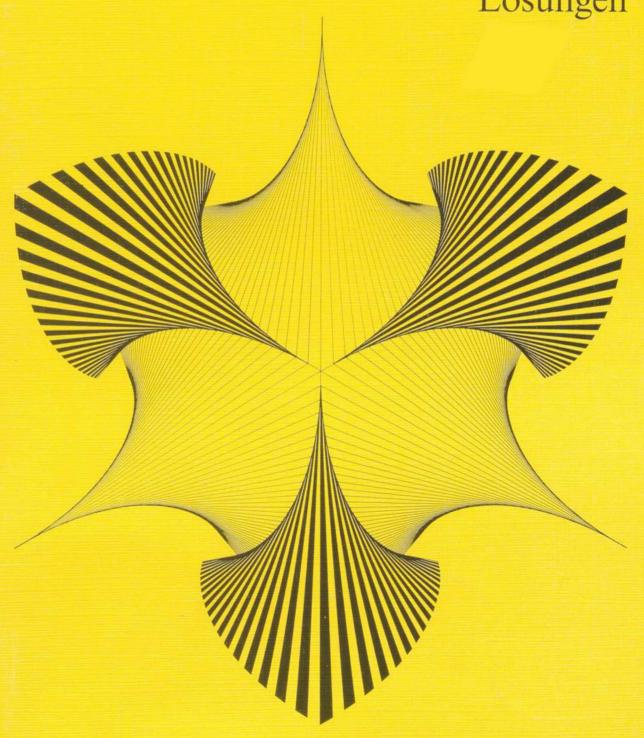
Barth · Krumbacher · Ossiander · Barth

Anschauliche Geometrie 7

Lösungen



Oldenbourg

Anschauliche Geometrie 7 Lösungen

Friedrich Barth · Elisabeth Barth Gert Krumbacher · Konrad Ossiander

Das Papier ist aus chlorfrei gebleichtem Zellstoff hergestellt, ist säurefrei und recyclingfähig.

© 1998 R. Oldenbourg Verlag GmbH, München

Das Werk und seine Teile sind urheberrechtlich geschützt. Jede Verwertung in anderen als den gesetzlich zugelassenen Fällen bedarf deshalb der vorherigen schriftlichen Einwilligung des Verlages.

1. Auflage 1993

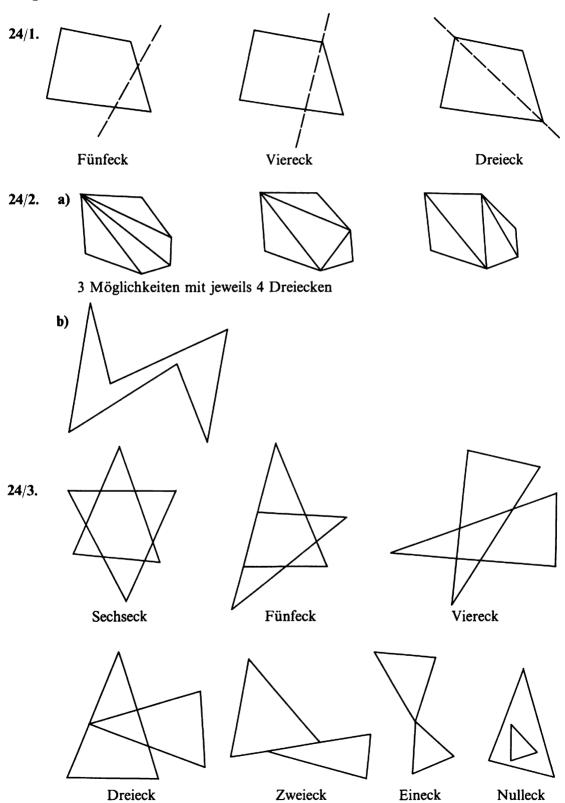
2., unveränderter Nachdruck 01 00 99 98 Die letzte Zahl bezeichnet das Jahr des Drucks.

Umschlaggestaltung: Gert Krumbacher, München Satz: Tutte Druckerei GmbH, Salzweg-Passau Druck und Bindung: MM-Druck GmbH, München

ISBN 3-486-**03295**-X

2. Kapitel

Aufgaben zu 2.1

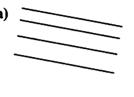


- - b) Die Anzahl der Diagonalen erhöht sich um 3, 4, 5, 6, ...

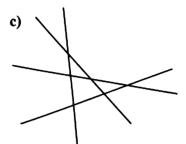
Anzahl der Ecken		5	6	7	8	9	10	11	12
Anzahl der Diagonalen	2	5	9	14	20	27	35	44	54

(Allgemeine Formel: $\frac{(n-3) \cdot n}{2}$)

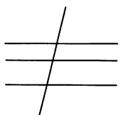
24/5.



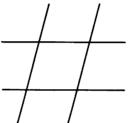
b)



- 24/6. a) Kein Schnittpunkt (s. 5a))
- b) 1 Schnittpunkt (s. 5b))
- c) 3 Schnittpunkte

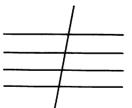


d) 4 Schnittpunkte

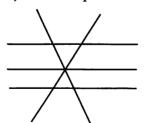


e) 5 Schnittpunkte

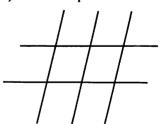
- f) 6 Schnittpunkte (s. 5c))
- 24/7. a) Kein Schnittpunkt, falls alle parallel sind
 - b) 1 Schnittpunkt, falls alle durch denselben Punkt laufen
 - c) 4 Schnittpunkte



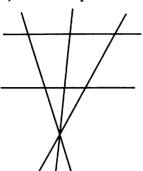
d) 5 Schnittpunkte



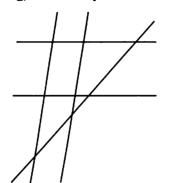
e) 6 Schnittpunkte



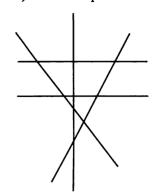
f) 7 Schnittpunkte



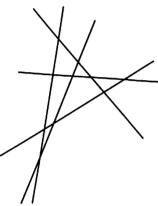
g) 8 Schnittpunkte



h) 9 Schnittpunkte



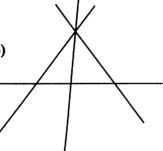
i) 10 Schnittpunkte

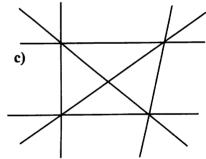


24/8. a)

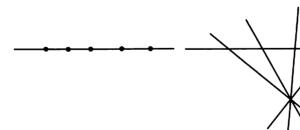


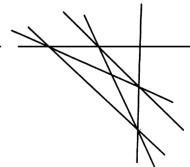
b)



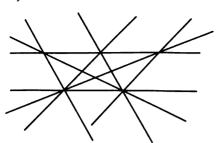


- 24/9. a) 1 Gerade
- b) 5 Geraden
- c) 6 Geraden

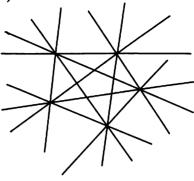




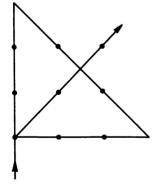
d) 8 Geraden



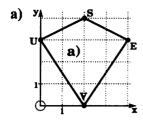
e) 10 Geraden

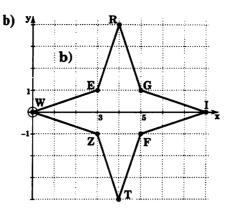


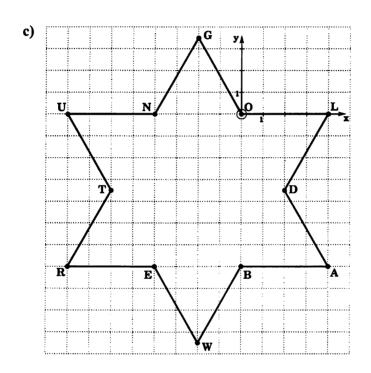
- 24/10. 8 Möglichkeiten; Entfernungen: 10, 0, 6, 4.
- 25/11. Es gilt 12 offene Streckenzüge.
- 25/12. Es ergeben sich mindestens 6, höchstens 16 Pizzastücke. (Allgemein ergeben sich durch n geradlinige Schnitte höchstens $\frac{n^2+n+2}{2}$ Teile.)
- 25/13. Die Punkte X, Y, Z liegen auf einer Geraden.
- 25/14. a) VIOLVAL
- b) EPATENPTN
- c) nicht möglich
- d) SENTRS
- 26/15. PAUPOUNOSNESAEPSUEOANP
- 26/16. Die 3 Schnittpunkte S₂, S₃, S₄ liegen auf einer Geraden.
- 26/17.

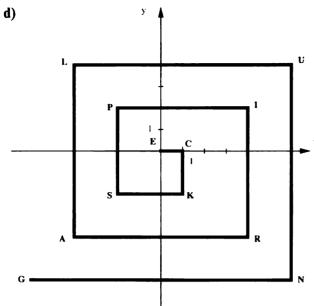


26/18.

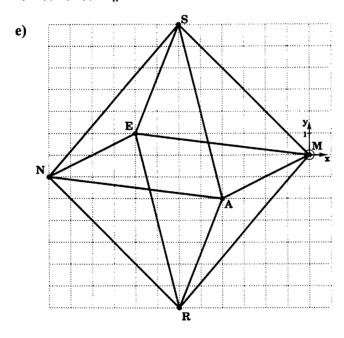








X(-6/6), Y(7/6), Länge: 66



27/19. a)
$$P(-5|6)$$
, $O(0/0)$, $S(8/0)$, $A(13/6)$, $U(11/14)$, $N(4/17)$, $E(-3/14)$
b) $P(-16/-8)$, $O(-11/-14)$, $S(-3/-14)$, $A(2/-8)$, $U(0/0)$, $N(-7/3)$, $E(-14/0)$

Aufgaben zu 2.2

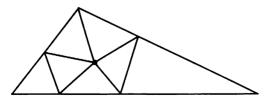
29/2. Das Loch wird zum Kreis.

29/3. s < 2r: 2 Lösungen
 s = 2r: 1 Lösung
 s > 2r: keine Lösung

Aufgaben zu 2.3

- **36/1.** ≮ O, ≮ ROT, ≮ DOT, ≮ TOR, ≮ TOD
- 36/2. Scheitel: A, Schenkel: [AB, [AD.
- 36/4. a) $X \in IP$ b) $X \in IT$
- 36/5. a) 10 Winkel b) 21 Winkel
- 37/6. Konkav: a), f), g), i), j), k), m). Konvex: b), c), d), e), h), l).
- 37/7. Ein Sehnenlängenvergleich zeigt: $\mu < \omega < \tau$.
- 37/9. Differenzwinkel $\approx 119.7^{\circ}$.
- **38/10.** $4\mu \approx 159,2^{\circ}$, $5\mu \approx 161^{\circ}$ (konvexes Maß!): $4\mu \approx 5\mu$.
- **38/11.** a) $\not \subset R = 90^{\circ}$, $\not \subset O \approx 116,6^{\circ}$, $\not \subset S \approx 56,3^{\circ}$, $\not \subset A \approx 97,1^{\circ}$ b) $\not \subset B \approx 35,5^{\circ}$, $\not \subset L \approx 215,5^{\circ}$, $\not \subset A \approx 43,2^{\circ}$, $\not \subset U \approx 65,8^{\circ}$.
- 38/12. Einen stumpfen Winkel α zeichnet man, indem man $360^{\circ} \alpha$ anträgt.
- 38/13. a) 45° b) 90° c) 67.5° d) 135° .
- **39/14.** a) 30° b) 150° c) 105° d) 7.5° e) 65° f) 90.5° .
- **39/15. a)** 12,25° **b)** 37,35° **c)** 241,0025° **d)** 57,95° **e)** 0,125° **f)** 17,24°.
- 39/16. a) 18°30′, b) 6′, c) 45°27′, d) 7°4′12″, e) 15°13′48″, f) 9°9′9″.
- 39/17. spitze Winkel:
 rechte Winkel:
 stumpfe Winkel:
 gestreckte Winkel:
 delling ABU, ★ EAU, ★ SAD, ...

 particular
 ABU, ★ EAU, ★ DUA
 delling ABU, ★ BAU, ★ BUD, ...
 gestreckte Winkel: ★ BAS, ★ AED, ★ SEU.
- 39/18. Es entstehen 7 spitzwinklige Dreiecke.



39/19. a) 33° b) 46,6° c) $88^{\circ}56'$ d) $31^{\circ}1'2''$.

39/20. a)
$$67^{\circ}$$
 b) $151,13^{\circ}$ c) $7^{\circ}13'$ d) $100^{\circ}59'11''$.

39/21. a)
$$\eta = 60^{\circ}$$
, $\vartheta = 60^{\circ}$, $\lambda = 30^{\circ}$.
b) $\alpha = 42^{\circ}$, $\beta = 48^{\circ}$, $\gamma = 42^{\circ}$, $\delta = 48^{\circ}$, $\varepsilon = 132^{\circ}$.

Aufgaben zu 2.4

41/1.
$$\alpha = 47^{\circ}$$
, $\alpha_1 = 407^{\circ}$, $\alpha_2 = 767^{\circ}$
 $\beta = -47^{\circ}$, $\beta_1 = -407^{\circ}$, $\beta_2 = -767^{\circ}$.

41/2. a)
$$-225^{\circ}$$
 b) -2700°

41/3. a)
$$1440^{\circ}$$
 b) -1980° **c)** 1530° **d)** -1710° .

$$41/5.$$
 -48000°

42/6. a)
$$-90^{\circ} + 45^{\circ} + 90^{\circ} - 135^{\circ} + 135^{\circ} = 45^{\circ}$$

b) $-142^{\circ} + 65^{\circ} + 90^{\circ} - 57^{\circ} + 133^{\circ} = 89^{\circ}$

Geometrische Bedeutung: Drehung insgesamt um 45° bzw. 89° nach links.

3. Kapitel

Aufgaben zu 3.2

46/1. a)
$$\alpha = 120^{\circ}$$
, $\alpha^* = 60^{\circ}$

b)
$$\alpha = 135^{\circ}, \quad \alpha^* = 45^{\circ}$$

c)
$$\alpha = 60^{\circ}, \quad \alpha^* = 120^{\circ}$$

d)
$$\alpha = 170^{\circ}, \quad \alpha^* = 10^{\circ}.$$

46/2. a)
$$\alpha = 95^{\circ}$$
, $\alpha^* = 85^{\circ}$

b)
$$\alpha = 85^{\circ}, \quad \alpha^* = 95^{\circ}$$

c)
$$\alpha = 135^{\circ}$$
, $\alpha^* = 45^{\circ}$

d)
$$\alpha = 89^{\circ}59'30'', \quad \alpha^* = 90^{\circ}30''.$$

46/3.
$$\alpha^* + \beta^* + \gamma^* = 360^\circ$$
.

46/4.
$$\alpha^* + \beta^* + \gamma^* + \delta^* = 360^\circ$$
.

46/5. a)
$$\beta = 130^{\circ}$$
, $\gamma = 23^{\circ}$, $\delta = 27^{\circ}$, $\zeta = 23^{\circ}$
b) $\gamma = 72^{\circ}$, $\delta = 14,2^{\circ}$, $\varepsilon = 93,8^{\circ}$, $\zeta = 72^{\circ}$
c) $\gamma = 10^{\circ}$, $\delta = 30^{\circ}$, $\alpha = 30^{\circ}$, $\beta = 140^{\circ}$, $\varepsilon = 140^{\circ}$, $\zeta = 10^{\circ}$

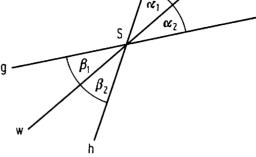
d)
$$\alpha = \delta = 29^{\circ}$$
, $\gamma = \zeta = 29^{\circ}$, $\beta = \varepsilon = 122^{\circ}$.

46/6.
$$\varphi = 180^{\circ} - 49$$
, $\tau = 9$, $\mu = 180^{\circ} - 49$, $\psi = 39$.

46/7. $\alpha_1 = \alpha_2 = \frac{\alpha}{2}$, da w den Winkel α halbiert.

 β_1 ist Scheitelwinkel zu α_2 , und β_2 ist Scheitelwinkel zu α_1 .

Also: $\beta_1 = \beta_2 = \frac{\alpha}{2}$.



47/8. a)
$$\psi = 90^{\circ}$$
 b) $\psi = 90^{\circ}$, da $\omega + \omega^* = 180^{\circ}$ und $\psi = \frac{\omega + \omega^*}{2}$.

Aufgaben zu 3.3

50/1. a)
$$\alpha' = 35^{\circ}$$
, $\beta = \beta' = 145^{\circ}$, $\gamma = \gamma' = 35^{\circ}$, $\delta = \delta' = 145^{\circ}$

b)
$$\beta' = 135^{\circ}$$
, $\alpha = \alpha' = 45^{\circ}$, $\gamma = \gamma' = 45^{\circ}$, $\delta = \delta' = 135^{\circ}$

c)
$$\gamma = 87.7^{\circ}$$
, $\alpha = \alpha' = 87.7^{\circ}$, $\beta = \beta' = 92.3^{\circ}$, $\delta = \delta' = 92.3^{\circ}$

d)
$$\delta' = 123^{\circ}45', \ \alpha = \alpha' = 56^{\circ}15', \ \beta = \beta' = 123^{\circ}45', \ \gamma = \gamma' = 56^{\circ}15'.$$

- 51/2. a) Alle Winkel sind 90°.
 - b) Die Winkel sind 32° bzw. 148°.
 - c) Die Winkel sind 60° bzw. 120°.

51/3.
$$\alpha = \gamma = \zeta = \lambda = \varphi = \omega = \mu = \xi$$

$$\beta = \delta = \chi = \psi$$

$$\tau = \sigma = \vartheta = \eta$$

$$v = v = \varkappa = \varepsilon$$
.

51/4. a)
$$\alpha^* = \varepsilon = 52^\circ$$
, also AD||BC

b)
$$\alpha^* = 32^{\circ}13' + \varepsilon$$
, also AD # BC.

- 51/5. a) g||h| b) g||h| c) $g\perp h$ d) $g\perp h$.
- 51/6. a) α) $l_a \cap l_b \neq \emptyset$:
 - 1. Fall: $l_a \neq l_b \Rightarrow a + b$
 - 2. Fall: $l_a = l_b \Rightarrow a \parallel b$
 - β) $l_a \cap l_b = \emptyset \Rightarrow a \parallel b$
 - **b)** α) $a \cap b \neq \emptyset$:
 - 1. Fall: a und b liegen auf einer Geraden $\Rightarrow l_a || l_b$
 - 2. Fall: a und b liegen nicht auf einer Geraden $\Rightarrow l_a \cap l_b \neq \emptyset$
 - β) a \cap b = \emptyset \Rightarrow Die Lote sind parallel, oder sie schneiden sich (also keine Aussage möglich).
 - γ) $a \| b \Rightarrow l_a \| l_b$

- 51/7. Die Parallelen bilden das Dreieck A'B'C', wobei A' gegenüber von A liege. $\alpha = \angle CAB = \angle B'CA$ (Z-Winkel) $\angle B'CA = \angle CA'B = \alpha'$ (Stufenwinkel) Ebenso gilt: $\beta = \beta'$ und $\gamma = \gamma'$.
- **52/8. a)** $v = 45^{\circ}$, $\omega = 72^{\circ}$, $\mu = 135^{\circ}$, $\iota = 45^{\circ}$, $\psi = 135^{\circ}$, $\nu = 117^{\circ}$, $\sigma = 108^{\circ}$, $\kappa = 72^{\circ}$, $\lambda = 108^{\circ}$, $\eta = 63^{\circ}$, $\alpha = 117^{\circ}$, $\varepsilon = 63^{\circ}$ **b)** $v = 90^{\circ} \delta$, $\omega = 90^{\circ} \tau$, $\mu = 90^{\circ} + \delta$, $\iota = 90^{\circ} \delta$, $\psi = 90^{\circ} + \delta$, $\rho = 90^{\circ} + \tau$, $\lambda = 90^{\circ} + \tau$, $\kappa = 90^{\circ} \tau$, $\kappa = 180^{\circ} \tau \delta$, $\kappa = \tau + \delta$.

Aufgaben zu 3.4 und 3.5

- **60/1.** a) $\gamma = 10^{\circ}$, $\gamma^* = 170^{\circ}$, $\beta^* = 45^{\circ}$, $\alpha^* = 145^{\circ}$
 - **b)** $\alpha = 94.7^{\circ}$, $\alpha^* = 85.3^{\circ}$, $\beta^* = 96.3^{\circ}$, $\gamma^* = 178.4^{\circ}$
 - c) $\beta = 138^{\circ}$, $\gamma = 18^{\circ}$, $\gamma^* = 162^{\circ}$, $\alpha^* = 156^{\circ}$
 - **d)** $\beta = 40^{\circ}$, $\gamma = 57^{\circ}$, $\alpha = 83^{\circ}$, $\alpha^* = 97^{\circ}$.
- - **b)** $\alpha + \beta + \beta + \gamma = 180^{\circ} \ \mbox{$^{\circ}$}$
 - c) $\alpha^* = 90^\circ \implies \alpha = 90^\circ, \ \beta = 80^\circ, \ \gamma = 10^\circ$
 - **d)** $\alpha^* = 60^\circ \Rightarrow \alpha = 120^\circ$ $\beta^* = 60^\circ \Rightarrow \beta = 120^\circ$ $\Rightarrow \alpha + \beta = 240^\circ$ \downarrow
- **60/3.** a) $\beta = 37^{\circ}$ b) $\beta = 45^{\circ}$ c) $\beta = 0.45^{\circ}$ d) nicht möglich e) $\beta = 30^{\circ}$.
- **60/4. a)** $\alpha = 70^{\circ}$ **b)** $\alpha = 36^{\circ}$ **c)** $\alpha = 40^{\circ}$ **d)** $\alpha = 60^{\circ}$.
- 60/5. Faul ist: Bei diesem "Beweis" wird vorausgesetzt, daß die Winkelsumme in jedem Dreieck gleich ist.

Bewiesen wurde: Wenn die Winkelsumme in jedem Dreieck gleich ist, so beträgt sie 180°.

- **61/6. a)** $\delta = 67^{\circ}$ **b)** $\alpha = \beta = \gamma = 92^{\circ}$ **c)** $\alpha = 172.8^{\circ}, \beta = 86.4^{\circ}, \gamma = 57.6^{\circ}, \delta = 43.2^{\circ}$ **d)** $\alpha = \beta = 120^{\circ}.$
- 61/7. $\not \in$ A \approx 26,5°, $\not \in$ B \approx 45°, $\not \in$ C \approx 211°, $\not \in$ D \approx 32,5°, $\not \in$ E \approx 225° Die Summe sollte (etwa) 540° ergeben.
- **61/8.** Winkelsumme im Sechseck + Winkelsumme im Dreieck = Winkelsumme im Siebeneck.
- 61/9. a) ≮ SAB = 90°, ≮ ABS ≈ 83° ⇒ ≮ BSA ≈ 7°
 b) Man zeichnet in B die Parallele zu g und mißt ≮ (g, h) ≈ 7°.
- **61/10.** a) $\sigma = 60^{\circ}$ b) $\sigma = 60^{\circ}$ c) $\sigma = 180^{\circ} 2\gamma$ $(\gamma = 45^{\circ} \Rightarrow \sigma = 90^{\circ}, \gamma = 90^{\circ} \Rightarrow \sigma = 0^{\circ}).$

62/11.
$$\beta = 60^{\circ}$$
, $\alpha = 30^{\circ}$.

62/12.
$$\delta = 30^{\circ}$$
, $\tau = 70^{\circ}$, $\sigma = \tau + 50^{\circ} = 120^{\circ}$.

62/13.
$$\gamma = 70^{\circ}$$
, $\beta = \gamma + \tau = 100^{\circ}$, $\alpha = 40^{\circ}$.

62/14.
$$\beta = 80^{\circ}$$
, $\alpha = 50^{\circ}$.

62/15.
$$\alpha = 30^{\circ}$$
, $\beta = 90^{\circ}$.

63/16. Man zeichnet die Parallele g zu AB durch C. Der Kreis um C mit beliebigem Radius schneidet g in S und T. Nun wird γ mit dem Scheitel C so angetragen, daß [CS bzw. [CT ein Schenkel von γ ist. Die anderen Schenkel ergeben die beiden gesuchten Geraden.

63/17.
$$\sigma = 48^{\circ}$$
. $\vartheta = 100^{\circ}$.

63/18.
$$\varepsilon = 27^{\circ}, \quad \mu = 117^{\circ}.$$

63/19.
$$\beta = 49^{\circ}$$
, $\gamma = 36^{\circ}$. Wegen $\gamma \neq \omega$ gilt AB # CD.

64/20.
$$\varepsilon = 70^{\circ}$$
, $\delta = 70^{\circ}$.

64/21.
$$\iota_1 = 115^{\circ}, \quad \iota_2 = 65^{\circ}.$$

64/22.
$$\varrho_1 = 100^\circ$$
, $\varrho_2 = 132^\circ$, $\varrho_3 = 138^\circ$, $\varrho_4 = 80^\circ$.

64/23.
$$\varphi_1 = 124^\circ$$
, $\varphi_2 = 112^\circ$, $\varphi_3 = 128^\circ$, $\varphi_4 = 142^\circ$, $\varphi_5 = 68^\circ$.

64/24.
$$\alpha = 70^{\circ}$$
, $\beta = 45^{\circ}$, $\gamma = 65^{\circ}$.

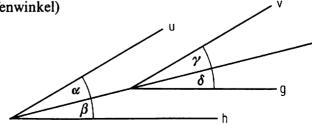
65/25.
$$v_1 = 102^\circ$$
, $v_2 = 96^\circ$, $v_3 = 84^\circ$, $v_4 = 114^\circ$, $v_5 = 66^\circ$, $v_6 = 132^\circ$, $\sigma_1 = 48^\circ$, $\sigma_2 = 114^\circ$, $\sigma_3 = 66^\circ$, $\sigma_4 = 96^\circ$, $\sigma_5 = 84^\circ$, $\sigma_6 = 78^\circ$.

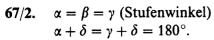
65/26.
$$\tau_1 = 54^\circ$$
, $\tau_2 = 106^\circ$, $\tau_3 = 74^\circ$, $\tau_4 = 86^\circ$, $\tau_5 = 94^\circ$, $\tau_6 = 66^\circ$, $\tau_7 = 114^\circ$, $\tau_8 = 46^\circ$, $v_1 = 126^\circ$, $v_2 = 74^\circ$, $v_3 = 106^\circ$, $v_4 = 94^\circ$, $v_5 = 86^\circ$, $v_6 = 114^\circ$, $v_7 = 66^\circ$, $v_8 = 134^\circ$.

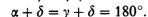
- 65/27. Innenwinkelsumme: 1440° Außenwinkelsumme: 360°.
- 65/28. 160°.

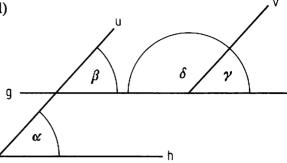
Aufgaben zu 3.6

67/1. Wegen $\alpha = \gamma$ und $\beta = \delta$ (Stufenwinkel) gilt $\not < (u, h) = \not < (v, g)$.

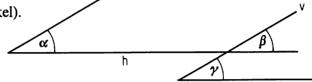






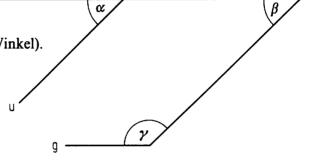


67/3. $\alpha = \beta = \gamma$ (Stufenwinkel).

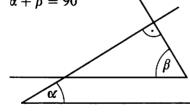


68/4. $\alpha = \beta$ (Stufenwinkel)

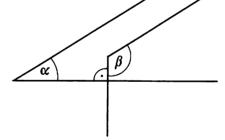
$$\alpha + \gamma = \beta + \gamma = 180^{\circ}$$
 (E-Winkel).



68/5. $\alpha + \beta = 90^{\circ}$

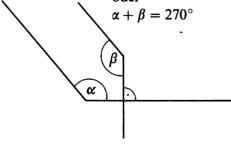


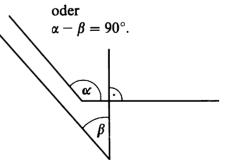
oder $\beta - \alpha = 90^{\circ}$



g

oder





- BAD und

 DCB,

 ADC und

 CBA, **68/6.**

 - **★ DCA und ★ FBC usw.**

- 68/8. Die Schenkel von $\not < N_1ON_2$ und v_1 stehen paarweise senkrecht (usw.) $\Rightarrow v_i = \varepsilon = \frac{360^{\circ}}{16} = 22,5^{\circ}.$

69/9.
$$★$$
 (h, u) = 50°
 $★$ (g, h) = 40°
 $★$ (g, v) = 50°

69/10.
$$\varphi = 18^{\circ}$$
, $\varepsilon_{1} + 4\varphi = 90^{\circ} \Rightarrow \varepsilon_{1} = 18^{\circ}$
 $\varepsilon_{1} + \varepsilon_{2} + 3\varphi = 90^{\circ} \Rightarrow \varepsilon_{2} = 18^{\circ}$
 $\varepsilon_{3} = 18^{\circ}$, $\varepsilon_{4} = 18^{\circ}$
 $v_{1} = v_{2} = v_{3} = v_{4} = 18^{\circ}$.

4. Kapitel

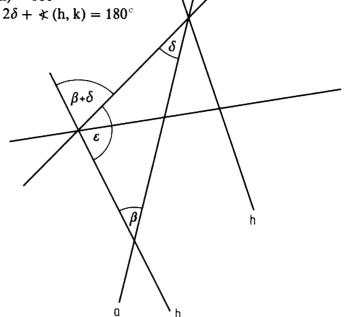
Aufgaben zu 4.1

- 77/1. Rechteck: 2, Quadrat: 4, Halbkreis: 1, Kreuz: 4.
- 77/2. a) 1, b) 2, c) 1, d) 2, e) 4, f) 1.
- 77/3. a) nein, b) 2, c) 1, d) 1, e) 3, f) nein.
- 77/4. A(1), B(1), C(1), D(1), E(1), H(2), I(2), K(1), M(1), O (unendlich viele), T(1), U(1), V(1), W(1), X(2), Y(1).
- 78/5. AHA, UHU, OB, DIE, TAT, EICHE, HOCH, OTTO, TOT, OHO, ATA usw.
- 78/6. 4 Symmetrieachsen.
- **78/7.** 90°.

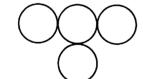
Aufgaben zu 4.2

- **80/3. b)** $\beta = 41^{\circ}, \quad \not< (h, k) = 82^{\circ}$
 - c) $(g, k) = 180^{\circ} 2(\beta + \delta)$ $\not <$ (g, k) + 2 δ + $\not <$ (h, k) = 180°
 - \Rightarrow 180° $-2(\beta + \delta) + 2\delta + \not< (h, k) = 180°$

 $\not <$ (h, k) = 2β .



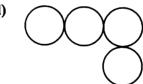
- 81/5. a) Drachenviereck oder gleichschenkliges Trapez
 - b) Rechteck oder Raute.
- **81/6.**



b)

c)

d)



- 81/7. a) 4 Punkte (P', Q', V', S') b) 3 Punkte (M', A', B') c) 2 Punkte (V', O').
- Die Mittelsenkrechten schneiden sich in einem Punkt. **82/8.**
- **82/9.** M₁M₂ und die Mittelsenkrechte von [M₁M₂] sind die Symmetrieachsen.
- **82/10.** $m_{AB} \cap m_{BC} = \{M\}$
- 82/11. a) Man konstruiert die Winkelhalbierenden.
 - b) Man konstruiert die Mittelparallele und ein Lot zu ihr.

82/12. Man konstruiert zu 2 Sehnen die Mittelsenkrechten. Ihr Schnittpunkt ist M.

Aufgaben zu 4.3

87/8. Die Innenwinkel des entstehenden Vierecks sind jeweils 90°, also liegt ein Rechteck vor. Da in diesem Rechteck die Diagonalen Symmetrieachsen sind, ist es ein Quadrat.

Gilt a = 2b, so liegen 2 Quadratecken auf Rechteckseiten.

- 87/13. A: Lotfußpunkt, B: Lotfußpunkt, C: Symmetrischer Punkt bezügl. x-Achse, D: Symmetrischer Punkt bezügl. y-Achse, E: PE läuft durch den Ursprung, F: Symmetrischer Punkt bezügl. w_{I,III}.
- 87/14. C(9,1/5), D(3,1/6,5).
- 87/15. A(3/0), C(7/8).
- **87/16.** B(-1,3/2,5), D(-11,7/5,5) (von C aus das Lot fällen).
- **87/17.** a) h = 144 m, b) h = 248.5 m.
- 87/18. a) 219,6 m, b) 300 m, c) 395,4 m.
- 87/19. Für $\alpha = 30^\circ$: "Untere Hälfte" von g: 395,4 m Für $\alpha = 120^\circ$: "Untere Hälfte" von g: 219,6 m Für $\alpha = 60^\circ$ fallen scheinbare und wirkliche Mitte zusammen.
- 87/20. a) M₁(3,9/7), M₂(4,7/7), M₃(6,6/7)
 b) Der Torwart sollte dort stehen, wo die Winkelhalbierende die Torlinie trifft, also in M₃(6,6/7).

Aufgaben zu 4.4

- 91/1. Konstruierbar sind: 30°, 45°, 63°, 87°, 171°.
- 91/2. **a)** $22.5^{\circ} = \frac{90^{\circ}}{4}$ **b)** $135^{\circ} = 90^{\circ} + \frac{90^{\circ}}{2}$ **c)** $75^{\circ} = 60^{\circ} + \frac{60^{\circ}}{4}$
 - **d)** $82.5^{\circ} = 60^{\circ} + \frac{60^{\circ}}{4} + \frac{60^{\circ}}{8}$ **e)** $72^{\circ} = 2 \cdot 36^{\circ}$ **f)** $9^{\circ} = \frac{36^{\circ}}{4}$.
- 91/3. a) $52.5^{\circ} = 60^{\circ} \frac{60^{\circ}}{8}$ b) $142.5^{\circ} = 2 \cdot 60^{\circ} + \frac{90^{\circ}}{4}$ c) $41.25^{\circ} = \frac{60^{\circ}}{2} + \frac{90^{\circ}}{8}$
 - d) $3^{\circ} = \frac{60^{\circ}}{8} \frac{36^{\circ}}{8}$ e) $40.5^{\circ} = 36^{\circ} + \frac{36^{\circ}}{8}$ f) $151.5^{\circ} = 4 \cdot 36^{\circ} + \frac{60^{\circ}}{8}$
 - g) $111^{\circ} = 2 \cdot 60^{\circ} \frac{36^{\circ}}{4}$.

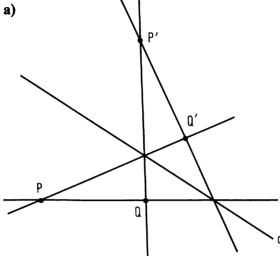
Aufgaben zu 4.5

c)
$$\{M\} = ST \cap m_{DC}$$
.

97/4. Natürliche Zahlen mit ihrem Spiegelbild.

97/5.
$$180^{\circ} - 2\beta$$
.

98/6.



- b) analog a).
- c) Man wählt einen Hilfspunkt H (z.B. auf der Seite von Q, aber H ∉ P'Q).
- 98/7. a) X (5/0) b) X(3/0) (Spiegelung von B an der x-Achse liefert X).
- 98/8. Spiegelung von K an RS liefert A(3/4,5).
- 98/9. Man spiegelt R zuerst an y und erhält R'. R' wird an x gespiegelt und ergibt R". SR" legt die Stoßrichtung fest.
- 98/10. Man spiegelt R an AD, R' an AB und R" an CD.
- 98/11. Man spiegelt R an CD, R' an BC, R" an AB und R" an AD.

98/12. a)
$$\angle C'AB' = 3\alpha = 180^{\circ}$$

b)
$$\not <$$
 B'CA' = 3 γ = 240° \Rightarrow $\not <$ A'CB' = 120° < 180°

c)
$$\angle A'BC' = 3\beta = 120^{\circ} \implies \angle C'BA' = 240^{\circ} > 180^{\circ}$$
.

99/13. a) Gleichseitiges Dreieck

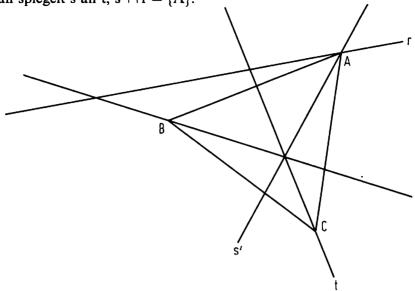
b) z. B.:
$$\alpha = 30^{\circ}$$
, $\beta = 80^{\circ}$, $\gamma = 70^{\circ} \Rightarrow A$ liegt außerhalb von $\Delta A'B'C'$

c) z. B.:
$$\alpha = 30^{\circ}$$
, $\beta = 40^{\circ}$, $\gamma = 110^{\circ} \Rightarrow A$ und B liegen außerhalb von $\Delta A'B'C'$

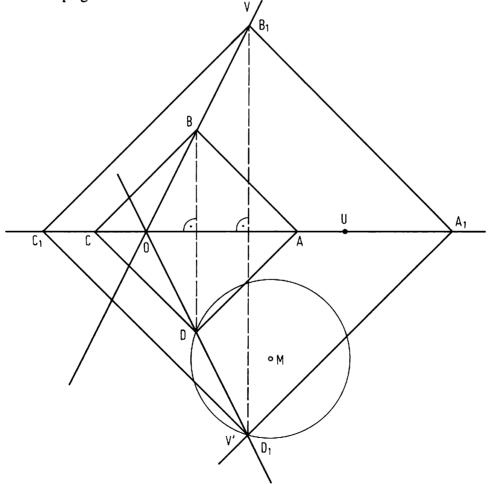
d) z. B.: $\alpha = 40^{\circ}$, $\beta = 120^{\circ}$, $\gamma = 20^{\circ} \Rightarrow A$, B und C liegen außerhalb von $\Delta A'B'C'$.

99/14. Man spiegelt s an r; s' \cap t = {D}.

99/15. Man spiegelt s an t; $s' \cap r = \{A\}$.



99/16. Man spiegelt OV an OU.



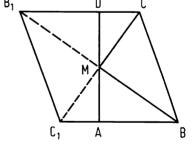
Aufgaben zu 4.6

- 103/2. a) H, I, N, O, S, X, Z
 - **b)** 609, 689, 808, 888, 906, 986.
- 103/3. a) Rechteck
 - b) Trapez.
- **103/4.** a) $A_1(7,5/2)$, $B_1(2/3)$ b) $C_1(1,5/0)$ c) $D_1(6/-1)$ d) $M_1 = A_1$, $r_1 = 4$ e) $M_1 = B_1$, $r_1 = 1$.

- **103/5.** A₁ (4,5/4), B₁ (0/5,5), C₁ (-1,5/3,5), D₁ (1/1), E₁ (3,5/1).
- 103/8. Man erhält das Dreieck $A_1B_1C_1$ mit $\alpha_1 = \alpha$, $\beta_1 = \beta$ und $\gamma_1 = \gamma$. Wegen $\not \in A = \alpha + \beta + \gamma = \not \in B = \not \in C = 180^{\circ}$ erhält man wirklich als Gesamtfigur ein Dreieck.
- **103/9.** a) A'(4,5/4,5), B'(3,5/5,5), C'(2,5/6,5), D'(3,5/7,5), E'(4/6)A''(6/3), B''(7/2), C''(8/1), D''(9/2), E''(7,5/2,5)
 - b) Da sich die Achsen a_1 und a_2 in Z unter dem Winkel $\varphi = 90^\circ$ schneiden, ist die Zweifachspiegelung gleichwertig mit einer Drehung um Z mit dem Drehwinkel 2φ , also mit einer Halbdrehung.
- nicht möglich 104/10. Dreieck:
 - Parallelogramm Viereck: nicht möglich Fünfeck:
 - Reguläres Sechseck. Sechseck:
- 104/11. a) Da sich nach Konstruktion die Diagonalen [BB₁] und [CC₁] rechtwinklig halbieren, ist C₁BCB₁ eine Raute.

$$\frac{\text{Wegen }\overline{AB} = \overline{B_1D} \text{ folgt}}{\overline{B_1D} + \overline{DC} = \overline{AB} + \overline{DC} = \overline{BC}.}$$

- b) Die Diagonalen einer Raute sind zugleich Winkelhalbierende.
- c) Da die Raute achsensymmetrisch bezüglich C₁C ist, folgt: Der Spiegelpunkt D' von D liegt auf BC, also MD = MD'.



- **104/12.** a) 0 (2), 0 (1), 0 (3)
 - b) 2, 4, 5, 7, 9, 10, 13, 18, 19, 21, 22, 23
 - c) @
- **106/13. a)** ② (1), ④ (2), ⑤ (1)
 - b) 3, 4, 7, 8, 9, 10, 11
 - c) @

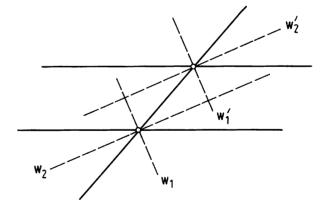
5. Kapitel

Aufgaben zu 5.1

- 116/1. a) S(8/7)
- **b)** S(-11/8) **c)** S(9/0).

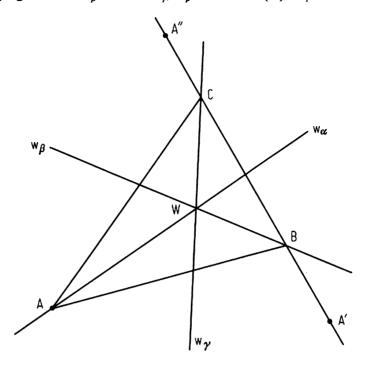
- 116/2. a) W(10/10)
- **b)** W (0/0) **c)** W (5/-10).
- 116/3. C(9/16) (Winkel verdoppeln).
- 116/4. a) H(4/8)
- **b)** H(-2/-7) **c)** H(11/-12).
- 116/5. C(0/0) (h_a und h_b zeichnen und Lote darauf durch B bzw. A konstruieren).
- 116/6. a) M(6/9)
- **b)** M(-6.5/5) **c)** M(-6.5/-0.5).
- **116/7.** a) M(9/7), H(6/4), S(8/6) b) M(9/3), H(12/12), S(10/6)
- - c) M(7/4), H(-8/10), S(2/6).
- 116/8. a) M(3|3,5)
- **b)** M(6,5|0) **c)** M(4,5|-1)
- 116/9. a) Reihenfolge: C, A, B
 - b) 2 Knalle hört er jeweils auf den Mittelsenkrechten (ohne ihren Schnittpunkt)
 - c) Im Umkreismittelpunkt hört er einen Knall.
- 117/10. a) bei spitzwinkligen Dreiecken
- b) bei stumpfwinkligen Dreiecken
- c) bei rechtwinkligen Dreiecken.
- 117/11. Das Lot von P auf AB schneidet UV in T. Das Lot von P auf UV schneidet AB in R. Das Lot von P auf RT ist die gesuchte Gerade PS.

117/12. Es gibt 2 Punkte.

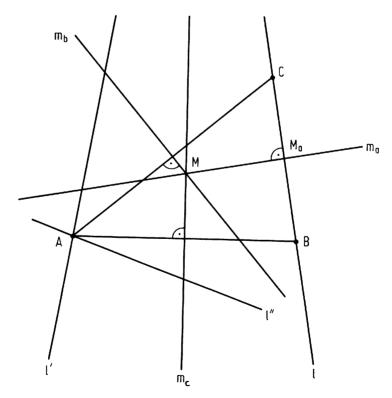


- 117/13. $\varrho = 2$
- 117/14. M(7|5)
- 117/15. a) Die Schnittpunkte von je zwei Winkelhalbierenden ergeben den Inkreis- bzw. die 3 Ankreismittelpunkte.
- 117/17. $\triangle M_a M_b M_c$ ist das Mittendreieck um $\triangle ABC$. Deshalb zeichnet man durch die Ecken des Mittendreiecks jeweils die Parallele zur Gegenseite; H(6|6), M(3,5|7,5).

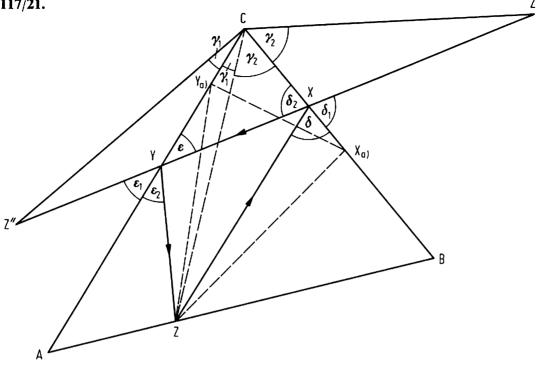
117/19. Man spiegelt A an w_{β} und an w_{γ} ; $w_{\beta} \cap A'A'' = \{B\}, \, w_{\gamma} \cap A'A'' = \{C\}.$



117/20. Man spiegelt l an m_c und an $m_b;$ $l'\cap l''=\{A\}.$



117/21.



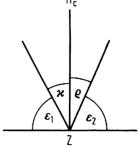
- a) $U = \overline{ZY} + \overline{YX} + \overline{XZ} = \overline{Z''Y} + \overline{YX} + \overline{XZ'}$ (Gespiegelte Strecken!).
- b) Der Streckenzug Z"YXZ' (und damit der Umfang von Dreieck XYZ) ist am kürzesten, wenn alle Punkte auf einer Geraden liegen; Z"Z' schneidet aber b in Y(3,5/7) und a in X(8,5/9,5).

Begründung: $\delta = \delta_1 = \delta_2$, $\varepsilon = \varepsilon_1 = \varepsilon_2$.

c) $\Delta Z''ZC$ ist gleichschenklig mit der Symmetrieachse b; $\Delta ZZ'C$ ist gleichschenklig mit der Symmetrieachse a.

 $\not \leq Z''CZ' = 2\gamma_1 + 2\gamma_2 = 2(\gamma_1 + \gamma_2) = 2\gamma$ (unabhängig von Z auf c).

- d) Nach c) hat $\Delta Z''Z'C$ den (konstanten) Winkel 2γ als Winkel an der Spitze. Damit ist in \(\Delta Z'' \, Z' \) C die Basis \(\Bar{Z}'' \, Z' \Bar{Z}' \) dann am k\(\text{urzesten}, \text{ wenn die Schenkel} \) [CZ"] und [CZ'] am kürzesten sind. Da diese Schenkel Spiegelbilder von [CZ] sind, muß also [CZ] möglichst kurz sein. Dies ist der Fall, wenn [CZ] Höhe ist.
- e) Beginnt man bei den voranstehenden Überlegungen mit dem Punkt X (oder Y), so erhält man analog h_a (oder h_b) als Höhe von A (oder B) aus. Also ist XYZ das Höhenfußpunktdreieck. $\,h_c\,$
- f) $\varepsilon_1 = \varepsilon_2$ (Reflexionsgesetz) also: $\varepsilon_1 + \varkappa = \varepsilon_1 + \varrho = 90^\circ \Rightarrow \varkappa = \varrho$. (analog an den anderen Ecken X, Y).



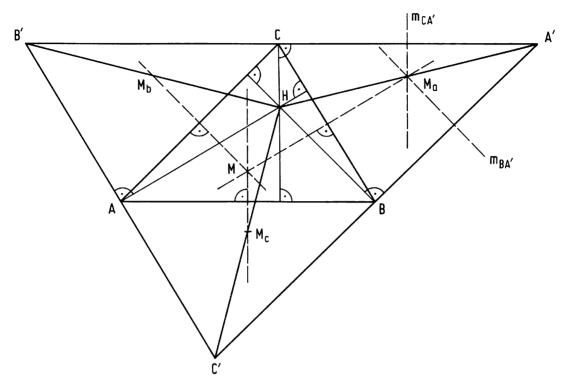
g) Man konstruiert die Winkelhalbierenden im Dreieck XYZ und errichtet auf diesen in X, Y und Z die Lote. Diese Lote schneiden sich in den Ecken A, B, C.

118/22. Man spiegelt die Dreiecke an den Seitenmitten, dabei gilt:

M wird auf Ma, bzw. Mb, bzw. Mc abgebildet.

 M_a ist deshalb der Umkreismittelpunkt von $\triangle BA'C$.

Wegen \angle A'CH = 90° = \angle HBA' sind die Dreiecke \triangle CHA' und \triangle BA'H rechtwinklig und haben den Mittelpunkt M₁ von [HA'] als gemeinsamen Umkreismittelpunkt.

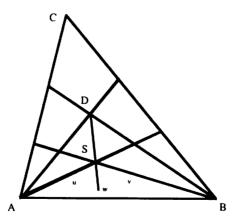


Es ist noch zu zeigen: $M_1 = M_a$.

Da aber M_1 auf $m_{CA'}$ und ebenso auf $m_{BA'}$ liegen muß, gilt $M_1 = M_a$, denn $m_{CA'} \cap m_{BA'} = \{M_a\}$.

Für M_b und M_c verläuft der Beweis analog.

118/23.



Im Dreieck ABD sind u und v Winkelhalbierende, ihr Schnittpunkt sei S. Da w auch durch S läuft, ist also auch w Winkelhalbierende im Dreieck ABD und halbiert somit den Winkel bei $D \Rightarrow \varphi = \psi$.

Aufgaben zu 5.2

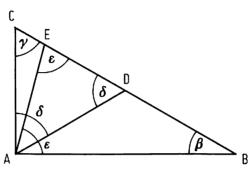
- **121/1.** a) $\alpha = \beta = 56^{\circ}$, b) $\beta = 17.8^{\circ}$, $\gamma = 144.4^{\circ}$, c) $\alpha = \beta = 72^{\circ}$, $\gamma = 36^{\circ}$ d) $\alpha = \beta = 50^{\circ}$, e) $\alpha = 82^{\circ}$, $\beta = 82^{\circ}$, $\gamma = 16^{\circ}$, f) $\alpha = \beta = 77\frac{1}{7}^{\circ}$, $\gamma = 25\frac{5}{7}^{\circ}$.
- 121/2. a) $\varphi = 110^{\circ}$ (Winkel an der Spitze), $\psi = \chi = 35^{\circ}$, b) $\varphi = \psi = \chi = 60^{\circ}$ c) $\varphi = 50^{\circ}$ (Winkel an der Spitze), $\psi = \chi = 65^{\circ}$ oder $\varphi = 50^{\circ}$ (Basiswinkel), $\psi = 50^{\circ}$, $\chi = 80^{\circ}$.
- **121/3.** a) 80° b) 40° c) 90° d) 70° e) 40° f) 70° .
- 121/4. Verbindet man jeweils die beiden Sehnenendpunkte mit dem Kreismittelpunkt, so entsteht ein gleichseitiges Dreieck. Wegen $360^{\circ} = 6 \cdot 60^{\circ}$ schließt sich der Sehnenzug zu einem regelmäßigen Sechseck.
- 121/5. {S} := b \cap s_b. $\triangle ABS$ ist gleichschenklig wegen $\overline{AB} = \overline{AS}$, $\alpha = \frac{1}{2}(180^{\circ} - \gamma) = 90^{\circ} - \frac{\gamma}{2}, \quad \angle ASB = \angle SBA = 45^{\circ} + \frac{\gamma}{4}.$
- 122/6. $\overline{AF} = \overline{CF}$, da $\triangle AFC$ gleichschenklig ist, und $\overline{CF} = \overline{FB}$, da Dreieck FBC gleichschenklig ist $\Rightarrow \overline{AF} = \overline{FB}$, also $s_c = [CF]$.
- 122/7. In dem zu zerlegenden Dreieck müßte ein Winkel 120° haben. Wegen der Winkelsumme im Dreieck sind dann aber die beiden anderen Innenwinkel ungleich 60°.
- 122/8. a) z. B.: $\alpha = \beta = 72^{\circ}$, $\gamma = 36^{\circ}$ (w_{\alpha} zerlegt das Dreieck in 2 gleichschenklige Dreiecke)
 z. B.: $\alpha = 108^{\circ}$, $\beta = \gamma = 36^{\circ}$ (α wird in 72° und 36° zerlegt).
 - **b)** Man zerlegt α in β und 2β . ($\beta < 45^{\circ}$).
 - c) Ist $\gamma = 90^{\circ}$, so zerlegt man γ in α und β .
 - d) Man zerlegt $\alpha = 180^{\circ} 3\beta$ in β und $180^{\circ} 4\beta$, falls $\beta < 45^{\circ}$ ist. Ist $\beta = 45^{\circ}$, so gilt Fall c).
- 122/9. Jede Symmetrieachse im Dreieck muß durch eine Ecke laufen. Angenommen, das Dreieck ABC habe 2 Symmetrieachsen, die durch A bzw. C laufen; dann gilt: $\gamma = \beta$ und $\beta = \alpha$, also $\alpha = \beta = \gamma$. Das Dreieck ist also gleichseitig und hat 3 Symmetrieachsen.
- 122/10. Die Dreiecke ABM, BCM und CAM sind gleichschenklig mit Basiswinkeln von 30°. Also besitzt Dreieck ABC drei 60°-Winkel.
- 122/11. \triangle AIV ist gleichschenklig mit den Basiswinkeln $\frac{\alpha}{2} \Rightarrow \overline{AV} = \overline{VI}$ \triangle BUI ist gleichschenklig mit den Basiswinkeln $\frac{\beta}{2} \Rightarrow \overline{BU} = \overline{UI}$ Insgesamt: $\overline{AV} + \overline{BU} = \overline{VI} + \overline{IU} = \overline{VU}$.

122/12.
$$\gamma = 90^{\circ}$$
.

- 122/13. a) \triangle BDE ist gleichschenklig mit den Basiswinkeln $\frac{\beta}{2} \Rightarrow \overline{DE} = \overline{EB}$.
 - **b)** $\gamma = \frac{\beta}{2}$; DE ist dann Winkelhalbierende des Winkels \angle ADB = β .

122/14. a)
$$2\delta + \gamma = 180^{\circ}$$

 $2\varepsilon + \beta = 180^{\circ}$
 $\gamma + \beta = 90^{\circ}$ $\Rightarrow \delta + \varepsilon = 135^{\circ} \Rightarrow \angle EAD = 180^{\circ} - 135^{\circ} = 45^{\circ}$



b)
$$2\varepsilon + \beta = 180^{\circ} \Rightarrow \varepsilon = 90^{\circ} - \frac{\beta}{2}, \quad \delta = 180^{\circ} - 45^{\circ} - \varepsilon = 45^{\circ} + \frac{\beta}{2}$$

c) $\varepsilon = 67.5^{\circ}$, also $\beta = 45^{\circ}$. Wäre A nicht die Spitze, so wäre δ oder ε gleich 90

123/15.
$$\alpha + 2 \cdot \not \prec AHF = 180^{\circ}$$

$$\gamma + 2 \cdot \not \prec GHC = 180^{\circ}$$

$$\not \prec FHG = 180^{\circ} - (\not \prec AHF + \not \prec GHC) = \frac{\alpha + \gamma}{2}.$$

123/16.
$$\gamma_2 := \angle FCB = 180^\circ - 2\beta$$

$$\gamma_1 := \angle GCF = \gamma - \gamma_2 = 180^\circ - \alpha - \beta - 180^\circ + 2\beta = \beta - \alpha$$

$$\varepsilon := \angle BGC: \quad \varepsilon + \varepsilon + \gamma = 180^\circ \Rightarrow \varepsilon = 90^\circ - \frac{\gamma}{2} = \frac{\alpha + \beta}{2}$$

$$\delta := \angle FGC: \quad 2\delta + \gamma_1 = 180^\circ \Rightarrow \delta = 90^\circ - \frac{\gamma_1}{2} = 90^\circ - \frac{\beta - \alpha}{2}$$

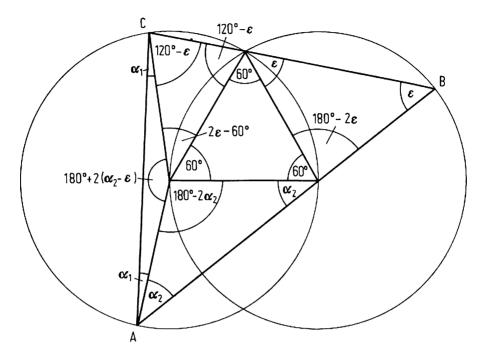
$$\Rightarrow \angle GFA = 180^\circ - \beta - \delta = 90^\circ - \frac{\alpha + \beta}{2}.$$

123/17. a)
$$\omega = 180^{\circ} - 3\alpha$$
 b) $\omega = 135^{\circ} - \frac{\alpha}{2}$ **c)** $\omega = 120^{\circ}$

123/18. Im Dreieck BCM gilt: $2\beta + 180^{\circ} - \alpha = 180^{\circ} \Rightarrow \beta = \frac{\alpha}{2}$.

123/19.
$$\not \leq M_1 M_2 A = \alpha$$
, $\not \leq M_2 M_1 C = 2\alpha$ (Außenwinkel) = $\not \leq M_1 C M_2$,
 $\not \leq C M_2 M_1 = 180^\circ - 4\alpha$, $\not \leq C M_2 B = 3\alpha$, $\not \leq M_2 C B = \not \leq C B M_2 = 90^\circ - \frac{3}{2}\alpha$
 $\gamma = 2\alpha + 90^\circ - \frac{3}{2}\alpha = 90^\circ + \frac{\alpha}{2}$.

124/20.
$$\triangle AM_1 C$$
: $2\alpha_1 + 180^{\circ} + 2(\alpha_2 - \varepsilon) = 180^{\circ}$
 $2(\alpha_1 + \alpha_2) = 2\varepsilon$
 $\alpha_1 + \alpha_2 = \varepsilon$.



- 124/21. \triangle ABC ist gleichseitig, denn es besitzt nach Konstruktion mindestens 2 (also 3) Symmetrieachsen.
- 124/22. \angle EDA = α , \angle BDF = β \Rightarrow \angle FDE = $180^{\circ} - (\alpha + \beta) = \gamma$ Ist α oder β stumpf, so gilt \angle FDE = $180^{\circ} - \alpha + 180^{\circ} - \beta = 180^{\circ} + \gamma$.
- 124/23. Wegen $\overline{AM} = \overline{MC}$ bzw. $\overline{MC} = \overline{MB}$ sind beide Teildreiecke gleichschenklig. $\gamma = \angle C = \angle ACM + \angle MCB = \alpha + \beta$ wegen der Gleichschenkligkeit. Da $\alpha + \beta + \gamma = \alpha + \beta + \alpha + \beta = 180^{\circ}$ ist, folgt $\gamma = 90^{\circ}$.

124/24.
$$5 \cdot 36^{\circ} = 180^{\circ}$$

 $7 \cdot \frac{180^{\circ}}{7} = 180^{\circ}$
 $7 \cdot \frac{540^{\circ}}{7} = 540^{\circ}$.

125/25. Man konstruiert die Winkelhalbierende w von g und h im Winkelfeld, das P enthält. Das Lot von P auf w ist die gesuchte Gerade e. Falls der Winkel, in dessen Winkelfeld P liegt, kleiner als 90° ist, gibt es eine zweite Lösung: Man zeichnet durch P die Parallele zu g und trägt bei P den Winkel 2α = 2 ⋅ ≮ (g, h) als Außenwinkel des Hilfsdreiecks an. Der freie Schenkel (bzw. dessen Verlängerung) schneidet g und h in den gesuchten Punkten. (Zeichnet man durch P die Parallele zu h, so erhält man eine weitere Lösung).

125/26. Man zeichnet die Diagonale [AC] ein und trägt bei A an die Diagonale nach oben und unten einen 30°-Winkel an. Die freien Schenkel dieser Winkel schneiden die Quadratseiten in den beiden gesuchten Punkten.

Aufgaben zu 5.3

- 128/1. a) $\alpha = 30^{\circ}$, $\gamma = 60^{\circ}$.
 - b) Der Schnittpunkt der freien Schenkel des 90°-Winkels bei B und des 60°-Winkels bei C ist A.
 - c) M sei der Mittelpunkt von [AC]. Da Dreieck MBC gleichseitig ist, gilt: $\overline{AC} = 2 \cdot \overline{BC} = 8$, $s_b = 4$, $h_c = \overline{BC} = 4$.
 - d) w, ist Symmetrieachse von [MB].
- 128/2. a) Man zeichnet eine Hilfsgerade durch P, die g in T schneidet.

 Der Thaleskreis über [PT] schneidet g im Lotfußpunkt.
 - b) Man wählt einen Punkt M, der nicht auf g liegt, und zeichnet um M einen Kreis mit r = MP. Dieser schneidet g noch in T (falls MP nicht schon Lot ist). Der Schnittpunkt des Kreises mit MT ist ein Punkt des Lotes.
- 129/3. Die Thaleskreise über c und a schneiden sich in B und im Höhenfußpunkt H_b . Wegen der Spitzwinkligkeit gilt α , $\gamma \neq 90^{\circ}$, d.h., H_b liegt zwischen A und C, also nicht auf dem Thaleskreis über a. Der Thaleskreis über a kann wegen $\beta \neq 90^{\circ}$ auch nicht durch B laufen. Bei rechtwinkligen Dreiecken schneiden sich die drei Thaleskreise im Katheten-
- 129/4. Da jeder Eckpunkt auf einem Thaleskreis liegt, hat das Viereck 4 rechte Winkel und ist ein Rechteck.
- 129/5. Die Diagonalen müssen aufeinander senkrecht stehen.
- 129/6. a) In den Dreiecken ASC und BDS gilt: $\angle C = \angle D = 90^{\circ}, \angle CSA = \angle BSD$, also auch $\alpha = \beta$.
 - **b)** $\varepsilon = \sigma$, $v = \tau$ (wie in **a**)) $\Rightarrow \varepsilon + \tau = v + \sigma$
 - c) $\varepsilon = 15^{\circ}$, $\omega = 135^{\circ}$

schnittpunkt.

- d) $\omega = 2\alpha$ e) $\omega = 45^{\circ} \frac{3}{4}\alpha$
- 129/7. a) bei spitzwinkligen Dreieckenbei rechtwinkligen Dreiecken
- 129/8. $60^{\circ} < \alpha < 90^{\circ}$
- 129/9. Die beiden Thaleskreise schneiden c im Höhenfußpunkt H_C.
- 129/10. Die Lotfußpunkte liegen auf dem Thaleskreis über [ST].

- 129/11. Der Thaleskreis über [AB] und der Kreis um B mit r = 2,5 ergeben jeweils einen zweiten Punkt von a (also 2 Lösungen).
- 129/12. Der Kreis um A mit r = 2,5 und der Thaleskreis über [AM] mit M(5,5/1) schneiden sich in 2 Punkten, ebenso der Kreis um B und der Thaleskreis über [MB]. Diese 4 Punkte liefern zwei sich in M schneidende Lösungsgeraden. Die beiden Parallelen zu AB im Abstand 2,5 sind 2 weitere Lösungsgeraden.
- 129/13. Es sei M der Mittelpunkt von $[M_a M_b]$. Wegen $\gamma = \not < M_a M_c M_b = \not < M_a H M_b = 90^\circ$ liegen die Punkte C, M_c und H auf dem Thaleskreis über $[M_a M_b]$. Wegen $\overline{AM_c} = \overline{M_c C}$ gilt $r = \frac{1}{4}c$.
- 129/14. Auf dem Kreis liegen H_a, M_a, M_b und M_c.
- 129/15. b) Wegen $\overline{M_1M_c} = \overline{M_1C}$ und $\overline{M_2M_c} = \overline{M_2C}$ gilt: $\triangle M_1M_cM_2 \cong \triangle M_1CM_2$ (SSS). Deshalb ist $M_1M_cM_2C$ ein Drachenviereck, und dessen Diagonalen $[CM_c]$ und $[M_1M_2]$ stehen aufeinander senkrecht.
 - c) ≮ M_cAM₁ = β, ≮ M₂BM_c = 90° β; S sei Schnittpunkt von AM₁ und BM₂
 ⇒ ≮ ASB = 180° β (90° β) = 90°
 ⇒ S liegt auf dem Thaleskreis über [AB]; der Thaleskreis ist aber zugleich Umkreis von △ ABC.
- 130/16. a) M₁ sei der Mittelpunkt von [DB]. Wegen ≮ BWD = ≮ DCB = 90° liegen W und C auf dem Thaleskreis über [DB]; dies ist der Umkreis von WBCD.
 M₂ sei der Mittelpunkt von [AE]. Wegen ≮ ECA = ≮ EWA = 90° liegen C und W auf dem Thaleskreis über [AE]; dies ist der Umkreis von AWCE.
 - **b)** \angle WEB = α . Da \triangle ENC gleichschenklig ist (Thaleskreis über [DE]!), gilt \angle NCE = \angle NEC = α .
 - c) N bewegt sich auf einer Strecke, die den Punkt C enthält.
- 130/17. \angle ECB = 3 · 60° = 180°, also liegt A auf dem Thaleskreis über [EB].
- 130/18. $\varepsilon = 67.5^{\circ} 45^{\circ} = 22.5^{\circ}$.
- 130/19. S sei der Diagonalenschnittpunkt. \angle DSE = 180° γ , also \angle ESA = γ .
- 130/20. M bewegt sich auf einem Viertelkreis um den Wandfußpunkt W mit dem Radius $\overline{WM} = \overline{MA}$ (Vermutung aus der Zeichnung).

 Da W auf dem Thaleskreis über [AB] liegt, gilt nämlich $\overline{WM} = \overline{AM}$ ist konstant.
- 130/21. a) Es sei M der Mittelpunkt von [HC]. Wegen $\not \subset H_bC = \not \subset CH_aH = 90^\circ$ liegen H_b und H_a auf dem Thaleskreis über [HC].

b) Da H_b auf dem Thaleskreis über [AB] liegt, gilt: $\not \subset H_cAH_b = \alpha$ = $\not \subset AH_bH_c \Rightarrow \not \subset H_cH_bB = 90^\circ - \alpha$. Da H_b auf dem Thaleskreis über [HC] liegt, gilt: $\not \subset MH_bC = \frac{\gamma}{2} = 90^\circ - \alpha \Rightarrow \not \subset MH_bH = \alpha$.

Also erhält man \neq MH_bH_c = $\alpha + 90^{\circ} - \alpha = 90^{\circ}$.

- c) Für $\gamma = 45^{\circ}$ ist MH_bH_cH_a ein Quadrat.
- 131/22. a) Die Punkte D und B liegen symmetrisch bezüglich h_c, also ist Dreieck DBC gleichschenklig.
 - **b)** $\angle EAB = 90^{\circ} \beta$, $\angle BAC = 90^{\circ} \beta \Rightarrow \angle EAB = \angle BAC$.
 - c) Es sei M der Mittelpunkt von [AC]. Wegen ≮ CEA = ≮ CHA = 90° liegen E und H auf dem Thaleskreis über [AC].
 Die Dreiecke MHC, MEH und MAE sind gleichschenklig mit der Schenkellänge r = MC.
 ≮ HMC = 180° 2β, ≮ AME = 4β 180° ⇒ ≮ EMH = 180° 2β.

★ HMC = 180° - 2β, ★ AME = 4β - 180° ⇒ ★ EMH = 180° - 2β. Da die Dreiecke MHC und MEH im Winkel an der Spitze und in der Schenkellänge übereinstimmen, müssen auch die Basen gleich lang sein, also $\overline{EH} = \overline{HC}$.

- 131/23. Man trägt den Schenkel [BC] an. Der Thaleskreis über [BC] und der Kreis um C mit $r = \frac{1}{2} \overline{BC}$ schneiden sich im Mittelpunkt des anderen Schenkels. Es entsteht ein gleichseitiges Dreieck.
- 131/24. a) Der rechte Winkel liege bei C. Da auch das Dreieck EFC rechtwinklig ist, erhält man C als Schnittpunkt des gegebenen Kreises k und des Thaleskreises über [EF] (2 Lösungen).
 - b) z.B.: E und F liegen auf einem Durchmesser.

6. Kapitel

Aufgaben zu 6.1

- **139/3.** c) $\gamma = 70^{\circ}$ d) $\gamma = 70^{\circ}$
- 139/4. b) Es gibt zwei Lösungen
- 139/5. Mauerhöhe h \approx 11 m
- 139/6. Seebreite s \approx 75 m
- **139/7.** S(16/9)
- 139/8. Fernsehturmhöhe h \approx 307 m
- 139/9. Kamalbreite b $\approx 20 \text{ m}$
- **139/10.** A(2/5,5), B(8/7), C(3,5/11,5), D(10,5/13,5), E(12,5/-1,5), F(19/3)

Aufgaben zu 6.2

- 142/1. a) Der Thaleskreis über der Hypotenuse c schneidet den Kreis um A mit r = 6.5in C.
 - b) Der freie Schenkel von α schneidet den Thaleskreis über der Hypotenuse c in C.
 - c) $h_a = b$ (analog Aufgabe a)).
- 142/2. Der Schnittpunkt des Thaleskreises über [AB] und der Mittelsenkrechten von [AB] ergibt C.
- 142/3. a) Die Parallele zu c im Abstand 3 schneidet den Thaleskreis über c in zwei Punkten.
 - b) Die Parallele zu c im Abstand 4 schneidet den Thaleskreis über c in C. Für h_c > 4 gibt es keine Lösung.

- 142/4. a) Teildreieck AH_aC ist konstruierbar aus h_a , b und $\angle AH_aC = 90^\circ$ (2 Lösungen).
 - b) Teildreieck AH_aC ist konstruierbar aus b, h_a und \angle AH_aC = 90° (H_a = B!).
 - c) Teildreieck ABH_b ist konstruierbar aus c, h_b und \angle AH_bB = 90° (2 Lösungen).
 - d) Teildreieck AH_aC ist konstruierbar aus h_a , b und $\angle AH_aC = 90^\circ$ ($\angle BAH_a = 28^\circ$).
 - e) Teildreieck ABH_b ist konstruierbar aus h_b, ≮ ABH_b = 35°, ≮ AH_bB = 90°.
 - f) Teildreieck ABH_a ist konstruierbar aus h_a, c und ≮ AH_aB = 90°.
- 142/5. a) Teildreieck AM_aC ist konstruierbar aus b, s_a und $\frac{a}{2}$.
 - **b)** Teildreieck M_c BC ist konstruierbar aus $\frac{c}{2}$, s_c und β .
 - c) Teildreieck AM_cC ist konstruierbar aus b, s_c und α .
- 142/6. a) Teildreieck BCW_b ist konstruierbar aus a, w_{β} und $\frac{\beta}{2}$.
 - b) Teildreieck AW_cC ist konstruierbar aus b, α und w_y (2 Lösungen).
 - c) Teildreieck BCW_b ist konstruierbar aus w_{β} , $\frac{\beta}{2}$ und \angle BW_bC = 52,5°.
 - d) Teildreieck ABW_b ist konstruierbar aus w_{β} , $\frac{\beta}{2} = 30^{\circ}$, $\angle AW_{b}B = 105^{\circ}$.
- 142/7. a) Teildreieck ABH_a ist konstruierbar aus c, h_a und ≮ AH_a B = 90° (2 Lösungen).
 - b) Teildreieck H_bBM_b ist konstruierbar aus s_b , h_b und $\not < M_bH_bB = 90^\circ$. (2 \checkmark s
 - c) Teildreieck ABH_a ist konstruierbar aus c, h_a und \angle AH_aB = 90°.
 - d) Teildreieck H_c BC ist konstruierbar aus a, h_c und ≮ CH_c B = 90° (2 Lösungen).
 - e) Teildreieck AH_aC ist konstruierbar aus b, h_a und ≮ AH_aC = 90°.
 - f) Teildreieck AH_cC ist konstruierbar aus h_c, b und ≮ AH_cC = 90° (2 Lösungen).
- 142/8. a) Teildreieck AH_aC ist konstruierbar aus h_a , $\angle AH_aC = 90^\circ$ und $\angle CAH_a = 30^\circ$.
 - b) Teildreieck AH_aM_a ist konstruierbar aus h_a , s_a und $\not < AH_aM_a = 90^\circ$. B liegt auf dem freien Schenkel des an AH_a in A angetragenen Winkels von 25°.
 - c) Teildreieck ABH_b ist konstruierbar aus h_b, \angle AH_bB = 90° und \angle H_bBA = 60°.
 - d) Teildreieck BH_cC ist konstruierbar aus h_c, \angle BH_cC = 90° und \angle BCH_c = 20°.
- 142/9. a) Parallelogramm ABA'C ist konstruierbar aus $c = \overline{AB}$, $\overline{BA'} = b$, $\overline{AA'} = 2s_a$.
 - b) Parallelogramm ABA'C ist konstruierbar aus $c = \overline{AB}$, $\beta = 30^{\circ}$, $\overline{AA'} = 2s_a$.
 - c) Parallelogramm ABA'C ist konstruierbar aus $\overline{AC} = b$, h_b und $\overline{AA'} = 2s_a$ (2 Lösungen).

- d) Parallelogramm ABCB' ist konstruierbar aus $c = \overline{AB}$, h_a und $\overline{BB'} = 2s_b$ (2 Lösungen).
- e) Parallelogramm ABA'C ist konstruierbar aus α , h_c und $\overline{AA'} = 2s_a$.
- 142/10. a) D liegt auf [AB] mit $\overline{AD} = 3$; Teildreieck ADC ist konstruierbar aus $\overline{AD} = 3$, $\alpha = 40^{\circ}$ und $\angle ADC = 115^{\circ}$.
 - **b)** D liegt auf [AC] mit $\overline{CD} = 1$; Teildreieck BCD ist konstruierbar aus $\overline{CD} = 1$, $\gamma = 30^{\circ}$, $\angle CDB = 127.5^{\circ}$.
 - c) Teildreieck CH_c B ist konstruierbar aus h_c, a und ≮ CH_c B = 90°. Man verlängert [H_c B] über B hinaus um 1,5 und erhält D. A ist der Schnittpunkt der Mittelsenkrechten von [CD] mit BH_c.
- 142/11. a) Der Thaleskreis über c und der Kreis um A mit r = 6 schneiden sich in H_a . Der freie Schenkel von α und BH_a schneiden sich in C.
 - b) Der Thaleskreis über c und der Kreis um A mit r = 5 schneiden sich in H_a. BH_a schneidet die Parallele zu c im Abstand 4 in C.
 - ,c) Der Thaleskreis über c und der Kreis um B mit r = 7 schneiden sich in H_b . AH_b und der Kreis um A mit r = 6 schneiden sich in C.
- 142/12. a) Man trägt a als Sehne im Umkreis ab und trägt bei B den Winkel β an. Der freie Schenkel von β schneidet den Umkreis in A.
 - b) Man konstruiert ein △ A'B'C' aus den gegebenen Winkeln und seinen Umkreismittelpunkt M. Der Kreis um M mit r = 5 und]MA' schneiden sich in A. Die Parallele c zu c' durch A und die Parallele b zu b' durch A schneiden den Kreis in B bzw. C.
 - c) Man zeichnet in den Kreis um M mit r = 2,5 die Sehne $\overline{AC} = b = 4,5$. Die Parallele zu AC im Abstand 3 schneidet den Kreis in B_1 und B_2 (2 Lösungen)
 - d) Man zeichnet in den Kreis um M mit r = 3 einen Durchmesser $C = \overline{AB} = 6$ ein. Da das Dreieck rechtwinklig ist, gilt $h_b = \overline{BC} = 4$.
 - e) Man zeichnet in den Kreis um M mit r=3.5 die Sehne c=AB=6 ein. Der Kreis um B mit r=3 und der Thaleskreis über [AB] schneiden sich im Höhenfußpunkt H_b .
- 142/13. A(1|1), B(9|1). C₁, bzw. C₂ erhält man als Schnittpunkte des Umkreises mit der Parallelen zu c im Abstand 7.
- 142/14. Die Parallele zu AB im Abstand 4 schneidet den Umkreis in C₁ bzw. C₂.
- 142/15. Man zeichnet die Lote zu HH_c durch H_c und zu HH_a durch H_a.
- 142/16. Man konstruiert das Teildreieck AHC. Die Lote von A auf HC und von C auf AH schneiden sich in B.
- 143/17. Man konstruiert die Winkelhalbierenden im Höhenfußpunktdreieck H_aH_bH_c (sie sind Höhen in △ ABC) und ebenso die Außenwinkelhalbierenden (sie sind Seiten im △ ABC).

- 143/18. a) Man errichtet in H_b das Lot zu H_bH und ebenso in H_a das Lot zu H_aH. Die Lote schneiden sich in C. Die Verlängerungen der Lote und H_aH bzw. H_bH schneiden sich in A bzw. B.
 - **b)** \wedge ABH, \wedge AHC und \wedge BCH.
- 143/19. Wegen $\not < AH_bH = \not < HH_cA = 90^\circ$ liegen H_c und H_b auf dem Thaleskreis über [AH]; $r = \frac{\overline{AH}}{2}$.
- 143/20. a) Man konstruiert zuerst das Dreieck BCD.
 - b) Man konstruiert zuerst das Dreieck ABC.
 - c) Man konstruiert zuerst das Dreieck ABC.
 - d) Man konstruiert zuerst das Dreieck ABC.
 - e) Man konstruiert zuerst das Dreieck ABD (2 Lösungen).
- 143/21. a) Der Thaleskreis über [AC] und der Kreis um C mit r = 4 schneiden sich in B.
 - b) Der Thaleskreis über [BD] und der freie Schenkel von ≮ BDC schneiden sich in C.
- 143/22. Man konstruiert das Dreieck ABD. Der Thaleskreis über [BD] und der Kreis um D mit r = 2,5 schneiden sich in C.
- 143/23. Man konstruiert erst Dreieck ABC, dann D, dann E (2 Lösungen).
- 143/24. Man konstruiert zuerst das Dreieck ABC, dann D, dann E und schließlich F aus ★ FCE = 30° und ★ FEC = 75°.
- 143/25. a) $b \approx 794 \text{ m}$.
 - b) Die Sonnenhöhe ist der Winkel gegen die Horizontale: $\alpha \approx 49^{\circ}$.
- 143/26. a) Man verdoppelt ≮ WBH_c. Die Höhe h_c und ein Schenkel von β schneiden sich in C(6|13). Durch Verdoppelung von ≮ WCB erhält man A(1|1).
 - b) Wegen H = C hat $\triangle ABC$ den rechten Winkel γ . Man trägt an CW nach links und rechts einen Winkel von 45° an. Der Kreis um M mit $r = \overline{MC}$ ergibt die Punkte A und B.
 - c) Verdoppelung von [BM_c] liefert A. Verdoppelung der Winkel ★ BAW und ★ WBA liefert C.

Aufgaben zu 6.3

- **145/1.** a) ja b) ja c) nein, da a = b + c
 - **d)** nein, da $\beta > 95^{\circ}$ sein müßte
 - e) nein, da $\beta > 70^{\circ}$ sein müßte
 - f) nein, da $a \ge h_c$ sein muß.

- 145/2. a < 10, c < 10, a + c > 10.
- 145/3. a) P, Q, R liegen auf einer Gerade, wobei Q zwischen P und R liegt.
 - b) P, Q, R bilden ein Dreieck.
 - c) P, Q, R liegen auf einer Gerade, wobei P zwischen R und Q liegt.
- 145/4. 2 < s < 12.
- 146/5. a) D liegt symmetrisch zu A, also $\overline{CD} = \overline{CA} = b$.
 - b) ≮ CDW und ≮ CAW liegen symmetrisch, sind also gleich groß.
 - c) $\alpha = \angle CDW = \beta + \angle BWD$ (Außenwinkelsatz) $\Rightarrow \alpha > \beta$.
- 146/6. a) Dreieck ADC ist gleichschenklig, also ist der Basiswinkel ≮ ADC spitz.
 - b) ≮ ADB ist stumpf, also liegt ihm die größte Seite im Dreieck ABD gegenüber.
 - c) a b < c.
- 146/7. a) a = 13 oder a = 19
 - **b)** a = 14, 15, 16, 17 oder 18
 - c) a = 7, 8, ..., 17 oder 18 (in einer Zeichnung erkennt man weiter: a < 12).
- 146/8. a) Der Diagonalenschnittpunkt zerlegt die Diagonalen in e_1 und e_2 bzw. f_1 und f_2 . Aus $e_1 + f_1 > a$ und $e_2 + f_2 > c$ folgt durch Addition: e + f > a + c.
 - **b)** Aus $e_1 + f_1 > a$, $f_1 + e_2 > b$, $e_2 + f_2 > c$ und $f_2 + e_1 > d$ folgt durch Addition: 2e + 2f > u, also $e + f > \frac{u}{2}$.
 - c) Aus e < a + b und f < c + d folgt durch Addition: e + f < u.
- 146/9. a) $\angle DCB = 60^{\circ} > \angle CBD \Rightarrow \overline{BD} > \overline{DC}$
 - **b)** \angle DCB = 60° < \angle CBD \Rightarrow \overline{BD} < \overline{DC} .
- 146/10. Aus $h_a \le b$ und $h_a \le c$ folgt durch Addition:

$$2h_a < b + c$$
, also $h_a < \frac{b+c}{2}$,

denn höchstens in einer Ungleichung kann Gleichheit eintreten, wenn $\gamma = 90^{\circ}$ bzw. $\beta = 90^{\circ}$ ist.

- 146/11. Aus $\frac{c+b}{2} > h_a$, $\frac{c+a}{2} > h_b$ und $\frac{a+b}{2} > h_c$ folgt durch Addition: $u > h_a + h_b + h_c$.
- 146/12. M sei der Mittelpunkt von [AB]. Das Dreieck mit den Eckpunkten H_c , M, C ist entweder rechtwinklig mit der Hypotenuse [CM], oder es gilt $\overline{CM} = \overline{CH_c}$ (falls das Dreieck ABC gleichschenklig-rechtwinklig ist). Also folgt:

$$\overline{CH_c} \leqq \frac{1}{2} \, \overline{CM} = \frac{1}{2} \, \overline{AB} = \frac{1}{2} c.$$

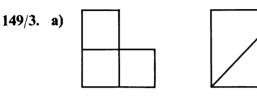
7. Kapitel

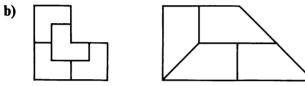
Aufgaben zu 7.1

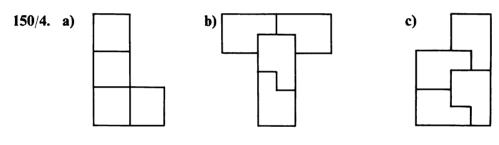
d)

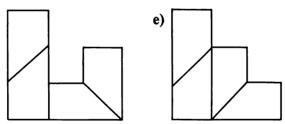
149/1. DIS \cong SKU, ISD \cong KUS, SDI \cong USK $\overline{DI} = \overline{SK}, \ \overline{IS} = \overline{KU}, \ \overline{SD} = \overline{US}, \ \not< D = \not< S, \ \not< I = \not< K, \ \not< S = \not< U$

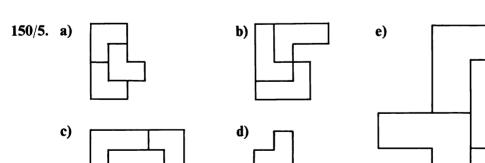
149/2. Wegen der Symmetrie sind Urbild und Bild kongruent.

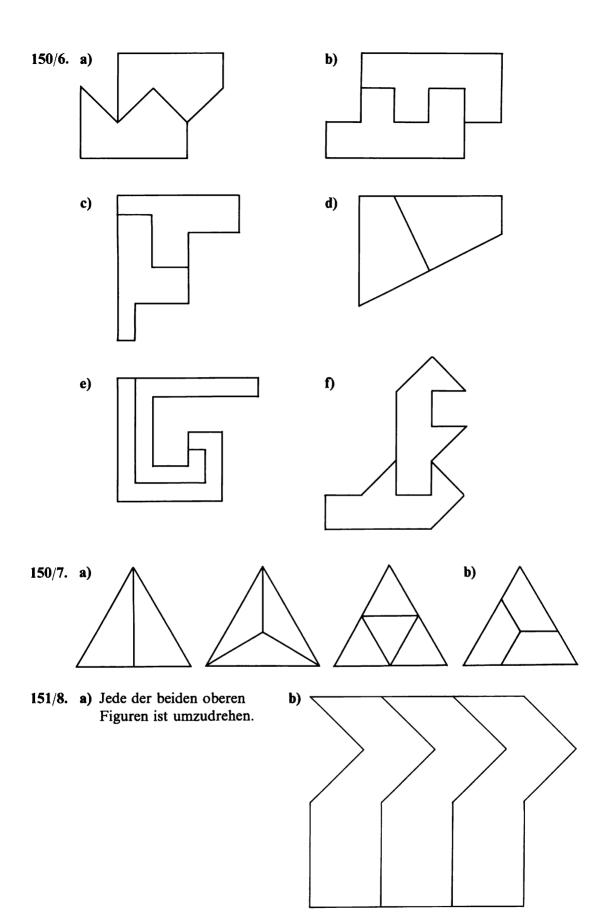




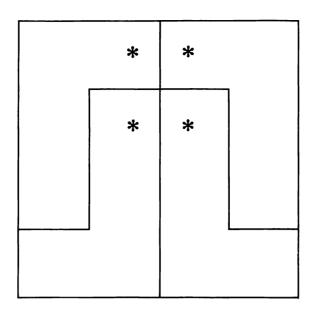




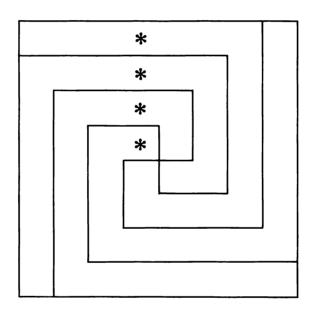




151/9. a) z.B.:



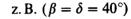
b) z. B.:



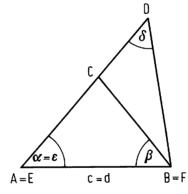
Aufgaben zu 7.2

- 153/1. a) eine Seite
- b) Kathete oder Hypotenuse
- c) Basis und Schenkel oder Schenkel und Winkel an der Spitze (bzw. Basiswinkel) oder Basis und Basiswinkel (bzw. Winkel an der Spitze)
- d) Hypotenuse und eine Kathete oder beide Katheten oder Hypotenuse und ein weiterer Winkel oder eine Kathete und der andere anliegende Winkel oder eine Kathete und ihr Gegenwinkel
- e) siehe Kongruenzsätze.

- 153/2. a) beim gleichseitigen Dreieck (beim gleichschenklig-rechtwinkligen Dreieck, falls bekannt ist, ob die Seite Kathete oder Hypotenuse ist)
 - b) bei keinem Dreieck
- c) bei keinem Dreieck
- d) beim gleichschenkligen Dreieck, falls bekannt ist, welche Seite Basis (bzw. Schenkel) ist, und beim rechtwinkligen Dreieck, falls bekannt ist, ob entweder beide Seiten Katheten sind oder nicht.
- e) beim gleichschenkligen Dreieck, falls bekannt ist, ob die Seite Basis oder Schenkel ist und ob der Winkel Basiswinkel oder Winkel an der Spitze ist, und beim rechtwinkligen Dreieck, falls bekannt ist, daß die Seite Hypotenuse und der Winkel spitz ist, oder daß die Seite Kathete ist und der Winkel an dieser Kathete anliegt, oder daß die Seite Kathete und der Winkel ihr Gegenwinkel ist.
- 153/3. a) ja (SWS)
- b) nein B = F

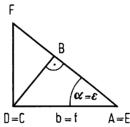


- c) ja (WSW)
- d) ja (WSW)
- e) nein



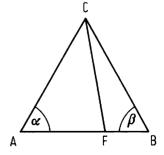
z. B.
$$(\beta = \delta = 50^{\circ})$$

f) nein



153/4.
$$\overline{AC} = \overline{BC}$$
 $\overline{CF} = \overline{CF}$
 $\alpha = \beta$

Aber: Die Dreiecke sind i.a. nicht kongruent.



154/5. a) $\triangle ABD \cong \triangle ABC \cong \triangle BCD \cong \triangle CDA$ (SWS)

 $\triangle ABM \cong \triangle CDM (SSS)$

 $\triangle BCM \cong \triangle DAM (SSS)$

b) $\triangle ABC \cong \triangle BCD \cong \triangle CDA \cong \triangle DAB$ (SSS) $\triangle ABM \cong \triangle BCM \cong \triangle CDM \cong \triangle DAM$ (SSS)

- c) $\Delta AM_c M_b \cong \Delta M_c BM_a \cong \Delta M_a CM_b \cong \Delta M_a M_b M_c$ (SSS)
- d) $\triangle ABF \cong \triangle BDA (SSS)$

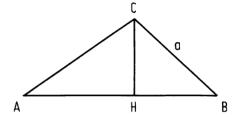
 $\triangle AEC \cong \triangle EBC (SSS)$

 $\triangle AEH \cong \triangle EBH (SSS)$

 $\triangle BFH \cong \triangle AHD (SSS)$

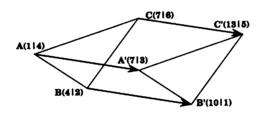
 \triangle HFC \cong \triangle HCD (SSS)

 $\triangle BCH \cong \triangle CAH (SSS)$



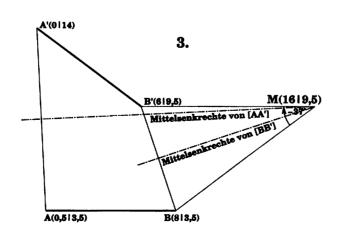
Aufgaben zu 7.3

164/1.

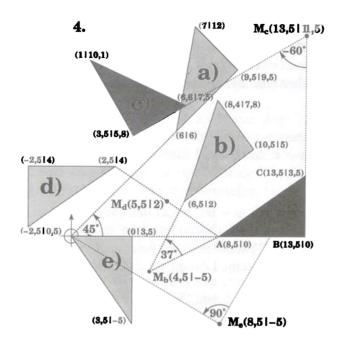


165/2. A'(6,7/7,2), B'(9/4), C'9/9)

165/3.



165/4.



166/5. a)
$$\varphi = 60^{\circ}$$
 b) $\varphi = \frac{360^{\circ}}{7}$

b)
$$\varphi = \frac{360^{\circ}}{7}$$

c)
$$\varphi = 72^{\circ}$$

c)
$$\varphi = 72^{\circ}$$
 d) $\varphi = 120^{\circ}$ **e)** $\varphi = 40^{\circ}$

e)
$$\varphi = 40^\circ$$

f)
$$\varphi = 60^{\circ}$$
.

166/6. a) B'(10/6), C'(11/5),
$$\vec{v} = \begin{pmatrix} 6 \\ 3 \end{pmatrix}$$

b)
$$A'(3/3)$$
, $B'(6/5)$, $C'(7/4)$

c) A"(2/4), B"(5/6), C"(6/5),
$$\vec{k} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

166/7. $\varphi_1 = 37^\circ$, $\varphi_2 = 53^\circ$; die Mittelsenkrechten von $[M_1 M_1'']$ und $[M_2 M_2'']$ schneiden sich im Zentrum M(8/6).

166/8. b) 3

c) a₁ und a₂ haben den Abstand 1,5, also hat der Verschiebungspfeil die Länge 3.

167/9. Man verschiebt zunächst die Strecke [AB] so, daß z. B. A* (beliebig) auf SU liegt. Die Parallele zu SU durch B* ergibt B' auf ST. A' findet man nun auf SU.

167/10. B läuft auf dem verschobenen Kreis k' um M'(5/6) mit r = 2.

167/11. Man konstruiert (nach Aufgabe 10) den verschobenen Kreis k'_1 um M'_1 (5/6) mit r = 2. Die beiden Schnittpunkte von k_2 und k'_1 ergeben die beiden Lösungen B_1' und B_2' .

167/12. a) M(3,5/1,5), $\varphi = -90^{\circ}$

b) M(-4/0),
$$\varphi = -22.6^{\circ}$$
.

167/13. Man konstruiert den Spiegelpunkt A₁ von A bei der Spiegelung an a₁. a_2 ist die Mittelsenkrechte von $[A_1 A']$, Drehpunkt M(3/4), $\varphi = 128^{\circ}$.

- 167/14. Wegen AE = AC wird ΔAEC bei der Drehung auf ΔDBF abgebildet.

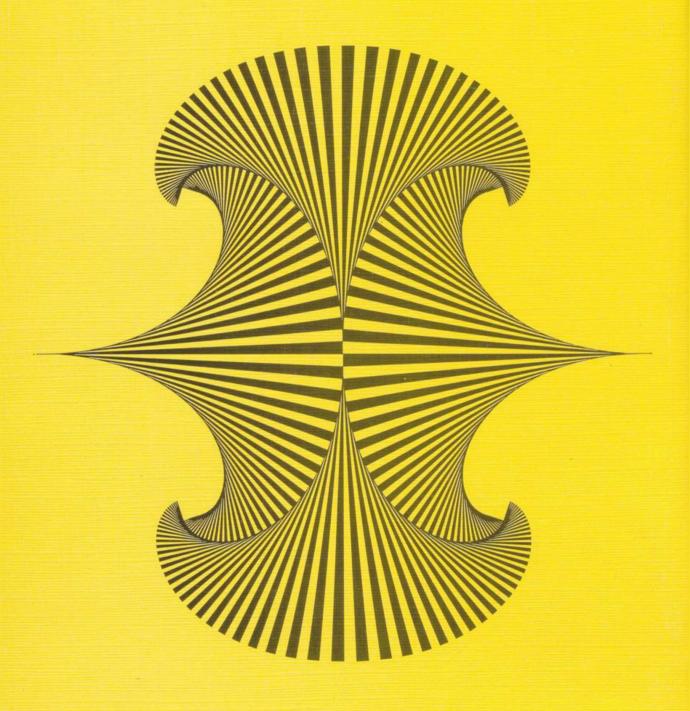
 Das Bild von AC ist also DF, das von EC ist BF.

 Da ΔCEA gleichschenklig ist mit ₹ EAC = 45°, gilt ₹ CEA = 67,5°. Ebenso ist ΔEMB gleichschenklig mit ₹ MEB = ₹ CEA = 67,5°, also ε = 45°. ε ist der Drehwinkel.
- 167/15. Man zeichnet einen weiteren Kreis um M mit r = 2,5. Dieser schneidet die Hilfssehne s in R und T. Man dreht nun s um M so, daß R (oder T) auf P fällt (2 Möglichkeiten).
- 167/16. Eine Drehung um C mit $\varphi = 60^{\circ}$ bildet den (noch unbekannten) Punkt A auf B ab. SR wird dabei auf S'R' abgebildet. B ist also der Schnittpunkt von ST und S'R'. Mit der Seite [BC] kennt man das gesuchte Dreieck ABC. (Die Drehung um C mit $\varphi = -60^{\circ}$ liefert keine Lösung, da das Dreieck einen falschen Umlaufsinn hat.)
- 167/17. Bei einer Drehung um C mit φ = 60° wird B auf S, U auf B und T auf A abgebildet, also wird [TB] auf [AS] abgebildet, d.h. TB = AS.
 Eine Drehung um B mit φ = -60° zeigt CU = AS.
 ≮ (AS; BT) = 60°.
- **168/18.** z. B.: $a_1 = m_{A\bar{A}}, a_2 = m_{B'\bar{B}}.$
- **168/19.** z. B.: $a_1 = m_{A\bar{A}}, a_2 = \overline{AB}$.
- $\mbox{\bf 168/20.} \ z. \, B.: \quad a_1 = AC \, , \quad a_2 = m_{A'C'} = m_{AC} \, , \quad a_3 = m_{A''\bar{A}} \, . \label{eq:a20}$
- **168/21.** z. B.: $a_1 = m_{C\bar{C}}, a_2 = m_{D'\bar{D}}.$
- 168/22. a) Es sind mindestens 2 Spiegelachsen notwendig.b) Es sind entweder eine oder drei Spiegelachsen notwendig.
- 168/23. Ā (4,5/-1,5), \bar{B} (1,5/-0,5), \bar{C} (3/4).

 Die 3 Spiegelungen können durch eine Spiegelung an der Achse $m_{B\bar{B}}$ ersetzt werden.
- 168/24. $\bar{A}(11,5/3,5)$, $\bar{B}(6/0)$, $\bar{C}(9/6)$.

 Die zur y-Achse parallele Spiegelachse durch (5/0) leistet dasselbe.
- 168/25. Ā(11,5/4,5), B̄(5/5), C̄(9/2).
 Die Schubspiegelung, bestehend aus einer Achsenspiegelung und einer anschließenden Translation, erhält man folgendermaßen:
 Für das Spiegelbild A'B'C' des Dreiecks ABC an der Achse a gilt ≮ AA'Ā
 = ≮ BB'B̄ = ≮ CC'C̄ = 90°. Also ist a || A'A₁, und da a die Strecke [AA'] halbiert, liegt auch der Mittelpunkt M₁ von [AĀ] auf a (Mittellinieneigenschaft). Analog müssen die Mittelpunkte M₂ von [BB̄] und M₃ von [CC̄] Punkte der Achse a sein. Der Verschiebungspfeil ist A'A.

- 169/26. Ā(7,5/-5), B̄(8/-8,5), C̄(5/-5).
 Wie in Aufgabe 8. findet man a als Gerade durch die Mittelpunkte der Strecken [AĀ], [BB̄] und [CC̄].
 Der Verschiebungspfeil ergibt sich nach Spiegelung von A an a als A'A.
- 169/27. Die Brücke muß in P gebaut werden. Kürzester Weg: 11.
- 169/28. Man verschiebt die eine Brücke nach D, die andere nach M und verbindet die Endpunkte. Diese Verbindungslinie schneidet die Flüsse in 4 Punkten. Die beiden mittleren Schnittpunkte legen die Brückenstellen fest.
- 169/29. Dreht man das Lösungsdreieck um A mit $\varphi = 60^{\circ}$, so gilt B' = C. b wird bei dieser Drehung auf b' abgebildet, und es gilt deshalb $\{C\} = b' \cap c$.
- 169/30. Dreht man das Lösungsdreieck um A mit $\varphi = 60^{\circ}$, so gilt B' = C. YZ wird bei dieser Drehung auf Y'Z' abgebildet, und deshalb gilt $\{C\} = Y'Z \cap XZ$.
- 169/31. Dreht man das Lösungsdreieck um A mit $\varphi = 60^{\circ}$, so gilt B' = C. Man findet C_1 und C_2 als Schnittpunkte des gedrehten Kreises k'_2 und k_3 . (Da A fest gewählt ist, spielt k_1 überhaupt keine Rolle.)
- 169/32. Dreht man das Lösungsquadrat um A mit $\varphi = 90^{\circ}$, so gilt B' = D. Man findet D als Schnittpunkt des gedrehten Kreises k_1 und k_3 .



ISBN 3-486-03295-X

9 7 8 3 4 8 6 0 3 2 9 5 6

Bestell-Nr. 03295-X