
All Soviet Union Math Competitions 

1st ASU 1961 problems 

Problem 1 
  

Given 12 vertices and 16 edges arranged as follows: 

 

 
Draw any curve which does not pass through any vertex. Prove that the curve cannot intersect 

each edge just once. Intersection means that the curve crosses the edge from one side to the 

other. For example, a circle which had one of the edges as tangent would not intersect that 

edge.  

 

Solution 
  
A-----B-----C 

|     |     | 

D--E--F--G--H 

|  |     |  | 

I--J-----K--L 

If a curve intersects the boundary of a region R (such as ABFED), then it moves from inside 

R to outside or vice versa. Hence if R has an odd number of edges (like ABFED) then a curve 

intersecting all of them just once must have one endpoint inside R. But there are four such 

regions (ABFED, BCHGF, EFGKJ and the outside of ABCHLKJID) and only two endpoints.  

Note that we can easily intersect all edges but one. For example, start above AB, then cross 

successively AB, AD, DI, DE, EF, EJ, IJ, JK, GK, KL, HL, GH, CH, BC, FG.  

  

Problem 2 
  

Given a rectangle ABCD with AC length e and four circles centers A, B, C, D and radii a, b, 

c, d respectively, satisfying a+c=b+d<e. Prove you can inscribe a circle inside the 

quadrilateral whose sides are the two outer common tangents to the circles center A and C, 

and the two outer common tangents to the circles center B and D.  

 

Solution 
  

Let O be the center of the rectangle. Let r = (a+c)/2 = (b+d)/2. The required circle has center 

O, radius r. Let an outer common tangent touch the circle center A at W, and the circle center 

C at X. Let P be the midpoint of WX, then OP is parallel to AW and CX and has length r, 

hence the circle center O touches AW at P. Similarly for the other common tangents.  

 

Problem 3 
  

Prove that any 39 successive natural numbers include at least one whose digit sum is divisible 

by 11.  

 



Solution 
  

Let n be the smallest number in the sequence and m the smallest with last digit 0. m and m+10 

have different digit sums unless (possibly) the penultimate digit of m is 9, but in that case 

m+10 and m+20 have different digit sums. So two of m, m+10, m+20 are sure to have 

different digit sums. Hence at least one has a digit sum not congruent to 1 mod 11. Adding the 

appropriate final digit gives a number whose digit sum is divisible by 11. This number lies in 

the range m to m+29 and m<=n+9. Hence the result. n=999981 shows it is best possible.  

  

Problem 4 
  

(a)  Arrange 7 stars in the 16 places of a 4 x 4 array, so that no 2 rows and 2 columns contain 

all the stars. 

(b)  Prove this is not possible for <7 stars.  

 

Solution 
  

(a) 
**.. 

*.*. 

.**. 

...* 

 

Pick any two rows. The unpicked stars lie in different columns.   

 

(b)  If there is a row with at least 3 stars, pick it. That leaves at most 3 stars, pick the row for 

one and the columns for the others. Now assume no row has more than 2 stars. 6 stars in <6 

rows, so we can pick a row with 2 stars. That leaves 4 stars in 3 rows, so we can pick another 

row with 2 stars. That leaves 2 stars. Pick their columns. [This glosses over the case of <6 

stars. In this case we can add extra stars to make the number up to 6. Now the procedure 

above deals with the original stars and the extra stars, and in particular with the original stars.] 

  

Problem 5 
  

(a)  Given a quadruple (a, b, c, d) of positive reals, transform to the new quadruple (ab, bc, cd, 

da). Repeat arbitarily many times. Prove that you can never return to the original quadruple 

unless a=b=c=d=1. 

(b)  Given n a power of 2, and an n-tuple (a1, a2, ... , an) transform to a new n-tuple (a1a2, a2a3, 

... , an-1an, ana1). If all the members of the original n-tuple are 1 or -1, prove that with 

sufficiently many repetitions you obtain all 1s.  

 

Solution 
  

(a)  Let Q0 be the original quadruple (a, b, c, d) and Qn the quadruple after n transformations. 

If abcd>1, then the products form a strictly increasing sequence, so return is impossible. 

Similarly if abcd<1. So we must have abcd=1. 

Let the largest of the four values of a quadruple Q be M(Q). If a member of Q1 is not 1, then 

M(Q1)>1. Q3 consists of the elements of Q1 squared and permuted, so M(Q3) = M(Q1)
2
. Hence 

the sequence M(Q1), M(Q3), M(Q5), ... increases without limit. This means no return is 

possible, because a return would lead to the values cycling. 

  



(b)  After r<n transformations, the first number of the n-tuple is the product a1
(r|0)

a2
(r|1)

 ... 

ar+1
(r|r)

, where (r|i) denotes the binomial coefficient. [This is an easy induction.] Hence after 

n=2
k
 transformations it is a1

2
 times the product a2

(n|1)
 ... an

(n|n-1)
. So it is sufficient to prove that 

(n|i) is even for n a power of 2 and 0<i<n. But observe that (n|i) = (n-1|i) n/(n-i) and n is 

divisible by a higher power of 2 than n-i.  

  

Problem 6 
  

(a)  A and B move clockwise with equal angular speed along circles center P and Q 

respectively. C moves continuously so that AB=BC=CA. Establish C's locus and speed. 

*(b)  ABC is an equilateral triangle and P satisfies AP=2, BP=3. Establish the maximum 

possible value of CP.  

 

Solution 
  

(a)  Represent A, B as complex numbers z1 + w1e
it
, z2 + w2e

it
. Then C is (z1 + w1e

it
) + (z2 + 

w2e
it
 - z1 - w1e

it
) e

i �/3
, which is also of the form z + w e

it
. 

  

However, there is one subtlety. There are actually two circles possible for C depending on 

which side of AB we place it. The continuity requirement means that C is normally confined 

to one of the circles. However, if A and B ever coincide then C may be able to switch to the 

other circle. 

  

If we regard "moves continuously" as allowing a discontinuous velocity, then a switch is 

always possible (provided A and B coincide). 

  

(b)  Answer: 5. 

  

P must be the opposite side of AB to C (or we could increase CP, whilst keeping AP and BP 

the same, by reflecting in AB). Similarly it must be on the same side of AC as B, and on the 

same side of BC as A. For any P in this region the quadrilateral APBC is convex and hence 

satisfies Ptolemy's inequality CP· AB ��$3Â %&���%3Â $&��ZLWK�HTXDOLW\�LII�$3%&�LV�F\FOLF��
But AB = BC = CA, so we have CP ��AP + BP = 5 with equality iff P lies on the arc AB of 

the circle ABC. Note that there is just one such point, because the locus of P such that BP=1.5 

AP is a circle which cuts the arc just once. 

  

Ptolemy's inequality for 4 points A, B, C, D: AB· CD + BC· AD ��$&Â %'�ZLWK�HTXDOLW\�LII�
ABCD is a cyclic quadrilateral (meaning A, B, C, D lie on a circle in that order). 

  

Proof 

Take E inside ABCD such that ∠DAE = ∠CAB and ∠ADE = ∠ACB. Then ADE and ACB 

are similar, so DE/CB = AD/AC and hence BC· AD = AC· DE. It also follows that AE/AB = 

AD/AC. But we also have ∠EAB = ∠DAC and hence AEB and ADC are also similar. So 

EB/AB = DC/AC, and hence AB· CD = AC· EB. Adding, we have: AB· CD + BC· AD = 

AC(BE + ED) ��$&Â %'�ZLWK�HTXDOLW\�LII�(�OLHV�RQ�%'��RU�HTXLYDOHQWO\�$%&'�LV�F\FOLF� 
  

This glosses over one point. It only follows that ∠EAB = ∠DAC if ABCD is convex. For the 

convex case, we have that ∠EAB = ∠CAB + ∠EAC and ∠DAC = ∠DAE + ∠EAC, or 

∠EAB = ∠CAB - ∠EAC and ∠DAC = ∠DAE - ∠EAC. Either way ∠EAB = ∠DAC. But in 

the non-convex case, we can have ∠EAB = ∠CAB + ∠EAC and ∠DAC = ∠DAE - ∠EAC 

(or - ... +) and hence the angles ∠EAB and ∠DAC are not necessarily equal.  



  

Problem 7 
  

Given an m x n array of real numbers. You may change the sign of all numbers in a row or of 

all numbers in a column. Prove that by repeated changes you can obtain an array with all row 

and column sums non-negative. 

  

Solution 
  

The array has mn entries. Call an array that can be obtained by repeated changes a reachable 

array. A reachable array differs from the original only in that some or all of the signs of its mn 

entries may be different. There are at most 2 possibilities for each sign and hence at most 2
mn

 

different reachable arrays. For each reachable array calculate the sum of all its entries. Take 

the reachable array with the largest such sum. It must have non-negative row and column 

sums, because if any such sum was negative, changing the sign of that row or column would 

give another reachable array with strictly greater total sum.   

  

Problem 8 
  

Given n<1 points, some pairs joined by an edge (an edge never joins a point to itself). Given 

any two distinct points you can reach one from the other in just one way by moving along 

edges. Prove that there are n-1 edges. 

  

Solution 
  

Every point must have at least one edge. We show that there is a point with just one edge. 

Suppose the contrary, that every point has at least two edges. We now construct a path in 

which the same edge or point never appears twice. Starting from any point b, move along an 

edge to c. c is not already on the path, because otherwise the edge would join b to itself. Now 

suppose we have reached a point x not previously on the path. x has at least two edges, so it 

must have another one besides the one we used to reach it. Suppose this joins x to y. If y is 

already on the path, then we have two distinct ways of moving along edges from x to y: 

directly, or by backtracking along the path from x to y. But this is impossible, so y is not 

already on the path and we may extend the path to it. But this procedure allows us to construct 

a path containing more than the n distinct points available. Contradiction. 

  

The result is now easy. Induction on n. Take a point with just one edge. Remove it and the 

edge. Then the remaining n-1 points satisfy the premise and hence have just n-2 edges. 

  

Problem 9 
  

Given any natural numbers m, n and k. Prove that we can always find relatively prime natural 

numbers r and s such that rm+sn is a multiple of k. 

  

Solution 
  

Care is needed. Although easy, this is more awkward than it looks. 

  

Let d=(m,n), the greatest common divisor of m and n. Let r=n/d, s=nhk - m/d, where h is any 

integer sufficiently large to ensure that s>0. Now rm+sn = mn/d + nnhk - mn/d = nnhk, which 

is a multiple of k. If e divides r, then it also divides rdhk = nhk. So if e divides r and s, then it 



also divides s - nhk = -m/d. But n/d and m/d are relatively prime, so e must be 1. Hence r and 

s are relatively prime. 

  

Problem 10 
  

A and B play the following game with N counters. A divides the counters into 2 piles, each 

with at least 2 counters. Then B divides each pile into 2 piles, each with at least one counter. 

B then takes 2 piles according to a rule which both of them know, and A takes the remaining 

2 piles. Both A and B make their choices in order to end up with as many counters as 

possible. There are 3 possibilities for the rule: 

  R1  B takes the biggest heap (or one of them if there is more than one) and the smallest heap 

(or one of them if there is more than one). 

  R2  B takes the two middling heaps (the two heaps that A would take under R1). 

  R3  B has the choice of taking either the biggest and smallest, or the two middling heaps. 

For each rule, how many counters will A get if both players play optimally? 

  

Solution 
  

Answers: [N/2], [(N+1)/2], [N/2]. 

  

Suppose A leaves piles n, m with n�P�� 
  

Under R1, B can certainly secure m by dividing the larger pile into 1 and m-1. He cannot do 

better, because if b is the biggest of the 4 piles, then the smallest is at most m-b. Hence A's 

best strategy is to leave [N/2], [(N+1)/2]. 

  

Under R2, if A leaves a=2, b=N-2, then B cannot do better than [N/2], because if he divides 

the larger pile into a,b with a�E��WKHQ�KH�WDNHV�D����$�FDQQRW�GR�EHWWHU��EHFDXVH�LI�KH�OHDYHV�
a,b with 3�D�E��WKHQ�%�FDQ�GLYLGH�WR�leave 1, a-1, [b/2], [(b+1)/2]. Now if a-1�>�E�����@��WKHQ�
B takes b�>�1�����@��,I�D-1<[(b+1)/2], then B takes a-1+[b/2]. But a-1���DQG�>E��@�>�E�����@-
1, so a-1+[b/2]���>�E�����@��RU�%�WDNHV�DW�OHDVW�DV�PDQ\�DV�$��VR�%�WDNHV�DW�OHDVW�>�1�����@� 
  

Under R3, A's best strategy is to divide into [N/2],[(N+1)/2]. We have already shown that B 

can secure [(N+1)/2] and no more by following R1. He cannot do better under R2, for if he 

divides so that the biggest pile comes from [N/2], then the smallest does too and so he gets 

[(N+1)/2]. If he divides so that the biggest and smallest piles come from [(N+1)/2], then he 

gets only [N/2]. But one of these must apply, because if he divided so that the smaller from 

[N/2] was smaller than the smaller from [(N+1)/2], and the bigger from [N/2] was smaller 

than the bigger from [(N+1)/2], then [N/2] would be at least 2 less than [(N+1)/2] (which it is 

not). 

  

Problem 11 
  

Given three arbitary infinite sequences of natural numbers, prove that we can find unequal 

natural numbers m, n such that for each sequence the mth member is not less than the nth 

member. 

  

Solution 
  

Given any infinite sequence of natural numbers we can find a non-decreasing subsequence 

(proof below). So suppose the three sequences are ai, bi, and ci. Take a non-decreasing 



subsequence of ai. Suppose it is ai1, ai2, ai3, ... . Now consider the infinite sequence bi1, bi2, ... . 

It must have a non-decreasing subsequence. Suppose it is bj1, bj2, ... . Now consider the 

infinite sequence cj1, cj2, ... . It must have a non-decreasing subsequence ck1, ck2, ... . Each of 

the three sub-sequences ak1, ak2, ... , bk1, bk2, ... , ck1, ck2, ... is non-decreasing. So we may take, 

for example, m=k2 and n=k1. 

  

[Proof that any infinite sequence of natural numbers has a non-decreasing subsequence: if the 

original sequence is unbounded, then we can take a strictly increasing subsequence. If not, 

then since there are only finitely many possible numbers not exceeding the bound, at least one 

of them must occur infinitely often.] 

  

Problem 12 
  

120 unit squares are arbitarily arranged in a 20 x 25 rectangle (both position and orientation is 

arbitary). Prove that it is always possible to place a circle of unit diameter inside the rectangle 

without intersecting any of the squares. 

  

Solution 
  

If a circle with unit diameter intersects a unit square, then its center must lie inside an area 

3+�/4, namely an oval centered on the square and comprising: the original square, area 1; four 

1 x 1/2 rectangles on the sides, total area 2; and four quarter circles at the corners, total area 

�/4. So if it does not intersect any of the 120 unit squares, then it must avoid ovals with a total 

area of 120 x (3+�/4) = 454.2. Of course, for many arrangements of the squares, these ovals 

might overlap substantially, but the worst case would be no overlap. 

  

The circle is also required to lie inside the rectangle, so its center must lie outside a strip 1/2 

wide around the edge, and hence inside an inner 19 x 24 rectangle, area 456. The total area of 

ovals is less, so they cannot cover it completely and it must be possible to place a circle as 

required. 

 



2nd ASU 1962 problems 

Problem 1 

  

ABCD is any convex quadrilateral. Construct a new quadrilateral as follows. Take A' so that 

A is the midpoint of DA'; similarly, B' so that B is the midpoint of AB'; C' so that C is the 

midpoint of BC'; and D' so that D is the midpoint of CD'. Show that the area of A'B'C'D' is 

five times the area of ABCD. 

  

Solution 

  

Compare the triangles A'B'A and ADB. The base of A'B'A can be taken as A'A, which is the 

same length as AD. The height of A'B'A is AB' times sin B'AA', which is twice AB times sin 

BAD. So area A'B'A = 2 area ADB. Similarly, area B'C'B = 2 area BAC, area C'D'C = 2 area 

CBD, and area D'A'D = 2 area DCA. So adding, the area A'B'A + area C'D'C = 2 area ABCD, 

and area B'C'B + area D'A'D = 2 area ABCD. But ABCD = A'B'A + B'C'B + C'D'C + D'A'D 

+ ABCD. Hence result. 

  

Problem 2 

  

Given a fixed circle C and a line L throught the center O of C. Take a variable point P on L 

and let K be the circle center P through O. Let T be the point where a common tangent to C 

and K meets K. What is the locus of T? 

  

Solution 

  

Let the common tangent meet C at S. Let X be the intersection of C and OP lying between O 

and P. PT = PO, hence ∠POT = ∠PTO, so ∠OPT = 180
o
 - 2 ∠POT. But PT and OS are 

parallel, because both are perpendicular to the common tangent. Hence ∠POS = 2 ∠POT, so 

∠SOT = ∠XOT. Hence TX is tangent to C, in other words T lies on the (fixed) tangent to C 

at X. Conversely, it is easy to see that any such point can be obtained (just take P such that PO 

= PT). Thus the required locus is the pair of tangents to C which are perpendicular to L. 

  

Problem 3 

  

Given integers a0, a1, ... , a100, satisfying a1>a0, a1>0, and ar+2=3 ar+1 - 2 ar for r=0, 1, ... , 98. 

Prove a100 > 2
99

. 

  

Solution 

  

An easy induction gives ar = (2
r
 - 1)a1 - (2

r
 - 2)a0 for r = 2, 3, ... , 100. Hence, in particular, 

a100 = (2
100

 - 2)(a1 - a0) + a1. But a1 and (a1 - a0) are both at least 1. Hence result.  

  

Problem 4 
  

Prove that there are no integers a, b, c, d such that the polynomial ax
3
+bx

2
+cx+d equals 1 at 

x=19 and 2 at x=62. 

  

Solution 
  



If there were such values, then subtract the equation with x = 19 from the equation with x = 

62 to get: a(62
3
 - 19

3
) + b(62

2
 - 19

2
) + c(62 - 19) = 1. But the left hand side is divisible by 62 -

19 = 43, contradiction.  

  

Problem 5 
  

Given an n x n array of numbers. n is odd and each number in the array is 1 or -1. Prove that 

the number of rows and columns containing an odd number of -1s cannot total n. 

  

Solution 
  

If we change a -1 to 1, we affect the total number of rows and columns (containing an odd 

number of -1s) by 0, 2 or -2. After changing all the -1s we have total of 0. Hence the starting 

total must be even. So it cannot be n. 

  

Problem 6 
  

Given the lengths AB and BC and the fact that the medians to those two sides are 

perpendicular, construct the triangle ABC. 

  

Solution 
  

Let M be the midpoint of AB and X the midpoint of MB. Construct the circle center B, radius 

BC/2 and the circle diameter AX. If they do not intersect (so BC<AB/2 or BC>AB) then the 

construction is not possible. If they intersect at N, then take C so that N is the midpoint of BC. 

Let CM meet AN at O. Then AO/AN = AM/AX =2/3, so the triangles AOM and ANX are 

similar. Hence ∠AOM = ∠ANX = 90
o
. 

  

Problem 7 
  

Given four positive real numbers a, b, c, d such that abcd=1, prove that a
2
 + b

2
 + c

2
 + d

2
 + ab 

+ ac + ad + bc + bd + cd >= 10. 

  

Solution 
  

Applying the arithmetic/geometric mean result to the 10 numbers gives the result 

immediately.   

  

Problem 8 
  

Given a fixed regular pentagon ABCDE with side 1. Let M be an arbitary point inside or on it. 

Let the distance from M to the closest vertex be r1, to the next closest be r2 and so on, so that 

the distances from M to the five vertices satisfy r1 ��U2 ��U3 ��U4 ��U5. Find (a) the locus of M 

which gives r3 the minimum possible value, and (b) the locus of M which gives r3 the 

maximum possible value. 

  

Solution 
  

Let X be the midpoint of AB and O the center of ABCDE. Suppose M lies inside AXO. Then 

ME=r3. So we maximise r3 by taking M at X, with distance 1.5590, and we minimise r3 by 

taking M as the intersection of AO and EB with distance 0.8090. AXO is one of 10 congruent 



areas, so the required loci are (a) the 5 midpoints of the diagonals, and (b) the 5 midpoints of 

the sides. 

  

Problem 9 
  

Given a number with 1998 digits which is divisible by 9. Let x be the sum of its digits, let y 

be the sum of the digits of x, and z the sum of the digits of y. Find z. 

  

Solution 
  

x ���Â ����� ��������+HQFH�\���WKH�JUHDWHU�RI���������� ���DQG�������� ����%XW���GLYLGHV�
the original number and hence also x, y and z. Hence z=9. 

  

Problem 10 
  

AB=BC and M is the midpoint of AC. H is chosen on BC so that MH is perpendicular to BC. 

P is the midpoint of MH. Prove that AH is perpendicular to BP. 

  

Solution 
  

Take X on AH so that BX is perpendicular to AH. Extend to meet HM at P'. Let N be the 

midpoint of AB. A, B, M and X are on the circle center N radius NA (because angles AMB 

and AXB are 90). Also MN is parallel to BC (because AMN, ACB are similar), so NM is 

perpendicular to MH, in other words HM is a tangent to the circle. hence P'M· P'M = P'X· P'B. 

Triangles P'XH and P'HB are similar (angles at P' same and both have a right angle), so 

P'H/P'X = P'B/P'H, so P'H· P'H = P'X· P'B. Hence P'H = P'M and P' coincides with P. 

  

Problem 11 
  

The triangle ABC satisfies 0 ��$%�������%&�������&$������:KDW�LV�WKH�PD[LPXP�DUHD�LW�FDQ�
have? 

  

Solution 
  

If we ignore the restrictions of CA, then the maximum area is 1, achieved when AB is 

perpendicular to BC. But in this case CA satisfies the restrictions. 

  

Problem 12 
  

Given unequal integers x, y, z prove that (x-y)
5
 + (y-z)

5
 + (z-x)

5
 is divisible by 5(x-y)(y-z)(z-

x). 

  

Solution 
  

Put x-y=r, y-z=s. Then z-x = -(r+s), and (x-y)
5
 + (y-z)

5
 + (z-x)

5
 = r

5
 + s

5
 - (r+s)

5
 = -5r

4
s - 

10r
3
s

2
 - 10r

2
s

3
 - 5rs

4
 = -5rs(r+s)(r

2
 + rs + s

2
). 

  

Problem 13 
  

Given a0, a1, ... , an, satisfying a0 = an = 0, and and ak-1 - 2ak + ak+1 ����IRU�N ������������Q-1. 

Prove that all the numbers are negative or zero. 



  

Solution 
  

The essential point is that if we plot the values ar against r, then the curve formed by joining 

the points is cup shaped. Its two endpoints are on the axis, so the other points cannot be above 

it.There are many ways of turning this insight into a formal proof. Barry Paul's was neater 

than mine: ar+1-ar ��Dr-ar-1. Hence (easy induction) if as - as-1> 0, then an > as. Take as to be the 

first positive, then certainly as > as-1, so an > 0. Contradiction. 

  

Problem 14 
  

Given two sets of positive numbers with the same sum. The first set has m numbers and the 

second n. Prove that you can find a set of less than m+n positive numbers which can be 

arranged to part fill an m x n array, so that the row and column sums are the two given sets. 

  

Example: row sums 1, 5, 3; column sums 2, 7. Array is:  
x5 

x1 

21 

  

Solution 
  

Induction on m+n. Trivial for m+n=2. 

  

Let x be the largest number in the two given sets. Suppose it is a row total; let y be the largest 

column total. If y<x, then replace x by x-y in the set of row totals and remove y from the col 

totals. By induction find <=m+n-2 positive numbers in an m x (n-1) array with the new totals. 

Adding a col empty except for y in the row totalling x-y gives the required original set. 

  

If y=x, then drop x from the row totals and y from the col totals and argue as before. 

  

If x was a col total we interchange rows and cols in the argument. 

  

 



3rd ASU 1963 

Problem 1 
  

Given 5 circles. Every 4 have a common point. Prove that there is a point common to all 5. 

  

Solution 
  

Let the circles be a, b, c, d, e. Let A be a point common to b, c, d, e, let B be a point common 

to a, c, d, e and so on. If any two of A, B, C, D, E coincide then the coincident point is on all 5 

circles. Suppose they are all distinct. Then A, B, C are on d and e. Hence d and e coincide (3 

points determine a circle). Hence D is on all 5 circles. 

  

Problem 2 
  

8 players compete in a tournament. Everyone plays everyone else just once. The winner of a 

game gets 1, the loser 0, or each gets 1/2 if the game is drawn. The final result is that 

everyone gets a different score and the player placing second gets the same as the total of the 

four bottom players. What was the result of the game between the player placing third and the 

player placing seventh? 

  

Solution 
  

The bottom 4 played 6 games amongst themselves, so their scores must total at least 6. Hence 

the number 2 player scored at least 6. The maximum score possible is 7, so if the number 2 

player scored more than 6, then he must have scored 6 1/2 and the top player 7. But then the 

top player must have won all his games, and hence the number 2 player lost at least one game 

and could not have scored 6 1/2. Hence the number 2 player scored exactly 6, and the bottom 

4 players lost all their games with the top 4 players. In particular, the number 3 player won 

against the number 7 player. 

  

Problem 3 
  

(a)  The two diagonals of a quadrilateral each divide it into two parts of equal area. Prove it is 

a parallelogram. 

  

(b)  The three main diagonals of a hexagon each divide it into two parts of equal area. Prove 

they have a common point. [If ABCDEF is a hexagon, then the main diagonals are AD, BE 

and CF.] 

  

Solution 
  

(a)  Let the quadrilateral be ABCD and let the diagonals AC, BD meet at E. Then area ABC = 

AC.EB.sin CEB/2, and area ADC = AC.ED.sin CEB/2, so E is the midpoint of BD. Similarly, 

it is the midpoint of AC. Hence the triangles AEB and CED are congruent, so angle CDE = 

angle ABE, and hence AB is parallel to CD. Similarly, AD is parallel to BC. 

  

(b)  Let the hexagon be ABCDEF. Let BE, CF meet at J, let AD, CF meet at K, and let AD, 

BE meet at L. Let AK=a, BJ=b, CJ=c, DL=d, EL=e, FK=f. Also let KL=x, JL=y and JK=z. 

Consider the pair of diagonals AD, BE. They divide the hexagon into 4 parts: the triangles 



ALB and DLE, and the quadrilaterals AFEL and BCDL. Since area ALB + area AFEL = area 

DLE + area BCDL, and area ALB + area BCDL = area DLE + area AFEL, the two triangles 

must have the same area (add the two inequalities). But area ALB = 1/2 AL.BL.sin ALB, and 

area DLE = 1/2 DL.EL.sin DLE = 1/2 DL.EL.sin ALB, so AL.BL = DL.EL or de = 

(a+x)(b+y). Similarly, considering the other two paris of diagonals, we get bc = (e+y)(f+z) 

and af = (c+z)(d+x). Multiplying the three inequalities gives: abcdef = 

(a+f)(b+y)(c+z)(d+x)(e+y)(f+z). But x, y, z are non-negative, so they must be zero and hence 

the three diagonals pass through a common point. 

  

Problem 4 
  

The natural numbers m and n are relatively prime. Prove that the greatest common divisor of 

m+n and m
2
+n

2
 is either 1 or 2. 

  

Solution 
  

If d divides m+n and m
2
+n

2
, then it also divides (m+n)

2
 - (m

2
+n

2
) = 2mn and hence also 

2m(m+n) - 2mn = 2m
2
 and 2n(m+n) - 2mn = 2n

2
. But m and n are relatively prime, so m

2
 and 

n
2
 are also. Hence d must divide 2. 

  

Problem 5 
  

Given a circle c and two fixed points A, B on it. M is another point on c, and K is the 

midpoint of BM. P is the foot of the perpendicular from K to AM. 

  

(a) prove that KP passes through a fixed point (as M varies); 

(b) find the locus of P. 

  

Solution 
  

(a)  Take Y on the circle so that angle ABY=90. Then AY is a diameter and so angle 

AMY=90. Take X as the midpoint of BY. Then triangles BXK and BYM are similar, so XK 

is parallel to YM. Hence XK is perpendicular to AM, and so P is the intersection of XK and 

AM. In other words, KP always passes through X.  

(b)  P must lie on the circle diameter AX, and indeed all such points can be obtained (given a 

point P on the circle, take M as the intersection of AP and the original circle). So the locus of 

P is the circle diameter AX. 

  

Problem 6  

Find the smallest value x such that, given any point inside an equilateral triangle of side 1, we 

can always choose two points on the sides of the triangle, collinear with the given point and a 

distance x apart.  

Solution 

Answer: 2/3.  

Let O be the center of ABC. Let AO meet BC at D, let BO meet CA at E, and let CO meet AB 

at F. Given any point X inside ABC, it lies in one of the quadrilaterals AEOF, CDOE, BFOD. 

Without loss of generality, it lies in AEOF. Take the line through X parallel to BC. It meets 



AB in P and AC in Q. Then PQ is shorter than the parallel line MON with M on AB and N on 

AC, which has length 2/3. If we twist the segment PXQ so that it continues to pass through X, 

and P remains on AB and Q on AC, then its length will change continuously. Eventually, one 

end will reach a vertex, whilst the other will be on the opposite side and hence the length of 

the segment will be at least that of an altitude, which is greater than 2/3. So at some 

intermediate position its length will be 2/3.  

To show that no value smaller than 2/3 is possible, it is sufficient to show that any segment 

POQ with P and Q on the sides of the triangle has length at least 2/3. Take P on MB and Q on 

AN with P, O, Q collinear. Then PQ cos POM = MN - QN cospi/3 + PM cos pi/3. But 

PM>QN (using the sine rule, PM = OM sinPOM/sinOPM and QN = ON sinQON/sinOQN, 

but OM=ON, angle POM = angle QON, and angle OQN = angle OPM + pi/3 > angle OPM), 

and hence PQ > MN sec POM > MN.  

Problem 7 

(a)  A 6 x 6 board is tiled with 2 x 1 dominos. Prove that we can always divide the board into 

two rectangles each of which is tiled separately (with no domino crossing the dividing line).  

#(b)  Is this true for an 8 x 8 board?  

Solution 

(a)  We say a domino bridges two columns if half the domino is in each column. We show 

that for 0<n<6 the number of dominoes bridging columns n and n+1 must be at least 2 and 

even.  

Consider first n=1. There cannot be 3 dominoes entirely in column 1, or it would be 

separately tiled. So there must be at least one domino bridging columns 1 and 2. The number 

must be even, because it must equal the number of squares in column 1 (even) less twice the 

number of dominoes (entirely) in column 1.  

Now suppose it is true for n<5 and consider column n+1. There must be at least one domino 

bridging columns n+1 and n+2, or columns 1 thru n+1 would be separately tiled. The number 

must be even, because it must equal the number of squares in column n+1 (even) less the 

number bridging n and n+1 (even) less twice the number entirely in the column.  

So in total there are at least 5 x 2 = 10 dominoes bridging columns. By the same argument 

there are at least another 10 bridging rows, but there are only 18 dominoes in total.  

(b)  No. For example:  

1 2 3 3 1 1 2 2 

1 2 1 2 2 3 3 1 

3 3 1 3 1 2 4 1 

1 2 2 3 1 2 4 3 

1 3 3 2 2 1 2 3 

3 2 1 1 4 1 2 1  

3 2 3 2 4 3 3 1 

1 1 3 2 1 1 2 2  

Problem 8 



Given a set of n different positive reals {a1, a2, ... , an}. Take all possible non-empty subsets 

and form their sums. Prove we get at least n(n+1)/2 different sums.  

Solution 

Assume a1 < a2 < ... < an. We have the following collection of increasing sums:  

a1 < a2 < ... < an   n sums  

a1+an < a2+an < ... < an-1+an   n-1 sums  

a1+an-1+an < a2+an-1+an < ... < an-2+an-1+an   n-2 sums  

...    

a1 + a2 + ... + an   1 sum  

A total of 1+2+ ... +n = n(n+1)/2.  

Problem 9 

Given a triangle ABC. Let the line through C parallel to the angle bisector of B meet the angle 

bisector of A at D, and let the line through C parallel to the angle bisector of A meet the angle 

bisector of B at E. Prove that if DE is parallel to AB, then CA=CB.  

Solution 

The idea is to find an expression for the perpendicular distance h from D to AB. Let � = 

∠ACB, . = ½∠CAB, and � = ½∠ABC. We have h = AP sin ..  

Using the sine rule on APC, we have AP = AC sin(�+�)/sin(.+�), so h = AC sin . 

sin(�+�)/sin(.+�). Similarly, the perpendicular distance k from E to AB is BC sin � 

sin(�+.)/sin(.+�).  

We also have that AC/BC = sin 2�/sin 2., and hence h/k = sin 2� sin . sin(�+�)/(sin 2. sin � 

sin(�+.)). Using the fact that sin(�+�) = sin(2.+�), and the expression for sin 2�, we get h/k = 

(sin(2.+2�) + sin 2.)/(sin(2.+2�) + sin 2�) and hence h = k iff the triangle is isosceles.  

For some reason the geometric solution took me longer to find. Let ED meet BC at X. Then 

XCD and XBE are isosceles, so BC = BX + XC = DX + XE = DE. Similarly, AC = DE. 

Hence AC = BC.  

Problem 10 

An infinite arithmetic progression contains a square. Prove it contains infinitely many 

squares.  

Solution 

Let the square be a
2
 and the difference d, so that all numbers of the form a

2
+nd belong to the 

arithmetic progression (for n a natural number). Take n to be 2ar + dr
2
, then a

2
+nd = (a+dr)

2
.  

Problem 11 



Can we label each vertex of a 45-gon with one of the digits 0, 1, ... , 9 so that for each pair of 

distinct digits i, j one of the 45 sides has vertices labeled i, j?  

Solution 

10 x 5 > 45, so some digit i0 must appear less than 5 times. But each occurrence can give at 

most 2 edges i0, j, so there are at most 8 edges i0, j, which is one too few.  

Problem 12 

Find all real p, q, a, b such that we have (2x-1)
20

 - (ax+b)
20

 = (x
2
+px+q)

10
 for all x.  

Solution 

Comparing coefficients of x
20

, we must have a = (2
20

 - 1)
1/20

 (note that we allow either the 

positive or the negative root).  

Set x=1/2. Then we must have (ax + b)
20

 = 0 = (x
2
+px+q)

10
, and hence ax + b =0 and x

2
+px+q 

= 0. So b = -a/2, and 1/4 + p/2 + q = 0.  

Set x=0. Then we get q
10

 = 1 - b
20

 = 1/2
20

, so q = 1/4 or -1/4, and p= -1 or 0 respectively. 

Comparing the coefficients of x
19

, we must have p = -1 and q = 1/4. So, if there is a solution, 

then it must be: a = (2
20

 - 1)
1/20

, b = -a/2, p = -1, q = 1/4. This is indeed a solution because 

with these values, the lhs = 2
20

(x - 1/2)
20

 - (x - 1/2)
20

a
20

 = (x - 1/2)
20

 = (x
2
 - x + 1/4)

10
 = rhs.  

Problem 13 

We place labeled points on a circle as follows. At step 1, take two points at opposite ends of a 

diameter and label them both 1. At step n>1, place a point at the midpoint of each arc created 

at step n-1 and label it with the sum of the labels at the two adjacent points. What is the total 

sum of the labels after step n? 

  

For example, after step 4 we have: 1, 4, 3, 5, 2, 5, 3, 4, 1, 4, 3, 5, 2, 5, 3, 4.  

Solution 

Answer: 2.3
n-1

.  

True for n=1. The new points added at step n+1 have twice the sum of the points after step n, 

because each old point contributes to two new points. hence the total after step n+1 is three 

times the total after step n.  

Problem 14 

Given an isosceles triangle, find the locus of the point P inside the triangle such that the 

distance from P to the base equals the geometric mean of the distances to the sides.  

Solution 

Let the triangle be ABC, with AB=AC. Take the circle through B and C which has AB and 

AC as tangents. The required locus is the arc BC.  



Suppose P lies on the arc. Let the perpendiculars from P meet BC in L, AB in N and AC in M. 

Join PB and PC. The triangles PNB and PLC are similar (PNB and PLC are both 90, and NBP 

= LCP because NB is tangent to the circle). Hence PN/PL = PB/PC. Similarly, triangles PMC 

and PLB are similar and hence PM/PL = PC/PB. Multiplying gives the required result PL
2
 = 

PM.PN.  

If P is inside the circle and not on it, take P' as the intersection of the line AP and the arc. We 

have PL<P'L, but PM>P'M and PN>P'N, hence PL
2
<PM.PN. Similarly, if P is outside the 

circle and not on it, then PL
2
>PM.PN.  



4th ASU 1964 

Problem 1 

In the triangle ABC, the length of the altitude from A is not less than BC, and the length of 

the altitude from B is not less than AC. Find the angles.  

Solution 

Let k be twice the area of the triangle. Then k�%&2
, k�$&2

 and k�$&�%&��ZLWK�HTXDOLW\�LQ�
the last case only if AC is perpendicular to BC. Hence AC and BC have equal lengths and are 

perpendicular. So the angles are 90, 45, 45.  

Problem 2 

If m, k, n are natural numbers and n>1, prove that we cannot have m(m+1) = k
n
.  

Solution 

m and m+1 have no common divisors, so each must separately be an nth power. But the 

difference betwee the two nth powers is greater than 1 (for n>1).  

Problem 3 

Reduce each of the first billion natural numbers (billion = 10
9
) to a single digit by taking its 

digit sum repeatedly. Do we get more 1s than 2s?  

Solution 

Taking digit sums repeatedly gives the remainder after dividing the number by 9, or 9 if the 

number is exactly divisible by 9. 10
9
 - 1 = 9n, and for any r>=0 the nine consecutive numbers 

9r+1, 9r+2, ... , 9r+9 include just one number giving remainder 1 and one number giving 

remainder 2. Hence the numbers up to 10
9
 - 1 give equal numbers of 1s and 2s. 10

9
 itself 

gives 1, so there is just one more of the 1s than the 2s.  

Problem 4 

Given n odd and a set of integers a1, a2, ... , an, derive a new set (a1 + a2)/2, (a2 + a3)/2, ... , (an-1 

+ an)/2, (an + a1)/2. However many times we repeat this process for a particular starting set we 

always get integers. Prove that all the numbers in the starting set are equal.  

For example, if we started with 5, 9, 1, we would get 7, 5, 3, and then 6, 4, 5, and then 5, 4.5, 

5.5. The last set does not consist entirely of integers.  

Solution 

Let the smallest value be s and suppose it occurs m times (with m<n). Then the values in the 

next stage are all at least s, and at most m-1 equal s. So after at most m iterations the smallest 

value is increased.  



We can never reach a stage where all the values are equal, because if (a1+a2)/2 = (a2+a3)/2 = 

... = (an-1+an)/2 = (an+a1)/2, then a1+a2 = a2+a3 and hence a1 = a3. Similarly, a3 = a5, and so a1 = 

a3 = a5 = ... = an (n odd). Similarly, a2 = a4 = ... = an-1. But we also have an + a1 = a1 + a2 and so 

a2 = an, so that all ai are equal. In other words, if all the values are equal at a particular stage, 

then they must have been equal at the previous stage, and hence at every stage.  

Thus if the values do not start out all equal, then the smallest value increases indefinitely. But 

that is impossible, because the sum of the values is the same at each stage, and hence the 

smallest value can never exceed (a1 + ... + an)/n.  

Note that for n even the argument breaks down because a set of unequal numbers can iterate 

into a set of equal numbers. For example: 1, 3, 1, 3, ... , 1, 3.  

Problem 5 

The convex hexagon ABCDEF has all angles equal. Prove that AB - DE = EF - BC = CD - 

FA. 

  

(b)  Given six lengths a1, ... , a6 satisfying a1 - a4 = a5 - a2 = a3 - a6, show that you can 

construct a hexagon with sides a1, ... , a6 and equal angles.  

Solution 

(a)  Extend AB, CD, EF. We get an equilateral triangle with sides AF + AB + BC, BC + CD + 

DE, ED + EF + FA. Hence AB - DE = CD - FA = EF - BC, as required.  

(b)  Take an equilateral triangle with sides s, t, u lengths a2 + a3 + a4, a4 + a5 + a6, and a6 + a1 + 

a2 respectively. Construct BC length a2 parallel to t with B on u and C on s. Construct DE 

length a4 parallel to u with D on s and E on t. Construct FA length a6 parallel to s with F on t 

and A on u. Then ABCDEF is the required hexagon, with AB = a1, BC = a2 etc.  

Problem 6 

Find all possible integer solutions for sqrt(x + sqrt(x ... (x + sqrt(x)) ... )) = y, where there are 

1998 square roots.  

Solution 

Let s1 = sqrt(x), s2 = sqrt(x + s1), s3 = sqrt(x + s2) and so on. So the equation given is y = s1998. 

We show first that all sn must be integral for 1 <= n <= 1998. y is integral, so s1998 is integral. 

Now suppose sn is integral. Then sn-1 = sn
2
 - x is integral, proving the claim.  

So in particular s1 and s2 are integers and s2
2
 = s1

2
 + s1. But if s1 > 0, then s1

2
 < s1

2
 + s1 < (s1 + 

1)
2
, which is impossible. Similarly s1 < 0 is impossible. So the only possible solution is s1 = 0 

and hence x = 0 and y = 0.  

Problem 7 

ABCD is a convex quadrilateral. A' is the foot of the perpendicular from A to the diagonal 

BD, B' is the foot of the perpendicular from B to the diagonal AC, and so on. Prove that 

A'B'C'D' is similar to ABCD.  



Solution 

Let the diagonals meet at O. Then CC'O is similar to AA'O (because CC'O = AA'O = 90, and 

COC', AOA' are opposite angles), so A'O/C'O = AO/CO. Similarly, B'O/D'O = BO/DO. 

AA'O is also similar to BB'O, so A'O/B'O = AO/BO. Thus OA':OB':OC':OD' = 

OA:OB:OC:OD. Hence triangles OA'B' and OAB are similar. Likewise OB'C' and OBC, 

OC'D' and OCD, and OD'A' and ODA. Hence result.  

Problem 8 

Find all natural numbers n such that n
2
 does not divide n!.  

Solution 

Answer: n = 4 or prime.  

If n = rs, with 1 < r < s, then r < s < n, and hence rsn = n
2
 divides n!. Similarly, if n = r

2
 with r 

> 2, then r < 2r < n, and hence n
2
 divides n!. This covers all possibilities except n = 4 or n = 

prime, and it is easy to see that in these cases n
2
 does not divide n!.  

Problem 9 

Given a lattice of regular hexagons. A bug crawls from vertex A to vertex B along edges of 

the hexagons, taking the shortest possible path (or one of them). Prove that it travels a 

distance at least AB/2 in one direction. If it travels exactly AB/2 in one direction, how many 

edges does it traverse?  

Solution 

                                      1      2 

    ./ \./ \.           directions    |     / 

    |   |   |                         *    *     * 

  ./°\./°\./°\.                                    \ 

  |   |   |   |                                    3 

./°\./°\./°\./ 

|   |   |   | 

*\./°\./°\./°  

Suppose vertex A is that marked * at the bottom left. Without loss of generality, B is in a 60 

degree sector as shown. Assume the edges have unit length. The vertices can be partitioned 

into two sets (marked ° and . in the diagram). Each set forms a skewed lattice with axes at 60 

degrees. Any path must alternate between the two lattices.  

If B is on the same lattice as A, then we can give B coordinates (m,n) relative to A and the 

shortest path from A to B must move m units east and n units east of north. The shortest path 

between a lattice point and the next lattice point east is evidently one edge in direction 3 

followed by one edge in direction 2. Similarly, the shortest path between a lattice point and 

the next lattice point east of north is one edge in direction 1, followed by one edge in direction 

2. So a shortest path from A to B must have m+n edges in direction 2.  

B is a distance ¥��P�Q����HDVW�RI�$�DQG�D�GLVWDQFH��Q���QRUWK�RI�$��VR�$%2
 = (3m

2
+3mn+3n

2
) 

< (4m
2
+8mn+4n

2
) = 4 (m+n)

2
. So in this case the bug must travel more than AB/2 in direction 

2.  



Now suppose B is on the other lattice. Let C be the lattice point immediately north of A and D 

the lattice point in direction 3 from A. Then a shortest path from A to B must either be A to C 

and then a shortest path from C to B, or A to D and then a shortest path from D to B. Take B 

to have coordinates (m, n) relative to C or D.  

In the first case, AB
2
 = (¥��P�Q����2 + (3n/2 + 1)

2
 = (3m

2
 + 3mn + 3n

2
) + 3n + 1 and a 

shortest path has m+n units in direction 2. But 4(m + n)
2
 > (3m

2
 + 3mn + 3n

2
) + 3n + 1, if m

2
 

+ n
2
 + 5mn > 3n + 1, which is true for m, n at least 1. If m=0 and n=1, then a shortest path has 

2 units in direction 1 and AB = ¥�������,I�P ��DQG�Q ���WKHQ�$% ��DQG�D�VKRUWHVW�SDWK�KDV���
unit in each direction. So in this case (the only one so far) we have equality.  

It remains to consider the case where the path starts out towards D. In this case AB
2
 = 

(¥��P�Q������¥����2 + (3n/2 -1/2)
2
 = (3m

2
+3mn+3n

2
) + 3m + 1 and a path has m + n units in 

direction 2. But 4(m + n)
2
 > (3m

2
 + 3mn + 3n

2
) + 3m + 1 for m

2
+n

2
 + 5mn > 3m + 1, which is 

true for m, n at least 1. If m=1, n=0, then a shortest path has 2 units in direction 3 and AB = ¥�������)LQDOO\��LI�P ��DQG�Q ���WKHQ�D�VKRUWHVW�SDWK�KDV���XQLW�LQ�HDFK�GLUHFWLRQ�DQG�$%� ���� 
Thus the answer to the final question is 3, because the only cases where the bug travels 

exactly AB/2 in one direction are where it goes to the opposite vertex of a hexagon it is on.  

Problem 10 

A circle center O is inscribed in ABCD (touching every side). Prove that angle AOB + angle 

COD equals 180 degrees.  

Solution 

Let AB touch the circle at W, BC at X, CD at Y, and DA at Z. Then AO bisects angle ZOW 

and BO bisects angle XOW. So angle AOB is half angle ZOX. Similarly angle COD is half 

angle XOZ and hence angle AOB + angle COD equals 180.  

Problem 11 

The natural numbers a, b, n are such that for every natural number k not equal to b, b - k 

divides a - k
n
. Prove that a = b

n
.  

Solution 

We have k
n
 - a = b

n
 - a (mod b - k). Hence b

n
 - a = 0 (mod b- k) for every k not equal to b. But 

if b
n
 does not equal a, then by taking k - b > b

n
 - a we could render the equation false.  

Problem 12 

How many (algebraically) different expressions can we obtain by placing parentheses in a1/a2/ 

... /an?  

Solution 

Answer 2
n-2

. a1 must be in the numerator, and a2 must be in the denominator, but the other 

symbols can be in either. This is easily proved by induction.  



Problem 13 

What is the smallest number of tetrahedrons into which a cube can be partitioned?  

Solution 

Answer: 5.  

Tetrahedral faces are triangular, so each cube face requires at least two tetrahedral faces. So at 

least 12 tetrahedral faces are needed in all. At most three faces of a tetrahedron can be 

mutually orthogonal (and no two faces can be parallel), so at most 3 faces from each 

tetrahedron can contribute towards these 12. So we require at least 4 tetrahedra to provide the 

cube faces. But these tetrahedra each have volume at most 1/6 (1/3 x face area x 1, and face 

area is at most 1/2). So if we have only 4 tetrahedra in total then their total volume is less than 

the cube's volume. Contradiction. Hence we need at least 5 tetrahedra.  

It can be done with 5: lop off 4 non-adjacent corners to leave a tetrahedron. More precisely, 

take the cube as ABCDA'B'C'D' with ABCD horizontal, A' directly under A, B' directly under 

B and so on. Then the five tetrahedra are AA'BD, CC'BC, DD'A'C', BB'A'C', BDA'C'.  

Problem 14 

a)  Find the smallest square with last digit not 0 which becomes another square (not zero) by 

the deletion of its last two digits. #(b)  Find all squares, not containing the digits 0 or 5, such 

that if the second digit is deleted the resulting number divides the original one.  

Solution 

(a)  This one must have slipped through: 121!  

(b)  Answer: 16,36,121,484. Suppose the number has more than 2 digits. Write it as (10m + 

n)10
r
 + s, where 1 <= m <= 9, 0 <= n <= 9, 0 <= s < 10

r
. Then we have k(m.10

r
 + s) = (10m 

+n)10
r
 + s, for some k > 1.  

s does not contain the digits 0 or 5, so 5 does not divide s. Hence 5 divides k-1, and so k must 

be 6, 11, or 16 (if k was 21 or more, then the rhs would be negative). Since 25 does not divide 

k-1, we must have r=1 and s is a single digit.  

We look at each possibility for k in turn. k = 6 gives no solutions. k = 11 gives about two 

dozen multiples of 11 from 121 to 891. By inspection the only squares are 121 and 484. k = 

16 gives 192, which is not a square.  

In addition, there is the possibility of 2 digit solutions, which I had overlooked. It is easiest to 

check each of the 2 digit squares, thus finding the additional solutions 16, 36.  

Problem 15 

A circle is inscribed in ABCD. AB is parallel to CD, and BC = AD. The diagonals AC, BD 

meet at E. The circles inscribed in ABE, BCE, CDE, DAE have radius r1, r2, r3, r4 

respectively. Prove that 1/r1 + 1/r3 = 1/r2 + 1/r4.  



Solution 

A necessary and sufficient condition for ABCD to have an inscribed circle is AB + CD = BC 

+ AD. So we have AB + CD = 2AD, which we use repeatedly. Extend DC to X so that BX is 

parallel to EC. Then DX = AB + CD = 2AD and the triangles DEC, AEB, DBX are similar. 

Let h be the perpendicular distance from AB to CD. The similar triangles give us the heights 

of DEC and AEB in terms of h.  

1/r1 = perimeter ABE/(2 area ABE) = (AB + 2EB)/(AB.height) = (AB + 

2.BD.AB/(AB+CD))/(AB.h.AB/(AB+CD)) = 2(AD + BD)/(AB.h). Similarly, 1/r3 = 2(AD + 

BD)/(CD.h).  

The area of AED = area ABD - area ABE = 1/2 AB.h.CD/(2AD), so 1/r2 = 1/r4 = perimeter 

ADE/(2 area ADE) = (AD + BD)/(h.AB.CD/2AD), and 1/r2 + 1/r4 = 2(AD + BD)/h   

2AD/(AB.CD) = 2(AB + BD)/h   (AB + CD)/(AB.CD) = 1/r1 + 1/r3.  



5th ASU 1965 

Problem 1 

(a)  Each of x1, ... , xn is -1, 0 or 1. What is the minimal possible value of the sum of all xixj 

with 1 <= i < j <= n? (b)  Is the answer the same if the xi are real numbers satisfying 0 <= |xi| 

<= 1 for 1 <= i <= n?  

Solution 

(a)  Answer: -[n/2].  

Let A = (x1 + ... + xn)
2
, B = x1

2
 + ... + xn

2
. Then we must minimize A - B. For n even, we 

separately minimize A and maximize B by taking half the x's to be +1 and half to be -1. For n 

odd we can take [n/2] x's to be +1, [n/2] to be -1, and one to be 0. That minimizes A and gives 

B one less than its maximum. That is the best we can do if we fix A = 0, since A = 0 requires 

an even number of x's to be non-zero and hence at least one to be zero. If we do not minimize 

A, then since its value must be an integer, its value will be at least 1. In that case, even if B is 

maximized we will not get a lower total.  

(b)  Answer: -[n/2]. For n even, the same argument works. For n odd we can clearly get -[n/2], 

so it remains to prove that we cannot get a smaller sum. Suppose otherwise, so that xi is a 

minimal sum with sum less than -[n/2]. Let xn = x, then the sum is x(x1 + ... + xn-1) + sum of 

terms xixj with 1 <= i, j < n. But this is less than the sum for n-1, so x(x1 + ... + xn-1) must be 

negative, and since it is minimal we must have |x| = 1. But the same argument shows that all 

the terms have modulus 1. We now have a contradiction since we know that the minimum in 

this case is -[n/2].  

Problem 2 

Two players have a 3 x 3 board. 9 cards, each with a different number, are placed face up in 

front of the players. Each player in turn takes a card and places it on the board until all the 

cards have been played. The first player wins if the sum of the numbers in the first and third 

rows is greater than the sum in the first and third columns, loses if it is less, and draws if the 

sums are equal. Which player wins and what is the winning strategy?  

Solution 

The first player always wins.  

Let the board be:  

. F . 

S . S 

. F . 

 

We call the squares marked F the F-squares, the squares marked S the S-squares, and the 

remaining squares the neutral squares. The first player wins if the sum of the two cards on the 

F-squares exceeds the sum of the two cards on the S-squares. We also call the first player F 

and the second player S.  



Let the cards be a1>a2> ... >a9. Let t1 = a1 + a9, t2 = a2 + a8, t3 = a3 + a7, t4 = a4 + a6.  

If t1 > t2, or t1 = t2 > t3, or t1 = t2 = t3 >= t4 (*), then F's strategy is to get a total of t1 or better 

on the F-squares and to force S to a lower score on the S-squares. If (*) does not hold, then F's 

strategy is to force S to t1 or lower, and to get a higher score.  

If (*) holds, then F starts by playing a1 to an F-square. S must play to the remaining F-square, 

otherwise F will play a3 or better to it on his next move and win. So S must play a9 to the 

remaining F-square, giving F a total of t1.  

Now if t1 > t2, then F forces S to t2 or worse by playing a8 to an S-square.  

If t1 = t2 > t3, then F forces S to t3 or worse by playing a2 to a neutral square. If S plays to an 

S-square, then he cannot do better than a3 + a8, which loses. So he plays a8 to a neutral square. 

But now F plays a3 to an S-square, and S cannot do better than t3.  

If t1 = t2 = t3 > t4, then F forces S to t4 or worse. He starts by playing a2 to a neutral square. If 

does not prevent F playing a8 to an S-square on his next move, then he cannot do better than 

a3 + a8, which loses. So he must play a8 to a neutral square. Now F plays a3 to a neutral 

square. If S does not prevent F playing a7 to an S-square on the following move, then he 

cannot do better than a4 + a7 which loses, so he plays a7 to a neutral square. F now plays a4 to 

an S-square. S cannot now do better than t4, which loses.  

Finally, if t1 = t2 = t3 = t4, then F proceeds as in the last case except that at the end he plays a4 

to the last neutral square instead of to an S-square. S now gets a5 + a6 on the S-squares, which 

loses.  

If (*) does not hold, then F starts by playing a9 to an S-square. If S does not play to the other 

S-square, then F will play a7 or a8 there on his next move and S will lose. So S must play a1 to 

the other square, and gets a total of t1. F now plays to get t2, t3 or t4 on the F-squares.  

If t1 < t2, then F plays a2 to an F-square and so gets at least t2 and wins.  

If t1 = t2 < t3, then F plays a8 to a neutral square. If S does not prevent F playing a2to an F-

square on his next move, then F will get at least a2 + a7 and win. So S must play a2 to a neutral 

square. Now F plays a3 to an F-square and so gets at least t3 on the F-squares and wins.  

Finally, if t1 = t2 = t3 < t4, then F plays as in the previous case, except that at the end he plays 

a7 to a neutral square instead of a3 to an F-square. S must prevent F playing a3 to an F-square 

the following move, or F gets at least a3 + a6 and wins. So S plays a3 to a neutral square. F 

now plays a4 to an F square and so must get at least t4, which wins.  

Problem 3 

A circle is circumscribed about the triangle ABC. X is the midpoint of the arc BC (on the 

opposite side of BC to A), Y is the midpoint of the arc AC, and Z is the midpoint of the arc 

AB. YZ meets AB at D and YX meets BC at E. Prove that DE is parallel to AC and that DE 

passes through the center of the inscribed circle of ABC.  

Solution 



ZY bisects the angle AYB, so AD/BD = AY/BY. Similarly, XY bisects angle BYC, so 

CE/BE = CY/BY. But AY = CY. Hence AD/BD = CE/BE. Hence triangles BDE and BAC 

are similar and DE is parallel to AC.  

Let BY intersect AC at W and AX at I. I is the in-center. AI bisects angle BAW, so WI/IB = 

AW/AB. Now consider the triangles AYW, BYA. Clearly angle AYW = angle BYA. Also 

angle WAY = angle CAY = angle ABY. Hence the triangles are similar and AW/AY = 

AB/BY. So AW/AB = AY/BY. Hence WI/IB = AY/BY = AD/BD. So triangles BDI and 

BAW are similar and DI is parallel to AW and hence to DE. So DE passes through I.  

Problem 4 

Bus numbers have 6 digits, and leading zeros are allowed. A number is considered lucky if 

the sum of the first three digits equals the sum of the last three digits. Prove that the sum of all 

lucky numbers is divisible by 13.  

Solution 

The total is made up of numbers of the form abcabc, and pairs of numbers abcxyz, xyzabc. 

The former is abc.1001 and the sum of the pair is 1001(abc + xyz). So the total is divisible by 

1001 and hence by 13.  

Problem 5 

The beam of a lighthouse on a small rock penetrates to a fixed distance d. As the beam rotates 

the extremity of the beam moves with velocity v. Prove that a ship with speed at most v/8 

cannot reach the rock without being illuminated.  

Solution 

Let the lighthouse be at L. Take time t = 0 at the moment the boat starts its run, so that at t = 0 

it is at S a distance d from L, and thereafter it is at a distance less than d. Take A and B a 

distance d from L so that ALBS is a semicircle with diameter AB and S the midpoint of the 

arc AB. During the period to t = 2.5 pi.d/v the boat has traveled a distance less than d, so it 

cannot reach AB. But it is a distance less than d from L, so it must be inside the semicircle. 

But during this period the beam sweeps across from LA to LB and so it must illuminate the 

boat.  

Problem 6 

A group of 100 people is formed to patrol the local streets. Every evening 3 people are on 

duty. Prove that you cannot arrange for every pair to meet just once on duty.  

Solution 

Every time a person is on duty he is paired with two other people, so if the arrangement were 

possible the number of pairs involving a particular person would have to be even. But it is 99.  

Problem 7 



A tangent to the inscribed circle of a triangle drawn parallel to one of the sides meets the other 

two sides at X and Y. What is the maximum length XY, if the triangle has perimeter p?  

Solution 

Let BC be the side parallel to XY, h the length of the altitude from A, and r the radius of the 

in-circle. Then XY/BC = (h - 2r)/h. But r.p = h.BC. So XY = (p - 2BC)BC/p = (p
2
/8 - 2(BC - 

p/4)
2
)/p. So the maximum occurs when BC = p/4 and has value p/8.  

Problem 8 

The n
2
 numbers xij satisfy the n

3
 equations: xij + xjk + xki = 0. Prove that we can find numbers 

a1, ... , an such that xij = ai - aj.  

Solution 

Taking i = j = k, we have that xii = 0. Now taking j=k, we have that xij = - xji. Define ai = xi1. 

Then we have xi1 + x1j + xji = 0. Hence xij = ai - aj.  

Problem 9 

Can 1965 points be arranged inside a square with side 15 so that any rectangle of unit area 

placed inside the square with sides parallel to its sides must contain at least one of the points?  

Solution 

Yes. Place a grid of 900 points in 30 equally spaced rows and columns, so that each point is a 

distance 15/31 from its nearest neighbours (or 15/31 from the edge). This blocks all rectangles 

except those slimmer than 1/2. Those slimmer than 1/2 must have length at least 2, so we can 

block them with a smaller set of rows and columns containing more finely spaced points.  

Label the rows 1-30. In each of the 7 rows 3, 7, 11, 15, 19, 23, 27 place an additional 31 

points, so that each of these rows has 61 equally spaced points at a spacing of 15/62. Similarly 

for the columns. So in total we are placing an additional 2.7.31 = 434 points. Any rectangle of 

length >2 must encounter one of these rows (or columns) and hence must have width less than 

1/4. This blocks any rectangle except those with width < 1/4.  

In each of the 3 rows 7, 15, 23 place an additional 62 points, so that each of these rows has 

123 equally spaced points at a spacing of 15/124. Similarly for the columns. So in total we are 

placing an additional 2.3.62 = 372 points. Any rectangle of length >4 must encounter one of 

these rows (or columns) and hence must have width less than 1/8. This blocks any rectangle 

except those with width < 1/8 and hence length > 8.  

In row 15 place an additional 124 points, so that it has a total of 247 equally spaced points at a 

spacing of 15/247. Similarly for column 15. This requires an additional 248 points. Any 

rectangle which can fit through these gaps has area at most 15 x 15/247 < 1. So we have 

blocked all rectangles with area 1 or more and used 900 + 434 + 372 + 248 = 1954 points.  

Ilan Mayer, who seems to solve these problems effortlessly, came up with a neater 

arrangement of points. He used narrowly spaced points along widely spaced diagonals: (k/15, 

k/15) for k = 1,2,...,224; ((28*n+k)/15, k/15) for n = 1,2,...,7, k = 1,2,...,224-28*n; (k/15, 



(28*n+k)/15) for n = 1,2,...,7, k = 1,2,...,224-28*n. The diagonals are spaced 28/15 apart, so 

the biggest rectangle that can be fitted between two diagonals has sides 15/15 less epsilon and 

15/15 less epsilon. For example, take the vertices as (14/15 + e, e), (29/15 - e, e), (14/15 + e, 

15/15 - e), (29/15 - e, 15/15 - e). If one allows a rectangle to touch points (in other words if 

one took the rectangles to exclude their boundaries) then this does not work - many 15 x 1/15 

rectangles will fit. But one can add an additional point on each of the 15 lines, keeping the 

points on each line evenly spaced. That blocks rectangles without boundary and still has only 

1821 points.  

Problem 10 

Given n real numbers a1, a2, ... , an, prove that you can find n integers b1, b2, ... , bn, such that 

|ai - bi| < 1 and the sum of any subset of the original numbers differs from the sum of the 

corresponding bi by at most (n + 1)/4.  

Solution 

We can take all ai to lie in the range (0,1) and all bi to be 0 or 1. The largest positive value of 

the sum of (ai - bi) for any subset is achieved by taking the subset of those i for which bi = 0. 

Similarly, the largest negative value is achieved by taking those i for which bi = 1. So the 

worst subset will be one of those two.  

If ai < aj, then we cannot have bi = 1 and bj = 0 if the set of bis is to minimise the maximum 

sum, because swapping them would reduce the sum of a's with b = 0 and the sum of (1 - a)'s 

with b = 1. So if we order the a's so that a1 <= a2 <= ... <= an, then a best set of b's is bi = 0 for 

i <= some k, and bi = 1 for i > k. [If some of the ai are equal, then we can find equally good 

sets of b's do not have this form, but we cannot get a lower maximum sum by departing from 

this form.]  

Let Li = a1 + a2 + ... + ai, and Ri = ai+1 + ai+2 + ... + an. As we increase i the sums Li increase 

and the sums Ri decrease, so for some k we must have Lk < Rk, Lk+1 >= Rk+1. Either k or k+1 

must correspond to the optimum choice of b's to minimise the maximum sum.  

Now assume that the a's form a maximal set, in other words they are chosen so that the 

minimum is as large as possible. We show first that in this case Lk+1 = Rk. Suppose Lk+1 < Rk. 

Then we could increase each of ak+1, ak+2, ... , an by epsilon. This would leave Lk unaffected, 

but slightly increase Lk+1 and slightly reduce Rk. For small epsilon this does not change the 

value of k, but increases the smaller of Lk+1 and Rk, thus increasing the minimum and 

contradicting the maximality of the original a's. Similarly, if Lk+1 > Rk, we could decrease 

each of a1, a2, ... , ak+1 by epsilon, thus slightly increasing Rk and reducing Lk+1.  

Suppose not all of a1, a2, ... , ak+1 are equal. Take i so that ai < ai+1. Now increase each of a1, 

a2, ... , ai by epsilon and reduce each of ai+1, ai+2, ... , ak+1 by epsilon', with epsilon and epsilon' 

sufficiently small that we do not upset the ordering or change the value of k, and with their 

relative sizes chosen so that Lk+1 is increased. Rk is also increased, so we contradict the 

maximality of the a's. Hence all a1, a2, ... , ak+1 are equal. Similarly, we show that all of ak+1, ... 

, an are equal. For if not we can increase slightly ak+1, ... , aj and reduce slightly aj+1, ... , an to 

get a contradiction.  

So we have established that all the a's must be equal. Suppose n is odd = 2m+1 and that all the 

a's equal x. Then for the optimum k we have (k+1)x = (2m+1-k)(1-x), hence k+1 = (2m+2)(1-



x) and the maximum difference is (k+1)x = (2m+2)(1-x)x. This is maximised by taking x = 

1/2, k = m, and is (m+1)/2 = (n+1)/4. If n is even = 2m, then for the optimum k we have 

(k+1)x = (2m-k)(1-x), so k+1 = (2m+1)(1-x), and the maximum difference is (k+1)x = 

(2m+1)(1-x)x. However, in this case we cannot take x = 1/2, because that would give k = m - 

1/2 which is non-integral, so we take k = m-1 or m, both of which give a maximum difference 

of m(m+1)/(2m+1) = n(n+2)/(4n+4) < (n+1)/4.  

Problem 11 

A tourist arrives in Moscow by train and wanders randomly through the streets on foot. After 

supper he decides to return to the station along sections of street that he has traversed an odd 

number of times. Prove that this is always possible. [In other words, given a path over a graph 

from A to B, find a path from B to A consisting of edges that are used an odd number of times 

in the first path.]  

Solution 

Disregard all edges except those used in the path from A to B, and for each of those let the 

multiplicity be the number of times it was traversed. Let the degree of a vertex be the sum of 

the multiplicities of its edges. The key is to notice that the degree of every vertex except A 

and B must be even. For as we traverse the path from A to B we increase the degree by 2 each 

time we pass through a vertex. But at the start of the path, as we leave A, we only increase its 

degree by 1. Similarly as we arrive at B for the last time.  

Now construct a path from B as follows. Since B has odd degree it must have an edge of odd 

multiplicity. Suppose the edge connects B to C. Follow that edge and reduce its multiplicity 

by one, so that B's degree and C's degree are each reduced by one. Now C has odd degree, so 

it must have an edge of odd multiplicity. Repeat. Since there are only finitely many edges we 

must eventually be unable to continue the path. But the only way that can happen is if we 

reach A.  

Problem 12 

(a)  A committee has met 40 times, with 10 members at every meeting. No two people have 

met more than once at committee meetings. Prove that there are more than 60 people on the 

committee.  

(b)  Prove that you cannot make more than 30 subcommittees of 5 members from a committee 

of 25 members with no two subcommittees having more than one common member.  

Solution 

(a)  Each meeting involves 10.9/2 = 45 pairs. So after 40 meetings, there have been 1800 

pairs. We are told that these are all distinct. But if there are N people on the committee, then 

there are only N(N-1)/2 pairs available. For N=60, this is only 1770.  

(b)  A subcommittee of 5 has 5.4/2 = 10 pairs. So 31 subcommittees have 310 pairs, and these 

are all distinct, since no two people are on more than one subcommittee. But a committee of 

25 only has 25.24/2 = 300 pairs available.  

Problem 13 



Given two relatively prime natural numbers r and s, call an integer good if it can be 

represented as mr + ns with m, n non-negative integers and bad otherwise. Prove that we can 

find an integer c, such that just one of k, c - k is good for any k. How many bad numbers are 

there?  

Solution 

Notice that 0 is good and all negative numbers are bad. Take c = rs - r - s. First c, is bad. For 

suppose otherwise: c = mr + ns. Then mr + ns = (s-1)r - s. Hence (s-1-m)r = (n+1)s, so r 

divides n+1. Say n+1=kr, and then s-1-m=ks, so m = (1-k)s - 1. But n+1 is positive, so k>=1, 

and hence m is negative. Contradiction.  

If k is good, then c-k must be bad (otherwise c would be good). Suppose k is bad. Since r and 

s are relatively prime we can find integers a and b with ar + bs = 1 and hence integers m and n 

with mr + ns = k. Adding a multiple of sr - rs to both sides if necessary, this gives a pair m, n 

with mr + ns = k and m non-negative. Now take the pair with the smallest possible non-

negative m. Then m <= s-1 (for otherwise m' = m-s, n' = n+r would be a pair with smaller 

non-negative m). Also n <= -1, otherwise k would be good. Now c - k = (s - 1 - m)r + (-n - 1)s 

and the coefficients s - 1 - m and -n - 1 are both non-negative, so c - k is good.  

So exactly (rs - r - s + 1)/2 integers are bad.  

Problem 14 

A spy-plane circles point A at a distance 10 km with speed 1000 km/h. A missile is fired 

towards the plane from A at the same speed and moves so that it is always on the line between 

A and the plane. How long does it take to hit?  

Solution 

Answer: 18pi sec.  

Let C be the position of the spy-plane at the moment the missile is fired. Let B be the point a 

quarter of the way around the circle from C (in the direction the spy-plane is moving). Then 

the missile moves along the semi-circle on diameter AB and hits the plane at B.  

To see this take a point P on the quarter circle and let the line AX meet the semi-circle at Q. 

Let O be the center of the semicircle. The angle BOQ is twice the angle BAQ, so the arc BP is 

the same length as the arc BQ. Hence also the arc AQ is the same length as the arc CP.  

Problem 15 

Prove that the sum of the lengths of the edges of a polyhedron is at least 3 times the greatest 

distance between two points of the polyhedron.  

Solution 

If A and B are at the greatest distance, then they must be vertices. For suppose A is not a 

vertex. Then there is a segment XY entirely contained in the polyhedron with A as an interior 

point. But now at least one of angles BAX, BAY must be at least 90. Suppose it is BAX. 

Then BX is longer than BA. Contradiction.  



Take a plane through A perpendicular to the line AB. Then the polyhedron must lie entirely 

on one side of the plane, for if Z lay on the opposite side to B, then BZ would be longer than 

BA. Now move the plane slightly towards B keeping it perpendicular to AB. The intersection 

of the plane and the polyhedron must be a small polygon. The polygon must have at least 3 

vertices, each of which must lie on an edge of the polyhedron starting at A. Select three of 

these edges.  

As the plane is moved further towards B, the selected vertices may sometimes split into 

multiple vertices or they may sometimes coalesce. In the former case, just choose one of the 

daughter vertices. In the latter case, let O be the point of intersection of the plane and AB. Let 

O' be the point of intersection at the last coalescence (or A if there was none). Then we have 

three paths along edges, with no edges in common, each of which projects onto O'O and 

hence has length at least O'O. Now select one or more new vertices to replace any lost 

through coalescence and repeat.  

Problem 16 

An alien moves on the surface of a planet with speed not exceeding u. A spaceship searches 

for the alien with speed v. Prove the spaceship can always find the alien if v>10u.  

Solution 

The spacecraft flies at a constant height, so that it can see a circular spot on the surface. It 

starts at the north pole and spirals down to the south pole, overlapping its previous track on 

each circuit. The alien cannot move fast enough to cross the track before the next circuit, so it 

is trapped inside a reducing area surrounding the south pole.  

The value of 10 is not critical, so we do not have to optimise the details. Take the height 

above the surface to be half the radius. Then a diameter of the spot subtends an angle 2 cos
-

1
(1/1.5) at the center of the planet. 1/1.5 < 1/¥���VR�WKH�DQJOH�LV�PRUH�WKDQ����GHJUHHV��7KH�

critical case is evidently when the spacecraft is circling the equator. Using suitable units, we 

may take the radius of the planet to be 1 and the spaceship speed to be 1. Then the diameter of 

the spot is pi/2. We take the overlap to be 2/3, so that each revolution the track advances pi/6. 

If the planet flew in a circle above the equator, the distance for a revolution would be 2pi 1.5 

= 3pi. The helical distance must be less than 3pi + pi/6 = 19pi/6. So the alien can travel a 

distance 19pi/60 < 2/3 pi/2 and is thus trapped as claimed.  



6th ASU 1966 

Problem 1 

There are an odd number of soldiers on an exercise. The distance between every pair of 

soldiers is different. Each soldier watches his nearest neighbour. Prove that at least one soldier 

is not being watched.  

Solution 

The key is to notice that no loops of size greater than two are possible. For suppose we have 

A1, A2, ... , An with Ai watching Ai+1 for 0 < i < n, and An watching A1. Then the distance Ai-

1Ai is greater than the distance AiAi+1 for 1 < i < n, and the distance A1An is less than the 

distance A1A2. Hence the distance A1An is less than the distance An-1An and so An-1 is closer 

to An than A1. Contradiction.  

Pick any soldier. Now pick the soldier he is watching, and so on. The total number of soldiers 

is finite so this process must terminate with some soldier watching his predecessor. If the 

process terminates after more than two soldiers have been picked, then the penultimate soldier 

is watched by more than one soldier. But in that case there must be another soldier who is 

unwatched, because the number of soldiers equals the number of soldiers watching.  

If the process terminates after just two soldiers, then we have a pair of soldiers watching each 

other. Now repeat on the remaining soldiers. Either we find a soldier watched twice (in which 

case some other soldier must be unwatched) or all the soldiers pair off, except one, since the 

total number is odd. But that soldier must be unwatched.  

Problem 2 

(a)  B and C are on the segment AD with AB = CD. Prove that for any point P in the plane: 

PA + PD ��3%���3&�� 
(b)  Given four points A, B, C, D on the plane such that for any point P on the plane we have 

PA + PD ��3%���3&��3URYH�WKDW�%�DQG�&�DUH�RQ�WKH�VHJPHQW�$'�ZLWK�$%� �&'�� 
Solution 

(a)  Suppose the points lie in the order A, B, C, D. If P lies on AD, then the result is trivial, 

and we have equality if P lies outside the segment AD. So suppose P does not lie on AD.  

Let M be the midpoint of AD. Take P' so that P, M, P' are collinear and PM = MP'. Then we 

wish to prove that PA + AP' > PB + BP'. Extend P'B to meet PA at Q. Then P'A + AQ > P'Q, 

so P'A + AP > P'Q + QP. But QP + BQ > PB, so QP + QP' > PB + PB'. Hence result.  

(b)  Let the foot of the perpendicular from B, C onto AD be X, Y respectively. Suppose that 

N, the midpoint of XY, is on the same side of M, the midpoint of AD, as D. Then take P to be 

a remote point on the line AD, the opposite side of A to D, so that A, D, M and N are all on 

the same side of the line PAD from P. Then PA + PD = 2PM < 2PN ��3%���3&��
Contradiction. So we must have N coincide with M. But we still have PA + PD = 2PM = 2PN 

< PB + PC, unless both B and C are on the line AD. So we must have B and C on the line AD 



and AB = CD. It remains to show that B and C are between A and D. Take P = B. Then if C is 

not between A and D, we have PC > PD (or PA), contradiction.  

Problem 3 

Can both x
2
 + y and x + y

2
 be squares for x and y natural numbers?  

Solution 

No. The smallest square greater than x
2
 is (x+1)

2
, so we must have y > 2x. Similarly x > 2y. 

Contradiction.  

Problem 4 

A group of children are arranged into two equal rows. Every child in the back row is taller 

than the child standing in front of him in the other row. Prove that this remains true if each 

row is rearranged so that the children increase in height from left to right.  

Solution 

Rearrange the children in the back row into order, and rearrange the front row in the same 

way, so that each child stays in front of the same child in the back row. Denote heights in the 

back row by ai and heights in the front row by bi. So we have a1 ��D2 ��������Dn, and ai > bi for i 

= 1, 2, ... , n.  

Now if i < j, but bi > bj, then we may swap bi and bj and still have each child taller than the 

child in front of him. For bi < ai <= aj, and bj < bi < ai. By repeated swaps we can get the front 

row into height order. [For example, identify the shortest child and swap him to the first 

position, then the next shortest and so on.]  

Problem 5 

A rectangle ABCD is drawn on squared paper with its vertices at lattice points and its sides 

lying along the gridlines. AD = k AB with k an integer. Prove that the number of shortest 

paths from A to C starting out along AD is k times the number starting out along AB.  

Solution 

Let ABCD have n lattice points along the side AB. Then it has kn lattice points along the side 

AD. Let X be the first lattice point along AB after leaving A. A shortest path from X to C 

must involve a total of kn + n - 1 moves between lattice points, n - 1 in the direction AB and 

kn in the direction BC. Hence the total number of such paths is (kn + n - 1)!/((kn)! (n - 1)!). 

Similarly, the number of paths starting out along AD is (kn + n - 1)!/((kn - 1)! n!). Let m = 

(kn + n - 1)!/((kn - 1)! (n - 1)!). Then the number starting along AB is m/(kn) and the number 

starting along AD is m/n, which is k times larger, as required.  

Problem 6 

Given non-negative real numbers a1, a2, ... , an, such that ai-1 <= ai <= 2ai-1 for i = 2, 3, ... , n. 

Show that you can form a sum s = b1a1 + ... + bnan with each bi +1 or -1, so that 0 <= s <= a1.  



Solution 

We show that you can pick bn, bn-1, ... , br so that sr = bnan + bn-1an-1 + ... + brar satisfies 0 <= sr 

<= ar. Induction on r. Trivial for r = n. Suppose true for r. Then - ar-1 <= sr - ar-1 <= ar - ar-1 <= 

ar-1. So with br-1 = -1 we have |sr-1| <= ar-1. If necessary, we change the sign of all bn, bn-1, ... , 

br-1 and obtain sr-1 as required. So the result is true for all r >= 1 and hence for r = 1.  

Problem 7 

Prove that you can always draw a circle radius A/P inside a convex polygon with area A and 

perimeter P.  

Solution 

Draw a rectangle width A/P on the inside of each side. The rectangles at each vertex must 

overlap since the angle at the vertex is less than 180. The total area of the rectangles is A, so 

the area covered must be less than A. Hence we can find a point not in any of the rectangles. 

But this point must be a distance more than A/P from each side, so we can use it as the center 

of the required circle.  

Problem 8 

A graph has at least three vertices. Given any three vertices A, B, C of the graph we can find a 

path from A to B which does not go through C. Prove that we can find two disjoint paths from 

A to B.  

[A graph is a finite set of vertices such that each pair of distinct vertices has either zero or one 

edges joining the vertices. A path from A to B is a sequence of vertices A1, A2, ... , An such 

that A=A1, B=An and there is an edge between Ai and Ai+1 for i = 1, 2, ... , n-1. Two paths 

from A to B are disjoint if the only vertices they have in common are A and B.]  

Solution 

Take any path from A to B. Suppose it is A=A0, A1, ... , An=B. We show by induction on r 

that we can find two disjoint paths from A to Ar. If r = 1, then take any vertex C distinct from 

A and A1. Take any path from A1 to C which does not go through A. Now take any path from 

C to A which does not go through A1. Joining these two paths together gives a path p from A 

to A1 which does not involve the edge AA1. Then p and the edge AA1 are the required disjoint 

paths.  

Suppose now we have two disjoint paths A, B1, B2, ... , Bs, Ar and A, Bt, Bt-1, ... , Bs+1, Ar and 

we wish to find two disjoint paths joining A and Ar+1. Take a path between A and Ar+1 which 

does not include Ar. If it also avoids all of B1, ... , Bt, then we are home, because it is disjoint 

from the alternative path A, B1, B2, ... , Bs, Ar, Ar+1. If not, let Bi be the first of the B's on the 

path as we move from Ar+1 to A. This allows us to construct two disjoint paths from A to Ar+1. 

One path goes from A to Bi and then from Bi to Ar+1. The other path goes around the other 

way to Ar and then along the edge to Ar+1. [Explicitly, if i <= s, then the paths are A, B1, B2, ... 

, Bi, ... (new path) ... Ar+1 and A, Bt, Bt-1, ... , Ar, Ar+1. If i > s, then the paths are A, Bt, Bt-1, ... , 

Bi, ... (new path) ... Ar+1 and A, B1, ... , Bs, Ar, Ar+1.] Hence, by induction, there are two 

disjoint paths from A to B.  



Problem 9 

Given a triangle ABC. Suppose the point P in space is such that PH is the smallest of the four 

altitudes of the tetrahedron PABC. What is the locus of H for all possible P?  

Solution 

Answer: the triangle DEF with FAE parallel to BC, DBF parallel to CA and DCE parallel to 

AB.  

Let . be the angle between planes ABC and PBC. Let h be the perpendicular distance from H 

to the line BC, and let hA be the perpendicular distance from A to the line BC. Then PH = h 

tan ., and the altitude from A to PBC is hA sin .. Hence if PH is shorter than the altitude from 

A we require that h < hA cos . < hA. Similar arguments apply for B and C. So if PH is the 

shortest then H lies within triangle DEF.  

If H does lie within DEF, then if we make . sufficiently small we will have h < hA cos . and 

hence PH will be shorter than the altitude from A. Similarly we can make PH sufficiently 

short that PH is less than the altitudes from B and C. Hence the inside of DEF is the required 

locus.  

Problem 10 

Given 100 points on the plane. Prove that you can cover them with a collection of circles 

whose diameters total less than 100 and the distance between any two of which is more than 

1. [The distance between circles radii r and s with centers a distance d apart is the greater of 0 

and d - r - s.]  

Solution 

If we have two circles diameters d and d', the distance between which is less than 1, then they 

are contained in a circle diameter d+d'+1. [If the line through the centers cuts the circles in A, 

B, A', B', then take a circle diameter AB'.] So start with 100 circles of diameter 1/1000 each. 

If any pair is a distance <= 1 apart, then replace them by a single circle, increasing the total 

diameter by 1. Repeat until all the circles are a distance > 1 apart. We must end up with at 

least one circle, so the total increase is at most 99. Hence the final total diameter is at most 99 

1/10.  

Problem 11 

The distance from A to B is d kilometers. A plane P is flying with constant speed, height and 

direction from A to B. Over a period of 1 second the angle PAB changes by . degrees and the 

angle PBA by � degrees. What is the minimal speed of the plane?  

Solution 

Answer: 20�d¥�.�) kilometers per hour.  

Let the plane be at height h and a (horizontal) distance y from A. Let the angle PAB be �+. 

and the angle PBA be 3. After 1 second, the angle PAB is � and the angle PBA is 3+�. We 

have immediately that:  



    h/y = tan(�+.), h/(d-y) = tan 3, h/(y+x) = tan �, h/(d-y-x) = tan(3+�).  

Eliminating �, we obtain: h/y = (tan . + tan �)/(1 - tan . tan �) = (a(y+x) + h)/(y+x-ah), where 

a = tan .. Hence x = a(h
2
 + y

2
)/(h - ay). Similarly, eliminating 3, we obtain x = b(h

2
 + (d-

y)
2
)/(h + (d-y)b).  

At this point I do not see how to make further progress without approximating. But 

approximating seems reasonable, since . and �, are certainly small, at least when expressed in 

radians. For example, typical values might be 10,000 ft for h and more than 10 miles for y or 

d-y and 500 mph for the aircraft speed. That gives x = 0.14 miles, so x/y = 0.014 and x/h = 

0.07. So, let us neglect a/h, b/h, a/y etc. Then we get the simplified expressions: x = a(h
2
 + 

y
2
)/h = b(h

2
 + (d-y)

2
)/h.  

If a = b, then we quickly obtain y = d/2, h = d/2, x = ad. Assume a > b. Then we can solve for 

h, substitute back in and obtain an expression for x in terms of y. It is convenient to divide 

through by d and to write X = x/d, Y = y/d. Note that since we are assuming a > b, we require 

Y < 1/(1 + ¥�D�E����$IWHU�VRPH�PDQLSXODWLRQ�ZH�REWDLQ��;� �DE���- 2Y)/¥��D-b)(b(1-Y)
2
 - aY

2
). 

Differentiating, we find that there is a minimum at Y = b/(a+b), which is in the allowed range, 

and that the minimum value of X is ¥�DE���%\�V\PPHWU\��ZH�REWDLQ�WKH�VDPH�UHVXOW�IRU�D���E�
and we notice that it is also true for a = b. So in all cases we have that the minimum value of x 

is d¥�DE��� 
We are assuming . and � are small, so we may take a = ., b = �. However, the question 

specified that . and � were measured in degrees, so to obtain the final answer we must 

convert, giving: x = d (�/180) ¥�.�), and hence speed = 20�d¥�.�) kilometers per hour.  

Problem 12 

Two players alternately choose the sign for one of the numbers 1, 2, ... , 20. Once a sign has 

been chosen it cannot be changed. The first player tries to minimize the final absolute value of 

the total and the second player to maximize it. What is the outcome (assuming both players 

play perfectly)?  

Example: the players might play successively: 1, 20, -19, 18, -17, 16, -15, 14, -13, 12, -11, 10, 

-9, 8, -7, 6, -5, 4, -3, 2. Then the outcome is 12. However, in this example the second player 

played badly!  

Solution 

Answer: 30.  

The second player can play the following strategy: (1) if the first player plays 2n-1 for 1 <= n 

<= 9, then he replies 2n with the opposite sign; (2) if the first player plays 2n for 1 <= n <= 9, 

then he replies 2n-1 with the opposite sign; (3) if the first player plays 19 or 20, then he plays 

the other with the same sign. This secures a score of at least 39 (from (3) ) less 9 x 1 (from (1) 

and (2) ). So he can ensure a score of at least 30.  

The first player can play the following strategy: (1) he opens with 1; (2) if the second player 

plays 2n for 1 ��Q�� ����WKHQ�KH�UHSOLHV�ZLWK��Q���ZLWK�WKH�RSSRVLWH�VLJQ������LI�WKH�VHFRQG�
player plays 2n+1 for 1 <= n <= 9, then he replies with 2n with the opposite sign; (4) if any of 

these replies are impossible, or if the second player plays 20, then he replies with the highest 



number available with the opposite sign. If the second player does not play 20 until the last 

move, then this strategy ensures a score of at most 1 (from (1) ) + 9 x 1 (from (2) and (3) ) + 

20 = 30. Now suppose that the second player plays 20, a1, a2, ... , an (where 1 ��Q������ZKLFK�
require a reply under (4). The reason a1 required a move under (4) was that a1-1 or a1+1 was 

the 1st player's response to 20. Similarly, the reason a2 required a move under (4) was that a2-

1 or a2+1 was the 1st player's response to a2, and so on. Thus the increment to the absolute 

value from these moves is at most |20-a1+1| + |a1-a2+1| + ... + |an-1-an+1| + |an| = 20 + n. The 

increment from the moves under (2) and (3) is (9 - n) x 1, and the increment from the move 

under (1) is 1. Hence the maximum absolute value is 30.  

Since the 1st player has a strategy to do no worse than 30 and the 2nd player has a strategy to 

do no worse than 30, these strategies must actually be optimal.    



1st ASU 1967 

Problem 1 

In the acute-angled triangle ABC, AH is the longest altitude (H lies on BC), M is the midpoint 

of AC, and CD is an angle bisector (with D on AB).  

(a)  If AH <= BM, prove that the angle ABC <= 60.  

(b)  If AH = BM = CD, prove that ABC is equilateral.  

Solution 

As usual let a, b, c be the lengths of BC, CA, AB respectively and let A, B, C denote the 

angles BAC, ABC, BCA respectively. We use trigonometry and try to express the quantities 

of interest in terms of a, b and C.  

(a)  Since AH is the longest altitude, BC must be the shortest side (use area = side x 

altitude/2). So b
2
 >= a

2
, and c

2
 >= a

2
. Using the formula c

2
 = a

2
 + b

2
 - 2ab cos C, we deduce 

that b
2
 >= 2ab cos C. Hence 2b

2
 >= a

2
 + 2ab cos C. After a little manipulation this gives: a

2
 + 

b
2
 - 2ab cos C >= 4/3 (a

2
 + b

2
/4 - ab cos C) or c

2
 >= 4/3 BM

2
. But we are given that BM >= 

AH = b sin C, so (b
2
sin

2
C)/c

2
 <= 3/4. But the sine formula gives sin B = (b sin C)/c, so sin

2
C 

<= 3/4. The triangle is acute-angled, hence B <= 60 degrees.  

(b)  The angle bisector theorem gives AD/BD = b/a, hence AD/AB = b/(a+b), so AD = 

bc/(a+b). Hence, using the sine formula, CD/sin A = AD/(sin C/2). So CD = bc sin A/((a+b) 

sin C/2) = ba sin C/((a+b) sin C/2), using the sine formula again. But we are given that CD ��
AH = b sin C, so a/((a+b) sin C/2) �����%ut a is the shortest side, so a/(a+b) ������DQG�KHQFH�
sin C/2 < 1/2. The triangle is acute-angled, so C/2 �����GHJUHHV��DQG�&������GHJUHHV��%&�LV�WKH�
shortest side, so A is the smallest angle and hence A �����GHJUHHV��$OVR�VLQFH�$+���%0��%���
60 degrees. But the angles sum to 180 degrees, so they must all be 60 degrees and hence the 

triangle is equilateral.  

Problem 2 

(a)  The digits of a natural number are rearranged and the resultant number is added to the 

original number. Prove that the answer cannot be 99 ... 9 (1999 nines).  

(b)  The digits of a natural number are rearranged and the resultant number is added to the 

original number to give 10
10

. Prove that the original number was divisible by 10.  

Solution 

(a)  Let the digits of the original number be a1, a2, ... and the rearranged digits be b1, b2, ... . 

Suppose that in the addition there is a carry, in other words ai+bi > 9 for some i. Take the 

largest such i. Then the resulting digit in that position cannot be a 9. Contradiction. So there 

cannot be any carries. Hence each pair ai+bi= 9. Let n be the total number of digits 0, 1, 2, 3, 

and 4 in the number. Then each of these must be paired with a digit 5, 6, 7, 8 or 9. So the total 

number of digits 5, 6, 7, 8 and 9 must also be n, and hence the number must have an even 

number of digits. But we are told that the answer and hence the original number has an odd 

number of digits.  



(b)  In the addition the carry can never be 2, because that would require the previous carry to 

be at least 2, and the first carry cannot be 2. So all carries are 0 or 1. If a carry is 1, then all 

subsequent carries must also be 1. If the first carry is 0, then the corresponding digits must be 

0 and hence the original number is divisible by 10. If it is not, then all carries are 1 and hence 

after the first carry all the digit pairs sum to 9. But arguing as in (a), this means that there 

must be an even number of digits, excluding the last (where we have a digit sum 10), and 

hence an odd number of digits in the original number. But 10
10

 has an odd number of digits 

and hence the original number had an even number of digits. Contradiction.  

Problem 3 

Four lighthouses are arbitarily placed in the plane. Each has a stationary lamp which 

illuminates an angle of 90 degrees. Prove that the lamps can be rotated so that at least one 

lamp is visible from every point of the plane.  

Solution 

Take a north direction, arbitary except that no points are aligned north-south or east-west. 

Take the two most northerly points. Point the lamp for the more easterly of these two in the 

direction SW (so that it covers directions S to W). Point the lamp for the other in the direction 

SE. For the other two points, point the lamp for the more easterly in the direction NW, and the 

lamp for the other in the direction NE.  

Clearly the lamps cover all directions, the only possible problem is uncovered strips. 

However, the two lamps pointing N are below the two lamps pointing S, and the two lamps 

pointing E are west of the two lamps pointing W, so there are no uncovered strips.  

Problem 4 

(a)  Can you arrange the numbers 0, 1, ... , 9 on the circumference of a circle, so that the 

difference between every pair of adjacent numbers is 3, 4 or 5? For example, we can arrange 

the numbers 0, 1, ... , 6 thus: 0, 3, 6, 2, 5, 1, 4.  

(b)  What about the numbers 0, 1, ... , 13?  

Solution 

No. Each of the numbers 0, 1, 8, 9 can only be adjacent to 3, 4, 5 or 6. But they can only 

accomodate 3 numbers, not 4.  

0, 3, 7, 10, 13, 9, 12, 8, 11, 6, 2, 5, 1, 4 is a solution for 13.  

In passing, there are obviously no solutions for 4 or 5. There is just the one solution for 6 

(given in the question). For 7 there are 5 solutions: 0, 3, 6, 1, 5, 2, 7, 4; 0, 3, 6, 1, 4, 7, 2, 5; 0, 

3, 6, 2, 7, 4, 1, 5; 0, 3, 7, 4, 1, 6, 2, 5; 0, 4, 1, 6, 3, 7, 1, 5. For 8 there is the solution 0, 3, 7, 2, 

6, 1, 5, 8, 4, and maybe others.  

Problem 5 

Prove that there exists a number divisible by 5
1000

 with no zero digit.  



Solution 

We first find a multiple of 5
1000

 which has no zeros in the last 1000 digits. Suppose that we 

have a multiple n.5
1000

 whose last zero is in place r (treating the last place as place 0, the next 

to last as place 1 and so on). Then n(10
r
 + 1) has the same digits in places 0 to r-1 and a non-

zero digit in place r, and hence no zeros in places 0 to r. So repeating, we find a multiple 

n.5
1000

 with no zeros in the last 1000 digits.  

Now let m be the remainder when n is divided by 2
1000

, so n = k.2
1000

 + m, and hence m.5
1000

 

= n.5
1000

 - k.10
1000

. So m.5
1000

 has the same last 1000 digits as n.5
1000

. But it has less than 

1001 digits, and hence it has exactly 1000 digits and no zeros.  

Problem 6 

Find all integers x, y satisfying x
2
 + x = y

4
 + y

3
 + y

2
 + y.  

Solution 

The only solutions are x,y = -1,1-; 0,-1; -1,0; 0,0; -6,2; or 5,2.  

(y
2
 + y/2 - 1/2)(y

2
 + y/2 + 1/2) = y

4
 + y

3
 + 1/4 y

2
 - 1/4 < y

4
 + y

3
 + y

2
 + y except for -1 <= y <= 

-1/3. Also (y
2
 + y/2)(y

2
 + y/2 + 1) = y

4
 + y

3
 + 5/4 y

2
 + y/2 which is greater than y

4
 + y

3
 + y

2
 + 

y unless 0 <= y <= 2.  

But no integers are greater than y
2
 + y/2 - 1/2 and less than y

2
 + y/2. So the only possible 

solutions have y in the range -1 to 2. Checking these 4 cases, we find the solutions listed.  

Problem 7 

What is the maximum possible length of a sequence of natural numbers x1, x2, x3, ... such that 

xi �������IRU�L�! ����DQG�[i = |xi-1 - xi-2| for i ���� 
Solution 

Answer 2998.  

The sequence is completely determined by its first two elements. If the largest element of the 

sequence is n, then it must occur as one of the first two elements. Because x3 and x4 are both 

smaller than the largest of the first two elements and hence all subsequent elements are too.  

Let f(n, m) be the length of the sequence with x1 = n, x2 = m. It is straightforward to verify by 

induction that f(1,2n) = f(2n-1,2n) = 3n + 1, f(2n,1) = f(2n,2n-1) = 3n, f(2n,2n+1) = 3n + 3, 

f(1,2n+1) = f(2n+1,1) = 3n + 2, f(2n+1,2n) = 3n + 1. A rather more fiddly induction then 

shows that these are the best possible lengths. Hence the longest sequence with no element 

more than 1998 is that starting 1, 1998 which has length 2998.  

Problem 8 

499 white rooks and a black king are placed on a 1000 x 1000 chess board. The rook and king 

moves are the same as in ordinary chess, except that taking is not allowed and the king is 

allowed to remain in check. No matter what the initial situation and no matter how white 



moves, the black king can always:  

(a)  get into check (after some finite number of moves);  

(b)  move so that apart from some initial moves, it is always in check after its move;  

(c)  move so that apart from some initial moves, it is always in check (even just after white 

has moved).  

Prove or disprove each of (a) - (c).  

Solution 

(a)  True. Black moves to one end of a main diagonal and then moves along the diagonal to 

the opposite end. Each of the 499 rooks is in some row. Since black moves through each row, 

every rook must change row. But each of the rooks is also in some column and so every rook 

must also change column. A rook cannot change row and column in the same move, so white 

must make at least 998 moves before black reaches the opposite end of the diagonal. But it 

cannot start until black is two moves from its starting position, because if it moves a rook into 

row (or column) one or two earlier, then black is checked or can move into check. So it has 

only 997 moves available, which is one too few.  

(b)  False. Suppose the contrary, that after move n, the king is always in check after its move. 

Let the corners of the board be A, B, C, D. After move n, white moves all its rooks inside a 

square side 23 at corner A. The king must now be in the 23 rows between A and B or in the 

23 columns between A and D. Suppose the latter. Then white moves all its rooks inside a 

square side 23 at corner B. This should take 499 moves. However, it could take longer if 

black used his king to obstruct the move. The worst case would be 3 x 23 additional moves 

(the king can only obstruct one row of 23 rooks, and each rook in the obstructed row could 

take 4 moves instead of one to reach its destination.). During this period the king must remain 

in the 23 rows from A to B or the 23 columns from A to D, since it must remain in check. 

Thus it cannot get to B by the completion of the process. In fact, it must be at least 999 - 46 

(the total number of moves required) - (499 + 69) (the number of moves available) = 385 

moves behind.  

White now moves all the rooks inside a square side 23 at corner C. The king cannot cut across 

(or it will be unchecked). It must keep within 23 squares of the edge. So it ends up 770 moves 

behind (more in fact, since it cannot obstruct the move as effectively). Finally, white moves 

all the rooks inside a square side 23 at corner D. The king cannot get to the side CD by the 

time this process is completed. So there is then a lag of over two hundred moves before it can 

get back into check. Note that it does not help black to change direction. Whatever black 

does, white ends up with all the rooks at a corner and the king a long way from the two 

checked sides.  

(c)  False. This follows from (b). But we may also use a simpler argument. Take coordinates x 

= 1 to 1000, y = 1 to 1000. White gets its pieces onto (2,0), (4,0), ... , (998,0). If the king 

moves onto (2n,*), then white moves its rook from (2n,0) to (2n-1,0), leaving the king 

unchecked. If the king moves to (2n-1,*) or (2n+1,*), then white moves its rook back to 

(2n,0), leaving the king unchecked. If the king stays on the line (2n,*), then white fills in time 

by toggling one of its endmost rooks to an adjacent square (and the king remains unchecked). 

The only way the black king can escape this repeated unchecking is by moving up to the line 

y = 0. If it does so, then white transfers all its rooks to the line y = 1000 and repeats the 

process. The transfer takes 499 moves. It takes black 1000 moves to follow, so during the 501 

moves before black catches up, the king is subject to repeated unchecking.  



Problem 9 

ABCD is a unit square. One vertex of a rhombus lies on side AB, another on side BC, and a 

third on side AD. Find the area of the set of all possible locations for the fourth vertex of the 

rhombus.  

Solution 

Answer: 2 1/3.  

Let the square be ABCD. Let the vertices of the rhombus be P on AB, Q on AD, and R on 

BC. We require the locus of the fourth vertex S of the rhombus. Suppose P is a distance x 

from B. We may take x <= 1/2, since the locus for x > 1/2 is just the reflection of the locus for 

x < 1/2. Then since PR is parallel to QS, S is a distance x from the line AD. Also, by 

continuity, as Q varies over AD (with P fixed a distance x from B), the locus of S is a line 

segment.  

The two extreme positions for S occur when Q coincides with A and when R coincides with 

C. When Q coincides with A the rhombus has side 1-x. Hence BR
2
 = (1-x)

2
 - x

2
 = 1 - 2x. In 

this case SR is parallel to AB, so the distance of S from AB is ¥��-2x). When R coincides 

with C, the rhombus has side ¥���[2
), so AQ

2
 = 1 + x

2
 - (1-x)

2
 = 2x. Hence the distance of S 

from AB is 1 + ¥��[��� 
Thus the locus of S over all possible rhombi is the interior of a curvilinear quadrilateral with 

vertices MDNC, where M is the midpoint of AB and N is the reflection of M in CD. 

Moreover the curve from M to C is just the translate of the curve from D to N, for if we put y 

= 1/2 - x, then ¥��-2x) becomes ¥��\���7KXV�LI�/�LV�WKH�PLGSRLQW�RI�&'��WKHQ�WKH�DUHa in the 

MLC plus the area in DLN is just 1/2, and the total area of the curvilinear quadrilateral is 1.  

However, the arrangement of the vertices discussed above is not the only one. The order of 

vertices above is PQSR. We could also have PQRS or PSQR. In either case QR is a side 

rather than a diagonal of the rhombus. We consider the case PQRS (the case PSQR is just the 

reflection in the line MN). As before it is convenient to keep P fixed, but this time we take x 

to be the distance AP. Take y to be the distance AQ.  

As before we find that S must lie on a line parallel to BC a distance x from it (on the other 

side to AD). Again we find that for fixed P, the locus of S is a segment of this line. If we 

assume that AQ > BR, then the two extreme positions are (1) QR parallel to AB, giving S on 

the line AB, (2) Q at D, giving S a distance x from the line AB. So as x varies from 0 to 1 we 

get a right-angled triangle sides 1, 1 and ¥��DQG�DUHD������+RZHYHU��ZH�FDQ�DOVR�KDYH�%5�!�
AQ. This gives points below the line AB. The extreme position is with R at C. Suppose QD = 

y. Then 1 + y
2
 = x

2
 + (1 - y)

2
, so y = x

2
/2. This gives S a distance y below the line AB. This 

gives an additional area of 1/6 (by calculus - integrate x
2
/2 from 0 to 1; I do not see how to do 

it without).  

The triangle and the curvilinear triangle together form a curvilinear triangle area 1/2 + 1/6 = 

2/3. There is an identical triangle formed by reflection in MN. Thus the total area is 1 + 2/3 + 

2/3 = 2 1/3.  

Thanks to Robert Hill and John Jones for pointing out that the original solution missed out the 

two triangles.  



Problem 10 

A natural number k has the property that if k divides n, then the number obtained from n by 

reversing the order of its digits is also divisible by k. Prove that k is a divisor of 99.  

Solution 

Let r(m) denote the number obtained from m by reversing the digits.  

We show first that k cannot be divisible by 2 or 5. It cannot be divisible by both, for then it 

ends in a zero and hence r(k) < k and so is not divisible by k (contradiction). So if 5 divides k, 

then the last digit of k must be 5. Since r(k) is divisible by 5 its last digit must also be 5, so the 

first digit of k is 5. But now 3k has first digit 1 (3.5 > 10 and 3.6 < 20), so r(3k) has last digit 

1 and cannot be divisible by 5. Contradiction. If 2 divides k, then every multiple of k must be 

even. So the last digit of r(k) must be even and hence the first digit of k must be 2, 4, 6, or 8. 

If 2, then 5k has first digit 1, so r(2k) is odd. Contradiction. Similarly, if the first digit is 4, 3k 

has first digit 1; if 6, then 5k has first digit 3; if 8, then 2k has first digit 1. Contradiction. So k 

is not divisible by 2 or 5.  

Suppose k = 10
n
an + ... + a0. k divides r(k), so a0 >= 1. Hence (10

n+1
 - 1)k = 10

2n+1
an + ... + 

10
n+1

a0 - (10
n
an + ... + a0) = 10

2n+1
an + ... + 10

n+1
(a0-1) + 10

n
cn + ... + 10c1 + (c0+1), where ci = 

9 - ai. The reverse of this, 10
2n+1

(c0+1) + 10
2n

c1 + ... + 10
n+1

cn + 10
n
(a0-1) + ... + an, is also 

divisible by k. So is the reverse of k, 10
n
a0 + ... + an and hence also their difference: 

10
n
(10

n+1
(c0+1) + 10

n
c1 + ... + 10cn - 1). k has no factors 2 or 5, so k must divide 10

n+1
(c0+1) 

+ 10
n
c1 + ... + 10cn - 1. Adding 10k, we find that k also divides 10

n+2
 + 10

n
9 + ... + 10.9 - 1 = 

1099...989 (n - 2 consecutive 9s) = 11(10
n+1

 - 1).  

We can now carry out exactly the same argument starting with (10
n+2

 - 1)k. This leads to k 

dividing 10
n+2

(c0+1) + ... + 10
2
c0 + 10.9 - 1 and hence also 10

n+3
 + 10

n+1
9 + ... + 10

2
9 + 10.8 + 

9 = 11(10
n+2

 - 1). Subtracting 10 times this from the previous number we conclude that k must 

divide 11(10
n+1

 - 1) - 11(10
n+1

 - 10) = 99.  

Finally, we note that any factor of 99 has the required property. For 3 and 9 divide a number 

if and only if they divide its digit sum. So if m is divisible by 3 or 9, then the number formed 

by any rearrangement of its digits is also divisble by 3 or 9. m is divisible by 11 if and only if 

the difference between the sums of alternate digits is divisible by 11, so if m is divisible by 

11, then so is its reverse.  



2nd ASU 1968 problems 

Problem 1 

An octagon has equal angles. The lengths of the sides are all integers. Prove that the opposite 

sides are equal in pairs.  

Solution 

Extend the sides to form two rectangles. Let the sides of the octagon have length a, b, c, d, e, 

f, g, h. Then we can find the rectangle sides. For example, one of the rectangles has opposite 

sides a + (b + h)/¥��DQG�H����G���I��¥���+HQFH�HLWKHU�D� �H�or ¥�� ��E���K�- d - f)/(a - e). The 

root is irrational, so we must have a = e. Similarly for the other pairs of opposite sides.  

Problem 2 

Which is greater: 31
11

 or 17
14

? [No calculators allowed!]  

Solution 

17
2
 = 289 > 9.31. So 17

14
 > 9

7
 31

7
. But 3

7
 = 2187 > 31

2
. Hence 17

14
 > 31

11
.  

Problem 3 

A circle radius 100 is drawn on squared paper with unit squares. It does not touch any of the 

grid lines or pass through any of the lattice points. What is the maximum number of squares 

can it pass through?  

Solution 

Take compass directions aligned with the grid. Let N, E, S, W be the most northerly, easterly, 

southerly and westerly points on the circle. The arc from N to E must cross 100 north-south 

grid lines and 100 east-west grid lines. Each time it crosses a grid line it changes square (and 

it never crosses two grid lines at once, because it does not pass through any lattice points), so 

the arc N to E must pass through 200 in addition to the starting square. Similarly for the other 

4 arcs. So the circle passes through a total of 800 squares (we count the starting square in the 

last 200).  

Problem 4 

In a group of students, 50 speak English, 50 speak French and 50 speak Spanish. Some 

students speak more than one language. Prove it is possible to divide the students into 5 

groups (not necessarily equal), so that in each group 10 speak English, 10 speak French and 

10 speak Spanish.  

Solution 

Let EF denote the number of students speaking English and French. Similarly define ES, FS, 

E, F, S, EFS. Then ES + EF + E + EFS = 50, EF + FS + F + EFS = 50. Subtracting: ES - F = 

FS - E. Similarly, ES - F = EF - S.  



Pair off members of FS with members of E. Similarly, members of ES with F,and members of 

EF with S. The resulting pairs have one person speaking each language. If ES = F, then the 

only remaining students are those in EFS, who speak all three languages. We thus have a 

collection of units (pairs or individuals) each containing one speaker of each language.  

If ES < F, then after the pairing off we are left with equal numbers of members of E, F, and S. 

These may be formed into triplets, with each triplet containing one speaker of each language. 

As before we also have the students in EFS. Again, we have partitioned the student body into 

units with each unit containing one speaker of each language.  

If ES > F, then after the pairing off, we are left with an equal number of members of ES, FS 

and EF. These may be formed into triplets, with each triplet containing two speakers of each 

language. So, in this case we partition the student body into units with each unit containing 

either one speaker of each language, or two speakers of each language.  

Finally, we may divide the units into 5 groups with 10 speakers of each language in each 

group.  

Problem 5 

Prove that:  

      2/(x
2
 - 1) + 4/(x

2
 - 4) + 6/(x

2
 - 9) + ... + 20/(x

2
 - 100) =  

11/((x - 1)(x + 10)) + 11/((x - 2)(x + 9)) + ... + 11/((x - 10)(x + 1)).  

Solution 

lhs = 1/(x - 1) - 1/(x + 1) + 1/(x - 2) - 1/(x + 2) + ... + 1/(x + 10) - 1/(x - 10) =  

1/(x - 1) - 1/(x + 10) + 1/(x - 2) - 1/(x + 9) + ... + 1/(x - 10) - 1/(x + 1) = rhs.  

Problem 6 

The difference between the longest and shortest diagonals of the regular n-gon equals its side. 

Find all possible n.  

Solution 

Answer: n = 9.  

For n < 6, there is at most one length of diagonal. For n = 6, 7 the longest and shortest, and a 

side of the n-gon form a triangle, so the difference between the longest and shortest is less 

than the side.  

For n > 7 the side has length 2R sin �/n, the shortest diagonal has length 2R sin 2�/n, and the 

longest diagonal has length 2R for n even and 2R cos �/2n for n odd (where R is the radius of 

the circumcircle). Thus we require:  

      sin 2�/n + sin �/n = 1 and n even, or  



      sin 2�/n + sin �/n = cos �/2n and n odd.  

Evidently the lhs is a strictly decreasing function of n and the rhs is an increasing function of 

n, so there can be at most one solution of each equation. The second equation is satisfied by n 

= 9, although it is easier to see that there is a quadrilateral with the longest diagonal and 

shortest diagonals as one pair of opposite sides, and 9-gon sides as the other pair of opposite 

sides. The angle between the longest side and an adjacent side is 60, so that its length is the 

length of the shortest diagonal plus 2 x 9-gon side x cos 60. Hence that is the only solution for 

n odd.  

For n = 8 we have the same quadrilateral as for the 9-gon except that the angle is 67.5 and 

hence the difference is less than 1. For n = 10, sin 2�/10 + sin �/10 = sin �/10 (2 cos �/10 + 1) 

< 3 sin �/10 < 3 �/10 < 1. So there are no solutions for n even ������DQG�KHQFH�QR�VROXWLRQV�IRU�
n even.  

Problem 7 

The sequence an is defined as follows: a1 = 1, an+1 = an + 1/an for n �����3URYH�WKDW�D100 > 14.  

Solution 

First we must notice that for 1 ��D��E�ZH�KDYH�D���E��WKHQ�D���1/a < b + 1/b. This is basic to any 

estimation.  

The obvious approach is to notice that if ai ��Q��WKHQ�Di+1 ��Di + 1/n. Hence it takes at most n 

steps to get from n - 1 to n. Unfortunately, this does not quite work: we need 2 + 3 + ... + 14 = 

104 steps to get from 1 to 14.  

The trick is to notice that an+1
2
 > an

2
 + 2. But a2 = 2, so an

2
 > 2n. That gives a100

2
 > 200 > 14

2
.  

Problem 8  

Given point O inside the acute-angled triangle ABC, and point O' inside the acute-angled 

triangle A'B'C'. D, E, F are the feet of the perpendiculars from O to BC, CA, AB respectively, 

and D', E', F' are the feet of the perpendiculars from O' to B'C', C'A', A'B' respectively. OD is 

parallel to O'A', OE is parallel to O'B' and OF is parallel to O'C'. Also OD· O'A' = OE· O'B' = 

OF· O'C'. Prove that O'D' is parallel to OA, O'E' to OB and O'F' to OC, and that O'D'· OA = 

O'E'· OB = O'F'· OC.  

Solution  



 

Let + be the circumcircle of DEF. Let OD, OE, OF meet it again at A", B", C" respectively. 

Then the figure O'A'B'C' must be similar to OA"B"C". So to prove that OD is parallel to O'A', 

we have to prove that AO is perpendicular to B"C".  

So AO meets B"C" at D". Now since �$)&�� ���o
 and �$'�&�� ���o

, both F and D" lie on 

the circle diameter AC". Hence AO· OD" = OF· OC". Similarly, BO meets C"A" at E", and CO 

meets A"B" at F", and BO· OE" = OD· OA" and CO· OF" = OE· OB". Hence OD"· OA = 

OE"· OB = OF"· OC. So using the similarity, O'D'· OA = O'E'· OB = O'F'· OC.  

Problem 9 

Prove that any positive integer not exceeding n! can be written as a sum of at most n distinct 

factors of n!.  

Solution 

Given m ��Q��ZULWH�P� �QT���U�  (*), with 0 ��T������U���P��7KHQ�T����Q-1)!, so q is a sum of at 

most n-1 distinct factors of (n-1)!. r is itself a factor of n! and is not divisible by n, so (*) 

expresses m as a sum of at most n distinct factors of n!.  

Problem 10 

Given a triangle ABC, and D on the segment AB, E on the segment AC, such that AD = DE = 

AC, BD = AE, and DE is parallel to BC. Prove that BD equals the side of a regular 10-gon 

inscribed in a circle with radius AC.  

Solution 

DA = DE, so DAE is isosceles. DE is parallel to BC, so ABC is isosceles, so BA = AC/(2 cos 

A). Hence BD = AC/(2 cos A) - AC. But AE = 2 AC cos A, so we have an equation for c=cos 

A: 4 c
2
 + 2c - 1 = 0.  

2�/5, 4�/5, 6�/5, 8�/5 and 10�/5 are the roots of: real part of (cos � + i sin �)
5
 = 1. Expanding 

this gives that cos 2�/5, cos 4�/5, cos 6�/5, cos 8�/5 and 1 are the roots of 16c
5
 - 20c

3
 + 5c - 1 

= 0. Dividing by (c - 1) gives 16c
4
 + 16c

3
 - 4c

2
 - 4c + 1 = (4c

2
 + 2c - 1)

2
. So cos 2�/5 (= cos 

8�/5) and cos 4�/5 (= cos 6�/5) are the roots of 4c
2
 + 2c - 1 = 0.  



We know that A < 90
o
 (since A = C and their sum is less than 180

o
). Hence A = 2�/5. So BD 

= 2 AC cos 2�/5 = 2 AC sin �/10, which is the side length for a regular 10-gon inscribed in a 

circle radius AC.  

Problem 11 

Given a regular tetrahedron ABCD, prove that it is contained in the three spheres on 

diameters AB, BC and AD. Is this true for any tetrahedron?  

Solution 

Let the tetrahedron have side 1. Then the center O is a distance 1/¥��IURP�WKH�FHQWHU�RI�HDFK�
of the spheres, so it is contained in each of the spheres. We now use convexity.  

Two circles with diameters two of the sides of a triangle cover the triangle (consider the foot 

of the altitude to the third side), so faces ABC and ABD are certainly contained in the 

spheres. Consider face ACD. The sphere on BC passes through the midpoints of AC and CD, 

and through C, so it contains the triangle formed by these three points (by convexity). But the 

rest of ACD is contained in the sphere on AD. Similarly for the face BCD. Hence all the faces 

are contained in the spheres. But now take any point P inside the tetrahedron. Extend OP to 

meet a face at X. X lies in one of the spheres, but O also lies in the sphere and hence all points 

on OX, including P (by convexity).  

False in general. Take ABCD to be a plane square, then no points on CD are in the spheres 

except C and D (and we can obviously distort this slightly to make it less degenerate).  

Problem 12 

(a)  Given a 4 x 4 array with + signs in each place except for one non-corner square on the 

perimeter which has a - sign. You can change all the signs in any row, column or diagonal. A 

diagonal can be of any length down to 1. Prove that it is not possible by repeated changes to 

arrive at all + signs.  

(b)  What about an 8 x 8 array?  

Solution 

(a)   Let S be the set of the 8 positions on the perimeter not at a corner. Any move changes the 

sign of either 2 or 0 of the members of S. We start with an odd number of members of S with 

a minus sign, so we must always have an odd number of members of S with a minus sign and 

hence cannot get all plus signs.  

(b)   Also impossible. The same argument works.  

Problem 13 

The medians divide a triangle into 6 smaller triangles. 4 of the circles inscribed in the smaller 

triangles have equal radii. Prove that the original triangle is equilateral.  

Solution 



Denote the side lengths by a, b, c and the corresponding median lengths by ma, mb, mc. The 

six small triangles all have equal area. [Let the areas be t1, ... , t6. It is obvious that the 

adjacent pairs have equal height and equal base, so we have t1 = t2, t3 = t4, t5 = t6. The three on 

each side of a median sum to the same area, so t1 + t2 + t3 = t4 + t5 + t6, t1 + t5 + t6 = t2 + t3 + t4. 

Subtracting gives t1 = t4. Similarly, t2 = t5 and we are home.] So by the usual result that the 

twice area of a triangle equals its perimeter times its in-radius, we conclude that the 

perimeters of four of the small triangles are equal.  

Two of them must share a side of the original triangle. Suppose it is a. Then we have: a/2 + 

ma/3 + 2mb/3 = a/2 + ma/3 + 2mc/3. So mb = mc. That implies that b = c. [Because the triangle 

formed by the centroid and side a is isosceles, so the median is perpendicular to the side, so 

the main triangle is isosceles.]  

Using the facts that b = c and mb = mc, we see that two of the remaining small triangles have 

perimeter b/2 + mb and two have perimeter b/2 + mb/3 + 2ma/3. So there are two cases to 

consider. In the first case a/2 - ma/3 = b/2 - mb/3. That implies a = b, since if a < b, ma > mb 

(consider the triangle formed by the centroid and the side c). So the triangle is equilateral.  

The second case is harder. We have: a/2 + ma/3 + 2mb/3 = b/2 + mb, and hence a/2 + ma/3 = 

b/2 + mb/3 (*). Take the angle between a and b to be θ. Then ma = b sin θ, a =2b cos θ, and 

mb
2
 = b

2
/4 + a

2
 - ab cos θ = b

2
/4 + 2b

2
 cos

2
θ. We can now use (*) to get an equation for θ. 

First we square (*) to get: mb
2
 = (3a/2 - 3b/2 + ma)

2
. We divide out the factor b

2
 to get: 1/4 + 2 

cos
2
θ = 3 1/4 + 8 cos

2
θ - 9 cos θ + 3 sin θ(2 cos θ - 1). Squaring, so that we can use sin

2
θ = 1 

- cos
2
θ, and writing c = cos θ, we get: (1 - c

2
)(4c

2
 - 4c + 1) = 4c

4
 - 12c

3
 + 13c

2
 - 6c + 1. Hence 

8c
4
 - 16c

3
 + 10c

2
 - 2c = 0. Factorizing: c(c - 1)(2c - 1)

2
 = 0. c = 0 and c = 1 give degenerate 

triangles, so we must have c = 1/2 and hence the triangle is equilateral.  

Problem 14 

Prove that we can find positive integers x, y satisfying x
2
 + x + 1 = py for an infinite number 

of primes p.  

Solution 

This is a trivial variant on the proof that there are an infinite number of primes. Suppose that 

we can only find x, y for a finite number of primes p1, p2, ... , pn. Set x = p1p2...pn. Then none 

of the pi can divide x(x+1) + 1. But it must have prime factors. Contradiction.  

Problem 15 

9 judges each award 20 competitors a rank from 1 to 20. The competitor's score is the sum of 

the ranks from the 9 judges, and the winner is the competitor with the lowest score. For each 

competitor the difference between the highest and lowest ranking (from different judges) is at 

most 3. What is the highest score the winner could have obtained?  

Solution 

Answer: 24.  



At most 4 competitors can receive a rank 1. For a competitor with a rank 1 can only receive 

ranks 1, 2, 3 or 4. There are only 36 such ranks available and each competitor with a rank 1 

needs 9 of them.  

If only one competitor receives a rank 1, then his score is 9. If only 2 competitors receive a 

rank 1, then one of them must receive at least five rank 1s. His maximum score is then 5.1 + 

4.4 = 21. If 4 competitors receive a rank 1, then they must use all the 36 ranks 1, 2, 3, and 4. 

The total score available is thus 9(1 + 2 + 3 + 4) = 90, so at least one competitor must receive 

22 or less. Thus the winner's maximum score is at most 22. If 3 competitors receive a rank 1, 

then the winner's score is maximised by giving all three competitors the same score and 

letting them share the 27 ranks 1, 3 and 4. That gives a winner's score of 9(1 + 3 + 4)/3 = 24. 

That can be achieved in several ways, for example: each competitor gets 3 1s, 3 3s and 3 4s, 

or one competitor gets 4 1s and 5 4s, another gets 3 1s, 3 3s and 3 4s, another gets 2 1s 6 3s 

and one 4. Note that it is trivial to arrange ranks for the remaining 17 competitors. For 

example: give one 5 2s and 4 5s total 30, one 4 2s and 5 5s total 33, and then one 9 6s, one 9 

7s and so on.  

Thus the answer is 24, with three joint winners. If there is required to be a single winner, then 

the answer is 23.  

Problem 16 

 

{ai} and {bi} are permutations of {1/1,1/2, ... , 1/n}. a1 + b1 ��D2 + b2 ��������Dn + bn. Prove that 

for every m (1 ��P���Q��Dm + an ����P��  

 

Problem 17 

 

There is a set of scales on the table and a collection of weights. Each weight is on one of the 

two pans. Each weight has the name of one or more pupils written on it. All the pupils are 

outside the room. If a pupil enters the room then he moves the weights with his name on them 

to the other pan. Show that you can let in a subset of pupils one at a time, so that the scales 

change position after the last pupil has moved his weights.   

 

Problem 18 

 

The streets in a city are on a rectangular grid with m east-west streets and n north-south 

streets. It is known that a car will leave some (unknown) junction and move along the streets 

at an unknown and possibly variable speed, eventually returning to its starting point without 

ever moving along the same block twice. Detectors can be positioned anywhere except at a 

junction to record the time at which the car passes and it direction of travel. What is the 

minimum number of detectors needed to ensure that the car's route can be reconstructed?   

 

Problem 19 

 

The circle inscribed in the triangle ABC touches the side AC at K. Prove that the line joining 

the midpoint of AC with the center of the circle bisects the segment BK.   

 

Problem 20 

 

The sequence a1, a2, ... , an satisfies the following conditions: a1 = 0, |ai| = |ai-1 + 1| for i = 2, 3, 

... , n. Prove that (a1 + a2 + ... + an)/n ��-1/2.   



Problem 21 

The sides and diagonals of ABCD have rational lengths. The diagonals meet at O. Prove that 

the length AO is also rational.  

Solution 

AB = AO cos OAB + BO cos OBA. We can derive a rational expression for cos OAB using 

the cosine rule for triangle ABC. Similarly for cos OBA using the cosine rule for triangle 

DAB. So OA = r1 + r2OB, where ri denotes a rational number. Similarly, OB = r3 + r4OC, so 

OA = r5 + r6OC. But OA + OC = AC = r7. Hence OA is rational.  



3rd ASU 1969 

Problem 1 

In the quadrilateral ABCD, BC is parallel to AD. The point E lies on the segment AD and the 

perimeters of ABE, BCE and CDE are equal. Prove that BC = AD/2.  

Solution 

Take E1 on the line AD so that AE1CB is a parallelogram. Then AE1 = BC, AB = CE1, so 

triangles ABE1 and BCE1 have equal perimeters. Moreover, E1 is the only point on the line for 

which this is true. For if we move E a distance x from E1, then we change AE1 by x, and CE1 

by less than x. AB and BC are unchanged. So AB + BE1 and BC + CE1 are changed by 

different amounts. Hence the perimeters of ABE1 and BCE1 are no longer equal.  

Similarly, let E2 be the point on the line AD so that BCDE2 is a parallelogram. Then E2 is the 

unique point such that BCE2 and CDE2 have equal perimeters. So if all three triangles have 

equal perimeters, then E1 and E2 must coincide and hence BC = AE = DE, so BC = AD/2.  

Problem 2 

 

A wolf is in the center of a square field and there is a dog at each corner. The wolf can run 

anywhere in the field, but the dogs can only run along the sides. The dogs' speed is 3/2 times 

the wolf's speed. The wolf can kill a single dog, but two dogs together can kill the wolf. Prove 

that the dogs can prevent the wolf escaping.   

Problem 3 

A finite sequence of 0s and 1s has the following properties: (1) for any i < j, the sequences of 

length 5 beginning at position i and position j are different; (2) if you add an additional digit 

at either the start or end of the sequence, then (1) no longer holds. Prove that the first 4 digits 

of the sequence are the same as the last 4 digits.  

Solution 

Let the last 4 digits be abcd. Then the 5 digit sequences abcd0 and abcd1 must occur 

somewhere. If neither of them are at the beginning then there are three 5 digit sequences 

xabcd, two of which must therefore be the same, contradicting (1). Hence abcd are the first 4 

digits.  

Problem 4 

Given positive numbers a, b, c, d prove that at least one of the inequalities does not hold: a + 

b < c + d; (a + b)(c + d) < ab + cd; (a + b)cd < ab(c + d).  

Solution 

From the first and second inequalities we have ab + cd > a(c + d) + b(a + b), so cd > ad, and 

hence c > a. We also have ab + cd > a(a + b) + b(c + d), so cd > bc, and hence d > b. So 1/a + 

1/b > 1/c + 1/d, which contradicts the third inequality.  



Problem 5 

What is the smallest positive integer a such that we can find integers b and c so that ax
2
 + bx 

+ c has two distinct positive roots less than 1?  

Solution 

4x
2
 - 4x + 1 = (2x - 1)

2
, which has the double root 1/2. So it remains to consider a = 1, 2, 3.  

-b/a is the sum of the roots, so b is negative. c/a is the product of the roots, so c is positive. If 

a = 1, then the product of the roots is c, which is at least 1, so both roots cannot lie strictly 

between 0 and 1. If a = 2, then the sum of the roots is less than 2, so b must be -1, -2, or -3. 

The roots are real so b
2
 > 4ac = 8c. Hence b = -3 and c = 1. But 2x

2
 - 3x + 1 = (2x - 1)(x - 1) 

and one root is not less than 1. If a = 3, then b must be -1, -2, ... , or -5. But b
2
 > 4ac = 12c, so 

(b, c) = (-4, 1), (-5, 1) or (-5, 2). In the first and last case, the equation has a root 1. In the 

middle case it has a root 5/6 + ¥����� �������!����7KXV�WKHUH�DUH�QR�VROXWLRQV�IRU�D� ���������
and so the smallest value of a is 4.  

Problem 6 

n is an integer. Prove that the sum of all fractions 1/rs, where r and s are relatively prime 

integers satisfying 0 < r < s ��Q��U���V�!�Q��LV������ 
Solution 

We use induction on n. If n = 2, then the only such fraction is r = 1, s = 2, giving 1/rs = 1/2, so 

the result holds. Suppose it holds for n-1. As we move to n, we lose the fractions with r+s=n. 

The other fractions 1/rs which satisfy the conditions for n-1 also satisfy the conditions for n. 

We also gain the fractions with s=n. These have sum = 1/n (sum 1/r for all r satisfying 0 < r < 

n and r relatively prime to n). But if r is relatively prime to n, then so is n - r, and n - r does 

not equal r (otherwise r divides n). The pair 1/r, 1/(n-r) has sum n/(r(n-r)). So the fractions 

with s=n have sum equal to the sum of all 1/(r(n-r) with 0 < r < n and r relatively prime to n. 

But that is exactly the sum of the fractions lost. Thus the total is unchanged as we move from 

n-1 to n.  

Problem 7 

 

Given n points in space such that the triangle formed from any three of the points has an angle 

greater than 120 degrees. Prove that the points can be labeled 1, 2, 3, ... , n so that the angle 

defined by i, i+1, i+2 is greater than 120 degrees for i = 1, 2, ... , n-2.   

 

Problem 8 

Find four different three-digit numbers (in base 10) starting with the same digit, such that 

their sum is divisible by three of the numbers.  

Solution 

Answer: 108, 117, 135, 180. Sum 540 = 108· 5 = 135· 4 = 180· 3.  



Try looking for a number of the form 3· 4· 5· n. We want 12n, 15n and 20n to have the same 

first digit. If the first digit is 1, this requires n = 9. We must now check that the fourth number 

which must be 60n - 12n - 15n - 20n = 13n also has three digits starting with 1. It does, so we 

are home. [In fact, in this case the first digit must be 1, since 20n > 3/2 12n.]  

Problem 9 

Every city in a certain state is directly connected by air with at most three other cities in the 

state, but one can get from any city to any other city with at most one change of plane. What 

is the maximum possible number of cities?  

Solution 

Answer: 10.  

Take a particular city X. At most 3 cities are directly connected to X. Each of those is directly 

connected to at most 2 other cities (apart from X). So X is connected with at most one change 

to at most 9 other cities. Thus the maximum number is at most 10.  

We can achieve 10 as follows. Label the cities 1, ... , 10. Make direct connections as follows:  

1: 2, 3, 4;   2: 1, 5, 6;   3: 1, 7, 8;   4: 1, 9, 10;   5: 2, 7, 9;   6: 2, 8, 10;   7: 3, 5, 10;   8: 3, 6, 9;   

9: 4, 5, 8;   10: 4, 6, 7.  

Problem 10 

 

Given a pentagon with equal sides.  

(a)  Prove that there is a point X on the longest diagonal such that every side subtends an 

angle at most 90 degrees at X.  

(b)  Prove that the five circles with diameter one of the pentagon's sides do not cover the 

pentagon.   

Problem 11 

Given the equation x
3
 + ax

2
 + bx + c = 0, the first player gives one of a, b, c an integral value. 

Then the second player gives one of the remaining coefficients an integral value, and finally 

the first player gives the remaining coefficient an integral value. The first player's objective is 

to ensure that the equation has three integral roots (not necessarily distinct). The second 

player's objective is to prevent this. Who wins?  

Solution 

Answer: the first player.  

The first player starts by choosing c = 0. Now if the second player selects a, then he can take b 

= a - 1. Then the polynomial factorizes as: x(x+1)(x+a-1) with integral roots, 0, -1, 1-a. If the 

second player selects b, then he can take a = b + 1. Then the polynomial factorizes as 

x(x+1)(x+b) with integral roots 0, -1, -b.  

   



Problem 12 

 

20 teams compete in a competition. What is the smallest number of games that must be 

played to ensure that given any three teams at least two play each other?   

 

Problem 13 

 

A regular n-gon is inscribed in a circle radius R. The distance from the center of the circle to 

the center of a side is hn. Prove that (n+1)hn+1 - nhn > R.   

 

Problem 14 

 

Prove that for any positive numbers a1, a2, ... , an we have:  

    a1/(a2+a3) + a2/(a3+a4) + ... + an-1/(an+a1) + an/(a1+a2) > n/4.   



4th ASU 1970 

Problem 1 

Given a circle, diameter AB and a point C on AB, show how to construct two points X and Y 

on the circle such that (1) Y is the reflection of X in the line AB, (2) YC is perpendicular to 

XA.  

Solution 

AB is a diameter, so BX is perpendicular to AX and hence parallel to YC. YX is 

perpendicular to BC, so YC = YB. Hence X and Y lie on the perpendicular bisector of BC.  

Problem 2 

The product of three positive numbers is 1, their sum is greater than the sum of their inverses. 

Prove that just one of the numbers is greater than 1.  

Solution 

The product of the numbers is 1, so they cannot all be greater than 1 or all less than 1. If all 

equalled 1, then the sum would not be greater than the sum of the inverses. So we must have 

either one or two greater than 1. Thus it is sufficient to show that we cannot have two of the 

numbers greater than 1.  

Suppose that a, b > 1. Then since a + b + c > 1/a + 1/b + 1/c, we have a + b + 1/ab > 1/a + 1/b 

+ ab, and hence (1 - 1/a)(1 - 1/b) > (a - 1)(b - 1). Dividing by (a - 1)(b -1) gives ab < 1. 

Contradiction.  

Problem 3 

What is the greatest number of sides of a convex polygon that can equal its longest diagonal?  

Solution 

Answer: 2, except for the equilateral triangle.  

It is easy to find two. Take the two sides to be AB and AC with angle BAC =60 deg, and take 

the other vertices on the minor arc of the circle center A radius AB between B and C.  

Let the longest diagonal have length k. Suppose there are three sides with length k. Extend 

them (if necessary) so they meet at A, B, C. Suppose �$�!���o
. Take the vertices on side AB 

to be P, Q (where we may have P = A, or Q = B, or both). Take the vertices on side AC to be 

R, S (where we may have R = A, or S = C, or both). Then AQ ��N��$6���N��VR�46�!�N��
Contradiction. Hence angle A ����o

. The same is true for �%�DQG��&��+HQFH��$� ��%� ��&�
= 60

o
. But now QS > k unless A = P = R. Similarly, B and C must be vertices of the convex 

polygon, so that it is just an equilateral triangle.  

Problem 4 



n is a 17 digit number. m is derived from n by taking its decimal digits in the reverse order. 

Show that at least one digit of n + m is even.  

Solution 

Let the number be n with digits d1d2 ... d17, so that the reversed number n' has digits d17d16 ... 

d1. Let the digits of n + n' be a0a1 ... a17, where a0 may be zero. Let the carry forward when 

adding digits to get ai be ci-1, so that, in general, ci + di + d18-i = ai + 10 ci-1. Obviously ci is 0 

or 1.  

Suppose all the digits ai are odd (except that a0 may be zero). Now c9 + 2d9 = a9 + 10 c8. Since 

a9 is odd, c9 must be 1. But if we consider c10 + d10 + d8 = a10 + 10 c9, we see that since a10 is 

odd it is at least 1 and hence d8 + d10 is at least 10. Hence there must be a non-zero carry c9 in 

c10 + d10 + d8 = a10 + 10 c9 irrespective of the value of c10.  

We can now iterate and conclude successively that c12, c14, c16 must be non-zero.  

Problem 5 

 

A room is an equilateral triangle side 100 meters. It is subdivided into 100 rooms, all 

equilateral triangles with side 10 meters. Each interior wall between two rooms has a door. If 

you start inside one of the rooms and can only pass through each door once, show that you 

cannot visit more than 91 rooms. Suppose now the large triangle has side k and is divided into 

k
2
 small triangles by lines parallel to its sides. A chain is a sequence of triangles, such that a 

triangle can only be included once and consecutive triangles have a common side. What is the 

largest possible number of triangles in a chain?  

Problem 6 

Given 5 segments such that any 3 can be used to form a triangle. Show that at least one of the 

triangles is acute-angled.  

Solution 

Let the segments have length a ��E���F���G���H��7KHQ�LI�DOO�WULDQJOHV�DUH�REWXVH�ZH�KDYH�H2
 > c

2
 

+ d
2
, d

2
 > b

2
 + c

2
, c

2
 > a

2
 + b

2
. Adding e

2
 > a

2
 + 2b

2
 + c

2
 > a

2
 + 3b

2
. But e ��D���E��VR�H2

 ��D2
 + 

2ab + b
2
 ��D2

 + 3b
2
. Contradiction.  

Problem 7 

ABC is an acute-angled triangle. The angle bisector AD, the median BM and the altitude CH 

are concurrent. Prove that angle A is more than 45 degrees.  

Solution 

We use Ceva's theorem. Since AD, BM, CH are concurrent, we have 

(BD/DC).(CM/MA).(AH/BH) = 1. But CM = MA and since AD is the angle bisector BD/DC 

= AB/AC, so (AB/AC).(AH/BH) = 1. Hence AH/AC = BH/AB < 1. So angle HAC > angle 

HCA. But angle AHC = 90 deg, so angle A > 45 deg.  

Problem 8 



 

Five n-digit binary numbers have the property that every two numbers have the same digits in 

just m places, but no place has the same digit in all five numbers. Show that 2/5 ��P�Q�������� 
 

Problem 9 

 

Show that given 200 integers you can always choose 100 with sum a multiple of 100.  

 

Problem 10 

 

ABC is a triangle with incenter I. M is the midpoint of BC. IM meets the altitude AH at E. 

Show that AE = r, the radius of the inscribed circle.  

 

Problem 11 

 

Given any positive integer n, show that we can find infinitely many integers m such that m 

has no zeros (when written as a decimal number) and the sum of the digits of m and mn is the 

same.  

 

Problem 12 

 

Two congruent rectangles of area A intersect in eight points. Show that the area of the 

intersection is more than A/2.  

Problem 13 

If the numbers from 11111 to 99999 are arranged in an arbitrary order show that the resulting 

444445 digit number is not a power of 2.  

Solution 

Let the set of numbers be S. Define the function f on S as follows. Replace each digit i in n by 

9-i for 0 < i < 9. This gives f(n). Then f( f(n) ) = n, so f is a bijection. The fixed points have 

only the digits 0 and 9 and so are all divisible by 9. The other points divide into pairs (n, f(n)) 

and the sum of each pair is divisible by 9. Hence the sum of all the numbers in S is divisible 

by 9.  

Problem 14 

 

S is the set of all positive integers with n decimal digits or less and with an even digit sum. T 

is the set of all positive integers with n decimal digits or less and an odd digit sum. Show that 

the sum of the kth powers of the members of S equals the sum for T if 1 ��N���Q�� 
 

Problem 15 

 

The vertices of a regular n-gon are colored (each vertex has only one color). Each color is 

applied to at least three vertices. The vertices of any given color form a regular polygon. 

Show that there are two colors which are applied to the same number of vertices.  

 

 



5th ASU 1971 

Problem 1  

Prove that we can find a number divisible by 2
n
 whose decimal representation uses only the 

digits 1 and 2.  

Solution  

Induction on n. We claim that we can find N with n digits, all 1 or 2, so that N is divisible by 

2
n
. True for n = 1: take N = 2. Suppose it is true for n. If 2

n+1
 divides N, then since 2

n+1
 divides 

2 x 10
n
 it also divides N' obtained from N by placing a 2 in front of it. If 2

n+1
 does not divide 

N, then N = 2
n
 x odd and 10

n
 = 2

n
 x odd, so N + 10

n
 (in other words the n+1 digit number 

obtained by placing a 1 in front of N) is divisible by 2
n+1

.  

Problem 2 

(1) A1A2A3 is a triangle. Points B1, B2, B3 are chosen on A1A2, A2A3, A3A1 respectively and 

points D1, D2 D3 on A3A1, A1A2, A2A3 respectively, so that if parallelograms AiBiCiDi are 

formed, then the lines AiCi concur. Show that A1B1· A2B2· A3B3 = A1D1· A2D2· A3D3.  

(2) A1A2 ... An is a convex polygon. Points Bi are chosen on AiAi+1 (where we take An+1 to 

mean A1), and points Di on Ai-1Ai (where we take A0 to mean An) such that if parallelograms 

AiBiCiDi are formed, then the n lines AiCi concur. Show that ��$iBi = ��$iDi.  

Problem 3  

(1) Player A writes down two rows of 10 positive integers, one under the other. The numbers 

must be chosen so that if a is under b and c is under d, then a + d = b + c. Player B is allowed 

to ask for the identity of the number in row i, column j. How many questions must he ask to 

be sure of determining all the numbers?  

(2) An m x n array of positive integers is written on the blackboard. It has the property that for 

any four numbers a, b, c, d with a and b in the same row, c and d in the same row, a above c 

(in the same column) and b above d (in the same column) we have a + d = b + c. If some 

numbers are wiped off, how many must be left for the table to be accurately restored?  

Solution  

(1) is trivial. We can write the condition as b - a = d - c, so the 10 numbers in the first row and 

1 in the second row can all be chosen arbitrarily. Hence at least 11 questions are needed. But 

they are also sufficient. Having determined those numbers, the others immediately follow.  

(2). The m+n-1 numbers in the first row and first column can all be chosen arbitrarily, but are 

sufficient to determine all the numbers. Hence at least m+n-1 numbers must survive.  

Problem 4 

 

Circles, each with radius less than R, are drawn inside a square side 1000R. There are no 

points on different circles a distance R apart. Show that the total area covered by the circles 

does not exceed 340,000 R
2
.  



 

Problem 5 

 

You are given three positive integers. A move consists of replacing m ��Q�E\��P��Q-m. Show 

that you can always make a series of moves which results in one of the integers becoming 

zero. [For example, if you start with 4, 5, 10, then you could get 8, 5, 6, then 3, 10, 6, then 6, 

7, 6, then 0, 7, 12.]  

 

Problem 6 

 

The real numbers a, b, A, B satisfy (B - b)
2
 < (A - a)(Ba - Ab). Show that the quadratics x

2
 + 

ax + b = 0 and x
2
 + Ax + B = 0 have real roots and between the roots of each there is a root of 

the other.  

 

Problem 7 

 

The projections of a body on two planes are circles. Show that the circles have the same 

radius.  

 

Problem 8 

 

An integer is written at each vertex of a regular n-gon. A move is to find four adjacent 

vertices with numbers a, b, c, d (in that order), so that (a - d)(b - c) < 0, and then to 

interchange b and c. Show that only finitely many moves are possible. For example, a 

possible sequence of moves is shown below:  
1  7  2  3  5  4 

1  2  7  3  5  4 

1  2  3  7  5  4 

1  2  3  5  7  4 

2  1  3  5  7  4 

 

Problem 9 

 

A polygon P has an inscribed circle center O. If a line divides P into two polygons with equal 

areas and equal perimeters, show that it must pass through O.  

 

Problem 10 

 

Given any set S of 25 positive integers, show that you can always find two such that none of 

the other numbers equals their sum or difference.  

 

Problem 11 

 

A and B are adjacent vertices of a 12-gon. Vertex A is marked - and the other vertices are 

marked +. You are allowed to change the sign of any n adjacent vertices. Show that by a 

succession of moves of this type with n = 6 you cannot get B marked - and the other vertices 

marked +. Show that the same is true if all moves have n = 3 or if all moves have n = 4.  

 

Problem 12 

 

Equally spaced perpendicular lines divide a large piece of paper into unit squares. N squares 

are colored black. Show that you can always cut out a set of disjoint square pieces of paper, so 



that all the black squares are removed and the black area of each piece is between 1/5 and 4/5 

of its total area.  

 

Problem 13 

n is a positive integer. S is the set of all triples (a, b, c) such that 1 ��D��E��F����Q��:KDW�LV�WKH�
smallest subset X of triples such that for every member of S one can find a member of X 

which differs in only one position. [For example, for n = 2, one could take X = { (1, 1, 1), (2, 

2, 2) }.]  

 

Problem 14 

 

Let f(x, y) = x
2
 + xy + y

2
. Show that given any real x, y one can always find integers m, n 

such that f(x-m, y-n) <= 1/3. What is the corresponding result if f(x, y) = x
2
 + axy + y

2
 with 0 ��D����"� 

 

Problem 15 

 

A switch has two inputs 1, 2 and two outputs 1, 2. It either connects 1 to 1 and 2 to 2, or 1 to 2 

and 2 to 1. If you have three inputs 1, 2, 3 and three outputs 1, 2, 3, then you can use three 

switches, the first across 1 and 2, then the second across 2 and 3, and finally the third across 1 

and 2. It is easy to check that this allows the output to be any permutation of the inputs and 

that at least three switches are required to achieve this. What is the minimum number of 

switches required for 4 inputs, so that by suitably setting the switches the output can be any 

permutation of the inputs?  

 



6th ASU 1972 problems 

Problem 1 

 

ABCD is a rectangle. M is the midpoint of AD and N is the midpoint of BC. P is a point on 

the ray CD on the opposite side of D to C. The ray PM intersects AC at Q. Show that MN 

bisects the angle PNQ.  

 

Problem 2 

 

Given 50 segments on a line show that you can always find either 8 segments which are 

disjoint or 8 segments with a common point.  

 

Problem 3 

 

Find the largest integer n such that 4
27

 + 4
1000

 + 4 
n
 is a square.  

 

Problem 4 

 

a, m, n are positive integers and a > 1. Show that if a
m

 + 1 divides a
n
 + 1, then m divides n. 

The positive integer b is relatively prime to a, show that if a
m

 + b
m

 divides a
n
 + b

n
 then m 

divides n.  

 

Problem 5 

 

A sequence of finite sets of positive integers is defined as follows. S0 = {m}, where m > 1. 

Then given Sn you derive Sn+1 by taking k
2
 and k+1 for each element k of Sn. For example, if 

S0 = {5}, then S2 = {7, 26, 36, 625}. Show that Sn always has 2
n
 distinct elements.  

 

Problem 6 

 

Prove that a collection of squares with total area 1 can always be arranged inside a square of 

area 2 without overlapping.  

 

Problem 7 

 

O is the point of intersection of the diagonals of the convex quadrilateral ABCD. Prove that 

the line joining the centroids of ABO and CDO is perpendicular to the line joining the 

orthocenters of BCO and ADO.  

 

Problem 8 

 

9 lines each divide a square into two quadrilaterals with areas 2/5 and 3/5 that of the square. 

Show that 3 of the lines meet in a point.  

 

Problem 9 

 

A 7-gon is inscribed in a circle. The center of the circle lies inside the 7-gon. A, B, C are 

adjacent vertices of the 7-gon show that the sum of the angles at A, B, C is less than 450 

degrees.  



 

Problem 10 

 

Two players play the following game. At each turn the first player chooses a decimal digit, 

then the second player substitutes it for one of the stars in the subtraction | **** - **** |. The 

first player tries to end up with the largest possible result, the second player tries to end up 

with the smallest possible result. Show that the first player can always play so that the result is 

at least 4000 and that the second player can always play so that the result is at most 4000.  

 

Problem 11 

 

For positive reals x, y let f(x, y) be the smallest of x, 1/y, y + 1/x. What is the maximum value 

of f(x, y)? What are the corresponding x, y?  

 

Problem 12 

 

P is a convex polygon and X is an interior point such that for every pair of vertices A, B, the 

triangle XAB is isosceles. Prove that all the vertices of P lie on some circle center X.  

 

Problem 13 

 

Is it possible to place the digits 0, 1, 2 into unit squares of 100 x 100 cross-lined paper such 

that every 3 x 4 (and every 4 x 3) rectangle contains three 0s, four 1s and five 2s?  

 

Problem 14 

 

x1, x2, ... , xn are positive reals with sum 1. Let s be the largest of x1/(1 + x1), x2/(1 + x1 + x2), 

... , xn/(1 + x1 + ... + xn). What is the smallest possible value of s? What are the corresponding 

xi?  

 

Problem 15 

 

n teams compete in a tournament. Each team plays every other team once. In each game a 

team gets 2 points for a win, 1 for a draw and 0 for a loss. Given any subset S of teams, one 

can find a team (possibly in S) whose total score in the games with teams in S was odd. Prove 

that n is even.  



7th ASU 1973 

Problem 1  

You are given 14 coins. It is known that genuine coins all have the same weight and that fake 

coins all have the same weight, but weigh less than genuine coins. You suspect that 7 

particular coins are genuine and the other 7 fake. Given a balance, how can you prove this in 

three weighings (assuming that you turn out to be correct)?  

Solution  

Let the coins you suspect to be genuine be G1, G2, ... , G7, and the suspected fakes by F1, F2, 

... , F7. First weigh F1 against G1. Assuming F1 weighs less, you have proved that F1 is fake 

and G1 genuine. Second, weigh F1, G2, G3 against G1, F2, F3. Assuming the first three weigh 

more you have proved that they include more genuine coins than the second three. But the 

second three includes one genuine coin (G1) and the first three includes one fake (F1), so you 

have proved that G2 and G3 are genuine and F2 and F3 fake. Finally, weigh F1, F2, F3, G4, G5, 

G6, G7 against F4, F5, F6, F7, G1, G2, G3. Assuming the first group weighs more it must include 

more genuine coins and hence just four genuine coins. Similarly, the second group must 

include four fakes. So you have proved the identity of the remaining coins.  

Problem 2 

 

Prove that a 9 digit decimal number whose digits are all different, which does not end with 5 

and or contain a 0, cannot be a square.  

 

Problem 3 

 

Given n > 4 points, show that you can place an arrow between each pair of points, so that 

given any point you can reach any other point by travelling along either one or two arrows in 

the direction of the arrow.  

 

Problem 4 

 

OA and OB are tangent to a circle at A and B. The line parallel to OB through A meets the 

circle again at C. The line OC meets the circle again at E. The ray AE meets the line OB at K. 

Prove that K is the midpoint of OB.  

 

Problem 5 

 

p(x) = ax
2
 + bx + c is a real quadratic such that |p(x)| ����IRU�DOO�_[_������3URYH�WKDW�_F[2

 + bx + 

a| ����IRU�_[_������ 
 

Problem 6 

 

Players numbered 1 to 1024 play in a knock-out tournament. There ar no draws, the winner of 

a match goes through to the next round and the loser is knocked-out, so that there are 512 

matches in the first round, 256 in the second and so on. If m plays n and m < n-2 then m 

always wins. What is the largest possible number for the winner?  

 



Problem 7 

 

Define p(x) = ax
2
 + bx + c. If p(x) = x has no real roots, prove that p( p(x) ) = 0 has no real 

roots.  

 

Problem 8 

 

At time 1, n unit squares of an infinite sheet of paper ruled in squares are painted black, the 

rest remain white. At time k+1, the color of each square is changed to the color held at time k 

by a majority of the following three squares: the square itself, its northern neighbour and its 

eastern neighbour. Prove that all the squares are white at time n+1.  

 

Problem 9 

 

ABC is an acute-angled triangle. D is the reflection of A in BC, E is the reflection of B in AC, 

and F is the reflection of C in AB. Show that the circumcircles of DBC, ECA, FAB meet at a 

point and that the lines AD, BE, CF meet at a point.  

 

Problem 10 

 

n people are all strangers. Show that you can always introduce some of them to each other, so 

that afterwards each person has met a different number of the others. [problem: this is false as 

stated. Each person must have 0, 1, ... or n-1 meetings,so all these numbers must be used. But 

if one person has met no one, then another cannot have met everyone.]  

 

Problem 11 

 

A king moves on an 8 x 8 chessboard. He can move one square at a time, diagonally or 

orthogonally (so away from the borders he can move to any of eight squares). He makes a 

complete circuit of the board, starting and finishing on the same square and visiting every 

other square just once. His trajectory is drawn by joining the center of the squares he moves to 

and from for each move. The trajectory does not intersect itself. Show that he makes at least 

28 moves parallel to the sides of the board (the others being diagonal) and that a circuit is 

possible with exactly 28 moves parallel to the sides of the board. If the board has side length 

8, what is the maximum and minimum possible length for such a trajectory.  

 

Problem 12 

 

A triangle has area 1, and sides a ��E���F��3URYH�WKDW�E2
 ����� 

 

Problem 13 

 

A convex n-gon has no two sides parallel. Given a point P inside the n-gon show that there 

are at most n lines through P which bisect the area of the n-gon.  

 

Problem 14 

a, b, c, d, e are positive reals. Show that (a + b + c + d + e)
2
 ����DE���EF���FG���GH���HD��� 

 

Problem 15 

Given 4 points which do not lie in a plane, how many parallelepipeds have all 4 points as 

vertices?  



8th ASU 1974 

Problem 1 

 

A collection of n cards is numbered from 1 to n. Each card has either 1 or -1 on the back. You 

are allowed to ask for the product of the numbers on the back of any three cards. What is the 

smallest number of questions which will allow you to determine the numbers on the backs of 

all the cards if n is (1) 30, (2) 31, (3) 32? If 50 cards are arranged in a circle and you are only 

allowed to ask for the product of the numbers on the backs of three adjacent cards, how many 

questions are needed to determine the product of the numbers on the backs of all 50 cards?  

Problem 2  

Find the smallest positive integer which can be represented as 36
m

 - 5
n
.  

Answer  

11  

Solution  

Obviously 11 = 36
1
 - 5

2
, and we guess that this is the best possible. We cannot have 36

m
 - 5

n
 = 

k, where 2, 3 or 5 divides k (because then 2 would divide 5
n
 and similarly in the other cases). 

So the only possible values of k < 11 are 1, 7.  

We have 36
m

 - 5
n
 = 1 mod 5, so k �����6LPLODUO\����m

 - 5
n
 = 3 mod 4, so k ����� 

Problem 3 

 

Each side of a convex hexagon is longer than 1. Is there always a diagonal longer than 2? If 

each of the main diagonals of a hexagon is longer than 2, is there always a side longer than 1?  

 

Problem 4 

 

Circles radius r and R touch externally. AD is parallel to BC. AB and CD touch both circles. 

AD touches the circle radius r, but not the circle radius R, and BC touches the circle radius R, 

but not the circle radius r. What is the smallest possible length for AB?  

 

Problem 5 

 

Given n unit vectors in the plane whose sum has length less than one. Show that you can 

arrange them so that the sum of the first k has length less than 2 for every 1 < k < n.  

 

Problem 6 

 

Find all real a, b, c such that |ax + by + cz| + |bx + cy + az| + |cx + ay + bz| = |x + y + z| for all 

real x, y, z.  

 

Problem 7 

 



ABCD is a square. P is on the segment AB and Q is on the segment BC such that BP = BQ. H 

lies on PC such that BHC is a right angle. Show that DHQ is a right angle.  

 

Problem 8 

 

The n points of a graph are each colored red or blue. At each move we select a point which 

differs in color from more than half of the points to which it it is joined and we change its 

color. Prove that this process must finish after a finite number of moves.  

 

Problem 9 

 

Find all positive integers m, n such that n
n
 has m decimal digits and m

m
 has n decimal digits.  

 

Problem 10 

 

In the triangle ABC, angle C is 90 deg and AC = BC. Take points D on CA and E on CB such 

that CD = CE. Let the perpendiculars from D and C to AE meet AB at K and L respectively. 

Show that KL = LB.  

 

Problem 11 

 

One rat and two cats are placed on a chess-board. The rat is placed first and then the two cats 

choose positions on the border squares. The rat moves first. Then the cats and the rat move 

alternately. The rat can move one square to an adjacent square (but not diagonally). If it is on 

a border square, then it can also move off the board. On a cat move, both cats move one 

square. Each must move to an adjacent square, and not diagonally. The cats win if one of 

them moves onto the same square as the rat. The rat wins if it moves off the board. Who 

wins? Suppose there are three cats (and all three cats move when it is the cats' turn), but that 

the rat gets an extra initial turn. Prove that the rat wins.  

 

Problem 12 

 

Arrange the numbers 1, 2, ... , 32 in a sequence such that the arithmetic mean of two numbers 

does not lie between them. (For example, ... 3, 4, 5, 2, 1, ... is invalid, because 2 lies between 

1 and 3.) Can you arrange the numbers 1, 2, ... , 100 in the same way?  

 

Problem 13 

 

Find all three digit decimal numbers a1a2a3 which equal the mean of the six numbers a1a2a3, 

a1a3a2, a2a1a3, a2a3a1, a3a1a2, a3a2a1.  

 

Problem 14 

 

No triangle of area 1 can be fitted inside a convex polygon. Show that the polygon can be 

fitted inside a triangle of area 4.  

Problem 15  

f is a function on the closed interval [0, 1] with non-negative real values. f(1) = 1 and f(x + y) ��I�[����I�\��IRU�DOO�[��\��6KRZ�WKDW�I�[����2x for all x. Is it necessarily true that f(x) �����[�IRU�
all x.  



   

Answer  

no  

Solution  

We have f(x) = f(1) - f(1-x) ��I���� ����6R�IRU�[��������I�[���������[��,I�[��������WKHQ�IRU�VRPH�Q�
we have 1/2

n+1
 ��[������n

. Hence by a trivial induction f(2
n
x) ��2n

f(x). But f(2
n
x) �����VR�I�[����

1/2
n
 ���[�� 

Note that f(x) = 0 for x ������DQG���IRU�[�!�����VDWLVILHV�WKH�FRQGLWLRQV��%XW�I������� ���!�
(1.9)(0.51).  

Problem 16 

 

The triangle ABC has area 1. D, E, F are the midpoints of the sides BC, CA, AB. P lies in the 

segment BF, Q lies in the segment CD, R lies in the segment AE. What is the smallest 

possible area for the intersection of triangles DEF and PQR?  



9th ASU 1975 problems 

Problem 1 

 

(1) O is the circumcenter of the triangle ABC. The triangle is rotated about O to give a new 

triangle A'B'C'. The lines AB and A'B' intersect at C'', BC and B'C' intersect at A'', and CA 

and C'A' intersect at B''. Show that A''B''C'' is similar to ABC.  

(2) O is the center of the circle through ABCD. ABCD is rotated about O to give the 

quadrilateral A'B'C'D'. Prove that the intersection points of corresponding sides form a 

parallelogram.  

Problem 2 

 

A triangle ABC has unit area. The first player chooses a point X on side AB, then the second 

player chooses a point Y on side BC, and finally the first player chooses a point Z on side CA. 

The first player tries to arrange for the area of XYZ to be as large as possible, the second 

player tries to arrange for the area to be as small as possible. What is the optimum strategy for 

the first player and what is the best he can do (assuming the second player plays optimally)?  

 

Problem 3 

 

What is the smallest perimeter for a convex 32-gon whose vertices are all lattice points?  

 

Problem 4 

 

Given a 7 x 7 square subdivided into 49 unit squares, mark the center of n unit squares, so that 

no four marks form a rectangle with sides parallel to the square. What is the largest n for 

which this is possible? What about a 13 x 13 square?  

 

Problem 5 

 

Given a convex hexagon, take the midpoint of each of the six diagonals joining vertices which 

are separated by a single vertex (so if the vertices are in order A, B, C, D, E, F, then the 

diagonals are AC, BD, CE, DF, EA, FB). Show that the midpoints form a convex hexagon 

with a quarter the area of the original.  

 

Problem 6 

 

Show that there are 2
n+1

 numbers each with 2
n
 digits, all 1 or 2, so that every two numbers 

differ in at least half their digits.  

 

Problem 7 

 

There are finitely many polygons in the plane. Every two have a common point. Prove that 

there is a straight line intersecting all the polygons.  

Problem 8  

a, b, c are positive reals. Show that a
3
 + b

3
 + c

3
 + 3abc ��DE�D���E����EF�E���F����FD�F���D��� 



Solution  

The inequality is homogeneous, so we can take a = 1 and put b = 1+x, c = 1+y, where x, y ��
0. Then after some reduction the inequality is equivalent to x

3
+y

3
+x

2
+y

2
-x

2
y-xy

2
-xy �����RU�

(after factorising x
3
+y

3
) to (x+y+1)(x-y)

2
 + xy �����ZKLFK�LV�REYLRXVO\�WUXH�� 

Problem 9 

 

Three flies crawl along the perimeter of a triangle. At least one fly makes a complete circuit 

of the perimeter. For the entire period the center of mass of the flies remains fixed. Show that 

it must be at the centroid of the triangle. [You may not assume, without proof, that the flies 

have the same mass, or that they crawl at the same speed, or that any fly crawls at a constant 

speed.]  

Problem 10  

The finite sequence an has each member 0, 1 or 2. A move involves replacing any two unequal 

members of the sequence by a single member different from either. A series of moves results 

in a single number. Prove that no series of moves can terminate in a (single) different number.  

Solution  

Suppose we start with a 0s, b 1s and c 2s. Each move changes the parity of all of a, b, c. Each 

moves reduces the length of the sequence by 1, so there must be a+b+c-1 moves in all. Hence 

the total number of 0s, the total number of 1s and the total number of 2s all have their parity 

changed a+b+c-1 times. So if we end up with just one 0, then a must have the opposite parity 

to b and c. In that case, we cannot end up with just one 1, or just one 2. Similarly in the other 

cases.  

Problem 11 

 

S is a horizontal strip in the plane. n lines are drawn so that no three are collinear and every 

pair intersects within the strip. A path starts at the bottom border of the strip and consists of a 

sequence of segments from the n lines. The path must change line at each intersection and 

must always move upwards. Show that: (1) there are at least n/2 disjoint paths; (2) there is a 

path of at least n segments; (3) there is a path involving not more than n/2 + 1 of the lines; and 

(4) there is a path that involves segments from all n lines.  

 

Problem 12 

 

For what n can we color the unit cubes in an n x n x n cube red or green so that every red unit 

cube has just two red neighbouring cubes (sharing a face) and every green unit cube has just 

two green neighbouring cubes.  

 

Problem 13 

 

p(x) is a polynomial with integral coefficients. f(n) = the sum of the (decimal) digits in the 

value p(n). Show that f(n) some value m infinitely many times.  

 

 

 



Problem 14 

 

20 teams each play one game with every other team. Each game results in a win or loss (no 

draws). k of the teams are European. A separate trophy is awarded for the best European team 

on the basis of the k(k-1)/2 games in which both teams are European. This trophy is won by a 

single team. The same team comes last in the overall competition (winning fewer games than 

any other team). What is the largest possible value of k? If draws are allowed and a team 

scores 2 for a win and 1 for a draw, what is the largest possible value of k?  

 

Problem 15 

 

Given real numbers ai, bi and positive reals ci, di, let eij = (ai+bj)/(ci+dj). Let Mi = max0�M�Q eij, 

mj =min1�L�Q eij. Show that we can find an eij with 1 ��L��M���Q�VXFK�WKDW�Hij = Mi = mj.  



10th ASU 1976 problems 

Problem 1 

 

50 watches, all keeping perfect time, lie on a table. Show that there is a moment when the 

sum of the distances from the center of the table to the center of each dial equals the sum of 

the distances from the center of the table to the tip of each minute hand.  

 

Problem 2 

 

1000 numbers are written in line 1, then further lines are constructed as follows. If the number 

m occurs in line n, then we write under it in line n+1, each time it occurs, the number of times 

that m occurs in line n. Show that lines 11 and 12 are identical. Show that we can choose 

numbers in line 1, so that lines 10 and 11 are not identical.  

 

Problem 3 

 

(1) The circles C1, C2, C3 with equal radius all pass through the point X. Ci and Cj also 

intersect at the point Yij. Show that angle XO1Y12 + angle XO2Y23 + angle XO3Y31 = 180 deg, 

where Oi is the center of circle Ci.  

 

Problem 4 

 

a1 and a2 are positive integers less than 1000. Define an = min{ |ai - aj| : 0 < i < j < n}. Show 

that a21 = 0.  

 

Problem 5 

 

Can you label each vertex of a cube with a different three digit binary number so that the 

numbers at any two adjacent vertices differ in at least two digits?  

 

Problem 6 

 

a, b, c, d are vectors in the plane such that a + b + c + d = 0. Show that |a| + |b| + |c| + |d| ��_a 

+ d| + |b + d| + |c + d|.  

 

Problem 7 

 

S is a set of 1976 points which form a regular 1976-gon. T is the set of all points which are 

the midpoint of at least one pair of points in S. What is the greatest number of points of T 

which lie on a single circle?  

 

Problem 8 

 

n rectangles are drawn on a rectangular sheet of paper. Each rectangle has its sides parallel to 

the sides of the paper. No pair of rectangles has an interior point in common. If the rectangles 

were removed show that the rest of the sheet would be in at most n+1 parts.  

 

Problem 9 

 



There are three straight roads. On each road a man is walking at constant speed. At time t = 0, 

the three men are not collinear. Prove that they will be collinear for t > 0 at most twice.  

 

Problem 10 

 

Initially, there is one beetle on each square in the set S. Suddenly each beetle flies to a new 

square, subject to the following conditions: (1) the new square may be the same as the old or 

different; (2) more than one beetle may choose the same new square; (3) if two beetles are 

initially in squares with a common vertex, then after the flight they are either in the same 

square or in squares with a common vertex. Suppose S is the set of all squares in the middle 

row and column of a 99 x 99 chess board, is it true that there must always be a beetle whose 

new square shares a vertex with its old square (or is identical with it)? What if S also includes 

all the border squares (so S is rows 1, 50 and 99 and columns 1, 50 and 99)? What if S is all 

squares of the board?  

 

Problem 11 

 

Call a triangle big if each side is longer than 1. Show that we can draw 100 big triangles 

inside an equilateral triangle with side length 5 so that all the triangles are disjoint. Show that 

you can draw 100 big triangles with every vertex inside or on an equilateral triangle with side 

3, so that they cover the equilateral triangle, and any two big triangles either (1) are disjoint, 

or (2) have as intersection a common vertex, or (3) have as intersection a common side.  

 

Problem 12 

 

n is a positive integer. A universal sequence of length m is a sequence of m integers each 

between 1 and n such that one can obtain any permutation of 1, 2, ... , n by deleting suitable 

members of the sequence. For example, 1, 2, 3, 1, 2, 1, 3 is a universal sequence of length 7 

for n = 3. But 1, 2, 3, 2, 1, 3, 1 is not universal, because one cannot obtain the permutation 3, 

1, 2. Show that one can always obtain a universal sequence for n of length n
2
 - n + 1. Show 

that a universal sequence for n must have length at least n(n + 1)/2. Show that the shortest 

sequence for n = 4 has 12 members. [You are told, but do not have to prove, that there is a 

universal sequence for n of length n
2
 - 2n + 4.]  

 

Problem 13 

 

n real numbers are written around a circle. One of the numbers is 1 and the sum of the 

numbers is 0. Show that there are two adjacent numbers whose difference is at least n/4. Show 

that there is a number which differs from the arithmetic mean of its two neighbours by at least 

8/n
2
. Improve this result to some k/n

2
 with k > 8. Show that for n = 30, we can take k = 

1800/113. Give an example of 30 numbers such that no number differs from the arithmetic 

mean of its two neighbours by more than 2/113.  

 

Problem 14 

 

You are given a regular n-gon. Each vertex is marked +1 or -1. A move consists of changing 

the sign of all the vertices which form a regular k-gon for some 1 < k <= n. [A regular 2-gon 

means two vertices which have the center of the n-gon as their midpoint.]. For example, if we 

label the vertices of a regular 6-gon 1, 2, 3, 4, 5, 6, then you can change the sign of {1, 4}, {2, 

5}, {3, 6}, {1, 3, 5}, {2, 4, 6} or {1, 2, 3, 4, 5, 6}. Show that for (1) n = 15, (2) n = 30, (3) any 

n > 2, we can find some initial marking which cannot be changed to all +1 by any series of 



moves. Let f(n) be the largest number of markings, so that no one can be obtained from any 

other by any series of moves. Show that f(200) = 2
80

.  

 

Problem 15 

 

S is a sphere with unit radius. P is a plane through the center. For any point x on the sphere 

f(x) is the perpendicular distance from x to P. Show that if x, y, z are the ends of three 

mutually perpendicular radii, then f(x)
2
 + f(y)

2
 + f(z)

2
 = 1 (*). Now let g(x) be any function on 

the points of S taking non-negative real values and satisfying (*). Regard the intersection of P 

and S as the equator, the poles as the points with f(x) = 1 and lines of longitude as semicircles 

through both poles. (1) If x and y have the same longitude and both lie on the same side of the 

equator with x closer to the pole, show that g(x) > g(y). (2) Show that for any x, y on the same 

side of the equator with x closer to the pole than y we have g(x) > g(y). (3) Show that if x and 

y are the same distance from the pole then g(x) = g(y). (4) Show that g(x) = f(x) for all x.  

 



11th ASU 1977 problems 

Problem 1 

 

P is a polygon. Its sides do not intersect except at its vertices, and no three vertices lie on a 

line. The pair of sides AB, PQ is called special if (1) AB and PQ do not share a vertex and (2) 

either the line AB intersects the segment PQ or the line PQ intersects the segment AB. Show 

that the number of special pairs is even.  

 

Problem 2 

 

n points lie in the plane, not all on a single line. A real number is assigned to each point. The 

sum of the numbers is zero for all the points lying on any line. Show that all the assigned 

numbers must be zero.  

 

Problem 3 

 

(1) The triangle ABC is inscribed in a circle. D is the midpoint of the arc BC (not containing 

A), similarly E and F. Show that the hexagon formed by the intersection of ABC and DEF has 

its main diagonals parallel to the sides of ABC and intersecting in a single point.  

(2) EF meets AB at X and AC at Y. Prove that AXIY is a rhombus, where I is the center of 

the circle inscribed in ABC.  

Problem 4 

 

Black and white tokens are placed around a circle. First all the black tokens with one or two 

white neighbors are removed. Then all white tokens with one or two black neighbors are 

removed. Then all black tokens with one or two white neighbors and so on until all the tokens 

have the same color. Is it possible to arrange 40 tokens so that only one remains after 4 

moves? What is the minimum possible number of moves to go from 1000 tokens to one?  

 

Problem 5 

 

an is an infinite sequence such that (an+1 - an)/2 tends to zero. Show that an tends to zero.  

 

Problem 6 

 

There are direct routes between every two cities in a country. The fare between each pair of 

cities is the same in both directions. Two travellers decide to visit all the cities. The first 

traveller starts at a city and travels to the city with the most expensive fare (or if there are 

several such, any one of them). He then repeats this process, never visiting a city twice, until 

he has been to all the cities (so he ends up in a different city from the one he starts from). The 

second traveller has a similar plan, except that he always chooses the cheapest fare, and does 

not necessarily start at the same city. Show that the first traveller spends at least as much on 

fares as the second.  

 

Problem 7 

 



Each vertex of a convex polyhedron has three edges. Each face is a cyclic polygon. Show that 

its vertices all lie on a sphere.  

 

Problem 8 

 

Given a polynomial x10 + a9x
9
 + ... + a1x + 1. Two players alternately choose one of the 

coefficients a1 to a9 (which has not been chosen before) and assign a real value to it. The first 

player wins iff the resulting polynomial has no real roots. Who wins?  

 

Problem 9 

 

Seven elves sit at a table. Each elf has a cup. In total the cups contain 3 liters of milk. Each elf 

in turn gives all his milk to the others in equal shares. At the end of the process each elf has 

the same amount of milk as at the start. What was that?  

 

Problem 10 

 

We call a number doubly square if (1) it is a square with an even number 2n of (decimal) 

digits, (2) its first n digits form a square, (3) its last n digits form a non-zero square. For 

example, 1681 is doubly square, but 2500 is not. (1) find all 2-digit and 4-digit doubly square 

numbers. (2) Is there a 6-digit doubly square number? (3) Show that there is a 20-digit doubly 

square number. (4) Show that there are at least ten 100-digit doubly square numbers. (5) 

Show that there is a 30-digit doubly square number.  

 

Problem 11 

 

Given a sequence a1, a2, ... , an of positive integers. Let S be the set of all sums of one or more 

members of the sequence. Show that S can be divided into n subsets such that the smallest 

member of each subset is at least half the largest member.  

 

Problem 12 

 

You have 1000 tickets numbered 000, 001, ... , 999 and 100 boxes numbered 00, 01, ... , 99. 

You may put each ticket into any box whose number can be obtained from the ticket number 

by deleting one digit. Show that you can put every ticket into 50 boxes, but not into less than 

50. Show that if you have 10000 4-digit tickets and you are allowed to delete two digits, then 

you can put every ticket into 34 boxes. For n+2 digit tickets, where you delete n digits, what 

is the minimum number of boxes required?  

 

Problem 13 

 

Given a 100 x 100 square divided into unit squares. Several paths are drawn. Each path is 

drawn along the sides of the unit squares. Each path has its endpoints on the sides of the big 

square, but does not contain any other points which are vertices of unit squares and lie on the 

big square sides. No path intersects itself or any other path. Show that there is a vertex apart 

from the four corners of the big square that is not on any path.  

 

Problem 14 

 



The positive integers a1, a2, ... , am, b1, b2, ... , bn satisfy: (a1 + a2 + ... + am) = (b1 + b2 + ... + 

bn) < mn. Show that we can delete some (but not all) of the numbers so that the sum of the 

remaining a's equals to the sum of the remaining b's.  

 

Problem 15 

 

Given 1000 square plates in the plane with their sides parallel to the coordinate axes (but 

possibly overlapping and possibly of different sizes). Let S be the set of points covered by the 

plates. Show that you can choose a subset T of plates such that every point of S is covered by 

at least one and at most four plates in T.  

 

Problem 16 

 

You are given a set of scales and a set of n different weights. R represents the state in which 

the right pan is heavier, L represents the state in which the left pan is heavier and B represents 

the state in which the pans balance. Show that given any n-letter string of Rs and Ls you can 

put the weights onto the scales one at a time so that the string represents the successive states 

of the scales. For example, if the weights were 1, 2 and 3 and the string was LRL, then you 

would place 1 in the left pan, then 2 in the right pan, then 3 in the left pan.  

 

Problem 17 

 

A polynomial is monic if its leading coefficient is 1. Two polynomials p(x) and q(x) commute 

if p(q(x)) = q(p(x)).  

(1) Find all monic polynomials of degree 3 or less which commute with x
2
 - k.  

(2) Given a monic polynomial p(x), show that there is at most one monic polynomial of 

degree n which commutes with p(x)
2
.  

(3) Find the polynomials described in (2) for n = 4 and n = 8.  

(4) If q(x) and r(x) are monic polynomials which both commute with p(x)
2
, show that q(x) 

and r(x) commute.  

(5) Show that there is a sequence of polynomials p2(x), p3(x), ... such that p2(x) = x
2
 - 2, pn(x) 

has degree n and all polynomials in the sequence commute.  



12th ASU 1978 problems 

Problem 1 

 

an is the nearest integer to ¥Q��)LQG���D1 + 1/a2 + ... + 1/a1980.  

 

Problem 2 

 

ABCD is a quadrilateral. M is a point inside it such that ABMD is a parallelogram. ∠CBM = 

∠CDM. Show that ∠ACD = ∠BCM.  

 

Problem 3 

 

Show that there is no positive integer n for which 1000
n
 - 1 divides 1978

n
 - 1.  

 

Problem 4 

 

If P, Q are points in space the point [PQ] is the point on the line PQ on the opposite side of Q 

to P and the same distance from Q. K0 is a set of points in space. Given Kn we derive Kn+1 by 

adjoining all the points [PQ] with P and Q in Kn.  

(1) K0 contains just two points A and B, a distance 1 apart, what is the smallest n for which Kn 

contains a point whose distance from A is at least 1000?  

(2) K0 consists of three points, each pair a distance 1 apart, find the area of the smallest 

convex polygon containing Kn.  

(3) K0 consists of four points, forming a regular tetrahedron with volume 1. Let Hn be the 

smallest convex polyhedron containing Kn. How many faces does H1 have? What is the 

volume of Hn?  

Problem 5 

 

Two players play a game. There is a heap of m tokens and a heap of n < m tokens. Each 

player in turn takes one or more tokens from the heap which is larger. The number he takes 

must be a multiple of the number in the smaller heap. For example, if the heaps are 15 and 4, 

the first player may take 4, 8 or 12 from the larger heap. The first player to clear a heap wins. 

Show that if m > 2n, then the first player can always win. Find all k such that if m > kn, then 

the first player can always win.  

 

Problem 6 

 

Show that there is an infinite sequence of reals x1, x2, x3, ... such that |xn| is bounded and for 

any m > n, we have |xm - xn| > 1/(m - n).  

 

Problem 7 

 

Let p(x) = x
2
 + x + 1. Show that for every positive integer n, the numbers n, p(n), p(p(n)), 

p(p(p(n))), ... are relatively prime.  

 



Problem 8 

 

Show that for some k, you can find 1978 different sizes of square with all its vertices on the 

graph of the function y = k sin x.  

 

Problem 9 

 

The set S0 has the single member (5, 19). We derive the set Sn+1 from Sn by adjoining a pair to 

Sn. If Sn contains the pair (2a, 2b), then we may adjoin the pair (a, b). If S contains the pair (a, 

b) we may adjoin (a+1, b+1). If S contains (a, b) and (b, c), then we may adjoin (a, c). Can we 

obtain (1, 50)? (1, 100)? If We start with (a, b), with a < b, instead of (5, 19), for which n can 

we obtain (1, n)?  

 

Problem 10 

 

An n-gon area A is inscribed in a circle radius R. We take a point on each side of the polygon 

to form another n-gon. Show that it has perimeter at least 2A/R.  

 

Problem 11 

 

Two players play a game by moving a piece on an n x n chessboard. The piece is initially in a 

corner square. Each player may move the piece to any adjacent square (which shares a side 

with its current square), except that the piece may never occupy the same square twice. The 

first player who is unable to move loses. Show that for even n the first player can always win, 

and for odd n the second player can always win. Who wins if the piece is initially on a square 

adjacent to the corner?  

 

Problem 12 

 

Given a set of n non-intersecting segments in the plane. No two segments lie on the same line. 

Can we successively add n-1 additional segments so that we end up with a single non-

intersecting path? Each segment we add must have as its endpoints two existing segment 

endpoints.  

 

Problem 13 

 

a and b are positive real numbers. xi are real numbers lying between a and b. Show that (x1 + 

x2 + ... + xn)(1/x1 + 1/x2 + ... + 1/xn) ��Q2
(a + b)

2
/4ab.  

 

Problem 14 

 

n > 3 is an integer. Let S be the set of lattice points (a, b) with 0 ��D��E���Q��6KRZ�WKDW�ZH�FDQ�
choose n points of S so that no three chosen points are collinear and no four chosen points 

from a parallelogram.  

 

Problem 15 

 

Given any tetrahedron, show that we can find two planes such that the areas of the projections 

of the tetrahedron onto the two planes have ratio at least ¥��� 
 

Problem 16 



 

a1, a2, ... , an are real numbers. Let bk = (a1 + a2 + ... + ak)/k for k = 1, 2, ... , n. Let C = (a1 - 

b1)
2
 + (a2 - b2)

2
 + ... + (an - bn)

2
, and D = (a1 - bn)

2
 + (a2 - bn)

2
 + ... + (an - bn)

2
. Show that C ��

D ���&�� 
 

Problem 17 

 

Let xn = (1 + ¥����¥��n. We may write xn = an + bn¥����Fn¥����Gn¥���ZKHUH�Dn, bn, cn, dn are 

integers. Find the limit as n tends to infinity of bn/an, cn/an, dn/an.  



13th ASU 1979 problems 

Problem 1 

 

T is an isosceles triangle. Another isosceles triangle T' has one vertex on each side of T. What 

is the smallest possible value of area T'/area T?  

 

Problem 2 

 

A grasshopper hops about in the first quadrant (x, y >= 0). From (x, y) it can hop to (x+1, y-1) 

or to (x-5, y+7), but it can never leave the first quadrant. Find the set of points (x, y) from 

which it can never get further than a distance 1000 from the origin.  

 

Problem 3 

 

In a group of people every person has less than 4 enemies. Assume that A is B's enemy iff B 

is A's enemy. Show that we can divide the group into two parts, so that each person has at 

most one enemy in his part.  

 

Problem 4 

 

Let S be the set {0, 1}. Given any subset of S we may add its arithmetic mean to S (provided 

it is not already included - S never includes duplicates). Show that by repeating this process 

we can include the number 1/5 in S. Show that we can eventually include any rational number 

between 0 and 1.  

 

Problem 5 

 

The real sequence x1 ��[2 ��[3 ������VDWLVILHV�[1 + x4/2 + x9/3 + x16/4 + ... + xN/n ����IRU�HYHU\�
square N = n

2
. Show that it also satisfies x1 + x2/2 + x3 /3 + ... + xn/n ����� 

 

Problem 6 

 

Given a finite set X of points in the plane. S is a set of vectors AB where (A, B) are some 

pairs of points in X. For every point A the number of vectors AB (starting at A) in S equals 

the number of vectors CA (ending at A) in S. Show that the sum of the vectors in S is zero.  

 

Problem 7 

 

What is the smallest number of pieces that can be placed on an 8 x 8 chessboard so that every 

row, column and diagonal has at least one piece? [A diagonal is any line of squares parallel to 

one of the two main diagonals, so there are 30 diagonals in all.] What is the smallest number 

for an n x n board?  

 

Problem 8 

 

a and b are real numbers. Find real x and y satisfying: (x - y (x
2
 - y

2
)
1/2

 = a(1 - x
2
 + y

2
)
1/2

 and 

(y - x (x
2
 - y

2
)
1/2

 = b(1 - x
2
 + y

2
)
1/2

.  

 

Problem 9 



 

A set of square carpets have total area 4. Show that they can cover a unit square.  

 

Problem 10 

 

xi are real numbers between 0 and 1. Show that (x1 + x2 + ... + xn + 1)
2
 ����[1

2
 + x2

2
 + ... + 

xn
2
).  

 

Problem 11 

 

m and n are relatively prime positive integers. The interval [0, 1] is divided into m + n equal 

subintervals. Show that each part except those at each end contains just one of the numbers 

1/m, 2/m, 3/m, ... , (m-1)/m, 1/n, 2/n, ... , (n-1)/n.  

 

Problem 12 

 

Given a point P in space and 1979 lines L1, L2, ... , L1979 containing it. No two lines are 

perpendicular. P1 is a point on L1. Show that we can find a point An on Ln (for n = 2, 3, ... , 

1979) such that the following 1979 pairs of lines are all perpendicular: An-1An+1 and Ln for n = 

1, ... , 1979. [We regard A-1 as A1979 and A1980 as A1.]  

 

Problem 13 

 

Find a sequence a1, a2, ... , a25 of 0s and 1s such that the following sums are all odd:  
a1a1 + a2a2 + ... + a25a25 

a1a2 + a2a3 + ... + a24a25 

a1a3 + a2a4 + ... + a23a25 

... 

a1a24 + a2a25 

a1a25 

Show that we can find a similar sequence of n terms for some n > 1000.  

 

Problem 14 

 

A convex quadrilateral is divided by its diagonals into four triangles. The incircles of each of 

the four are equal. Show that the quadrilateral has all its sides equal.  



14th ASU 1980 

Problem 1  

All two digit numbers from 19 to 80 inclusive are written down one after the other as a single 

number N = 192021...7980. Is N divisible by 1980?  

Answer  

Yes  

Solution  

1980 = 2
2
3

2
5· 11. N is obviously divisible by 2

2
 and 5. The digits in odd position are 9 + 

(0+1+2+...+9) + (0+1+2+...+9) + ... + (0+1+2+...+9) + 0 = 9 + 6· 45 = 279. The digits in even 

position are 1 + (2+2+...+2) + (3+3+...+3) + ... + (7+...+7) + 8 = 9 + 10(2+3+..+7) = 279. So 

the sum of the digits of N is 2· 279 which is divisible by 9. Hence N is divisible by 9. The 

difference between the odd and even sums is 0, which is divisible by 11, so N is divisible by 

11.  

Problem 2  

A square is divided into n parallel strips (parallel to the bottom side of the square). The width 

of each strip is integral. The total width of the strips with odd width equals the total width of 

the strips with even width. A diagonal of the square is drawn which divides each strip into a 

left part and a right part. Show that the sum of the areas of the left parts of the odd strips 

equals the sum of the areas of the right parts of the even strips.  

Solution  

Let LO be the total area of the left parts of the odd strips, LE the total area of the left parts of 

the even strips, and RE the total area of the right parts of the even trips. Since the diagonal 

bisects the square, LO + LE = A/2, where A is the area of the square. Also RE + LE = A/2 

(because the total width of the even strips equals the total width of the odd strips). 

Subtracting, LO = RE, as required.  

Problem 3  

35 containers of total weight 18 must be taken to a space station. One flight can take any 

collection of containers weighing 3 or less. It is possible to take any subset of 34 containers in 

7 flights. Show that it must be possible to take all 35 containers in 7 flights.  

Solution  

Let the lightest container be S weighing s. The other containers can be taken in 7 flights. The 

smallest load on these flights must be �����-s)/7, and so that flight has spare capacity of at 

least 3 - (18-s)/7 = (3+s)/7. Thus it can accomodate S provided that (3+s)/7 ��V��RU�V�������� 
At least one of the 7 flights takes ����FRQWDLQHUV��7KHVH�ZHLJK�DW�PRVW�WKH�ZHLJKW�RI�WKH���
heaviest. Since the 31 lightest weigh at least 31s, the 4 heaviest weigh at most 18-31s. Thus 



this flight has spare capacity of at least 3 - (18-31s) = 31s-15 and can accomodate S provided 

that 31s-15 ��V��RU�V�������� 
Problem 4 

 

ABCD is a convex quadrilateral. M is the midpoint of BC and N is the midpoint of CD. If k = 

AM + AN show that the area of ABCD is less than k
2
/2.  

Problem 5  

Are there any solutions in positive integers to a
4
 = b

3
 + c

2
?  

Solution  

We have b
3
 = (a

2
 - c)(a

2
 + c), so one possibility is that a2 ± c are both cubes. So we want two 

cubes whose sum is twice a square. Looking at the small cubes, we soon find 8 + 64 = 2· 36 

giving 6
4
 = 28

2
 + 8

3
. Multiplying through by k

12
 gives an infinite family of solutions. Note 

that the question does not ask for all solutions.  

Problem 6 

 

Given a point P on the diameter AC of the circle K, find the chord BD through P which 

maximises the area of ABCD.  

Problem 7  

There are several settlements around Big Lake. Some pairs of settlements are directly 

connected by a regular shipping service. For all A ��%��VHWWOHPHQW�$�LV�GLUHFWO\�FRQQHFWHG�WR�;�
iff B is not directly connected to Y, where B is the next settlement to A counterclockwise and 

Y is the next settlement to X counterclockwise. Show that you can move between any two 

settlements with at most 3 trips.  

Solution  

Suppose there are n settlements A1, A2, ... , An in counterclockwise order around the lake. We 

will use cyclic indices, so that An+1 means A1, and so on. wlog A1 has a direct service to A2. 

Then it follows that A2 does not have a direct service to A3, so A3 does have a direct service 

to A4, and so on. So Ai has direct service to Ai+1 iff i is odd. But A1 = An+1 has direct service 

to A2, so n must be even.  

Now suppose we want to get from Ai to Aj. If there is direct service we are done. So suppose 

not. Then there must be direct service from Ai+1 to Aj+1. If i and j are both odd, then there is 

direct service from Ai to Ai+1 and from Aj to Aj+1, so we can make the journey in 3 trips. If i 

and j are both even, then we can go Ai to Ai-1 to Aj-1 to Aj. So suppose i and j have opposite 

parity. wlog i is odd and j is even. If there is direct service from Ai to Aj-1, then we can make 

the journey in two trips: Ai to Aj-1 to Aj. If not, then we can go Ai to Ai+1 to Aj.  

Problem 8  



A six digit (decimal) number has six different digits, none of them 0, and is divisible by 37. 

Show that you can obtain at least 23 other numbers which are divisible by 37 by permuting 

the digits.  

Solution  

Suppose the digits are a1, a2, a3, a4, a5, a6 and that a1a2a3a4a5a6 is divisible by 37. We claim 

that a2a3a4a5a6a1 is also divisible by 37. Put n = a2a3a4a5a6 and m = a1. The original number is 

10
5
m + n and the derived number is 10n + m. But 37 divides 10

3
 - 1 and hence also 10

6
 - 1 

and m(10
6
 - 1). So it also divides 10(10

5
m + n) - m(10

6
 - 1) = 10n + m, which proves the 

claim.  

Iterating, we get the original number and 5 others:  

a1a2a3a4a5a6  

a2a3a4a5a6a1  

a3a4a5a6a1a2  

a4a5a6a1a2a3  

a5a6a1a2a3a4  

a6a1a2a3a4a5  

Similarly, we have that a1a2a3a4a5a6 - a1a2a6a4a5a3 = (a6-a3)999, so a1a2a6a4a5a3 is also divisible 

by 37. Iterating we get:  

a1a2a6a4a5a3  

a2a6a4a5a3a1  

a6a4a5a3a1a2  

a4a5a3a1a2a6  

a5a3a1a2a6a4  

a3a1a2a6a4a5  

Similarly, we could swap the first term and the fourth to get:  

a4a2a3a1a5a6  

a2a3a1a5a6a4  

a3a1a5a6a4a2  

a1a5a6a4a2a3  

a5a6a4a2a3a1  

a6a4a2a3a1a5  

or the second and the fifth to get:  

a1a5a3a4a2a6  

a5a3a4a2a6a1  

a3a4a2a6a1a5  

a4a2a6a1a5a3  

a2a6a1a5a3a4  

a6a1a5a3a4a2  

Problem 9 

 

Find all real solutions to:  

sin x + 2 sin(x+y+z) = 0  

sin y + 3 sin(x+y+z) = 0  

sin z + 4 sin(x+y+z) = 0  



 

Problem 10  

Given 1980 vectors in the plane. The sum of every 1979 vectors is a multiple of the other 

vector. Not all the vectors are multiples of each other. Show that the sum of all the vectors is 

zero.  

Solution  

Let the vectors be xi and their sum s. Then we have s - xi = nixi for some scalar ni. Hence 

(ni+1)xi = s. If s is non-zero, then it follows that every vector is a multiple of s and hence all 

the vectors are multiples of each other. But we are told that is not true. Hence s is zero.  

Problem 11  

Let f(n) be the sum of n and its digits. For example, f(34) = 41. Is there an integer such that 

f(n) = 1980? Show that given any positive integer m we can find n such that f(n) = m or m+1.  

Answer  

f(1962) = 1962 + 18 = 1980  

Solution  

If the last digit of n is not 9, then f(n+1) = f(n) + 2. If the last digit of n is 9, then f(n+1) < f(n). 

On the other hand f clearly achieves arbitrarily large values. Also f(1) = 1. Now consider any 

m > 1. Let M be the smallest integer such that f(M) > m. Then f(M-1) ��P��6LQFH�I�0��!�I�0-

1) we must have f(M) = f(M-1) + 2. Hence either f(M) = m+1 or f(M-1) = m.  

Problem 12  

Some unit squares in an infinite sheet of squared paper are colored red so that every 2 x 3 and 

3 x 2 rectangle contains exactly two red squares. How many red squares are there in a 9 x 11 

rectangle?  

Answer  

33  

Solution  

 

There cannot be two red squares with a common side. For consider as the diagram shows we 

can immediately conclude that the squares with a * are not red, but now the bold rectangle has 

at most 1 red square. Contradiction.  



 

Consider a red square. One of the two diagonally adjacent squares marked * must be red. But 

it is now easy to show that all red squares on that diagonal are red and that the other red 

squares are those on every third parallel diagonal line. Any 9 x 11 rectangle must have just 

three such diagonals on a 9 cell border row, and hence just 3 red cells in that border row. But 

the remaining 9 x 10 rectangle can easily be partitioned into fifteen 3 x 2 rectangles, each with 

2 red squares.  

Problem 13  

There is a flu epidemic in elf city. The course of the disease is always the same. An elf is 

infected one day, he is sick the next, recovered and immune the third, recovered but not 

immune thereafter. Every day every elf who is not sick visits all his sick friends. If he is not 

immune he is sure to catch flu if he visits a sick elf. On day 1 no one is immune and one or 

more elves are infected from some external source. Thereafter there is no further external 

infection and the epidemic spreads as described above. Show that it is sure to die out 

(irrespective of the number of elves, the number of friends each has, and the number infected 

on day 1). Show that if one or more elves is immune on day 1, then it is possible for the 

epidemic to continue indefinitely.  

Solution  

This is curiously easy. Write S for sick, N for not sick and not immune, and I for immune. 

Suppose group A are S on day 1 and group B are N on day 1. Then on day 2, B are S, and A 

are I. So on day 3 no one is sick, A are N and B are I. Thereafter no one can get sick, so the 

epidemic has died out.  

Suppose on day 1, there is also group C who are I. Then on day 2, B are S, A are I and C are 

N. So on day 3, C are S, A are N and B are I. On day 4, A are S, B are N and C are I, the same 

as day 1, so the epidemic continues indefinitely.  

Problem 14  

Define the sequence an of positive integers as follows. a1 = m. an+1 = an plus the product of the 

digits of an. For example, if m = 5, we have 5, 10, 10, ... . Is there an m for which the 

sequence is unbounded?  

Answer  

No.  

Solution  

Put p(n) for the product of the digits of n. We show that, for sufficiently large n, a sequence 

starting below it cannot get past the "gap" from 10n to 10n + 10n-1. For suppose N is the last 

member of the sequence below the gap. Then N has at most n digits, so p(N) ���n
. But for 

sufficiently large n (in fact for n ������ZH�KDYH��n
 < 10

n-1
. So N + p(N) < 10

n
 + 10

n-1
. But N + 

p(N) > 10
n
 by assumption. Hence N + p(N) is sure to have second digit (from the left) zero. 



So all further terms of the sequence are the same. But for any m there is certainly a gap above 

m, and, as shown, the sequence will not be able to get beyond it. So it is bounded.  

Problem 15  

ABC is equilateral. A line parallel to AC meets AB at M and BC at P. D is the center of the 

equilateral triangle BMP. E is the midpoint of AP. Find the angles of DEC.  

Answer  

D = 60
o
, E = 90

o
  

Solution  

 

Let K be the midpoint of BP and L the midpoint of AC. EL is parallel to BC, so ∠ELC = 

120
o
. EK is parallel to AB, so ∠EKC = 60

o
, so ELCK is cyclic. But ∠DKC = ∠DLC = 90

o
, 

so DLCK is cyclic. Hence D, K, C, L, E all lie on a circle. Hence ∠DEC = ∠DLC = 90
o
, and 

∠EDC = ∠EKC = 60
o
.  

Problem 16  

A rectangular box has sides x < y < z. Its perimeter is p = 4(x + y + z), its surface area is s = 

2(xy + yz + zx) and its main diagonal has length d = ¥�[2
 + y

2
 + z

2
). Show that 3x < (p/4 - ¥�G2

 - s/2) and 3z > (p/4 + ¥�G2
 - s/2).  

Solution  

We have 3(y-x)(z-x) > 0, so 3x
2
 + 3yz > 3xy + 3xz. Hence y

2
 + z

2
 + 4x

2
 +2yz - 4xy - 4xz > x

2
 

+ y
2
 + z

2
 - xy - yz - xz or (y + z - 2x)

2
 > (d

2
 - s/2). Hence (x + y + z) > 3x + ¥�G2

 - s/2). So 3x 

< p/4 - ¥�G2
 - s/2).  

Similarly, 3(z-x)(z-y) > 0, so x
2
 + y

2
 + 4z

2
 > x

2
 + y

2
 + z

2
 + 3zx + 3zy - 3xy, so (2z - x - y)

2
 > 

x
2
 + y

2
 + z

2
 - xy - yz - zx or (3z - p/4)

2
 > (d

2
 - s/2). Hence 3z > p/4 + ¥�G2

 - s/2).  

Problem 17  

S is a set of integers. Its smallest element is 1 and its largest element is 100. Every element of 

S except 1 is the sum of two distinct members of the set or double a member of the set. What 

is the smallest possible number of integers in S?  

Answer  



9  

Solution  

Let n = M(n) + m(n), where M(n) ��P�Q���Put M
1
(n) = M(n), M

2
(n) = M(M(n)) etc. Then 

M(100) ������02
(100) ������03

(100) ������04
(100) �����05

(100) �����06
(100) �����DQG�

obviously n > M(n) ), so we need at least 8 numbers. There are several ways of using 9 

numbers. For example, {1, 2, 4, 8, 16, 32, 36, 64, 100}, where 36 = 4 + 32, 100 = 36 + 64 and 

the others are double another number.  

Doubling every time does not work: 1, 2, 4, 8, 16, 32, 64, 128. But if we do not double every 

time, then we cannot get a number larger than 96 with 8 numbers: the best we can do is 

1· 2
6
· (3/2) = 96 (on the occasion when we do not double the best we can do is to the largest 

plus the next largest, or 3/2 x the largest). Hence we need at least 9 numbers. [To be more 

formal, write the elements as 1 = a1 < a2 < ... < an, then each ai must be a sum of preceding 

elements. The largest possible ai is 2ai-1 and the next largest ai-1 + ai-2 and so on.]  

Problem 18  

Show that there are infinitely many positive integers n such that [a
3/2

] + [b
3/2

] = n has at least 

1980 integer solutions.  

Solution  

Consider all a, b in the range 1, 2, 3, ... , N
2
. There are N

4
 possible pairs of values. But [a

3/2
] 

and [b
3/2

] are in the range 1, 2, ... , N
3
, so their sum is in the range 1, 2, ... , 2N

3
. Hence one of 

these values has at least N/2 solutions. By taking N sufficiently large we can get a1 > 1980 

solutions for some N1 ���13
. But now by taking N sufficiently large we can get a2 > a1 

solutions for some N2. Since a2 ��D1, we must have N2 ��11. In other words, we have a 

different n, also with > 1980 solutions. Continuing, we get an infinite sequence of distinct n 

each with at least 1980 solutions.  

Problem 19 

 

ABCD is a tetrahedron. Angles ACB and ADB are 90 deg. Let k be the angle between the 

lines AC and BD. Show that cos k < CD/AB.  

 

Problem 20 

 

x0 is a real number in the interval (0, 1) with decimal representation 0.d1d2d3... . We obtain the 

sequence xn as follows. xn+1 is obtained from xn by rearranging the 5 digits dn+1, dn+2, dn+3, 

dn+4, dn+5. Show that the sequence xn converges. Can the limit be irrational if x0 is rational? 

Find a number x0 so that every member of the sequence is irrational, no matter how the 

rearrangements are carried out.  



15th ASU 1981 problems 

Problem 1 

 

A chess board is placed on top of an identical board and rotated through 45 degrees about its 

center. What is the area which is black in both boards?  

 

Problem 2 

 

AB is a diameter of the circle C. M and N are any two points on the circle. The chord MA' is 

perpendicular to the line NA and the chord MB' is perpendicular to the line NB. Show that 

AA' and BB' are parallel.  

 

Problem 3 

 

Find an example of m and n such that m is the product of n consecutive positive integers and 

also the product of n+2 consecutive positive integers. Show that we cannot have n = 2.  

 

Problem 4 

 

Write down a row of arbitrary integers (repetitions allowed). Now construct a second row as 

follows. Suppose the integer n is in column k in the first row. In column k in the second row 

write down the number of occurrences of n in row 1 in columns 1 to k inclusive. Similarly, 

construct a third row under the second row (using the values in the second row), and a fourth 

row. An example follows:  
7  1  2  1  7  1  1 

1  1  1  2  2  3  4 

1  2  3  1  2  1  1 

1  1  1  2  2  3  4 

Show that the fourth row is always the same as the second row.  

 

Problem 5 

 

Let S be the set of points (x, y) given by y ��- x2
 and y ��[2

 - 2x + a. Find the area of the 

rectangle with sides parallel to the axes and the smallest possible area which encloses S.  

 

Problem 6 

 

ABC, CDE, EFG are equilateral triangles (not necessarily the same size). The vertices are 

counter-clockwise in each case. A, D, G are collinear and AD = DG. Show that BFD is 

equilateral.  

 

Problem 7 

 

1000 people live in a village. Every evening each person tells his friends all the news he heard 

during the day. All news eventually becomes known (by this process) to everyone. Show that 

one can choose 90 people, so that if you give them some news on the same day, then everyone 

will know in 10 days.  

 

Problem 8 

 



The reals a and b are such that a cos x + b cos 3x > 1 has no real solutions. Show that |b| ����� 
 

Problem 9 

 

ABCD is a convex quadrilateral. K is the midpoint of AB and M is the midpoint of CD. L lies 

on the side BC and N lies on the side AD. KLMN is a rectangle. Show that its area is half that 

of ABCD.  

 

Problem 10 

 

The sequence an of positive integers is such that (1) an ��Q3/2
 for all n, and (2) m-n divides km - 

kn (for all m > n). Find an.  

 

Problem 11 

 

Is it possible to color half the cells in a rectangular array white and half black so that in each 

row and column more than 3/4 of the cells are the same color?  

 

Problem 12 

 

ACPH, AMBE, AHBT, BKXM and CKXP are parallelograms. Show that ABTE is also a 

parallelogram (vertices are labeled anticlockwise).  

Problem 13  

Find all solutions (x, y) in positive integers to x
3
 - y

3
 = xy + 61.  

Answer  

(6,5)  

Solution  

Put x = y + a. Then (3a-1)y
2
 + a(3a-1)y + (a

3
-61) = 0. The first two terms are positive, so the 

last term must be negative, so a = 1, 2, 3. Trying each case in turn, we get (y+6)(y-5) = 0, 

5y
2
+10y-53 = 0, 4y

2
+12y-17 = 0. The last two equations have no integers solutions.  

Problem 14 

 

Eighteen teams are playing in a tournament. So far, each team has played exactly eight games, 

each with a different opponent. Show that there are three teams none of which has yet played 

the other.  

 

Problem 15 

 

ABC is a triangle. A' lies on the side BC with BA'/BC = 1/4. Similarly, B' lies on the side CA 

with CB'/CA = 1/4, and C' lies on the side AB with AC'/AB = 1/4. Show that the perimeter of 

A'B'C' is between 1/2 and 3/4 of the perimeter of ABC.  

Problem 16  



The positive reals x, y satisfy x
3
 + y

3
 = x - y. Show that x

2
 + y

2
 < 1.  

Solution  

Since x, y are positive, so is x
3
 + y

3
, and hence x > y. So (x

2
 + y

2
)(x - y) = (x

3
 - y

3
) - xy(x - y) 

< x
3
 - y

3
 = x - y. Hence x

2
 + y

2
 < 1.  

Problem 17 

 

A convex polygon is drawn inside the unit circle. Someone makes a copy by starting with one 

vertex and then drawing each side successively. He copies the angle between each side and 

the previous side accurately, but makes an error in the length of each side of up to a factor 

1±p. As a result the last side ends up a distance d from the starting point. Show that d < 4p.  

 

Problem 18 

 

An integer is initially written at each vertex of a cube. A move is to add 1 to the numbers at 

two vertices connected by an edge. Is it possible to equalise the numbers by a series of moves 

in the following cases? (1) The initial numbers are (1) 0, except for one vertex which is 1. (2) 

The initial numbers are 0, except for two vertices which are 1 and diagonally opposite on a 

face of the cube. (3) Initially, the numbers going round the base are 1, 2, 3, 4. The 

corresponding vertices on the top are 6, 7, 4, 5 (with 6 above the 1, 7 above the 2 and so on).  

 

Problem 19 

 

Find 21 consecutive integers, each with a prime factor less than 17.  

 

Problem 20 

 

Each of the numbers from 100 to 999 inclusive is written on a separate card. The cards are 

arranged in a pile in random order. We take cards off the pile one at a time and stack them 

into 10 piles according to the last digit. We then put the 1 pile on top of the 0 pile, the 2 pile 

on top of the 1 pile and so on to get a single pile. We now take them off one at a time and 

stack them into 10 piles according to the middle digit. We then consolidate the piles as before. 

We then take them off one at a time and stack them into 10 piles according to the first digit 

and finally consolidate the piles as before. What can we say about the order in the final pile?  

 

Problem 21 
 

Given 6 points inside a 3 x 4 rectangle, show that we can find two points whose distance does 

not exceed ¥��� 
 

Problem 22 

What is the smallest value of 4 + x
2
y

4
 + x

4
y

2
 - 3x

2
y

2
 for real x, y? Show that the polynomial 

cannot be written as a sum of squares. [Note the candidates did not know calculus.]  

 

Problem 23 

ABCDEF is a prism. Its base ABC and its top DEF are congruent equilateral triangles. The 

side edges are AD, BE and CF. Find all points on the base wich are equidistant from the three 

lines AE, BF and CD.  



16th ASU 1982 

Problem 1 

 

The circle C has center O and radius r and contains the points A and B. The circle C' touches 

the rays OA and OB and has center O' and radius r'. Find the area of the quadrilateral OAO'B.  

Problem 2  

The sequence an is defined by a1 = 1, a2 = 2, an+2 = an+1 + an. The sequence bn is defined by b1 

= 2, b2 = 1, bn+2 = bn+1 + bn. How many integers belong to both sequences?  

Answer  

1,2,3 only  

Solution  

The first few terms are:  

n   1   2   3   4   5   6   7 

an  1   2   3   5   8  13  21 

bn  2   1   3   4   7  11  18 

Note that for n = 4, 5 we have an-1 < bn < an. So by a trivial induction, the inequality holds for 

all n ����� 
 

Problem 3 

 

N is a sum of n powers of 2. If N is divisible by 2
m

 - 1, prove that n ��P��'RHV�WKHUH�H[LVW�D�
number divisible by 11...1 (m 1s) which has the sum of its digits less than m?  

 

Problem 4 

 

A non-negative real is written at each vertex of a cube. The sum of the eight numbers is 1. 

Two players choose faces of the cube alternately. A player cannot choose a face already 

chosen or the one opposite, so the first player plays twice, the second player plays once. Can 

the first player arrange that the vertex common to all three chosen faces is �����"� 
 

Problem 5 

 

A library is open every day except Wednesday. One day three boys, A, B, C visit the library 

together for the first time. Thereafter they visit the library many times. A always makes his 

next visit two days after the previous visit, unless the library is closed on that day, in which 

case he goes the following day. B always makes his next visit three days after the previous 

visit (or four if the library is closed). C always makes his next visit four days after the 

previous visit (or five if the library is closed). For example, if A went first on Monday, his 

next visit would be Thursday, then Saturday. If B went first on Monday, his next visit would 

be on Thursday. All three boys are subsequently in the library on a Monday. What day of the 

week was their first visit?  

 

Problem 6 



 

ABCD is a parallelogram and AB is not equal to BC. M is chosen so that (1) ∠MAC = 

∠DAC and M is on the opposite side of AC to D, and (2) ∠MBD = ∠CBD and M is on the 

opposite side of BD to C. Find AM/BM in terms of k = AC/BD.  

 

Problem 7 

 

3n points divide a circle into 3n arcs. One third of the arcs have length 1, one third have 

length 2 and one third have length 3. Show that two of the points are at opposite ends of a 

diameter.  

 

Problem 8 

 

M is a point inside a regular tetrahedron. Show that we can find two vertices A, B of the 

tetrahedron such that cos AMB ��-1/3.  

 

Problem 9 

 

0 < x, y, z < �/2. We have cos x = x, sin(cos y) = y, cos(sin z) = z. Which of x, y, z is the 

largest and which the smallest?  

 

Problem 10 

 

P is a polygon with 2n+1 sides. A new polygon is derived by taking as its vertices the 

midpoints of the sides of P. This process is repeated. Show that we must eventually reach a 

polygon which is homothetic to P.  

 

Problem 11 

 

a1, a2, ... , a1982 is a permutation of 1, 2, ... , 1982. If a1 > a2, we swap a1 and a2. Then if (the 

new) a2 > a3 we swap a2 and a3. And so on. After 1981 potential swaps we have a new 

permutation b1, b2, ... , b1982. We then compare b1982 and b1981. If b1981 > b1982, we swap them. 

We then compare b1980 and (the new) b1981. So we arrive finally at c1, c2, ... , c1982. We find 

that a100 = c100. What value is a100?  

 

Problem 12 

 

Cucumber River has parallel banks a distance 1 meter apart. It has some islands with total 

perimeter 8 meters. It is claimed that it is always possible to cross the river (starting from an 

arbitrary point) by boat in at most 3 meters. Is the claim always true for any arrangement of 

islands? [Neglect the current.]  

 

Problem 13 

 

The parabola y = x
2
 is drawn and then the axes are deleted. Can you restore them using ruler 

and compasses?  

 

Problem 14 

 

An integer is put in each cell of an n x n array. The difference between the integers in cells 

which share a side is 0 or 1. Show that some integer occurs at least n times.  



Problem 15  

x is a positive integer. Put a = x
1/12

, b = x
1/4

, c = x
1/6

. Show that 2
a
 + 2

b
 ���1+c

.  

Solution  

Put x = r
12

. Since x is a positive integer, we have r �����:H�KDYH�WR�VKRZ�WKDW���r
 + 2

r3
)/2 ���r2

. 

But this follows immediately from AM/GM.  

Problem 16 

 

What is the largest subset of {1, 2, ... , 1982} with the property that no element is the product 

of two other distinct elements.  

 

Problem 17 

 

A real number is assigned to each unit square in an infinite sheet of squared paper. Show that 

some cell contains a number that is less than or equal to at least four of its eight neighbors.  

 

Problem 18 

 

Given a real sequence a1, a2, ... , an, show that it is always possible to choose a subsequence 

such that (1) for each i ��Q-2 at least one and at most two of ai, ai+1, ai+2 are chosen and (2) the 

sum of the absolute values of the numbers in the subsequence is at least 1/6 ��1n
 |ai|.  

 

Problem 19 

 

An n x n array has a cross in n - 1 cells. A move consists of moving a row to a new position or 

moving a column to a new position. For example, one might move row 2 to row 5, so that row 

1 remained in the same position, row 3 became row 2, row 4 became row 3, row 5 became 

row 4, row 2 became row 5 and the remaining rows remained in the same position. Show that 

by a series of moves one can end up with all the crosses below the main diagonal.  

 

Problem 20 

 

Let {a} denote the difference between a and the nearest integer. For example {3.8} = 0.2, {-

5.4} = 0.4. Show that |a| |a-1| |a-2| ... |a-n| >= {a} n!/2
n
.  

 

Problem 21 

 

Do there exist polynomials p(x), q(x), r(x) such that p(x-y+z)
3
 + q(y-z-1)

3
 + r(z-2x+1)

3
 = 1 for 

all x, y, z? Do there exist polynomials p(x), q(x), r(x) such that p(x-y+z)
3
 + q(y-z-1)

3
 + r(z-

x+1)
3
 = 1 for all x, y, z?  

 

Problem 22 

 

A tetrahedron T' has all its vertices inside the tetrahedron T. Show that the sum of the edge 

lengths of T' is less than 4/3 times the corresponding sum for T.  



17th ASU 1983 

Problem 1 

 

A 4 x 4 array of unit cells is made up of a grid of total length 40. Can we divide the grid into 8 

paths of length 5? Into 5 paths of length 8?  

 

Problem 2 

 

Three positive integers are written on a blackboard. A move consists of replacing one of the 

numbers by the sum of the other two less one. For example, if the numbers are 3, 4, 5, then 

one move could lead to 4, 5, 8 or 3, 5, 7 or 3, 4, 6. After a series of moves the three numbers 

are 17, 1967 and 1983. Could the initial set have been 2, 2, 2? 3, 3, 3?  

 

Problem 3 

 

C1, C2, C3 are circles, none of which lie inside either of the others. C1 and C2 touch at Z, C2 

and C3 touch at X, and C3 and C1 touch at Y. Prove that if the radius of each circle is 

increased by a factor 2/¥��ZLWKRut moving their centers, then the enlarged circles cover the 

triangle XYZ.  

 

Problem 4 

 

Find all real solutions x, y to y
2
 = x

3
 - 3x

2
 + 2x, x

2
 = y

3
 - 3y

2
 + 2y.  

 

Problem 5 

 

The positive integer k has n digits. It is rounded to the nearest multiple of 10, then to the 

nearest multiple of 100 and so on (n-1 roundings in all). Numbers midway between are 

rounded up. For example, 1474 is rounded to 1470, then to 1500, then to 2000. Show that the 

final number is less than 18k/13.  

 

Problem 6 

 

M is the midpoint of BC. E is any point on the side AC and F is any point on the side AB. 

Show that area MEF ��DUHD�%0)���DUHD�&0(�� 
 

Problem 7 

 

an is the last digit of [10
n/2

]. Is the sequence an periodic? bn is the last digit of [2
n/2

]. Is the 

sequence bn periodic?  

 

Problem 8 

 

A and B are acute angles such that sin
2
A + sin

2
B = sin(A + B). Show that A + B = �/2.  

 

Problem 9 

 



The projection of a tetrahedron onto the plane P is ABCD. Can we find a distinct plane P' 

such that the projection of the tetrahedron onto P' is A'B'C'D' and AA', BB', CC' and DD' are 

all parallel?  

 

Problem 10 

 

Given a quadratic equation ax
2
 + bx + c. If it has two real roots A ��%��WUDQVIRUP�WKH�HTXDWLRQ�

to x
2
 + Ax + B. Show that if we repeat this process we must eventually reach an equation with 

complex roots. What is the maximum possible number of transformations before we reach 

such an equation?  

 

Problem 11 

 

a, b, c are positive integers. If a
b
 divides b

a
 and c

a
 divides a

c
, show that c

b
 divides b

c
.  

 

Problem 12 

 

A word is a finite string of As and Bs. Can we find a set of three 4-letter words, ten 5-letter 

words, thirty 6-letter words and five 7-letter words such that no word is the beginning of 

another word. [For example, if ABA was a word, then ABAAB could not be a word.]  

 

Problem 13 

 

Can you place an integer in every square of an infinite sheet of squared paper so that the sum 

of the integers in every 4 x 6 (or 6 x 4) rectangle is (1) 10, (2) 1?  

 

Problem 14 

 

A point is chosen on each of the three sides of a triangle and joined to the opposite vertex. 

The resulting lines divide the triangle into four triangles and three quadrilaterals. The four 

triangles all have area A. Show that the three quadrilaterals have equal area. What is it (in 

terms of A)?  

 

Problem 15 

 
A group of children form two equal lines side-by-side. Each line contains an equal number of 

boys and girls. The number of mixed pairs (one boy in one line next to one girl in the other 

line) equals the number of unmixed pairs (two girls side-by-side or two boys side-by-side). 

Show that the total number of children in the group is a multiple of 8.  

 

Problem 16 

 

A 1 x k rectangle can be divided by two perpendicular lines parallel to the sides into four 

rectangles, each with area at least 1 and one with area at least 2. What is the smallest possible 

k?  

 

Problem 17 

 

O is a point inside the triangle ABC. a = area OBC, b = area OCA, c = area OAB. Show that 

the vector sum aOA + bOB + cOC is zero.  

 



Problem 18 

 

Show that given any 2m+1 different integers lying between -(2m-1) and 2m-1 (inclusive) we 

can always find three whose sum is zero.  

 

Problem 19 

 

Interior points D, E, F are chosen on the sides BC, CA, AB (not at the vertices). Let k be the 

length of the longest side of DEF. Let a, b, c be the lengths of the longest sides of AFE, BDF, 

CDE respectively. Show that k ��¥��PLQ�D��E��F������:KHQ�GR�ZH�KDYH�HTXDOLW\"� 
 

Problem 20 

 

X is a union of k disjoint intervals of the real line. It has the property that for any h < 1 we can 

find two points of X which are a distance h apart. Show that the sum of the lengths of the 

intervals in X is at least 1/k.  

 

Problem 21 

 

x is a real. The decimal representation of x includes all the digits at least once. Let f(n) be the 

number of distinct n-digit segments in the representation. Show that if for some n we have 

f(n) ��Q����WKHQ�[�LV�UDWLRQDO�� 



18th ASU 1984 

Problem 1 

 

Show that we can find n integers whose sum is 0 and whose product is n iff n is divisible by 4.  

Problem 2  

Show that (a + b)
2
/2 + (a + b)/4 ��D¥E���E�¥D�IRU�DOO�SRVLWLYH�D�DQG�E�� 

Answer  

By AM/GM ¥�DE�����D�E�����VR�½(a+b) + ¥�DE����D���E��+HQFH�¥��D��E����¥D���¥E����� 
By AM/GM (a + b) ���¥�DE��DQG���D�E���������¥��D��E���0XOWLSO\LQJ���D�E���D��E������
4¥�DE�¥��D��E���7KHQ�XVLQJ�������¥�DE��¥D���¥E��� 
Problem 3 

 

ABC and A'B'C' are equilateral triangles and ABC and A'B'C' have the same sense (both 

clockwise or both counter-clockwise). Take an arbitrary point O and points P, Q, R so that OP 

is equal and parallel to AA', OQ is equal and parallel to BB', and OR is equal and parallel to 

CC'. Show that PQR is equilateral.  

 

Problem 4 

 

Take a large number of unit squares, each with one edge red, one edge blue, one edge green, 

and one edge yellow. For which m, n can we combine mn squares by placing similarly 

colored edges together to get an m x n rectangle with one side entirely red, another entirely 

bue, another entirely green, and the fourth entirely yellow.  

 

Problem 5 

 

Let A = cos
2
a, B = sin

2
a. Show that for all real a and positive x, y we have x

A
y

B
 < x + y.  

 

Problem 6 

 

Two players play a game. Each takes it in turn to paint three unpainted edges of a cube. The 

first player uses red paint and the second blue paint. So each player has two moves. The first 

player wins if he can paint all edges of some face red. Can the first player always win?  

 

Problem 7 

 

n > 3 positive integers are written in a circle. The sum of the two neighbours of each number 

divided by the number is an integer. Show that the sum of those integers is at least 2n and less 

than 3n. For example, if the numbers were 3, 7, 11, 15, 4, 1, 2 (with 2 also adjacent to 3), then 

the sum would be 14/7 + 22/11 + 15/15 + 16/4 + 6/1 + 4/2 + 9/3 = 20 and 14 ����������� 
 

Problem 8 

 



The incircle of the triangle ABC has center I and touches BC, CA, AB at D, E, F respectively. 

The segments AI, BI, CI intersect the circle at D', E', F' respectively. Show that DD', EE', FF' 

are collinear.  

 

Problem 9 

 

Find all integers m, n such that (5 + 3¥��m = (3 + 5¥��n.  
 

Problem 10 

 

x1 < x2 < x3 < ... < xn. yi is a permutation of the xi. We have that x1 + y1 < x2 + y2 < ... < xn + 

yn. Prove that xi = yi.  

 

Problem 11 

 

ABC is a triangle and P is any point. The lines PA, PB, PC cut the circumcircle of ABC again 

at A'B'C' respectively. Show that there are at most eight points P such that A'B'C' is congruent 

to ABC.  

 

Problem 12 

 

The positive reals x, y, z satisfy x
2
 + xy + y

2
/3 = 25, y

2
/3 + z

2
 = 9, z

2
 + zx + x

2
 = 16. Find the 

value of xy + 2yz + 3zx.  

Problem 13  

Starting with the polynomial x
2
 + 10x + 20, a move is to change the coefficient of x by 1 or to 

change the coefficient of x
0
 by 1 (but not both). After a series of moves the polynomial is 

changed to x
2
 + 20x + 10. Is it true that at some intermediate point the polynomial had integer 

roots?  

Answer  

Yes.  

Solution  

We have x
2
 + (n+1)x + n = (x+n)(x+1), so x

2
 + ax + b has integer roots if a = b+1 (and a and b 

are integers). But initially a-b is -10 and it ends up as +10. Each move changes a-b by ±1, so it 

must pass through all values between -10 and +10.  

Problem 14 

 

The center of a coin radius r traces out a polygon with perimeter p which has an incircle 

radius R > r. What is the area of the figure traced out by the coin?  

 

Problem 15 

 

Each weight in a set of n has integral weight and the total weight of the set is 2n. A balance is 

initially empty. We then place the weights onto a pan of the balance one at a time. Each time 

we place the heaviest weight not yet placed. If the pans balance, then we place the weight 



onto the left pan. Otherwise, we place the weight onto the lighter pan. Show that when all the 

weights have been placed, the scales will balance. [For example, if the weights are 2, 2, 1, 1. 

Then we must place 2 in the left pan, followed by 2 in the right pan, followed by 1 in the left 

pan, followed by 1 in the right pan.]  

 

Problem 16 

 

A number is prime however we order its digits. Show that it cannot contain more than three 

different digits. For example, 337 satisfies the conditions because 337, 373 and 733 are all 

prime.  

 

Problem 17 

 

Find all pairs of digits (b, c) such that the number b ... b6c ... c4, where there are n bs and n cs 

is a square for all positive integers n.  

 

Problem 18 

 

A, B, C and D lie on a line in that order. Show that if X does not lie on the line then |XA| + 

|XD| + | |AB| - |CD| | > |XB| + |XC|.  

 

Problem 19 

 

The real sequence xn is defined by x1 = 1, x2 = 1, xn+2 = xn+1
2
 - xn/2. Show that the sequence 

converges and find the limit.  

 

Problem 20 

 

The squares of a 1983 x 1984 chess board are colored alternately black and white in the usual 

way. Each white square is given the number 1 or the number -1. For each black square the 

product of the numbers in the neighbouring white squares is 1. Show that all the numbers 

must be 1.  

 

Problem 21 

 
A 3 x 3 chess board is colored alternately black and white in the usual way with the center 

square white. Each white square is given the number 1 or the number -1. A move consists of 

simultaneously changing each number to the product of the adjacent numbers. So the four 

corner squares are each changed to the number previously in the center square and the center 

square is changed to the product of the four numbers in the corners. Show that after finitely 

many moves all numbers are 1.  

 

Problem 22 

 

Is ln 1.01 greater or less than 2/201?  

 

Problem 23 

 

C1, C2, C3 are circles with radii r1, r2, r3 respectively. The circles do not intersect and no circle 

lies inside any other circle. C1 is larger than the other two. The two outer common tangents to 

C1 and C2 meet at A ("outer" means that the points where the tangent touches the two circles 



lie on the same side of the line of centers). The two outer common tangents to C1 and C3 

intersect at B. The two tangents from A to C3 and the two tangents from B to C2 form a 

quadrangle. Show that it has an inscribed circle and find its radius.  

 

Problem 24 

 

Show that any cross-section of a cube through its center has area not less than the area of a 

face.  



19th ASU 1985 problems 

Problem 1 

 

ABC is an acute angled triangle. The midpoints of BC, CA and AB are D, E, F respectively. 

Perpendiculars are drawn from D to AB and CA, from E to BC and AB, and from F to CA 

and BC. The perpendiculars form a hexagon. Show that its area is half the area of the triangle.  

 

Problem 2 

 

Is there an integer n such that the sum of the (decimal) digits of n is 1000 and the sum of the 

squares of the digits is 1000
2
?  

 

Problem 3 

 

An 8 x 8 chess-board is colored in the usual way. What is the largest number of pieces can be 

placed on the black squares (at most one per square), so that each piece can be taken by at 

least one other? A piece A can take another piece B if they are (diagonally) adjacent and the 

square adjacent to B and opposite to A is empty.  

 

Problem 4 

 

Call a side or diagonal of a regular n-gon a segment. How many colors are required to paint 

all the segments of a regular n-gon, so that each segment has a single color and every two 

segments with a vertex in common have different colors.  

 

Problem 5 

 

Given a line L and a point O not on the line, can we move an arbitrary point X to O using 

only rotations about O and reflections in L?  

 

Problem 6 

 

The quadratic p(x) = ax
2
 + bx + c has a > 100. What is the maximum possible number of 

integer values x such that |p(x)| < 50?  

 

Problem 7 

 

In the diagram below a, b, c, d, e, f, g, h, i, j are distinct positive integers and each (except a, 

e, h and j) is the sum of the two numbers to the left and above. For example, b = a + e, f = e + 

h, i = h + j. What is the smallest possible value of d?  
         j 

      h  i 

   e  f  g 

a  b  c  d 

 

Problem 8 

 

a1 < a2 < ... < an < ... is an unbounded sequence of positive reals. Show that there exists k such 

that a1/a2 + a2/a3 + ... + ah/ah+1 < h-1 for all h > k. Show that we can also find a k such that 

a1/a2 + a2/a3 + ... + ah/ah+1 < h-1985 for all h > k.  



 

Problem 9 

 

Find all pairs (x, y) such that |sin x - sin y| + sin x sin y <= 0.  

 

Problem 10 

 

ABCDE is a convex pentagon. A' is chosen so that B is the midpoint of AA', B' is chosen so 

that C is the midpoint of BB' and so on. Given A', B', C', D', E', how do we construct ABCDE 

using ruler and compasses?  

 

Problem 11 

 

The sequence a1, a2, a3, ... satisfies a4n+1 = 1, a4n+3 = 0, a2n = an. Show that it is not periodic.  

 

Problem 12 

 

n lines are drawn in the plane. Some of the resulting regions are colored black, no pair of 

painted regions have a boundary line in common (but they may have a common vertex). Show 

that at most (n
2
 + n)/3 regions are black.  

 

Problem 13 

 

Each face of a cube is painted a different color. The same colors are used to paint every face 

of a cubical box a different color. Show that the cube can always be placed in the box, so that 

every face is a different color from the box face it is in contact with.  

 

Problem 14 

 

The points A, B, C, D, E, F are equally spaced on the circumference of a circle (in that order) 

and AF is a diameter. The center is O. OC and OD meet BE at M and N respectively. Show 

that MN + CD = OA.  

 

Problem 15 

 
A move replaces the real numbers a, b, c, d by a-b, b-c, c-d, d-a. If a, b, c, d are not all equal, 

show that at least one of the numbers can exceed 1985 after a finite number of moves.  

 

Problem 16 

 

a1 < a2 < ... < an and b1 > b2 > ... > bn. Taken together the ai and bi constitute the numbers 1, 2, 

... , 2n. Show that |a1 - b1| + |a2 - b2| + ... + |an - bn| = n
2
.  

 

Problem 17 

 

An r x s x t cuboid is divided into rst unit cubes. Three faces of the cuboid, having a common 

vertex, are colored. As a result exactly half the unit cubes have at least one face colored. What 

is the total number of unit cubes?  

 

Problem 18 

 



ABCD is a parallelogram. A circle through A and B has radius R. A circle through B and D 

has radius R and meets the first circle again at M. Show that the circumradius of AMD is R.  

 

Problem 19 

 

A regular hexagon is divided into 24 equilateral triangles by lines parallel to its sides. 19 

different numbers are assigned to the 19 vertices. Show that at least 7 of the 24 triangles have 

the property that the numbers assigned to its vertices increase counterclockwise.  

Problem 20  

x is a real number. Define x0 = 1 + ¥�����[���[1 = 2 + x/x0, x2 = 2 + x/x1, ... , x1985 = 2 + 

x/x1984. Find all solutions to x1985 = x.  

Answer  

3  

Solution  

If x = 0, then x
1985

 = 2 ��[��2WKHUZLVH�ZH�ILQG�[1 = 2 + x/(1+¥���[��� ������¥���[��- 1) = 1 + ¥���[���+HQFH�[1985 = 1 + ¥���[�. So x - 1 = ¥���[���6TXDULQJ��[� ���RU����:H�KDYH�DOUHDG\�
ruled out x = 0. It is easy to check that x = 3 is a solution.  

Problem 20 

 

x is a real number. Define x0 = 1 + ¥�����[���[1 = 2 + x/x0, x2 = 2 + x/x1, ... , x1985 = 2 + 

x/x1984. Find all solutions to x1985 = x.  

 

Problem 21 

 

A regular pentagon has side 1. All points whose distance from every vertex is less than 1 are 

deleted. Find the area remaining.  

 

Problem 22 

 

Given a large sheet of squared paper, show that for n > 12 you can cut along the grid lines to 

get a rectangle of more than n unit squares such that it is impossible to cut it along the grid 

lines to get a rectangle of n unit squares from it.  

 

Problem 23 

 

The cube ABCDA'B'C'D' has unit edges. Find the distance between the circle circumscribed 

about the base ABCD and the circumcircle of AB'C.  



20th ASU 1986 

Problem 1  

The quadratic x
2
 + ax + b + 1 has roots which are positive integers. Show that (a

2
 + b

2
) is 

composite.  

Solution  

Let the roots be c, d, so c + d = -a, cd = b+1. Hence a
2
 + b

2
 = (c

2
 + 1)(d

2
 + 1).  

Problem 2 

 

Two equal squares, one with blue sides and one with red sides, intersect to give an octagon 

with sides alternately red and blue. Show that the sum of the octagon's red side lengths equals 

the sum of its blue side lengths.  

 

Problem 3 

 

ABC is acute-angled. What point P on the segment BC gives the minimal area for the 

intersection of the circumcircles of ABP and ACP?  

 

Problem 4 

 

Given n points can one build n-1 roads, so that each road joins two points, the shortest 

distance between any two points along the roads belongs to {1, 2, 3, ... , n(n-1)/2 }, and given 

any element of {1, 2, 3, ... , n(n-1)/2 } one can find two points such that the shortest distance 

between them along the roads is that element?  

 

Problem 5 

 

Prove that there is no convex quadrilateral with vertices at lattice points so that one diagonal 

has twice the length of the other and the angle between them is 45 degrees.  

 

Problem 6 

 

Prove that we can find an m x n array of squares so that the sum of each row and the sum of 

each column is also a square.  

 

Problem 7 

 

Two circles intersect at P and Q. A is a point on one of the circles. The lines AP and AQ meet 

the other circle at B and C respectively. Show that the circumradius of ABC equals the 

distance between the centers of the two circles. Find the locus of the circumcircle as A varies.  

 

Problem 8 

 

A regular hexagon has side 1000. Each side is divided into 1000 equal parts. Let S be the set 

of the vertices and all the subdividing points. All possible lines parallel to the sides and with 

endpoints in S are drawn, so that the hexagon is divided into equilateral triangles with side 1. 



Let X be the set of all vertices of these triangles. We now paint any three unpainted members 

of X which form an equilateral triangle (of any size). We then repeat until every member of X 

except one is painted. Show that the unpainted vertex is not a vertex of the original hexagon.  

 

Problem 9 

 

Let d(n) be the number of (positive integral) divisors of n. For example, d(12) = 6. Find all n 

such that n = d(n)
2
.  

 

Problem 10 

 

Show that for all positive reals xi we have 1/x1 + 1/(x1 + x2) + ... + n/(x1 + ... + xn) < 4/a1 + 

4/a2 + ... + 4/an.  

 

Problem 11 

 

ABC is a triangle with AB ��$&��6KRZ�WKDW�IRU�HDFK�OLQH�WKURXJK�$��WKHUH�LV�DW�PRVW�RQH�SRLQW�
X on the line (excluding A, B, C) with ∠ABX = ∠ACX. Which lines contain no such points 

X?  

 

Problem 12 

 

An n x n x n cube is divided into n
3
 unit cubes. Show that we can assign a different integer to 

each unit cube so that the sum of each of the 3n
2
 rows parallel to an edge is zero.  

 

Problem 13 

 

Find all positive integers a, b, c so that a
2
 + b = c and a has n > 1 decimal digits all the same, b 

has n decimal digits all the same, and c has 2n decimal digits all the same.  

 

Problem 14 

 

Two points A and B are inside a convex 12-gon. Show that if the sum of the distances from A 

to each vertex is a and the sum of the distances from B to each vertex is b, then |a - b| < 10 

|AB|.  

 

Problem 15 

 

There are 30 cups each containing milk. An elf is able to transfer milk from one cup to 

another so that the amount of milk in the two cups is equalised. Is there an initial distribution 

of milk so that the elf cannot equalise the amount in all the cups by a finite number of such 

transfers?  

 

Problem 16 

 

A 99 x 100 chess board is colored in the usual way with alternate squares black and white. 

What fraction of the main diagonal is black? What if the board is 99 x 101?  

 

Problem 17 

 



A1A2 ... An is a regular n-gon and P is an arbitrary point in the plane. Show that if n is even 

we can choose signs so that the vector sum ± PA1 ± PA2 ± ... ± PAn = 0, but if n is odd, then 

this is only possible for finitely many points P.  

 

Problem 18 

 

A 1 or a -1 is put into each cell of an n x n array as follows. A -1 is put into each of the cells 

around the perimeter. An unoccupied cell is then chosen arbitrarily. It is given the product of 

the four cells which are closest to it in each of the four directions. For example, if the cells 

below containing a number or letter (except x) are filled and we decide to fill x next, then x 

gets the product of a, b, c and d.  
-1  -1  -1  -1  -1 

-1   a   1      -1 

 c   x       d  -1 

-1 

-1   b  -1  -1  -1   

What is the minimum and maximum number of 1s that can be obtained?  

 

Problem 19 

 

Prove that |sin 1| + |sin 2| + ... + |sin 3n| > 8n/5.  

 

Problem 20 

 

Let S be the set of all numbers which can be written as 1/mn, where m and n are positive 

integers not exceeding 1986. Show that the sum of the elements of S is not an integer.  

 

Problem 21 

 

The incircle of a triangle has radius 1. It also lies inside a square and touches each side of the 

square. Show that the area inside both the square and the triangle is at least 3.4. Is it at least 

3.5?  

 

Problem 22 

 

How many polynomials p(x) have all coefficients 0, 1, 2 or 3 and take the value n at x = 2?  

 

Problem 23 

 

A and B are fixed points outside a sphere S. X and Y are chosen so that S is inscribed in the 

tetrahedron ABXY. Show that the sum of the angles AXB, XBY, BYA and YAX is 

independent of X and Y.  



21st ASU 1987 problems 

Problem 1 

 

Ten players play in a tournament. Each pair plays one match, which results in a win or loss. If 

the ith player wins ai matches and loses bi matches, show that ��Di
2
 = ��Ei

2
.  

 

Problem 2 

 

Find all sets of 6 weights such that for each of n = 1, 2, 3, ... , 63, there is a subset of weights 

weighing n.  

 

Problem 3 

 

ABCDEFG is a regular 7-gon. Prove that 1/AB = 1/AC + 1/AD.  

 

Problem 4 

 

Your opponent has chosen a 1 x 4 rectangle on a 7 x 7 board. At each move you are allowed 

to ask whether a particular square of the board belongs to his rectangle. How many questions 

do you need to be certain of identifying the rectangle. How many questions are needed for a 2 

x 2 rectangle?  

 

Problem 5 

 

Prove that 1
1987

 + 2
1987

 + ... + n
1987

 is divisible by n+2.  

 

Problem 6 

 

An L is an arrangement of 3 adjacent unit squares formed by deleting one unit square from a 2 

x 2 square. How many Ls can be placed on an 8 x 8 board (with no interior points 

overlapping)? Show that if any one square is deleted from a 1987 x 1987 board, then the 

remaining squares can be covered with Ls (with no interior points overlapping).  

 

Problem 7 

 

Squares ABC'C", BCA'A", CAB'B" are constructed on the outside of the sides of the triangle 

ABC. The line A'A" meets the lines AB and AC at P and P'. Similarly, the line B'B" meets the 

lines BC and BA at Q and Q', and the line C'C" meets the lines CA and CB at R and R'. Show 

that P, P', Q, Q', R and R' lie on a circle.  

 

Problem 8 

 

A1, A2, ... , A2m+1 and B1, B2, ... , B2n+1 are points in the plane such that the 2m+2n+2 lines 

A1A2, A2A3, ... , A2mA2m+1, A2m+1A1, B1B2, B2B3, ... , B2nB2n+1, B2n+1B1 are all different and no 

three of them are concurrent. Show that we can find i and j such that AiAi+1, BjBj+1 are 

opposite sides of a convex quadrilateral (if i = 2m+1, then we take Ai+1 to be A1. Similarly for 

j = 2n+1).  

 

Problem 9 



 

Find 5 different relatively prime numbers, so that the sum of any subset of them is composite.  

 

Problem 10 

 

ABCDE is a convex pentagon with ∠ABC = ∠ADE and ∠AEC = ∠ADB. Show that ∠BAC 

= ∠DAE.  

 

Problem 11 

 

Show that there is a real number x such that all of cos x, cos 2x, cos 4x, ... cos(2
n
x) are 

negative.  

 

Problem 12 

 

The positive reals a, b, c, x, y, z satisfy a + x = b + y = c + z = k. Show that ax + by + cz ��N2
.  

 

Problem 13 

 

A real number with absolute value at most 1 is put in each square of a 1987 x 1987 board. The 

sum of the numbers in each 2 x 2 square is 0. Show that the sum of all the numbers does not 

exceed 1987.  

 

Problem 14 

 

AB is a chord of the circle center O. P is a point outside the circle and C is a point on the 

chord. The angle bisector of APC is perpendicular to AB and a distance d from O. Show that 

BC = 2d.  

 

Problem 15 

 

Players take turns in choosing numbers from the set {1, 2, 3, ... , n}. Once m has been chosen, 

no divisor of m may be chosen. The first player unable to choose a number loses. Who has a 

winning strategy for n = 10? For n = 1000?  

 

Problem 16 

 

What is the smallest number of subsets of S = {1, 2, ... , 33}, such that each subset has size 9 

or 10 and each member of S belongs to the same number of subsets?  

 

Problem 17 

 

Some lattice points in the plane are marked. S is a set of non-zero vectors. If you take any one 

of the marked points P and add place each vector in S with its beginning at P, then more 

vectors will have their ends on marked points than not. Show that there are an infinite number 

of points.  

 

Problem 18 

 

A convex pentagon is cut along all its diagonals to give 11 pieces. Show that the pieces 

cannot all have equal areas.  



 

Problem 19 

 

The set S0 = {1, 2!, 4!, 8!, 16!, ... }. The set Sn+1 consists of all finite sums of distinct elements 

of Sn. Show that there is a positive integer not in S1987.  

 

Problem 20 

 

If the graph of the function f = f(x) is rotated through 90 degrees about the origin, then it is 

not changed. Show that there is a unique solution to f(b) = b. Give an example of such a 

function.  

 

Problem 21 

 

A convex polyhedron has all its faces triangles. Show that it is possible to color some edges 

red and the others blue so that given any two vertices one can always find a path between 

them along the red edges and another path between them along the blue edges.  

 

Problem 22 

 

Show that (2n+1)
n
 ����Q�n + (2n-1)

n
 for every positive integer n.  



22nd ASU 1988 

Problem 1 

A book contains 30 stories. Each story has a different number of pages under 31. The first 

story starts on page 1 and each story starts on a new page. What is the largest possible number 

of stories that can begin on odd page numbers?  

Solution 

Answer: 23.  

Call stories with an odd number of pages odd stories and stories with an even number of 

pages even stories. There are 15 odd stories and 15 even stories. The odd stories change the 

parity of the starting page (in the sense that the following story starts on a page of opposite 

parity), whereas the even stories do not. So the odd stories must start alternately on odd and 

even pages. Hence 8 of them must start on odd pages and 7 on even pages (irrespective of 

how the stories are arranged). We can, however, control the even stories. In particular, if we 

put each of them after an even number of odd stories, then they will all begin on odd pages. 

For example, we could put them all first (before any of the odd stories).  

Problem 2 

ABCD is a convex quadrilateral. The midpoints of the diagonals and the midpoints of AB and 

CD form another convex quadrilateral Q. The midpoints of the diagonals and the midpoints of 

BC and CA form a third convex quadrilateral Q'. The areas of Q and Q' are equal. Show that 

either AC or BD divides ABCD into two parts of equal area.  

Solution 

Note that Q is a parallelogram because each side is formed by joining the midpoints of two 

sides of a triangle, so it is parallel to and half the length of the base of the triangle. But the 

triangles corresponding to opposite sides have the same base. Hence opposite sides of Q are 

parallel and equal. Similarly Q'.  

Let the midpoints of the diagonals be X, Y. Take two adjacent side midpoints which are on 

the same side of the line XY. Suppose they are M, the midpoint of AB, and N, the midpoint of 

BC. Suppose also that X is the midpoint of BD, and Y the midpoint of AC. If X does not lie 

on AC, then we may assume it lies on the same side of AC as M and N (if not just consider 

the other two midpoints instead of M and N). So the line parallel to XY through M cuts the 

altitude from N of NXY. So XYM has the same base XY as XYN, but smaller height, so it 

has smaller area. Hence the two parallelograms also have different areas. Contradiction. So X 

must lie on AC. But AX bisects ABD and CX bisects CBD, so AC bisects ABD and CBD and 

hence ABCD.  

Problem 3 

Show that there are infinitely many triples of distinct positive integers a, b, c such that each 

divides the product of the other two and a + b = c + 1.  



Solution 

n(n + 1), n(n
2
 + n - 1), (n + 1)(n

2
 + n - 1).  

Problem 4 

Given a sequence of 19 positive integers not exceeding 88 and another sequence of 88 

positive integers not exceeding 19. Show that we can find two subsequences of consecutive 

terms, one from each sequence, with the same sum.  

Solution 

We prove the general case. Let the first sequence be a1, a2, ... , am and the second sequence be 

b1, b2, ... , bn, were 0 < ai ��Q�DQG�����Ej ��P��3ut sk = a1 + a2 + ... + ak, tk = b1 + b2 + ... + bk. 

Assume sm > tn (if they are equal, then we are done).  

Let f(i) be the smallest k such that sk >= ti. If it is equal, we are done, so assume sk > ti. Now 

consider the n numbers sf(i) - ti. Each is at least 1 and at most n-1 (if it was n or more then sf(i)-1 ��Vf(i) - n ��Wi, contradicting the minimality of f(i) ). So there must be two the same. So we 

have sf(i) - ti = sf(j) - tj for some i > j and hence af(j)+1 + af(j)+2 + ... + af(i) = bj+1 + bj+2 + ... + bi.  

Problem 5 

The quadrilateral ABCD is inscribed in a fixed circle. It has AB parallel to CD and the length 

AC is fixed, but it is otherwise allowed to vary. If h is the distance between the midpoints of 

AC and BD and k is the distance between the midpoints of AB and CD, show that the ratio 

h/k remains constant.  

Solution 

Let the center of the circle be O and its radius be R. Let ∠AOB = 2x (variable) and let ∠AOC 

= 2y (fixed). Then AC = 2R sin y. We find ∠COD = 180
o
 - x - 2y, so 2h = 2R sin x + 2R 

sin(x + 2y). Angle ACD = x + y, so k = AB sin(x + y) = 2R sin(x + y) sin y. Hence the ratio 

h/k = (sin x + sin(x + 2y) )/(2 sin(x + y) sin y). We have sin x = sin(x + y - y) = sin(x + y) cos 

y - cos(x + y) sin y, and sin(x + 2y) = sin(x + y + y) = sin(x + y) cos y + cos(x + y) sin y, so 

(sin x + sin(x + 2y) = 2 sin(x + y) cos y. Hence h/k = cot y, which is constant.  

Problem 6 

The numbers 1 and 2 are written on an empty blackboard. Whenever the numbers m and n 

appear on the blackboard the number m + n + mn may be written. Can we obtain (1) 13121, 

(2) 12131?  

Solution 

(1) 13121 = 2 + 4373 + 2· 4373, 4373 = 2 + 1457 + 2· 1457, 1457 = 2 + 485 + 2· 485, 485 = 2 + 

161 + 2· 161, 161 = 2 + 53 + 2· 53, 53 = 2 + 17 + 2· 17, 17 = 2 + 5 + 2· 5, 5 = 2 + 1 + 2· 1.  

Put M = m+1, N = n+1. Then we the number derived from m and n is MN - 1. So if M and N 

are of the form 2
a
3

b
 then so is MN. Thus we can only ever write up numbers of the form 2

a
3

b
 - 

1. But 12131 = 2
2
3

2
337 - 1, which is not of the required form.  



Note that it makes no difference whether the two numbers m, n are allowed to be the same 

(which is ambiguous).  

Problem 7 

If rationals x, y satisfy x
5
 + y

5
 = 2 x

2
 y

2
 show that 1 - x y is the square of a rational.  

Solution 

Put y = kx, then x
5
(1 + k

5
) = 2k

2
x

4
, so x = 2k

2
/(1 + k

5
), y = 2k

3
/(1 + k

5
) and 1 - xy = (1 - 

k
5
)
2
/(1 + k

5
)
2
. x and y are rational, so (1 - k

5
)/(1 + k

5
) is rational.  

Problem 8 

There are 21 towns. Each airline runs direct flights between every pair of towns in a group of 

five. What is the minimum number of airlines needed to ensure that at least one airline runs 

direct flights between every pair of towns?  

Solution 

Answer: 21.  

There are 210 pairs of towns. Each airline serves 10 pairs, so we certainly need at least 21 

airlines. The following arrangement shows that 21 is possible:  

  

 1   2   3   4   5 

 1   6   7   8   9 

 1  10  11  12  13 

 1  14  15  16  17   

 1  18  19  20  21 

 2   6  10  14  18 

 2   7  11  15  19 

 2   8  12  16  20 

 2   9  13  17  21 

 3   6  11  16  21 

 3   7  10  17  20 

 3   8  13  14  19 

 3   9  12  15  18 

 4   6  12  17  19 

 4   7  13  16  18 

 4   8  10  15  21 

 4   9  11  14  20 

 5   6  13  15  20 

 5   7  12  14  21 

 5   8  11  17  18 

 5   9  10  16  19 

Problem 9 

Find all positive integers n satisfying (1 + 1/n)
n+1

 = (1 + 1/1998)
1998

.  

Solution 

Answer: no solutions.  



We have (1 + 1/n)
n+1

 > e > (1 + 1/n)
n
 .  

Problem 10 

A, B, C are the angles of a triangle. Show that 2(sin A)/A + 2(sin B)/B + 2(sin C)/C �����%���
1/C) sin A + (1/C + 1/A) sin B + (1/A + 1/B) sin C.  

Solution 

Assume A ��%���&��7KHQ�VLQ�$���VLQ�%��$OVR�$���&������o
 - A, so sin A ��VLQ�&��6LPLODUO\�VLQ�

B ��VLQ�&��+HQFH����$�- 1/B)(sin B - sin A), (1/B - 1/C)(sin C - sin B) and (1/C - 1/A)(sin A - 

sin C) are all non-negative. Hence their sum is also non-negative, which gives the result.  

Problem 11 

Form 10A has 29 students who are listed in order on its duty roster. Form 10B has 32 students 

who are listed in order on its duty roster. Every day two students are on duty, one from form 

10A and one from form 10B. Each day just one of the students on duty changes and is 

replaced by the following student on the relevant roster (when the last student on a roster is 

replaced he is replaced by the first). On two particular days the same two students were on 

duty. Is it possible that starting on the first of these days and ending the day before the second, 

every pair of students (one from 10A and one from 10B) shared duty exactly once?  

Solution 

Answer: no.  

Suppose such an arrangement is possible. Suppose that it includes m cycles through the form 

10A roster and n cycles through the 10B roster. Then the total number of changes is 29m + 

32n = 29 x 32 (since each pair occurs once). But that means 29 divides n and 32 divides m. 

Both m and n are at least 1, so that means n �����DQG�P�������EXW�WKHQ���P�����Q�!���Â ����
Contradiction.  

Problem 12 

In the triangle ABC, the angle C is obtuse and D is a fixed point on the side BC, different 

from B and C. For any point M on the side BC, different from D, the ray AM intersects the 

circumcircle S of ABC at N. The circle through M, D and N meets S again at P, different from 

N. Find the location of the point M which minimises MP.  

Solution 

Take A' on the circle S such that AA' is parallel to BC. Let the ray AD meet S again at P'. 

Then ∠MNP' = ∠ANP' (same angle) = ∠AA'P' (A'AP'N cyclic) = ∠A'DB (BC parallel to 

AA') = angle MDP (opposite angles). So MDNP' is cyclic, so P must be P'. Since P is a fixed 

point, independent of M, we minimise MP by taking M as the foot of the perpendicular from 

P to BC.  

Problem 13 



Show that there are infinitely many odd composite numbers in the sequence 1
1
, 1

1
 + 2

2
, 1

1
 + 

2
2
 + 3

3
, 1

1
 + 2

2
 + 3

3
 + 4

4
, ... .  

Solution 

We show that infinitely many odd numbers in the sequence are divisible by 3.  

If n = 14 mod 36, then n = 36m + 14 for some m. So there are 18m + 7 odd numbers in the 

sum and 18m + 7 even numbers. Hence the sum is odd. There are 12m + 5 numbers equal to 1 

mod 3, 12m + 5 equal to -1 mod 3 and 12m + 4 equal to 0 mod 3. Any product of numbers 

equal to 1 mod 3 equals 1 mod 3, so if k = 1 mod 3, then k
k
 = 1 mod 3. Similarly, if k = 0 mod 

3, then k
k
 = 0 mod 3. If k = -1 mod 3 then k

k
 = -1 mod 3 if k is odd and 1 mod if k is even. Of 

the 12m + 5 numbers equal to -1 mod 3, 6m + 3 are even and 6m + 2 are odd. Hence the sum 

= (12m+5)· 1 + (6m+3)· 1 + (6m+2)· -1 + (12m+4)· 0 = 12m+6 = 0 mod 3. So the sum is 

divisible by 3.  

Problem 14 

ABC is an acute-angled triangle. The tangents to the circumcircle at A and C meet the tangent 

at B at M and N. The altitude from B meets AC at P. Show that BP bisects the angle MPN.  

Solution 

If the tangent at B is parallel to AC, then angle NBC = angle BCA (parallel lines) and angle 

NBC = angle BAC (NB tangent), so BCA is isosceles and BC = BA. Hence the figure is 

symmetrical about the line PB and so BP bisects MPN.  

So assume AC is not parallel to the tangent at B. Assume it meets it at L on the same side of 

B as N. Take A' on the line AC so that MA = MA'. We show that LMA' and LNC are similar. 

Obviously the angles at L are the same. ∠MA'L = ∠MAL (MA = MA') = ∠ABC (MA 

tangent) = ∠LCN (NC tangent). So the triangles are similar. Hence LN/NC = LM/MA'. But 

NC = NB and MA' = MA = MB, so LN/NB = LM/MB and hence LM/LN = MB/NB. So the 

circle on LB as diameter has all points Q on it satisfying QM/QN = BM/BN. But ∠LPB = 

90
o
, so P must lie on the circle and hence PM/PN = BM/BN. Hence PB is the angle bisector 

of MPN.  

Problem 15 

What is the minimal value of b/(c + d) + c/(a + b) for positive real numbers b and c and non-

negative real numbers a and d such that b + c ��D���G"� 
Solution 

Answer: ¥��- 1/2.  

Obviously a + d = b + c at the minimum value, because increasing a or d reduces the value. 

So we may take d = b + c - a. We also take b >= c (interchanging b and c if necessary). 

Dividing through by b/2 shows that there is no loss of generality in taking b = 2, so 0 < c <= 

2. Thus we have to find the minimum value of 2/(2c - a + 2) + c/(a + 2). We show that it is ¥��
- 1/2.  



This is surprisingly awkward. Note first that ( c - (h - k) )
2
 >= 0, so c

2
 + c(2k - 2h) + h

2
 - 2hk 

+ k
2
 >= 0. Hence c

2
 + ck + h

2
 >= (2h - k)(c + k). Hence c/h

2
 + 1/(c+k) >= 2/h - k/h

2
 with 

equality iff c = h - k. Applying this to c/(a+2) + 1/(c+1-a/2) where h = ¥�D�����N� ��-a/2, we 

find that c/(a+2) + 2/(2c+2-a) >= 2/¥�D�������D-2)/(2a+4).  

The allowed range for c is 0 ��F�����DQG�����D���F����KHQFH�����D������3XW�[� ���¥�D�����VR�
1/¥��� �[�� ���¥���7KHQ���¥�D�������D-2)/(2a+4) = 2x + 1/2 - 2x

2
 = 1 - (2x-1)

2
/2. We have -

0.184 = (2/¥��- 1) ���[-1 ��¥��- 1 = 0.414. Hence c/(a+2) + 2/(2c+2-a) ����- (¥��- 1)
2
/2 = ¥��- 

1/2.  

We can easily check that the minimum is achieved at b = 2, c = ¥��- 1, a = 0, d = ¥������� 
Problem 16 

 

n
2
 real numbers are written in a square n x n table so that the sum of the numbers in each row 

and column equals zero. A move is to add a row to one column and subtract it from another 

(so if the entries are aij and we select row i, column h and column k, then column h becomes 

a1h + ai1, a2h + ai2, ... , anh + ain, column k becomes a1k - ai1, a2k - ai2, ... , ank - ain, and the other 

entries are unchanged). Show that we can make all the entries zero by a series of moves.  

Problem 17 

In the acute-angled triangle ABC, the altitudes BD and CE are drawn. Let F and G be the 

points of the line ED such that BF and CG are perpendicular to ED. Prove that EF = DG.  

Solution 

∠BDC = ∠BEC = 90
o
, so BCDE is cyclic, so ∠BDE = ∠BCE = 90

o
 - ∠B. Hence ∠DCG = 

90
o
 - ∠CDG = ∠BDE = 90

o
 - B. So DG = CD sin DCG = BC sin CBD sin DCG = BC cos C 

cos B. Similarly EF.  

Problem 18 

Find the minimum value of xy/z + yz/x + zx/y for positive reals x, y, z with x
2
 + y

2
 + z

2
 = 1.  

Solution 

Answer: min ¥��ZKHQ�DOO�HTXDO�� 
Let us consider z to be fixed and focus on x and y. Put f(x, y, z) = xy/z + yz/x + zx/y. We 

have f(x, y, z) = p/z + z(1-z
2
)/p = (p + k

2
/p)/z, where p = xy, and k = z¥��-z

2
). Now p can take 

any value in the range 0 < p ����-z
2
)/2. The upper limit is achieved when x = y.  

We have p + k
2
/p = (p - k)

2
/p. For p ��N���S�- k) and 1/p are both decreasing functions of p, so 

p + k
2
/p is a decreasing function of p. Thus if p is restricted to the interval (0, h], then for k ��

h the minimum value of p + k
2
/p is 2k and occurs at p = k. For k ��K�WKH�PLQLPXP�LV�K���N2

/h 

and occurs at p = h.  

We have h = (1-z
2
)/2, k = z¥��-z

2
). So k ��K�LII�]�� ���¥���6R�LI�]�����¥���WKHQ�I�[��\��]�����N�]�

= 2¥��-z
2
) ����¥��-1/5) = 4/¥��!�¥��� 



If z > 1/¥���WKen the minimum of f(x, y, z) occurs at x = y and is x
2
/z + z + z = (1-z

2
)/(2z) + 2z 

= 3z/2 + 1/(2z) = (¥������]¥�������]¥�����¥��ZLWK�HTXDOLW\�DW�]� ���¥���DQG�KHQFH�[� �\� ���¥��
also).  

Problem 19  

A polygonal line connects two opposite vertices of a cube with side 2. Each segment of the 

line has length 3 and each vertex lies on the faces (or edges) of the cube. What is the smallest 

number of segments the line can have?  

Answer  6  

Solution  

 

Suppose one endpoint of a segment length 3 is at A. Evidently the other end could be at the 

edge midpoints B, C, D. It could also be on the circular arc connecting B and C (with center O 

and radius ¥����6LPLODUO\��LW�FRXOG�EH�RQ�DUFV�FRQQHFWLQJ�&�DQG�'��RU�%�DQG�'��:H�FODLP�WKDW�
if X is a point of one of these arcs other than its endpoints, then the only possible segment 

length 3 with an endpoint at X (and the other endpoint on the surface of the cube) is AX. wlog 

we can consider X to be on the arc BC. Take axes with origin O, so that A is (0,0,2). Suppose 

X is (a,b,0) and that the other endpoint of the segment is Y (x,y,z). Then XY
2
 = (x-a)

2
 + (y-b)

2
 

+ z
2
 = a

2
 + b

2
 + z

2
 - x(2a-x) - y(2b-y) = 5 + z

2
 - x(2a-x) - y(2b-y). But a, b > 1 since X is not 

an endpoint of the arc, so (2a-x) and (2b-y) are both positive. Hence -x(2a-x) - y(2b-y) ����
with equality iff x = y = 0. Similarly, z

2
 ����ZLWK�HTXDOLW\�LII�]� ����+HQFH�;<2

 ����ZLWK�
equality iff Y = A, which proves the claim.  

Thus if the next link of the polygonal line goes from A to anywhere except B, C, D, then it 

has to go back to A. So a minimal line must go to B, C, or D.  

Now from D the line can only go to A or O. For if it goes to Z (x,y,z), then we have DZ
2
 = (x-

2)
2
 + (y-2)

2
 + (z-1)

2
 ���2

 + 2
2
 + 1

2
 = 3

2
 with equality iff x = 0, y = 0 and z = 0 or 2.  

So let us take A as the starting point of the polygonal line. wlog the first segment is AD. Then 

the second segment must be DO (for a minimal line). Thus the best we can do with 2 

segments is to move along an edge. It takes three such moves to get to the opposite corner, 

and hence at least 6 segments. But it is obvious that it can be done with 6 segments.  

Problem 20  

Let m, n, k be positive integers with m ��Q�DQG���������������Q� �PN��3URYH�WKDW�WKH�QXPEHUV����
2, ... , n can be divided into k groups in such a way that the sum of the numbers in each group 

equals m.  

Solution  



Induction on n, then m. For n = 1, 2 there is nothing to prove. Assume the result is proved for 

< n and consider the case n. If n is odd, we have n = n-1 + 1 = n-2 + 2 = ... = (n+1)/2 + (n-

1)/2, so the result is true for m = n, k = (n+1)/2. If n is even, we have n + 1 = n-1 + 2 = ... = 

(n/2 + 1) + (n/2 - 1), so the result is true for m = n+1 and k = n/2. Now suppose it is true for < 

m.  

If 2n > m > n+1, then for m odd we can take the sums m = n + m-n = n-1 + m-n+1 = ... = 

(m+1)/2 + (m-1)/2. These use up the numbers m-n, m-n+1, ... , n and give some sums of m. 

By induction the remaining numbers 1, 2, ... , m-n-1 will give the remaining sums of m 

(obviously m > m-n-1). If m is even, we can take the sums m = n + m-n = n-1 + m-n+1 = ... = 

(m/2 + 1) + (m/2 - 1). That gives some sums of m and leaves us with the integers 1, 2, ... , m-

n-1 and m/2. But since m < 2(n+1), m/2 > m-n-1 and hence we can use the integers 1, 2, ... , 

m-n-1 to form sums of m/2. With the integer m/2 that gives us sums of m (we know that the 

parity must come out right because we know that the sum of all the remaining numbers is 

divisible by m).  

Finally, consider m ���Q��,Q�WKDW�FDVH�ZH�FDQ�IRUP�N�VXPV�RI��Q-2k+1: n + (n-2k+1), (n-1) + 

(n-2k+2), ... , (n-k+1) + (n-k). So we are home provided the remaining integers 1, 2, ... , n-2k 

can be used to form k sums of m-(2n-2k+1). That follows by induction provided that m-(2n-

2k+1) ��Q-2k, or m+4k-1 ���Q��RU�P����Q�Q����P�- 1 ���Q�RU��P-2n)(m-n-1) �����ZKLFK�LV�
true.  

Problem 21 

A polygonal line with a finite number of segments has all its vertices on a parabola. Any two 

adjacent segments make equal angles with the tangent to the parabola at their point of 

intersection. One end of the polygonal line is also on the axis of the parabola. Show that the 

other vertices of the polygonal line are all on the same side of the axis.  

Problem 22 
What is the smallest n for which there is a solution to sin x1 + sin x2 + ... + sin xn = 0, sin x1 + 

2 sin x2 + ... + n sin xn = 100?  

Solution 

Put x1 = x2 = ... = x10 = 3π/2, x11 = x12 = ... = x20 = π/2. Then sin x1 + sin x2 + ... + sin x20 = (-1 

- 1 - 1 - ... - 1) + (1 + 1 + ... + 1) = 0, and sin x1 + 2 sin x2 + ... + 20 sin x20 = - (1 + 2 + ... + 

10) + (11 + 12 + ... + 20) = 100. So there is a solution with n = 20. If there is a solution with n 

< 20, then there must be a solution for n = 19 (put any extra xi = 0). But then 100 = (sin x1 + 2 

sin x2 + ... + 19 sin x19 ) - 10 (sin x1 + sin x2 + ... + sin x19 ) = -9 sin x1 - 8 sin x2 - 7 sin x3 - ... 

- sin x9 + sin x11 + 2 sin x12 + ... + 9 sin x19. But | rhs | ���������������������������������������� �
90. Contradiction. So there is no solution for n < 20.  

Problem 23 

The sequence of integers an is given by a0 = 0, an = p(an-1), where p(x) is a polynomial whose 

coefficients are all positive integers. Show that for any two positive integers m, k with 

greatest common divisor d, the greatest common divisor of am and ak is ad.  

 

Problem 24 

Prove that for any tetrahedron the radius of the inscribed sphere r < ab/( 2(a + b) ), where a 

and b are the lengths of any pair of opposite edges.  



23rd ASU 1989 

Problem 1 

 

7 boys each went to a shop 3 times. Each pair met at the shop. Show that 3 must have been in 

the shop at the same time.  

 

Problem 2 

 

Can 77 blocks each 3 x 3 x 1 be assembled to form a 7 x 9 x 11 block?  

 

Problem 3 

 

The incircle of ABC touches AB at M. N is any point on the segment BC. Show that the 

incircles of AMN, BMN, ACN have a common tangent.  

 

Problem 4 

 

A positive integer n has exactly 12 positive divisors 1 = d1 < d2 < d3 < ... < d12 = n. Let m = d4 

- 1. We have dm = (d1 + d2 + d4) d8. Find n.  

 

Problem 5 

 

Eight pawns are placed on a chessboard, so that there is one in each row and column. Show 

that an even number of the pawns are on black squares.  

 

Problem 6 

 

ABC is a triangle. A', B', C' are points on the segments BC, CA, AB respectively. Angle 

B'A'C' = angle A and AC'/C'B = BA'/A'C = CB'/B'A. Show that ABC and A'B'C' are similar.  

 

Problem 7 

 

One bird lives in each of n bird-nests in a forest. The birds change nests, so that after the 

change there is again one bird in each nest. Also for any birds A, B, C, D (not necessarily 

distinct), if the distance AB < CD before the change, then AB > CD after the change. Find all 

possible values of n.  

 

Problem 8 

 

Show that the 120 five digit numbers which are permutations of 12345 can be divided into 

two sets with each set having the same sum of squares.  

 

Problem 9 

 

We are given 1998 normal coins, 1 heavy coin and 1 light coin, which all look the same. We 

wish to determine whether the average weight of the two abnormal coins is less than, equal to, 

or greater than the weight of a normal coin. Show how to do this using a balance 4 times or 

less.  

 



Problem 10 

 

A triangle with perimeter 1 has side lengths a, b, c. Show that a
2
 + b

2
 + c

2
 + 4abc < 1/2.  

 

Problem 11 

 

ABCD is a convex quadrilateral. X lies on the segment AB with AX/XB = m/n. Y lies on the 

segment CD with CY/YD = m/n. AY and DX intersect at P, and BY and CX intersect at Q. 

Show that area XQYP/area ABCD < mn/(m
2
 + mn + n

2
).  

 

Problem 12 

 

A 23 x 23 square is tiled with 1 x 1, 2 x 2 and 3 x 3 squares. What is the smallest possible 

number of 1 x 1 squares?  

 

Problem 13 

 

Do there exist two reals whose sum is rational, but the sum of their nth powers is irrational for 

all n > 1? Do there exist two reals whose sum is irrational, but the sum of whose nth powers is 

rational for all n > 1?  

 

Problem 14 

 

An insect is on a square ceiling side 1. The insect can jump to the midpoint of the segment 

joining it to any of the four corners of the ceiling. Show that in 8 jumps it can get to within 

1/100 of any chosen point on the ceiling.  

 

Problem 15 

 

ABCD has AB = CD, but AB not parallel to CD, and AD parallel to BC. The triangle is ABC 

is rotated about C to A'B'C. Show that the midpoints of BC, B'C and A'D are collinear.  

 

Problem 16 

 

Show that for each integer n > 0, there is a polygon with vertices at lattice points and all sides 

parallel to the axes, which can be dissected into 1 x 2 (and/or 2 x 1) rectangles in exactly n 

ways.  

 

Problem 17 

 

Find the smallest positive integer n for which we can find an integer m such that [10
n
/m] = 

1989.  

 

Problem 18 

 

ABC is a triangle. Points D, E, F are chosen on BC, CA, AB such that B is equidistant from D 

and F, and C is equidistant from D and E. Show that the circumcenter of AEF lies on the 

bisector of EDF.  

 

Problem 19 

 



S and S' are two intersecting spheres. The line BXB' is parallel to the line of centers, where B 

is a point on S, B' is a point on S' and X lies on both spheres. A is another point on S, and A' 

is another point on S' such that the line AA' has a point on both spheres. Show that the 

segments AB and A'B' have equal projections on the line AA'.  

 

Problem 20 

 

Two walkers are at the same altitude in a range of mountains. The path joining them is 

piecewise linear with all its vertices above the two walkers. Can they each walk along the 

path until they have changed places, so that at all times their altitudes are equal?  

 

Problem 21 

 

Find the least possible value of (x + y)(y + z) for positive reals satisfying (x + y + z) xyz = 1.  

 

Problem 22 

 

A polyhedron has an even number of edges Show that we can place an arrow on each edge so 

that each vertex has an even number of arrows pointing towards it (on adjacent edges).  

 

Problem 23 

 

N is the set of positive integers. Does there exist a function f: N :�1�VXFK�WKDW�I�Q���� �I��I�Q��
) + f( f(n+2) ) for all n.  

 

Problem 24 

 

A convex polygon is such that any segment dividing the polygon into two parts of equal area 

which has at least one end at a vertex has length < 1. Show that the area of the polygon is < 

�/4.  



24th ASU 1990 

Problem 1  

Show that x
4
 > x - 1/2 for all real x.  

Solution  

x
4
 - x + 1/2 = (x

2
 - 1/2)

2
 + (x - 1/2)

2
 �����We could only have equality if x

2
 = x = 1/2, which is 

impossible, so the inequality is strict.  

Problem 2  

The line joining the midpoints of two opposite sides of a convex quadrilateral makes equal 

angles with the diagonals. Show that the diagonals are equal.  

Solution  

 

Let L, M, N be the midpoints of BC, CD, DA. Assume that NL makes equal angles with AC 

and BD, so ∠NLM = ∠BEL = ∠AFN = ∠LNM, so LM = MN and hence BD = AC.  

Problem 3  

A graph has 30 points and each point has 6 edges. Find the total number of triples such that 

each pair of points is joined or each pair of points is not joined.  

Answer  

1990  

Solution  

There are 30· 29· 28/6 = 4060 triples in all. Let m be the number of triples with 0 or 3 edges, 

and let n be the number of triples with 1 or 2 edges. So m + n = 4060. Each point is joined to 

6 others, so it is in 6· 5/2 = 15 triples where it is joined to both the other points, and it is in 

23· 22/2 = 253 triples where it is not joined to either of the other points. So the total number of 

triples (a,b,c), where a is joined to b and c or not joined to b or c is 30(15+253) = 8040. This 

counts the m triples 3 times each, and the n triples once each, so 3m+n = 8040. Hence m = 

1990.  

Problem 4  



Does there exist a rectangle which can be dissected into 15 congruent polygons which are not 

rectangles? Can a square be dissected into 15 congruent polygons which are not rectangles?  

Answer  

yes, yes  

Solution  

 

By stretching vertically we get a square.  

Problem 5  

The point P lies inside the triangle ABC. A line is drawn through P parallel to each side of the 

triangle. The lines divide AB into three parts length c, c', c" (in that order), and BC into three 

parts length a, a', a" (in that order), and CA into three parts length b, b', b" (in that order). 

Show that abc = a'b'c' = a"b"c".  

Solution  

 

The three small triangles are similar, so a/a" = c'/c = b"/b' and a/a' = c'/c" = b"/b. Hence 

(a/a")(b/b") = (c'/c)(c"/c') = c"/c, so abc = a"b"c". Similarly, (a/a')(c/c') = (b"/b)(b'/b") = b'/b, 

so abc = a'b'c'.  

Problem 6  

Find three non-zero reals such that all quadratics with those numbers as coefficients have two 

distinct rational roots.  

Answer  1,2,-3  

Solution  

If a + b + c = 0, then 1 is a root of ax
2
 + bx + c, and so the other root is -b/a - 1, which is 

rational.  

Problem 7  



What is the largest possible value of | ... | |a1 - a2| - a3| - ... - a1990|, where a1, a2, ... , a1990 is a 

permutation of 1, 2, 3, ... , 1990?  

Answer  1989  

Solution  

Since |a-b| ��PD[�D�E���D�WULYLDO�LQGXFWLRQ�VKRZV�WKDW�WKH�H[SUHVVLRQ�GRHV�QRW�H[FHHG�PD[�D1, 

a2, ... , a1990) = 1990. But for integers |a-b| has the same parity as a+b, so a trivial induction 

shows that the expression has the same parity as a1 + a2 + ... + a1990 = 1990· 1991/2, which is 

odd. So it cannot exceed 1989. That can be attained by the permutation 2, 4, 5, 3, 6, 8, 9, 7, ... 

, 4k+2, 4k+4, 4k+5, 4k+3, ... , 1984+2, 1984+4, 1984+5, 1984+3, 1990, 1. Because we get 

successively 2, 3, 0; 6, 2, 7, 0; 10, 2, 11, 0; ... ; 4k+2, 2, 4k+3, 0; ... ; 1986, 2, 1987, 0; 1990, 

1989.  

Problem 8  

An equilateral triangle of side n is divided into n
2
 equilateral triangles of side 1. A path is 

drawn along the sides of the triangles which passes through each vertex just once. Prove that 

the path makes an acute angle at at least n vertices.  

Solution  

 

The diagram has 1 + 2 + ... + n = n(n+1)/2 upright triangles and 1 + 2 + ... + n-1 = n(n-1)/2 

upside down triangles. It has 1 + 2 + ... + n+1 = (n+1)(n+2)/2 vertices. So the path must be 

(n+1)(n+2)/2 - 1 = (n
2
+3n)/2 units long. Each unit length of the path is in just one upright 

triangle. The path cannot contain all three sides of a small triangle, or it would pass through a 

vertex more than once. So it must contain two sides of (n
2
+3n)/2 - n(n+1)/2 = n triangles. But 

if it contains two sides of a triangle, then it must make an acute angle at the vertex where they 

meet.  

Problem 9  

Can the squares of a 1990 x 1990 chessboard be colored black or white so that half the 

squares in each row and column are black and cells symmetric with respect to the center are 

of opposite color?  

Answer  no  

Solution  



 

Suppose it can be done. Divide the board into 4 quadrants. Suppose there are b black and 995
2
 

- b white squares in the top left quadrant. Then there are 995
2
 - b black and b white squares in 

the bottom right quadrant (by the symmetry property).  

If half the squares in each row are black, then half the squares in the first 995 rows are black, 

so the number of black squares in the top right quadrant is 995· 1990/2 - b = 995
2
 - b. So if 

half the squares in each column are black, then half the squares in the right-hand half of the 

board are black, so (995
2
 - b) + (995

2
 - b) = 995

2
, in other words, b = 995

2
/2, which is 

impossible.  

Problem 10  

Let x1, x2, ... , xn be positive reals with sum 1. Show that x1
2
/(x1 + x2) + x2

2
/(x2 + x3) + ... + xn-

1
2
/(xn-1 + xn) + xn

2
/(xn + x1) ������� 

Solution  

��[i
2
/(xi+xi+1) - ��[i+1

2
/(xi+xi+1) = ���[i - xi+1) = 0. Hence ��[i

2
/(xi+xi+1) = ½ ��

(xi
2
+xi+1

2
)/(xi+xi+1) ��¼ ���[i + xi+1) = ½.  

Problem 11  

ABCD is a convex quadrilateral. X is a point on the side AB. AC and DE intersect at Y. Show 

that the circumcircles of ABC, CDY and BDX have a common point.  

Problem 12 

 

Two grasshoppers sit at opposite ends of the interval [0, 1]. A finite number of points (greater 

than zero) in the interval are marked. A move is for a grasshopper to select a marked point 

and jump over it to the equidistant point the other side. This point must lie in the interval for 

the move to be allowed, but it does not have to be marked. What is the smallest n such that if 

each grasshopper makes n moves or less, then they end up with no marked points between 

them?  

 

Problem 13 

 

Find all integers n such that [n/1!] + [n/2!] + ... + [n/10!] = 1001.  

 

Problem 14 

 

A, B, C are adjacent vertices of a regular 2n-gon and D is the vertex opposite to B (so that BD 

passes through the center of the 2n-gon). X is a point on the side AB and Y is a point on the 

side BC so that angle XDY = �/2n. Show that DY bisects angle XYC.  

 



Problem 15 

 

A graph has n points and n(n-1)/2 edges. Each edge is colored with one of k colors so that 

there are no closed monochrome paths. What is the largest possible value of n (given k)?  

 

Problem 16 

 

Given a point X and n vectors xi with sum zero in the plane. For each permutation of the 

vectors we form a set of n points, by starting at X and adding the vectors in order. For 

example, with the original ordering we get X1 such that XX1 = x1, X2 such that X1X2 = x2 and 

so on. Show that for some permutation we can find two points Y, Z with angle YXZ = 60 deg, 

so that all the points lie inside or on the triangle XYZ.  

 

Problem 17 

 

Two unequal circles intersect at X and Y. Their common tangents intersect at Z. One of the 

tangents touches the circles at P and Q. Show that ZX is tangent to the circumcircle of PXQ.  

 

Problem 18 

 

Given 1990 piles of stones, containing 1, 2, 3, ... , 1990 stones. A move is to take an equal 

number of stones from one or more piles. How many moves are needed to take all the stones?  

 

Problem 19 

 

A quadratic polynomial p(x) has positive real coefficients with sum 1. Show that given any 

positive real numbers with product 1, the product of their values under p is at least 1.  

 

Problem 20 

 

A cube side 100 is divided into a million unit cubes with faces parallel to the large cube. The 

edges form a lattice. A prong is any three unit edges with a common vertex. Can we 

decompose the lattice into prongs with no common edges?  

Problem 21  

For which positive integers n is 3
2n+1

 - 2
2n+1

 - 6
n
 composite?  

Answer  all n ���� 
Solution  

3
2n+1

 - 2
2n+1

 - 6
n
 = (3

n
 - 2

n
)(3

n+1
 + 2

n+1
), so it is certainly composite for n > 1. For n = 1, it is 

27-8-6 = 13, which is prime.  

Problem 22 

 

If every altitude of a tetrahedron is at least 1, show that the shortest distance between each 

pair of opposite edges is more than 2.  

 

Problem 23 



 

A game is played in three moves. The first player picks any real number, then the second 

player makes it the coefficient of a cubic, except that the coefficient of x
3
 is already fixed at 1. 

Can the first player make his choices so that the final cubic has three distinct integer roots?  

 

Problem 24 

 

Given 2n genuine coins and 2n fake coins. The fake coins look the same as genuine coins but 

weigh less (but all fake coins have the same weight). Show how to identify each coin as 

genuine or fake using a balance at most 3n times.  

 



25th ASU 1991 

Problem 1  

Find all integers a, b, c, d such that ab - 2cd = 3, ac + bd = 1.  

Answer  

(a,b,c,d) = (1,3,1,0), (-1,-3,-1,0), (3,1,0,1), (-3,-1,0,-1)  

Solution  

11 = (ab - 2cd)
2
 + 2(ac + bd)

2
 = (a

2
 + 2d

2
)(b

2
 + 2c

2
), so we must have either (1) a

2
 + 2d

2
 = 1, 

b
2
 + 2c

2
 = 11, or (2) a

2
 + 2d

2
 = 11, b

2
 + 2c

2
 = 1.  

(1) gives a = ±1, d = 0, b = ±3, c = ±1. If a = 1 and d = 0, then ac + bd = 1 implies c = 1, and 

ab - 2cd = 3 implies b = 3. Similarly, if a = -1, then c = -1, and b = -3. Similarly, (2) gives 

(a,b,c,d) = (3,1,0,1), (-3,-1,0,-1).  

Problem 2  

n numbers are written on a blackboard. Someone then repeatedly erases two numbers and 

writes half their arithmetic mean instead, until only a single number remains. If all the 

original numbers were 1, show that the final number is not less than 1/n.  

Solution  

Put c = (a+b)/4. We have 1/c = 4/(a+b) ����D�����E��VR�HDFK�PRYH�GRHV�QRW�LQFUHDVH�WKH�VXP�RI�
the reciprocals of the numbers. If the final number is k, then the final sum of reciprocals is 

1/k. The initial sum is n, so 1/k ��Q��RU�N�����Q�� 
Problem 3  

Four lines in the plane intersect in six points. Each line is thus divided into two segments and 

two rays. Is it possible for the eight segments to have lengths 1, 2, 3, ... , 8? Can the lengths of 

the eight segments be eight distinct integers?  

Answer  no, yes  

Solution  

 

If a triangle has integer sides, one of which is 1, then it must be isosceles. So the only 

candidates for the segment length 1 are AB and AE. wlog AB = 1, so BF = AF. Hence cos 



DFE = 1 - 1/(2 AF
2
). Hence ED

2
 = DF

2
 + EF

2
 + 2DF· EF(1 - 1/2AF

2
) = DF

2
 + EF

2
 + 2DF· EF - 

DF· EF/AF
2
. But the first three terms are integers and the last term is < 1. Contradiction. 

(Careful, looking at the figure one is tempted to conclude that ED < AB, but a more realistic 

figure shows that is false.).  

 

Building on the 3,4,5 triangle we get the figure above.  

Problem 4  

A lottery ticket has 50 cells into which one must put a permutation of 1, 2, 3, ... , 50. Any 

ticket with at least one cell matching the winning permutation wins a prize. How many tickets 

are needed to be sure of winning a prize?  

Answer  26  

Solution  

Take the tickets:  

 1  2  3  ... 25 26 27 ... 50 

 2  3  4  ... 26  1 27 ... 50 

 3  4  5  ...  1  2 27 ... 50 

 ... 

26  1  2  ... 24 25 27 ... 50 

Each of the numbers 1, 2, ... , 26 occurs in each of the places 1, 2, ... , 26, but the winning 

ticket cannot have all these numbers in the last 24 places. So there must be at least one match. 

So 26 tickets suffice.  

Now given any 25 tickets we show that they could all fail to match the winning permutation. 

In other words, we construct a permutation which fails to match any of the 25 tickets in any 

cell. We place the numbers 1, 2, 3, ... , 50 in turn. We start by placing 1. Clearly at most 25 

places are ruled out, so we can place the 1. Now suppose we have placed 1, 2, ... , a. There 

must be at least 25 places where a+1 is not ruled out. If any of them are still unoccupied, then 

we are done. If not, they must be occupied by numbers x1, x2, ... , x25 already placed. Take any 

empty place. 26 numbers cannot be ruled out for it, and we know that a+1 is ruled out, so at 

least one of the xi is not ruled out. So we can move that xi to it and then place a+1 where the xi 

came from.  

Problem 5  

Find unequal integers m, n such that mn + n and mn + m are both squares. Can you find such 

integers between 988 and 1991?  

Answer  no  



Solution  

For example, 49 = 7
2
, 50 = 2· 5

2
, 8 = 2· 2

2
, 9 = 3

2
, so 49· 8 + 8 = 20

2
, 49· 8 + 49 = 21

2
.  

wlog m < n. Then mn + m = (m+h)
2
, mn + n = (m+k)

2
, with k > h. So n - m = (m+k)

2
 - (m+h)

2
 

= (k-h)(2m+k+h) > 2m, so n > 3m. Hence we cannot have m and n between 988 and 1991.  

Problem 6  

ABCD is a rectangle. Points K, L, M, N are chosen on AB, BC, CD, DA respectively so that 

KL is parallel to MN, and KM is perpendicular to LN. Show that the intersection of KM and 

LN lies on BD.  

Solution  

 

Let LN and KM meet at O. ∠NOM = ∠NDM = 90
o
, so OMDN is cyclic. Hence ∠NOD = 

∠NMD. Similarly, BLOK is cyclic and ∠LOB = ∠LKB. But NM is parallel to LK and AB is 

parallel to CD, so ∠LKB = ∠NMD. Hence ∠NOD = ∠LOB, so DOB is a straight line.  

Problem 7  

An investigator works out that he needs to ask at most 91 questions on the basis that all the 

answers will be yes or no and all will be true. The questions may depend upon the earlier 

answers. Show that he can make do with 105 questions if at most one answer could be a lie.  

Solution  

Suppose he asks n questions as usual, and then asks "did you lie to any of the last n 

questions?" If the reply is a truthful no, then the n answers were correct. If the reply is a lying 

no, then the n answers were still correct. On the other hand if the answer is yes, then the n 

answers might have been correct and might not. However, a lie has certainly been told, so all 

future answers must be truthful and so he could ask the n questions again.  

91 = 7· 13, so the obvious candidates for n are 7 and 13. If we take n = 7, then the worst case is 

13 check questions and 7 repeat questions. That does not work because he needs 20 extra 

questions and only has 14. A little thought suggests reducing n each time. So the first batch of 

questions is 13, followed by a check question. If the check answer is yes, then he knows a lie 

has been told and asks the 13 questions again. No further check questions are needed, and he 

has used exactly 14 extra questions. If the check answer is no, then the lie may not have been 

told, so the next batch of questions is 12, followed by a check question, and so on. That 

allows him to ask 13+12+...+1 = 91 questions. If he gets a yes to the check question after the 

batch of i, then he ignores the answers to that batch and asks them again, thus asking a total of 

14 extra questions, but thereafter asks no check questions.  



Problem 8  

A minus sign is placed on one square of a 5 x 5 board and plus signs are placed on the 

remaining squares. A move is to select a 2 x 2, 3 x 3, 4 x 4 or 5 x 5 square and change all the 

signs in it. Which initial positions allow a series of moves to change all the signs to plus?  

Answer  only the central square  

Solution  

 

We take the 5x5 square, the two yellow 3x3 squares, which overlap at the center, and the two 

blue 2x2 squares. Then every square except the center square is changed an even number of 

times. So this works if the central square was selected.  

 

It is easy to check that any 2x2, 3x3, 4x4 or 5x5 square has an even number of green squares, 

so if the selected square was green, and we change it an odd number of times, then some other 

green square must also be changed an odd number of times and hence end up with a minus. 

So if all the squares end up plus, then the selected square was not green, so it must belong to 

the central white column. Similarly, it must belong to the central row and hence must be the 

center square.  

Problem 9  

Show that (x + y + z)
2
/3 ��[¥�\]����\¥�][����]¥�[\��IRU�DOO�QRQ-negative reals x, y, z.  

Solution  

By AM/GM xy + yz ���[¥�\]���$Gding the similar results gives 2(xy + yz + zx) ����[¥�\]����
y¥�][����]¥�[\����� 
By AM/GM x

2
 + x

2
 + y

2
 + z

2
 ���[¥�\]���$GGLQJ�WKH�VLPLODU�UHVXOWV�JLYHV�[2

 + y
2
 + z

2
 ��[¥�\]��

+ y¥�][����]¥�[\���$GGLQJ�WKH�ILUVW�UHVXOW�JLYHV��[���\���]�2/3 ��[¥�\]����\¥�][��� z¥�[\��� 
Problem 10  

Does there exist a triangle in which two sides are integer multiples of the median to that side? 

Does there exist a triangle in which every side is an integer multiple of the median to that 

side?  

Answer  yes, no  



Solution  

The obvious approach is to make the triangle isosceles. So suppose the sides are a, b, b. Then 

the length m of a median to one of the sides length b satisfies: a
2
 + b

2
 = 2m

2
 + b

2
/2. The 

simplest possbility is to take m = b, so a
2
 = 3b

2
/2. Thus if b = 2, a = ¥��� 

Suppose we have a triangle ABC, with medians AD, BE, CF, and BC/AD, CA/BE, AB/CF all 

integers. If AD = BC/2, then ∠A = 90
o
. If AD < BC/2, then ∠A is obtuse, so at least two of 

the medians must be equal to the corresponding sides. So wlog we have b
2
 + c

2
 = 5a

2
/2, c

2
 + 

a
2
 = 5b

2
/2. Subtracting, b

2
 - a

2
 = (5/2)(a

2
 - b

2
), so a = b. Hence c/a = ¥�������6R�WKH�WKLUG�

median has length m where a
2
 + a

2
 = (3/4)a

2
 + 2m

2
, so a/m = ¥�������ZKLFK�LV�QRW�LQWHJUDO��

Contradiction.  

Problem 11  

The numbers 1, 2, 3, ... , n are written on a blackboard (where n ������$�PRYH�LV�WR�UHSODFe 

two numbers by their sum and non-negative difference. A series of moves makes all the 

numbers equal k. Find all possible k.  

Answer  all powers of 2 ��Q� 
Solution  

If a prime p divides a+b and a-b, then it divides 2a and 2b, so if p is odd, it divides a and b. 

Thus if an odd prime p divides k, then it must divide all the original numbers including 1. So 

k must be a power of 2. Note that k, k :�����N�:��N���N�DQG�N��N��N�:����N���N�:�N��N���N�:�
0, 2k, 2k :��N���N���N��6R��E\�D�WULYLDO�LQGXFWLRQ��LI�ZH�JHW�all the numbers equal to k, then 

we can get them all to equal 2k. Finally, note that we can never decrease the largest number 

on the board, so the answer must be all powers of 2 greater than some minimum, which must 

be at least n.  

We use induction to show that if 2
m

 is the smallest power of 2 which is ��Q��WKHQ�ZH�FDQ�JHW�
all numbers equal to 2

m
. Note that 0, k :�N��N�:�����N��VR�ZLWK�D�]HUR�ZH�FDQ�GRXEOH�HDFK�

member of any set of numbers as often as we wish and finally convert the zero. For example, 

we could convert 0, 2, 4 to 8, 8, 8. It is convenient to take the induction hypothesis as Sn: we 

can convert 1, 2, ... , n to 0, 2
k
, 2

k
, ... , 2

k
, where 2

k
 is the smallest power of 2 which is ��Q�� 

We show first that Sn is true for n �����)RU�Q� ����ZH�WDNH�����:������WKHn 2,2 :������)RU�Q� �
4, we ignore the 4 and use the case n = 3. For n = 5, we take 3,5 :������7KHQ�����:������7KHQ�
we use the 0 to convert the remaining powers of 2 (1,4,4) to 8. For n = 6, we take 2,6 :�����
and 3,5 :������WKHQ�����:������)LQDOO\��ZH�XVH�Whe 0 to convert 1 and 2 to 8. For n = 7, we 

take 1,7 :������WKHQ�����:������WKHQ�����:������WKHQ�����:������WKHQ�����:�����DQG�ILQDOO\�
use the 0 to convert the remaining 4 to 8.  

Let n = 2
a
 + b, where 0 < b ���a

 and assume Sm is true for all m < n. If b = 1, we convert the 

pair 2
a
-1, 2

a
+1 to 2, 2

a+1
. We have 2

a
-2 > 2, so by induction we can convert 1, 2, ... , 2

a
-2 to 0, 

2
a
, ... , 2

a
. Now all the numbers except 0 are powers of 2 and we can use the 0 to convert them 

each to 2
a+1

. Similarly, if b = 2, we convert 2
a
-1, 2

a
+1 to 2, 2

a+1
 and 2

a
-2, 2

a
+2 to 4, 2

a+1
 and 

then proceed as in the previous case. If 3 ��E����a
, then we start by converting the pairs (2

a
 + 

b, 2
a
 - b), (2

a
 + b-1, 2

a
 - b+1), (2

a
 + b-2, 2

a
 - b+2), ... , (2

a
 + 1, 2

a
 - 1). That gives some 2

a+1
s 

and 2, 4, ... , 2b. Now by Sb we can convert 2, 4, ... , 2b to 0, 2
a+1

, ... , 2
a+1

. The remaining 



numbers 1, 2, ... , 2
a
-b-1 can either be converted to powers of 2 by S

2a-b-1
 (if 2

a
-b-1 �����RU�DUH�

already powers of 2. Finally we use the 0 to bring all powers of 2 up to 2
a+1

. In the case b = 2
a
, 

we ignore 2
a
 + b (= 2

a+1
) and use the case b-1 to convert the others.  

Problem 12  

The figure below is cut along the lines into polygons (which need not be convex). No polygon 

contains a 2 x 2 square. What is the smallest possible number of polygons?  

 

Answer  12  

Solution  

We can clearly cut the polygon into 12 strips width 1, so the smallest number is ������ 
There are 84 unit squares in the figure. Each cut along the edge of a unit square not already 

cut (and not on the boundary) increases the number of pieces by at most 1. So it is sufficient 

to show that at most 72 edges remain uncut (after cutting into polygons). Because then cutting 

the remaining edges would increase the total number of pieces by at most 72. But the final 

number of pieces is 84, so we would have to start with at least 12.  

Initially, there are 144 edges, so we have to show that at least 72 of them are cut to make the 

polygons. An interior vertex has 4 edges. At least two of them must be cut, or the vertex 

would be the center of an uncut 2 x 2 square. If we take alternate interior vertices (36 in total, 

as shown below), then each has at least two cut edges, so in total at least 72 edges are cut to 

make the polygons.  

Problem 13  

ABC is an acute-angled triangle with circumcenter O. The circumcircle of ABO intersects AC 

and BC at M and N. Show that the circumradii of ABO and MNC are the same.  

Solution  

It is sufficient to show that ∠MBN = ∠C. But ∠MBN = ∠MBO + ∠OBN = ∠MAO + 

∠OBN = ∠MCO + ∠OCN = ∠C.  

Problem 14 

 

A polygon can be transformed into a new polygon by making a straight cut, which creates two 

new pieces each with a new edge. One piece is then turned over and the two new edges are 

reattached. Can repeated transformations of this type turn a square into a triangle?  



 

Problem 15 

 

An h x k minor of an n x n table is the hk cells which lie in h rows and k columns. The 

semiperimeter of the minor is h + k. A number of minors each with semiperimeter at least n 

together include all the cells on the main diagonal. Show that they include at least half the 

cells in the table.  

 

Problem 16 

 

(1) r1, r2, ... , r100, c1, c2, ... , c100 are distinct reals. The number ri + cj is written in position i, j 

of a 100 x 100 array. The product of the numbers in each column is 1. Show that the product 

of the numbers in each row is -1. (2) r1, r2, ... , r2n, c1, c2, ... , c2n are distinct reals. The number 

ri + cj is written in position i, j of a 2n x 2n array. The product of the numbers in each column 

is the same. Show that the product of the numbers in each row is also the same.  

 

Problem 17 

 

A sequence of positive integers is constructed as follows. If the last digit of an is greater than 

5, then an+1 is 9an. If the last digit of an is 5 or less and an has more than one digit, then an+1 is 

obtained from an by deleting the last digit. If an has only one digit, which is 5 or less, then the 

sequence terminates. Can we choose the first member of the sequence so that it does not 

terminate?  

Problem 18  

p(x) is the cubic x
3
 - 3x

2
 + 5x. If h is a real root of p(x) = 1 and k is a real root of p(x) = 5, 

find h + k.  

Solution  

Put y = 2-h, where p(h) = 1, then (2-y)
3
 - 3(2-y)

2
 + 5(2-y) - 1 = 0, so 8-12y+6y

2
-y

3
 - 12+12y-

3y
2
 + 10-5y - 1 = 0, or y

3
 - 3y

2
 + 5y = 5, or p(y) = 5. So if h is a root of p(h) = 1, then there is 

a root k of p(k) = 5 such that h+k = 2. To complete the proof we have to show that p(x) = 5 

has only one real root.  

But x
3
 - 3x

2
 + 5x = (x-1)

3
 + 2(x-1) + 3 which is a strictly increasing function of x-1 and hence 

of x. So p(x) = k has only one real root.  

Problem 19 

 
The chords AB and CD of a sphere intersect at X. A, C and X are equidistant from a point Y 

on the sphere. Show that BD and XY are perpendicular.  

 

Problem 20 

 

Do there exist 4 vectors in the plane so that none is a multiple of another, but the sum of each 

pair is perpendicular to the sum of the other two? Do there exist 91 non-zero vectors in the 

plane such that the sum of any 19 is perpendicular to the sum of the others?  

 

Problem 21 



 

ABCD is a square. The points X on the side AB and Y on the side AD are such that AX· AY = 

2 BX· DY. The lines CX and CY meet the diagonal BD in two points. Show that these points 

lie on the circumcircle of AXY.  

 

Problem 22 

 

X is a set with 100 members. What is the smallest number of subsets of X such that every pair 

of elements belongs to at least one subset and no subset has more than 50 members? What is 

the smallest number if we also require that the union of any two subsets has at most 80 

members?  

 

Problem 23 

 

The real numbers x1, x2, ... , x1991 satisfy |x1 - x2| + |x2 - x3| + ... + |x1990 - x1991| = 1991. What is 

the maximum possible value of |s1 - s2| + |s2 - s3| + ... + |s1990 - s1991|, where sn = (x1 + x2 + ... + 

xn)/n?  



1st CIS 1992 

Problem 1  

Show that x
4
 + y

4
 + z

2
 ��[\]�¥��IRU�DOO�SRVLWLYH�UHDOV�[��\��]�� 

Solution  

By AM/GM x
4
 + y

4
 ���[2

y
2
. Then by AM/GM again 2x

2
y

2
 + z

2
 ���¥��[\]�� 

Problem 2  

E is a point on the diagonal BD of the square ABCD. Show that the points A, E and the 

circumcenters of ABE and ADE form a square.  

Solution  

 

Let O, O' be the circumcenters of ABE, ADE respectively. Then OA = OE and ∠AOB = 2 

∠ABE = 90
o
. Similarly, O'A = O'E and ∠AO'E = 2 ∠ADE = 90

o
. Hence AOEO' is a square.  

Problem 3  

A country contains n cities and some towns. There is at most one road between each pair of 

towns and at most one road between each town and each city, but all the towns and cities are 

connected, directly or indirectly. We call a route between a city and a town a gold route if 

there is no other route between them which passes through fewer towns. Show that we can 

divide the towns and cities between n republics, so that each belongs to just one republic, each 

republic has just one city, and each republic contains all the towns on at least one of the gold 

routes between each of its towns and its city.  

Solution  

Let the cities be C1, C2, ... , Cn. For each town T take the shortest path from T to a city. If 

there are shortest paths to more than one city, then take one to the city with the smallest index. 

We assign T to that city. Now suppose T is assigned to Ci. Let G be a gold route from T to Ci 

length n. Suppose T' is another town on G. Note that T' cannot be a city, or T would be 

assigned to T', not Ci. Suppose the part of G between T' and Ci has length k. There cannot be 

a path from T' to any city length < k, otherwise we would have a path from T to a city shorter 

than n. Nor can there be a path length k from T' to Cj with j < i, otherwise there would be a 



path length n from T to Cj and T should be assigned to Cj. Hence T' is also assigned to Ci, as 

required.  

Problem 4  

Given an infinite sheet of square ruled paper. Some of the squares contain a piece. A move 

consists of a piece jumping over a piece on a neighbouring square (which shares a side) onto 

an empty square and removing the piece jumped over. Initially, there are no pieces except in 

an m x n rectangle (m, n > 1) which has a piece on each square. What is the smallest number 

of pieces that can be left after a series of moves?  

Answer  

2 if mn is a multiple of 3, 1 otherwise  

Solution  

Obviously 1 x 2 and 2 x 2 can be reduced to 1. Obviously 3 x 2 can be reduced to 2. Note that 

pieces on the four X squares can be reduced to a single X provided that the square Y is empty 

(call this the L move):  

. . Y   . . X   . . X   . . . 

X X X   X X .   . . X   . . . 

. . X   . . .   . . .   . . X 

Now given 4 x 2 we can reduce it to 1 x 2:  
. . . .   X . . .   X X . .   . . X . then the L move 

X X X X   . X X X   . . X X   . . X X 

X X X X   . X X X   . . X X   . . X X 

Thus given m x 2 with m > 3 we can reduce it to (m-3) x 2 and hence to one of 1 x 2, 2 x 2, 3 

x 2. Note also that we are removing 3 pieces at each stage so we end up with 1 piece unless m 

is a multiple of 3.  

Given m x 3 with m > 1 we can use the L move to reduce it to (m-1) x 3. Hence by a series of 

L moves we get to 3 x 1 and hence to 2 pieces.  

Now given m x n with m ����DQG�Q������ZH�FDQ�WUHDW�LW�DV�D���[�Q�UHFWDQJOH�DGMDFHQW�WR�DQ��P-

3) x n rectangle. We can now reduce the 3 x n to 3 x 3 using L moves (with the L upright). 

We can then eliminate the 3 x 3 using L moves (with the L horizontal). Note that we have not 

changed mn mod 3.  

This deals with all cases, except that we do not reduce 4 x 4 to 1 x 4. Instead we use L moves 

as follows:  

X X X X   X X X X   X X X X   X X X .   X X . .   X . . . 

X X X X   . X X X   . X X X   . X X .   . X . .   . . . . 

X X X X   . X X X   . X X X   . X X .   . X . .   . . . . 

X X X X   . X X X   . . . .   . . . .   . . . .   . . . . 

So we have shown that if mn is not a multiple of 3 we can always reduce to a single piece. 

Clearly we cannot do better than that. We have also shown how to reduce to two pieces if mn 

is a multiple of 3. It remains to show that we cannot do better. Color the board with 3 colors 

in the usual way:  
... 

...1 2 3 1 2 3 ... 



...2 3 1 2 3 1 ... 

...3 1 2 3 1 2 ... 

... 

Then any move changes the parity of the number of pieces on each color. If mn is a multiple 

of three, then these three numbers start off equal and hence with equal parity. But a single 

piece has one number odd and the other two even. So we cannot get to a single piece.  

Problem 5  

Does there exist a 4-digit integer which cannot be changed into a multiple of 1992 by 

changing 3 of its digits?  

Answer  Yes, eg 2251  

Solution  

The only 4 digit multiples of 1992 are: 1992, 3984, 5976, 7968, 9960. All have first digit odd, 

second digit 9, third digit > 5 and last digit even, so it is easy to find a number which has all 

digits different from all of them.  

Problem 6  

A and B lie on a circle. P lies on the minor arc AB. Q and R (distinct from P) also lie on the 

circle, so that P and Q are equidistant from A, and P and R are equidistant from B. Show that 

the intersection of AR and BQ is the reflection of P in AB.  

Solution  

 

Let AR and BQ meet at X. Since arcs QA and AP are equal, we have ∠ABX = ∠ABP. 

Similarly, ∠BAX = ∠BAP. Side AB is common, so triangles ABX and ABP are congruent. 

Hence X is the reflection of P.  

Problem 7  

Find all real x, y such that (1 + x)(1 + x
2
)(1 + x

4
) = 1+ y

7
, (1 + y)(1 + y

2
)(1 + y

4
) = 1+ x

7
?  

Answer  (x,y) = (0,0) or (-1,-1)  

Solution  

If x = y, then clearly x �����VR�ZH�KDYH���-x
8
) = (1-x)(1+x

7
) = 1-x

8
-x+x

7
, so x = 0 or x

6
 = 1, 

whose only real root (apart from the x = 1 we have discarded) is x = -1. That gives the two 

solutions above. So assume x ��\��ZORJ�[�!�\�� 



So (1+x) > (1+y) and (1+x
7
) > (1+y

7
). So we must have (1+x

2
)(1+x

4
) < (1+y

2
)(1+y

4
) and 

hence y < 0. If x > 0, then (1 + x)(1 + x
2
)(1 + x

4
) > 1 > 1+y

7
, so x < 0 also.  

Multiplying the first equ by (1-x) and the second by (1-y) and subtracting: y
8
 - x

8
 = (y-x) + (y

7
 

- x
7
) + xy(x

6
 - y

6
). But lhs > 0 and each term on rhs < 0. Contradiction. So there are no more 

solutions.  

Problem 8  

An m x n rectangle is divided into mn unit squares by lines parallel to its sides. A gnomon is 

the figure of three unit squares formed by deleting one unit square from a 2 x 2 square. For 

what m, n can we divide the rectangle into gnomons so that no two gnomons form a rectangle 

and no vertex is in four gnomons?  

Answer  None  

Solution  

Suppose an m x n rectangle could be tiled as described. We will establish a contradiction by 

counting gnomon vertices.  

A gnomon cannot touch a side of the rectangle along a length 1, because then the gnomon that 

fitted under the overhang would form a rectangle with the first. So each gnomon along a sides 

of the rectangle touches it along a length 2. So m and n must be even. Put m = 2M, n = 2N. 

There are (2M-1)(2N-1) gridpoints inside the rectangle. None of these points can have 4 

gnomon vertices. But it is easy to see that they cannot have 3, because the angle inside a 

gnomon at vertex is either 90
o
 or 270

o
. So they have at most 2 gnomon vertices each, or 

2(2M-1)(2N-1) in total. There is only one gnomon at each of the 4 corners, or 4 gnomon 

vertices in total. Along the sides there are alternately 2 and 0, so at most 4(M-1) + 4(N-1) in 

total, giving a grand total of �����0-1)(2N-1) + 4(M-1) + 4(N-1) + 4 = 8MN - 2 < 8MN. On 

the other hand, there are 4MN/3 gnomons each with 6 vertices, a total of 8MN. Contradiction.  

Problem 9  

Show that for any real numbers x, y > 1, we have x
2
/(y - 1) + y

2
/(x - 1) ����� 

Solution  

We have (x-2)2 �����VR�[������[-1). Hence x/¥�[-1) �����1RZ�E\�$0�*0��[2
/(y - 1) + y

2
/(x - 

1) ���[\�¥��[-1)(y-1)). But rhs ���Â �Â ��� 
Problem 10  

Show that if 15 numbers lie between 2 and 1992 and each pair is coprime, then at least one is 

prime.  

Solution  

Suppose not. Then since 452 = 2025 > 1992, each of the numbers must have a prime factor ��
43. But there are only 14 such primes: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43. Hence 



there must be two numbers with the same prime factor and they cannot be coprime. 

Contradiction.  

Problem 11  

A cinema has its seats arranged in n rows x m columns. It sold mn tickets but sold some seats 

more than once. The usher managed to allocate seats so that every ticket holder was in the 

correct row or column. Show that he could have allocated seats so that every ticket holder was 

in the correct row or column and at least one person was in the correct seat. What is the 

maximum k such that he could have always put every ticket holder in the correct row or 

column and at least k people in the correct seat?  

Answer  1  

Solution  

Suppose it is not possible. Take any person, label him P1. Suppose he should be in seat S1. If 

seat S1 is vacant, then we can just move him to S1, so S1 must be occupied by someone. Call 

him P2. Continue, so that we get a sequence P1, P2, P3, ... where Pi should be in the seat 

occupied by Pi+1. Since there are only finitely many people, we must get a repetition. Suppose 

the first repetition is Pi = Pi+j. Then we can move Pi to Pi+1, Pi+2 to Pi+3, ... , Pi+j-1 to Pi and then 

these j people will all be in their correct seats. Contradiction. So it is possible.  

Suppose that m+n-1 tickets to seat (1,1) have been sold and n-1 seats to each of (2,1), (3,1), ... 

, (m,1). Then to comply with the conditions the people with tickets to (1,1) must occupy the 

whole of the first row and first column. Hence those with tickets to (k,1) for k > 1 must 

occupy the whole of row k apart from (k,1). Thus the seating is completely determined and 

only one person is in the correct seat - namely the person in (1,1).  

Problem 12  

Circles C and C' intersect at O and X. A circle center O meets C at Q and R and meets C' at P 

and S. PR and QS meet at Y distinct from X. Show that ∠YXO = 90
o
.  

Solution  

We show first that YRSX is cyclic.  

 

It is sufficient to show that ∠RYS = ∠RXS. We have ∠RYS = ∠PRQ - ∠RQY = ∠PSQ - 

∠RQY = ∠OSQ - ∠OSP - ∠RQY = ∠OQS - ∠RQY - ∠OSP = ∠OQR - ∠OSP. But ∠RXS 



= ∠RXO - ∠OXS = ∠OQR - ∠OXS = ∠OQR - ∠OPS = ∠OQR - ∠OSP. So YRSX is 

cyclic.  

Hence ∠YXO = ∠YXS + ∠SXO = ∠PRS + ∠SXO = ∠PRS + ∠SPO = ½∠POS + ∠SPO = 

90
o
.  

Problem 13  

Define the sequence a1 = 1, a2, a3, ... by an+1 = a1
2
 + a2 

2
 + a3

2
 + ... + an

2
 + n. Show that 1 is the 

only square in the sequence.  

Solution  

Obviously all an are positive integers. So we have an
2
 < an+1 = an

2
 + (a1

2
 + ... + an-1

2
 + n-1) + 1 

= an
2
 + an + 1 < (an + 1)

2
. So an+1 lies between two consecutive squares and hence cannot be a 

square  

Problem 14  

ABCD is a parallelogram. The excircle of ABC opposite A has center E and touches the line 

AB at X. The excircle of ADC opposite A has center F and touches the line AD at Y. The line 

FC meets the line AB at W, and the line EC meets the line AD at Z. Show that WX = YZ.  

Solution  

 

We have the familiar result that AY is perimeter ADC (chase round using the fact that the two 

tangents from the same point have the same length). Similarly, AX = perimeter ABC = 

perimeter ADC. So AX = AY (*)  

AE is parallel to the bisector of ACD, which is perpendicular to CF. So CW is perpendicular 

to AE. Hence AW = AC. Similarly AZ = AC. Hence AW = AZ. Subtracting from (*) gives 

result.  

Problem 15  



Half the cells of a 2m x n board are colored black and the other half are colored white. The 

cells at the opposite ends of the main diagonal are different colors. The center of each black 

cell is connected to the center of every other black cell by a straight line segment, and 

similarly for the white cells. Show that we can place an arrow on each segment so that it 

becomes a vector and the vectors sum to zero.  

Solution  

Suppose we have an odd number of arbitrary points A1, A2, ... , A2k+1 then we claim that if we 

take the vector AiAj for i < j and j-i odd and the vector AjAi for i < j and j-i even, then we get 

the sum of the vectors zero. We prove the claim by induction. It is true for k=3 because we 

have A1A2 + A2A3 + A3A1 = 0. So suppose it is true for 2k-1. The additional vectors when we 

move to 2k+1 are A2kA2k+1, ��$2i+1A2k, ��$2iA2k+1, ��$2kA2i and ��$2k+1A2i+1. But A2i+1A2k + 

A2kA2i + A2iA2k+1 + A2k+1A2i+1 = A2i+1A2i + A2iA2i+1 = 0, leaving the three terms A2k+1A1, 

A1A2k and A2kA2k+1 which also sum to zero. Hence the result is true for 2k+1 and hence for all 

odd numbers. Thus for mn odd we can number the centers of the black squares in an arbitrary 

fashion, use the rule given for the arrow directions and then the vectors for the black squares 

will sum to zero. Similarly for the white squares.  

However, the same general result is not true for an even number of points. So we need 

something else for mn even. Let B be the center of the black square at one end of the main 

diagonal and W be the center of the white square at the other end. Let B1, B2, ... , B2k+1 be the 

centers of the other black squares and W1, W2, ... , W2k+1 the centers of the other white 

squares. Take vectors BBi, WWi and for BiBj and WiWj take the same rule as before (if i < j 

take BiBj if j-i is odd and BjBi if j-i is even, similarly for WiWj). Now consider square centers 

X, Y which are symmetric wrt the center of the rectangle (in other words the center of the 

rectangle is the midpoint of XY). The pairs (X,Y) are of three types: opposite colors, both 

white and both black. The number of both white pairs must equal the number of both black 

pairs since the number of white and black squares is equal. For the first type we have BX + 

WY = 0. For the second type we have WX + WY = WB and for the third type we have BX + 

BY = BW. Since they are equal in number the second and third type sum to zero.  

Problem 16  

A graph has 17 points and each point has 4 edges. Show that there are two points which are 

not joined and which are not both joined to the same point.  

Solution  

Suppose not. We will obtain a contradiction.  

Take any point A. Suppose the four edges at A are BA, CA, DA, EA. If there is any other 

point X not joined to any of A, B, C, D, E then with A it forms the required pair of points. 

Suppose the three other points joined to B (apart from A) are B1, B2, B3. Similarly Ci, Di and 

Ei. Then all 12 points Bi, Ci, Di, Ei must be distinct from each other and from A, B, C, D, E or 

there would be a point X. Thus, in particular, A is not part of a triangle. But A was arbitrary, 

so the graph has no triangles. Hence there cannot be an edge BiBj (or CiCj, DiDj, EiEj).  

We have 4 edges AX, 12 edges BX, CX etc, and 17· 4/2 = 34 edges in all, so there must be 18 

edges BiCj etc. Each gives a different cycle length 5 through A (eg ABBiCjC). The same 



argument shows that every point must lie on 18 cycles length 5. Hence there must be a total of 

17· 18/5 such cycles. Contradiction.  

Problem 17  

Let f(x) = a cos(x + 1) + b cos(x + 2) + c cos(x + 3), where a, b, c are real. Given that f(x) has 

at least two zeros in the interval (0, �), find all its real zeros.  

Answer  f(x) must be identically zero.  

Solution  

We have f(x) = (a cos 1 + b cos 2 + c cos 3)cos x - (a sin 1 + b sin 2 + c sin 3)sin x. This can 

be written as d cos(x + �) for some d, �. But if d �����WKHQ�WKLV�KDV�RQO\�RQH�]HUR�LQ�WKH�LQWHUYDO�
(0, �). Hence d = 0.  

Problem 18  

A plane intersects a sphere in a circle C. The points A and B lie on the sphere on opposite 

sides of the plane. The line joining A to the center of the sphere is normal to the plane. 

Another plane p intersects the segment AB and meets C at P and Q. Show that BP· BQ is 

independent of the choice of p.  

Solution  

All points of the circle C are equidistant from A. The plane p also meets the sphere in a circle 

C'. Let C" be the circle center A radius AP. Provided that AB is not a diameter of C' one of 

the lines BP, BQ will meet C" again at some point R (see diagram). Now since arcs AP, AQ 

are equal, so are the angles ABP, ABQ. Hence triangles ABP, ABQ are congruent and so BP 

= BR. Hence BP· BQ = BR· BQ. But the square of the tangent from B to C" is AB
2
 - AP

2
, so 

BR· BQ = AB
2
 - AP

2
, which is independent of the position of p.  

 

Problem 19  

If you have an algorithm for finding all the real zeros of any cubic polynomial, how do you 

find the real solutions to x = p(y), y = p(x), where p is a cubic polynomial?  

Solution  

Let p(x) A�D[3
 + bx

2
 + cx + d. Finding the solutions with x = y is obvious, just solve the cubic 

ax
3
 + bx

2
 + (c-1)x + d = 0. For x ��\��ZH�KDYH�[�- y = a(y

3
 - x

3
) + b(y

2
 - x

2
) + c(y - x). 



Dividing by y - x gives a(x
2
 + xy + y

2
) + b(x + y) + c + 1 = 0. Put s = x + y, t = xy and this 

becomes as
2
 - at + bs + c + 1 = 0 (*).  

We also have x + y = a(x + y)(x
2
 - xy + y

2
) + b(x

2
 + y

2
) + c(x + y) + 2d, or s = as(s

2
 - 3t) + 

b(s
2
 - 2t) + cs + 3d. Substituting for t from (*) we get a cubic in s. Solving, we then recover t 

from (*) and then solve a quadratic to get x,y from s,t.  

Problem 20  

Find all integers k > 1 such that for some distinct positive integers a, b, the number k
a
 + 1 can 

be obtained from k
b
 + 1 by reversing the order of its (decimal) digits.  

Answer  

k = 3, 3
3
+1 = 28, 3

4
+1 = 82.  

Solution  

k = 10 does not work because k
a
 + 1 is a palindrome. If k > 10, then for a < b we have k

b
 + 1 ��Na+1

 + 1 ����Na
 + 1 �����Na

 + 1) + k
a
 - 9 > 10(k

a
 + 1). So k

b
 + 1 has more digits than k

a
 + 1. 

So we only need to consider k = 2, 3, ... , 9.  

wlog a < b. Suppose 2a < b. Then k
b
 + 1 > k

a
k

a+1
 > k

a
(k

a
 + 1), so k

a
 < 10. But k

a
 + 1 ������RU�

reversing its digits would not change it). Hence k
a
 + 1 = 10, which obviously does not work. 

Hence 2a ��E��6R�D���E�- a. Hence k
b
 + 1 > k

b
 - 1 ��Nb

 - k
a
 + k

b-a
 - 1 = (k

a
 + 1)(k

b-a
 - 1). So k

b-a
 - 

1 < 10. If k
b-a

 - 1 = 9, then k
b-a

 = 10, so k = 10, which we already know does not work. Hence 

k
b-a

 - 1 < 9.  

But (k
b
 + 1) - (k

a
 + 1) = (k

b-a
 - 1)k

a
. This must be divisible by 9, because k

b
 + 1 and k

a
 + 1 

have the same digit sum and hence are the same mod 9. Hence k
a
 must be divisible by 9, so k 

must be 3, 6 or 9.  

If k = 6 or 9, then kb-a - 1 �����VR�WKH�ILUVW�GLJLW�RI�Na
 + 1 must be 1 or (k

b-a
 - 1)(k

a
 + 1) would 

have more digits than k
a
 + 1. But that means the last digit of k

b
 + 1 is 1 and hence the last 

digit of k
b
 is 0, which is impossible. So k = 3. It is easy to check that there is a solution for k = 

3.  

Problem 21  

An equilateral triangle side 10 is divided into 100 equilateral triangles of side 1 by lines 

parallel to its sides. There are m equilateral tiles of 4 unit triangles and 25 - m straight tiles of 

4 unit triangles (as shown below). For which values of m can they be used to tile the original 

triangle. [The straight tiles may be turned over.]  

 

Answer  m = 5, 7, 9, ... or 25.  

Solution  



 

There are 45 upside down triangles (yellow in the diagram) and 55 right way up. A straight 

tile always covers two of each. A triangular tile covers 3 of one and 1 of the other. So suppose 

there are t1 triangular tiles placed the right way up and t2 triangular tiles placed upside down. 

Then we have 3t1 + t2 + 2(25-t1-t2) = 55, so t1 - t2 = 5. So t1 and t2 have opposite parity and 

hence m = t1 + t2 must be odd. Also m ��W1 ����� 
Now each rhombus shown may be filled with two triangular tiles or two straight tiles. So any 

tiling with m odd and ����LV�SRVVLEOH�� 
Problem 22  

1992 vectors are given in the plane. Two players pick unpicked vectors alternately. The 

winner is the one whose vectors sum to a vector with larger magnitude (or they draw if the 

magnitudes are the same). Can the first player always avoid losing?  

Answer  Yes  

Solution  

Suppose the vectors sum to s. Take the x-axis along s (or in any direction if s = 0). At each 

move the first player picks the vector with biggest x-coordinate. Each player makes 996 

moves and the x-coordinate the first player picks on any move is larger than the x-coordinate 

the second player picks on the following move. So the sum of the first player's choices has 

larger x-coordinate than the sum of the second player's. Since the sum of all the x-coordinates 

is non-negative, the sum of the first player's choices must also have larger absolute value. The 

sum of the y-coordinates of all the vectors is zero, so the sum must be the same for the first 

and second players. Hence the first player's sum has larger magnitude than the second 

player's.  

Problem 23  

If a > b > c > d > 0 are integers such that ad = bc, show that (a - d)
2
 ���G������ 

Solution  
We need first that a + d > b + c. Put a = m + h, d = m - h, b = m' + k, c = m' - k. Then since a - 

d > b - c, we have h > k. But m
2
 - h

2
 = ad = bc = m'

2
 - k

2
, so m > m' and hence a + d > b + c. 

Since a, b, c, d are integers it follows that (a + d - b - c) ����� 
Now (a - d)

2
 = (a + d)

2
 - 4ad = (a + d)

2
 - 4bc > (a + d)

2
 - (b + c)

2
 (AM/GM) = (a + b + c + d)(a 

+ d - b - c) ���D���E���F���G���%XW�D���G������E���G������F���G������VR��D�- d)
2
 ���G������%XW�D�

square cannot = 2 or 3 mod 4, so (a - d)
2
 ���G������ 


