The orbit of Sirius’ satellite
with respect to Sirius itself. (The rea-
son why Sirius is not at the focus of
the apparent ellipse here is because the
true ellipse has been distorted in pro-
jection; here we see it at an angle.)

its small surface dimensions.
Calculations have shown that
it emits 360 times less light
than the Sun; consequently its
area must be at least 360 times
less than that of the Sun, and
its radius/360,0r 19 times less.
So we conclude that in volume
Sirius’ satellite is less than a
1/6,800th of the Sum; in its . . . .

mass, however, it i nearly 05 1,8, S sl consits of sy

that of our diurnal luminary.  few cubic centimetres of it would weigh
This alone points to the heavy the same as thirty men.

density of the substance of this

star. More accurate calculations show this-planet to have a diameter of
only 40,000 km., and, consequently, a density in the realm of the monster
previously menticned—60,000 times the density of water (Fig. 78).

154



“Prick up your ears, physicists: your domain is about to be invaded.”
Kepler’s words, true, they refer to another matter, came to mind. In-
deed no physicist had ever imagined anything of the like. In ordinary
conditions such enormous density is absolutely unthinkable: the space
between normal atoms in solid bodies is too small to allow for any

%
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Fig. 79. One cubic centimetre of atomic nuclei, even if loosely jumbled
together, would have the weight of an Atlantic liner. If packed tightly
it would weigh 10 million tonsl

noticeable compression. It is a different matter, however, with “muti-
lated” atoms that have parted with the electrons circling around the
nuclei. Loss of electrons reduces atomic diameters several thousand-
fold, with hardly any effect on the masses; the shorn nucleus is about
the same number of times smaller than the normal atom as a fly is
smaller than a big building. Subjected to the terrific pressures in the
depths of the stellar sphere, these diminished atom-nuclei can come
thousands of times closer to each other than normal atoms and pro-
duce a substance of unheard-of density such as that disclosed on Si-
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rius’ satellite. What is more, this density has been surpassed by the
so-called van-Maanen star, which though of the 12th magnitude and
no larger than the Earth, consists of a substance possessing a density
400,000 times that of water!

But this is still not the extreme limit. Theoretically, we can presume
far denser substances to exist. The diameter of the atomic nucleus is
not more than 1/10,000th the diameter of the atom and, consequently,

its volume is not more than 'l—éﬁ' that of the atom. One cubic meter of

metal contains only Tblo—omm’ of nuclei, and the metal’s entire mass is
concentrated in this minute volume. Accordingly, 1 cu.cm. of nuclei
should weigh roughly 10,000,000 tons (Fig. 79).

After what has been said there will be nothing incredible about the
discovery of a star with an average density 500 times greater than
that of the afore-mentioned Sirius B. I have in mind the tiny 13th-
magnitude star discovered in the Cassiopeia constellation at the end
of 1935. Though 1/8th the size of the Earth and no bigger than Mars,
this star has a mass nearly three times (2.8 times to be exact) that of
the Sun. In ordinary units its mean density is expressed by the num-
ber 36,000 000 gr./cms. This means 1 cms. of this substance would weigh
36 tons on Earth] Consequently, it has a density nearly two million
times that of gold.* In chapter V we shall discuss how much a cubic
centimetre of this substance would weigh on the star itself.

Only a few years ago scientists would, of course, have scouted the
idea of a substance with a density millions of times that of platinum.

But it is quite on the cards that the fathomless depths of the uni-
verse still conceal not a few wonders of this kind. ‘

Why Are Stars Called Fixed Stars?

When the ancients gave the stars this name they wished to empha-
size that in contrast to the planets the stars are fixed in the sky. Nat-
urally, they participate in the daily motion of the heavens around the
Earth, but this apparent motion does not disturb their related posi-
tion. The planets, on the other hand, constantly change place in rela-

" * The density in the centre of this star must be unbelievably great: about 1,000
million grams in -} cu. cm.
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tion to the stars, wander in their midst and for this reason became
known in antiquity as “wandering stars” (the literal meaning of the
word “planet”).

We moderns know that this picture of the stellar world as an as-
semblage of immobile suns is absolutely wrong. All the stars,* includ-
ing the Sun, move relative to

N

each other with a mean veloc-
ity of 30 km. per sec., the
speed of our planet in its orbital
flight. Hence, the stars are no
less mobile than the planets.
Indeed in the world of stars we

sometimes meet velocities of
an order never found in the
family of planets: astronomers
know of “flying” stars which
travel with respect to our Sun
at the terrific speed of 250-300

R

km. per sec.

But if all the visible stars
move chaotically at breakneck
speed, covering thousands of
millions of kilometres annual-
ly, why do we not see this

frantic flight? Why do the stel.

Fig. 80. As the aeons roll on, the contours of

lar heavens present a picture
of majestic immobility?

The reason is simple: it is
the incredible distance to the

the constellations slowly change. The middle
drawing depicts the “Dipper” of the Great
Bear as it is now, the upper—as it was
100,000 years ago, while the lower drawing

stars. Have you ever watched shows what it will be like 100,000 years hence.

{rom a high point a train mov-

ing in the distance near the horizon? Did you not have the impression
that the express was crawling along like a turtle? A breath-taking
speed for a nearby observer seems a snail’s pace when watched from
a distance. It is the same with stellar motion; the only difference here
is that the relative distance of the observer from the moving body is

¥ Meaning the stars composing “our” stellar island—the Milky Way.
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infinitely greater. Even the brightest stars, which on the average are
much nearer to us than the others, being (according to Kapteyn) a
mere 800 million kilometres away, shift within a year some 1,000 mil-
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Fig. 81. The directions in which the bright stars of the constellation of Orion are
moving (a), and how these motions will have changed the shape of the con-
stellation in 50,000 years from now (&).
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Cen%uri ’*‘

Sirtus
Sun

Fig. 82. The direction of the
three neighbouring stars, the

Sun, « Centauri and Sirius,

lion kilometres or 800 thousand times less
their distance away from us. To see this
shift we on Earth would have to look at it
from an angle of 0”.25, a value hardly to
be caught even by the most delicate of
astronomical instruments. To the naked
eye it would be utterly invisible, even if
it continued for centuries, Only pains-
taking measurement with the most deli-
cate instruments disclosed the motions of
numerous stars (Figs. 80, 81, 82).

Thus, when speaking of naked-eye ob-
servation, the “fixed stars,” despite their
incredibly rapid motion, are fully entitled
to the name. Readers will gather from
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Fig. 83. A scale of stellar motions. Two croquet balls, one in Leningrad, the other

in Tomsk, move towards each other with the speed of 1 km. a century—such in

miniature is the approach towards each other of two stars. This shows how remote
is the possibility of stars colliding.

what has been said how utterly remote is the probability of stars collid-
ing, notwithstanding their dizzy speeds (Fig. 83).

Units of Stellar Distances

Our biggest units of length, the kilometre, the nautical mile (1,852
m.) and the geographical mile (four nautical miles), while adequate
for measuring length on the globe, are certainly not the thing for ce-
lestial distances. They would be about as inconvenient for measuring
celestial distances as, say, millimetres for measuring the length of a
railway line. The distance in kilometres from Jupiter to the Sun is
780,000,000, If we were to measure the Leningrad-Moscow Railway in
millimetres we would get the number of 640,000,000.

To avoid a long row of naughts, astronomers use far bigger units
of length. In measuring length within the limits of the solar system,
they take as the unit the mean distance from the Earth to the Sun—
149,500,000 km. This is the so-called ‘‘astronomical unit.” In these
units the distance between the Sun and Jupiter is 5.2, between the
Sun and Saturn 9.54 and between the Sun and Mercury 0.387.

But when it comes to measuring distances between our Sun and
other suns, the unit just mentioned is also too small. For instance, the
distance to the nearest star (the so-called Proxima in the Centaurus
constellation,* a reddish 11th-magnitude star) can be expressed in
260,000 such units.

But this is only the nearest star; the others are much farther away.
Bigger units have greatly simplified the memorizing of these figures
and their use. In astronomy we have the following giant units of

# The bright star a Centauri is almost next to it.
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length: the “light year” and the “parsec” which is now superseding the
former.

The light year is the path covered in space by a ray of light within
one year, We can get an idea of the size of this unit when we recall
that it takes but eight minutes for sunlight to reach the Earth. A “light
year,” then, is greater than the radius of the Earth’s orbit the number
of times that the year is greater than eight minutes. In kilometres this
unit will be 9,460,000,000,000, which means that the light year is ap-
proximately equal to 9'/2 billion km.

The parsec, the other unit favoured by astronomers in measuring
stellar distances, has a more complicated origin. The parsec is the dis-
tance which must be covered to see the semi-diameter of the Earth’s
orbit at the angle of one angular second. In astronomy the angle from
which the semi-diameter of the Earth’s orbit is seen from a star is
known as the “‘annual parallax” of this star. The word ‘“parsec” de-
rives from combining the word “parallax” with the word “second.” The
parallax of « Centauri, the above-mentioned star, is 0.76 seconds;
we can easily visualize that the distance to this star is 1.31 parsecs. It
requires no great effort to work out that 1 parsec is equal to 206,265
times the distance from the Earth to the Sun. The relation of the par-
sec to other units of length is:

1 parsec = 3.26 light years==30,800,000,000,000 km.

The distances to some of the bright stars, expressed in parsecs and
in light years, is as follows:

Parsec Light year

a Centauri . . . . ... 1.31 4.3
Sirfus . . . ... ... 2.67 - 8.7
Procyon . . . .. ... 3.39 11.0
Altair . . . . . . ... 4,67 15.2

These are the comparatively nearest stars. You will appreciate just
how “near” they are, if you bear in mind that to express these dis-
tances in kilometres you should multiply each figure in the first column
by 30 billion (a billion being a million millions). But not even the
light year and parsec are the biggest units used in stellar astronomy.
When astronomers began to measure the distances and dimensions
of star clusters, that is, of “universes” within the universe, consisting
of millions and millions of stars, they needed a still larger unit. They
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formed this from the parsec in the same way that we form the kilo-
metre from the metre, thus obtaining the “kiloparsec” equal to 1,000
parsecs or 30,800 billion km. In these units the diameter of the Milky
Way can be expressed, for instance, by the number 30, and the distance
from us to the Andromeda nebula by a number around 300.

But soon the kiloparsec was found inadequate and astronomers were
obliged to introduce the “megaparsec,” which equals one million par-
Secs. '

Here is a table of stellar units of length:

1 megaparsec =1 million parsecs
1 kiloparsec =] thousand »
1 parsec =206,265 astronomical units

| astronomical unit==149,500,000 km.

It is impossible to visualize the megaparsec. If we were to reduce
the kilometre to the thickness of a human hair (0.05 mm.), the mega-
parsec even then would be too much for the human imagination, it
would be equal to 1,500,000,000 km., 10 times the distance from the
Earth to the Sun. 5
- Here, incidentally, is a comparison that will enable the reader.to
grasp the immensity of the megaparsec. The finest strand of a spider-
web, stretched from Moscow to Leningrad, would weigh about 10 gr.,
and from the Earth to the Moon not more than 6 kg. The same strand
stretched to the Sun would weigh 2.3 tons. But if it could be stretched
the length of one megaparsec it would weigh 500,000,000,000 tons!

The Nearest Stellar Systems

A fairly long time ago, about a century back, it was established that
the nearest stellar system was the first-magnitude binary star of the
southern constellation of Centaurus. Recent years have added interest-
ing details to our knowledge of this stellar system. A small 11th-mag-
nitude star was found near @ Centauri, thus comprising with the two
stars of « Centauri a triple-star system. The fact that the third star
is physically a member of the a Centauri system, despite their being
more than 2° apart, is confirmed by the identity of motion; all-three
stars travel with the same speed in the same direction. The most re-
markable feature of the third member of this family is that it is nearer,
to us than the other two and for this reason must be regarded as the
nearest of any of the stars whose distances have been ascertained so
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far. Hence the name “Nearest,” in Latin “Proxima.” It is 3,960 astro-
nomical units nearer to us than the « Centauri stars (a Centauri A
and « Centauri B). Here are their parallaxes:

a Centauri (Aand B) . ... ...... 0.751

Proxima Centauri . . . . ... .. ... 0.762

Since the A and B stars are only 34 astronomical units apart, the
entire system has the rather strange appearance depicted on Fig. 84.
A and B are slightly farther apart than Uranus and
the Sun. Proxima, however, is 59 “light days” dis-
tant from them. These stars slowly change location:
while the period of revolution of the A and B stars
about their common centre of gravity is 79 years.
Proxima makes one revolution in more than 100,000
years, so we need have no fear of it shortly ceasing
to be our nearest star, of yielding place to another.
member of a Centauri family.

What do we know about the physical properties of
the stars of this system? In brilliance, mass and
diameter, « Centauri A is just a little ahead of the
Sun (Fig. 85), whereas «a Centauri B, with a mass

slightly smaller than the Sun, is %th bigger in

diameter. In brilliance, however, it is but a third of
the Sun. Accordingly, its surface temperature is low-
er, being 4,400°C., while the Sun’s is 6,000°C.
Proxima is still “colder”; its surface temperature
is 3,000°C. and it has a reddish colour. It is 14 times
smaller than the Sun in diameter and, though hun-
dreds of times greater in mass, is smaller in size
than Jupiter and Saturn. From « Centauri A we
would see its partner B as being roughly the same
B size as the Sun seen in Uranus’ skies. We would
Ll B also see Proxima, but as a tiny, faint star, since it is
Proxima Centaurt 95 times farther than Pluto from the Sun and 1,000
Fig. 84. The Surw’s times farther than Saturn from the Sun.
fl°se5t stellar sys-  The sun’s next nearest neighbour after the triple
i Gontaur, « Centauri star is the tiny 9.7-magnitude star in the

including A,B and - . g e
Proxima Centauri. Ophiuchus constellation known as the “Flying Star.

“ d Centauri
AN
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It gained its name from its exceedingly fast apparent motion. It
is 11/2 times farther away from us than is the « Centauri sys-
tem, but is our nearest neighbour in the Northern Hemisphere of the
sky. Its flight, at a tangent to the Sun’s motion, is so sweeping that in
a matter of under ten millenniums it
will be twice as near, and will then
be nearer than the triple « Centau-
ri star.

The Scale of the Universe

Let us return now to that diminu-
tive model of the solar system that
we visualized according to the in-
structions furnished in the chapter
on the planets; we shall augment it
to include the world of stars. What
do we get? Fig. 85. The dimensions of the a

You will recall that on our mod-  Centauri stars and the Sun compared.
el the Sun was a ball 10 cm. in
diameter, while the entire planetary
system was represented by a circle 800 m. in diameter. At what dis-
tance from the Sunshould we place the stars, providing we adhere to the
same scale? We can easily calculate that we must place Proxima Cen-
tauri, our nearest star, at a distance of 2,700 km., Sirius, 5,500 km. and
Altair 9,700 km. away. Even on our model these “nearest” stars would!
be crowded in Europe. For the more remote stars we shall take a unit
bigger than the kilometre—1,000 km., or the megametre (Mm.). There
are but 40 of these units in the Earth’s circumference and 380 betweem
the Earth and the Moon. On our model Vega would be 17 Mm. away,
Arcturus 23 Mm., Capella 28 Mm., Regulus 53 Mm. and Deneb (« Cyg-
ni) more than 350 Mm. away.

Reducing this last number of 350 Mm, to kilometres we get 350,000
or a little less than the distance to the Moon. So our diminutive model,
on which the Earth is a pinhead and the Sun a croquet ball, itself ac-
quires cosmic dimensions!

But we have still to complete our model. The outlying stars of the
Milky Way would be 30,000 Mm. distant on our model, or nearly 100
times more than the distance to the Moon. But even the Milky Way is

RANRENIL ',/‘7-’:, ;
~ o Centauri Proxima “Centaurt
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not the whole of the universe. Far beyond it are other stellar clusters
as, for instance, the naked-eye system in the Andromeda constellation,
or the equally visible Magellanic Clouds. On our model we shall des-
ignate the Smaller Magellanic Cloud by an object 4,000 Mm. in diam-
eter, and the Greater Magellanic Cloud by an object with a diameter
of 5,500 Mm., placing the two 70,000 Mm. away from the model of the
Milky Way. We would have to lend the model of the Andromeda nebuia
a diameter of 60,000 Mm., placing it at a distance of 500,000 Mm. from
the model of the Milky Way, almost the actual distance from Jupiter to
the Sun!

The remotest celestial objects for modern astronomy are the stellar
nebulae—clusters of stars located far beyond the confines of the Milky
Way and more than 1,000,000,000 light years from the Sun. The reader,
if he wishes, can have a go at designating this distance on our model.
If he succeeds he will have an idea of the dimensions of the part of the
universe within range of the optical resources of modern astronomy.

The reader will also find a number of pertinent comparisons in my
book Do You Know Your Physics.




CHAPTER V
GRAVITATION

Shooting Vertically

Where would a cannon ball, discharged vertically from a gun mount-
ed on the equator, fall (Fig. 86)? This problem was discussed in a
magazine some 20 years ago; it visualized that a cannon ball dis-
charged with the starting velocity of 8,000 m. per second, would, in the
space of 70 minutes, reach a height of 6,400 km, (the Earth’s radius).
This is what the magazine said:

“If a cannon ball were discharged vertically from the equator, it
would upon emerging from the barrel acquire in addition the east-
directed circular velocity of the points at the equator (465 m./sec.).
That is the velocity with which the cannon ball would travel parallel
to the equator. The point 6,400 km. directly above the barre] at the mo-
ment of discharge would have moved along the circle of the double
radius twice the velocity. It would therefore be ahead of the cannon
ball in its eastward flight. When the latter reaches culminating height,
it would not be directly above the point of discharge, but some distance
behind, in the west. The process is repeated when the cannon ball re-
turns to Earth. After 70 minutes’ ascent and descent the cannon ball
would fall at a point about 4,000 km. to the west. That is where we
should anticipate it. For the cannon ball to return directly into the bar-
rel it should be discharged not vertically, but at a slightly tilted angle,
5° in our case.”
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Flammarion in his Astronomy
solves the same problem in a totally
different way:

“A  cannon ball discharged
straight into the air, fo the zenith,
will return to the gun barrel, even
though during its ascent and de-
scent the gun has moved eastward
together with the Earth. The reason
is self-evident. The ascending can-
non ball loses nothing of the veloc-
ity imparted by the Earth’s motion.
The two impetuses it receives are
not counteracting; it may ascend a
kilometre and simultaneously trav-
‘ . el, say, 6 km. east. Its motion in
Fig. 86. The problem of the vertically space will follow the diagonal of a

discharged cannon ball. parallelogram, of which one side is

1 km. and the other 6 km. Its down-

ward flight under gravitation will follow another diagonal (or rather a

curve since the fall is accelerated) and the cannon ball will drop right
into the barrel.”

Flammarion adds: “However, the experiment, would not be an easy
one, because well calibrated guns are rare, and there would be diffi-
culties in training them vertically. Mercein and Petit tried the experi-
ment in the 17th century but failed even to recover the discharged ball.
The title page of Varignon’s More Thoughts about Gravitation (1690)
featured a pertinent drawing (we reproduce it as an introduction 1o
this chapter). It depicts two observers, a monk and a soldier, standing
alongside a gun trained towards the zenith and looking upwards as
if following the cannon ball’s flight. The engraving carries the inscrip-
tion in French: ‘Will it return?’ The monk is Mercein and the soldier,
Petit. They repeated the rather dangerous experiment several times, but,
being bad marksmen they failed to make the cannon ball hit them on the
head, so they came to the conclusion that it had remained somewhere
in the air. Varignon exclaims in astonishment: ‘A cannon ball hanging
over our heads! What an astonishing thing!” When this experiment was
repeated in Strassburg, the cannon ball was found several hundred metres
away from the gun. Apparently it had not been trained strictly vertically.”
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As we see, the two solutions clashed sharply. One claimed the ball
would fall far to the west of the gun, the other that it was bound to re-
turn to the point of discharge. Which is correct?

Strictly speaking, both are wrong, though Flammarion came much
closer to the truth. The cannon ball would fall wes? of the gun, but not
at the distance the first claimed, nor, as the second thought, would it re-
turn to the barrel.

The solution to our regret is out of bounds to elementary mathemat-
ics.* So we shall confine ourselves to the final result.

Designating the cannon ball’s starting velocity by v, the angular
velocity of the Earth’s rotation by o and the gravity acceleration by
&, we obtain for the distance x, the point where it falls west of the gun,

3 3
the expression x= % ® %for the equator, and x = % ® ~§—2— cos @

for the latitude o.
In the problem set by the first author we know that o= —86—2124—, U=

8,000 m./sec. and g = 9.8 m./sec.2

Accordingly, we find x=>520 km.; hence, the cannon ball will fall
520 km. west of the gun (and not 4,000 km. away as the first author
thought).

What answer does the formula furnish in Flammarion’s case? The
gun was discharged not on the equator, but near Paris, on the 48th
parallel. We assume that the initial velocity of the cannon ball fired

from the ancient gun was 300 m./sec. Knowing that ‘”='8_62% , U=

300 m./sec., g=9.8 m./sec.2 and ¢ =48°, we find x=18m., the cannon
ball will fall not back into the barrel as the French astronomer pre-
sumed, but 18 m. west of the gun. We have, of course, ignored the pos-
sible deflection caused by air currents which might tangibly alter the
result.

Weight at High Altitudes

In the foregoing calculations, incidentally, cognizance is taken of a
consideration which so far has not been mentioned. I have in mind the
decline in gravitation the farther away we are from the Earth. Weight

* A special and detailed calculation would be needed. It was worked oui by
specialists at my request, but the details would take too much space here.

167



is simply a manifestation of universal gravitation, and with the in-
crease in the distance between two bodies the mutual attraction rap-
idly decreases. According to the Newtonian law, gravitation is in-
versely proportional to the squared distance; the distance here is from the
centre of the Earth, for the Earth attracts all bodies, as if its entire
mass was concentrated in the centre. For this reason gravitation at a
height of 6,400 km., at a point twice the Earth’s radius away from its
centre, is but a fourth of the Earth’s surface gravitation.

In the case of an artillery shell discharged upwards, this is manifest-
ed in the shell travelling higher than it would if gravitation did not
diminish with altitude. We took it for granted that a cannon ball dis-
charged vertically with an initial velocity of 8,000 m./sec. would reach
a height of 6,400 km. But in reckoning the ceiling according to the
universally known formula, disregarding the decline in gravitation as
latitude increases, we would obtain a height half of what it really is.
Here is the calculation. Textbooks on physics and mechanics give the
following formula for computing the height A reached by a body dis-
charged vertically with the velocity v and the constant acceleration of
gravity g:

v2
b=

If v=8,000 m./sec. and g=9.8 m./sec.?, h will equal

8.0002 _ —
_EE.—S—B,QGS,OOO m.=3,265 km.

This is almost half the height indicated above. As already noted, the
difference is due to our disregard in applying the text-book formula for
the decline in gravitation caused by altitude. It is quite plain that if the
Earth’s attraction for the cannon ball diminishes, then with the given
velocity it is bound to rise higher.

We must not conclude, however, that text-book formulas for the
height of ia body discharged vertically are wrong. They are correct
within the limits for which they are intended, becoming unreliable
only when used outside the indicated boundary. These formulas are de-
signed for low altitudes, where decrease in gravitation is so infinitesi-
mal that it can be discounted. For instance, in the case of a cannon
ball discharged upwards with an initial velocity of 300 m./sec., the
decrease in gravitation is of little import.
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The interesting question is this: Is decline in gravitation felt at the
altitudes reached by modern aircraft? Is loss of weight noticeable at
these altitudes? In 1936 the pilot Vladimir Kokkinaki flew with vary-
ing payloads to high altitudes—half a ton to an altitude of 11,458 me-
tres, 1 ton to 12,100 m. and 2 tons to 11, 295 m. The question is: Did
these loads retain their original weight at the indicated altitudes, or
did they lose tangibly? At first glance it might seem that an ascent 10
odd kilometres up would not appreciably decrease weight on such a
vast planet as our Earth. On its surface the freight was 6,400 km.
away from the centre of the planet. Its elevation by 12 km. increased
the distance to 6,412 km. The addition seems too tiny to make any loss
in weight felt. Calculations, however, showed the reverse. Loss of
weight was quite tangible.

Let us make the calculation for one particular case, say, for Kokki-
naki’s ascent with 2,000 kg. to a height of 11,295 m. At this altitude
6,411.3

the aeroplane was (m

than at take-off.
T . (6,411.3 \2 , 11.3 \2,.
Here gravitation 1s<m——> ,1.e.,(1—|— 6,710T) times less.

) times farther from the centre of the Earth

Hence at this height the freight would weigh

i 113 \2
2,000 : (1 "‘W) kg.

Performing this operation (for which a rough and ready reckoning
is quite suitable*) we find that at ceiling the 2,000 kg. freight weighed
only 1,993 kg., 7 kg. less, quite a tangible loss. At this altitude a
kilogram would indicate only 996.5 gr. on a spring balance, losing
3.5 gr.

The crew of our stratosphere balloon who reached an altitude of 22
km. must have lost even more weight, namely, 7 gr. per kg.

* We can use the approximated equalities
(1+a)2=1+4-2a, and 1:(14+a)=1—a,
where a is a minute quantity. Therefore

11.3 \2 11.3 11.3
2,000:(1+W) —2,000:{ g5 ) =2,000— o = 2,000-7
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With Compasses Along Planetary Paths

Of the three laws of planetary motion which the painstaking genius
of Kepler wrested from nature, the first is probably the least compre-
hensible to many. This law states that the planets move along ellipti-
cal paths. But why elliptical? It would seem that since the Sun exerts
the same force in every direction and, moreover, a force that dimin-
ishes equally all round with distance, the planets should move about
the Sun in circles, and not along extended locked paths, in which the
Sun, it should be added, does not hold the central position. Mathemat-
ics explains the perplexities. But since not all amateur astronomers
are at home with the calculus I shall help the reader to an understand-
ing of the correctness of Kepler’s laws.

With a pair of compasses, a scale ruler and a large sheet of paper
let us chart the planetary paths and obtain visual proof that their out-
lines conform to Kepler’s laws.

Gravitation guides planetary motion. Let us probe into this. The
circle to the right on Fig. 87 depicts an imaginary Sun; on the left
we have an imaginary planet. Suppose the distance between them is

1,000,000 km.; on our drawing
o L0 0 this is 5 cm., a scale of 200,000
km. to 1 cm.

i —O_  The 0.5 cm. arrow depicts the
16 force with which the Sun pulls at

O our planet (Fig. 87). Suppose

-] —(O now that due to this attraction

N 28 our planet has drawn closer to

g —CO  the Sun and is now only 900,000
o—————i”-’o km. away, or 4.5 cm. on our

Fig. 87. The nearer a planet approaches drawing. The Sun,% pull on the
the Sun the greater the gravitational pull planet should have increased ac-
of the latter. cording to the law of gravitation

10 2 .
by (T > , or 1.2 times. If, at the

outset, we took an arrow of 1 unit to depict the force of gravitation, we

must now use 1.2 units for our arrow. When the distance drops to

800,000 km.—4 cm. on our drawing—the force of attraction increases
5

(Ty or 1.6 times, and is depicted by an arrow of 1.6 units. In ap-
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proaching a distance of respectively 700, 600 and 500 thousand kilo-
metres from the Sun, the force of attraction is depicted by arrows re-
spectively 2, 2.8 and 4 units of length.

One can imagine the same ar-
rows indicating not only the attract- w K
ing force but also the shift in posi-
tion made by the body under the in-
fluence of this force within a unit of
time (in this case the shift is pro-
portional to the acceleration and.
consequently, to the force). We shall
use this drawing, as a ready scale
for planetary shifts, later on, in
other drawings.

Let us now chart the path for a
planet revolving around the Sun.
Suppose that at a certain moment,
a planet of the same mass as that
mentioned above, moving in the
direction WK at the speed of two
units of length, finds itself at point
K, 800,000 km. from the Sun (Fig. Fig.88. How’the iSun S bends the plan-
88). At this distance the force of the et’s path WKPR.

Sun’s attraction will, in a unit of

time, impel the planet towards it 1.6 units of length; in the same in-
terval it will move 2 units in the original direction of WK. As a result
it moves along the line KP—the diagonal of the parallelogram formed
by the moves KI and K2; this diagonal is equal to 3 units of length
(Fig. 88).

Upon reaching point P, the planet seeks to move farther along the
direction KP with a speed of 3 units. But, under the influence of the
Sun’s attraction from the distance SP=5.8, it is impelled xalong the
path P4=3 in the direction of SP. As a result it will traverse the diago-
nal PR of the parallelogram.

There is no point in continuing to chart the path on this drawing—
the scale is too big. Naturally, the smaller the scale the greater the part
of the planet’s path we can reproduce and the less will the acuteness
of the angles distort the likeness of the chart to the planet’s true path.
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Fig. 89 reproduces the same picture on a smaller scale for our imag-
ined encounter between the Sun and any celestial object similar in mass
to the foregoing planet. It shows clearly how the Sun deflects the new-
comer from its original path, making it follow the curve P—I—II—III
—IV—V—VI. The angles here are not so sharp and we can easily link
up the positions of the planet by drawing an even curve.

- (-

Fig. 89. The Sun deflects the planet P |l

from an originally straight path, com- 1
pelling it to make a curve. QW’

{

What is this curve? Geometry furnishes the answer. Place a sheet
of tracing paper on the drawing and copy (Fig. 89) 6 points of the
planet’s path chosen at random. Number the points (Fig. 90) in any
order and link them up in the same sequence by drawing straight
lines. This gives a hexagram inscribed within the planet’s path, partly
with crossed sides. Now continue the straight line 1-2 to its intersec-
tion with the line 4-5 at point /. Obtain similarly the point I7 at the
intersection of the straight lines 2-8 and 5-6 and then the point 11T at
intersection of the lines 3-4 and 1-6. If the curve we are examining is a
so-called “conic section,” i.e., an ellipse, parabola, or hyperbola, the
points I, I1, II should be on the same straight line. This is the geo-
metrical theorem (not among those studied at secondary school)
known as “Pascal’s Hexagram.”

A careful drawing will always give the indicated points of intersec-
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tion on one straight line. This proves that our curve is either an el-
lipse, parabola or hyperbola. The first apparently does not apply to Fig.
89 since the curve is not locked, and so the planet moves according to
a parabola or hyperbola. The ratio between the original velocity and
force of attraction is such that the Sun
can but deflect the planet from its
straight path. It is powerless to compel
the planet to revolve around itself, or,
as astronomers would say to ‘“‘cap-
ture” it.

Let us now elucidate the second
law of planetary motion, the so-called
law of areas. Take a good look at Fig.
21 (page 45). The 12 points divide it
into 12 sections; although not of equal
length, we know that the planet covers
them in the same times. Linking points
1, 2, 3, etc., with the Sun, we obtain 12
figures which, if the points were
joined by chords, would approximate
to triangles. Measure their bases and
heights and compute their areas. We
would find that each triangle is equal
in area. In other words, we arrive at .
Keple's second law: Fie . Geometicat et o

The radius-vectors of planetary or- coni}é sections (see text for detailsﬁ
bits sweep equal areas in equal times. -

Thus, in a way, the compass helps us
to understand the first two laws of planetary motion. To elucidate the
third law, we lay aside the compass, take up pen and paper and per-
form a few mathematical exercises.

When Planets Fall onto the Sun

Have you ever tried to imagine what would happen to the Earth if
upon meeting an obstacle it were suddenly to cease its flight around
the Sun? In the first place, naturally, the vast store of energy invested
in it as a moving body would turn into heat and warm it up. And
since it dashes along its orbit dozens of times faster than a bullet, one

178



can easily imagine that when turned into heat the energy of its motion
would kindle a monstrous conflagration that would immediately con-
vert the world into an immense cloud of flaming gas....

But even if the sudden standstill did not produce this resuit, the
Earth would, nevertheless, perish in flames; the attraction of the Sun
would impel it headlong to die in the latter’s fiery embrace.

This fateful fall-out would begin very slowly, literally at a snail’s
pace, with the Earth approaching the Sun only by 3 mm. in the first
second. But each second would see a progressive increase of velocity
until at the last second, it would reach 600 km. At this incredible
speed the Earth would plunge into the Sun’s flaming surface.

How long would the catastrophe take? How long would our doomed
world writhe in agony? We can reckon the duration by applying Kep-
ler’s third law which governs the motions not only of the planets but
also of comets and all celestial bodies in general moving in space un-
der the influence of a central force of gravity. This law, which links
the time of a planet’s revolution (its “year”) with its distance to the
Sun, states:

The squares of the periods of revolution of the planets about the Sun
are in the same ratio as the cubes of the major semi-axes of their orbits.

In the given case we can liken the globe in its sunward flight to an
imaginary comet moving along a strongly extended flat ellipse the
extreme points of which are located on the Earth’s orbit and in the
centre of the Sun. The major semi-axis of the orbit of such a comet
would, apparently, be half the major semi-axis of the Earth’s orbit. So
let us find the period of revolution of our imaginary comet.

On the basis of Kepler’s third law we form the ratio

(Earth’s period of revolution)2 _  (Major semi-axis of comet’s orbit)®
(Comet’s period of revolution)2 ~— (Major semi-axis of Earth’s orbit)?

The period of the Earth’s revolution is 365 days.

Taking the major semi-axis of its orbit as 1, the major semi-axis of
the comet’s orbit would be expressed by the fraction 0.5. Now our ra-
tio will be:

3652 1
(Comet’s period of revoluliom)® = (0.5)%*

1
whence (Comet’s period of revolution= 365*x 5 .
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Hence, 1 365
period of the comet’s revolution = 365 X — =,
Vs Vs

What we are interested in is not the full period of the revolution of
our imaginary comet, but in half the period, or rather in the length
of its flight one way from the Earth’s orbit to the Sun, this being the
time it will take the Earth to fall onto the Sun. Let us calculate it:

365 . _ 365 _ 365 _ 365
-l/? ’ —2]/8_ - l/'32' - 5.65

Consequently, to find how long it will take the Earth to fall out on
the Sun we should divide the year by V32 or by 5.65. In round num-
bers this is 65 days.

So we find that after the sudden standstill in orbital flight, the Earth
would need more than two months to fall onto the Sun.

We easily see that this simple formula evolved on the basis of Kep-
ler’s third law can be applied not only to the Earth, but to all the
planets, and even to all the satellites. In other words, to find how long
it would take a planet or satellite to fall onto the primary, we divide

the period of revolution by ¥V 32 or 5.65.

Thus, it would take Mercury, the Sun’s nearest planet with an 88-day
period of revolution, 15/, days to fall onto the Sun, Neptune, whose
“year” is gqual to 165 Earth years, would need 29 years, Pluto 44.

How long would it take the Moon to fall onto the Earth were it to
come to a sudden standstil]l? We divide the Moon’s period of revolu-
tion of 27.3 days by 5.6 and obtain almost five days exact. And not only
the Moon, any body the same distance away would fall onto the Earth
in five days, provided its starting velocity is nil; in falling it would
conform only to the action of the Earth’s gravitation (for simplicity’s
sake we discount the Sun’s influence).

By using the same formula we, can easily establish how long it took
Jules Verne’s De la terre a la lune characters to get there.®

Vulcan’s Forge

We shall use the rule we have evolved to solve a curious problem
from the realm of mythology. The ancient Greek legend about Vulcan
mentions casually how he once dropped his forge, its downward flight

* The caleulation is given in my book Travels Through Space.
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from the heavens to the Earth taking nine days. For the ancients this
period fitted in with their notion of the measureless height of the abode
of the gods; from the top of the Pyramid of Cheops the forge would
have reached the Earth after five seconds! .

It will not take us very long to find the universe of the ancient
Greeks, if measured by this token, a rather modest one by modern
concepts

We know that it would take the Moon five days to reach the Earth;
nine days were needed for the legendary forge. Hence the “sky” from
which the forge, fell is farther than the Moon’s orbit. But how much
farther? Multiplying 9 days by /32 we find the forge’s period of revo-
lution around the Earth, that is supposing it to be a satellite of our
planet: 9X5.6=51 days. Let us now apply to the Moon and to our
imaginary forge-satellite Kepler’s third law and write out the ratio:

(Moon’'s period of revolution)? (Moon’s distance)®
~ (Forge’s period of revolution) — (Forge’s distance)?

Evaluating the ratio we find:

9732 380,000
512 = (Forge’s distance)?

Now we can easily calculate the unknown distance of the forge to the
Earth: the forge'’s distance=

512 x 380,0008 3,518
V 97.32 = 380,000 \/27.3a )

The result is 580,000 km. How modest in the leight of modern
astronomy was the ancient Greeks’ notion of the height of the sky!
Only 192 times farther than the Moon! The universe of the ancients
ended roughly where to our mind it just begins.

The Boundaries of the Solar System

Kepler’s third law also enables us to calculate the distance to the
boundaries of our solar system provided we take the farthermost points
(aphelia) of cometary orbits as the extreme. We have discussed this
earlier, so we confine ourselves here to the appropriate calculations. In
chapter II1 we spoke about comets with an extremely long period of
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revolution as much was 776 years. Let us find the distance x to this
comet’s aphelion, knowing that the distance of its nearest point to the
Sun (perihelion) is 1,800,000 km. Taking the Earth as our second body
we write out the ratio:

1 3
[3 (x--1,800,000) ]

7767
C1E T 150,000,0003
Further
% + 1,800,000 = 2 x 150,000,000 }/7767,
and hence

x=25,318,000,000 km.

We see, therefore, that these comets travel 182 times farther from
the Sun than the Earth and 4.5 times farther than Pluto, the most dis-
tant of known planets.

The Error in Jules Verne’s Book

The imaginary Gallium comet, which Jules Verne took as the place
of action for his Hector Servadac, made one full revolution around the
Sun in exactly two years. The book also notes this comet’s aphelion
as being 820 million km. away from the Sun. Although the perihelion
is not given, we are entitled to assert, basing ourselves on two figures
which we shall adduce, that no such comet exists in our solar system.
We can demonstrate this with calculations based on Kepler’s third law.

Let us designate the unknown distance to the perihelion as x million
km, The major axis of the comet’s orbit would then be expressed by

%-+820,000,000 km. and the major semi-axis as * million km.

Comf)aring the comet’s period of revolution and distance with the
Earth’s period of revolution and distance, we get, on the basis of Kep-
ler’s law, the ratio:

28 (x 4 B20p

12 = 23x 1508

whence
= — 343.

The negative result obtained for the comet’s nearest distance to the
Sun testifies to the incongruity of the problem’s original data. In other
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words, a comet with such a brief period of revolution as two years
could not travel the distance from the Sun Jules Verne gives in his
book.

How Was the Earth Weighed?

Once upon a time, so the story goes, there was a naive chap who in
studying astronomy was completely flabbergasted by the fact that as-

Fig. 91. What scales were ) Fig. 92. One way of as-
used to weigh the Earth? certaining the Earth’s
mass; the Jolly balance.

tronomers knew the names of the stars. But, talking seriously, perhaps
the most astounding achievement of the astronomers was their success
in weighing both the Earth on which we live and the remote celestial
luminaries. Indeed, how were the Earth and sky weighed and what
scales were used?

First, how did they weigh the Earth? What do we mean by “the
weight of the globe”? What we call weight is a body’s pressure on its
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base, or its pull at a point of suspension. Neither of these can be ap-
plied to the Earth, since it rests on nothing and hangs on nothing.
Consequently, from this point of view the Earth has no weight. What
then did astronomers define when they weighed “the Earth”? They
ascertained its mass. Indeed, when we ask the shop assistant to weigh
us a kilogram of sugar we are not in the least interested in its pres-
sure on its base, or its pull at a spring balance. As regards sugar, we
are interested in something quite different. We want to know how
many cups of sweet tea we can make, or, in other words, the quantity
of sugar we get in this kilogram.

However, there is only one way to measure quantity. That is to find
the measure of the Earth’s attraction for a body. We take it for granted
that equal quantities accord with equal masses, judging of the mass.
cf a body only by the force of its attraction, since attraction is propor-
tional to the mass.

Turning now to the Earth’s weight, we say that we shall be able to
find its “weight,” when we know ifs mass; thus we must understand
the task of weighing the Earth as that of ascertaining its mass.

Here is a description of one method used to solve this problem (Jol-
ly’s method, 1871.) Fig. 92 shows us a very sensitive pair of balances,.
with two light, upper and lower scales, 20 to 25 cm. apart, suspended
from each arm. We place a spherical weight with the mass m; on the-
right lower scale. To retain equilibrium we place the weight m; on the-
left upper scale. These weights are not equal; since they are at different
heights the Earth attracts them with different forces, If we now place:
under the right lower scale a large lead ball with the mass M, equilib-
rium will be disturbed, as the mass M of the lead ball will attract the-
mass my with the force Fi which is proportional to the product of these-
masses and inversely proportional to the square of the distance d sep-
arating their centres:

M
F=k”j;_,,

where % is the so-called constant of gravity.
To restore the disturbed equilibrium we place on the left upper scale-
a small weight with the mass n. The force with which it presses

against the scale is equal to its weight, i.e., is equal to the force of the
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attraction of this weight by the entire mass of the Earth. This force
F’ is equal to
Fr= k0

where m is the Earth’s mass, and R its radius.

Discounting the negligible effect of the lead ball on the weights in
the left upper scale, we can state the condition of equilibrium as fol-
lows:

mM  amd
“d2 T R -

In this proportion all the values, save the Earth’s mass md can be

measured. So we find m&. In the experiments just mentioned,

M=5,775.2 kg., R=6,366 km., d=56.86 cm.,
m1=5.00 kg., and n=:589 mgr.

As a result, the Earth’s mass is 6.15X10%7 gr.

The value of the Earth’s mass based on extensive measurements
yields m@ =5.974X10” gr. or about 6,000 trillion tons. The margin
of error is not more than 0.1 per cent. That is how the astronomers as-
certained the mass of the Earth. We are fully entitled to say that they
weighed the Earth, for whenever we weigh things on a pair of scales,
we actually determine not the weight, not the force of their attraction
by the Earth, but their mass; we merely establish that the mass of a
body is equal to the mass of the weights.

What Is Inside the Earth?

Here it will be appropriate to point to an error met sometimes in
popular science books and articles. To simplify things, the job of
weighing the Earth is pictured like this: First, astronomers measured
the mean weight of 1 cu. cm. of our planet, i.e,, its specific weight and
then, after geometrically reckoning its volume, weighed the Earth by
multiplying specific weight by volume. The method, however, is not
a feasible one; we cannot take a direct measurement of the Earth’s
specific welght as only the comparatively thin outer crust* is ac-

F=F, or

* The minerals in the Earth’s crust have been investigated only to a depth of

25 km.; according to estlmates a mineralogical study has been made only of —8%

of the Earth’s volume

180



cessible and we have no idea whatever of the much larger remaining
part.

We already know that the problem was handled in a totally different
way; the Earth’s mass was ascertained before its mean density. This
was found to be 5.5 gr. per 1 cu. cm., much greater than the mean
density of the rock of its crust. It can be inferred, then, that there are
some very heavy substances in the bowels of the Earth. It was believed
earlier, on the basis of surmised specific weight (and other factors)
that the core of our planet consisted of iron, strongly compressed by
the pressure of surroundmg masses. It is now believed that, generally
speaking, the central regions of the Earth do not differ in constitution
from the crust, but that their density is greater due to the terrific pres-
sures.

Weighing the Sun and the Moon

Strange though it may seem, it proved incomparably simpler to as-
certain the weight of the distant Sun than that of the much nearer
Moon. (Naturally, with respect to- these bodies we use the word

“weight” in the same sense as for the Earth; here we mean ascertain-
ment of their masses.)

The Sun’s mass was found in the following manner. Experiments
have shown that at a distance of 1 cm., 1 gr. attracts 1 gr: with a force

of 1—5%%’—00—0 mgr, The inter-attraction f of two bodies with masses M

and m at the distance D abart are expressed according to the law of
universal gravitation as follows:

f 1 My
= 15,000,000 X Dz 7"

Taking M as the Sun’s mass (in grams), m as the Earth’s mass, and
D—the distance between them—equal to 150,000,000 km., their inter-
attraction in milligrams will be;

1 % Mm
15,000,000 < "15,000,000,000,000¢ M&r*

On the other hand this force of attraction is the same centripetal
force, which holds our planet to its orbit and which, according to the

* Rather dynes; 1 dyne=0.98 mgr.
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rules of mechanics, is equal (also in milligrams) to @sz_ , Where m is

the Earth’s mass (in grams), V its circular velocity equal to 30
km./sec.=3,000,000 cm./sec., and D the distance from the Earth to the
Sun. Hence,
1 M 3,000,0002
15,000,000 X Dz =M X —p

This equation gives us the unknown M (expressed, as we have said,
in grams):
M=2x10%gr.=2 x 10*"m,
Dividing this mass by the Earth’s mass, i.e., —6:—10—:: we obtain —é of

a million,

There is another way of ascertaining the Sun’s mass, based on Kep-
ler’s third law. On the basis of the law of universal gravitation the
third law is reduced to the following formula:

@O +m) T3 _ 4
WO +m) T2~ &
where MO is the Sun’s mass, T the planet’s sidereal period of revolu-
tion, a the mean distance from the planet to the Sun and m the planet’s
mass. Applying this law to the Earth and the Moon we obtain:
@O+md) TS —_ ad
(m&+m€) Tie a¢’
After evaluating ag, a€, and T &, T€ with the figures derived
through observation, and disregarding in the numerator of the first

approximation the Earth’s mass, as minute in comparison with the
Sun’s mass, and in the denominator the Moon's mass, as minute in

comparison with the Earth’s mass, we obtain:

0O
2+~ — 330,000.
g

Knowing the Earth’s mass, we can determine the Sun’s mass.

So, the Sun is a third of a million times heavier than the Earth.

We can easily reckon also the mean density of the solar sphere; to
do this we need but divide its mass by its volume, We learn that the
Sun’s density is roughly a quarter of the Earth’s density.
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As for the Moon, “although nearer to us than all other celestial
bodies,” as one astronomer puts it, “it is harder to weigh than Neptune,
the (then) most distant planet.” The Moon has no satellite that would
enable us to reckon its mass in the way that we have just found the
Sun’s mass. Astronomers had to resort to more complicated methods,
of which I shall mention only one, It consists in comparing the high
Sun-produced and lunar tides.

Tidal height depends on the -
mass and distance of the causal J;El
body. Since we know the Sun's
mass and distance and the
Moon’s distance, we can ascer-
tain the Moon’s mass by compar-
ing tidal heights. We shall return
to this calculation when explain-
ing the tides. Meanwhile here is
the final result: the Moon’s

mass is Tll—of the Earth’s mass

(Fig. 93). Knowing the Moon’s Fig 93. The Earth “weighs” 8] times more
. ) N h )
diameter, we calculate its volume than the Moon.

which we find to be % of the Earth’s volume. Hence, the mean
1

density of our satellite is %?— =0.6 of the Earth’s density.
Consequently, the Moon consists generally of a more friable sub-
stance than the Earth, but with greater density than that of the Sun.

We shall see below (see the table on page 184) that the Moon’s mean
density is greater than the mean densities of most planets.

Weight and Density of Planets and Stars

The method used to “weigh” the Sun can be used for weighing any
planet with at least one satellite.

Knowing the mean velocity v of the satellite’s orbital motion and
its mean distance D from the planet, we can place the equal sign be-

tween the centripetal force holding the satellite to its orbit, %’i , and

kmM

the force of the inter-attraction between satellite and planet, i.e, DE >
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where £ is the force of attraction, exerted by 1 gr. on 1 gr. 1 cm. away,
m is the satellite’s mass and M the planet’s mass:

@f kmM
' D = Dt
whence
' Dv"’
M==

a formula from which we can easily deduce the planet's mass M.
Kepler’s third law is also applicable to this particular case:

( SR@ + mplanet) T2 planet - u,planet
(Mpranet +Msatennite)] “sateliite  Psatellite
Here again, ignoring the bracketed minute members in the sums, we
obtain the ratio of the Sun’s mass to the planet’s mass 7%_

Knowing the Sun's mass we can easily establish the planet’s mass.

We can use the same method for binary stars, with the only differ-
ence that here we obtain not the separate masses of the stars .in the
pair but the sum of their masses.

It is much harder to ascertain the masses of planetary satellites and
of planets without satellites.

The masses of Mercury and Venus were established by taking into
account their perturbation upon each other, and upon the Earth, and
also upon the motions of certain comets.

As for the asteroids, whose masses are so negligible that they do
not noticeably perturb each other, ascertainment of their masses is,
generally speaking, impossible. All we know—and even this is guess-
work—is the limit of the aggregate masses of the pygmy planets.

Knowing a planet’s mass and volume we can easily ascertain its
mean density. Here are the results:

Earth’s density=1

Mercury . . .. ... .. 1.00 Jupiter . . . . . .. 0.24
Venus . .+ . .« . .. .. 0.92 Saturn . . . . . .. 0.13
Earth ... ... ..... 1.00 Uranus. . . . . . . 0.23
Mars . . . ... ... ... 0.74 Neptune . . . . . . 0.22

‘We see that the Earth and Mercury rank first for density in our
planetary family. The reason for the small mean density of the bigger
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planets is that the solid core of each is enveloped in a vast atmosphere,
which, while of small mass, greatly increases the planet’s apparent
volume,

Weight on the Moon and on the Planets

Laymen with hazy notions of astronomy often wonder why scien-
tists, having never been to either the Moon or planets, speak with such
assurance about their surface gravity. In reality it is not very difficult:
to calculate how much a body transported to another world should
weigh. All we need know is the radius and mass of the chosen celestial
body.

Lef us ascertain, say, the gravitational pull of the Moon. We already
know that the Moon’s mass is 1/81 of the Earth’s mass. If the Earth
had such a small mass its sur-

face gravity would be but 'SIT

of what it is now. But according

to Newton’s law a sphere’s at-

traction is the same as if all its

mass were concentrated in its

centre. The Earth’s centre is at  onJupiter Oon Mercury
the distance of its radius to the = N on Mars
surface. Naturally the Moon’s

centre is the distance of its ra- -m, hlll

dius to the surface. However the 5 l.' m on Uranis

Moon’s radius is m of the i on Venus
y On Earth
Earth’s, and when distance is on Saturn

\ On Neptune

- times less, the force of at-
27 T EEET

. . 100\2 |,
traction increases (—270) times.

Consequently, the Moon’s surface
itati il b 1002 1 Fig. 94. How much would we weigh on
gravitation will be g—rg3- ~ fe the different planets.

of the Earth’s.
Thus a 1 kg. weight would weigh only 6 kg. on the Moon’s surface.

Naturally, the loss in weight would be discovered only by using a
spring balance (Fig. 94), not a pair of scales.
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Curiously enough, if the Moon had any water a swimmer there
would feel exactly the same as he does on Earth. Although his weight
would be six times less, the weight of the water displaced by him
would be the same number of times less. Thus the proportion between
them would be the same as on Earth, with the swimmer immersed in
Moon water exactly in the same fashion as in Earth water. '

But the effort to get out of the water would take much less energy
on the Moon, because with the weight of the swimmer’s body being
less, the strain on his muscles would be less.

. Here is a table of gravity values on different planets compared with
the Earth’s gravity.

On Mercury’ . . . . . . 0.26 On Saturn . . . . . .. 1.13
» Venus . , ., . ... 0.90 » Uranus ., . . . . . . 0.84
» Earth . ... ... 1.00 » Neptune . . .. .. 1.14
» Mars. . .. .. .. 0.37 » Pluto ... .. .. ?
» Jupiter. . . . . . . 2.64

The table places the Earth fourth for gravity in the solar system,
after Jupiter, Neptune and Saturn.

Record Weight

Peak gravity is reached on the surface of such “white dwarfs” as
Sirius B, mentioned in Chapter IV. We can easily imagine that the
tremendous mass of these luminaries, with their comparatively small
radius, lends them quite a significant surface gravity. We shall calcu-
late this factor for one of the stars in the constellation of Cassiopeia,
which has a mass 2.8 times that of the Sun and a radius half that of
the Earth. Bear in mind that the Sun’s mass is 330,000 times that of
the Earth, and that the surface gravity of the foregoing star will, there-
fore, be 2.8X330,000X22=3,700,000 times that of the Earth’s.

On the surface of this star, 1 cm.3 of water, which weighs 1 gr. on the
surface of our Earth, would weigh nearly 3% tons! In this amazing
world 1 cu. cm of the matter making up the star (36,000,000 times
denser than water) would have the monstrous weight of

3,700,000< 36,000,000=133,200,000,000,000 gr.

A thimbleful of substance weighing 100 million tons is something
which only a short while ago was beyond the boldest flight of imagi-
nation.
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Weight in.the Depths of the Planet

To what extent would a body’s weight change if placed far inside
a planet, say at the bottom of a fantastically deep mine?

Many mistakenly think that a body at the bottom of such a mine as
being nearer to the centre of the planet, to the point that attracts all
bodies, would be heavier. This line of reasoning is wrong, however,
because the force of attraction, far from increasing, decreases the
deeper we go into a planet. The reader will find a comprehensible ex-

‘

Fig. 95. A body inside Fig. 96. On what does Fig. 97. A diagram
a spherical casing has the weight of a body  showing the change in
no weight. inside a planet de- the weight of a body the
pend? nearer it approaches

the centre of a planet.

planation of this phenomenon in my Physics for Entertainment. To
avoid repetition I shall merely note the following.

Mechanics shows that a body placed in the cavity of a homogeneous
spherical casing loses its weight completely (Fig. 95). It follows,
therefore, that a body inside a solid homogeneous sphere is attracted
only by the matter contained in the sphere where the radius is equal
to the distance of the body from the centre (Fig. 96).

Using these propositions we can easily formulate a law according
to which the weight of a body changes the nearer it gets to the centre
of a planet. Designating the radius of the planet (Fig. 97) as R and
the distance of the body from its centre as r, we find that the gravity

acting on the body at this point increases (—f—)ztimes and simulta-
neously decreases (%)3 times (since the attracting part of the planet
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has decreased the said number of times). In the final analysis, the
force of gravity would decrease

B, R e Ry
;/ 7/, 1. e, 7 times.

Consequently in the depths of a planet the weight of a body would
decrease the number of times the distance to the centre has shortened.
For planets the size of our Earth with its radius of 6,400 km., a body
3,200 km., deep would: weigh half as much, and at 5,600 km. deep

'6,_40((5)_’:1—0_5.%60—0 =28 times less, At the centre of the planet the body would

6,400—6,400 =0

6,400 :

Incidentally, this could have been foreseen without calculations,
since a body in the centre of a planet is attracted by the surrounding
medium with the same force from all sides.

‘What we have said applies to a planet with a Zomogeneous density,
and can be applied to real planets only with certain reservations. In
particular, speaking of the Earth the density of which in its depths is
greater than near the surface, the law according to which gravitation
changes in accordance with nearness to the centre, somewhat departs
from this rule; to a certain (comparatively small) depth the gravita-
tion increases, only deeper down does it begin to dwindle.

lose its weight completely, since

The Problem of the Steamer

When is a steamer lighter, on a moonlit or on a moonless night?

Answer

The problem is knottier than it seems. We cannot say straight out
that on a moonlit night a steamer and in general all objects on the
moonlit half of the globe are lighter than on a moonless night because
“they are attracted by the Moon.” In attracting the steamer the Moon
simultaneously attracts the entire Earth. In a void, under the effects
of gravitation, all bodies move with the same velocities; the Moon’s
gravitation lends both Earth and steamer the same acceleration so
we cannot discern any loss in weight. And yet the moonlit steamer
is lighter than the vessel sailing along on a moonless night.
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Thé reason is this. Suppose O on Fig. 98 designates the centre of
the Earth, and A and B the steamer at two diametrically opposed
points of the globe, r is the Earth’s radius, and D the distance from
the Moon’s centre L to the Earth’s centre O. M is the Moon’s mass and

Fig. 98. The effect of lunar attraction on an Earth particle.

m the steamer’s mass. To simplify the calculations we shall make
points A and B coincide with the Moon’s zenith and nadir. The Moon’s
force of attraction at point 4 (i.e., on a moonlit night) is

EMm
(D—r)?’

where k=1—55010’6®—. At point B (on a moonless night), the Moon at-

tracts the steamer with the force

kEMm
e

The diﬁerenée between the two attractions is equal to
EMmx ——2 .
D3[ 1—(3) ]
Since () =(6%)2 is an exceedingly negligible quantity, it is dis-
counted. This greatly simplifies the expression; we get
rMmx ;.
Let us change it to

EMm  4r EMm _1_ .
HE XD =Dz X*71p
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What is k/gm ? We easily guess that this is the force of attraction
exerted by the Moon on the steamer at distance D from its centre, On
the Moon’s surface, a steamer with the mass m weighs—’g—. At the dis-
tance D from the Moon it is attracted by the latter with the force
gmﬁz. Since D is 220 lunar radii, hence

kMm m m

~=

D* T %2208 300,000
Returning now to the difference of attractions we get

RMm 1 m 1 om
Dz X 15"~ 300,000 * 16 — 4,500,000

Assuming that the steamer weighs 45,000 tons, we find the difference
in weight on a moonlit and moonless night to be

45,000,000
300,000 = 10 ke.

So while the difference is insignificant, the steamer is lighter on a
moonlit night than on a moonless night.

Lunar and Solar Tides

The problem we have just examined will also help to explain the
main reason for the high and low tides. It would be wrong to think
that the tidal wave rises simply because of the pull of the Sun or the
Moon. We have explained that the Moon, in addition to attracting ob-
jects on the Earth’s surface, attracts the Earth itself. The point, how-
ever, is that the centre of the Earth is farther from the attracting source
than the particles of water on its surface facing the Moon. The cor-
responding difference in attraction is reckoned in the same way we
reckoned the difference in the attractions acting on the steamer. At any
point where the Moon is in the zenith every kilo of water is attracted

2’;37 times stronger than every kilo of matter at the Earth’s centre,

while the attraction for each kilo of water at the diametrically opposed
point is correspondingly weaker.

It is this difference that causes the water to rise in both cases above
the surface of the Earth. In the first case it takes place because the
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water moves towards the Moon more than the solid part of the Earth
does. In the second case, the Earth’s solid part moves more towards
the Moon than the water.*

The Sun’s gravitation has a similar effect on ocean water, Which of
the two is stronger, solar or lunar attraction? If we compare their
direct gravitations we find that the Sun’s is the stronger. The Sun’s
mass, as we know, is 330,000 times that of the Earth, while the Moon’s
mass is 81 times less, or 330,000X8] times less that of the Sun. The
distance between the Sun and the Earth is 23,400 times the Earth’s
radius, while the distance between the Moon and the Earth is only 60
times the Earth’s radius. Consequently, the ratio between the Sun’s at-
traction for the Earth and the Moon’s attraction is

330,000 x 81 1
25,4000 ~ ¢ gz ~ 170

This means that the Sun attracts every terrestrial object with a force
170 times greater than the Moon. One might think, therefore, that
solar tides are higher than lunar tides. Actually we see the reversq;

lunar tides are higher. This fully conforms to the formula De51g-

nating the Sun’s mass by M, the Moon’s mass by M, the distance

to the Sun by D; and the distance to the Moon by Dy we find the

ratio between the tide-raising forces of the Sun and the Moon to be
2kMJ 2kM," Mg D3

s M T8 M
3 3 3
Dy Dy, My Dy

We assume the Moon’s mass to be known and equal to _L of the

81
Earth’s mass.

Then, knowing that the Sun is 400 times farther away than the Moon
we find

M

s Dy o
_M;X —D—s——330 ,000 x 81 x 4007 =0.42.

* We note here only the main reason for the high and low tides; actually this
phenomenon is more complicated and is caused also by other reasons (the centri-
fugal effect of the Earth’s rotation around the common centre of the masses of the
Earth and the Moon, etc.).
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Hence, the solar tides should be 2'/2 times lower than lunar tides:.

Here it will be in place to note how, by comparing the heights of
lunar and solar tides, the Moon’s mass was ascertained. The height
of one or the other tide cannot be observed separately as the Sun and
the Moon always act jointly. But we can measure tidal height when the
two luminaries act in conjuction (i.e., when the Moon and the Sun are
situated on a straight line with the Earth), and when they act con-
trary to each other (when the straight line joining the Sun and the
Earth is perpendicular to the straight line joining the Moon and the
Earth). Observations showed the second tide to be 0.42 of the height
of the first. Designating the Moon’s tide-raising force by x and that

of the Sun by y we get
x+y__ 100

x—y 42

whence
x 71
y 29
Consequently, applying the foregoing formula we obtain
My Dy 29

M, " D% 71

m

or
My 1 29
My 64,000,000 — 7T
Since the Sun’s mass My =330,000 M, where M, is the Earth’s
mass, from the last equality we easily find

M

¢ =80,
Mm
i.e., the Moon’s mass is _L that of the Earth. A more accurate reckon-

80
ing gives the Moon’s mass as 0.0123 (of the Earth’s mass).

The Moon and Weather

Many are interested in the effect of the high and low lunar tides in
our planet’s ocean of air on atmospheric pressure. This question has a
long history. The tides in the Earth’s atmosphere were discovered by
the famous Russian scientist Lomonosov, who called them air waves.
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Although many have busied themselves with these air waves, neverthe-
less, distorted notions of their action are widely current. Laymen pre-
sume that the Moon causes huge tidal waves in the Earth’s light and
mobile atmosphere. Hence the conviction that the tides largely alter
atmospheric pressure and are decisive in meteorology.

Such is not the case. We can prove theoretically that the height of an
atmospheric tide cannot exceed that of the tide in the ocean. This as-
sertion comes as a surprise; one would think that since the air, even
in its lower denser layers, is well nigh a thousand times lighter
than water, why should not the Moon’s attraction cause it to rise
a thousand times higher? This, however, is no more of a paradox
than the equal rapidity with which heavy and light bodies fall in a
void.

Let us recall one of our schoolday experiments when the ball of lead
in an empty tube fell no faster than the feather. The tide is the end
result of the Earth’s fall in space together with its lighfer casings,
under the effect of the gravitation of the Moon (and the Sun). In the
cosmic void all bodies, the light and the heavy, fall with the same
speed covering the same distance owing to gravitation. Provided,
of course, that their distance from the centre of gravitation is the
same.

From what has been said you will realize that the height of the at-
mospheric tides is the same as those in the ocean, off shore. Indeed if
we address ourselves to the formula used to calculate tidal height, we
shall find that it contains only the masses of the Moon and the Earth,
the radius of the Earth and the distance from the Earth to the Moon.
It calls for neither the density of the liquid raised nor the depth of the
ocean. Even if we were to substitute air for water the result of the cal-
culafions would not be altered. We obtain the same height for an at-
mospheric tide as for an ocean tide. The latter, incidentally, is insig-
nificant. Theoretically, the nighest ocean tide is around half a metre and
only the contours of shores and bottoms, by containing the tidal wave,
raise it to 10 m. and more in some places. There are unique mecha-
nisms for predicting the height of the tide at a given place and time
from data on the position of the Sun and the Moon.

However, in the boundless ocean of air nothing can interfere with
the theoretical picture of the lunar tide and change its theoretical peak
height of half a metre. Such an insignificant rise can have but only
the slightest effect on atmospheric pressure.
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Laplace, when investigating the theory of air tides, concluded that
the fluctuations of atmospheric pressure they caused would not exceed
0.6 mm. of the column of mercury, while the velocity of the wind pro-
duced would not exceed 7.5 cm./sec.

It is quite plain that atmospheric tides cannot play any essential role
in weather making.

These considerations debunk all attempts of the “Moon seers” to
forecast the weather by the position of the Moon in the skies.
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